Science.gov

Sample records for active brown adipose

  1. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  2. A role of active brown adipose tissue in cancer cachexia?

    PubMed Central

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity. PMID:25992201

  3. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  4. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning

    PubMed Central

    Liu, Dianxin; Bordicchia, Marica; Zhang, Chaoying; Fang, Huafeng; Wei, Wan; Guilherme, Adilson; Guntur, Kalyani; Czech, Michael P.

    2016-01-01

    A classic metabolic concept posits that insulin promotes energy storage and adipose expansion, while catecholamines stimulate release of adipose energy stores by hydrolysis of triglycerides through β-adrenergic receptor (βARs) and protein kinase A (PKA) signaling. Here, we have shown that a key hub in the insulin signaling pathway, activation of p70 ribosomal S6 kinase (S6K1) through mTORC1, is also triggered by PKA activation in both mouse and human adipocytes. Mice with mTORC1 impairment, either through adipocyte-specific deletion of Raptor or pharmacologic rapamycin treatment, were refractory to the well-known βAR-dependent increase of uncoupling protein UCP1 expression and expansion of beige/brite adipocytes (so-called browning) in white adipose tissue (WAT). Mechanistically, PKA directly phosphorylated mTOR and RAPTOR on unique serine residues, an effect that was independent of insulin/AKT signaling. Abrogation of the PKA site within RAPTOR disrupted βAR/mTORC1 activation of S6K1 without affecting mTORC1 activation by insulin. Conversely, a phosphomimetic RAPTOR augmented S6K1 activity. Together, these studies reveal a signaling pathway from βARs and PKA through mTORC1 that is required for adipose browning by catecholamines and provides potential therapeutic strategies to enhance energy expenditure and combat metabolic disease. PMID:27018708

  5. Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Saraf, Manish K; Annamalai, Palam; Yfanti, Christina; Chao, Tony; Wong, Daniel; Shinoda, Kosaku; Labbė, Sebastien M; Hurren, Nicholas M; Cesani, Fernardo; Kajimura, Shingo; Sidossis, Labros S

    2016-06-14

    Recent studies suggest that brown adipose tissue (BAT) plays a role in energy and glucose metabolism in humans. However, the physiological significance of human BAT in lipid metabolism remains unknown. We studied 16 overweight/obese men during prolonged, non-shivering cold and thermoneutral conditions using stable isotopic tracer methodologies in conjunction with hyperinsulinemic-euglycemic clamps and BAT and white adipose tissue (WAT) biopsies. BAT volume was significantly associated with increased whole-body lipolysis, triglyceride-free fatty acid (FFA) cycling, FFA oxidation, and adipose tissue insulin sensitivity. Functional analysis of BAT and WAT demonstrated the greater thermogenic capacity of BAT compared to WAT, while molecular analysis revealed a cold-induced upregulation of genes involved in lipid metabolism only in BAT. The accelerated mobilization and oxidation of lipids upon BAT activation supports a putative role for BAT in the regulation of lipid metabolism in humans. PMID:27238638

  6. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation.

    PubMed

    Zeng, Xing; Jedrychowski, Mark P; Chen, Yi; Serag, Sara; Lavery, Gareth G; Gygi, Steve P; Spiegelman, Bruce M

    2016-08-15

    Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or β-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-β-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis. PMID:27566776

  7. Anatomical Grading for Metabolic Activity of Brown Adipose Tissue

    PubMed Central

    Becker, Anton S.; Nagel, Hannes W.; Wolfrum, Christian; Burger, Irene A.

    2016-01-01

    Background Recent advances in obesity research suggest that BAT activity, or absence thereof, may be an important factor in the growing epidemic of obesity and its manifold complications. It is thus important to assess larger populations for BAT-activating and deactivating factors. 18FDG-PET/CT is the standard method to detect and quantify metabolic BAT activity, however, the manual measurement is not suitable for large studies due to its time-consuming nature and poor reproducibility across different software and devices. Methodology/Main Findings In a retrospective study, 1060 consecutive scans of 1031 patients receiving a diagnostic 18FDG-PET/CT were examined for the presence of active BAT. Patients were classified according to a 3-tier system (supraclavicular, mediastinal, infradiaphragmatic) depending on the anatomical location of their active BAT depots, with the most caudal location being the decisive factor. The metabolic parameters (maximum activity, total volume and total glycolysis) were measured on a standard PET/CT workstation. Mean age of the population was 60±14.6y. 41.61% of patients were female. Metabolically active BAT was found in 53 patients (5.1%). Female, younger and leaner patients tended to have more active BAT, higher metabolic activity and more caudally active BAT. In total, 15 patients showed only supraclavicular, 27 additional mediastinal, and 11 infradiaphragmal activity. Interestingly, the activation of BAT always followed a cranio-caudal gradient. This anatomical pattern correlated with age and BMI as well as with all metabolic parameters, including maximum and total glycolysis (p<0.001). Conclusion Based on our data we propose a simple method to grade or quantify the degree of BAT amount/activity in patients based on the most caudally activated depot. As new modalities for BAT visualization may arise in the future, this system would allow direct comparability with other modalities, in contrary to the PET-metrics, which are

  8. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    PubMed

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  9. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to ...

  10. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    PubMed Central

    Razzoli, Maria; Frontini, Andrea; Gurney, Allison; Mondini, Eleonora; Cubuk, Cankut; Katz, Liora S.; Cero, Cheryl; Bolan, Patrick J.; Dopazo, Joaquin; Vidal-Puig, Antonio; Cinti, Saverio; Bartolomucci, Alessandro

    2015-01-01

    Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation

  11. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  12. Brown adipose tissue growth and development.

    PubMed

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  13. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  14. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health.

    PubMed

    Laurila, Pirkka-Pekka; Soronen, Jarkko; Kooijman, Sander; Forsström, Saara; Boon, Mariëtte R; Surakka, Ida; Kaiharju, Essi; Coomans, Claudia P; Van Den Berg, Sjoerd A A; Autio, Anu; Sarin, Antti-Pekka; Kettunen, Johannes; Tikkanen, Emmi; Manninen, Tuula; Metso, Jari; Silvennoinen, Reija; Merikanto, Krista; Ruuth, Maija; Perttilä, Julia; Mäkelä, Anne; Isomi, Ayaka; Tuomainen, Anita M; Tikka, Anna; Ramadan, Usama Abo; Seppälä, Ilkka; Lehtimäki, Terho; Eriksson, Johan; Havulinna, Aki; Jula, Antti; Karhunen, Pekka J; Salomaa, Veikko; Perola, Markus; Ehnholm, Christian; Lee-Rueckert, Miriam; Van Eck, Miranda; Roivainen, Anne; Taskinen, Marja-Riitta; Peltonen, Leena; Mervaala, Eero; Jalanko, Anu; Hohtola, Esa; Olkkonen, Vesa M; Ripatti, Samuli; Kovanen, Petri T; Rensen, Patrick C N; Suomalainen, Anu; Jauhiainen, Matti

    2016-01-27

    USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.

  15. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    PubMed Central

    Boon, Mariëtte R.; van den Berg, Sjoerd A. A.; Wang, Yanan; van den Bossche, Jan; Karkampouna, Sofia; Bauwens, Matthias; De Saint-Hubert, Marijke; van der Horst, Geertje; Vukicevic, Slobodan; de Winther, Menno P. J.; Havekes, Louis M.; Jukema, J. Wouter; Tamsma, Jouke T.; van der Pluijm, Gabri; van Dijk, Ko Willems; Rensen, Patrick C. N.

    2013-01-01

    Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to

  16. Activation of Human Brown Adipose Tissue by a β3-Adrenergic Receptor Agonist

    PubMed Central

    Cypess, Aaron M.; Weiner, Lauren S.; Roberts-Toler, Carla; Elía, Elisa Franquet; Kessler, Skyler H.; Kahn, Peter A.; English, Jeffrey; Chatman, Kelly; Trauger, Sunia A.; Doria, Alessandro; Kolodny, Gerald M.

    2015-01-01

    SUMMARY Increasing energy expenditure through activation of endogenous brown adipose tissue (BAT) is a potential approach to treat obesity and diabetes. The class of β3-adrenergic receptor (AR) agonists stimulates rodent BAT, but this activity has never been demonstrated in humans. Here we determined the ability of 200 mg oral mirabegron (Myrbetriq, Astellas Pharma, Inc.), a β3-AR agonist currently approved to treat overactive bladder, to stimulate BAT as compared to placebo. Mirabegron led to higher BAT metabolic activity as measured via 18F-fluorodeoxyglucose (18F-FDG) using positron emission tomography (PET) combined with computed tomography (CT) in all twelve healthy male subjects (p = 0.001), and it increased resting metabolic rate (RMR) by 203 ± 40 kcal/day (+13%; p = 0.001). BAT metabolic activity was also a significant predictor of the changes in RMR (p = 0.006). Therefore, a β3-AR agonist can stimulate human BAT thermogenesis and may be a promising treatment for metabolic disease. PMID:25565203

  17. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  18. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity

    PubMed Central

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  19. ROS and Sympathetically Mediated Mitochondria Activation in Brown Adipose Tissue Contribute to Methamphetamine-Induced Hyperthermia

    PubMed Central

    Sanchez-Alavez, Manuel; Conti, Bruno; Wood, Malcolm R.; Bortell, Nikki; Bustamante, Eduardo; Saez, Enrique; Fox, Howard S.; Marcondes, Maria Cecilia Garibaldi

    2013-01-01

    Methamphetamine (Meth) abuse has been shown to induce alterations in mitochondrial function in the brain as well as to induce hyperthermia, which contributes to neurotoxicity and Meth-associated mortality. Brown adipose tissue (BAT), a thermogenic site known to be important in neonates, has recently regained importance since being identified in significant amounts and in correlation with metabolic balance in human adults. Given the high mitochondrial content of BAT and its role in thermogenesis, we aimed to investigate whether BAT plays any role in the development of Meth-induced hyperthermia. By ablating or denervating BAT, we identified a partial contribution of this organ to Meth-induced hyperthermia. BAT ablation decreased temperature by 0.5°C and reduced the length of hyperthermia by 1 h, compared to sham-operated controls. BAT denervation also affected the development of hyperthermia in correlation with decreased the expression of electron transport chain molecules, and increase on PCG1a levels, but without affecting Meth-induced uncoupling protein 1 upregulation. Furthermore, in isolated BAT cells in culture, Meth, but not Norepinephrine, induced H2O2 upregulation. In addition, we found that in vivo Reactive Oxygen Species (ROS) play a role in Meth hyperthermia. Thus, sympathetically mediated mitochondrial activation in the BAT and Meth-induced ROS are key components to the development of hyperthermia in Meth abuse. PMID:23630518

  20. 3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats.

    PubMed

    Lombardi, Assunta; Senese, Rosalba; De Matteis, Rita; Busiello, Rosa Anna; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia

    2015-01-01

    3,5-Diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis. PMID:25658324

  1. 3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats.

    PubMed

    Lombardi, Assunta; Senese, Rosalba; De Matteis, Rita; Busiello, Rosa Anna; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia

    2015-01-01

    3,5-Diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.

  2. 3,5-Diiodo-L-Thyronine Activates Brown Adipose Tissue Thermogenesis in Hypothyroid Rats

    PubMed Central

    Lombardi, Assunta; Senese, Rosalba; De Matteis, Rita; Busiello, Rosa Anna; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia

    2015-01-01

    3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis. PMID:25658324

  3. Metabolic activity of brown, "beige," and white adipose tissues in response to chronic adrenergic stimulation in male mice.

    PubMed

    Labbé, Sébastien M; Caron, Alexandre; Chechi, Kanta; Laplante, Mathieu; Lecomte, Roger; Richard, Denis

    2016-07-01

    Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as "beige" adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[(18)F]deoxyglucose (glucose uptake), fluoro-[(18)F]thiaheptadecanoic acid (fatty acid uptake), and [(11)C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation.

  4. The browning of white adipose tissue: some burning issues.

    PubMed

    Nedergaard, Jan; Cannon, Barbara

    2014-09-01

    Igniting thermogenesis within white adipose tissue (i.e., promoting expression and activity of the uncoupling protein UCP1) has attracted much interest. Numerous "browning agents" have now been described (gene ablations, transgenes, food components, drugs, environments, etc.). The implied action of browning agents is that they increase UCP1 through this heat production, leading to slimming. Here, we particularly point to the possibility that cause and effect may on occasion be the reverse: browning agents may disrupt, for example, the fur, leading to increased heat loss, increased thermogenic demand to counteract this heat loss, and thus, through sympathetic nervous system activation, to enhanced UCP1 expression in white (and brown) adipose tissues.

  5. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    PubMed

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  6. Pharmacological and nutritional agents promoting browning of white adipose tissue.

    PubMed

    Bonet, M Luisa; Oliver, Paula; Palou, Andreu

    2013-05-01

    The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli ("browning process"). Brown-like adipocytes that appear in white fat depots have been called "brite" (from brown-in-white) or "beige" adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  7. A high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism.

    PubMed

    Madden, Christopher J; Morrison, Shaun F

    2016-08-01

    In dramatic contrast to rats on a control diet, rats maintained on a high-fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed the HFD-induced inhibition of cold-evoked BAT activity. Thus, a HFD does not prevent rats from mounting a robust, centrally driven BAT thermogenesis; however, a HFD does alter a vagal afferent input to NTS neurons, thereby preventing the normal activation of BAT thermogenesis to cooling. These results, paralleling the absence of cooling-evoked glucose uptake in the BAT of obese humans, reveal a neural mechanism through which consumption of a HFD contributes to reduced energy expenditure and thus to weight gain. PMID:27354235

  8. Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation.

    PubMed

    Ramage, Lynne E; Akyol, Murat; Fletcher, Alison M; Forsythe, John; Nixon, Mark; Carter, Roderick N; van Beek, Edwin J R; Morton, Nicholas M; Walker, Brian R; Stimson, Roland H

    2016-07-12

    The discovery of brown adipose tissue (BAT) in adult humans presents a new therapeutic target for metabolic disease; however, little is known about the regulation of human BAT. Chronic glucocorticoid excess causes obesity in humans, and glucocorticoids suppress BAT activation in rodents. We tested whether glucocorticoids regulate BAT activity in humans. In vivo, the glucocorticoid prednisolone acutely increased (18)fluorodeoxyglucose uptake by BAT (measured using PET/CT) in lean healthy men during mild cold exposure (16°C-17°C). In addition, prednisolone increased supraclavicular skin temperature (measured using infrared thermography) and energy expenditure during cold, but not warm, exposure in lean subjects. In vitro, glucocorticoids increased isoprenaline-stimulated respiration and UCP-1 in human primary brown adipocytes, but substantially decreased isoprenaline-stimulated respiration and UCP-1 in primary murine brown and beige adipocytes. The highly species-specific regulation of BAT function by glucocorticoids may have important implications for the translation of novel treatments to activate BAT to improve metabolic health. PMID:27411014

  9. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  10. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible. PMID:26076904

  11. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    PubMed

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  12. Brown adipose tissue and its therapeutic potential.

    PubMed

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  13. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging.

    PubMed

    Gifford, Aliya; Towse, Theodore F; Walker, Ronald C; Avison, Malcolm J; Welch, E Brian

    2016-07-01

    Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [(18)F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; -69.4 ± 11.5 vs. -74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own. PMID:27166284

  14. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation.

    PubMed

    Mottillo, Emilio P; Balasubramanian, Priya; Lee, Yun-Hee; Weng, Changren; Kershaw, Erin E; Granneman, James G

    2014-11-01

    Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous "beige," and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.

  15. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation.

    PubMed

    Mottillo, Emilio P; Balasubramanian, Priya; Lee, Yun-Hee; Weng, Changren; Kershaw, Erin E; Granneman, James G

    2014-11-01

    Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous "beige," and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL. PMID:25193997

  16. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation

    PubMed Central

    Mottillo, Emilio P.; Balasubramanian, Priya; Lee, Yun-Hee; Weng, Changren; Kershaw, Erin E.; Granneman, James G.

    2014-01-01

    Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous “beige,” and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL. PMID:25193997

  17. The effects of various carbohydrates on sympathetic activity in heart and interscapular brown adipose tissue of the rat.

    PubMed

    Walgren, M C; Young, J B; Kaufman, L N; Landsberg, L

    1987-06-01

    The present studies were undertaken to determine the effect of various carbohydrates on sympathetic nervous system (SNS) activity. Tritiated-norepinephrine (3H-NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of rats fed either chow or chow plus 50% caloric supplements of fructose, sucrose, dextrose, or corn starch. Additional studies were performed to examine whether absorption of carbohydrate plays a role in the SNS response, and to determine whether sweet taste in the form of artificial sweeteners may influence SNS activity. After five to ten days on the respective diets, 3H-NE turnover was increased to a similar extent by all carbohydrates tested (from 38% to 160% greater than controls in different studies). Addition of acarbose (which impairs sucrose absorption) to a sucrose-supplemented diet abolished the SNS stimulatory response, whereas cholestyramine (a drug that blocks fat absorption) had no effect. Finally, the addition of saccharin or aspartame to a chow diet failed to alter SNS activity. Thus, caloric supplementation with several carbohydrates, in addition to sucrose, stimulates both cardiac and IBAT SNS activity, absorption of carbohydrate is required for this effect, and noncaloric sugar substitutes do not alter SNS function.

  18. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  19. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  20. Browning of white adipose tissue: role of hypothalamic signaling.

    PubMed

    Bi, Sheng; Li, Lin

    2013-10-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through nonshivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent observations indicate the importance of the dorsomedial hypothalamus (DMH) in thermoregulation. We have found that the orexigenic neuropeptide Y (NPY) in the DMH has distinct actions in modulating adiposity and BAT thermogenesis. Knockdown of NPY in the DMH elevates the thermogenic activity of classic BAT and promotes the development of brown adipocytes in WAT, leading to increased thermogenesis. These findings identify a novel potential target for combating obesity.

  1. [Cancer cachexia and white adipose tissue browning].

    PubMed

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research. PMID:27531474

  2. Two types of brown adipose tissue in humans.

    PubMed

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  3. NT-PGC-1α activation attenuates high-fat diet-induced obesity by enhancing brown fat thermogenesis and adipose tissue oxidative metabolism.

    PubMed

    Jun, Hee-Jin; Joshi, Yagini; Patil, Yuvraj; Noland, Robert C; Chang, Ji Suk

    2014-11-01

    The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and its splice variant N terminal (NT)-PGC-1α regulate adaptive thermogenesis by transcriptional induction of thermogenic and mitochondrial genes involved in energy metabolism. We previously reported that full-length PGC-1α (FL-PGC-1α) is dispensable for cold-induced nonshivering thermogenesis in FL-PGC-1α(-/-) mice, since a slightly shorter but functionally equivalent form of NT-PGC-1α (NT-PGC-1α(254)) fully compensates for the loss of FL-PGC-1α in brown and white adipose tissue. In the current study, we challenged FL-PGC-1α(-/-) mice with a high-fat diet (HFD) to investigate the effects of diet-induced thermogenesis on HFD-induced obesity. Despite a large decrease in locomotor activity, FL-PGC-1α(-/-) mice exhibited the surprising ability to attenuate HFD-induced obesity. Reduced fat mass in FL-PGC-1α(-/-) mice was closely associated with an increase in body temperature, energy expenditure, and whole-body fatty acid oxidation (FAO). Mechanistically, FL-PGC-1α(-/-) brown adipose tissue had an increased capacity to oxidize fatty acids and dissipate energy as heat, in accordance with upregulation of thermogenic genes UCP1 and DIO2. Furthermore, augmented expression of FAO and lipolytic genes in FL-PGC-1α(-/-) white adipose tissue was highly correlated with decreased fat storage in adipose tissue. Collectively, our data highlight a protective effect of NT-PGC-1α on diet-induced obesity by enhancing diet-induced thermogenesis and FAO.

  4. C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor γ in brown adipose tissue of db/db mice.

    PubMed

    Zhang, Ning; Chen, Wei; Zhou, Xinbo; Zhou, Xiaolin; Xie, Xinni; Meng, Aimin; Li, Song; Wang, Lili

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes.

  5. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  6. Brown Adipose Tissue in Cetacean Blubber

    PubMed Central

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  7. Brown adipose tissue in cetacean blubber.

    PubMed

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  8. Brown adipose tissue in cetacean blubber.

    PubMed

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  9. Inhibition of Sam68 triggers adipose tissue browning

    PubMed Central

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam Mina; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A.; Tang, Yao-Liang; Zhao, Ting C.; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-01-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms promoting energy expenditure may be utilized for effective therapy. Src-associated-in-mitosis-of-68kDa (Sam68) is potentially significant because knockout (KO) of Sam68 leads to markedly-reduced adiposity. Here we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We firstly found in Sam68-KO mice a significantly-reduced body weight with the difference explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake, but rather associated with enhanced physical activity. When fed high-fat diet, Sam68-KO mice gained much lesser body weight and fat mass as compared to wild-type (WT) littermates and displayed an improved glucose and insulin tolerance. The brown adipose tissue (BAT), inguinal and epididymal depots are smaller and their adipocytes less hypertrophy in Sam68-KO mice than in WT littermates. The BAT of Sam68-KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty-acid-oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68-KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16 and Ppargc1a genes was greater as compared to WT controls, suggesting that loss of Sam68 also promotes WAT browning. Furthermore, in all fat depots of Sam68-KO mice, the expression of M2 macrophage markers were upregulated and M1 markers downregulated. Thus Sam68 plays a crucial role in the control of thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  10. Inhibition of Sam68 triggers adipose tissue browning.

    PubMed

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders.

  11. Regulation of glucose homoeostasis by brown adipose tissue.

    PubMed

    Peirce, Vivian; Vidal-Puig, Antonio

    2013-12-01

    Brown adipose tissue (BAT) has emerged as a therapeutic target for the treatment of obesity. Activation of BAT in human beings could also have beneficial metabolic effects that might resolve common complications of obesity, such as type 2 diabetes, by ameliorating the glucolipotoxic pathological changes that underlie the development of peripheral insulin resistance and impaired insulin secretion due to pancreatic β-cell failure. Evidence from rodent models suggests that BAT activation improves glucose homoeostasis through several mechanisms, which could point to new strategies to optimise stimulation of BAT in human beings and reverse insulin resistance in peripheral tissues.

  12. Brown adipose tissue: physiological function and evolutionary significance.

    PubMed

    Oelkrug, R; Polymeropoulos, E T; Jastroch, M

    2015-08-01

    In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.

  13. Thyroid Hormone Activates Brown Adipose Tissue and Increases Non-Shivering Thermogenesis - A Cohort Study in a Group of Thyroid Carcinoma Patients

    PubMed Central

    Broeders, Evie P. M.; Vijgen, Guy H. E. J.; Havekes, Bas; Bouvy, Nicole D.; Mottaghy, Felix M.; Kars, Marleen; Schaper, Nicolaas C.; Schrauwen, Patrick; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Background/Objectives Thyroid hormone receptors are present on brown adipose tissue (BAT), indicating a role for thyroid hormone in the regulation of BAT activation. The objective of this study was to examine the effect of thyroid hormone withdrawal followed by thyroid hormone in TSH-suppressive dosages, on energy expenditure and brown adipose tissue activity. Subjects/Methods This study was a longitudinal study in an academic center, with a follow-up period of 6 months. Ten patients with well-differentiated thyroid carcinoma eligible for surgical treatment and subsequent radioactive iodine ablation therapy were studied in a hypothyroid state after thyroidectomy and in a subclinical hyperthyroid state (TSH-suppression according to treatment protocol). Paired two-tailed t-tests and linear regression analyses were used. Results Basal metabolic rate (BMR) was significantly higher after treatment with synthetic thyroid hormone (levothyroxine) than in the hypothyroid state (BMR 3.8 ± 0.5 kJ/min versus 4.4 ± 0.6 kJ/min, P = 0.012), and non-shivering thermogenesis (NST) significantly increased from 15 ± 10% to 25 ± 6% (P = 0.009). Mean BAT activity was significantly higher in the subclinical hyperthyroid state than in the hypothyroid state (BAT standard uptake value (SUVMean) 4.0 ± 2.9 versus 2.4 ± 1.8, P = 0.039). Conclusions Our study shows that higher levels of thyroid hormone are associated with a higher level of cold-activated BAT. Trial Registration ClinicalTrials.gov NCT02499471 PMID:26784028

  14. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning

    PubMed Central

    Zhang, Xueli; Tian, Yanli; Zhang, Hongbin; Kavishwar, Amol; Lynes, Matthew; Brownell, Anna-Liisa; Sun, Hongbin; Tseng, Yu-Hua; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Manipulation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can be promising new approaches to counter metabolic disorder diseases in humans. Imaging probes that could consistently monitor BAT mass and browning of WAT are highly desirable. In the course of our imaging probe screening, we found that BAT could be imaged with curcumin analogues in mice. However, the poor BAT selectivity over WAT and short emissions of the lead probes promoted further lead optimization. Limited uptake mechanism studies suggested that CD36/FAT (fatty acid transporter) probably contributed to the facilitated uptake of the probes. By increasing the stereo-hindrance of the lead compound, we designed CRANAD-29 to extend the emission and increase the facilitated uptake, thus increasing its BAT selectivity. Our data demonstrated that CRANAD-29 had significantly improved selectivity for BAT over WAT, and could be used for imaging BAT mass change in a streptozotocin-induced diabetic mouse model, as well as for monitoring BAT activation under cold exposure. In addition, CRANAD-29 could be used for monitoring the browning of subcutaneous WAT (sWAT) induced by β3-adrenoceptor agonist CL-316, 243. PMID:26269357

  15. Brown Adipose Tissue and Browning Agents: Irisin and FGF21 in the Development of Obesity in Children and Adolescents.

    PubMed

    Pyrżak, B; Demkow, U; Kucharska, A M

    2015-01-01

    In the pediatric population, especially in early infancy, the activity of brown adipose tissue (BAT) is the highest. Further in life BAT is more active in individuals with a lower body mass index and one can expect that BAT is protective against childhood obesity. The development of BAT throughout the whole life can be regulated by genetic, endocrine, and environmental factors. Three distinct adipose depots have been identified: white, brown, and beige adipocytes. The process by which BAT can become beige is still unclear and is an area of intensive research. The "browning agents" increase energy expenditure through the production of heat. Numerous factors known as "browning agents" have currently been described. In humans, recent studies justify a notion of a role of novel myokines: irisin and fibroblast growth factor 21 (FGF21) in the metabolism and development of obesity. This review describes a possible role of irisin and FGF21 in the pathogenesis of obesity in children.

  16. Browning attenuates murine white adipose tissue expansion during postnatal development.

    PubMed

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  17. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis

    PubMed Central

    Zhang, Wei; Bi, Sheng

    2015-01-01

    Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT) is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT) or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis. PMID:26379628

  18. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK.

    PubMed

    Beiroa, Daniel; Imbernon, Monica; Gallego, Rosalía; Senra, Ana; Herranz, Daniel; Villarroya, Francesc; Serrano, Manuel; Fernø, Johan; Salvador, Javier; Escalada, Javier; Dieguez, Carlos; Lopez, Miguel; Frühbeck, Gema; Nogueiras, Ruben

    2014-10-01

    GLP-1 receptor (GLP-1R) is widely located throughout the brain, but the precise molecular mechanisms mediating the actions of GLP-1 and its long-acting analogs on adipose tissue as well as the brain areas responsible for these interactions remain largely unknown. We found that central injection of a clinically used GLP-1R agonist, liraglutide, in mice stimulates brown adipose tissue (BAT) thermogenesis and adipocyte browning independent of nutrient intake. The mechanism controlling these actions is located in the hypothalamic ventromedial nucleus (VMH), and the activation of AMPK in this area is sufficient to blunt both central liraglutide-induced thermogenesis and adipocyte browning. The decreased body weight caused by the central injection of liraglutide in other hypothalamic sites was sufficiently explained by the suppression of food intake. In a longitudinal study involving obese type 2 diabetic patients treated for 1 year with GLP-1R agonists, both exenatide and liraglutide increased energy expenditure. Although the results do not exclude the possibility that extrahypothalamic areas are also modulating the effects of GLP-1R agonists, the data indicate that long-acting GLP-1R agonists influence body weight by regulating either food intake or energy expenditure through various hypothalamic sites and that these mechanisms might be clinically relevant.

  19. α/β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes.

    PubMed

    Zhao, Shangang; Mugabo, Yves; Ballentine, Gwynne; Attane, Camille; Iglesias, Jose; Poursharifi, Pegah; Zhang, Dongwei; Nguyen, Thuy Anne; Erb, Heidi; Prentki, Raphael; Peyot, Marie-Line; Joly, Erik; Tobin, Stephanie; Fulton, Stephanie; Brown, J Mark; Madiraju, S R Murthy; Prentki, Marc

    2016-03-29

    Suppression of α/β-domain hydrolase-6 (ABHD6), a monoacylglycerol (MAG) hydrolase, promotes glucose-stimulated insulin secretion by pancreatic β cells. We report here that high-fat-diet-fed ABHD6-KO mice show modestly reduced food intake, decreased body weight gain and glycemia, improved glucose tolerance and insulin sensitivity, and enhanced locomotor activity. ABHD6-KO mice also show increased energy expenditure, cold-induced thermogenesis, brown adipose UCP1 expression, fatty acid oxidation, and white adipose browning. Adipose browning and cold-induced thermogenesis are replicated by the ABHD6 inhibitor WWL70 and by antisense oligonucleotides targeting ABHD6. Our evidence suggests that one mechanism by which the lipolysis derived 1-MAG signals intrinsic and cell-autonomous adipose browning is via PPARα and PPARγ activation, and that ABHD6 regulates adipose browning by controlling signal competent 1-MAG levels. Thus, ABHD6 regulates energy homeostasis, brown adipose function, and white adipose browning and is a potential therapeutic target for obesity and type 2 diabetes.

  20. Adipogenesis: new insights into brown adipose tissue differentiation.

    PubMed

    Carobbio, Stefania; Rosen, Barry; Vidal-Puig, Antonio

    2013-12-01

    Confirmation of the presence of functional brown adipose tissue (BAT) in humans has renewed interest in investigating the potential therapeutic use of this tissue. The finding that its activity positively correlates with decreased BMI, decreased fat content, and augmented energy expenditure suggests that increasing BAT mass/activity or browning of white adipose tissue (WAT) could be a strategy to prevent or treat obesity and its associated morbidities. The challenge now is to find a safe and efficient way to develop this idea. Whereas BAT has being widely studied in murine models both in vivo and in vitro, there is an urgent need for human cellular models to investigate BAT physiology and functionality from a molecular point of view. In this review, we focus on the latest insights surrounding BAT development and activation in rodents and humans. Then, we discuss how the availability of murine models has been essential to identify BAT progenitors and trace their lineage. Finally, we address how this information can be exploited to develop human cellular models for BAT differentiation/activation. In this context, human embryonic stem and induced pluripotent stem cells-based cellular models represent a resource of great potential value, as they can provide a virtually inexhaustible supply of starting material for functional genetic studies, -omics based analysis and validation of therapeutic approaches. Moreover, these cells can be readily genetically engineered, opening the possibility of generating patient-specific cellular models, allowing the investigation of the influence of different genetic backgrounds on BAT differentiation in pathological or in physiological states.

  1. Evidence for two types of brown adipose tissue in humans.

    PubMed

    Lidell, Martin E; Betz, Matthias J; Dahlqvist Leinhard, Olof; Heglind, Mikael; Elander, Louise; Slawik, Marc; Mussack, Thomas; Nilsson, Daniel; Romu, Thobias; Nuutila, Pirjo; Virtanen, Kirsi A; Beuschlein, Felix; Persson, Anders; Borga, Magnus; Enerbäck, Sven

    2013-05-01

    The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.

  2. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  3. Molecular clock integration of brown adipose tissue formation and function.

    PubMed

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  4. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  5. Molecular clock integration of brown adipose tissue formation and function.

    PubMed

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation.

  6. Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.

    PubMed

    Lau, Patrick; Tuong, Zewen K; Wang, Shu-Ching; Fitzsimmons, Rebecca L; Goode, Joel M; Thomas, Gethin P; Cowin, Gary J; Pearen, Michael A; Mardon, Karine; Stow, Jennifer L; Muscat, George E O

    2015-01-15

    The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1β, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.

  7. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue.

    PubMed

    Wu, Lizhen; Zhou, Linkang; Chen, Cheng; Gong, Jingyi; Xu, Li; Ye, Jing; Li, De; Li, Peng

    2014-01-01

    Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes, fatty liver and cardiovascular diseases. The lipid droplet (LD) is an important subcellular organelle responsible for lipid storage. We previously observed that Fsp27, a member of the CIDE family proteins, is localized to LD-contact sites and promotes atypical LD fusion and growth. Cidea, a close homolog of Fsp27, is expressed at high levels in brown adipose tissue. However, the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown. Here, we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth. Next, we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype. In addition, Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold. Furthermore, we observed that the brown and white adipose tissues of Cidea/Fsp27 double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27 single deficient mice. Overall, these data reveal an important role of Cidea in controlling lipid droplet fusion, lipid storage in brown and white adipose tissue, and the development of obesity.

  8. Heating and eating: brown adipose tissue thermogenesis precedes food ingestion as part of the ultradian basic rest-activity cycle in rats.

    PubMed

    Blessing, William; Mohammed, Mazher; Ootsuka, Youichirou

    2012-02-28

    Laboratory rats, throughout the 24 hour day, alternate between behaviorally active and non active episodes that Kleitman called the basic rest-activity cycle (BRAC). We previously demonstrated that brown adipose tissue (BAT), body and brain temperatures and arterial pressure and heart rate increase in an integrated manner during behaviorally active phases. Studies show that eating is preceded by increases in body and brain temperature, but whether eating is integrated into the BRAC has not been investigated. In the present study of chronically instrumented, unrestrained Sprague-Dawley rats, peaks in BAT temperature occurred every 96 ± 7 and 162 ± 16 min (mean ± SE, n=14 rats) in dark and light periods respectively, with no apparent underlying regularity. With food available ad libitum, eating was integrated into the BRAC in a temporally precise manner. Eating occurred only after an increase in BAT temperature, commencing 15 ± 1 min (mean ± SE) after the onset of an increase, with no difference between dark and light phases. There were either no or weak preprandial and postprandial relations between intermeal interval and amount eaten during a given meal. Remarkably, with no food available the rat still disturbed the empty food container 16 ± 1 min (p>0.05 versus ad libitum food) after the onset of increases in BAT temperature, and not at other times. Rather than being triggered by changes in levels of body fuels or other meal-associated factors, in sedentary laboratory rats with ad libitum access to food eating commences as part of the ultradian BRAC, a manifestation of intrinsic brain activity.

  9. Gene expression profiles reveal effect of a high-fat diet on the development of white and brown adipose tissues.

    PubMed

    Kim, Hyeng-Soo; Ryoo, Zae Young; Choi, Sang Un; Lee, Sanggyu

    2015-07-01

    Because of the recent discovery of brown adipose tissues tissue in adult humans, brown adipose tissues have garnered additional attention. Many studies have attempted to transform the precursor cells within the white adipocyte cultures to Brite (brown-in-white) cells by using genomic modification or pharmacological activation in order to determine the therapeutic effect of obesity. However, genome-scale analysis of the genetic factors governing the development of white and brown adipose tissues remains incomplete. In order to identify the key genes that regulate the development of white and brown adipose tissues in mice, a transcriptome analysis was performed on the adipose tissues. Network analysis of differentially expressed genes indicated that Trim30 and Ucp3 play pivotal roles in energy balance and glucose homeostasis. In addition, it was discovered that identical biological processes and pathways in the white and brown adipose tissues might be regulated by different genes. Trim30 and Ucp3 might be used as genetic markers to precisely represent the stage of obesity during the early and late stages of adipose tissue development, respectively. These results may provide a stepping-stone for future obesity-related studies.

  10. Microcalorimetric determination of energy expenditure due to active sodium-potassium transport in the soleus muscle and brown adipose tissue of the rat.

    PubMed

    Chinet, A; Clausen, T; Girardier, L

    1977-02-01

    1. The resting heat production rate (E) of soleus muscles from young rats and brown adipose tissue from adult rats was measured by means of a perfusable heat flux microcalorimeter in the absence and presence of ouabain. In the soleus muscle, the acute response of E to ouabain was compared with the ouabain-suppressible components of 22Na-efflux and 42K-influx. 2. In standard Krebs-Ringer bicarbonate buffer, ouabain (10(-3)M) induced an immediate but transient decrease in E of around 5%. Both in muscle and adipose tissue this was followed by a progressive rise in heat production rate. 3. When the medium was enriched with Mg (10 mM), ouabain produced a sustained decrease in E of the same magnitude as in the standard medium and the secondary rise was less marked or abolished. Under these conditions, in the soleus muscle, ouabain inhibited E by 5% (i.e. by 1-76 +/- 0-22 mcal.g wet wt.-1.min-1), 22Na-efflux by 58% (0-187 +/- 0-013 micronmole. g wet wt.-1.min-1) and 42K-influx by 34% (0-132 +/- 0-028 micronmole. g wet wt.-1.min-1). 4. When the muscles were loaded with Na by pre-incubation in K-free Mg-enriched medium, the addition of K (3mM) induced an immediate ouabain-suppressible increase in E of 2-98 +/- 0-33 mcal. g wet wt.-1.min-1 and a concomitant stimulation of 22Na-efflux of 0-388 +/- 0-136 micronmole. g wet wt.-1.min-1. 5. Maximum Na/ATP ratios for the active Na-K transport process were computed, with no assumption as to the in vivo free energy of ATP hydrolysis. These were 2-1, 1-9 and 2-3 under the conditions described in paragraphs (2), (3) and (4) respectively. 6. The calculated reversible thermodynamic work associated with active Na-K transport corresponded to 34% of the measured ouabain-induced decrease in E. On the premise that the maximum efficiency of the cellular energy conservation processes is 65%, this estimate indicates that the minimum energetic efficiency of ATP utilization by the active Na-K transport process in mammalian muscle is 52%.

  11. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3.

    PubMed

    Lateef, Dalya M; Abreu-Vieira, Gustavo; Xiao, Cuiying; Reitman, Marc L

    2014-03-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.

  12. Fatty acid metabolism and the basis of brown adipose tissue function

    PubMed Central

    Calderon-Dominguez, María; Mir, Joan F.; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  13. Fatty acid metabolism and the basis of brown adipose tissue function.

    PubMed

    Calderon-Dominguez, María; Mir, Joan F; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  14. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders.

    PubMed

    Roman, Sabiniano; Agil, Ahmad; Peran, Macarena; Alvaro-Galue, Eduardo; Ruiz-Ojeda, Francisco J; Fernández-Vázquez, Gumersindo; Marchal, Juan A

    2015-04-01

    In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.

  15. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders.

    PubMed

    Roman, Sabiniano; Agil, Ahmad; Peran, Macarena; Alvaro-Galue, Eduardo; Ruiz-Ojeda, Francisco J; Fernández-Vázquez, Gumersindo; Marchal, Juan A

    2015-04-01

    In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans. PMID:25433289

  16. Browning of white adipose tissue uncouples glucose uptake from insulin signaling.

    PubMed

    Mössenböck, Karin; Vegiopoulos, Alexandros; Rose, Adam J; Sijmonsma, Tjeerd P; Herzig, Stephan; Schafmeier, Tobias

    2014-01-01

    Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes. However, adrenergic stimulation almost fully induced the thermogenic program under these settings. Although brite differentiation of adipocytes as well as browning of white adipose tissue entailed substantially elevated glucose uptake by adipose tissue, the capacity of insulin to stimulate glucose uptake surprisingly was not higher in the brite state. Notably, in line with the insulin-independent stimulation of glucose uptake, our data revealed that brite recruitment results in induction of solute carrier family 2 (GLUT-1) expression in adipocytes and inguinal WAT. These results for the first time demonstrate that insulin signaling is neither essential for brite recruitment, nor is it improved in cells or tissues upon browning.

  17. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome

    PubMed Central

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-01-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  18. Beyond the sympathetic tone: the new brown fat activators.

    PubMed

    Villarroya, Francesc; Vidal-Puig, Antonio

    2013-05-01

    If we could avoid the side effects associated with global sympathetic activation, activating brown adipose tissue to increase thermogenesis would be a safe way to lose weight. The discovery of adrenergic-independent brown fat activators opens the prospect of developing this alternative way to efficiently and safely induce negative energy balance.

  19. Transcriptional and epigenetic control of brown and beige adipose cell fate and function

    PubMed Central

    Inagaki, Takeshi; Sakai, Juro; Kajimura, Shingo

    2016-01-01

    White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. PMID:27251423

  20. Transcriptional and epigenetic control of brown and beige adipose cell fate and function.

    PubMed

    Inagaki, Takeshi; Sakai, Juro; Kajimura, Shingo

    2016-08-01

    White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes.

  1. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning.

    PubMed

    Bartelt, Alexander; Weigelt, Clara; Cherradi, M Lisa; Niemeier, Andreas; Tödter, Klaus; Heeren, Joerg; Scheja, Ludger

    2013-05-01

    Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  2. Activating Brown Adipose Tissue for Weight Loss and Lowering of Blood Glucose Levels: A MicroPET Study Using Obese and Diabetic Model Mice

    PubMed Central

    Wu, Chenxi; Cheng, Wuying; Sun, Yi; Dang, Yonghong; Gong, Fengying; Zhu, Huijuan; Li, Naishi; Li, Fang; Zhu, Zhaohui

    2014-01-01

    Purpose This study aims at using 18F-FDG microPET to monitor the brown adipose tissue (BAT) glucose metabolism in obese and diabetic mouse models under different interventions, and study the therapeutic potential of BAT activation for weight loss and lowering of blood glucose in these models. Methods Obese mice were established by a high-fat diet for eight weeks, and diabetes mellitus(DM) models were induced with Streptozocin in obese mice. 18F-FDG microPET was used to monitor BAT function during obese and DM modeling, and also after BRL37344 (a β3-adrenergic receptor agonist) or levothyroxine treatment. The BAT function was correlated with the body weight and blood glucose levels. Results Compared with the controls, the obese mice and DM mice showed successively lower 18F-FDG uptake in the interscapular BAT (P = 0.036 and <0.001, respectively). After two-week BRL37344 treatment, the BAT uptake was significantly elevated in both obese mice (P = 0.010) and DM mice (P = 0.004), accompanied with significantly decreased blood glucose levels (P = 0.023 and 0.036, respectively). The BAT uptake was negatively correlated with the blood glucose levels in both obese mice (r = −0.71, P = 0.003) and DM mice (r = −0.74, P = 0.010). BRL37344 treatment also caused significant weight loss in the obese mice (P = 0.001). Levothyroxine treatment increased the BAT uptake in the control mice (P = 0.025) and obese mice (P = 0.013), but not in the DM mice (P = 0.45). Conclusion The inhibited BAT function in obese and DM mice can be re-activated by β3-adrenergic receptor agonist or thyroid hormone, and effective BAT activation may lead to weight loss and blood glucose lowering. Activating BAT can provide a new treatment strategy for obesity and DM. PMID:25462854

  3. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  4. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway.

    PubMed

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Murray, Andrew J; Griffin, Julian L

    2015-02-01

    Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome.

  5. Renaissance of brown adipose tissue research: integrating the old and new

    PubMed Central

    Granneman, J G

    2015-01-01

    The recent demonstration of active brown adipose tissue (BAT) in adult humans, along with the discovery of vast cellular and metabolic plasticity of adipocyte phenotypes, has given new hope of targeting adipose tissue for therapeutic benefit. Application of principles learned from the first wave of obesity-related BAT research, conducted 30 years earlier, suggests that the activity and/or mass of brown fat will need to be greatly expanded for it to significantly contribute to total energy expenditure. Although the thermogenic capacity of human brown fat is very modest, its presence often correlates with improved metabolic status, suggesting possible beneficial endocrine functions. Recent advances in our understanding of the nature of progenitors and the transcriptional programs that guide phenotypic diversity have demonstrated the possibility of expanding the population of brown adipocytes in rodent models. Expanded populations of brown and beige adipocytes will require tight control of their metabolic activity, which might be achieved by selective neural activation, tissue-selective signaling or direct activation of lipolysis, which supplies the central fuel of thermogenesis. PMID:27152176

  6. Central neural control of thermoregulation and brown adipose tissue.

    PubMed

    Morrison, Shaun F

    2016-04-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. PMID:26924538

  7. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity.

    PubMed

    Bi, Pengpeng; Shan, Tizhong; Liu, Weiyi; Yue, Feng; Yang, Xin; Liang, Xin-Rong; Wang, Jinghua; Li, Jie; Carlesso, Nadia; Liu, Xiaoqi; Kuang, Shihuan

    2014-08-01

    Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.

  8. Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities?

    PubMed

    Mulya, Anny; Kirwan, John P

    2016-09-01

    Overweight and obesity are global health problems placing an ever-increasing demand on health care systems. Brown adipose tissue (BAT) is present in significant amounts in adults. BAT has potential as a fuel for oxidation and dissipation as heat production, which makes it an attractive target for obesity therapy. BAT activation results in increased energy expenditure via thermogenesis. The role of BAT/beige adipocyte activation on whole body energy homeostasis, body weight management/regulation, and whole body glucose and lipid homeostasis remains unproven. This paper reviews knowledge on brown/beige adipocytes in energy expenditure and how it may impact obesity therapy and its comorbidities. PMID:27519133

  9. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  10. Insights into Brown Adipose Tissue Physiology as Revealed by Imaging Studies

    PubMed Central

    Izzi-Engbeaya, Chioma; Salem, Victoria; Atkar, Rajveer S; Dhillo, Waljit S

    2014-01-01

    There has been resurgence in interest in brown adipose tissue (BAT) following radiological and histological identification of metabolically active BAT in adult humans. Imaging enables BAT to be studied non-invasively and therefore imaging studies have contributed a significant amount to what is known about BAT function in humans. In this review the current knowledge (derived from imaging studies) about the prevalence, function, activity and regulation of BAT in humans (as well as relevant rodent studies), will be summarized. PMID:26167397

  11. Brown adipose tissue development and metabolism in ruminants.

    PubMed

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  12. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  13. Prdm4 induction by the small molecule butein promotes white adipose tissue browning.

    PubMed

    Song, No-Joon; Choi, Seri; Rajbhandari, Prashant; Chang, Seo-Hyuk; Kim, Suji; Vergnes, Laurent; Kwon, So-Mi; Yoon, Jung-Hoon; Lee, Sukchan; Ku, Jin-Mo; Lee, Jeong-Soo; Reue, Karen; Koo, Seung-Hoi; Tontonoz, Peter; Park, Kye Won

    2016-07-01

    Increasing the thermogenic activity of adipocytes holds promise as an approach to combating human obesity and related metabolic diseases. We identified induction of mouse PR domain containing 4 (Prdm4) by the small molecule butein as a means to induce expression of uncoupling protein 1 (Ucp1), increase energy expenditure, and stimulate the generation of thermogenic adipocytes. This study highlights a Prdm4-dependent pathway, modulated by small molecules, that stimulates browning of white adipose tissue.

  14. A soyabean diet does not modify the activity of brown adipose tissue but alters the rate of lipolysis in the retroperitoneal white adipose tissue of male rats recovering from early-life malnutrition.

    PubMed

    Paiva, Adriene Alexandra; Faiad, Jaline Zandonato; Taki, Marina Satie; de Lima Reis, Silvia Regina; de Souza, Letícia Martins Ignácio; Dos Santos, Maísa Pavani; Chaves, Valéria Ernestânia; Kawashita, Nair Honda; de Oliveira, Helena Coutinho Franco; Raposo, Helena Fonseca; Carneiro, Everardo Magalhães; Latorraca, Márcia Queiroz; Gomes-da-Silva, Maria Helena Gaíva; Martins, Maria Salete Ferreira

    2012-09-28

    Nutritional recovery with a soyabean diet decreases body and fat weights when compared with a casein diet. We investigated whether the reduced adiposity observed in rats recovering from early-life malnutrition with a soyabean diet results from alterations in lipid metabolism in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Male rats from mothers fed either 17 or 6 % protein during pregnancy and lactation were maintained on 17 % casein (CC and LC groups), 17 % soyabean (CS and LS groups) or 6 % casein (LL group) diets over 60 d. The rats maintained on a soyabean diet had similar relative food intakes, but lower body and retroperitoneal WAT weights and a reduced lipid content in the retroperitoneal WAT. The insulin levels were lower in the recovered rats and were elevated in those fed a soyabean diet. Serum T3 concentration and uncoupling protein 1 content in the BAT were decreased in the recovered rats. The thermogenic capacity of the BAT was not affected by the soyabean diet. The lipogenesis rate in the retroperitoneal WAT was similar in all of the groups except for the LL group, which had exacerbated lipogenesis. The enhancement of the lipolysis rate by isoproterenol was decreased in white adipocytes from the soyabean-recovered rats and was elevated in adipocytes from the soyabean-control rats. Thus, in animals maintained on a soyabean diet, the proportions of fat deposits are determined by the lipolysis rate, which differs depending on the previous nutritional status. PMID:22152781

  15. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance.

    PubMed

    Bagchi, Mandrita; Kim, Leo A; Boucher, Jeremie; Walshe, Tony E; Kahn, C Ronald; D'Amore, Patricia A

    2013-08-01

    Vascular endothelial growth factor (VEGF) is critical for angiogenesis, but also has pleiotropic effects on several nonvascular cells. Our aim was to investigate the role of VEGF in brown adipose tissue (BAT). We show that VEGF expression increases 2.5-fold during differentiation of cultured murine brown adipocytes and that VEGF receptor-2 is phosphorylated, indicating VEGF signaling. VEGF increased proliferation in brown preadipocytes in vitro by 70%, and blockade of VEGF signaling using anti-VEGFR2 antibody DC101 increased brown adipocyte apoptosis, as determined by cell number and activation of caspase 3. Systemic VEGF neutralization in mice, accomplished by adenoviral expression of soluble Flt1, resulted in 7-fold increase in brown adipocyte apoptosis, mitochondrial degeneration, and increased mitophagy compared to control mice expressing a null adenovirus. Absence of the heparan sulfate-binding VEGF isoforms, VEGF164 and VEGF188, resulted in abnormal BAT development in mice at E15.5, with fewer brown adipocytes and lower mitochondrial protein compared to wild-type littermates. These results suggest a role for VEGF in brown adipocytes and preadipocytes to promote survival, proliferation, and normal mitochondria and development.

  16. Human mediastinal adipose tissue displays certain characteristics of brown fat

    PubMed Central

    Cheung, L; Gertow, J; Werngren, O; Folkersen, L; Petrovic, N; Nedergaard, J; Franco-Cereceda, A; Eriksson, P; Fisher, R M

    2013-01-01

    Background: The amount of intra-thoracic fat, of which mediastinal adipose tissue comprises the major depot, is related to various cardiometabolic risk factors. Autopsy and imaging studies indicate that the mediastinal depot in adult humans could contain brown adipose tissue (BAT). To gain a better understanding of this intra-thoracic fat depot, we examined possible BAT characteristics of human mediastinal in comparison with subcutaneous adipose tissue. Materials and methods: Adipose tissue biopsies from thoracic subcutaneous and mediastinal depots were obtained during open-heart surgery from 33 subjects (26 male, 63.7±13.8 years, body mass index 29.3±5.1 kg m−2). Microarray analysis was performed on 10 patients and genes of interest confirmed by quantitative PCR (qPCR) in samples from another group of 23 patients. Adipocyte size was determined and uncoupling protein 1 (UCP1) protein expression investigated with immunohistochemistry. Results: The microarray data showed that a number of BAT-specific genes had significantly higher expression in the mediastinal depot than in the subcutaneous depot. Higher expression of UCP1 (24-fold, P<0.001) and PPARGC1A (1.7-fold, P=0.0047), and lower expression of SHOX2 (0.12-fold, P<0.001) and HOXC8 (0.14-fold, P<0.001) in the mediastinal depot was confirmed by qPCR. Gene set enrichment analysis identified two gene sets related to mitochondria, which were significantly more highly expressed in the mediastinal than in the subcutaneous depot (P<0.01). No significant changes in UCP1 gene expression were observed in the subcutaneous or mediastinal depots following lowering of body temperature during surgery. UCP1 messenger RNA levels in the mediastinal depot were lower than those in murine BAT and white adipose tissue. In some mediastinal adipose tissue biopsies, a small number of multilocular adipocytes that stained positively for UCP1 were observed. Adipocytes were significantly smaller in the mediastinal than the

  17. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis. PMID:26781688

  18. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.

  19. Adipose-specific Lipoprotein Lipase Deficiency More Profoundly Affects Brown than White Fat Biology*

    PubMed Central

    Garcia-Arcos, Itsaso; Hiyama, Yaeko; Drosatos, Konstantinos; Bharadwaj, Kalyani G.; Hu, Yunying; Son, Ni Huiping; O'Byrne, Sheila M.; Chang, Chuchun L.; Deckelbaum, Richard J.; Takahashi, Manabu; Westerterp, Marit; Obunike, Joseph C.; Jiang, Hongfeng; Yagyu, Hiroaki; Blaner, William S.; Goldberg, Ira J.

    2013-01-01

    Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the “gatekeeper” for tissue lipid distribution. PMID:23542081

  20. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    PubMed

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  1. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue

    PubMed Central

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity. PMID:26504234

  2. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages.

  3. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages. PMID:26167418

  4. Brown adipose tissue: The heat is on the heart.

    PubMed

    Thoonen, Robrecht; Hindle, Allyson G; Scherrer-Crosbie, Marielle

    2016-06-01

    The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart. PMID:27084389

  5. Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects.

    PubMed

    Flajollet, Sébastien; Staels, Bart; Lefebvre, Philippe

    2013-08-01

    Vitamin A, ingested either as retinol or β-carotene from animal- or plant-derived foods respectively, is a nutrient essential for many biological functions such as embryonic development, vision, immune response, tissue remodeling, and metabolism. Its main active metabolite is all trans-retinoic acid (atRA), which regulates gene expression through the activation of α, β, and γ isotypes of the nuclear atRA receptor (RAR). More recently, retinol derivatives were also shown to control the RAR activity, enlightening the interplay between vitamin A metabolism and RAR-mediated transcriptional control. The white and brown adipose tissues regulate the energy homeostasis by providing dynamic fatty acid storing and oxidizing capacities to the organism, in connection with the other fatty acid-consuming tissues. This concerted interorgan response to fatty acid fluxes is orchestrated, in part, by the endocrine activity of the adipose tissue depots. The adipose tissues are also sites for synthesizing and storing vitamin A derivatives, which will act as hormonal cues or intracellularly to regulate essential aspects of adipocyte biology. As agents that prevent adipocyte differentiation hence, expected to decrease fat mass, and inducers of uncoupling protein expression, thus, favoring energy expenditure, retinoids have prompted many investigations to decipher their roles in adipose tissue pathophysiology, which are summarized in this review.

  6. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  7. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    PubMed

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  8. Recruitment of Brown Adipose Tissue as a Therapy for Obesity-Associated Diseases

    PubMed Central

    Boss, Olivier; Farmer, Stephen R.

    2011-01-01

    Brown adipose tissue (BAT) has been recognized for more than 20 years to play a key role in cold-induced non-shivering thermogenesis (CIT, NST), and body weight homeostasis in animals. BAT is a flexible tissue that can be recruited by stimuli (including small molecules in animals), and atrophies in the absence of a stimulus. In fact, the contribution of BAT (and UCP1) to resting metabolic rate and healthy body weight homeostasis in animals (rodents) is now well established. Many investigations have shown that resistance to obesity and associated disorders in various rodent models is due to increased BAT mass and the number of brown adipocytes or UCP1 expression in various depots. The recent discovery of active BAT in adult humans has rekindled the notion that BAT is a therapeutic target for combating obesity-related metabolic disorders. In this review, we highlight investigations performed in rodents that support the contention that activation of BAT formation and/or function in obese individuals is therapeutically powerful. We also propose that enhancement of brown adipocyte functions in white adipose tissue (WAT) will also regulate energy balance as well as reduce insulin resistance in obesity-associated inflammation in WAT. PMID:22654854

  9. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment.

    PubMed

    Yu, Jinhai; Zhang, Shuyan; Cui, Liujuan; Wang, Weiyi; Na, Huimin; Zhu, Xiaotong; Li, Linghai; Xu, Guoheng; Yang, Fuquan; Christian, Mark; Liu, Pingsheng

    2015-05-01

    Brown adipose tissue (BAT) maintains animal body temperature by non-shivering thermogenesis, which is through uncoupling protein 1 (UCP1) that uncouples oxidative phosphorylation and utilizes β-oxidation of fatty acids released from triacylglycerol (TAG) in lipid droplets (LDs). Increasing BAT activity and "browning" other tissues such as white adipose tissue (WAT) can enhance the expenditure of excess stored energy, and in turn reduce prevalence of metabolic diseases. Although many studies have characterized the biology of BAT and brown adipocytes, BAT LDs especially their activation induced by cold exposure remain to be explored. We have isolated LDs from mouse interscapular BAT and characterized the full proteome using mass spectrometry. Both morphological and biochemical experiments showed that the LDs could tightly associate with mitochondria. Under cold treatment mouse BAT started expressing LD structure protein PLIN-2/ADRP and increased expression of PLIN1. Both hormone sensitive lipase (HSL) and adipose TAG lipase (ATGL) were increased in LDs. In addition, isolated BAT LDs showed increased levels of the mitochondrial protein UCP1, and prolonged cold exposure could stimulate BAT mitochondrial cristae biogenesis. These changes were in agreement with the data from transcriptional analysis. Our results provide the BAT LD proteome for the first time and show that BAT LDs facilitate heat production by coupling increasing TAG hydrolysis through recruitment of ATGL and HSL to the organelle and expression of another LD resident protein PLIN2/ADRP, as well as by tightly associating with activated mitochondria. These findings will benefit the study of BAT activation and the interaction between LDs and mitochondria.

  10. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E; Saraf, Manish K; Labbe, Sebastien M; Hurren, Nicholas M; Yfanti, Christina; Chao, Tony; Andersen, Clark R; Cesani, Fernando; Hawkins, Hal; Sidossis, Labros S

    2014-12-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT(+)) men and five BAT-negative (BAT(-)) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT(+) group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans.

  11. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat.

    PubMed

    Lin, Jean Z; Martagón, Alexandro J; Cimini, Stephanie L; Gonzalez, Daniel D; Tinkey, David W; Biter, Amadeo; Baxter, John D; Webb, Paul; Gustafsson, Jan-Åke; Hartig, Sean M; Phillips, Kevin J

    2015-11-24

    The functional conversion of white adipose tissue (WAT) into a tissue with brown adipose tissue (BAT)-like activity, often referred to as "browning," represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR) activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  12. White Adipose Tissue Browning in the R6/2 Mouse Model of Huntington's Disease.

    PubMed

    McCourt, Andrew C; Jakobsson, Lovisa; Larsson, Sara; Holm, Cecilia; Piel, Sarah; Elmér, Eskil; Björkqvist, Maria

    2016-01-01

    Huntington's disease (HD) is a fatal, autosomal dominantly inherited neurodegenerative disorder, characterised not only by progressive cognitive, motor and psychiatric impairments, but also of peripheral pathology. In both human HD and in mouse models of HD there is evidence of increased energy expenditure and weight loss, alongside altered body composition. Unlike white adipose tissue (WAT), brown adipose tissue (BAT), as well as brown-like cells within WAT, expresses the mitochondrial protein, uncoupling protein 1 (UCP1). UCP1 enables dissociation of cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Hyperplasia of brown/beige cells in WAT has been suggested to enhance energy expenditure. In this study, we therefore investigated the gene expression profile, histological appearance, response to cold challenge and functional aspects of WAT in the R6/2 HD mouse model and selected WAT gene expression in the full-length Q175 mouse model of HD. WAT from R6/2 mice contained significantly more brown-like adipocyte regions and had a gene profile suggestive of the presence of brown-like adipocytes, such as higher Ucp1 expression. Cold exposure induced Ucp1 expression in R6/2 inguinal WAT to a markedly higher degree as compared to the thermogenic response in WT WAT. Alongside this, gene expression of transcription factors (Zfp516 and Pparα), important inducers of WAT browning, were increased in R6/2 inguinal WAT, and Creb1 was highlighted as a key transcription factor in HD. In addition to increased WAT Ucp1 expression, a trend towards increased mitochondrial oxygen consumption due to enhanced uncoupling activity was found in inguinal R6/2 WAT. Key gene expressional changes (increased expression of (Zfp516 and Pparα)) were replicated in inguinal WAT obtained from Q175 mice. In summary, for the first time, we here show that HD mouse WAT undergoes a process of browning, resulting in molecular and functional alterations that may

  13. Adipose-derived stem cells from the brown bear (Ursus arctos) spontaneously undergo chondrogenic and osteogenic differentiation in vitro.

    PubMed

    Fink, Trine; Rasmussen, Jeppe G; Emmersen, Jeppe; Pilgaard, Linda; Fahlman, Åsa; Brunberg, Sven; Josefsson, Johan; Arnemo, Jon M; Zachar, Vladimir; Swenson, Jon E; Fröbert, Ole

    2011-07-01

    In the den, hibernating brown bears do not develop tissue atrophy or organ damage, despite almost no physical activity. Mesenchymal stem cells could play an important role in tissue repair and regeneration in brown bears. Our objective was to determine if adipose tissue-derived stem cells (ASCs) can be recovered from wild Scandinavian brown bears and characterize their differentiation potential. Following immobilization of wild brown bears 7-10 days after leaving the den in mid-April, adipose tissue biopsies were obtained. ASCs were recovered from 6 bears, and shown to be able to undergo adipogenesis and osteogenesis in monolayer cultures and chondrogenesis in pellet cultures. Remarkably, when grown in standard cell culture medium in monolayer cultures, ASCs from yearlings spontaneously formed bone-like nodules surrounded by cartilaginous deposits, suggesting differentiation into osteogenic and chondrogenic lineages. This ability appears to be lost gradually with age. This is the first study to demonstrate stem cell recovery and growth from brown bears, and it is the first report of ASCs spontaneously forming extracellular matrix characteristic of bone and cartilage in the absence of specific inducers. These findings could have implications for the use of hibernating brown bears as a model to study disuse osteoporosis.

  14. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex.

    PubMed

    Ohno, Haruya; Shinoda, Kosaku; Ohyama, Kana; Sharp, Louis Z; Kajimura, Shingo

    2013-12-01

    Brown adipose tissue (BAT) dissipates chemical energy in the form of heat as a defence against hypothermia and obesity. Current evidence indicates that brown adipocytes arise from Myf5(+) dermotomal precursors through the action of PR domain containing protein 16 (PRDM16) transcriptional complex. However, the enzymatic component of the molecular switch that determines lineage specification of brown adipocytes remains unknown. Here we show that euchromatic histone-lysine N-methyltransferase 1 (EHMT1) is an essential BAT-enriched lysine methyltransferase in the PRDM16 transcriptional complex and controls brown adipose cell fate. Loss of EHMT1 in brown adipocytes causes a severe loss of brown fat characteristics and induces muscle differentiation in vivo through demethylation of histone 3 lysine 9 (H3K9me2 and 3) of the muscle-selective gene promoters. Conversely, EHMT1 expression positively regulates the BAT-selective thermogenic program by stabilizing the PRDM16 protein. Notably, adipose-specific deletion of EHMT1 leads to a marked reduction of BAT-mediated adaptive thermogenesis, obesity and systemic insulin resistance. These data indicate that EHMT1 is an essential enzymatic switch that controls brown adipose cell fate and energy homeostasis.

  15. Differential lncRNA expression profiles in brown and white adipose tissues.

    PubMed

    Chen, Jiantao; Cui, Xianwei; Shi, Chunmei; Chen, Ling; Yang, Lei; Pang, Lingxia; Zhang, Jun; Guo, Xirong; Wang, Jiaqin; Ji, Chenbo

    2015-04-01

    Long non-coding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. It can serve as key co-activators of proteins involved in transcriptional regulation. Studies have found that white and brown adipocytes both originate from the mesoderm. However, it remains unclear whether lncRNAs function during adipogenesis or in energy metabolism in brown adipose tissue (BAT) and white adipose tissue (WAT). In this study, we used lncRNA microarray technology to evaluate differences in the lncRNA expression profiles of WAT and BAT. We observed 735 up-regulated and 877 down-regulated lncRNAs (fold change >4.0). To reveal the potential functions of these lncRNAs, we applied GO and pathway analyses to study the differentially expressed lncRNAs. We found that AK142386 and AK133540 may affect adipogenesis and metabolism. Our data indicate that AK142386 and AK133540 may be involved in BAT and WAT development through their target genes Hoxa3 and Acad10. Together, we have identified numerous lncRNAs and these lncRNAs can potentially serve as a required component for proper adipogenesis.

  16. Castration induced browning in subcutaneous white adipose tissue in male mice.

    PubMed

    Hashimoto, Osamu; Noda, Tatsuya; Morita, Atsushi; Morita, Masahiro; Ohtsuki, Hirofumi; Sugiyama, Makoto; Funaba, Masayuki

    2016-09-30

    We demonstrated that castration enhanced the expression of uncoupling protein 1 (Ucp1), a thermogenic protein, in brown adipose tissue (BAT) and subcutaneous (sc) white adipose tissue (WAT) in male mice. Castration of male mice increased body temperature and reduced body weight gain compared with those of sham-operated mice. BAT Ucp1 mRNA expression in castrated male mice was significantly higher than that in sham-operated mice. Histologically, cells with multilocular fat droplets were observed in the castrated inguinal scWAT. Immunohistochemical staining revealed that these cells positively reacted with the anti-Ucp1 antibody. The Ucp1-positive area near the inguinal lymph node in the castrated WAT was extensive compared with that of the sham-operated WAT. Castration-induced Ucp1 up-regulation in scWAT was suppressed by high-fat diet feeding. These findings suggest that thermogenesis by BAT activation and scWAT browning contribute to castration-induced inhibition of body weight gain. However, considering that the effect of castration was blunted by high-fat diet consumption, thermogenesis stimulation in response to castration is inhibited by chronic over-nutrition. PMID:27608598

  17. Adrenergically stimulated blood flow in brown adipose tissue is not dependent on thermogenesis.

    PubMed

    Abreu-Vieira, Gustavo; Hagberg, Carolina E; Spalding, Kirsty L; Cannon, Barbara; Nedergaard, Jan

    2015-05-01

    Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.

  18. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    PubMed

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  19. Dynamic changes in lipid droplet-associated proteins in the "browning" of white adipose tissues.

    PubMed

    Barneda, David; Frontini, Andrea; Cinti, Saverio; Christian, Mark

    2013-05-01

    The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD-LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  20. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

    PubMed Central

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-01-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  1. Influencing Factors of Thermogenic Adipose Tissue Activity

    PubMed Central

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beige” adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  2. Influencing Factors of Thermogenic Adipose Tissue Activity.

    PubMed

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  3. Oxygen deprivation and the cellular response to hypoxia in adipocytes - perspectives on white and brown adipose tissues in obesity.

    PubMed

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells - particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the "browning" of white fat depots through recruitment of UCP1 and the development of brite adipocytes.

  4. Effect of chronic treatment with ICI D7114, a selective beta 3-adrenoceptor agonist, on macronutrient selection and brown adipose tissue thermogenesis in Sprague-Dawley rats.

    PubMed

    Santti, E; Rouvari, T; Rouru, J; Huupponen, R; Koulu, M

    1994-01-01

    ICI D7114 is a selective beta 3-agonist which stimulates brown adipose tissue thermogenesis. In the present study the effects of 18 days treatment with ICI D7114 (2 mg/kg/day orally) on macronutrient selection and brown adipose tissue thermogenesis were investigated in Sprague-Dawley rats. The rats were maintained on a free-feeding self-selection paradigm with three pure macronutrient diets of carbohydrate, fat and protein. Treatment with ICI D7114 did not change the macronutrient selection or total calories consumed by the rats. To monitor the thermogenic activation of brown adipose tissue the binding of [3H]GDP to brown adipose tissue mitochondria was measured. The treatment with ICI D7114 increased the binding of GDP both when expressed as total binding per lobe (P < 0.001) and per mg of protein (P < 0.01). It is concluded that ICI D7114, used in doses affecting brown adipose tissue thermogenesis, does not change the macronutrient selection or total energy intake in Sprague-Dawley rats. PMID:7800658

  5. Effect of maternal cold exposure on brown adipose tissue and thermogenesis in the neonatal lamb.

    PubMed

    Symonds, M E; Bryant, M J; Clarke, L; Darby, C J; Lomax, M A

    1992-09-01

    1. This study examines the effect of chronic cold exposure during pregnancy, induced by winter shearing twin-bearing ewes 4 weeks before predicted lambing date, on O2 consumption and CO2 production during non-rapid-eye-movement (REM) sleep in lambs maintained for at least 1 h at warm (28-18 degrees C) and cold (14-5 degrees C) ambient temperatures at 1, 4, 14 and 30 days of age. This was combined with measurement of the thermogenic activity (GDP binding to uncoupling protein in mitochondrial preparations) of perirenal adipose tissue from lambs immediately after birth and at 33 days of age. 2. Lambs born from shorn (cold-exposed) ewes were 15% heavier (P < 0.01) and possessed 21% (P < 0.01) more perirenal adipose tissue that contained 40% more protein and mitochondrial protein than unshorn (P < 0.05) controls. Total GDP binding in perirenal adipose tissue was 40% greater (P < 0.05) in lambs born from shorn ewes but there was no difference in lipid content of this tissue between the two groups. 3. At 1 day of age, lambs born from shorn ewes exhibited a 16% higher (P < 0.05) rate of O2 consumption (per kilogram bodyweight) at the warm temperature and a 40% greater metabolic response to the cold ambient temperature. All lambs born from shorn ewes responded to cold exposure without shivering (i.e. via non-shivering thermogenesis) whilst shivering was measured in four out of seven lambs in the unshorn group. These differences had disappeared by 4 days of age as a result of a 25% increased (P < 0.01) rate of O2 consumption in the warm in lambs born from unshorn ewes and a 20% decrease (P < 0.05) in the response to the cold in lambs from shorn ewes. Shivering during cold exposure was measured in six out of nine lambs born from shorn ewes indicating a rapid alteration in thermoregulatory responses to cold during the first few days of life. 4. The levels of GDP binding and mitochondrial protein in perirenal adipose tissue fell by one-third in both groups of lambs during the

  6. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.

    PubMed

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-You; Huang, Hai-Yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-Ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-02-26

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces "white adipocytes" with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4's role in altering insulin sensitivity by affecting WAT development.

  7. Fatty acid composition of brown adipose tissue in genetically heat-tolerant FOK rats

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Furuyama, F.; Kuroshima, A.

    The phospholipid fatty acid composition of brown adipose tissue (BAT) was examined in inbred heat-tolerant FOK rats and compared with that in conventional Wistar rats not previously exposed to heat. The FOK rats showed higher unsaturation states, as indicated by higher levels of polyunsaturated fatty acids and a higher unsaturation index and polyunsaturated fatty acids/saturated fatty acids ratio. This higher level of unsaturation was characterized by the higher amount of polyunsaturated fatty acids such as linoleic acid, arachidonic acid and docosahexaenoic acid. It may be concluded that the increased docosahexaenoic acid level in BAT phospholipids brings about the hyperplasia of BAT, causing an enhancement of its in vivo thermogernic activity as well as the systemic non-shivering thermogenesis observed in heat-tolerant FOK rats.

  8. Role of developmental transcription factors in white, brown and beige adipose tissues.

    PubMed

    Hilton, Catriona; Karpe, Fredrik; Pinnick, Katherine E

    2015-05-01

    In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.

  9. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ.

    PubMed

    Qiang, Li; Wang, Liheng; Kon, Ning; Zhao, Wenhui; Lee, Sangkyu; Zhang, Yiying; Rosenbaum, Michael; Zhao, Yingming; Gu, Wei; Farmer, Stephen R; Accili, Domenico

    2012-08-01

    Brown adipose tissue (BAT) can disperse stored energy as heat. Promoting BAT-like features in white adipose (WAT) is an attractive, if elusive, therapeutic approach to staunch the current obesity epidemic. Here we report that gain of function of the NAD-dependent deacetylase SirT1 or loss of function of its endogenous inhibitor Deleted in breast cancer-1 (Dbc1) promote "browning" of WAT by deacetylating peroxisome proliferator-activated receptor (Ppar)-γ on Lys268 and Lys293. SirT1-dependent deacetylation of Lys268 and Lys293 is required to recruit the BAT program coactivator Prdm16 to Pparγ, leading to selective induction of BAT genes and repression of visceral WAT genes associated with insulin resistance. An acetylation-defective Pparγ mutant induces a brown phenotype in white adipocytes, whereas an acetylated mimetic fails to induce "brown" genes but retains the ability to activate "white" genes. We propose that SirT1-dependent Pparγ deacetylation is a form of selective Pparγ modulation of potential therapeutic import. PMID:22863012

  10. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome.

    PubMed

    Van De Pette, Matthew; Tunster, Simon J; McNamara, Grainne I; Shelkovnikova, Tatyana; Millership, Steven; Benson, Lindsay; Peirson, Stuart; Christian, Mark; Vidal-Puig, Antonio; John, Rosalind M

    2016-03-01

    The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to

  11. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome.

    PubMed

    Van De Pette, Matthew; Tunster, Simon J; McNamara, Grainne I; Shelkovnikova, Tatyana; Millership, Steven; Benson, Lindsay; Peirson, Stuart; Christian, Mark; Vidal-Puig, Antonio; John, Rosalind M

    2016-03-01

    The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to

  12. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome

    PubMed Central

    Van De Pette, Matthew; Tunster, Simon J.; McNamara, Grainne I.; Shelkovnikova, Tatyana; Millership, Steven; Benson, Lindsay; Peirson, Stuart; Christian, Mark; Vidal-Puig, Antonio; John, Rosalind M.

    2016-01-01

    The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to

  13. Ontogenic development of brown adipose tissue in Angus and Brahman fetal calves.

    PubMed

    Landis, M D; Carstens, G E; McPhail, E G; Randel, R D; Green, K K; Slay, L; Smith, S B

    2002-03-01

    Brahman calves experience greater neonatal mortality than Angus calves if cold-stressed. To establish a developmental basis for this, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Overall fetal BW tended (P = 0.08) to be greater for Angus than for Brahman fetuses. There was no difference between breed types in total brown adipose tissue (BAT) mass or grams of BAT/kg BW. Brown adipocyte density decreased 56%, whereas lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types. Glycerolipid synthesis from palmitate declined by 85% during the last trimester but still contributed 98% to total lipid synthesis at birth. The fetal age x breed interaction was significant for lipogenesis from glucose (P = 0.05) and palmitate (P = 0.005); rates were higher at 96 d before birth in Brahman BAT but declined to similar rates by birth. Uncoupling protein-1 (UCP1) mRNA tripled during gestation in both breed types (P = 0.002), whereas mitochondrial cross-sectional area did not change (P = 0.14) during gestation. Neither the breed nor the age x breed effect was significant (P > or = 0.24) for UCP1 mRNA concentration or mitochondrial cross-sectional area. In both breed types, a marked decrease in BAT UCP1 mRNA between 24 and 14 d prepartum was associated with a similar reduction in lipogenesis from palmitate and a noticeable change in BAT mitochondrial morphology, as the mitochondria became more elongated and the cristae became more elaborate. Uncoupling protein-1 mRNA initially was elevated in Angus tailhead s.c. adipose tissue, but was barely detectable by birth, and tended to be greater overall (P = 0.09) in Angus than in Brahman BAT. If uncoupling protein activity in s.c. adipose tissue persists after birth, then s.c. adipose tissue may contribute more to thermogenesis in Angus newborn calves than in Brahman calves. In contrast, we did not observe

  14. Analysis and Measurement of the Sympathetic and Sensory Innervation of White and Brown Adipose Tissue

    PubMed Central

    Vaughan, Cheryl H.; Zarebidaki, Eleen; Ehlen, J. Christopher; Bartness, Timothy J.

    2014-01-01

    Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well. PMID:24480348

  15. Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue.

    PubMed

    Vaughan, Cheryl H; Zarebidaki, Eleen; Ehlen, J Christopher; Bartness, Timothy J

    2014-01-01

    Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well.

  16. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation.

    PubMed

    Hampton, Marshall; Melvin, Richard G; Andrews, Matthew T

    2013-01-01

    We used RNAseq to generate a comprehensive transcriptome of Brown Adipose Tissue (BAT) over the course of a year in the naturally hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus. During hibernation ground squirrels do not feed and use fat stored in White Adipose Tissue (WAT) as their primary source of fuel. Stored lipid is consumed at high rates by BAT to generate heat at specific points during the hibernation season. The highest rate of BAT activity occurs during periodic arousals from hypothermic torpor bouts, referred to as Interbout Arousals (IBAs). IBAs are characterized by whole body re-warming (from 5 to 37 °C) in 2-3 hours, and provide a unique opportunity to determine the genes responsible for the highly efficient lipid oxidation and heat generation that drives the arousal process. Illumina HighSeq sequencing identified 14,573 distinct BAT mRNAs and quantified their levels at four points: active ground squirrels in April and October, and hibernating animals during both torpor and IBA. Based on significant changes in mRNA levels across the four collection points, 2,083 genes were shown to be differentially expressed. In addition to providing detail on the expression of nuclear genes encoding mitochondrial proteins, and genes involved in beta-adrenergic and lipolytic pathways, we identified differentially expressed genes encoding various transcription factors and other regulatory proteins which may play critical roles in high efficiency fat catabolism, non-shivering thermogenesis, and transitions into and out of the torpid state.

  17. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  18. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    PubMed

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

  19. Oxygen Deprivation and the Cellular Response to Hypoxia in Adipocytes – Perspectives on White and Brown Adipose Tissues in Obesity

    PubMed Central

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells – particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the “browning” of white fat depots through recruitment of UCP1 and the development of brite adipocytes. PMID:25745415

  20. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways.

    PubMed

    Müller, Sebastian; Balaz, Miroslav; Stefanicka, Patrik; Varga, Lukas; Amri, Ez-Zoubir; Ukropec, Jozef; Wollscheid, Bernd; Wolfrum, Christian

    2016-01-01

    Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology. PMID:27418403

  1. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways

    PubMed Central

    Müller, Sebastian; Balaz, Miroslav; Stefanicka, Patrik; Varga, Lukas; Amri, Ez-Zoubir; Ukropec, Jozef; Wollscheid, Bernd; Wolfrum, Christian

    2016-01-01

    Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology. PMID:27418403

  2. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways.

    PubMed

    Müller, Sebastian; Balaz, Miroslav; Stefanicka, Patrik; Varga, Lukas; Amri, Ez-Zoubir; Ukropec, Jozef; Wollscheid, Bernd; Wolfrum, Christian

    2016-07-15

    Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology.

  3. Functional and anatomical characteristics of the nerve-brown adipose interaction in the rat

    NASA Technical Reports Server (NTRS)

    Flaim, K. E.; Horowitz, J. M.; Horwitz, B. A.

    1976-01-01

    Experiments were conducted on 12 male rats to study the coupling of signals from the sympathetic nervous system to the brown adipose tissue. Analysis of electron photomicrographs revealed considerable morphological heterogeneity among the nerves entering and leaving the interscapular fat pad. In response to electrical simulation of the nerves, the temperature of the brown fat increased following a rapid but transient temperature drop. Such changes were observed only on the ipsilateral side, indicating that the innervation to the interscapular brown fat of the rat is functionally bilateral rather than diffuse. The finding that brown fat is capable of responding in a graded fashion correlates well with observations suggesting that clusters of brown adipocytes may be electrically coupled.

  4. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

    PubMed

    Liu, Xiaomeng; Wang, Siping; You, Yilin; Meng, Minghui; Zheng, Zongji; Dong, Meng; Lin, Jun; Zhao, Qianwei; Zhang, Chuanhai; Yuan, Xiaoxue; Hu, Tao; Liu, Lieqin; Huang, Yuanyuan; Zhang, Lei; Wang, Dehua; Zhan, Jicheng; Jong Lee, Hyuek; Speakman, John R; Jin, Wanzhu

    2015-07-01

    Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT.

  5. Brown adipose tissue triglyceride content is associated with decreased insulin sensitivity, independently of age and obesity.

    PubMed

    Raiko, J; Holstila, M; Virtanen, K A; Orava, J; Saunavaara, V; Niemi, T; Laine, J; Taittonen, M; Borra, R J H; Nuutila, P; Parkkola, R

    2015-05-01

    The aim of the present study was to determine whether single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) can non-invasively assess triglyceride content in both supraclavicular fat depots and subcutaneous white adipose tissue (WAT) to determine whether these measurements correlate to metabolic variables. A total of 25 healthy volunteers were studied using (18)F-fluorodeoxyglucose positron emission tomography (PET) and (15)O-H2O PET perfusion during cold exposure, and (1)H-MRS at ambient temperature. Image-guided biopsies were collected from nine volunteers. The supraclavicular triglyceride content determined by (1)H-MRS varied between 60 and 91% [mean ± standard deviation (s.d.) 77 ± 10%]. It correlated positively with body mass index, waist circumference, subcutaneous and visceral fat masses and 8-year diabetes risk based on the Framingham risk score and inversely with HDL cholesterol and insulin sensitivity (M-value; euglycaemic-hyperinsulinaemic clamp). Subcutaneous WAT had a significantly higher triglyceride content, 76-95% (mean ± s.d. 87 ± 5%; p = 0.0002). In conclusion, the triglyceride content in supraclavicular fat deposits measured by (1)H-MRS may be an independent marker of whole-body insulin sensitivity, independent of brown adipose tissue metabolic activation. PMID:25586670

  6. Temperature-Acclimated Brown Adipose Tissue Modulates Insulin Sensitivity in Humans

    PubMed Central

    Lee, Paul; Smith, Sheila; Linderman, Joyce; Courville, Amber B.; Brychta, Robert J.; Dieckmann, William; Werner, Charlotte D.; Chen, Kong Y.

    2014-01-01

    In rodents, brown adipose tissue (BAT) regulates cold- and diet-induced thermogenesis (CIT; DIT). Whether BAT recruitment is reversible and how it impacts on energy metabolism have not been investigated in humans. We examined the effects of temperature acclimation on BAT, energy balance, and substrate metabolism in a prospective crossover study of 4-month duration, consisting of four consecutive blocks of 1-month overnight temperature acclimation (24°C [month 1] → 19°C [month 2] → 24°C [month 3] → 27°C [month 4]) of five healthy men in a temperature-controlled research facility. Sequential monthly acclimation modulated BAT reversibly, boosting and suppressing its abundance and activity in mild cold and warm conditions (P < 0.05), respectively, independent of seasonal fluctuations (P < 0.01). BAT acclimation did not alter CIT but was accompanied by DIT (P < 0.05) and postprandial insulin sensitivity enhancement (P < 0.05), evident only after cold acclimation. Circulating and adipose tissue, but not skeletal muscle, expression levels of leptin and adiponectin displayed reciprocal changes concordant with cold-acclimated insulin sensitization. These results suggest regulatory links between BAT thermal plasticity and glucose metabolism in humans, opening avenues to harnessing BAT for metabolic benefits. PMID:24954193

  7. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    PubMed

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  8. Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue.

    PubMed

    Shen, Wan; McIntosh, Michael K

    2016-07-17

    Obesity is the most widespread nutritional disease in the United States. Developing effective and safe strategies to manage excess body weight is therefore of paramount importance. One potential strategy to reduce obesity is to consume conjugated linoleic acid (CLA) supplements containing isomers cis-9, trans-11 and trans-10, cis-12, or trans-10, cis-12 alone. Proposed antiobesity mechanisms of CLA include regulation of (a) adipogenesis, (b) lipid metabolism, (c) inflammation, (d) adipocyte apoptosis, (e) browning or beiging of adipose tissue, and (f) energy metabolism. However, causality of CLA-mediated responses to body fat loss, particularly the linkage between inflammation, thermogenesis, and energy metabolism, is unclear. This review examines whether CLA's antiobesity properties are due to inflammatory signaling and considers CLA's linkage with lipogenesis, lipolysis, thermogenesis, and browning of white and brown adipose tissue. We propose a series of questions and studies to interrogate the role of the sympathetic nervous system in mediating CLA's antiobesity properties. PMID:27431366

  9. Autotaxin and Its Product Lysophosphatidic Acid Suppress Brown Adipose Differentiation and Promote Diet-Induced Obesity in Mice

    PubMed Central

    Federico, Lorenzo; Ren, Hongmei; Mueller, Paul A.; Wu, Tao; Liu, Shuying; Popovic, Jelena; Blalock, Eric M.; Sunkara, Manjula; Ovaa, Huib; Albers, Harald M.; Mills, Gordon B.; Morris, Andrew J.

    2012-01-01

    Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibit reduced expression of brown adipose tissue-related genes in peripheral white adipose tissue and accumulate significantly more fat than wild-type controls when fed a high-fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and are consistent with a model in which a decrease in mature peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice. PMID:22474126

  10. Seipin deficiency alters brown adipose tissue thermogenesis and insulin sensitivity in a non-cell autonomous mode

    PubMed Central

    Dollet, L.; Magré, J.; Joubert, M.; Le May, C.; Ayer, A.; Arnaud, L.; Pecqueur, C.; Blouin, V.; Cariou, B.; Prieur, X.

    2016-01-01

    Loss-of-function mutations in BSCL2 are responsible for Berardinelli-Seip congenital lipodystrophy, a rare disorder characterized by near absence of adipose tissue associated with insulin resistance. Seipin-deficient (Bscl2−/−) mice display an almost total loss of white adipose tissue (WAT) with residual brown adipose tissue (BAT). Previous cellular studies have shown that seipin deficiency alters white adipocyte differentiation. In this study, we aimed to decipher the consequences of seipin deficiency in BAT. Using a brown adipocyte cell-line, we show that seipin knockdown had very little effect on adipocyte differentiation without affecting insulin sensitivity and oxygen consumption. However, when submitted to cold acclimation or chronic β3 agonist treatment, Bscl2−/− mice displayed altered thermogenic capacity, despite several signs of BAT remodeling. Under cold activation, Bscl2−/− mice were able to maintain their body temperature when fed ad libitum, but not under short fasting. At control temperature (i.e. 21 °C), fasting worsened Bscl2−/− BAT properties. Finally, Bscl2−/− BAT displayed obvious signs of insulin resistance. Our results in these lipodystrophic mice strongly suggest that BAT activity relies on WAT as an energetic substrate provider and adipokine-producing organ. Therefore, the WAT/BAT dialogue is a key component of BAT integrity in guaranteeing its response to insulin and cold-activated adrenergic signals. PMID:27748422

  11. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    PubMed

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions.

  12. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease

    PubMed Central

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M.; Hanani, Menachem; Scherer, Philipp E.; Tanowitz, Herbert B.; Spray, David C.

    2015-01-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. PMID:25150689

  13. The role of thyroid hormone and brown adipose tissue in energy homoeostasis.

    PubMed

    Bianco, Antonio C; McAninch, Elizabeth A

    2013-11-01

    The presence of brown adipose tissue (BAT) in adults has become increasingly well defined as a result of functional imaging studies of thermogenically active BAT. Findings from these studies have created a surge of scientific interest in BAT, because it represents a potential therapeutic target for obesity--a condition with profound health consequences and few successful therapies. BAT contributes to overall energy expenditure in small mammals and neonates through adaptive thermogenesis. Thyroid-hormone signalling, particularly through induction of type II deiodinase, has a central role in brown adipogenesis in vitro and BAT development in mouse embryos. Additionally, because of high intracellular expression of type II deiodinase, adult BAT has enhanced thyroid-hormone signalling with several thyroid-hormone-dependent thermogenic pathways, including expression of the genes Ppargc1a and Ucp1. BAT thermogenesis explains the essential part played by thyroid hormone in energy homoeostasis and adaptation to cold. Stimulation of BAT in adults, specifically through thyroid-hormone-mediated pathways, is a promising therapeutic target for obesity.

  14. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. PMID:27015310

  15. Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue.

    PubMed

    Sun, Wuping; Uchida, Kunitoshi; Suzuki, Yoshiro; Zhou, Yiming; Kim, Minji; Takayama, Yasunori; Takahashi, Nobuyuki; Goto, Tsuyoshi; Wakabayashi, Shigeo; Kawada, Teruo; Iwata, Yuko; Tominaga, Makoto

    2016-03-01

    Brown adipose tissue (BAT), a major site for mammalian non-shivering thermogenesis, could be a target for prevention and treatment of human obesity. Transient receptor potential vanilloid 2 (TRPV2), a Ca(2+)-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. Here, we show that TRPV2 is expressed in brown adipocytes and that mRNA levels of thermogenic genes are reduced in both cultured brown adipocytes and BAT from TRPV2 knockout (TRPV2KO) mice. The induction of thermogenic genes in response to β-adrenergic receptor stimulation is also decreased in TRPV2KO brown adipocytes and suppressed by reduced intracellular Ca(2+) concentrations in wild-type brown adipocytes. In addition, TRPV2KO mice have more white adipose tissue and larger brown adipocytes and show cold intolerance, and lower BAT temperature increases in response to β-adrenergic receptor stimulation. Furthermore, TRPV2KO mice have increased body weight and fat upon high-fat-diet treatment. Based on these findings, we conclude that TRPV2 has a role in BAT thermogenesis and could be a target for human obesity therapy. PMID:26882545

  16. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  17. The presence of acyl-CoA hydrolase in rat brown-adipose-tissue peroxisomes.

    PubMed

    Alexson, S E; Osmundsen, H; Berge, R K

    1989-08-15

    The subcellular distribution of acyl-CoA hydrolase was studied in rat brown adipose tissue, with special emphasis on possible peroxisomal localization. Subcellular fractionation by sucrose-density-gradient centrifugation, followed by measurement of short-chain (propionyl-CoA) acyl-CoA hydrolase in the presence of NADH, resulted in two peaks of activity in the gradient: one peak corresponded to the distribution of cytochrome oxidase (mitochondrial marker enzyme), and another peak of activity coincided with the peroxisomal marker enzyme catalase. The distribution of the NADH-inhibited short-chain hydrolase activity fully resembled that of cytochrome oxidase. The substrate-specificity curve of the peroxisomal acyl-CoA hydrolase activity indicated the presence of a single enzyme exhibiting a broad substrate specificity, with maximal activity towards fatty acids with chain lengths of 3-12 carbon atoms. The mitochondrial acyl-CoA hydrolase substrate specificity, in contrast, indicated the presence of at least two acyl-CoA hydrolases (of short- and medium-chain-length specificity). The peroxisomal acyl-CoA hydrolase activity was inhibited by CoA at low (microM) concentrations and by ATP at high concentrations (greater than 0.8 mM). In contrast with the mitochondrial short-chain hydrolase, the peroxisomal acyl-CoA hydrolase activity was not inhibited by NADH. PMID:2573347

  18. Changes in white and brown adipose tissue microRNA expression in cold-induced mice.

    PubMed

    Tao, Cong; Huang, Shujuan; Wang, Yajun; Wei, Gang; Zhang, Yang; Qi, Desheng; Wang, Yanfang; Li, Kui

    2015-07-31

    There are two classic adipose tissues in mammals, white adipose tissue (WAT) and brown adipose tissue (BAT). It has been well known that browning of WAT can be induced by cold exposure. In this study, to identify the novel cold responsive key miRNAs that are involved in browning, mice were housed at 6 °C for 10 days, and deep sequencing of the miRNAs of WAT and BAT was performed. Our data showed that WAT and BAT displayed distinct expression profiles due to their different locations, morphology and biological function. A total of 27 BAT and 29 WAT differentially expressed (DE) miRNAs were identified in response to cold stimulation, respectively (fold change >2 and false discovery rate (FDR) <0.05), of which, 9 were overlapped in both adipose tissues. Furthermore, the potential target genes of the DE miRNAs from BAT and WAT were predicted computationally, and the KEGG pathway analysis revealed the enrichment pathways in cold stimulated adipose tissues. The expression pattern of miR-144-3p/Bmpr1b/Phlda1 and miR-146a-5p/Sphk2 were further measured by qPCR. Finally, we found that miR-146a-5p was significantly induced during the primary adipogenesis caused by BAT differentiation, whereas miR-144-3p was decreased. Our study identifies for the first time the novel miRNAs involved in browning of WAT by sequencing and expands the therapeutic approaches for combating metabolic diseases.

  19. Microbiota depletion promotes browning of white adipose tissue and reduces obesity

    PubMed Central

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J.; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-01-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity1. In response to cold or exercise brown fat cells also emerge in the white adipose tissue (named beige cells), a process known as browning2,3,4. Here, we show that the development of functional beige fat is promoted by microbiota depletion either by antibiotic treatment or in germ-free mice within the inguinal subcutaneous and perigonadal visceral adipose tissues (ingSAT and pgVAT, respectively). This leads to improved glucose tolerance, insulin sensitivity and decreased white fat and adipocyte size in lean mice and obese leptin-deficient (ob/ob) and high fat diet (HFD)-fed mice. These metabolic improvements are mediated by eosinophil infiltration and enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by suppression of the type 2 signaling and are reversed by recolonization of the antibiotic-treated, or the germ-free mice with microbes. These results provide insight into microbiota-fat signaling axis and beige fat development in health and metabolic disease. PMID:26569380

  20. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure

    PubMed Central

    Dijk, Wieneke; Heine, Markus; Vergnes, Laurent; Boon, Mariëtte R; Schaart, Gert; Hesselink, Matthijs KC; Reue, Karen; van Marken Lichtenbelt, Wouter D; Olivecrona, Gunilla; Rensen, Patrick CN; Heeren, Joerg; Kersten, Sander

    2015-01-01

    Brown adipose tissue (BAT) activation via cold exposure is increasingly scrutinized as a potential approach to ameliorate cardio-metabolic risk. Transition to cold temperatures requires changes in the partitioning of energy substrates, re-routing fatty acids to BAT to fuel non-shivering thermogenesis. However, the mechanisms behind the redistribution of energy substrates to BAT remain largely unknown. Angiopoietin-like 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL) activity, is highly expressed in BAT. Here, we demonstrate that ANGPTL4 is part of a shuttling mechanism that directs fatty acids derived from circulating triglyceride-rich lipoproteins to BAT during cold. Specifically, we show that cold markedly down-regulates ANGPTL4 in BAT, likely via activation of AMPK, enhancing LPL activity and uptake of plasma triglyceride-derived fatty acids. In contrast, cold up-regulates ANGPTL4 in WAT, abolishing a cold-induced increase in LPL activity. Together, our data indicate that ANGPTL4 is an important regulator of plasma lipid partitioning during sustained cold. DOI: http://dx.doi.org/10.7554/eLife.08428.001 PMID:26476336

  1. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way.

    PubMed

    Wang, Shan; Wang, Xiuchao; Ye, Zichen; Xu, Chengming; Zhang, Ming; Ruan, Banjun; Wei, Ming; Jiang, Yinghao; Zhang, Ying; Wang, Li; Lei, Xiaoying; Lu, Zifan

    2015-10-16

    Brown adipose tissue converts energy from food into heat via the mitochondrial uncoupling protein UCP1, defending against cold. In some conditions, inducible 'brown-like' adipocytes, also known as beige adipocytes, can develop within white adipose tissue (WAT). These beige adipocytes have characteristics similar to classical brown adipocytes and thus can burn lipids to produce heat. In the current study, we demonstrated that curcumin (50 or 100 mg/kg/day) decreased bodyweight and fat mass without affecting food intake in mice. We further demonstrated that curcumin improves cold tolerance in mice. This effect was possibly mediated by the emergence of beige adipocytes and the increase of thermogenic gene expression and mitochondrial biogenesis in inguinal WAT. In addition, curcumin promotes β3AR gene expression in inguinal WAT and elevates the levels of plasma norepinephrine, a hormone that can induce WAT browning. Taken together, our data suggest that curcumin can potentially prevent obesity by inducing browning of inguinal WAT via the norepinephrine-β3AR pathway.

  2. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis.

    PubMed

    Labbé, Sébastien M; Caron, Alexandre; Bakan, Inan; Laplante, Mathieu; Carpentier, André C; Lecomte, Roger; Richard, Denis

    2015-05-01

    The present study was designed to investigate the effects of cold on brown adipose tissue (BAT) energy substrate utilization in vivo using the positron emission tomography tracers [(18)F]fluorodeoxyglucose (glucose uptake), 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid [nonesterified fatty acid (NEFA) uptake], and [(11)C]acetate (oxidative activity). The measurements were performed in rats adapted to 27°C, which were acutely subjected to cold (10°C) for 2 and 6 hours, and in rats chronically adapted to 10°C for 21 days, which were returned to 27°C for 2 and 6 hours. Cold exposure (acutely and chronically) led to increases in BAT oxidative activity, which was accompanied by concomitant increases in glucose and NEFA uptake. The increases were particularly high in cold-adapted rats and largely readily reduced by the return to a warm environment. The cold-induced increase in oxidative activity was meaningfully blunted by nicotinic acid, a lipolysis inhibitor, which emphasizes in vivo the key role of intracellular lipid in BAT thermogenesis. The changes in BAT oxidative activity and glucose and NEFA uptakes were paralleled by inductions of genes involved in not only oxidative metabolism but also in energy substrate replenishment (triglyceride and glycogen synthesis). The capacity of BAT for energy substrate replenishment is remarkable.

  3. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M.; Hurren, Nicholas M.; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S.

    2016-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT−) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT− group only (−0.34°C, 95% CI: −0.6 to −0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT− subjects (BAT+ vs. BAT−, 0.43°C, 95% CI: 0.20–0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT− group, BAT+ subjects tolerated a lower ambient temperature (BAT−: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068

  4. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M; Hurren, Nicholas M; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S

    2016-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT- group only (-0.34°C, 95% CI: -0.6 to -0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT- subjects (BAT+ vs. BAT-, 0.43°C, 95% CI: 0.20-0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT- group, BAT+ subjects tolerated a lower ambient temperature (BAT-: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068

  5. White and brown adipose stem cells: from signaling to clinical implications.

    PubMed

    Algire, Carolyn; Medrikova, Dasa; Herzig, Stephan

    2013-05-01

    Epidemiological studies estimate that by the year 2030, 2.16 billion people worldwide will be overweight and 1.12 billion will be obese [1]. Besides its now established function as an endocrine organ, adipose tissue plays a fundamental role as an energy storage compartment. As such, adipose tissue is capable of extensive expansion or retraction depending on the energy balance or disease state of the host, a plasticity that is unparalleled in other organs and - under conditions of excessive energy intake - significantly contributes to the afore mentioned obesity pandemic. Expansion of adipose tissue is driven by both hypertrophy and hyperplasia of adipocytes, which can renew frequently to compensate for cell death. This underlines the importance of adipocyte progenitor cells within the distinct adipose tissue depots to control both energy storage and endocrine functions of adipose tissue. Here we summarize recent findings on the identity and plasticity of adipose stem cells, the involved signaling cascades, and potential clinical implications of these cells for the treatment of metabolic dysfunction in obesity. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  6. Pronounced expression of the lipolytic inhibitor G0/G1 Switch Gene 2 (G0S2) in adipose tissue from brown bears (Ursus arctos) prior to hibernation.

    PubMed

    Jessen, Niels; Nielsen, Thomas S; Vendelbo, Mikkel H; Viggers, Rikke; Støen, Ole-Gunnar; Evans, Alina; Frøbert, Ole

    2016-04-01

    Prior to hibernation, the brown bear (Ursus arctos) exhibits unparalleled weight gain. Unlike humans, weight gain in bears is associated with lower levels of circulating free fatty acids (FFA) and increased insulin sensitivity. Understanding how free-ranging brown bears suppress lipolysis when gaining weight may therefore provide novel insight toward the development of human therapies. Blood and subcutaneous adipose tissue were collected from immobilized free-ranging brown bears (fitted with GPS-collars) during hibernation in winter and from the same bears during the active period in summer in Dalarna, Sweden. The expression of lipid droplet-associated proteins in adipose tissue was examined under the hypothesis that bears suppress lipolysis during summer while gaining weight by increased expression of negative regulators of lipolysis. Adipose triglyceride lipase (ATGL) expression did not differ between seasons, but in contrast, the expression of ATGL coactivator Comparative gene identification-58 (CGI-58) was lower in summer. In addition, the expression of the negative regulators of lipolysis, G0S2 and cell-death inducing DNA fragmentation factor-a-like effector (CIDE)C markedly increased during summer. Free-ranging brown bears display potent upregulation of inhibitors of lipolysis in adipose tissue during summer. This is a potential mechanism for increased insulin sensitivity during weight gain and G0S2 may serve as a target to modulate insulin sensitivity.

  7. Pronounced expression of the lipolytic inhibitor G0/G1 Switch Gene 2 (G0S2) in adipose tissue from brown bears (Ursus arctos) prior to hibernation.

    PubMed

    Jessen, Niels; Nielsen, Thomas S; Vendelbo, Mikkel H; Viggers, Rikke; Støen, Ole-Gunnar; Evans, Alina; Frøbert, Ole

    2016-04-01

    Prior to hibernation, the brown bear (Ursus arctos) exhibits unparalleled weight gain. Unlike humans, weight gain in bears is associated with lower levels of circulating free fatty acids (FFA) and increased insulin sensitivity. Understanding how free-ranging brown bears suppress lipolysis when gaining weight may therefore provide novel insight toward the development of human therapies. Blood and subcutaneous adipose tissue were collected from immobilized free-ranging brown bears (fitted with GPS-collars) during hibernation in winter and from the same bears during the active period in summer in Dalarna, Sweden. The expression of lipid droplet-associated proteins in adipose tissue was examined under the hypothesis that bears suppress lipolysis during summer while gaining weight by increased expression of negative regulators of lipolysis. Adipose triglyceride lipase (ATGL) expression did not differ between seasons, but in contrast, the expression of ATGL coactivator Comparative gene identification-58 (CGI-58) was lower in summer. In addition, the expression of the negative regulators of lipolysis, G0S2 and cell-death inducing DNA fragmentation factor-a-like effector (CIDE)C markedly increased during summer. Free-ranging brown bears display potent upregulation of inhibitors of lipolysis in adipose tissue during summer. This is a potential mechanism for increased insulin sensitivity during weight gain and G0S2 may serve as a target to modulate insulin sensitivity. PMID:27117803

  8. Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis.

    PubMed

    Endo, Toyoshi; Kobayashi, Tetsuro

    2008-08-01

    C.RF- Tshr(hyt/hyt) mice have a mutated thyroid-stimulating hormone receptor (TSHR), and, without thyroid hormone supplementation, these mice develop severe hypothyroidism. When hypothyroid Tshr(hyt/hyt) mice were exposed to cold (4 degrees C), rectal temperature rapidly dropped to 23.9 +/- 0.40 degrees C at 90 min, whereas the wild-type mice temperatures were 37.0 +/- 0.15 degrees C. When we carried out functional rat TSHR gene transfer in the brown adipose tissues by plasmid injection combined with electroporation, there was no effect on the serum levels of thyroxine, although rectal temperature of the mice transfected with pcDNA3.1/Zeo-rat TSHR 90 min after cold exposure remained at 34.6 +/- 0.34 degrees C, which was significantly higher than that of Tshr(hyt/hyt) mice. Transfection of TSHR cDNA increased mRNA and protein levels of uncoupling protein-1 (UCP-1) in brown adipose tissues, and the weight ratio of brown adipose tissue to overall body weight also increased. Exogenous thyroid hormone supplementation to Tshr(hyt/hyt) mice restored rectal temperature 90 min after exposure to cold (36.8 +/- 0.10 degrees C). These results indicate that not only thyroid hormone but also thyroid-stimulating hormone (TSH)/TSHR are involved in the expression mechanism of UCP-1 in mouse brown adipose tissue. TSH stimulates thermogenesis and functions to protect a further decrease in body temperature in the hypothyroid state. PMID:18559984

  9. BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions

    PubMed Central

    Whittle, Andrew J.; Carobbio, Stefania; Martins, Luís; Slawik, Marc; Hondares, Elayne; Vázquez, María Jesús; Morgan, Donald; Csikasz, Robert I.; Gallego, Rosalía; Rodriguez-Cuenca, Sergio; Dale, Martin; Virtue, Samuel; Villarroya, Francesc; Cannon, Barbara; Rahmouni, Kamal; López, Miguel; Vidal-Puig, Antonio

    2012-01-01

    Summary Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b−/− mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b−/− mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT. PMID:22579288

  10. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep.

    PubMed

    Satterfield, M Carey; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2013-09-01

    Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

  11. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    PubMed Central

    2011-01-01

    Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/-) mice inhaled concentrated fine ambient PM (PM < 2.5 μm in aerodynamic diameter; PM2.5) or filtered air (FA) for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS) in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT) and brown adipose tissues (BAT), while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction. PMID:21745393

  12. In vivo noninvasive detection of Brown Adipose Tissue through intermolecular zero-quantum MRI.

    PubMed

    Branca, Rosa T; Zhang, Le; Warren, Warren S; Auerbach, Edward; Khanna, Arjun; Degan, Simone; Ugurbil, Kamil; Maronpot, Robert

    2013-01-01

    The recent discovery of active Brown Adipose Tissue (BAT) in adult humans has opened new avenues for obesity research and treatment, as reduced BAT activity seem to be implicated in human energy imbalance, diabetes, and hypertension. However, clinical applications are currently limited by the lack of non-invasive tools for measuring mass and function of this tissue in humans. Here we present a new magnetic resonance imaging method based on the normally invisible intermolecular multiple-quantum coherence (1)H MR signal. This method, which doesn't require special hardware modifications, can be used to overcome partial volume effect, the major limitation of MR-based approaches that are currently being investigated for the detection of BAT in humans. With this method we can exploit the characteristic cellular structure of BAT to selectively image it, even when (as in humans) it is intimately mixed with other tissues. We demonstrate and validate this method in mice using PET scans and histology. We compare this methodology with conventional (1)H MR fat fraction methods. Finally, we investigate its feasibility for the detection of BAT in humans.

  13. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism.

    PubMed

    Hao, Qin; Yadav, Rachita; Basse, Astrid L; Petersen, Sidsel; Sonne, Si B; Rasmussen, Simon; Zhu, Qianhua; Lu, Zhike; Wang, Jun; Audouze, Karine; Gupta, Ramneek; Madsen, Lise; Kristiansen, Karsten; Hansen, Jacob B

    2015-03-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT. PMID:25516548

  14. Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates

    PubMed Central

    De Meis, Leopoldo; Ketzer, Luisa A.; Camacho-Pereira, Juliana; Galina, Antonio

    2011-01-01

    The UCP1 [first UCP (uncoupling protein)] that is found in the mitochondria of brown adipocytes [BAT (brown adipose tissue)] regulates the heat production, a process linked to non-shivering thermogenesis. The activity of UCP1 is modulated by GDP and fatty acids. In this report, we demonstrate that respiration and heat released by BAT mitochondria vary depending on the respiratory substrate utilized and the coupling state of the mitochondria. It has already been established that, in the presence of pyruvate/malate, BAT mitochondria are coupled by faf-BSA (fatty-acid-free BSA) and GDP, leading to an increase in ATP synthesis and mitochondrial membrane potential along with simultaneous decreases in both the rates of respiration and heat production. Oleate restores the uncoupled state, inhibiting ATP synthesis and increasing the rates of both respiration and heat production. We now show that in the presence of succinate: (i) the rates of uncoupled mitochondria respiration and heat production are five times slower than in the presence of pyruvate/malate; (ii) faf-BSA and GDP accelerate heat and respiration as a result and, in coupled mitochondria, these two rates are accelerated compared with pyruvate/malate; (iii) in spite of the differences in respiration and heat production noted with the two substrates, the membrane potential and the ATP synthesized were the same; and (iv) oleate promoted a decrease in heat production and respiration in coupled mitochondria, an effect different from that observed using pyruvate/malate. These effects are not related to the production of ROS (reactive oxygen species). We suggest that succinate could stimulate a new route to heat production in BAT mitochondria. PMID:21561434

  15. Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment.

    PubMed

    Slocum, Nikki; Durrant, Jessica R; Bailey, David; Yoon, Lawrence; Jordan, Holly; Barton, Joanna; Brown, Roger H; Clifton, Lisa; Milliken, Tula; Harrington, Wallace; Kimbrough, Carie; Faber, Catherine A; Cariello, Neal; Elangbam, Chandikumar S

    2013-07-01

    Drug-induced weight loss in humans has been associated with undesirable side effects not present in weight loss from lifestyle interventions (caloric restriction or exercise). To investigate the mechanistic differences of weight loss by drug-induced and lifestyle interventions, we examined the gene expression (mRNA) in brown adipose tissue (BAT) and conducted histopathologic assessments in diet-induced obese (DIO) mice given ephedrine (18 mg/kg/day orally), treadmill exercise (10 m/min, 1-h/day), and dietary restriction (DR: 26% dietary restriction) for 7 days. Exercise and DR mice lost more body weight than controls and both ephedrine and exercise reduced percent body fat. All treatments reduced BAT and liver lipid accumulation (i.e., cytoplasmic lipids in brown adipocytes and hepatocytes) and increased oxygen consumption (VO2 ml/kg/h) compared with controls. Mitochondrial biogenesis/function-related genes (TFAM, NRF1 and GABPA) were up-regulated in the BAT of all groups. UCP-1 was up-regulated in exercise and ephedrine groups, whereas MFSD2A was up-regulated in ephedrine and DR groups. PGC-1α up-regulation was observed in exercise and DR groups but not in ephedrine group. In all experimental groups, except for ephedrine, fatty acid transport and metabolism genes were up-regulated, but the magnitude of change was higher in the DR group. PRKAA1 was up-regulated in all groups but not significantly in the ephedrine group. ADRß3 was slightly up-regulated in the DR group only, whereas ESRRA remained unchanged in all groups. Although our data suggest a common pathway of BAT activation elicited by ephedrine treatment, exercise or DR, mRNA changes were indicative of additional nutrient-sensing pathways in exercise and DR.

  16. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.

    PubMed

    Albert, Verena; Svensson, Kristoffer; Shimobayashi, Mitsugu; Colombi, Marco; Muñoz, Sergio; Jimenez, Veronica; Handschin, Christoph; Bosch, Fatima; Hall, Michael N

    2016-03-01

    Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon β-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation. PMID:26772600

  17. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3

    PubMed Central

    Shan, Tizhong; Xiong, Yan; Zhang, Pengpeng; Li, Zhiguo; Jiang, Qingyang; Bi, Pengpeng; Yue, Feng; Yang, Gongshe; Wang, Yizhen; Liu, Xiaoqi; Kuang, Shihuan

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy through Ucp1-mediated uncoupled respiration and its activation may represent a therapeutic strategy to combat obesity. Here we show that Lkb1 controls BAT expansion and UCP1 expression in mice. We generate adipocyte-specific Lkb1 knockout mice and show that, compared with wild-type littermates, these mice exhibit elevated UCP1 expression in BAT and subcutaneous white adipose tissue, have increased BAT mass and higher energy expenditure. Consequently, KO mice have improved glucose tolerance and insulin sensitivity, and are more resistant to high-fat diet (HFD)-induced obesity. Deletion of Lkb1 results in a cytoplasm to nuclear translocation of CRTC3 in brown adipocytes, where it recruits C/EBPβ to enhance Ucp1 transcription. In parallel, the absence of Lkb1 also suppresses AMPK activity, leading to activation of the mTOR signalling pathway and subsequent BAT expansion. These data suggest that inhibition of Lkb1 or its downstream signalling in adipocytes could be a novel strategy to increase energy expenditure in the context of obesity, diabetes and other metabolic diseases. PMID:27461402

  18. In a model of Batten disease, palmitoyl protein thioesterase-1 deficiency is associated with brown adipose tissue and thermoregulation abnormalities.

    PubMed

    Khaibullina, Alfia; Kenyon, Nicholas; Guptill, Virginia; Quezado, Martha M; Wang, Li; Koziol, Deloris; Wesley, Robert; Moya, Pablo R; Zhang, Zhongjian; Saha, Arjun; Mukherjee, Anil B; Quezado, Zenaide M N

    2012-01-01

    Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1α and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1α and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative

  19. White Adipose Tissue Browning in the R6/2 Mouse Model of Huntington’s Disease

    PubMed Central

    McCourt, Andrew C.; Jakobsson, Lovisa; Larsson, Sara; Holm, Cecilia; Piel, Sarah; Elmér, Eskil; Björkqvist, Maria

    2016-01-01

    Huntington’s disease (HD) is a fatal, autosomal dominantly inherited neurodegenerative disorder, characterised not only by progressive cognitive, motor and psychiatric impairments, but also of peripheral pathology. In both human HD and in mouse models of HD there is evidence of increased energy expenditure and weight loss, alongside altered body composition. Unlike white adipose tissue (WAT), brown adipose tissue (BAT), as well as brown-like cells within WAT, expresses the mitochondrial protein, uncoupling protein 1 (UCP1). UCP1 enables dissociation of cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Hyperplasia of brown/beige cells in WAT has been suggested to enhance energy expenditure. In this study, we therefore investigated the gene expression profile, histological appearance, response to cold challenge and functional aspects of WAT in the R6/2 HD mouse model and selected WAT gene expression in the full-length Q175 mouse model of HD. WAT from R6/2 mice contained significantly more brown-like adipocyte regions and had a gene profile suggestive of the presence of brown-like adipocytes, such as higher Ucp1 expression. Cold exposure induced Ucp1 expression in R6/2 inguinal WAT to a markedly higher degree as compared to the thermogenic response in WT WAT. Alongside this, gene expression of transcription factors (Zfp516 and Pparα), important inducers of WAT browning, were increased in R6/2 inguinal WAT, and Creb1 was highlighted as a key transcription factor in HD. In addition to increased WAT Ucp1 expression, a trend towards increased mitochondrial oxygen consumption due to enhanced uncoupling activity was found in inguinal R6/2 WAT. Key gene expressional changes (increased expression of (Zfp516 and Pparα)) were replicated in inguinal WAT obtained from Q175 mice. In summary, for the first time, we here show that HD mouse WAT undergoes a process of browning, resulting in molecular and functional alterations that may

  20. De Novo Reconstruction of Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown Adipocyte Development.

    PubMed

    Alvarez-Dominguez, Juan R; Bai, Zhiqiang; Xu, Dan; Yuan, Bingbing; Lo, Kinyui Alice; Yoon, Myeong Jin; Lim, Yen Ching; Knoll, Marko; Slavov, Nikolai; Chen, Shuai; Chen, Peng; Lodish, Harvey F; Sun, Lei

    2015-05-01

    Brown adipose tissue (BAT) protects against obesity by promoting energy expenditure via uncoupled respiration. To uncover BAT-specific long non-coding RNAs (lncRNAs), we used RNA-seq to reconstruct de novo transcriptomes of mouse brown, inguinal white, and epididymal white fat and identified ∼1,500 lncRNAs, including 127 BAT-restricted loci induced during differentiation and often targeted by key regulators PPARγ, C/EBPα, and C/EBPβ. One of them, lnc-BATE1, is required for establishment and maintenance of BAT identity and thermogenic capacity. lnc-BATE1 inhibition impairs concurrent activation of brown fat and repression of white fat genes and is partially rescued by exogenous lnc-BATE1 with mutated siRNA-targeting sites, demonstrating a function in trans. We show that lnc-BATE1 binds heterogeneous nuclear ribonucleoprotein U and that both are required for brown adipogenesis. Our work provides an annotated catalog for the study of fat depot-selective lncRNAs and establishes lnc-BATE1 as a regulator of BAT development and physiology.

  1. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues.

    PubMed

    Hansen, Ida R; Jansson, Kim M; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin.

  2. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice.

    PubMed

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E; MacIntyre, David; Turner, Jeremy O; Moore, Jonathan D; Blackburn, Edith; Gullick, William J; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G; Christian, Mark

    2014-04-15

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.

  3. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture.

    PubMed

    Qin, Xia; Park, Hui Gyu; Zhang, Ji Yao; Lawrence, Peter; Liu, Guowen; Subramanian, Nivetha; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-01-01

    Adipose tissue is a complex endocrine organ which coordinates several crucial biological functions including fatty acid metabolism, glucose metabolism, energy homeostasis, and immune function. Brown adipose tissue (BAT) is most abundant in young infants during the brain growth spurt when demands for omega-3 docosahexaenoic acid (DHA, 22:6n-3) is greatest for brain structure. Our aim was to characterize relative biosynthesis of omega-3 long chain polyunsaturated fatty acids (LCPUFA) from precursors in cultured white (WAT) and brown (BAT) cells and study relevant gene expression. Mouse WAT and BAT cells were grown in regular DMEM media to confluence, and differentiation was induced. At days 0 and 8 cells were treated with albumin bound d5-18:3n-3 (d5-ALA) and analyzed 24h later. d5-ALA increased cellular eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3) in undifferentiated BAT cells, whereas differentiated BAT cells accumulated 20:4n-3, EPA and DPA. DHA as a fraction of total omega-3 LCPUFA was greatest in differentiated BAT cells compared to undifferentiated cells. Undifferentiated WAT cells accumulated EPA, whereas differentiated cells accumulated DPA. WAT accumulated trace newly synthesized DHA. Zic1 a classical brown marker and Prdm16 a key driver of brown fat cell fate are expressed only in BAT cells. Ppargc1a is 15 fold higher in differentiated BAT cells. We conclude that in differentiated adipose cells accumulating fat, BAT cells but not WAT cells synthesize DHA, supporting the hypothesis that BAT is a net producer of DHA.

  4. Inducible Brown Adipose Tissue, or Beige Fat, Is Anabolic for the Skeleton

    PubMed Central

    Rahman, Sima; Lu, Yalin; Czernik, Piotr J.; Rosen, Clifford J.; Enerback, Sven

    2013-01-01

    It is known that insulin resistance and type 2 diabetes mellitus are associated with increased fractures and that brown adipose tissue (BAT) counteracts many if not all of the symptoms associated with type 2 diabetes. By the use of FoxC2AD+/Tg mice, a well-established model for induction of BAT, or beige fat, we present data extending the beneficial action of beige fat to also include a positive effect on bone. FoxC2AD+/Tg mice are lean and insulin-sensitive and have high bone mass due to increased bone formation associated with high bone turnover. Inducible BAT is linked to activation of endosteal osteoblasts whereas osteocytes have decreased expression of the Sost transcript encoding sclerostin and elevated expression of Rankl. Conditioned media (CM) collected from forkhead box c2 (FOXC2)-induced beige adipocytes activated the osteoblast phenotype and increased levels of phospho-AKT and β-catenin in recipient cells. In osteocytes, the same media decreased Sost expression. Immunodepletion of CM with antibodies against wingless related MMTV integration site 10b (WNT10b) and insulin-like growth factor binding protein 2 (IGFBP2) resulted in the loss of pro-osteoblastic activity, and the loss of increase in the levels of phospho-AKT and β-catenin. Conversely, CM derived from cells overexpressing IGFBP2 or WNT10b restored osteoblastic activity in recipient cells. In conclusion, beige fat secretes endocrine/paracrine activity that is beneficial for the skeleton. PMID:23696565

  5. Glycogen Repletion in Brown Adipose Tissue upon Refeeding Is Primarily Driven by Phosphorylation-Independent Mechanisms

    PubMed Central

    Carmean, Christopher M.; Huang, Y. Hanna; Brady, Matthew J.

    2016-01-01

    Glycogen storage in brown adipose tissue (BAT) is generally thought to take place through passive, substrate-driven activation of glycogenesis rather than programmatic shifts favoring or opposing the storage and/or retention of glycogen. This perception exists despite a growing body of evidence suggesting that BAT glycogen storage is actively regulated by covalent modification of key glycogen-metabolic enzymes, protein turnover, and endocrine hormone signaling. Members of one such class of covalent-modification regulators, glycogen-binding Phosphoprotein Phosphatase-1 (PP1)-regulatory subunits (PPP1Rs), targeting PP1 to glycogen-metabolic enzymes, were dynamically regulated in response to 24 hr of starvation and/or 24 hr of starvation followed by ad libitum refeeding. Over-expression of the PPP1R Protein Targeting to Glycogen (PTG), under the control of the aP2 promoter in mice, inactivated glycogen phosphorylase (GP) and enhanced basal- and starvation-state glycogen storage. Total interscapular BAT glycogen synthase and the constitutive activity of GS were conditionally affected. During starvation, glucose-6-phosphate (G-6-P) levels and the relative phosphorylation of Akt (p-Ser-473-Akt) were both increased in PTG-overexpressing (Tg) mice, suggesting that elevated glycogen storage during starvation modifies broader cellular metabolic pathways. During refeeding, Tg and WT mice reaccumulated glycogen similarly despite altered GS and GP activities. All observations during refeeding suggest that the phosphorylation states of GS and GP are not physiologically rate-controlling, despite there being a clear balance of endogenous kinase- and phosphatase activities. The studies presented here reveal IBAT glycogen storage to be a tightly-regulated process at all levels, with potential effects on nutrient sensing in vivo. PMID:27213961

  6. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation.

    PubMed

    Hindle, Allyson G; Martin, Sandra L

    2014-02-01

    Winter hibernators repeatedly cycle between cold torpor and rewarming supported by nonshivering thermogenesis in brown adipose tissue (BAT). In contrast, summer animals are homeotherms, undergoing reproduction, growth, and fattening. This life history confers variability to BAT recruitment and activity. To address the components underlying prewinter enhancement and winter activation, we interrogated the BAT proteome in 13-lined ground squirrels among three summer and five winter states. We also examined mixed physiology in fall and spring individuals to test for ambient temperature and seasonal effects, as well as the timing of seasonal transitions. BAT form and function differ circannually in these animals, as evidenced by morphology and proteome dynamics. This intrinsic pattern distinguished homeothermic groups and early vs. late winter hibernators. Homeothermic variation derived from postemergence delay in growth and substrate biosynthesis. The heterothermic proteome varied less despite extreme winter physiological shifts and was optimized to exploit lipids by enhanced fatty acid binding, β-oxidation, and mitochondrial protein translocation. Surprisingly, ambient temperature did not affect the BAT proteome during transition seasons; rather, the pronounced summer-winter shift preceded environmental changes and phenotypic progression. During fall transition, differential regulation of two fatty acid binding proteins provides further evidence of recruitment and separates proteomic preparation from successful hibernation. Abundance of FABP4 correlates with torpor bout length throughout the year, clarifying its potential function in hibernation. Metabolically active BAT is a target for treating human obesity and metabolic disorders. Understanding the hibernator's extreme and seasonally distinct recruitment and activation control strategies offers untapped potential to identify novel, therapeutically relevant regulatory pathways.

  7. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation

    PubMed Central

    Hindle, Allyson G.

    2013-01-01

    Winter hibernators repeatedly cycle between cold torpor and rewarming supported by nonshivering thermogenesis in brown adipose tissue (BAT). In contrast, summer animals are homeotherms, undergoing reproduction, growth, and fattening. This life history confers variability to BAT recruitment and activity. To address the components underlying prewinter enhancement and winter activation, we interrogated the BAT proteome in 13-lined ground squirrels among three summer and five winter states. We also examined mixed physiology in fall and spring individuals to test for ambient temperature and seasonal effects, as well as the timing of seasonal transitions. BAT form and function differ circannually in these animals, as evidenced by morphology and proteome dynamics. This intrinsic pattern distinguished homeothermic groups and early vs. late winter hibernators. Homeothermic variation derived from postemergence delay in growth and substrate biosynthesis. The heterothermic proteome varied less despite extreme winter physiological shifts and was optimized to exploit lipids by enhanced fatty acid binding, β-oxidation, and mitochondrial protein translocation. Surprisingly, ambient temperature did not affect the BAT proteome during transition seasons; rather, the pronounced summer-winter shift preceded environmental changes and phenotypic progression. During fall transition, differential regulation of two fatty acid binding proteins provides further evidence of recruitment and separates proteomic preparation from successful hibernation. Abundance of FABP4 correlates with torpor bout length throughout the year, clarifying its potential function in hibernation. Metabolically active BAT is a target for treating human obesity and metabolic disorders. Understanding the hibernator's extreme and seasonally distinct recruitment and activation control strategies offers untapped potential to identify novel, therapeutically relevant regulatory pathways. PMID:24326419

  8. Intact brown adipose tissue thermogenesis is required for restorative sleep responses after sleep loss.

    PubMed

    Szentirmai, Éva; Kapás, Levente

    2014-03-01

    Metabolic signals related to feeding and body temperature regulation have profound effects on vigilance. Brown adipose tissue (BAT) is a key effector organ in the regulation of metabolism in several species, including rats and mice. Significant amounts of active BAT are also present throughout adulthood in humans. The metabolic activity of BAT is due to the tissue-specific presence of the uncoupling protein-1 (UCP-1). To test the involvement of BAT thermogenesis in sleep regulation, we investigated the effects of two sleep-promoting stimuli in UCP-1-deficient mice. Sleep deprivation by gentle handling increased UCP-1 mRNA expression in BAT and elicited rebound increases in non-rapid-eye-movement sleep and rapid-eye-movement sleep accompanied by elevated slow-wave activity of the electroencephalogram. The rebound sleep increases were significantly attenuated, by ~ 35-45%, in UCP-1-knockout (KO) mice. Wild-type (WT) mice with capsaicin-induced sensory denervation of the interscapular BAT pads showed similar impairments in restorative sleep responses after sleep deprivation, suggesting a role of neuronal sleep-promoting signaling from the BAT. Exposure of WT mice to 35 °C ambient temperature for 5 days led to increased sleep and body temperature and suppressed feeding and energy expenditure. Sleep increases in the warm environment were significantly suppressed, by ~ 50%, in UCP-1-KO animals while their food intake and energy expenditure did not differ from those of the WTs. These results suggest that the metabolic activity of the BAT plays a role in generating a metabolic environment that is permissive for optimal sleep. Impaired BAT function may be a common underlying cause of sleep insufficiency and metabolic disorders.

  9. IRF3 promotes adipose inflammation and insulin resistance and represses browning.

    PubMed

    Kumari, Manju; Wang, Xun; Lantier, Louise; Lyubetskaya, Anna; Eguchi, Jun; Kang, Sona; Tenen, Danielle; Roh, Hyun Cheol; Kong, Xingxing; Kazak, Lawrence; Ahmad, Rasheed; Rosen, Evan D

    2016-08-01

    The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis. PMID:27400129

  10. IRF3 promotes adipose inflammation and insulin resistance and represses browning

    PubMed Central

    Wang, Xun; Lyubetskaya, Anna; Eguchi, Jun; Kang, Sona; Tenen, Danielle; Roh, Hyun Cheol; Kong, Xingxing; Kazak, Lawrence; Ahmad, Rasheed; Rosen, Evan D.

    2016-01-01

    The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat–fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis. PMID:27400129

  11. Brown adipose tissue of mice with GTG-induced obesity: altered circadian control.

    PubMed

    Eley, J; Himms-Hagen, J

    1989-06-01

    The effect of feeding a "cafeteria" diet and of feeding a restricted amount of chow on brown adipose tissue (BAT) of lean and gold thioglucose (GTG)-obese mice was studied at various times of the day and night. Objectives were to find out 1) whether our previous finding of diet-induced growth of BAT of the GTG-obese mouse without thermogenic activation could be explained by a transient stimulation at a time of day not studied and 2) whether lack of stimulation of BAT thyroxine 5'-deiodinase (TD) by diet seen previously in lean mice and rats could be explained by a transient increase at times of day not studied. A transient activation of BAT thermogenesis, indicated by an increase in mitochondrial GDP binding, occurs immediately after cafeteria food is presented to the GTG-obese mouse, but the effect of diet is absent at other times. This transient stimulation of BAT in the GTG-obese mouse may be sufficient to produce the tissue growth observed. A circadian rhythm in GDP binding occurred in both lean and obese mice, whether they were eating chow or the cafeteria diet. Restricted feeding suppressed BAT mitochondrial GDP binding in lean mice but did not suppress any further the low level in GTG-obese mice. A circadian rhythm in TD activity in BAT also occurred in lean and obese mice, but no effect of cafeteria diet or of restricted feeding on this enzyme was detected at any time of day, except for a brief increase in obese mice at 0500.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.

    PubMed

    Biggar, Yulia; Storey, Kenneth B

    2014-10-01

    Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels.

  13. Deletion of Inducible Nitric-Oxide Synthase in Leptin-Deficient Mice Improves Brown Adipose Tissue Function

    PubMed Central

    Becerril, Sara; Rodríguez, Amaia; Catalán, Victoria; Sáinz, Neira; Ramírez, Beatriz; Collantes, María; Peñuelas, Iván; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-01-01

    Background Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy balance in ob/ob mice. Methods and Findings Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05), decreased amounts of total fat pads (p<0.05), lower food efficiency rates (p<0.05) and higher rectal temperature (p<0.05) than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor γ coactivator-1 α (Pgc-1α), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob rodents. Conclusion Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement. PMID:20532036

  14. Differentiation of rapid and slower-acting effects of insulin on mitochondrial processes in brown adipose tissue from streptozotocin-diabetic rats.

    PubMed Central

    Gualberto, A; Saggerson, E D

    1989-01-01

    Insulin treatment of streptozotocin-diabetic rats restores the depressed palmitoyl-group oxidation observed in brown-adipose-tissue mitochondria from diabetic rats. A relatively rapid effect of insulin (5 h) to increase carnitine-dependent oxidation of palmitoyl-CoA and to increase overt carnitine palmitoyltransferase activity is differentiated from a slower effect of the hormone (1 day) to increase palmitoylcarnitine oxidation. PMID:2649091

  15. Increased Reliance on Muscle-based Thermogenesis upon Acute Minimization of Brown Adipose Tissue Function.

    PubMed

    Bal, Naresh C; Maurya, Santosh K; Singh, Sushant; Wehrens, Xander H T; Periasamy, Muthu

    2016-08-12

    Skeletal muscle has been suggested as a site of nonshivering thermogenesis (NST) besides brown adipose tissue (BAT). Studies in birds, which do not contain BAT, have demonstrated the importance of skeletal muscle-based NST. However, muscle-based NST in mammals remains poorly characterized. We recently reported that sarco/endoplasmic reticulum Ca(2+) cycling and that its regulation by SLN can be the basis for muscle NST. Because of the dominant role of BAT-mediated thermogenesis in rodents, the role of muscle-based NST is less obvious. In this study, we investigated whether muscle will become an important site of NST when BAT function is conditionally minimized in mice. We surgically removed interscapular BAT (iBAT, which constitutes ∼70% of total BAT) and exposed the mice to prolonged cold (4 °C) for 9 days. The iBAT-ablated mice were able to maintain optimal body temperature (∼35-37 °C) during the entire period of cold exposure. After 4 days in the cold, both sham controls and iBAT-ablated mice stopped shivering and resumed routine physical activity, indicating that they are cold-adapted. The iBAT-ablated mice showed higher oxygen consumption and decreased body weight and fat mass, suggesting an increased energy cost of cold adaptation. The skeletal muscles in these mice underwent extensive remodeling of both the sarcoplasmic reticulum and mitochondria, including alteration in the expression of key components of Ca(2+) handling and mitochondrial metabolism. These changes, along with increased sarcolipin expression, provide evidence for the recruitment of NST in skeletal muscle. These studies collectively suggest that skeletal muscle becomes the major site of NST when BAT activity is minimized.

  16. Increased Reliance on Muscle-based Thermogenesis upon Acute Minimization of Brown Adipose Tissue Function.

    PubMed

    Bal, Naresh C; Maurya, Santosh K; Singh, Sushant; Wehrens, Xander H T; Periasamy, Muthu

    2016-08-12

    Skeletal muscle has been suggested as a site of nonshivering thermogenesis (NST) besides brown adipose tissue (BAT). Studies in birds, which do not contain BAT, have demonstrated the importance of skeletal muscle-based NST. However, muscle-based NST in mammals remains poorly characterized. We recently reported that sarco/endoplasmic reticulum Ca(2+) cycling and that its regulation by SLN can be the basis for muscle NST. Because of the dominant role of BAT-mediated thermogenesis in rodents, the role of muscle-based NST is less obvious. In this study, we investigated whether muscle will become an important site of NST when BAT function is conditionally minimized in mice. We surgically removed interscapular BAT (iBAT, which constitutes ∼70% of total BAT) and exposed the mice to prolonged cold (4 °C) for 9 days. The iBAT-ablated mice were able to maintain optimal body temperature (∼35-37 °C) during the entire period of cold exposure. After 4 days in the cold, both sham controls and iBAT-ablated mice stopped shivering and resumed routine physical activity, indicating that they are cold-adapted. The iBAT-ablated mice showed higher oxygen consumption and decreased body weight and fat mass, suggesting an increased energy cost of cold adaptation. The skeletal muscles in these mice underwent extensive remodeling of both the sarcoplasmic reticulum and mitochondria, including alteration in the expression of key components of Ca(2+) handling and mitochondrial metabolism. These changes, along with increased sarcolipin expression, provide evidence for the recruitment of NST in skeletal muscle. These studies collectively suggest that skeletal muscle becomes the major site of NST when BAT activity is minimized. PMID:27298322

  17. Microarray Based Gene Expression Analysis of Murine Brown and Subcutaneous Adipose Tissue: Significance with Human

    PubMed Central

    Boparai, Ravneet K.; Kondepudi, Kanthi Kiran; Mantri, Shrikant; Bishnoi, Mahendra

    2015-01-01

    Background Two types of adipose tissues, white (WAT) and brown (BAT) are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models. Methodology/Principle Findings The present study was designed to: (a) investigate the differential expression of genes in LACA mice subcutaneous WAT (sWAT) and BAT using mouse DNA microarray, (b) to compare mouse differential gene expression with previously published human data; to understand any inter- species differences between the two and (c) to make a comparative assessment with C57BL/6 mouse strain. In mouse microarray studies, over 7003, 1176 and 401 probe sets showed more than two-fold, five-fold and ten-fold change respectively in differential expression between murine BAT and WAT. Microarray data was validated using quantitative RT-PCR of key genes showing high expression in BAT (Fabp3, Ucp1, Slc27a1) and sWAT (Ms4a1, H2-Ob, Bank1) or showing relatively low expression in BAT (Pgk1, Cox6b1) and sWAT (Slc20a1, Cd74). Multi-omic pathway analysis was employed to understand possible links between the organisms. When murine two fold data was compared with published human BAT and sWAT data, 90 genes showed parallel differential expression in both mouse and human. Out of these 90 genes, 46 showed same pattern of differential expression whereas the pattern was opposite for the remaining 44 genes. Based on our microarray results and its comparison with human data, we were able to identify genes (targets) (a) which can be studied in mouse model systems to extrapolate results to human (b) where caution should be exercised before extrapolation of murine data to human. Conclusion Our study provides evidence for inter species (mouse vs human) differences in differential gene expression between sWAT and BAT. Critical understanding of this data may help in development of novel ways to engineer one form of adipose

  18. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis

    PubMed Central

    Tupone, Domenico; Madden, Christopher J.; Morrison, Shaun F.

    2014-01-01

    From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis. PMID:24570653

  19. C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists▿ †

    PubMed Central

    Vernochet, Cecile; Peres, Sidney B.; Davis, Kathryn E.; McDonald, Meghan E.; Qiang, Li; Wang, Hong; Scherer, Philipp E.; Farmer, Stephen R.

    2009-01-01

    White adipose tissue (WAT) stores energy in the form of triglycerides, whereas brown tissue (BAT) expends energy, primarily by oxidizing lipids. WAT also secretes many cytokines and acute-phase proteins that contribute to insulin resistance in obese subjects. In this study, we have investigated the mechanisms by which activation of peroxisome proliferator-activated receptor γ (PPARγ) with synthetic agonists induces a brown phenotype in white adipocytes in vivo and in vitro. We demonstrate that this phenotypic conversion is characterized by repression of a set of white fat genes (“visceral white”), including the resistin, angiotensinogen, and chemerin genes, in addition to induction of brown-specific genes, such as Ucp-1. Importantly, the level of expression of the “visceral white” genes is high in mesenteric and gonadal WAT depots but low in the subcutaneous WAT depot and in BAT. Mutation of critical amino acids within helix 7 of the ligand-binding domain of PPARγ prevents inhibition of visceral white gene expression by the synthetic agonists and therefore shows a direct role for PPARγ in the repression process. Inhibition of the white adipocyte genes also depends on the expression of C/EBPα and the corepressors, carboxy-terminal binding proteins 1 and 2 (CtBP1/2). The data further show that repression of resistin and angiotensinogen expression involves recruitment of CtBP1/2, directed by C/EBPα, to the minimal promoter of the corresponding genes in response to the PPARγ ligand. Developing strategies to enhance the brown phenotype in white adipocytes while reducing secretion of stress-related cytokines from visceral WAT is a means to combat obesity-associated disorders. PMID:19564408

  20. Foraging at wastewater treatment works affects brown adipose tissue fatty acid profiles in banana bats

    PubMed Central

    Hill, Kate; van Aswegen, Sunet; Schoeman, M. Corrie; Claassens, Sarina; Jansen van Rensburg, Peet; Naidoo, Samantha; Vosloo, Dalene

    2016-01-01

    ABSTRACT In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW), such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT) in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa. Brown adipose tissue (BrAT) mass was lower in WWTW bats than in reference site bats. We found lower levels of saturated phospholipid fatty acids and higher levels of mono- and polyunsaturated fatty acids in WWTW bats than in reference site bats, while C18 desaturation and n-6 to n-3 ratios were higher in the WWTW bats. This was not associated with high lipid peroxidation levels in pectoral and cardiac muscle. Combined, these results indicate that WWTW bats rely on iBrAT as an energy source, and opportunistic foraging on abundant, pollutant-tolerant prey may change fatty acid profiles in their tissue, with possible effects on mitochondrial functioning, torpor and energy usage. PMID:26740572

  1. Browning of Subcutaneous White Adipose Tissue in Humans after Severe Adrenergic Stress.

    PubMed

    Sidossis, Labros S; Porter, Craig; Saraf, Manish K; Børsheim, Elisabet; Radhakrishnan, Ravi S; Chao, Tony; Ali, Arham; Chondronikola, Maria; Mlcak, Ronald; Finnerty, Celeste C; Hawkins, Hal K; Toliver-Kinsky, Tracy; Herndon, David N

    2015-08-01

    Since the presence of brown adipose tissue (BAT) was confirmed in adult humans, BAT has become a therapeutic target for obesity and insulin resistance. We examined whether human subcutaneous white adipose tissue (sWAT) can adopt a BAT-like phenotype using a clinical model of prolonged and severe adrenergic stress. sWAT samples were collected from severely burned and healthy individuals. A subset of burn victims were prospectively followed during their acute hospitalization. Browning of sWAT was determined by the presence of multilocular adipocytes, uncoupling protein 1 (UCP1), and increased mitochondrial density and respiratory capacity. Multilocular UCP1-positive adipocytes were found in sWAT samples from burn patients. UCP1 mRNA, mitochondrial density, and leak respiratory capacity in sWAT increased after burn trauma. Our data demonstrate that human sWAT can transform from an energy-storing to an energy-dissipating tissue, which opens new research avenues in our quest to prevent and treat obesity and its metabolic complications.

  2. Exploratory Studies on Biomarkers: An Example Study on Brown Adipose Tissue

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Yamazaki, Naoshi; Kataoka, Masatoshi; Shinohara, Yasuo

    In mammals, two kinds of adipose tissue are known to exist, i.e., white (WAT) and brown (BAT) adipose tissue. The physiological role of WAT is storage of excess energy as fat, whereas that of BAT is the expenditure of excess energy as heat. The uncoupling protein UCP1, which is specifically expressed in brown fat mitochondria, dissipates the proton electrochemical potential across the inner mitochondrial membrane, known as a driving force of ATP synthesis, and thus it dissipates excess energy in a form of heat. Because deficiency in effective expenditure of excess energy causes accumulation of this energy in the form of fat (i.e., obesity), it is very important to understand the energy metabolism in this tissue for the development of anti-obesity drugs. In this article, in addition to providing a brief introduction to the functional properties of BAT and UCP1, the results of our exploratory studies on protein components involved in the energy-dissipating function in BAT.

  3. Brown adipose tissue and liver development during early postnatal life in hand-reared and ewe-reared lambs.

    PubMed

    Darby, C J; Clarke, L; Lomax, M A; Symonds, M E

    1996-01-01

    This study examined the effects of modest changes in ambient temperature in hand-reared lambs (experiment one) and in ewe-reared lambs (experiment two). Lambs were killed at either 8 or 31 days of age and perirenal adipose tissue was identified as being brown adipose tissue (BAT) from measurements of thermogenic activity (i.e. GDP binding to uncoupling protein in isolated mitochondria) or thermogenic capacity (i.e. detection of uncoupling protein by immunoblotting). In addition, type I and II iodothyronine 5' monodeiodonase (5'MDI) activities were assayed in perirenal adipose tissue, plus type I 5'MDI activity in liver. Plasma samples were also taken for measurements of glucose, lactate, insulin, triiodothyronine (T3) and thyroxine (T4) concentrations. In experiment one, lambs were hand-reared at either warm (WR; 25 degrees C) or cool (CR; 10-15 degrees C) ambient temperatures. Mean growth rate over the first 8 days of life in CR lambs was 88 g/day and increased to 128 g/day over the first month of life. Growth rate in WR lambs was constant at 141 g/day. Thermogenic activity of BAT was significantly higher in CR than WR lambs, but total weight and tissue lipid content of perirenal adipose tissue were significantly lower in the CR group. In both WR and CR lambs, the thermogenic activity of BAT fell by an average of 71% between 8 and 31 days. At 31 days of age, uncoupling protein in mitochondria could be detected only by immunoblotting in adipose tissue sampled from CR lambs. There was no effect of ambient temperature on type I or type II 5'MDI activity in BAT or liver; it decreased in adipose but not liver tissue between 8 and 31 days of age. The plasma concentrations of glucose, insulin and T3 tended to decline with age in CR but not in WR lambs. In ewe-reared lambs perirenal adipose tissue weight and tissue lipid content more than doubled between 8 and 31 days of age, but the level of GDP binding decreased from 85 to 5 pmol/mg mitochondrial protein over this

  4. Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep.

    PubMed

    Carey Satterfield, M; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2012-10-01

    The global incidence of human obesity has more than doubled over the past three decades. An ovine model of obesity was developed to determine effects of maternal obesity and arginine supplementation on maternal, placental, and fetal parameters of growth, health, and well being. One-hundred-twenty days prior to embryo transfer, ewes were fed either ad libitum (n = 10) to induce obesity or 100% National Research Council-recommended nutrient requirements (n = 10) as controls. Embryos from superovulated ewes with normal body condition were transferred to the uterus of control-fed and obese ewes on day 5.5 post-estrus to generate genetically similar singleton pregnancies. Beginning on day 100 of gestation, obese ewes received intravenous administration of saline or L-arginine-HCl three times daily (81 mg arginine/kg body weight/day) to day 125, whereas control-fed ewes received saline. Fetal growth was assessed at necropsy on day 125. Maternal obesity increased (1) percentages of maternal and fetal carcass lipids and (2) concentrations of leptin, insulin, glucose, glutamate, leucine, lysine and threonine in maternal plasma while reducing (1) concentrations of progesterone, glycine and serine in maternal plasma and (2) amniotic and allantoic fluid volumes. Administration of L-arginine to obese ewes increased arginine and ornithine concentrations in maternal and fetal plasma, amniotic fluid volume, protein content in maternal carcass, and fetal brown adipose tissue (+60%), while reducing maternal lipid content and circulating leptin levels. Fetal or placental weight did not differ among treatments. Results indicate that arginine treatment beneficially reduces maternal adiposity and enhances fetal brown adipose tissue development in obese ewes.

  5. The Great Roundleaf Bat (Hipposideros armiger) as a Good Model for Cold-Induced Browning of Intra-Abdominal White Adipose Tissue

    PubMed Central

    Ke, Shanshan; Fang, Na; Irwin, David M.; Lei, Ming; Zhang, Junpeng; Shi, Huizhen; Zhang, Shuyi; Wang, Zhe

    2014-01-01

    Background Inducing beige fat from white adipose tissue (WAT) is considered to be a shortcut to weight loss and increasingly becoming a key area in research into treatments for obesity and related diseases. However, currently, animal models of beige fat are restricted to rodents, where subcutaneous adipose tissue (sWAT, benign WAT) is more liable to develop into the beige fat under specific activators than the intra-abdominal adipose tissue (aWAT, malignant WAT) that is the major source of obesity related diseases in humans. Methods Here we induced beige fat by cold exposure in two species of bats, the great roundleaf bat (Hipposideros armiger) and the rickett's big-footed bat (Myotis ricketti), and compared the molecular and morphological changes with those seen in the mouse. Expression of thermogenic genes (Ucp1 and Pgc1a) was measured by RT-qPCR and adipocyte morphology examined by HE staining at three adipose locations, sWAT, aWAT and iBAT (interscapular brown adipose tissue). Results Expression of Ucp1 and Pgc1a was significantly upregulated, by 729 and 23 fold, respectively, in aWAT of the great roundleaf bat after exposure to 10°C for 7 days. Adipocyte diameters of WATs became significantly reduced and the white adipocytes became brown-like in morphology. In mice, similar changes were found in the sWAT, but much lower amounts of changes in aWAT were seen. Interestingly, the rickett's big-footed bat did not show such a tendency in beige fat. Conclusions The great roundleaf bat is potentially a good animal model for human aWAT browning research. Combined with rodent models, this model should be helpful for finding therapies for reducing harmful aWAT in humans. PMID:25393240

  6. Regulators of Human White Adipose Browning: Evidence for Sympathetic Control and Sexual Dimorphic Responses to Sprint Interval Training

    PubMed Central

    Scalzo, Rebecca L.; Peltonen, Garrett L.; Giordano, Gregory R.; Binns, Scott E.; Klochak, Anna L.; Paris, Hunter L. R.; Schweder, Melani M.; Szallar, Steve E.; Wood, Lacey M.; Larson, Dennis G.; Luckasen, Gary J.; Hickey, Matthew S.; Bell, Christopher

    2014-01-01

    The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21) were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11). The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE), but was increased during hypoxia mediated sympathetic activation (368±135); this response was abrogated (P = 0.035) with clonidine (269±93). Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21). Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5) was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT). SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046) but did not affect FNDC5 (P = 0.79). Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045) and increased in females (139±14 vs. 170±18). Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT. PMID:24603718

  7. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance.

    PubMed

    Grimpo, Kirsten; Völker, Maximilian N; Heppe, Eva N; Braun, Steve; Heverhagen, Johannes T; Heldmaier, Gerhard

    2014-03-01

    We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST. PMID:24343897

  8. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue.

    PubMed

    de Jesus, L A; Carvalho, S D; Ribeiro, M O; Schneider, M; Kim, S W; Harney, J W; Larsen, P R; Bianco, A C

    2001-11-01

    Type 2 iodothyronine deiodinase (D2) is a selenoenzyme, the product of the recently cloned cAMP-dependent Dio2 gene, which increases 10- to 50-fold during cold stress only in brown adipose tissue (BAT). Here we report that despite a normal plasma 3,5,3'-triiodothyronine (T3) concentration, cold-exposed mice with targeted disruption of the Dio2 gene (Dio2(-/-)) become hypothermic due to impaired BAT thermogenesis and survive by compensatory shivering with consequent acute weight loss. This occurs despite normal basal mitochondrial uncoupling protein 1 (UCP1) concentration. In Dio2(-/-) brown adipocytes, the acute norepinephrine-, CL316,243-, or forskolin-induced increases in lipolysis, UCP1 mRNA, and O(2) consumption are all reduced due to impaired cAMP generation. These hypothyroid-like abnormalities are completely reversed by a single injection of T3 14 hours earlier. Recent studies suggest that UCP1 is primarily dependent on thyroid hormone receptor beta (TR beta) while the normal sympathetic response of brown adipocytes requires TR alpha. Intracellularly generated T3 may be required to saturate the TR alpha, which has an approximately fourfold lower T3-binding affinity than does TR beta. Thus, D2 is an essential component in the thyroid-sympathetic synergism required for thermal homeostasis in small mammals. PMID:11696583

  9. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  10. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate.

    PubMed

    Pospisilik, J Andrew; Schramek, Daniel; Schnidar, Harald; Cronin, Shane J F; Nehme, Nadine T; Zhang, Xiaoyun; Knauf, Claude; Cani, Patrice D; Aumayr, Karin; Todoric, Jelena; Bayer, Martina; Haschemi, Arvand; Puviindran, Vijitha; Tar, Krisztina; Orthofer, Michael; Neely, G Gregory; Dietzl, Georg; Manoukian, Armen; Funovics, Martin; Prager, Gerhard; Wagner, Oswald; Ferrandon, Dominique; Aberger, Fritz; Hui, Chi-chung; Esterbauer, Harald; Penninger, Josef M

    2010-01-01

    Over 1 billion people are estimated to be overweight, placing them at risk for diabetes, cardiovascular disease, and cancer. We performed a systems-level genetic dissection of adiposity regulation using genome-wide RNAi screening in adult Drosophila. As a follow-up, the resulting approximately 500 candidate obesity genes were functionally classified using muscle-, oenocyte-, fat-body-, and neuronal-specific knockdown in vivo and revealed hedgehog signaling as the top-scoring fat-body-specific pathway. To extrapolate these findings into mammals, we generated fat-specific hedgehog-activation mutant mice. Intriguingly, these mice displayed near total loss of white, but not brown, fat compartments. Mechanistically, activation of hedgehog signaling irreversibly blocked differentiation of white adipocytes through direct, coordinate modulation of early adipogenic factors. These findings identify a role for hedgehog signaling in white/brown adipocyte determination and link in vivo RNAi-based scanning of the Drosophila genome to regulation of adipocyte cell fate in mammals.

  11. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet

    PubMed Central

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M. Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L.

    2012-01-01

    We measured the effects of a diet in which d-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [18F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.—Srivastava, S., Kashiwaya, Y., King, M. T. Baxa, U., Tam, J., Niu, G., Chen, X., Clarke, K., Veech, R. L. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. PMID:22362892

  12. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  13. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  14. Human and Mouse Brown Adipose Tissue Mitochondria Have Comparable UCP1 Function.

    PubMed

    Porter, Craig; Herndon, David N; Chondronikola, Maria; Chao, Tony; Annamalai, Palam; Bhattarai, Nisha; Saraf, Manish K; Capek, Karel D; Reidy, Paul T; Daquinag, Alexes C; Kolonin, Mikhail G; Rasmussen, Blake B; Borsheim, Elisabet; Toliver-Kinsky, Tracy; Sidossis, Labros S

    2016-08-01

    Brown adipose tissue (BAT) plays an important role in mammalian thermoregulation. The component of BAT mitochondria that permits this function is the inner membrane carrier protein uncoupling protein 1 (UCP1). To the best of our knowledge, no studies have directly quantified UCP1 function in human BAT. Further, whether human and rodent BAT have comparable thermogenic function remains unknown. We employed high-resolution respirometry to determine the respiratory capacity, coupling control, and, most importantly, UCP1 function of human supraclavicular BAT and rodent interscapular BAT. Human BAT was sensitive to the purine nucleotide GDP, providing the first direct evidence that human BAT mitochondria have thermogenically functional UCP1. Further, our data demonstrate that human and rodent BAT have similar UCP1 function per mitochondrion. These data indicate that human and rodent BAT are qualitatively similar in terms of UCP1 function. PMID:27508873

  15. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice

    PubMed Central

    Zhou, Peng; Robles-Murguia, Maricela; Mathew, Deepa; Duffield, Giles E.

    2016-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2−/− mice. Moreover, in Id2−/− BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner. PMID:27144179

  16. Effects of running training on in vitro brown adipose tissue thermogenesis in rats

    NASA Astrophysics Data System (ADS)

    Nozu, Tsukasa; Kikuchi, Kazue; Ogawa, Koji; Kuroshima, Akihiro

    1992-06-01

    Brown adipose tissue (BAT) is a major site of nonshivering thermogenesis (NST) during cold acclimation for most mammals. Repetitive nonthermal stress such as immobilization has been shown to enhance the capacity of NST as cold acclimation. In the present study, the effects of running training, another type of nonthermal stress, were investigated on in vitro thermogenesis and the cellularity of interscapular BAT in rats. The rats were subjected to treadmill running for 30 min daily at 30 m/min under 8° inclination for 4 5 weeks. In vitro thermogenesis was then measured in minced tissue blocks incubated in a Krebs-Ringer phosphate buffer containing glucose and albumin at 37° C, using a Clark type oxygen electrode. The trained rats showed less body weight gain during the experiment. The weights of BAT and epididymal white adipose tissue were smaller in the trained rats. Noradrenaline- and glucagon-stimulated oxygen consumption were also significantly smaller in the trained rats. The tissue DNA level was greater in the trained rats, but the DNA content per tissue pad did not significantly differ. The results indicate that running training reduces BAT thermogenesis, possibly as an adaptation to conserve energy substrates for physical work.

  17. Progress toward automatic classification of human brown adipose tissue using biomedical imaging

    NASA Astrophysics Data System (ADS)

    Gifford, Aliya; Towse, Theodore F.; Walker, Ronald C.; Avison, Malcom J.; Welch, E. B.

    2015-03-01

    Brown adipose tissue (BAT) is a small but significant tissue, which may play an important role in obesity and the pathogenesis of metabolic syndrome. Interest in studying BAT in adult humans is increasing, but in order to quantify BAT volume in a single measurement or to detect changes in BAT over the time course of a longitudinal experiment, BAT needs to first be reliably differentiated from surrounding tissue. Although the uptake of the radiotracer 18F-Fluorodeoxyglucose (18F-FDG) in adipose tissue on positron emission tomography (PET) scans following cold exposure is accepted as an indication of BAT, it is not a definitive indicator, and to date there exists no standardized method for segmenting BAT. Consequently, there is a strong need for robust automatic classification of BAT based on properties measured with biomedical imaging. In this study we begin the process of developing an automated segmentation method based on properties obtained from fat-water MRI and PET-CT scans acquired on ten healthy adult subjects.

  18. Genetic Analysis of Brown Adipose Tissue, Obesity and Growth in Mice

    PubMed Central

    Saxton, A. M.; Eisen, E. J.

    1984-01-01

    The hypothesis developed from single-gene mutant obese rodents that brown adipose tissue (BAT), through its thermogenic ability, is an important factor in the development of obesity, was tested in a randombred population of mice in which degree of adiposity is polygenically determined. Additive direct genetic parameters for measures of body size, lean, fatness and BAT at 6 wk of age were estimated under control and high-fat postweaning dietary regimens. Heritabilities were generally similar for the two diets. However, the lipid-free dry (LFD) component of BAT had a heritability estimate of 0.70 ± 0.26 on the control diet, but only 0.09 ± 0.20 on the high-fat diet. For all traits, genotype by diet interactions indicated that additive direct genetic rankings were not significantly different for the two diets. Based on estimates of genetic parameters in the control diet, selection for 6-wk body weight or 3- to 6-wk gain is expected to increase body size and adiposity. Selection for BAT weight is predicted to result in large, lean individuals. However, selection for the LFD content of BAT, generally believed to be a better indicator of thermogenic ability, is predicted to increase fatness as well as body size. Selection for LFD as a proportion of 6-wk body weight reduced the expected correlated response in fatness. It was concluded that BAT does not play a major role in determining the correlated response in obesity that is often found in populations selected for large body size. PMID:6714662

  19. Evaluation of reference genes for gene expression studies in human brown adipose tissue.

    PubMed

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values <0.5) in the samples analyzed, but the novel reference genes identified by microarray displayed an even lower variability (M-values <0.25). Our data suggests that PSMB2, GNB2 and GNB1 are suitable novel reference genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT.

  20. Evaluation of reference genes for gene expression studies in human brown adipose tissue.

    PubMed

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values <0.5) in the samples analyzed, but the novel reference genes identified by microarray displayed an even lower variability (M-values <0.25). Our data suggests that PSMB2, GNB2 and GNB1 are suitable novel reference genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT. PMID:26451284

  1. Evaluation of reference genes for gene expression studies in human brown adipose tissue

    PubMed Central

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values <0.5) in the samples analyzed, but the novel reference genes identified by microarray displayed an even lower variability (M-values <0.25). Our data suggests that PSMB2, GNB2 and GNB1 are suitable novel reference genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT. PMID:26451284

  2. Activation of Classical Brown Adipocytes in the Adult Human Perirenal Depot Is Highly Correlated with PRDM16–EHMT1 Complex Expression

    PubMed Central

    Nagano, Gaku; Ohno, Haruya; Oki, Kenji; Kobuke, Kazuhiro; Shiwa, Tsuguka; Yoneda, Masayasu; Kohno, Nobuoki

    2015-01-01

    Brown fat generates heat to protect against cold and obesity. Adrenergic stimulation activates the thermogenic program of brown adipocytes. Although the bioactivity of brown adipose tissue in adult humans had been assumed to very low, several studies using positron emission tomography–computed tomography (PET–CT) have detected bioactive brown adipose tissue in adult humans under cold exposure. In this study, we collected adipose tissues obtained from the perirenal regions of adult patients with pheochromocytoma (PHEO) or non-functioning adrenal tumors (NF). We demonstrated that perirenal brown adipocytes were activated in adult patients with PHEO. These cells had the molecular characteristics of classical brown fat rather than those of beige/brite fat. Expression of brown adipose tissue markers such as uncoupling protein 1 (UCP1) and cell death-inducing DFFA-like effector A (CIDEA) was highly correlated with the amounts of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16) – euchromatic histone-lysine N-methyltransferase 1 (EHMT1) complex, the key transcriptional switch for brown fat development. These results provide novel insights into the reconstruction of human brown adipocytes and their therapeutic application against obesity and its complications such as type 2 diabetes. PMID:25812118

  3. Benzodiazepine binding sites in rat interscapular brown adipose tissue: effect of cold environment, denervation and endocrine ablations

    SciTech Connect

    Solveyra, C.G.; Romeo, H.E.; Rosenstein, R.E.; Estevez, A.G.; Cardinali, D.P.

    1988-01-01

    /sup 3/H-Flunitrazepam (FNZP) binding was examined in a crude membrane fraction obtained from rat interscapular brown adipose tissue (IBAT). A single population of binding sites was apparent with dissociation constant (K/sub D/) = 0.47 +/- 0.04 uM and maximal number of binding sites (B/sub max/ = 31 +/- 5 pmol.mg prot/sup -1/. From the activity of several benzodiazepine (BZP) analogs to compete for the binding, the peripheral nature of FNZP binding was tentatively established. Similar BZP binding sites were detectable in isolated IBAT mitochondria. Exposure of rats to 4 /sup 0/C for 15 days decreased B/sub max/ significantly without affecting K/sub D/. Cold-induced decrease in B/sub max/ of BZP binding was prevented by surgical IBAT denervation. Denervation prevented or impaired the increased activity of the mitochondrial markers succinate dehydrogenase and malate dehydrogenase in IBAT of cold-exposed rats, but did not affect monoamine oxidase activity. Their results indicate that BZP binding in rat IBAT may belong to the peripheral type, is decreased by a cold environment through activation of peripheral sympathetic nerves and is affected by hypophysectomy. BZP and GDP binding in IBAT mitochondria seem not to be functionally related. 23 references, 4 figures, 3 tables.

  4. Thioesterase superfamily member 1 suppresses cold thermogenesis by limiting the oxidation of lipid droplet-derived fatty acids in brown adipose tissue

    PubMed Central

    Okada, Kosuke; LeClair, Katherine B.; Zhang, Yongzhao; Li, Yingxia; Ozdemir, Cafer; Krisko, Tibor I.; Hagen, Susan J.; Betensky, Rebecca A.; Banks, Alexander S.; Cohen, David E.

    2016-01-01

    Objective Non-shivering thermogenesis in brown adipose tissue (BAT) plays a central role in energy homeostasis. Thioesterase superfamily member 1 (Them1), a BAT-enriched long chain fatty acyl-CoA thioesterase, is upregulated by cold and downregulated by warm ambient temperatures. Them1−/− mice exhibit increased energy expenditure and resistance to diet-induced obesity and diabetes, but the mechanistic contribution of Them1 to the regulation of cold thermogenesis remains unknown. Methods Them1−/− and Them1+/+ mice were subjected to continuous metabolic monitoring to quantify the effects of ambient temperatures ranging from thermoneutrality (30 °C) to cold (4 °C) on energy expenditure, core body temperature, physical activity and food intake. The effects of Them1 expression on O2 consumption rates, thermogenic gene expression and lipolytic protein activation were determined ex vivo in BAT and in primary brown adipocytes. Results Them1 suppressed thermogenesis in mice even in the setting of ongoing cold exposure. Without affecting thermogenic gene transcription, Them1 reduced O2 consumption rates in both isolated BAT and primary brown adipocytes. This was attributable to decreased mitochondrial oxidation of endogenous but not exogenous fatty acids. Conclusions These results show that Them1 may act as a break on uncontrolled heat production and limit the extent of energy expenditure. Pharmacologic inhibition of Them1 could provide a targeted strategy for the management of metabolic disorders via activation of brown fat. PMID:27110486

  5. Association of Heat Production with FDG Accumulation by Murine Brown Adipose Tissue (BAT) After Stress

    PubMed Central

    Carter, Edward A.; Bonab, Ali A; Paul, Kasie; Yerxa, John; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Previous studies have demonstrated that cold stress results in increased accumulation of 18FDG in brown adipose tissue (BAT). Although it has been assumed that this effect is associated with increased thermogenesis by BAT, direct measurements of this phenomenon have not been reported. In the current investigation we evaluated the relationship between stimulation of 18FDG accumulation in BAT by three stressors and heat production measured in vivo by thermal imaging. Male SKH-1 hairless mice were subjected to full-thickness thermal injury (30% total body surface area), cold stress (4°C for 24 hours), or cutaneous wounds. Groups of 6 animals with each treatment were fasted over night and injected with 18FDG. Sixty minutes after injection the mice were sacrificed and biodistribution was measured. Other groups of six animals subjected to the three stressors were studied by thermal imaging and the difference in temperature between BAT and adjacent tissue was recorded (ΔT). Additional groups of 6 animals were studied by both thermal imaging and 18FDG biodistribution in the same animals. Accumulation of 18FDG by BAT was significantly (p <0.0001) increased by all 3 treatments (burn ~5 fold, cold: ~15 fold, and cutaneous wound ~15 fold) whereas accumulation by adjacent white adipose tissue (WAT) was unchanged. Compared with sham control mice; ΔTs in animals exposed to all three stressors showed significant (p<0.001) increases in temperature between BAT and adjacent tissue. The difference in ΔT between stressor groups was not significant, however, there was a highly significant linear correlation (r2=0.835, p<0.0001) between the ΔT measured in BAT vs. adjacent tissue and 18FDG accumulation. These results establish, for the first time, that changes in BAT temperature determined in vivo by thermal imaging parallel increases in 18FDG accumulation. PMID:21914754

  6. Food restriction attenuates oxidative stress in brown adipose tissue of striped hamsters acclimated to a warm temperature.

    PubMed

    Zhang, Ji-Ying; Zhao, Xiao-Ya; Wang, Gui-Ying; Wang, Chun-Ming; Zhao, Zhi-Jun

    2016-05-01

    It has been suggested that the up-regulation of uncoupling proteins (UCPs) decreases reactive oxygen species (ROS) production, in which case there should be a negative relationship between UCPs expression and ROS levels. In this study, the effects of temperature and food restriction on ROS levels and metabolic rate, UCP1 mRNA expression and antioxidant levels were examined in the brown adipose tissue (BAT) of the striped hamsters (Cricetulus barabensis). The metabolic rate and food intake of hamsters which had been restricted to 80% of ad libitum food intake, and acclimated to a warm temperature (30°C), decreased significantly compared to a control group. Hydrogen peroxide (H2O2) levels were 42.9% lower in food restricted hamsters than in the control. Malonadialdehyde (MDA) levels of hamsters acclimated to 30°C that were fed ad libitum were significantly higher than those of the control group, but 60.1% lower than hamsters that had been acclimated to the same temperature but subject to food restriction. There were significantly positive correlations between H2O2 and, MDA levels, catalase activity, and total antioxidant capacity. Cytochrome c oxidase activity and UCP1 mRNA expression significantly decreased in food restricted hamsters compared to the control. These results suggest that warmer temperatures increase oxidative stress in BAT by causing the down-regulation of UCP1 expression and decreased antioxidant activity, but food restriction may attenuate the effects. PMID:27157336

  7. Metabolic inflexibility of white and brown adipose tissues in abnormal fatty acid partitioning of type 2 diabetes.

    PubMed

    Grenier-Larouche, T; Labbé, S M; Noll, C; Richard, D; Carpentier, A C

    2012-12-01

    Type 2 diabetes (T2D) is characterized by a general dysregulation of postprandial energy substrate partitioning. Although classically described in regard to glucose metabolism, it is now evident that metabolic inflexibility of plasma lipid fluxes is also present in T2D. The organ that is most importantly involved in the latter metabolic defect is the white adipose tissue (WAT). Both catecholamine-induced nonesterified fatty acid mobilization and insulin-stimulated storage of meal fatty acids are impaired in many WAT depots of insulin-resistant individuals. Novel molecular imaging techniques now demonstrate that these defects are linked to increased dietary fatty acid fluxes toward lean organs and myocardial dysfunction in humans. Recent findings also demonstrate functional abnormalities of brown adipose tissues in T2D, thus suggesting that a generalized adipose tissue dysregulation of energy storage and dissipation may be at play in the development of lean tissue energy overload and lipotoxicity. PMID:27152152

  8. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    PubMed

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  9. Sestrin2, a Regulator of Thermogenesis and Mitohormesis in Brown Adipose Tissue.

    PubMed

    Ro, Seung-Hyun; Semple, Ian; Ho, Allison; Park, Hwan-Woo; Lee, Jun Hee

    2015-01-01

    Sestrin2 is a stress-inducible protein that functions as an antioxidant and inhibitor of mTOR complex 1. In a recent study, we found that Sestrin2 overexpression in brown adipocytes interfered with normal metabolism by reducing mitochondrial respiration through the suppression of uncoupling protein 1 (UCP1) expression. The metabolic effects of Sestrin2 in brown adipocytes were dependent on its antioxidant activity, and chemical antioxidants produced similar effects in inhibiting UCP1-dependent thermogenesis. These observations suggest that low levels of reactive oxygen species (ROS) in brown adipocytes can actually be beneficial and necessary for proper metabolic homeostasis. In addition, considering that Sestrins are ROS inducible and perform ROS detoxifying as well as other metabolism-controlling functions, they are potential regulators of mitohormesis. This is a concept in which overall beneficial effects result from low-level oxidative stress stimuli, such as the ones induced by caloric restriction or physical exercise. In this perspective, we incorporate our recent insight obtained from the Sestrin2 study toward a better understanding of the relationship between ROS, Sestrin2, and mitochondrial metabolism in the context of brown adipocyte physiology. PMID:26257706

  10. Adipose Tissue and Energy Expenditure: Central and Peripheral Neural Activation Pathways.

    PubMed

    Blaszkiewicz, Magdalena; Townsend, Kristy L

    2016-06-01

    Increasing energy expenditure is an appealing therapeutic target for the prevention and reversal of metabolic conditions such as obesity or type 2 diabetes. However, not enough research has investigated how to exploit pre-existing neural pathways, both in the central nervous system (CNS) and peripheral nervous system (PNS), in order to meet these needs. Here, we review several research areas in this field, including centrally acting pathways known to drive the activation of sympathetic nerves that can increase lipolysis and browning in white adipose tissue (WAT) or increase thermogenesis in brown adipose tissue (BAT), as well as other central and peripheral pathways able to increase energy expenditure of these tissues. In addition, we describe new work investigating the family of transient receptor potential (TRP) channels on metabolically important sensory nerves, as well as the role of the vagus nerve in regulating energy balance.

  11. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function.

    PubMed

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D; Smith, Brennan K; Green, Alex E; Ducommun, Serge; Henriksen, Tora I; Rebalka, Irena A; Razi, Aida; Sakamoto, Kei; Scheele, Camilla; Kemp, Bruce E; Hawke, Thomas J; Ortega, Joaquin; Granneman, James G; Steinberg, Gregory R

    2016-07-12

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role in regulating BAT and WAT metabolism is unclear. We generated an inducible model for deletion of the two AMPK β subunits in adipocytes (iβ1β2AKO) and found that iβ1β2AKO mice were cold intolerant and resistant to β-adrenergic activation of BAT and beiging of WAT. BAT from iβ1β2AKO mice had impairments in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents and thermal stress, and protecting against nutrient-overload-induced NAFLD and insulin resistance. PMID:27411013

  12. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  13. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  14. Bioengineering Beige Adipose Tissue Therapeutics

    PubMed Central

    Tharp, Kevin M.; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  15. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling.

    PubMed

    Fabbiano, Salvatore; Suárez-Zamorano, Nicolas; Rigo, Dorothée; Veyrat-Durebex, Christelle; Stevanovic Dokic, Ana; Colin, Didier J; Trajkovski, Mirko

    2016-09-13

    Caloric restriction (CR) extends lifespan from yeast to mammals, delays onset of age-associated diseases, and improves metabolic health. We show that CR stimulates development of functional beige fat within the subcutaneous and visceral adipose tissue, contributing to decreased white fat and adipocyte size in lean C57BL/6 and BALB/c mice kept at room temperature or at thermoneutrality and in obese leptin-deficient mice. These metabolic changes are mediated by increased eosinophil infiltration, type 2 cytokine signaling, and M2 macrophage polarization in fat of CR animals. Suppression of the type 2 signaling, using Il4ra(-/-), Stat6(-/-), or mice transplanted with Stat6(-/-) bone marrow-derived hematopoietic cells, prevents the CR-induced browning and abrogates the subcutaneous fat loss and the metabolic improvements induced by CR. These results provide insights into the overall energy homeostasis during CR, and they suggest beige fat development as a common feature in conditions of negative energy balance. PMID:27568549

  16. Norepinephrine turnover in brown adipose tissue is stimulated by a single meal

    SciTech Connect

    Glick, Z.; Raum, W.J.

    1986-07-01

    A single meal stimulates brown adipose tissue (BAT) thermogenesis in rats. In the present study the role of norepinephrine in this thermogenic response was assessed from the rate of its turnover in BAT after a single test meal. For comparison, norepinephrine turnover was determined in the heart and spleen. A total of 48 male Wistar rats (200 g) were trained to eat during two feeding sessions per day. On the experimental day, one group (n = 24) was meal deprived and the other (n = 24) was given a low-protein high-carbohydrate test meal for 2 h. The synthesis inhibition method with ..cap alpha..-methyl-p-tyrosine was employed to determine norepinephrine turnover from its concentration at four hourly time points after the meal. Tissue concentrations of norepinephrine were determined by radioimmunoassay. Norepinephrine concentration and turnover rate were increased more than threefold in BAT of the meal-fed compared with the meal-deprived rats. Neither were significantly altered by the meal in the heart or spleen. The data suggest that norepinephrine mediates a portion of the thermic effect of meals that originate in BAT.

  17. Weight loss and brown adipose tissue reduction in rat model of sleep apnea

    PubMed Central

    Martinez, Denis; Vasconcellos, Luiz FT; de Oliveira, Patricia G; Konrad, Signorá P

    2008-01-01

    Background - Obesity is related to obstructive sleep apnea-hypopnea syndrome (OSAHS), but its roles in OSAHS as cause or consequence are not fully clarified. Isocapnic intermittent hypoxia (IIH) is a model of OSAHS. We verified the effect of IIH on body weight and brown adipose tissue (BAT) of Wistar rats. Methods Nine-month-old male breeders Wistar rats of two groups were studied: 8 rats submitted to IIH and 5 control rats submitted to sham IIH. The rats were weighed at the baseline and at the end of three weeks, after being placed in the IIH apparatus seven days per week, eight hours a day, in the lights on period, simulating an apnea index of 30/hour. After experimental period, the animals were weighed and measured as well as the BAT, abdominal, perirenal, and epididymal fat, the heart, and the gastrocnemius muscle. Results Body weight of the hypoxia group decreased 17 ± 7 grams, significantly different from the variation observed in the control group (p = 0,001). The BAT was 15% lighter in the hypoxia group and reached marginally the alpha error probability (p = 0.054). Conclusion Our preliminary results justify a larger study for a longer time in order to confirm the effect of isocapnic intermittent hypoxia on body weight and BAT. PMID:18671859

  18. Interaction between heat acclimation and exogenous insulin in brown adipose tissue of rats

    NASA Astrophysics Data System (ADS)

    Ohno, H.; Yamashita, H.; Sato, N.; Habara, Y.; Gasa, S.; Nagasawa, J.; Sato, Y.; Ishikawa, M.; Segawa, M.; Yamamoto, M.

    1992-09-01

    Seventy-one male Wistar strain rats (7 weeks old) were kept at 5, 25, or 34° C, respectively, for 2 weeks with or without insulin administration. Insulin (Novo Lente MC) was given subcutaneously in a dose of 3.62 nmol/125 µl saline per 100 g body weight. An apparent effect of insulin treatment was noted only in heat-exposed rats, resulting in a remarkable gain in inter-scapular brown adipose tissue (BAT) mass of heat-acclimated, insulin-treated rats in terms of weight or weight per unit body weight. The BAT from heat-acclimated, insulin-treated rats had significantly higher levels of protein, DNA, RNA, and triglyceride than BAT from heat-acclimated, saline-treated rats. Therefore, it seems likely that the growth of BAT in heat-acclimated, insulin-treated rats was mostly due to the anabolic effects of insulin. The uncoupling protein mRNA was, however, present in BAT of heat-acclimated, insulin-treated rats at rather a depressed level, explaining a corresponding decrease in cold tolerance. On the other hand, the expression of insulin receptor mRNA was attenuated in BAT of rats from all the insulin-treated groups, possibly due to the down-regulation of insulin. Thus, there appeared to be some linkage among BAT, heat acclimation, and insulin.

  19. Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice.

    PubMed

    Desautels, M; Dulos, R A

    1988-08-01

    Mice fasted for 24 h showed reductions in carcass fat and gonadal fat depots and atrophy of brown adipose tissue (BAT) that was characterized by loss of protein and succinate dehydrogenase. These changes were reversed on 24 h of refeeding. Cycling mice experienced 14 cycles of 1 day of fast followed by 2 days of refeeding, whereas control mice were fed ad libitum. Weight loss during each fast remained constant, and the animals lost and regained in excess of twice their initial weights within 6 wk. However, final weight and carcass and gonadal fat weights were similar to those of animals fed ad libitum. Total food intake was similar between cycling mice and those fed ad libitum suggesting an increase in feeding efficiency. There was no development of resistance to food deprivation since the preceding fasting experience of the animal had no effect on weight and carcass fat loss during a 24- or 48-h fast. Norepinephrine-stimulated oxygen consumption that was reduced in cycling mice was probably the result of a reduction of BAT thermogenic capacity. BAT succinate dehydrogenase content and the concentration of uncoupling protein in isolated mitochondria were significantly reduced. These changes in BAT composition were not observed when the refeeding period of each cycle was increased to 6 days. These results suggest that reduced energy expenditure in BAT may play a role in the conservation of energy during intermittent and frequent bouts of food deprivation. PMID:3407768

  20. Hyperplasia of brown adipose tissue after chronic stimulation of beta 3-adrenergic receptor in rats.

    PubMed

    Nagase, I; Sasaki, N; Tsukazaki, K; Yoshida, T; Morimatsu, M; Saito, M

    1994-12-01

    When mammals are exposed to a cold environment for a long time, the capacity of nonshivering thermogenesis by brown adipose tissue (BAT) increases in association with the increased expression of some specific proteins and tissue hyperplasia, which are totally dependent on sympathetic innervation to this tissue. To clarify roles of the beta-adrenergic mechanism in BAT hyperplasia, the effects of chronic administration of various beta-adrenergic agonists on BAT were examined in rats, especially focusing on some agonists to the beta 3-adrenoceptor which is present specifically in adipocytes. Chronic administration of noradrenaline or isoproterenol for 7-10 days produced a marked increase in the tissue contents of DNA, total protein, mitochondrial uncoupling protein, and insulin-regulatable glucose transporter protein. The trophic effects of noradrenaline and isoproterenol were mimicked by chronic administration of beta 3-adrenergic agonists, such as CL316,243, BRL 26830A, and ICI D7114. These results suggest that the beta 3-adrenoceptor plays important roles for hyperplasia of BAT, and thereby increasing in the capacity of thermogenesis. PMID:7745877

  1. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice.

    PubMed

    Stout, Michael B; Swindell, William R; Zhi, Xu; Rohde, Kyle; List, Edward O; Berryman, Darlene E; Kopchick, John J; Gesing, Adam; Fang, Yimin; Masternak, Michal M

    2015-09-29

    Mice lacking the growth hormone receptor (GHRKO) exhibit improved lifespan and healthspan due to loss of growth hormone signaling. Both the distribution and activity of brown and white adipose tissue (BAT and WAT) are altered in GHRKO mice, but the contribution of each tissue to age-related phenotypes has remained unclear. We therefore used whole-genome microarrays to evaluate transcriptional differences in BAT and WAT depots between GHRKO and normal littermates at six months of age. Our findings reveal a unique BAT transcriptome as well as distinctive responses of BAT to Ghr ablation. BAT from GHRKO mice exhibited elevated expression of genes associated with mitochondria and metabolism, along with reduced expression of genes expressed by monocyte-derived cells (dendritic cells [DC] and macrophages). Largely the opposite was observed in WAT, with increased expression of DC-expressed genes and reduced expression of genes associated with metabolism, cellular respiration and the mitochondrial inner envelope. These findings demonstrate divergent response patterns of BAT and WAT to loss of GH signaling in GHRKO mice. These patterns suggest both BAT and WAT contribute in different ways to phenotypes in GHRKO mice, with Ghr ablation blunting inflammation in BAT as well as cellular metabolism and mitochondrial biogenesis in WAT.

  2. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve.

    PubMed

    Batubara, Irmanida; Suparto, Irma H; Sa'diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-03-01

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: "Sereh Wangi" on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations. PMID:25774603

  3. Effects of Inhaled Citronella Oil and Related Compounds on Rat Body Weight and Brown Adipose Tissue Sympathetic Nerve

    PubMed Central

    Batubara, Irmanida; Suparto, Irma H.; Sa’diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-01-01

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: “Sereh Wangi” on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations. PMID:25774603

  4. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve.

    PubMed

    Batubara, Irmanida; Suparto, Irma H; Sa'diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-03-12

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: "Sereh Wangi" on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations.

  5. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice

    PubMed Central

    Liang, Xingwei; Yang, Qiyuan; Zhang, Lupei; Maricelli, Joseph W; Rodgers, Buel D.; Zhu, Mei-Jun; Du, Min

    2016-01-01

    Maternal obesity and high-fat diet (HFD) predisposes offspring to obesity and metabolic diseases. Due to uncoupling, brown adipose tissue (BAT) dissipates energy via heat generation, mitigating obesity and diabetes. The lactation stage is a manageable period for improving the health of offspring of obese mothers, but the impact of maternal HFD during lactation on offspring BAT function is unknown. To determine, female mice were fed either a control or HFD during lactation. At weaning, HFD offspring gained more body weight and had greater body fat mass compared to the control, and these differences maintained into adulthood, which correlated with glucose intolerance and insulin resistance in HFD offspring. Adaptive thermogenesis of BAT was impaired in HFD offspring at weaning. In adulthood, HFD offspring BAT had lower Ucp1 expression and thermogenic activity. Mechanistically, maternal HFD feeding during lactation elevated peripheral serotonin, which decreased the sensitivity of BAT to sympathetic β3-adrenergic signaling. Importantly, early postnatal metformin administration decreased serotonin concentration and ameliorated the impairment of offspring BAT due to maternal HFD. Our data suggest that attenuation of BAT thermogenic function may be a key mechanism linking maternal HFD during lactation to persisted metabolic disorder in the offspring. PMID:27686741

  6. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice.

    PubMed

    Stout, Michael B; Swindell, William R; Zhi, Xu; Rohde, Kyle; List, Edward O; Berryman, Darlene E; Kopchick, John J; Gesing, Adam; Fang, Yimin; Masternak, Michal M

    2015-09-29

    Mice lacking the growth hormone receptor (GHRKO) exhibit improved lifespan and healthspan due to loss of growth hormone signaling. Both the distribution and activity of brown and white adipose tissue (BAT and WAT) are altered in GHRKO mice, but the contribution of each tissue to age-related phenotypes has remained unclear. We therefore used whole-genome microarrays to evaluate transcriptional differences in BAT and WAT depots between GHRKO and normal littermates at six months of age. Our findings reveal a unique BAT transcriptome as well as distinctive responses of BAT to Ghr ablation. BAT from GHRKO mice exhibited elevated expression of genes associated with mitochondria and metabolism, along with reduced expression of genes expressed by monocyte-derived cells (dendritic cells [DC] and macrophages). Largely the opposite was observed in WAT, with increased expression of DC-expressed genes and reduced expression of genes associated with metabolism, cellular respiration and the mitochondrial inner envelope. These findings demonstrate divergent response patterns of BAT and WAT to loss of GH signaling in GHRKO mice. These patterns suggest both BAT and WAT contribute in different ways to phenotypes in GHRKO mice, with Ghr ablation blunting inflammation in BAT as well as cellular metabolism and mitochondrial biogenesis in WAT. PMID:26436954

  7. Rhein Protects against Obesity and Related Metabolic Disorders through Liver X Receptor-Mediated Uncoupling Protein 1 Upregulation in Brown Adipose Tissue

    PubMed Central

    Sheng, Xiaoyan; Zhu, Xuehua; Zhang, Yuebo; Cui, Guoliang; Peng, Linling; Lu, Xiong; Zang, Ying Qin

    2012-01-01

    Liver X receptors (LXRs) play important roles in regulating cholesterol homeostasis, and lipid and energy metabolism. Therefore, LXR ligands could be used for the management of metabolic disorders. We evaluated rhein, a natural compound from Rheum palmatum L., as an antagonist for LXRs and investigated its anti-obesity mechanism in high-fat diet-fed mice. Surface plasmon resonance assays were performed to examine the direct binding of rhein to LXRs. LXR target gene expression was assessed in 3T3-L1 adipocytes and HepG2 hepatic cells in vitro. C57BL/6J mice fed a high-fat diet were orally administered with rhein for 4 weeks, and then the expression levels of LXR-related genes were analyzed. Rhein bound directly to LXRs. The expression levels of LXR target genes were suppressed by rhein in 3T3-L1 and HepG2 cells. In white adipose tissue, muscle and liver, rhein reprogrammed the expression of LXR target genes related to adipogenesis and cholesterol metabolism. Rhein activated uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) in wild-type mice, but did not affect UCP1 expression in LXR knockout mice. In HIB-1B brown adipocytes, rhein activated the UCP1 gene by antagonizing the repressive effect of LXR on UCP1 expression. This study suggests that rhein may protect against obesity and related metabolic disorders through LXR antagonism and regulation of UCP1 expression in BAT. PMID:23139635

  8. Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice

    PubMed Central

    Ravussin, Yann; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure) or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week) on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements. PMID:24465761

  9. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans

    PubMed Central

    Travers, R L; Motta, A C; Betts, J A; Bouloumié, A; Thompson, D

    2015-01-01

    Background/objectives: The presence of T lymphocytes in human adipose tissue has only recently been demonstrated and relatively little is known of their potential relevance in the development of obesity-related diseases. We aimed to further characterise these cells and in particular to investigate how they interact with modestly increased levels of adiposity typical of common overweight and obesity. Subjects/methods: Subcutaneous adipose tissue and fasting blood samples were obtained from healthy males aged 35–55 years with waist circumferences in lean (<94 cm), overweight (94–102 cm) and obese (>102 cm) categories. Adipose tissue-resident CD4+ and CD8+ T lymphocytes together with macrophages were identified by gene expression and flow cytometry. T lymphocytes were further characterised by their expression of activation markers CD25 and CD69. Adipose tissue inflammation was investigated using gene expression analysis and tissue culture. Results: Participants reflected a range of adiposity from lean to class I obesity. Expression of CD4 (T-helper cells) and CD68 (macrophage), as well as FOXP3 RNA transcripts, was elevated in subcutaneous adipose tissue with increased levels of adiposity (P<0.001, P<0.001 and P=0.018, respectively). Flow cytometry revealed significant correlations between waist circumference and levels of CD25 and CD69 expression per cell on activated adipose tissue-resident CD4+ and CD8+ T lymphocytes (P-values ranging from 0.053 to <0.001). No such relationships were found with blood T lymphocytes. This increased T lymphocyte activation was related to increased expression and secretion of various pro- and anti-inflammatory cytokines from subcutaneous whole adipose tissue explants. Conclusions: This is the first study to demonstrate that even modest levels of overweight/obesity elicit modifications in adipose tissue immune function. Our results underscore the importance of T lymphocytes during adipose tissue expansion, and the presence of

  10. Presence of Brown Adipose Tissue in an Adolescent With Severe Primary Hypothyroidism

    PubMed Central

    Hu, Houchun H.; Aggabao, Patricia C.; Geffner, Mitchell E.; Gilsanz, Vicente

    2014-01-01

    Context: Brown adipose tissue (BAT) generates heat during adaptive thermogenesis in response to cold temperature. Thyroid hormone (TH) receptors, type 2 deiodinase, and TSH receptors are present on brown adipocytes, indicating that the thyroid axis regulates BAT. It is unknown whether absent TH in humans would down-regulate development of BAT and its thermogenic function. Objective: The objective of the study was to examine BAT by magnetic resonance imaging (MRI) and infrared thermal imaging (IRT) in a pediatric patient with severe primary hypothyroidism before and after TH treatment. Design/Setting: This study was a case report with longitudinal follow-up in a tertiary center. Main Outcome Measures: BAT fat fraction (FF) by MRI and skin temperature by IRT were measured. Results: An 11.5-year-old female was severely hypothyroid (TSH, 989 μIU/mL; free T4, 0.10 ng/dL; low thyroglobulin, 3.0 ng/mL). Low MRI measures of FF (56.1% ± 3.7%) indicated that BAT was abundantly present in the supraclavicular fossa. IRT showed higher supraclavicular temperature (36.0°C ±0.16°C) than the suprasternal area (34.3°C ± 0.19°C). After 2 months of TH replacement, she was euthyroid (TSH, 4.3 μIU/mL; free T4, 1.49 ng/dL; T3, 102 ng/dL) at which time supraclavicular BAT decreased (increased FF 60.7% ± 3.8%). IRT showed a higher, more homogeneous skin temperature throughout the upper thorax (supraclavicular, 37.1°C ± 0.23°C; suprasternal, 36.4°C ± 0.13°C). The overall size of the supraclavicular fat depot decreased from 84.79 cm3 to 41.21 cm3. Conclusions: These findings document the presence of BAT and thermogenesis in profound hypothyroidism and suggest a role for TSH and/or TRH as a potential regulator of BAT. PMID:24915119

  11. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): Recommendations for Standardized FDG-PET/CT Experiments in Humans.

    PubMed

    Chen, Kong Y; Cypess, Aaron M; Laughlin, Maren R; Haft, Carol R; Hu, Houchun Harry; Bredella, Miriam A; Enerbäck, Sven; Kinahan, Paul E; Lichtenbelt, Wouter van Marken; Lin, Frank I; Sunderland, John J; Virtanen, Kirsi A; Wahl, Richard L

    2016-08-01

    Human brown adipose tissue (BAT) presence, metabolic activity, and estimated mass are typically measured by imaging [18F]fluorodeoxyglucose (FDG) uptake in response to cold exposure in regions of the body expected to contain BAT, using positron emission tomography combined with X-ray computed tomography (FDG-PET/CT). Efforts to describe the epidemiology and biology of human BAT are hampered by diverse experimental practices, making it difficult to directly compare results among laboratories. An expert panel was assembled by the National Institute of Diabetes and Digestive and Kidney Diseases on November 4, 2014 to discuss minimal requirements for conducting FDG-PET/CT experiments of human BAT, data analysis, and publication of results. This resulted in Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0). Since there are no fully validated best practices at this time, panel recommendations are meant to enhance comparability across experiments, but not to constrain experimental design or the questions that can be asked. PMID:27508870

  12. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system

    PubMed Central

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism. PMID:26673120

  13. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    PubMed

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  14. Is Brown Adipose Tissue Visualization Reliable on 99mTc-Methoxyisobutylisonitrile Diagnostic SPECT Scintigraphy?

    PubMed Central

    Haghighatafshar, Mahdi; Farhoudi, Farinaz

    2016-01-01

    Abstract The 99mTc-MIBI has been used with great value as a diagnostic technique in patients with primary hyperparathyroidism. False-positive scans may occur due to misinterpretation of the physiologic distribution of the 99mTc-MIBI. Reviewing consecutive SPECT scans, we evaluated this possibility and assessed how frequently brown adipose tissue (BAT) is seen on 99mTc-MIBI scintigraphy. Here, we retrospectively reviewed scans of consecutive patients who were evaluated for parathyroid adenomas from March 2015 to June 2015, using dual-phase (early and delayed) planar imaging and SPECT. We identified 60 patients (48 female and 12 male; mean age, 52.25 ± 15.20 years; range, 22–86 years). We detected the presence of 99mTc-MIBI uptake in BAT in 20 of 60 patients (33.33%) in the neck. Although the patients with 99mTc-MIBI uptake in BAT were younger (mean age, 48.85 ± 15.27 years, range, 26–73 years) than the patients with no 99mTc-MIBI uptake (mean age, 53.95 ± 15.07 years, range, 22–86 years), this difference was not statistically significant (P = 0.224). The percentage of female patients with BAT detection was higher (17/48 patients; 37.5%) than that of the male population (3/12 patients; 25%), this difference was not also statistically significant (P = 0.85). In patient population referred to 99mTc MIBI scintigraphy of the parathyroid glands, uptake of 99mTc-MIBI in BAT should not be misinterpreted with 99mTc-MIBI-avid-tumors. Fused SPECT/CT images (not SPECT-only) are necessary to distinguish BAT from bone, muscle, thyroid, myocardium, parathyroids, and other structures in the neck and chest. PMID:26765463

  15. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function.

    PubMed

    Ballinger, Mallory A; Hess, Clair; Napolitano, Max W; Bjork, James A; Andrews, Matthew T

    2016-08-01

    Brown adipose tissue (BAT) is a thermogenic organ that is vital for hibernation in mammals. Throughout the hibernation season, BAT mitochondrial uncoupling protein 1 (UCP1) enables rapid rewarming from hypothermic torpor to periodic interbout arousals (IBAs), as energy is dissipated as heat. However, BAT's unique ability to rewarm the body via nonshivering thermogenesis is not necessary outside the hibernation season, suggesting a potential seasonal change in the regulation of BAT function. Here, we examined the BAT mitochondrial proteome and mitochondrial bioenergetics in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) across four time points: spring, fall, torpor, and IBA. Relative mitochondrial content of BAT was estimated by measuring BAT pad mass, UCP1 protein content, and mitochondrial DNA (mtDNA) copy number. BAT mtDNA content was significantly lower in spring compared with torpor and IBA (P < 0.05). UCP1 mRNA and protein levels were highest during torpor and IBA. Respiration rates of isolated BAT mitochondria were interrogated at each complex of the electron transport chain. Respiration at complex II was significantly higher in torpor and IBA compared with spring (P < 0.05), suggesting an enhancement in mitochondrial respiratory capacity during hibernation. Additionally, proteomic iTRAQ labeling identified 778 BAT mitochondrial proteins. Proteins required for mitochondrial lipid translocation and β-oxidation were upregulated during torpor and IBA and downregulated in spring. These data imply that BAT bioenergetics and mitochondrial content are not static across the year, despite the year-round presence of UCP1. PMID:27225952

  16. Is Brown Adipose Tissue Visualization Reliable on 99mTc-Methoxyisobutylisonitrile Diagnostic SPECT Scintigraphy?

    PubMed

    Haghighatafshar, Mahdi; Farhoudi, Farinaz

    2016-01-01

    The 99mTc-MIBI has been used with great value as a diagnostic technique in patients with primary hyperparathyroidism. False-positive scans may occur due to misinterpretation of the physiologic distribution of the 99mTc-MIBI. Reviewing consecutive SPECT scans, we evaluated this possibility and assessed how frequently brown adipose tissue (BAT) is seen on 99mTc-MIBI scintigraphy. Here, we retrospectively reviewed scans of consecutive patients who were evaluated for parathyroid adenomas from March 2015 to June 2015, using dual-phase (early and delayed) planar imaging and SPECT. We identified 60 patients (48 female and 12 male; mean age, 52.25 ± 15.20 years; range, 22-86 years).We detected the presence of 99mTc-MIBI uptake in BAT in 20 of 60 patients (33.33%) in the neck. Although the patients with T99mc-MIBI uptake in BAT were younger (mean age, 48.85 ± 15.27 years, range, 26-73 years) than the patients with no 99mTc-MIBI uptake (mean age, 53.95 ± 15.07 years, range, 22-86 years), this difference was not statistically significant (P = 0.224). The percentage of female patients with BAT detection was higher (17/48 patients; 37.5%) than that of the male population (3/12 patients; 25%), this difference was not also statistically significant (P = 0.85).In patient population referred to 99mTc MIBI scintigraphy of the parathyroid glands, uptake of 99mTc-MIBI in BAT should not be misinterpreted with 99mTc-MIBI-avid-tumors. Fused SPECT/CT images (not SPECT-only) are necessary to distinguish BAT from bone, muscle, thyroid, myocardium, parathyroids, and other structures in the neck and chest. PMID:26765463

  17. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    PubMed

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  18. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes

    PubMed Central

    Bader, David A.; Abadie, Kathleen V.; Motamed, Massoud; Hamilton, Mark P.; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D.; Mancini, Michael A.; McGuire, Sean E.

    2015-01-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis. PMID:26192107

  19. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence.

    PubMed

    Shabalina, Irina G; Vrbacký, Marek; Pecinová, Alena; Kalinovich, Anastasia V; Drahota, Zdeněk; Houštěk, Josef; Mráček, Tomáš; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014). PMID:24769119

  20. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα

    PubMed Central

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Rosa Dufour, Catherine; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-01-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  1. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα.

    PubMed

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Rosa Dufour, Catherine; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-05-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  2. Blockade of the activin receptor IIb activates functional brown adipogenesis and thermogenesis by inducing mitochondrial oxidative metabolism.

    PubMed

    Fournier, Brigitte; Murray, Ben; Gutzwiller, Sabine; Marcaletti, Stefan; Marcellin, David; Bergling, Sebastian; Brachat, Sophie; Persohn, Elke; Pierrel, Eliane; Bombard, Florian; Hatakeyama, Shinji; Trendelenburg, Anne-Ulrike; Morvan, Frederic; Richardson, Brian; Glass, David J; Lach-Trifilieff, Estelle; Feige, Jerome N

    2012-07-01

    Brown adipose tissue (BAT) is a key tissue for energy expenditure via fat and glucose oxidation for thermogenesis. In this study, we demonstrate that the myostatin/activin receptor IIB (ActRIIB) pathway, which serves as an important negative regulator of muscle growth, is also a negative regulator of brown adipocyte differentiation. In parallel to the anticipated hypertrophy of skeletal muscle, the pharmacological inhibition of ActRIIB in mice, using a neutralizing antibody, increases the amount of BAT without directly affecting white adipose tissue. Mechanistically, inhibition of ActRIIB inhibits Smad3 signaling and activates the expression of myoglobin and PGC-1 coregulators in brown adipocytes. Consequently, ActRIIB blockade in brown adipose tissue enhances mitochondrial function and uncoupled respiration, translating into beneficial functional consequences, including enhanced cold tolerance and increased energy expenditure. Importantly, ActRIIB inhibition enhanced energy expenditure only at ambient temperature or in the cold and not at thermoneutrality, where nonshivering thermogenesis is minimal, strongly suggesting that brown fat activation plays a prominent role in the metabolic actions of ActRIIB inhibition.

  3. Apparent lack of beta 3-adrenoceptors and of insulin regulation of glucose transport in brown adipose tissue of guinea pigs.

    PubMed

    Himms-Hagen, J; Triandafillou, J; Begin-Heick, N; Ghorbani, M; Kates, A L

    1995-01-01

    Norepinephrine-induced thermogenesis was substantial in adipocytes from brown adipose tissue (BAT) of cold-acclimated guinea pigs but absent in adipocytes from BAT of warm-acclimated guinea pigs. There was no thermogenic response to any beta 3-adrenergic agonist (CL-316,243, ZD-7114, BRL-28410, CGP-12177). The receptor was characterized as a beta 1-adrenoceptor. Adrenergic agonists stimulated adenylate cyclase in membranes from BAT of both warm- and cold-acclimated guinea pigs also via a beta 1-adrenoceptor; beta 3-adrenergic agonists had no effect. Glucose transport by brown adipocytes from warm-acclimated guinea pigs was not stimulated by either norepinephrine or insulin. Cold acclimation induced the appearance of stimulation of glucose transport by norepinephrine in association with the appearance of a large capacity for thermogenesis, but there was little improvement in response to insulin. GLUT4 was present in membranes from BAT of both warm- and cold-acclimated guinea pigs. Insulin is known to have an antilipolytic effect on both BAT and white adipose tissue of guinea pigs. Thus there is a selective lack of insulin-regulated glucose transport that is not improved by cold acclimation. Guinea pigs may have a mutated component of the translocation mechanism for GLUT4. beta 3-Adrenoceptors appear to be absent in brown adipocytes of adult guinea pigs, as in white adipocytes of guinea pigs, yet are known to be present in the gut. Tissue-specific expression of beta 3-adrenergic receptors in guinea pigs may differ from that in rats, in which receptors are expressed in the adipose tissues and gut. PMID:7840345

  4. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, P<0.01) and noradrenaline-stimulated maximum values of oxygen consumption (r=0.5, P<0.05). Our results show that heat acclimation modifies the BAT phospholipid fatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  5. Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice.

    PubMed

    Nishikawa, Sho; Aoyama, Hiroki; Kamiya, Misa; Higuchi, Jun; Kato, Aiko; Soga, Minoru; Kawai, Taeko; Yoshimura, Kazuki; Kumazawa, Shigenori; Tsuda, Takanori

    2016-01-01

    Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. PMID:27598888

  6. Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice

    PubMed Central

    Nishikawa, Sho; Aoyama, Hiroki; Kamiya, Misa; Higuchi, Jun; Kato, Aiko; Soga, Minoru; Kawai, Taeko; Yoshimura, Kazuki; Kumazawa, Shigenori; Tsuda, Takanori

    2016-01-01

    Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. PMID:27598888

  7. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice

    PubMed Central

    Almind, Katrine; Manieri, Monia; Sivitz, William I.; Cinti, Saverio; Kahn, C. Ronald

    2007-01-01

    C57BL/6 (B6) mice subjected to a high-fat diet develop metabolic syndrome with obesity, hyperglycemia, and insulin resistance, whereas 129S6/SvEvTac (129) mice are relatively protected from this disorder because of differences in higher basal energy expenditure in 129 mice, leading to lower weight gain. At a molecular level, this difference correlates with a marked higher expression of uncoupling protein 1 (UCP1) and a higher degree of uncoupling in vitro in mitochondria isolated from muscle of 129 versus B6 mice. Detailed histological examination, however, reveals that this UCP1 is in mitochondria of brown adipocytes interspersed between muscle bundles. Indeed, the number of UCP1-positive brown fat cells in intermuscular fat in 129 mice is >700-fold higher than in B6 mice. These brown fat cells are subject to further up-regulation of UCP1 after stimulation with a β3-adrenergic receptor agonist. Thus, ectopic deposits of brown adipose tissue in intermuscular depots with regulatable expression of UCP1 provide a genetically based mechanism of protection from weight gain and metabolic syndrome between strains of mice. PMID:17283342

  8. Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss12

    PubMed Central

    Josse, Andrea R; Gburcik, Valentina; Raymond, Frederic; Good, Liam; Atherton, Philip J

    2016-01-01

    Background: A hypothesis exists whereby an exercise- or dietary-induced negative energy balance reduces human subcutaneous white adipose tissue (scWAT) mass through the formation of brown-like adipocyte (brite) cells. However, the validity of biomarkers of brite formation has not been robustly evaluated in humans, and clinical data that link brite formation and weight loss are sparse. Objectives: We used rosiglitazone and primary adipocytes to stringently evaluate a set of biomarkers for brite formation and determined whether the expression of biomarker genes in scWAT could explain the change in body composition in response to exercise training combined with calorie restriction in obese and overweight women (n = 79). Design: Gene expression was derived from exon DNA microarrays and preadipocytes from obesity-resistant and -sensitive mice treated with rosiglitazone to generate candidate brite biomarkers from a microarray. These biomarkers were evaluated against data derived from scWAT RNA from obese and overweight women before and after supervised exercise 5 d/wk for 16 wk combined with modest calorie restriction (∼0.84 MJ/d). Results: Forty percent of commonly used brite gene biomarkers exhibited an exon or strain-specific regulation. No biomarkers were positively related to weight loss in human scWAT. Greater weight loss was significantly associated with less uncoupling protein 1 expression (P = 0.006, R2 = 0.09). In a follow-up global analysis, there were 161 genes that covaried with weight loss that were linked to greater CCAAT/enhancer binding protein α activity (z = 2.0, P = 6.6 × 10−7), liver X receptor α/β agonism (z = 2.1, P = 2.8 × 10−7), and inhibition of leptin-like signaling (z = −2.6, P = 3.9 × 10−5). Conclusion: We identify a subset of robust RNA biomarkers for brite formation and show that calorie-restriction–mediated weight loss in women dynamically remodels scWAT to take on a more-white rather than a more-brown adipocyte phenotype

  9. Increased thermogenic capacity of brown adipose tissue under low temperature and its contribution to arousal from hibernation in Syrian hamsters.

    PubMed

    Kitao, Naoya; Hashimoto, Masaaki

    2012-01-01

    Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β(3)-adrenergic receptor. In this study, we investigated the role of the β(3)-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β(3)-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β(3)-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β(3)-receptor mechanism at lower temperatures.

  10. A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2.

    PubMed

    de França, Suélem A; dos Santos, Maísa P; Przygodda, Franciele; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Magalhães, Diego A; Bezerra, Kalinne S; Colodel, Edson M; Flouris, Andreas D; Andrade, Cláudia M B; Kawashita, Nair H

    2016-03-01

    The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6%-protein; 74%-carbohydrate) or control (C; 17%-protein; 63%-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w(-1) min(-1)). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student's t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60% in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40% increase in the levels of p38-MAPK and a 30% decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.

  11. Infrared thermography in the detection of brown adipose tissue in humans

    PubMed Central

    Jang, Christina; Jalapu, Sandya; Thuzar, Moe; Law, Phillip W; Jeavons, Susanne; Barclay, Johanna L.; Ho, Ken K.Y.

    2014-01-01

    Abstract PET‐CT using 18F‐FDG is employed for detecting brown adipose tissue (BAT) in humans. Alternative methods are needed because of the radiation and cost of PET‐CT imaging. The aim was to evaluate the accuracy of infrared thermography (IRT) in detecting human BAT benchmarked to PET‐CT imaging. Seventeen individuals underwent a total of 29 PET‐CT scans, 12 of whom were studied twice, after 2 h of cold stimulation at 19°C, in parallel with measurement of skin temperatures overlying the supraclavicular (SCV) fossa and the lateral upper chest (control), before and after cold stimulation. Of the 29 scans, 20 were BAT positive after cold stimulation. The mean left SCV temperature tended to be higher in the BAT‐positive group before and during cooling. It was significantly higher (P =0.04) than the temperature of the control area, which fell significantly during cooling in the BAT‐positive (−1.2 ± 0.3°C, P =0.002) but not in the negative (−0.2 ± 0.4°C) group. The temperature difference (Δtemp) between left SCV and chest increased during cooling in the BAT‐positive (1.2 ± 0.2 to 2.0 ± 0.3°C, P <0.002) but not in the negative group (0.6 ± 0.1 to 0.7 ± 0.1°C). A Δtemp of 0.9°C conferred a positive predictive value of 85% for SCV BAT, superior to that of SCV temperature. The findings were similar on the right. In conclusion, the Δtemp is significantly and consistently greater in BAT‐positive subjects. The Δtemp quantified by IRT after 2‐h cooling shows promise as a noninvasive convenient technique for studying SCV BAT function. PMID:25413316

  12. Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues.

    PubMed

    Bucerius, Jan; Vijgen, Guy H E J; Brans, Boudewijn; Bouvy, Nicole D; Bauwens, Matthias; Rudd, James H F; Havekes, Bas; Fayad, Zahi A; van Marken Lichtenbelt, Wouter D; Mottaghy, Felix M

    2015-05-01

    In this study, we unravel a molecular imaging marker correlated with the known reduction of cardiovascular events (most commonly related to vulnerable plaques) in morbidly obese patients after bariatric surgery (BaS).We prospectively imaged 10 morbidly obese subjects with F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography before and 1 year after BaS. F-FDG uptake-which is enhanced in inflamed, atherosclerotic vessels and in metabolically active adipose tissues-was quantified in the carotids, pericardial adipose tissue (PAT), visceral adipose tissue (VAT), as well as brown adipose tissue (BAT). The degree of carotid inflammation was compared to lean and overweight controls.Carotid inflammation significantly declined leading to an F-FDG uptake comparable to the 2 control groups. Metabolic activity significantly decreased in PAT and VAT and increased in BAT.BaS leads to a normalization of carotid artery inflammation and a beneficial impact on the metabolic activity in PAT, VAT, and BAT that is related to the metabolic syndrome observed in this patient group.

  13. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat

    PubMed Central

    Suárez, Juan; Rivera, Patricia; Arrabal, Sergio; Crespillo, Ana; Serrano, Antonia; Baixeras, Elena; Pavón, Francisco J.; Cifuentes, Manuel; Nogueiras, Rubén; Ballesteros, Joan; Dieguez, Carlos; Rodríguez de Fonseca, Fernando

    2014-01-01

    β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity. PMID:24159189

  14. A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice.

    PubMed

    Guirguis, Emilia; Hockman, Steven; Chung, Youn Wook; Ahmad, Faiyaz; Gavrilova, Oksana; Raghavachari, Nalini; Yang, Yanqin; Niu, Gang; Chen, Xiaoyuan; Yu, Zu Xi; Liu, Shiwei; Degerman, Eva; Manganiello, Vincent

    2013-09-01

    Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.

  15. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity

    PubMed Central

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I.; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  16. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity.

    PubMed

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  17. Brown Adipose Tissue Response Dynamics: In Vivo Insights with the Voltage Sensor 18F-Fluorobenzyl Triphenyl Phosphonium.

    PubMed

    Madar, Igal; Naor, Elinor; Holt, Daniel; Ravert, Hayden; Dannals, Robert; Wahl, Richard

    2015-01-01

    Brown adipose tissue (BAT) thermogenesis is an emerging target for prevention and treatment of obesity. Mitochondria are the heat generators of BAT. Yet, there is no noninvasive means to image the temporal dynamics of the mitochondrial activity in BAT in vivo. Here, we report a technology for quantitative monitoring of principal kinetic components of BAT adaptive thermogenesis in the living animal, using the PET imaging voltage sensor 18F-fluorobenzyltriphenylphosphonium (18F-FBnTP). 18F-FBnTP targets the mitochondrial membrane potential (ΔΨm)--the voltage analog of heat produced by mitochondria. Dynamic 18F-FBnTP PET imaging of rat's BAT was acquired just before and during localized skin cooling or systemic pharmacologic stimulation, with and without administration of propranolol. At ambient temperature, 18F-FBnTP demonstrated rapid uptake and prolonged steady-state retention in BAT. Conversely, cold-induced mitochondrial uncoupling resulted in an immediate washout of 18F-FBnTP from BAT, which was blocked by propranolol. Specific variables of BAT evoked activity were identified and quantified, including response latency, magnitude and kinetics. Cold stimulation resulted in partial washout of 18F-FBnTP (39.1%±14.4% of basal activity). The bulk of 18F-FBnTP washout response occurred within the first minutes of the cold stimulation, while colonic temperature remained nearly intact. Drop of colonic temperature to shivering zone did not have an additive effect. The ß3-adrenergic agonist CL-316,243 elicited 18F-FBnTP washout from BAT of kinetics similar to those caused by cold stimulation. Thus, monitoring ΔΨm in vivo using 18F-FBnTP PET provides insights into the kinetic physiology of BAT. 18F-FBnTP PET depicts BAT as a highly sensitive and rapidly responsive organ, emitting heat in short burst during the first minutes of stimulation, and preceding change in core temperature. 18F-FBnTP PET provides a novel set of quantitative metrics highly important for

  18. Maternal low protein diet reduces birth weight and increases brown adipose tissue UCP-1 and FNDC5 gene expression in male neonatal Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

  19. Maternal low protein diet-induced low birth weight in male, neonate Sprague-Dawley rats is mediated by altered brown adipose tissue thermogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

  20. Responsiveness to Thyroid Hormone and to Ambient Temperature Underlies Differences Between Brown Adipose Tissue and Skeletal Muscle Thermogenesis in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Ueta, Cintia B.; Olivares, Emerson L.

    2011-01-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism. PMID:21771890

  1. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    PubMed

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.

  2. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  3. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  4. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.

    PubMed

    Velotta, Jonathan P; Jones, Jennifer; Wolf, Cole J; Cheviron, Zachary A

    2016-06-01

    For small mammals living at high altitude, aerobic heat generation (thermogenesis) is essential for survival during prolonged periods of cold, but is severely impaired under conditions of hypobaric hypoxia. Recent studies in deer mice (Peromyscus maniculatus) reveal adaptive enhancement of thermogenesis in high- compared to low-altitude populations under hypoxic cold stress, an enhancement that is attributable to modifications in the aerobic metabolism of muscles used in shivering. However, because small mammals rely heavily on nonshivering mechanisms for cold acclimatization, we tested for evidence of adaptive divergence in nonshivering thermogenesis (NST) under hypoxia. To do so, we measured NST and characterized transcriptional profiles of brown adipose tissue (BAT) in high- and low-altitude deer mice that were (i) wild-caught and acclimatized to their native altitude, and (ii) born and reared under common garden conditions at low elevation. We found that NST performance under hypoxia is enhanced in wild-caught, high-altitude deer mice, a difference that is associated with increased expression of coregulated genes that influence several physiological traits. These traits include vascularization and O2 supply to BAT, brown adipocyte proliferation and the uncoupling of oxidative phosphorylation from ATP synthesis in the generation of heat. Our results suggest that acclimatization to hypoxic cold stress is facilitated by enhancement of nonshivering heat production, which is driven by regulatory plasticity in a suite of genes that influence intersecting physiological pathways. PMID:27126783

  5. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  6. Functions of AMP-activated protein kinase in adipose tissue

    PubMed Central

    Daval, Marie; Foufelle, Fabienne; Ferré, Pascal

    2006-01-01

    AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes. PMID:16709632

  7. Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity.

    PubMed

    Wainright, Katherine S; Fleming, Nicholas J; Rowles, Joe L; Welly, Rebecca J; Zidon, Terese M; Park, Young-Min; Gaines, T'Keaya L; Scroggins, Rebecca J; Anderson-Baucum, Emily K; Hasty, Alyssa H; Vieira-Potter, Victoria J; Padilla, Jaume

    2015-09-01

    Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately -24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype. PMID:26180183

  8. A change in liver metabolism but not in brown adipose tissue thermogenesis is an early event in ovariectomy-induced obesity in rats.

    PubMed

    Nigro, Mariana; Santos, Anderson T; Barthem, Clarissa S; Louzada, Ruy A N; Fortunato, Rodrigo S; Ketzer, Luisa A; Carvalho, Denise P; de Meis, Leopoldo

    2014-08-01

    Menopause is associated with increased visceral adiposity and disrupted glucose homeostasis, but the underlying molecular mechanisms related to these metabolic changes are still elusive. Brown adipose tissue (BAT) plays a key role in energy expenditure that may be regulated by sexual steroids, and alterations in glucose homeostasis could precede increased weight gain after ovariectomy. Thus, the aim of this work was to evaluate the metabolic pathways in both the BAT and the liver that may be disrupted early after ovariectomy. Ovariectomized (OVX) rats had increased food efficiency as early as 12 days after ovariectomy, which could not be explained by differences in feces content. Analysis of isolated BAT mitochondria function revealed no differences in citrate synthase activity, uncoupling protein 1 expression, oxygen consumption, ATP synthesis, or heat production in OVX rats. The addition of GDP and BSA to inhibit uncoupling protein 1 decreased oxygen consumption in BAT mitochondria equally in both groups. Liver analysis revealed increased triglyceride content accompanied by decreased levels of phosphorylated AMP-activated protein kinase and phosphorylated acetyl-CoA carboxylase in OVX animals. The elevated expression of gluconeogenic enzymes in OVX and OVX + estradiol rats was not associated with alterations in glucose tolerance test or in serum insulin but was coincident with higher glucose disposal during the pyruvate tolerance test. Although estradiol treatment prevented the ovariectomy-induced increase in body weight and hepatic triglyceride and cholesterol accumulation, it was not able to prevent increased gluconeogenesis. In conclusion, the disrupted liver glucose homeostasis after ovariectomy is neither caused by estradiol deficiency nor is related to increased body mass. PMID:24914935

  9. β-Lapachone Prevents Diet-Induced Obesity by Increasing Energy Expenditure and Stimulating the Browning of White Adipose Tissue via Downregulation of miR-382 Expression.

    PubMed

    Choi, Won Hee; Ahn, Jiyun; Jung, Chang Hwa; Jang, Young Jin; Ha, Tae Youl

    2016-09-01

    There has been great interest in the browning of fat for the treatment of obesity. Although β-lapachone (BLC) has potential therapeutic effects on obesity, the fat-browning effect and thermogenic capacity of BLC on obesity have never been demonstrated. Here, we showed that BLC stimulated the browning of white adipose tissue (WAT), increased the expression of brown adipocyte-specific genes (e.g., uncoupling protein 1 [UCP1]), decreased body weight gain, and ameliorated metabolic parameters in mice fed a high-fat diet. Consistently, BLC-treated mice showed significantly higher energy expenditure compared with control mice. In vitro, BLC increased the expression of brown adipocyte-specific genes in stromal vascular fraction-differentiated adipocytes. BLC also controlled the expression of miR-382, which led to the upregulation of its direct target, Dio2. Upregulation of miR-382 markedly inhibited the differentiation of adipocytes into beige adipocytes, whereas BLC recovered beige adipocyte differentiation and increased the expression of Dio2 and UCP1. Our findings suggest that the BLC-mediated increase in the browning of WAT and the thermogenic capacity of BAT significantly results in increases in energy expenditure. Browning of WAT by BLC was partially controlled via the regulation of miR-382 targeting Dio2 and may lead to the prevention of diet-induced obesity.

  10. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  11. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes.

    PubMed

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M; Serra, Dolors; Herrero, Laura

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  12. Active commuting to elementary school and adiposity: An observational study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active commuting to school (ACS; walking or cycling to school) appears promising for decreasing children's obesity risk, although long-term studies are sparse. The aim was to examine whether kindergarten ACS was associated with fifth grade adiposity. This study was a secondary analysis of the Early ...

  13. GQ-16, a TZD-Derived Partial PPARγ Agonist, Induces the Expression of Thermogenesis-Related Genes in Brown Fat and Visceral White Fat and Decreases Visceral Adiposity in Obese and Hyperglycemic Mice

    PubMed Central

    Coelho, Michella S.; de Lima, Caroline L.; Royer, Carine; Silva, Janaina B.; Oliveira, Fernanda C. B.; Christ, Camila G.; Pereira, Sidney A.; Bao, Sonia N.; Lima, Maria C. A.; Pitta, Marina G. R.; Pitta, Ivan R.; Neves, Francisco A. R.; Amato, Angélica A.

    2016-01-01

    Background Beige adipocytes comprise a unique thermogenic cell type in the white adipose tissue (WAT) of rodents and humans, and play a critical role in energy homeostasis. In this scenario, recruitment of beige cells has been an important focus of interest for the development of novel therapeutic strategies to treat obesity. PPARγ activation by full agonists (thiazolidinediones, TZDs) drives the appearance of beige cells, a process so-called browning of WAT. However, this does not translate into increased energy expenditure, and TZDs are associated with weight gain. Partial PPARγ agonists, on the other hand, do not induce weight gain, but have not been shown to drive WAT browning. The present study was designed to investigate the effects of GQ-16 on BAT and on browning of WAT in obese mice. Methods Male Swiss mice with obesity and hyperglycemia induced by high fat diet were treated with vehicle, rosiglitazone (4 mg/kg/d) or the TZD-derived partial PPARγ agonist GQ-16 (40 mg/kg/d) for 14 days. Fasting blood glucose, aspartate aminotransferase, alanine aminotransferase and lipid profile were measured. WAT and brown adipose tissue (BAT) depots were excised for determination of adiposity, relative expression of Ucp-1, Cidea, Prdm16, Cd40 and Tmem26 by RT-qPCR, histological analysis, and UCP-1 protein expression analysis by immunohistochemistry. Liver samples were also removed for histological analysis and determination of hepatic triglyceride content. Results GQ-16 treatment reduced high fat diet-induced weight gain in mice despite increasing energy intake. This was accompanied by reduced epididymal fat mass, reduced liver triglyceride content, morphological signs of increased BAT activity, increased expression of thermogenesis-related genes in interscapular BAT and epididymal WAT, and increased UCP-1 protein expression in interscapular BAT and in epididymal and inguinal WAT. Conclusion This study suggests for the first time that a partial PPARγ agonist may

  14. LMNA Mutations Induce a Non-Inflammatory Fibrosis and a Brown Fat-Like Dystrophy of Enlarged Cervical Adipose Tissue

    PubMed Central

    Béréziat, Véronique; Cervera, Pascale; Le Dour, Caroline; Verpont, Marie-Christine; Dumont, Sylvie; Vantyghem, Marie-Christine; Capeau, Jacqueline; Vigouroux, Corinne

    2011-01-01

    Some LMNA mutations responsible for insulin-resistant lipodystrophic syndromes are associated with peripheral subcutaneous lipoatrophy and faciocervical fat accumulation. Their pathophysiologic characteristics are unknown. We compared histologic, immunohistologic, ultrastructural, and protein expression features of enlarged cervical subcutaneous adipose tissue (scAT) obtained during plastic surgery from four patients with LMNA p.R482W, p.R439C, or p.H506D mutations versus cervical fat from eight control subjects, buffalo humps from five patients with HIV infection treated or not with protease inhibitors, and dorsocervical lipomas from two patients with mitochondrial DNA mutations. LMNA-mutated cervical scAT and HIV-related buffalo humps were dystrophic, with an increased percentage of small adipocytes, increased fibrosis without inflammatory features, and decreased number of blood vessels, as compared with control samples. Samples from patients with LMNA mutations or protease inhibitor–based therapy demonstrated accumulation of prelamin A, altered expression of adipogenic proteins and brown fat-like features, with an increased number of mitochondria and overexpression of uncoupling protein 1 (UCP1). These features were absent in samples from control subjects and from patients with HIV not treated with protease inhibitors. Mitochondrial DNA–mutated cervical lipomas demonstrated inflammatory fibrosis with distinct mitochondrial abnormalities but neither UCP1 expression nor prelamin A accumulation. In conclusion, Enlarged cervical scAT from patients with lipodystrophy demonstrated small adipocytes, fibrosis, and decreased vessel numbers. However, only cervical fat from patients with LMNA mutations or who had received protease inhibitor therapy accumulated prelamin A and exhibited similar remodeling toward a brown-like phenotype with UCP1 overexpression and mitochondrial alterations. PMID:21945321

  15. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  16. Adipose afferent reflex: sympathetic activation and obesity hypertension.

    PubMed

    Xiong, X-Q; Chen, W-W; Zhu, G-Q

    2014-03-01

    Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.

  17. Hibernating above the permafrost: effects of ambient temperature and season on expression of metabolic genes in liver and brown adipose tissue of arctic ground squirrels.

    PubMed

    Williams, Cory T; Goropashnaya, Anna V; Buck, C Loren; Fedorov, Vadim B; Kohl, Franziska; Lee, Trixie N; Barnes, Brian M

    2011-04-15

    Hibernating arctic ground squirrels (Urocitellus parryii), overwintering in frozen soils, maintain large gradients between ambient temperature (T(a)) and body temperature (T(b)) by substantially increasing metabolic rate during torpor while maintaining a subzero T(b). We used quantitative reverse-transcription PCR (qRT-PCR) to determine how the expression of 56 metabolic genes was affected by season (active in summer vs hibernating), metabolic load during torpor (imposed by differences in T(a): +2 vs -10°C) and hibernation state (torpid vs after arousal). Compared with active ground squirrels sampled in summer, liver from hibernators showed increased expression of genes associated with fatty acid catabolism (CPT1A, FABP1 and ACAT1), ketogenesis (HMGCS2) and gluconeogenesis (PCK1) and decreased expression of genes associated with fatty acid synthesis (ACACB, SCD and ELOVL6), amino acid metabolism, the urea cycle (PAH, BCKDHA and OTC), glycolysis (PDK1 and PFKM) and lipid metabolism (ACAT2). Stage of hibernation (torpid vs aroused) had a much smaller effect, with only one gene associated with glycogen synthesis (GSY1) in liver showing consistent differences in expression levels between temperature treatments. Despite the more than eightfold increase in energetic demand associated with defending T(b) during torpor at a T(a) of -10 vs +2°C, transcript levels in liver and brown adipose tissue differed little. Our results are inconsistent with a hypothesized switch to use of non-lipid fuels when ambient temperatures drop below freezing.

  18. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    SciTech Connect

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  19. Partial removal of brown adipose tissue enhances humoral immunity in warm-acclimated Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Yang, Deng-Bao; Xu, Yan-Chao; Wang, De-Hua

    2012-01-01

    Temperate rodent species experience marked seasonal fluctuations in environmental temperatures. High thermoregulatory demands during winter usually weaken immune function. Brown adipose tissue (BAT) plays a crucial role in adaptive thermoregulatory process. Thus, we proposed the hypothesis that BAT might participate in the regulation of seasonal changes in immune function. The present study examined the trade-off between thermoregulation and immune function and the potential role of BAT in regulating seasonal changes in immune function in Mongolian gerbils. Specifically, surgical removal of interscapular BAT (34% of total BAT) was performed in male gerbils, and subsequently acclimated to either warm (23 ± 1 °C) or cold (4 ± 1 °C) conditions. Gerbils were then challenged with innocuous antigens and the immune responses were measured. Resting metabolic rate (RMR) and nonshivering thermogenesis (NST) were increased under cold conditions. However, the cost of thermoregulation during cold acclimation did not suppress T-cell mediated immunity and humoral immunity or decrease spleen mass, thymus mass and white blood cells. Partial removal of BAT significantly enhanced humoral immunity in warm-acclimated, but not in cold-acclimated gerbils. T-cell mediated immunity, white blood cells and immune organs were not affected by BAT removal under both warm and cold conditions. Collectively, our results imply that BAT has a suppressive effect on humoral immunity in warm-acclimated gerbils and differential effects of BAT on humoral immunity under different temperatures (e.g., summer and winter) might be benefit to their survival.

  20. Searching for signatures of cold adaptations in modern and archaic humans: hints from the brown adipose tissue genes.

    PubMed

    Sazzini, M; Schiavo, G; De Fanti, S; Martelli, P L; Casadio, R; Luiselli, D

    2014-09-01

    Adaptation to low temperatures has been reasonably developed in the human species during the colonization of the Eurasian landmass subsequent to Out of Africa migrations of anatomically modern humans. In addition to morphological and cultural changes, also metabolic ones are supposed to have favored human isolation from cold and body heat production and this can be hypothesized also for most Neandertal and at least for some Denisovan populations, which lived in geographical areas that strongly experienced the last glacial period. Modulation of non-shivering thermogenesis, for which adipocytes belonging to the brown adipose tissue are the most specialized cells, might have driven these metabolic adaptations. To perform an exploratory analysis aimed at looking into this hypothesis, variation at 28 genes involved in such functional pathway was investigated in modern populations from different climate zones, as well as in Neandertal and Denisovan genomes. Patterns of variation at the LEPR gene, strongly related to increased heat dissipation by mitochondria, appeared to have been shaped by positive selection in modern East Asians, but not in Europeans. Moreover, a single potentially cold-adapted LEPR allele, different from the supposed adaptive one identified in Homo sapiens, was found also in Neandertal and Denisovan genomes. These findings suggest that independent mechanisms for cold adaptations might have been developed in different non-African human groups, as well as that the evolution of possible enhanced thermal efficiency in Neandertals and in some Denisovan populations has plausibly entailed significant changes also in other functional pathways than in the examined one.

  1. Searching for signatures of cold adaptations in modern and archaic humans: hints from the brown adipose tissue genes

    PubMed Central

    Sazzini, M; Schiavo, G; De Fanti, S; Martelli, P L; Casadio, R; Luiselli, D

    2014-01-01

    Adaptation to low temperatures has been reasonably developed in the human species during the colonization of the Eurasian landmass subsequent to Out of Africa migrations of anatomically modern humans. In addition to morphological and cultural changes, also metabolic ones are supposed to have favored human isolation from cold and body heat production and this can be hypothesized also for most Neandertal and at least for some Denisovan populations, which lived in geographical areas that strongly experienced the last glacial period. Modulation of non-shivering thermogenesis, for which adipocytes belonging to the brown adipose tissue are the most specialized cells, might have driven these metabolic adaptations. To perform an exploratory analysis aimed at looking into this hypothesis, variation at 28 genes involved in such functional pathway was investigated in modern populations from different climate zones, as well as in Neandertal and Denisovan genomes. Patterns of variation at the LEPR gene, strongly related to increased heat dissipation by mitochondria, appeared to have been shaped by positive selection in modern East Asians, but not in Europeans. Moreover, a single potentially cold-adapted LEPR allele, different from the supposed adaptive one identified in Homo sapiens, was found also in Neandertal and Denisovan genomes. These findings suggest that independent mechanisms for cold adaptations might have been developed in different non-African human groups, as well as that the evolution of possible enhanced thermal efficiency in Neandertals and in some Denisovan populations has plausibly entailed significant changes also in other functional pathways than in the examined one. PMID:24667833

  2. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase.

    PubMed

    Yamashita, Yoko; Wang, Liuqing; Wang, Lihua; Tanaka, Yuki; Zhang, Tianshun; Ashida, Hitoshi

    2014-10-01

    It is well known that tea has a variety of beneficial impacts on human health, including anti-obesity effects. It is well documented that green tea and its constituent catechins suppress obesity, but the effects of other types of tea on obesity and the potential mechanisms involved are not yet fully understood. In this study, we investigated the suppression of adiposity by oolong, black and pu-erh tea and characterized the underlying molecular mechanism in vivo. We found that the consumption of oolong, black or pu-erh tea for a period of one week significantly decreased visceral fat without affecting body weight in male ICR mice. On a mechanistic level, the consumption of tea enhanced the phosphorylation of AMP-activated protein kinase (AMPK) in white adipose tissue (WAT). This was accompanied by the induction of WAT protein levels of uncoupling protein 1 and insulin-like growth factor binding protein 1. Our results indicate that oolong, black and pu-erh tea, and in particular, black tea, suppresses adiposity via phosphorylation of the key metabolic regulator AMPK and increases browning of WAT. PMID:25098399

  3. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase.

    PubMed

    Yamashita, Yoko; Wang, Liuqing; Wang, Lihua; Tanaka, Yuki; Zhang, Tianshun; Ashida, Hitoshi

    2014-10-01

    It is well known that tea has a variety of beneficial impacts on human health, including anti-obesity effects. It is well documented that green tea and its constituent catechins suppress obesity, but the effects of other types of tea on obesity and the potential mechanisms involved are not yet fully understood. In this study, we investigated the suppression of adiposity by oolong, black and pu-erh tea and characterized the underlying molecular mechanism in vivo. We found that the consumption of oolong, black or pu-erh tea for a period of one week significantly decreased visceral fat without affecting body weight in male ICR mice. On a mechanistic level, the consumption of tea enhanced the phosphorylation of AMP-activated protein kinase (AMPK) in white adipose tissue (WAT). This was accompanied by the induction of WAT protein levels of uncoupling protein 1 and insulin-like growth factor binding protein 1. Our results indicate that oolong, black and pu-erh tea, and in particular, black tea, suppresses adiposity via phosphorylation of the key metabolic regulator AMPK and increases browning of WAT.

  4. Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy.

    PubMed

    Nirengi, Shinsuke; Homma, Toshiyuki; Inoue, Naohiko; Sato, Hitoshi; Yoneshiro, Takeshi; Matsushita, Mami; Kameya, Toshimitsu; Sugie, Hiroki; Tsuzaki, Kokoro; Saito, Masayuki; Sakane, Naoki; Kurosawa, Yuko; Hamaoka, Takafumi

    2016-09-01

    18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDGPET/CT) is widely used as a standard method for evaluating human brown adipose tissue (BAT), a recognized therapeutic target of obesity. However, a longitudinal BAT study using FDG-PET/CT is lacking owing to limitations of the method. Near-infrared time-resolved spectroscopy (NIR(TRS)) is a technique for evaluating human BAT density noninvasively. This study aimed to test whether NIRTRS could detect changes in BAT density during or after long-term intervention. First, using FDG-PET/CT, we confirmed a significant increase (+48.8%, P < 0.05) in BAT activity in the supraclavicular region after 6-week treatment with thermogenic capsaicin analogs, capsinoids. Next, 20 volunteers were administered either capsinoids or placebo daily for 8 weeks in a double-blind design, and BAT density was measured using NIR(TRS) every 2 weeks during the 8-week treatment period and an 8-week period after stopping treatment. Consistent with FDG-PET/CT results, NIR(TRS) successfully detected an increase in BAT density during the 8-week treatment (+46.4%, P < 0.05), and a decrease in the 8-week follow-up period (-12.5%, P = 0.07), only in the capsinoid-treated, but not the placebo, group. Thus, NIR(TRS) can be applied for quantitative assessment of BAT in longitudinal intervention studies in humans. PMID:27135066

  5. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice.

    PubMed

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA1c, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects.

  6. Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes.

    PubMed

    Townsend, K L; Tseng, Y-H

    2015-08-01

    Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed 'browning'. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of 'browning'. We also provide an overview of constitutive BAT vs rBAT in mouse and human. PMID:27152169

  7. Mitochondria in White, Brown, and Beige Adipocytes.

    PubMed

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  8. Mitochondria in White, Brown, and Beige Adipocytes

    PubMed Central

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  9. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  10. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis

    PubMed Central

    McGlashon, Jacob M.; Gorecki, Michelle C.; Kozlowski, Amanda E.; Thirnbeck, Caitlin K.; Markan, Kathleen R.; Leslie, Kirstie L.; Kotas, Maya E.; Potthoff, Matthew J.; Richerson, George B.; Gillum, Matthew P.

    2015-01-01

    Summary Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the central nervous system are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1bf/f/p mice, in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes. PMID:25955206

  11. Blunted response of pituitary type 1 and brown adipose tissue type 2 deiodinases to swimming training in ovariectomized rats.

    PubMed

    Ignacio, D L; Fortunato, R S; Neto, R A L; da Silva Silvestre, D H; Nigro, M; Frankenfeld, T G P; Werneck-de-Castro, J P S; Carvalho, D P

    2012-10-01

    Ovariectomy leads to significant increase in body weight, but the possible peripheral mechanisms involved in weight gain are still unknown. Since exercise and thyroid hormones modulate energy balance, we aimed to study the effect of swimming training on body weight gain and brown adipose tissue (BAT) type 2 iodothyronine deiodinase responses in ovariectomized (Ox) or sham-operated (Sh) rats. Rats were submitted to a period of 8-week training, 5 days per week with progressive higher duration of exercise protocol. Swimming training program did not totally prevent the higher body mass gain that follows ovariectomy in rats (16.5% decrease in body mass gain in Ox trained rats compared to 22% decrease in sham operated trained animals, in relation to the respective sedentary groups), but training of Ox animals impaired the accumulation of subcutaneous fat pads. Interestingly, swimming training upregulates pituitary type 1 (p<0.001 vs. all groups) and BAT type 2 iodothyronine deiodinases (p<0.05 vs. ShS and OxS) in sham operated but not in Ox rats, indicating an impaired pituitary and peripheral response to exercise in Ox rats. However, BAT mitochondrial O2 consumption significantly increased by swimming training in both sham and Ox groups, indicating that Ox BAT mitochondria responds normally to exercise stimulus, but does not result in a significant reduction of body weight. In conclusion, increased body mass gain produced by Ox is not completely impaired by 8 weeks of high intensity physical training, showing that these animals sustain higher rate of body mass gain independent of being submitted to higher energy expenditure. PMID:22815055

  12. Impact of Maternal Melatonin Suppression on Amount and Functionality of Brown Adipose Tissue (BAT) in the Newborn Sheep

    PubMed Central

    Seron-Ferre, Maria; Reynolds, Henry; Mendez, Natalia Andrea; Mondaca, Mauricio; Valenzuela, Francisco; Ebensperger, Renato; Valenzuela, Guillermo J.; Herrera, Emilio A.; Llanos, Anibal J.; Torres-Farfan, Claudia

    2015-01-01

    In human and sheep newborns, brown adipose tissue (BAT) accrued during fetal development is used for newborn thermogenesis. Here, we explored the role of maternal melatonin during gestation on the amount and functionality of BAT in the neonate. We studied BAT from six lambs gestated by ewes exposed to constant light from 63% gestation until delivery to suppress melatonin (LL), six lambs gestated by ewes exposed to LL but receiving daily oral melatonin (12 mg at 1700 h, LL + Mel) and another six control lambs gestated by ewes maintained in 12 h light:12 h dark (LD). Lambs were instrumented at 2 days of age. At 4–6 days of age, they were exposed to 24°C (thermal neutrality conditions) for 1 h, 4°C for 1 h, and 24°C for 1 h. Afterward, lambs were euthanized and BAT was dissected for mRNA measurement, histology, and ex vivo experiments. LL newborns had lower central BAT and skin temperature under thermal neutrality and at 4°C, and higher plasma norepinephrine concentration than LD newborns. In response to 4°C, they had a pronounced decrease in skin temperature and did not increase plasma glycerol. BAT weight in LL newborns was about half of that of LD newborns. Ex vivo, BAT from LL newborns showed increased basal lipolysis and did not respond to NE. In addition, expression of adipogenic/thermogenic genes (UCP1, ADBR3, PPARγ, PPARα, PGC1α, C/EBPβ, and perilipin) and of the clock genes Bmal1, Clock, and Per2 was increased. Remarkably, the effects observed in LL newborns were absent in LL + Mel newborns. Thus, our results support that maternal melatonin during gestation is important in determining amount and normal functionality of BAT in the neonate. PMID:25610428

  13. Differential metabolism of brown adipose tissue in newborn rabbits in relation to position in the litter huddle.

    PubMed

    García-Torres, Esmeralda; Hudson, Robyn; Castelán, Francisco; Martínez-Gómez, Margarita; Bautista, Amando

    2015-07-01

    Competition for resources can contribute importantly to the early development of individual differences in behavioral and physiological phenotypes. In newborn rabbits, littermates compete for thermally favorable positions within the litter huddle. As brown adipose tissue (BAT) is the principal site of thermogenesis in such altricial young, we investigated differences in rabbit pups' growth and morphological differences in BAT associated with position within the huddle. We formed three treatment groups (7 litters/group): GI-birth (pups killed at birth); GII-chronic thermal challenge (pups killed after exposure to a moderately cold environmental during postnatal days 1-3); GIII-acute thermal challenge (as for GII but pups killed after an additional 30min exposure to a very cold environment on postnatal day 3). Interscapular BAT was removed at death for histological analysis, and triglyceride concentrations measured in serum. Pups occupying central positions in the huddle had higher skin temperatures, obtained more milk, and were more efficient at converting this into body mass, than pups occupying peripheral positions. There was no significant difference in BAT morphology or triglyceride concentrations between pups at birth, nor between central and peripheral pups chronically exposed to moderate cold until postnatal day 3. However, during acute cold exposure at this age, peripheral pups were less able to maintain their body temperature, they depleted BAT fat reserves almost completely, and they had lower serum concentrations of triglycerides than central pups. These findings confirm the contribution of early sibling relations to individual differences in growth and metabolic processes associated with thermoregulation in newborn rabbits. PMID:25965015

  14. Ligand binding properties of putative beta 3-adrenoceptors compared in brown adipose tissue and in skeletal muscle membranes.

    PubMed Central

    Sillence, M. N.; Moore, N. G.; Pegg, G. G.; Lindsay, D. B.

    1993-01-01

    1. The beta-adrenoceptor population was characterized in membrane preparations from rat brown adipose tissue (BAT) and from soleus muscle by use of the radioligand [125I]-iodocyanopindolol ([125I]-ICYP). In addition, atypical binding sites for [125I]-ICYP found in both tissues were examined, and the relationship between these sites and the putative rat beta 3-adrenoceptor is discussed. 2. It was established that BAT membranes host a mixed population of beta 1- and beta 2-adrenoceptors. Of these two sites, 55% showed a high affinity for the beta 1-selective ligand CGP 20712A (pK 8.5), and 45% showed a high affinity for the beta 2-selective antagonist ICI 118551 (pK 8.6). Soleus muscle membranes were found to host a population of beta 2-adrenoceptors, characterized by a high affinity for ICI 118551 (pK 9.1), but beta 1-adrenoceptors could not be detected in this preparation. 5-Hydroxytryptamine receptors were not detected in either preparation. 3. In addition to beta 1- and beta 2-adrenoceptors, atypical binding sites were identified in both tissues using high concentrations of radioligand (0.5-0.6 nM) and in the presence of 1 microM (-)-propranolol. The atypical sites were abundant, representing 80 and 81% of the total [125I]-ICYP binding sites in BAT and soleus muscle respectively. When the pK values for 11 ligands were compared, the correlation coefficient for atypical sites in BAT and soleus muscle was 0.94.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8104645

  15. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  16. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  17. Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning

    PubMed Central

    Bayindir, Irem; Babaeikelishomi, Rohollah; Kocanova, Silvia; Sousa, Isabel Sofia; Lerch, Sarah; Hardt, Olaf; Wild, Stefan; Bosio, Andreas; Bystricky, Kerstin; Herzig, Stephan; Vegiopoulos, Alexandros

    2015-01-01

    De novo formation of beige/brite adipocytes from progenitor cells contributes to the thermogenic adaptation of adipose tissue and holds great potential for the therapeutic remodeling of fat as a treatment for obesity. Despite the recent identification of several factors regulating browning of white fat, there is a lack of physiological cell models for the mechanistic investigation of progenitor-mediated beige/brite differentiation. We have previously revealed prostacyclin (PGI2) as one of the few known endogenous extracellular mediators promoting de novo beige/brite formation by relaying β-adrenergic stimulation to the progenitor level. Here, we present a cell model based on murine primary progenitor cells defined by markers previously shown to be relevant for in vivo browning, including a simplified isolation procedure. We demonstrate the specific and broad induction of thermogenic gene expression by PGI2 signaling in the absence of lineage conversion, and reveal the previously unidentified nuclear relocalization of the Ucp1 gene locus in association with transcriptional activation. By profiling the time course of the progenitor response, we show that PGI2 signaling promoted progenitor cell activation through cell cycle and adhesion pathways prior to metabolic maturation toward an oxidative cell phenotype. Our results highlight the importance of core progenitor activation pathways for the recruitment of thermogenic cells and provide a resource for further mechanistic investigation. PMID:26347713

  18. Brown (BAT) and white (WAT) adipose tissue in high-fat junk food (HFJF) and chow-fed rats with dorsomedial hypothalamic lesions (DMNL rats).

    PubMed

    Bernardis, L L; Bellinger, L L

    1991-05-15

    Male weanling rats received dorsomedial hypothalamic nucleus lesions (DMNL) or sham operations and were fed for 173 postoperative days a high-fat diet and given a 32% sucrose solution as drinking fluid. This was supplemented with chocolate chip cookies, potato chips and marshmallows. Other DMNL and sham-operated controls were fed lab chow instead of the above high-fat junk food diet (HFJF) and given tap water instead of 32% sucrose solution. All animals were killed on postoperative day 174. Caloric intake per 100 g body weight was similar in all groups; however, the HFJF fed control and DMNL rats had significantly elevated carcass fat. Since HFJF-DMNL rats were not nearly as obese as the HFJF control animals, it appears that the DMNL offered some protection against the HFJF-diet-produced obesity. When their smaller body size is considered. DMN lesions had no effect on brown adipose tissue (BAT) mass in chow-fed or HFJF fed rats, whereas BAT size was significantly enlarged in HFJF-fed control animals. This suggests but does not prove that HFJF-fed controls, but not DMNL rats, may be using dietary-induced thermogenesis (DIT) to attenuate their obesity. We hypothesize that the HFJF-fed DMNL may not be enhancing DIT as reflected in normal BAT size, because they had not attained a degree of fatness to activate this system, or the DMN lesions impaired its activation. Both HFJF-fed groups showed reduced linear growth compared to their counterparts. The reason for stunting is uncertain, but may be related to their low plasma insulin concentrations.

  19. Calcium Sensing Receptor (CaSR) activation elevates proinflammatory factor expression in human adipose cells and adipose tissue

    PubMed Central

    Cifuentes, Mariana; Fuentes, Cecilia; Acevedo, Ingrid; Villalobos, Elisa; Hugo, Eric; Ben Jonathan, Nira; Reyes, Marcela

    2013-01-01

    We have previously established that human adipose cells and the human adipose cell line LS14 express the calcium sensing receptor (CaSR) and that its expression is elevated upon exposure to inflammatory cytokines that are typically elevated in obese humans. Research in recent years has established that an important part of the adverse metabolic and cardiovascular consequences of obesity derive from a dysfunction of the tissue, one of the mechanisms being a disordered secretion pattern leading to an excess of proinflammatory cytokines and chemokines. Given the reported association of the CaSR to inflammatory processes in other tissues, we sought to evaluate its role elevating the adipose expression of inflammatory factors. We exposed adipose tissue and in-vitro cultured LS14 preadipocytes and differentiated adipocytes to the calcimimetic cinacalcet and evaluated the expression or production of the proinflammatory cytokines IL6, IL1β and TNFα as well as the chemoattractant factor CCL2. CaSR activation elicited an elevation in the expression of the inflammatory factors, which was in part reverted by SN50, an inhibitor of the inflammatory mediator NFκB. Our observations suggest that CaSR activation elevates cytokine and chemokine production through a signaling pathway involving activation of NFκB nuclear translocation. These findings confirm the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation in the fight against obesity- associated diseases. PMID:22449852

  20. Metabolically Active Brown Fat Mimicking Pericardial Metastasis on PET/CT: The Discriminating Role of Cardiac Magnetic Resonance Imaging.

    PubMed

    Pagé, Maude; Quarto, Cesare; Mancuso, Enrico; Mohiaddin, Raad H

    2016-08-01

    Metabolically active mediastinal brown adipose tissue may be mistakenly diagnosed as a malignancy on 18F-fluoro-2-deoxy-D-glucose (FDG)/positron emission tomography (PET). We report the case of a patient with locally recurrent breast carcinoma in which staging PET/CT revealed a suspicious pericardial lesion for which the patient was referred to our centre. The novelty of this case resides in the fact that by tissue characterization, cardiac magnetic resonance imaging allowed the determination that the lesion corresponded to brown fat, a reassuring finding with important impact on management, because the presence of pericardial metastasis would have disqualified this patient for curative resection of her cancer recurrence. PMID:26860773

  1. Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand

    PubMed Central

    Hwang, Janice J.; Yeckel, Catherine W.; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E.; Sherwin, Robert; Ding, Yu-Shin

    2015-01-01

    Introduction Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with 11C-MRB ((S,S)-11C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Methods Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7 kg/m2; 5 F: age 25.4±2.1, BMI 22.1±1.0 kg/m2) underwent 11C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to 18F-FDG PET-CT imaging. Uptake of 11C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. Results As expected, 18F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT 11C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of 11C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with 18F-FDG (p=0.63). Furthermore, there were gender differences in 11C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in 11C-MRB as a function of both body composition and body temperature. Conclusions Unlike 18F-FDG, the uptake of 11C-MRB in BAT offers a unique opportunity to

  2. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity

    PubMed Central

    Chen, Yong; Buyel, Joschka J.; Hanssen, Mark J. W.; Siegel, Franziska; Pan, Ruping; Naumann, Jennifer; Schell, Michael; van der Lans, Anouk; Schlein, Christian; Froehlich, Holger; Heeren, Joerg; Virtanen, Kirsi A.; van Marken Lichtenbelt, Wouter; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy and its activity correlates with leanness in human adults. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography coupled with computer tomography (PET/CT) is still the standard for measuring BAT activity, but exposes subjects to ionizing radiation. To study BAT function in large human cohorts, novel diagnostic tools are needed. Here we show that brown adipocytes release exosomes and that BAT activation increases exosome release. Profiling miRNAs in exosomes released from brown adipocytes, and in exosomes isolated from mouse serum, we show that levels of miRNAs change after BAT activation in vitro and in vivo. One of these exosomal miRNAs, miR-92a, is also present in human serum exosomes. Importantly, serum concentrations of exosomal miR-92a inversely correlate with human BAT activity measured by 18F-FDG PET/CT in two unique and independent cohorts comprising 41 healthy individuals. Thus, exosomal miR-92a represents a potential serum biomarker for BAT activity in mice and humans. PMID:27117818

  3. Selective beta 3-adrenergic agonists of brown adipose tissue and thermogenesis. 2. [4-[2-[(2-Hydroxy-3-phenoxypropyl)amino]ethoxy]phenoxy]acetamides.

    PubMed

    Howe, R; Rao, B S; Holloway, B R; Stribling, D

    1992-05-15

    The ester methyl [4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]phenoxy]acetate (1) (R1 = OMe) had previously been identified as the most interesting member of a series of selective beta 3-adrenergic agonists of brown adipose tissue and thermogenesis in the rat. In vivo it acts mainly via the related acid 1 (R1 = OH). Amides have been examined to determine whether they have advantages over the ester. In particular, in the rat and dog the half-lives of amides of appropriate potency were no longer than those of the ester. The amide (S)-4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]-N-(2- methoxyethyl)phenoxyacetamide [S-27, ICI D7114] was selected as having properties consistent with a sustained-release formulation should that prove necessary. Unlike the ester it is resistant to hydrolysis in the gut lumen. Further testing of ICI D7114 has shown that in the rat, cat, and dog it stimulates the beta 3-adrenergic receptor in brown adipose tissue at doses lower than those at which it affects beta 1- and beta 2-adrenergic receptors in other tissues. Slimming effects were observed in the dog. ICI D7114 may be a selective thermogenic agent in man and may be useful in the treatment of obesity and diabetes. PMID:1350310

  4. Adaptive thermogenesis in adipocytes: Is beige the new brown?

    PubMed Central

    Wu, Jun; Cohen, Paul; Spiegelman, Bruce M.

    2013-01-01

    One of the most promising areas in the therapeutics for metabolic diseases centers around activation of the pathways of energy expenditure. Brown adipose tissue is a particularly appealing target for increasing energy expenditure, given its amazing capacity to transform chemical energy into heat. In addition to classical brown adipose tissue, the last few years have seen great advances in our understanding of inducible thermogenic adipose tissue, also referred to as beige fat. A deeper understanding of the molecular processes involved in the development and function of these cell types may lead to new therapeutics for obesity, diabetes, and other metabolic diseases. PMID:23388824

  5. Critical illness induces alternative activation of M2 macrophages in adipose tissue

    PubMed Central

    2011-01-01

    Introduction We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. Methods We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Results Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Conclusions Unlike obesity, critical illness evokes adipose tissue

  6. Effect of Chronic Athletic Activity on Brown Fat in Young Women

    PubMed Central

    Singhal, Vibha; Maffazioli, Giovana D.; Ackerman, Kate E.; Lee, Hang; Elia, Elisa F.; Woolley, Ryan; Kolodny, Gerald; Cypess, Aaron M.; Misra, Madhusmita

    2016-01-01

    Background The effect of chronic exercise activity on brown adipose tissue (BAT) is not clear, with some studies showing positive and others showing negative associations. Chronic exercise is associated with increased resting energy expenditure (REE) secondary to increased lean mass and a probable increase in BAT. Many athletes are in a state of relative energy deficit suggested by lower fat mass and hypothalamic amenorrhea. States of severe energy deficit such as anorexia nervosa are associated with reduced BAT. There are no data regarding the impact of chronic exercise activity on BAT volume or activity in young women and it is unclear whether relative energy deficiency modifies the effects of exercise on BAT. Purpose We assessed cold induced BAT volume and activity in young female athletes compared with non-athletes, and further evaluated associations of BAT with measures of REE, body composition and menstrual status. Methods The protocol was approved by our Institutional Review Board. Written informed consent was obtained from all participants prior to study initiation. This was a cross-sectional study of 24 women (16 athletes and8 non-athletes) between 18–25 years of age. Athletes were either oligo-amenorrheic (n = 8) or eumenorrheic (n = 8).We used PET/CT scans to determine cold induced BAT activity, VMAX Encore 29 metabolic cart to obtain measures of REE, and DXA for body composition. Results Athletes and non-athletes did not differ for age or BMI. Compared with non-athletes, athletes had lower percent body fat (p = 0.002), higher percent lean mass (p = 0.01) and trended higher in REE (p = 0.09). BAT volume and activity in athletes trended lower than in non-athletes (p = 0.06; p = 0.07, respectively). We found negative associations of BAT activity with duration of amenorrhea (r = -0.46, p = 0.02).BAT volume correlated inversely with lean mass (r = -0.46, p = 0.02), and positively with percent body fat, irisin and thyroid hormones. Conclusions Our study

  7. Movements and activity of juvenile Brown Treesnakes (Boiga irregularis)

    USGS Publications Warehouse

    Lardner, Bjorn; Savidge, Julie A.; Reed, Robert N.; Rodda, Gordon H.

    2014-01-01

    Understanding the spatial ecology and foraging strategy of invasive animals is essential for success in control or eradication. We studied movements and activity in juvenile Brown Treesnakes on Guam, as this population segment has proven particularly difficult to control. Distance between daytime refugia (from telemetry of 18 juveniles, 423-800 mm snout-vent length) ranged from 0-118 m (n  =  86), with a grand mean of 43 m. There were tendencies for shorter snake movements on nights directly following a full moon and on dry nights, but variation among snakes was of a larger magnitude and would greatly reduce chances to detect moon or rain effects unless corrected for. Snake activity was estimated from audio recordings of signals from “tipping” radio transmitters, analyzed for pulse period and amplitude. Activity was highest in the hours immediately after sunset, and gradually declined throughout the night before dropping abruptly in conjunction with sunrise. Snake activity was higher on rainy nights, and tended to be highest during waning moons and when the moon was below the horizon. We conclude that small Brown Treesnakes forage actively and appear to move far enough to regularly encounter the traps and bait used on Guam for control purposes, suggesting that alternative explanations are required for their low capture rates with these control tools.

  8. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  9. Hypothalamic control of adipose tissue.

    PubMed

    Stefanidis, A; Wiedmann, N M; Adler, E S; Oldfield, B J

    2014-10-01

    A detailed appreciation of the control of adipose tissue whether it be white, brown or brite/beige has never been more important to the development of a framework on which to build therapeutic strategies to combat obesity. This is because 1) the rate of fatty acid release into the circulation from lipolysis in white adipose tissue (WAT) is integrally important to the development of obesity, 2) brown adipose tissue (BAT) has now moved back to center stage with the realization that it is present in adult humans and, in its activated form, is inversely proportional to levels of obesity and 3) the identification and characterization of "brown-like" or brite/beige fat is likely to be one of the most exciting developments in adipose tissue biology in the last decade. Central to all of these developments is the role of the CNS in the control of different fat cell functions and central to CNS control is the integrative capacity of the hypothalamus. In this chapter we will attempt to detail key issues relevant to the structure and function of hypothalamic and downstream control of WAT and BAT and highlight the importance of developing an understanding of the neural input to brite/beige fat cells as a precursor to its recruitment as therapeutic target.

  10. Mitochondria and endocrine function of adipose tissue.

    PubMed

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future. PMID:23168280

  11. Adipose triglyceride lipase (Atgl) mediates the antibiotic jinggangmycin-stimulated reproduction in the brown planthopper, Nilaparvata lugens Stål

    PubMed Central

    Jiang, Yi-Ping; Li, Lei; Liu, Zong-Yu; You, Lin-Lin; Wu, You; Xu, Bing; Ge, Lin-Quan; Song, Qi-Sheng; Wu, Jin-Cai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is an agrochemical product widely used in China for controlling rice sheath blight, Rhizoctonia solani. Unexpectedly, it stimulates reproduction in the brown planthopper (BPH), Nilaparvata lugens (Stål). However, the underlying molecular mechanisms of the stimulation are unclear. The present investigation demonstrates that adipose triglyceride lipase (Atgl) is one of the enzymes involved in the JGM-stimulated reproduction in BPH. Silence of Atgl in JGM-treated (JGM + dsAtgl) females eliminated JGM-stimulated fecundity of BPH females. In addition, Atgl knockdown significantly reduced the protein and glycerin contents in the ovaries and fat bodies of JGM + dsAtgl females required for reproduction. We conclude that Atgl is one of the key enzymes responsible for JGM-stimulated reproduction in BPH. PMID:26739506

  12. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  13. Targeting adipose tissue

    PubMed Central

    2012-01-01

    Two different types of adipose tissues can be found in humans enabling them to respond to starvation and cold: white adipose tissue (WAT) is generally known and stores excess energy in the form of triacylglycerol (TG), insulates against cold, and serves as a mechanical cushion. Brown adipose tissue (BAT) helps newborns to cope with cold. BAT has the capacity to uncouple the mitochondrial respiratory chain, thereby generating heat rather than adenosine triphosphate (ATP). The previously widely held view was that BAT disappears rapidly after birth and is no longer present in adult humans. Using positron emission tomography (PET), however, it was recently shown that metabolically active BAT occurs in defined regions and scattered in WAT of the adult and possibly has an influence on whole-body energy homeostasis. In obese individuals adipose tissue is at the center of metabolic syndrome. Targeting of WAT by thiazolidinediones (TZDs), activators of peroxisome proliferator-activated receptor γ (PPARγ) a ‘master’ regulator of fat cell biology, is a current therapy for the treatment of type 2 diabetes. Since its unique capacity to increase energy consumption of the body and to dissipate surplus energy as heat, BAT offers new perspectives as a therapeutic target for the treatment of obesity and associated diseases such as type 2 diabetes and metabolic syndrome. Recent discoveries of new signaling pathways of BAT development give rise to new therapeutic possibilities in order to influence BAT content and activity. PMID:23102228

  14. Essential role of CD11a in CD8+ T-cell accumulation and activation in adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-cells, particularly CD8+ T-cells, are major participants in obesity-linked adipose tissue inflammation. We examined the mechanisms of CD8+ T-cell accumulation and activation in adipose tissue and the role of CD11a, a beta2 integrin. CD8+ T-cells in adipose tissue of obese mice showed activated phe...

  15. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice.

    PubMed

    Li, Yuesheng; Knapp, Joanne R; Kopchick, John J

    2003-02-01

    Growth hormone (GH) acts on adipose tissue by accelerating fat expenditure, preventing triglyceride accumulation, and facilitating lipid mobilization. To investigate whether GH is involved in the development and metabolism of interscapular brown adipose tissue (BAT), a site of nonshivering thermogenesis, we employed three lines of transgenic mice. Two of the lines are dwarf due to expression of a GH antagonist (GHA) or disruption of the GH receptor/binding-protein gene. A third mouse line is giant due to overexpression of a bovine GH (bGH) transgene. We have found that the body weights of those animals are proportional to their body lengths at 10 weeks of age. However, GHA dwarf mice tend to catch up with the nontransgenic (NT) littermates in body weight but not in body length at 52 weeks of age. The increase of body mass index (BMI) for GHA mice accelerates rapidly relative to controls as a function of age. We have also observed that BAT in both dwarf mouse lines but not in giant mice is enlarged in contrast to nontransgenic littermates. This enlargement occurs as a function of age. Northern analysis suggests that BAT can be a GH-responsive tissue because GHR/BP mRNAs were found there. Finally, the level of uncoupling protein-1 (UCP1) RNA was found to be higher in dwarf mice and lower in giant animals relative to controls, suggesting that GH-mediated signaling may negatively regulate UCP1 gene expression in BAT.

  16. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21

    PubMed Central

    Kim, Eun Kyung; Lee, Seung Hoon; Jhun, Joo Yeon; Byun, Jae Kyeong; Jeong, Jeong Hee; Lee, Seon-Young; Kim, Jae Kyung; Choi, Jong Young; Cho, Mi-La

    2016-01-01

    Obesity and its associated metabolic disorders are related to the onset of fatty liver and the balance of white adipose tissue (WAT) and brown adipose tissue (BAT). We hypothesized that metformin, an effective pharmacological treatment for type 2 diabetes, would inhibit white adipogenesis, fatty liver, and metabolic dysfunction. Metformin was treated daily for 14 weeks in a high-fat dieting C57BL/6J mice. Serum biomarkers were analyzed and protein level was assessed using confocal staining or flow cytometry. The development of lipid drops in the liver cells and white adipocyte was measured using hematoxylin and eosin or Oil Red O stains. Gene expressions were analyzed with quantitative real-time PCR. Metformin treatment decreased the body weight and improved the metabolic profile of obese mice. In obese mice, metformin also induced the expression of BAT-related markers and increased fibroblast growth factor (FGF) 21 expression in the liver and in white adipocyte. Metformin suppressed white adipocyte differentiation via induction of FGF21. Metformin improves Treg/Th17 balance in CD4+ T cells in mice with high-fat diet-induced obesity. Metformin also improves glucose metabolism and metabolic disorder. Interleukin-17 deficiency also decreases inflammation in mice. Therefore, metformin may be therapeutically useful for the treatment of obesity and metabolic dysfunction. PMID:27057099

  17. Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation

    SciTech Connect

    Sundin, U.; Moore, G.; Nedergaard, J.; Cannon, B.

    1987-05-01

    To investigate the acclimation process in a hibernator, four different parameters of thermogenin amount and activity were investigated in brown adipose tissue mitochondria from cold-exposed and cold-acclimated Syrian hamsters. Hamsters, which are hibernators, have been considered to be primed for thermogenesis and thus not to show cold-acclimation effects, but here a significant increase in (/sup 3/H)GDP-binding capacity was observed, and this increase was paralleled by an increase in thermogenin antigen amount, as measured in an enzyme-linked immunosorbent assay. The transient nature of the effect of cold exposure on (/sup 3/H)GDP binding, characteristically observed with rat mitochondria, was not observed with hamster mitochondria, and the increase in (/sup 3/H)GDP binding occurred without a change in the dissociation constant. The increase in thermogenin amount was paralleled by an increase both in GDP-sensitive Cl/sup -/ permeability of the mitochondria and in GDP-sensitive respiration. It was established that it is the maximal activity of thermogenin that is rate limiting for thermogenesis in isolated mitochondria, provided that an optimal substrate is used (such as palmitoyl carnitine). Cold acclimation also increased the total amount of mitochondria in the tissue, leading totally to a sixfold increase in thermogenin content of the hamster. It is concluded that hamsters show the expected physiological, pharmacological, and biochemical signs of cold acclimation.

  18. The brown fat secretome: metabolic functions beyond thermogenesis

    PubMed Central

    Wang, Guo-Xiao; Zhao, Xu-Yun; Lin, Jiandie D.

    2015-01-01

    Brown fat is highly active in fuel oxidation and dissipates chemical energy through uncoupling protein 1 (UCP1)-mediated heat production. Activation of brown fat leads to increased energy expenditure, reduced adiposity, and lower plasma glucose and lipid levels, thus contributing to better homeostasis. Uncoupled respiration and thermogenesis have been considered to be responsible for the metabolic benefits of brown adipose tissue. Recent studies have demonstrated that brown adipocytes also secrete factors that act locally and systemically to influence fuel and energy metabolism. This review discusses the evidence supporting a thermogenesis-independent role of brown fat, particularly through its release of secreted factors, and their implications in physiology and therapeutic development. PMID:25843910

  19. Differential Hematopoietic Activity in White Adipose Tissue Depending on its Localization.

    PubMed

    Luche, Elodie; Sengenès, Coralie; Arnaud, Emmanuelle; Laharrague, Patrick; Casteilla, Louis; Cousin, Beatrice

    2015-12-01

    White adipose tissue (WAT) can be found in different locations in the body, and these different adipose deposits exhibit specific physiopathological importance according to the subcutaneous or abdominal locations. We have shown previously the presence of functional hematopoietic stem/progenitor cells (HSPC) in subcutaneous adipose tissue (SCAT). These cells exhibit a specific hematopoietic activity that contributes to the renewal of the immune cell compartment within this adipose deposit. In this study, we investigated whether HSPC can be found in visceral adipose tissue (VAT) and whether a putative difference in in situ hematopoiesis may be related to anatomical location and to site-specific immune cell content in VAT compared to SCAT. Therein, we identified for the first time the presence of HSPC in VAT. Using both in vitro assays and in vivo competitive repopulation experiments with sorted HSPC from VAT or SCAT, we showed that the hematopoietic activity of HSPC was lower in VAT, compared to SCAT. In addition, this altered hematopoietic activity of HSPC in VAT was due to their microenvironment, and may be related to a specific combination of secreted factors and extracellular matrix molecules expressed by adipose derived stromal cells. Our results indicate that WAT specific hematopoietic activity may be generalized to all adipose deposits, although with specificity according to the fat pad location. Considering the abundance of WAT in the body, this emphasizes the potential importance of this hematopoietic activity in physiopathological situations.

  20. Characterization of brown adipose tissue ¹⁸F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population.

    PubMed

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    (18)F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake (18)F-FDG. The purpose of this study was to determine the imaging characteristics of (18)F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of (18)F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of (18)F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had (18)F-FDG uptake in BAT. (18)F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of (18)F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUVmax ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT (18)F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT (18)F-FDG uptake rate (P<0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR<1, P<0.05). Based on the value of OR, the most significant factor that affects BAT (18)F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of (18)F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT (18)F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting (18)F-FDG uptake. PMID:26702781

  1. Characterization of brown adipose tissue ¹⁸F-FDG uptake in PET/CT imaging and its influencing factors in the Chinese population.

    PubMed

    Shao, Xiaonan; Shao, Xiaoliang; Wang, Xiaosong; Wang, Yuetao

    2016-01-01

    (18)F-FDG PET/CT has been widely applied for tumor imaging. However, it is reported that many normal tissues, e.g., brown adipose tissue, can also uptake (18)F-FDG. The purpose of this study was to determine the imaging characteristics of (18)F-FDG uptake in brown adipose tissue (BAT) in PET/CT. A total of 2,944 patients who underwent PET/CT from September 2011 to March 2013 were analyzed retrospectively. Imaging features of (18)F-FDG uptake in BAT were analyzed. Univariate analysis and logistic regression analysis were performed to evaluate the effect of age, gender, cancer status, body mass index (BMI), average daily maximum temperature of imaging month and fasting plasma glucose (Glu) on the positive rate of (18)F-FDG uptake in BAT. The results showed that 1.9% (57/2944) patients had (18)F-FDG uptake in BAT. (18)F-FDG, manifested as flaky, nodular and beaded shape, was symmetrically distributed in the adipose tissues of cervical and supraclavicular, mediastinal, paravertebral, and perirenal areas. Uptake of (18)F-FDG within cervical/supraclavicular area was most common (89.5%, 51/57) with an SUVmax ranging from 2.8 to 31.4. Univariate analysis showed that gender and cancer status were not significantly correlated with the BAT (18)F-FDG uptake rate. In contrast, age, BMI, Glu and average daily maximum temperature in the imaging month were significantly correlated with the BAT (18)F-FDG uptake rate (P<0.05). Further logistic regression analysis showed that only age, BMI and average daily maximum temperature were significant (OR<1, P<0.05). Based on the value of OR, the most significant factor that affects BAT (18)F-FDG uptake rate was age, followed by the average daily maximum temperature and BMI. We concluded that Chinese adult has low positive rate of (18)F-FDG uptake in BAT. Cervical/Supraclavicular is the most common area with BAT (18)F-FDG uptake. Age, average daily maximum temperature and BMI are independent factors affecting (18)F-FDG uptake.

  2. Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue.

    PubMed

    Mathew, Deepa; Zhou, Peng; Pywell, Cameron M; van der Veen, Daan R; Shao, Jinping; Xi, Yang; Bonar, Nicolle A; Hummel, Alyssa D; Chapman, Sarah; Leevy, W Matthew; Duffield, Giles E

    2013-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2-/-) mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles of liver genes including those involved in lipid metabolism. In the present phenotypic study we intended to decipher, on a sex-specific basis, the role of ID2 in glucose metabolism and in the circadian regulation of activity, important components of energy balance. We find that Id2-/- mice exhibited altered daily and circadian rhythms of feeding and locomotor activity; activity profiles extended further into the late night/dark phase of the 24-hr cycle, despite mice showing reduced total locomotor activity. Also, male Id2-/- mice consumed a greater amount of food relative to body mass, and displayed less weight gain. Id2-/- females had smaller adipocytes, suggesting sexual-dimorphic programing of adipogenesis. We observed increased glucose tolerance and insulin sensitivity in male Id2-/- mice, which was exacerbated in older animals. FDG-PET analysis revealed increased glucose uptake by skeletal muscle and brown adipose tissue of male Id2-/- mice, suggesting increased glucose metabolism and thermogenesis in these tissues. Reductions in intramuscular triacylglycerol and diacylglycerol were detected in male Id2-/- mice, highlighting its possible mechanistic role in enhanced insulin sensitivity in these mice. Our findings indicate a role for ID2 as a regulator of glucose and lipid metabolism, and in the circadian control of feeding/locomotor behavior; and contribute to the understanding of the development of obesity and diabetes, particularly in shift work personnel among whom

  3. Effects of Long-Term Food Restriction Under Thermoneutral Conditions on Brown Adipose Tissue of Laboratory Mice.

    PubMed

    Elsukova, E I; Mizonova, O V; Medvedev, L N

    2015-09-01

    Long-term food restriction (3 weeks, 60% of normal consumption of control animals) was followed by an increase in DNA and protein content in the intercapsular brown fat of mice. As the animals were kept under thermoneutral conditions, these changes are thought to be a result of food restriction. PMID:26459485

  4. Effects of Long-Term Food Restriction Under Thermoneutral Conditions on Brown Adipose Tissue of Laboratory Mice.

    PubMed

    Elsukova, E I; Mizonova, O V; Medvedev, L N

    2015-09-01

    Long-term food restriction (3 weeks, 60% of normal consumption of control animals) was followed by an increase in DNA and protein content in the intercapsular brown fat of mice. As the animals were kept under thermoneutral conditions, these changes are thought to be a result of food restriction.

  5. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  6. Effect of the pyrrole polymerization mechanism on the antioxidative activity of nonenzymatic browning reactions.

    PubMed

    Hidalgo, Francisco J; Nogales, Fátima; Zamora, Rosario

    2003-09-10

    The present investigation was undertaken to study how the antioxidative activity (AA) of nonenzymatic browning reactions is changing at the same time that the browning (by the pyrrole polymerization mechanism) is being produced. The antioxidative activities of eight model pyrroles (pyrrole, 1-methylpyrrole, 2,5-dimethylpyrrole, 1,2,5-trimethylpyrrole, 2-acetylpyrrole, 2-acetyl-1-methylpyrrole, pyrrole-2-carboxaldehyde, and 1-methyl-2-pyrrolecarboxaldehyde) as well as the browning reaction of 2-(1-hydroxyethyl)-1-methylpyrrole (HMP) and the dimer (DIM) produced during HMP browning were determined. The results obtained suggest that the AAs observed in nonenzymatic browning reactions are the result of the AAs of the different oxidized lipid/amino acid reaction products formed. Thus, the different pyrrole derivatives produced in these reactions had different AAs, and the highest AAs were observed for alkyl-substituted pyrroles without free alpha-positions. Because some of these pyrrole derivatives are implicated in nonenzymatic browning production and this browning production implies the loss of hydroxyl groups and the transformation of some pyrroles with one type of substitution into others, changes in AA during browning production were observed, and the resulting DIM derivative was more antioxidant than HMP or higher polymers. These results explain the AA observed in fatty acid/protein mixtures after slight oxidation and suggest that, when the pyrrole polymerization mechanism is predominant, slightly browned samples may be more antioxidant than samples in which nonenzymatic browning has been highly developed. PMID:12952422

  7. Relationship between the enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis.

    PubMed

    Hisaminato, H; Murata, M; Homma, S

    2001-05-01

    Cut lettuce stored at 4 degrees C gradually turned brown on the cut section after several days of storage. Three factors for enzymatic browning, the polyphenol content, polyphenol oxidase activity, and phenylalanine ammonia-lyase (PAL) activity, were examined during the cold storage of cut lettuce. A relationship between the browning and PAL activity was apparent. We tried to prevent this browning by using the two enzyme inhibitors, 2-aminoindane-2-phosphonic acid (AIP), an inhibitor of the phenylpropanoid pathway, and glyphosate, an inhibitor of the shikimate pathway. AIP and glyphosate significantly inhibited the browning of cut lettuce. The polyphenol content and PAL activity were both reduced by the treatment with AIP. These results show that regulating the biosynthesis of polyphenols is essential to prevent the browning of cut lettuce.

  8. Activation of prostaglandin E2-EP4 signaling reduces chemokine production in adipose tissue.

    PubMed

    Tang, Eva H C; Cai, Yin; Wong, Chi Kin; Rocha, Viviane Z; Sukhova, Galina K; Shimizu, Koichi; Xuan, Ge; Vanhoutte, Paul M; Libby, Peter; Xu, Aimin

    2015-02-01

    Inflammation of adipose tissue induces metabolic derangements associated with obesity. Thus, determining ways to control or inhibit inflammation in adipose tissue is of clinical interest. The present study tested the hypothesis that in mouse adipose tissue, endogenous prostaglandin E2 (PGE2) negatively regulates inflammation via activation of prostaglandin E receptor 4 (EP4). PGE2 (5-500 nM) attenuated lipopolysaccharide-induced mRNA and protein expression of chemokines, including interferon-γ-inducible protein 10 and macrophage-inflammatory protein-1α in mouse adipose tissue. A selective EP4 antagonist (L161,982) reversed, and two structurally different selective EP4 agonists [CAY10580 and CAY10598] mimicked these actions of PGE2. Adipose tissue derived from EP4-deficient mice did not display this response. These findings establish the involvement of EP4 receptors in this anti-inflammatory response. Experiments performed on adipose tissue from high-fat-fed mice demonstrated EP4-dependent attenuation of chemokine production during diet-induced obesity. The anti-inflammatory actions of EP4 became more important on a high-fat diet, in that EP4 activation suppressed a greater variety of chemokines. Furthermore, adipose tissue and systemic inflammation was enhanced in high-fat-fed EP4-deficient mice compared with wild-type littermates, and in high-fat-fed untreated C57BL/6 mice compared with mice treated with EP4 agonist. These findings provide in vivo evidence that PGE2-EP4 signaling limits inflammation. In conclusion, PGE2, via activation of EP4 receptors, functions as an endogenous anti-inflammatory mediator in mouse adipose tissue, and targeting EP4 may mitigate adipose tissue inflammation.

  9. Increased peroxisome proliferator-activated receptor γ expression levels in visceral adipose tissue, and serum CCL2 and interleukin-6 levels during visceral adipose tissue accumulation.

    PubMed

    Yogarajah, Thaneswary; Bee, Yvonne-Tee Get; Noordin, Rahmah; Yin, Khoo Boon

    2015-01-01

    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.

  10. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism.

    PubMed

    Zhang, Wei; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.

  11. Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation.

    PubMed Central

    Teboul, L; Febbraio, M; Gaillard, D; Amri, E Z; Silverstein, R; Grimaldi, P A

    2001-01-01

    Fatty acid translocase (FAT/CD36) is a cell-surface glycoprotein that functions as a receptor/transporter for long-chain fatty acids (LCFAs), and interacts with other protein and lipid ligands. FAT/CD36 is expressed by various cell types, including platelets, monocytes/macrophages and endothelial cells, and tissues with an active LCFA metabolism, such as adipose, small intestine and heart. FAT/CD36 expression is induced during adipose cell differentiation and is transcriptionally up-regulated by LCFAs and thiazolidinediones in pre-adipocytes via a peroxisome-proliferator-activated receptor (PPAR)-mediated process. We isolated and analysed the murine FAT/CD36 promoter employing C(2)C(12)N cells directed to differentiate to either adipose or muscle. Transient transfection studies revealed that the 309 bp upstream from the start of exon 1 confer adipose specific activity. Sequence analysis of this DNA fragment revealed the presence of two imperfect direct repeat-1 elements. Electrophoretic mobility-shift assay demonstrated that these elements were peroxisome-proliferator-responsive elements (PPREs). Mutagenesis and transfection experiments indicated that both PPREs co-operate to drive strong promoter activity in adipose cells. We conclude that murine FAT/CD36 expression in adipose tissue is dependent upon transcriptional activation via PPARs through binding to two PPREs located at -245 to -233 bp and -120 to -108 bp from the transcription start site. PMID:11716758

  12. Effects of cold exposure on cyclic AMP concentration in plasma, liver, and brown and white adipose tissues in cold-acclimated rats

    NASA Astrophysics Data System (ADS)

    Habara, Yoshiaki

    1989-06-01

    Effects of acute cold exposure on plasma energy substrates and tissue 3',5'-adenosine monophosphate (cAMP) were analyzed in intact rats, to define an involvement of the nucleotide in nonshivering thermogenesis (NST) and resultant cold acclimation. After an acute cold exposure to -5°C, the plasma glucose level increased gradually in warm-kept control rats (C) while it decreased significantly in cold-acclimated rats (CA). However, it was increased considerably by an extreme cold exposure to -15°C in both C and CA. By contrast, plasma levels of free fatty acids (FFA) increased immediately after cold exposure and the release lasted during the period of exposure especially in C. The cold exposure also increased plasma cAMP concentration but no concomitant increase was found in the liver. In both brown (IBAT) and white (WAT) adipose tissues the nucleotide concentration showed a stepwise decrease. The observed correlation between lipolysis and plasma cAMP response after cold exposure suggests an involvement of the adenylate cyclase-cAMP system in NST via lipid metabolism, at least, in the early stages of cold acclimation.

  13. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice.

    PubMed

    Krautbauer, Sabrina; Eisinger, Kristina; Hader, Yvonne; Buechler, Christa

    2014-10-01

    Galectin-3 regulates immune cell function and clearance of advanced glycation end products. Galectin-3 is increased in serum of obese humans and mice and most studies suggest that this protein protects from inflammation in metabolic diseases. Current data show that galectin-3 is markedly elevated in the liver, subcutaneous and intra-abdominal fat depots of mice fed a high fat diet and ob/ob mice. Galectin-3 is also increased in brown adipose tissues of these animals and immunohistochemistry confirms higher levels in adipocytes. Raised galectin-3 in obese white adipocytes has been described in the literature and regulation of adipocyte galectin-3 by metabolites with a role in obesity has been analyzed. Galectin-3 is expressed in 3T3-L1 fibroblasts and human preadipocytes and is modestly induced in mature adipocytes. In 3T3-L1 adipocytes galectin-3 is localized in the cytoplasm and is also detected in cell supernatants. Glucose does not alter soluble galectin-3. Lipopolysaccharide has no effect while TNF reduces and IL-6 raises this lectin in cell supernatants. Palmitate and oleate modestly elevate soluble galectin-3. Differentiation of 3T3-L1 cells in the presence of 100 μM and 200 μM linoleate induces soluble galectin-3 and cellular levels are upregulated by the higher concentration. Current data suggest that free fatty acids and IL-6 increase galectin-3 in adipocytes and thereby may contribute to higher levels in obesity.

  14. Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

    PubMed Central

    Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2016-01-01

    Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine.

  15. Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

    PubMed Central

    Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2016-01-01

    Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine. PMID:27660434

  16. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation.

    PubMed

    García-Martín, Rubén; Alexaki, Vasileia I; Qin, Nan; Rubín de Celis, María F; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Eisenhofer, Graeme; Breier, Georg; Blüher, Matthias; Hampe, Jochen; El-Armouche, Ali; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin; Chavakis, Triantafyllos

    2016-02-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction. PMID:26572826

  17. Transcription regulation of gene expression in rat brown adipose tissue in response to unloading or 2G loading during growing period

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Hitomi, Y.; Kawano, F.; Ohira, Y.; Kizaki, T.; Nakano, N.; Sakurai, T.; Izawa, T.; Suzuki, K.; Sudoh, M.; Roy, R. R.; Ohno, H.

    2007-05-01

    The effects were investigated of long-term unloading and macrogravity on the expression of 15 genes at the mRNA levels in brown adipose tissue (BAT) from rat pups, particularly focusing on uncoupling protein (UCP) family, nitric oxide synthase (NOS) isoenzymes, and antioxidant enzymes. The animals in the unloaded group (a simulation model of spaceflight) were hindlimb-unloaded by tail suspension between postnatal day 4 and month 3, followed by 2-mo ambulation recovery. Moreover, centrifugation at 2G (an imitation of the hypergravity effects) was performed during the same period as the unloading, also followed by 2-mo ambulation recovery (adaptation to 1G from 2G). Compared with the age-matched control group, significantly lower expression levels of mRNA for UCP2, iNOS, and Cu,Zn-superoxide dismutase (Cu, Zn-SOD) in BAT were observed immediately after unloading, but not immediately after exposure to 2G. During 2-mo ambulation recovery from both extreme conditions, the expression of mRNA for Mn-SOD was enhanced, suggesting an increase in oxidative stress. These findings suggest that both micro- and macrogravity may have some influence upon the function of BAT, and that changes in the BAT function may be involved in the mechanisms subserving adaptation to such extreme conditions by what humans have to be faced with during the spaceflight and return to 1G.

  18. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation

    PubMed Central

    Alexaki, Vasileia I.; Qin, Nan; Rubín de Celis, María F.; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R.; Eisenhofer, Graeme; Breier, Georg; Blüher, Matthias; Hampe, Jochen; El-Armouche, Ali; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin

    2015-01-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction. PMID:26572826

  19. Capsaicin and Related Food Ingredients Reducing Body Fat Through the Activation of TRP and Brown Fat Thermogenesis.

    PubMed

    Saito, Masayuki

    2015-01-01

    Brown adipose tissue (BAT) is a site of sympathetically activated adaptive nonshivering thermogenesis, thereby being involved in the regulation of energy balance and body fatness. Recent radionuclide imaging studies have revealed the existence of metabolically active BAT in adult humans. Human BAT is activated by acute cold exposure and contributes to cold-induced increase in whole-body energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, repeated cold exposure recruits BAT in association with increased energy expenditure and decreased body fatness. The stimulatory effects of cold are mediated through the activation of transient receptor potential (TRP) channels, most of which are also chemesthetic receptors for various naturally occurring substances including herbal plants and food ingredients. Capsaicin and its analog capsinoids, representative agonists of TRPV1, mimic the effects of cold to decrease body fatness through the activation and recruitment of BAT. The well-known antiobesity effect of green tea catechins is also attributable to the activation of the sympathetic nerve and BAT system. Thus, BAT is a promising target for combating obesity and related metabolic disorders in humans.

  20. Severe Brown Fat Lipoatrophy Aggravates Atherosclerotic Process in Male Mice.

    PubMed

    Gómez-Hernández, Almudena; Beneit, Nuria; Escribano, Óscar; Díaz-Castroverde, Sabela; García-Gómez, Gema; Fernández, Silvia; Benito, Manuel

    2016-09-01

    Obesity is one of the major risk factors for the development of cardiovascular diseases and is characterized by abnormal accumulation of adipose tissue, including perivascular adipose tissue (PVAT). However, brown adipose tissue (BAT) activation reduces visceral adiposity. To demonstrate that severe brown fat lipoatrophy might accelerate atherosclerotic process, we generated a new mouse model without insulin receptor (IR) in BAT and without apolipoprotein (Apo)E (BAT-specific IR knockout [BATIRKO];ApoE(-/-) mice) and assessed vascular and metabolic alterations associated to obesity. In addition, we analyzed the contribution of the adipose organ to vascular inflammation. Brown fat lipoatrophy induces visceral adiposity, mainly in gonadal depot (gonadal white adipose tissue [gWAT]), severe glucose intolerance, high postprandial glucose levels, and a severe defect in acute insulin secretion. BATIRKO;ApoE(-/-) mice showed greater hypertriglyceridemia than the obtained in ApoE(-/-) and hypercholesterolemia similar to ApoE(-/-) mice. BATIRKO;ApoE(-/-) mice, in addition to primary insulin resistance in BAT, also showed a significant decrease in insulin signaling in liver, gWAT, heart, aorta artery, and thoracic PVAT. More importantly, our results suggest that severe brown fat lipoatrophy aggravates the atherosclerotic process, characterized by a significant increase of lipid depots, atherosclerotic coverage, lesion size and complexity, increased macrophage infiltration, and proinflammatory markers expression. Finally, an increase of TNF-α and leptin as well as a decrease of adiponectin by BAT, gWAT, and thoracic PVAT might also be responsible of vascular damage. Our results suggest that severe brown lipoatrophy aggravates atherosclerotic process. Thus, BAT activation might protect against obesity and its associated metabolic alterations. PMID:27414981

  1. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol.

    PubMed

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes.

  2. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    PubMed Central

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes. PMID:27066503

  3. A stringent validation of mouse adipose tissue identity markers.

    PubMed

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  4. Seasonal changes in general activity, body mass and reproduction of two small nocturnal primates: a comparison of the golden brown mouse lemur ( Microcebus ravelobensis) in Northwestern Madagascar and the brown mouse lemur ( Microcebus rufus) in Eastern Madagascar.

    PubMed

    Randrianambinina, Blanchard; Rakotondravony, Daniel; Radespiel, Ute; Zimmermann, Elke

    2003-10-01

    To investigate for the first time the relationship between contrasting patterns of seasonal changes of the environment and activity, body mass and reproduction for small nocturnal primates in nature, we compared a population of golden brown mouse lemur ( Microcebus ravelobensis) in a dry deciduous forest of northwestern Madagascar and of the brown mouse lemur ( Microcebus rufus) in an evergreen rain forest of eastern Madagascar. Both species live under similar photoperiodic conditions. Golden brown mouse lemurs (GBML) were active during the whole period (May to December) irrespective of changing environmental conditions. In contrast, a part of the population of brown mouse lemurs (BML) showed prolonged seasonal torpor, related to body mass during periods of short day length and low ambient temperatures. Differences between species might be due to differences in ambient temperature and food supply. Body weight and tail thickness (adipose tissue reserve) did not show prominent differences between short and long photoperiods in GBML, whereas both differ significantly in BML, suggesting species-specific differences in the photoperiodically driven control of metabolism. Both species showed a seasonal reproduction. The rate of growth and size of the testes were similar and preceded estrous onset in both species suggesting a photoperiodic control of reproduction in males. The estrous onset in females occurred earlier in GBML than in BML. Estrous females were observed over at least 4 months in the former, but in only 1 month in the latter species. Intraspecific variation of estrous onset in GBML may be explained by body mass. Interspecific variation of female reproduction indicates species-specific differences in the control of reproduction. Thus, environmentally related differences in annual rhythms between closely related small nocturnal lemurs emerged that allow them to cope with contrasting patterns of seasonal changes in their habitats.

  5. Dietary fructose feeding increases adipose methylglyoxal accumulation in rats in association with low expression and activity of glyoxalase-2.

    PubMed

    Masterjohn, Christopher; Park, Youngki; Lee, Jiyoung; Noh, Sang K; Koo, Sung I; Bruno, Richard S

    2013-08-21

    Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to D-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipose, mediated by tissue-specific differences in the glyoxalase system. We fed six week old male Sprague-Dawley rats a low-fructose diet (10% w/w) or a high-fructose diet (60% w/w) containing no GTE or GTE at 0.5% or 1.0% for nine weeks. Fructose-fed rats had higher (P < 0.05) adipose methylglyoxal, but GTE had no effect. Plasma and hepatic methylglyoxal were unaffected by fructose and GTE. Fructose and GTE also had no effect on the expression or activity of glyoxalase-1 and glyoxalase-2 at liver or adipose. Regardless of diet, adipose glyoxalase-2 activity was 10.8-times lower (P < 0.05) than adipose glyoxalase-1 activity and 5.9-times lower than liver glyoxalase-2 activity. Adipose glyoxalase-2 activity was also inversely related to adipose methylglyoxal (r = -0.61; P < 0.05). These findings suggest that fructose-mediated adipose methylglyoxal accumulation is independent of GTE supplementation and that its preferential accumulation in adipose compared to liver is due to low constitutive expression of glyoxalase-2.

  6. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    PubMed

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit.

  7. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    PubMed

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. PMID:25308659

  8. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    PubMed

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  9. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  10. Brown adipose tissue thermogenesis does not explain the intra-administration hyperthermic sign-reversal induced by serial administrations of 60% nitrous oxide to rats.

    PubMed

    Al-Noori, Salwa; Ramsay, Douglas S; Cimpan, Andreas; Maltzer, Zoe; Zou, Jessie; Kaiyala, Karl J

    2016-08-01

    Initial administration of ≥60% nitrous oxide (N2O) to rats promotes hypothermia primarily by increasing whole-body heat loss. We hypothesized that the drug promotes heat loss via the tail and might initially inhibit thermogenesis via brown adipose tissue (BAT), major organs of thermoregulation in rodents. Following repeated administrations, N2O inhalation evokes hyperthermia underlain by increased whole-body heat production. We hypothesized that elevated BAT thermogenesis plays a role in this thermoregulatory sign reversal. Using dual probe telemetric temperature implants and infrared (IR) thermography, we assessed the effects of nine repeated 60% N2O administrations compared to control (con) administrations on core temperature, BAT temperature, lumbar back temperature and tail temperature. Telemetric core temperature, telemetric BAT temperature, and IR BAT temperature were reduced significantly during initial 60% N2O inhalation (p≤0.001 compared to con). IR thermography revealed that acute N2O administration unexpectedly reduced tail temperature (p=0.0001) and also inhibited IR lumbar temperature (p<0.0001). In the 9th session, N2O inhalation significantly increased telemetric core temperature (p=0.007) indicative of a hyperthermic sign reversal, yet compared to control administrations, telemetric BAT temperature (p=0.86), IR BAT temperature (p=0.85) and tail temperature (p=0.47) did not differ significantly. Thus, an initial administration of 60% N2O at 21°C may promote hypothermia via reduced BAT thermogenesis accompanied by tail vasoconstriction as a compensatory mechanism to limit body heat loss. Following repeated N2O administrations rats exhibit a hyperthermic core temperature but a normalized BAT temperature, suggesting induction of a hyperthermia-promoting thermogenic adaptation of unknown origin. PMID:27503733

  11. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications

    PubMed Central

    Beneit, Nuria; Díaz-Castroverde, Sabela

    2016-01-01

    This review focuses on the contribution of white, brown, and perivascular adipose tissues to the pathophysiology of obesity and its associated metabolic and vascular complications. Weight gain in obesity generates excess of fat, usually visceral fat, and activates the inflammatory response in the adipocytes and then in other tissues such as liver. Therefore, low systemic inflammation responsible for insulin resistance contributes to atherosclerotic process. Furthermore, an inverse relationship between body mass index and brown adipose tissue activity has been described. For these reasons, in recent years, in order to combat obesity and its related complications, as a complement to conventional treatments, a new insight is focusing on the role of the thermogenic function of brown and perivascular adipose tissues as a promising therapy in humans. These lines of knowledge are focused on the design of new drugs, or other approaches, in order to increase the mass and/or activity of brown adipose tissue or the browning process of beige cells from white adipose tissue. These new treatments may contribute not only to reduce obesity but also to prevent highly prevalent complications such as type 2 diabetes and other vascular alterations, such as hypertension or atherosclerosis. PMID:27766104

  12. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    PubMed Central

    Balkow, Aileen; Jagow, Johanna; Haas, Bodo; Siegel, Franziska; Kilić, Ana; Pfeifer, Alexander

    2015-01-01

    Objective Obesity is an enormous burden for patients and health systems world-wide. Brown adipose tissue dissipates energy in response to cold and has been shown to be metabolically active in human adults. The type I transforming growth factor β (TGFβ) receptor Activin receptor-like kinase 7 (Alk7) is highly expressed in adipose tissues and is down-regulated in obese patients. Here, we studied the function of Alk7 in brown adipocytes. Methods Using pharmacological and genetic tools, Alk7 signaling pathway and its effects were studied in murine brown adipocytes. Brown adipocyte differentiation and activation was analyzed. Results Alk7 is highly upregulated during differentiation of brown adipocytes. Interestingly, Alk7 expression is increased by cGMP/protein kinase G (PKG) signaling, which enhances brown adipocyte differentiation. Activin AB effectively activates Alk7 and SMAD3 signaling. Activation of Alk7 in brown preadipocytes suppresses the master adipogenic transcription factor PPARγ and differentiation. Stimulation of Alk7 during late differentiation of brown adipocytes reduces lipid content and adipogenic marker expression but enhances UCP1 expression. Conclusions We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes. PMID:26266090

  13. Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion.

    PubMed

    Hong, Ki Yong; Bae, Hosung; Park, Intae; Park, Dae-Young; Kim, Kyun Hoo; Kubota, Yoshiaki; Cho, Eui-Sic; Kim, Hail; Adams, Ralf H; Yoo, Ook-Joon; Koh, Gou Young

    2015-08-01

    Despite the growing interest in adipose tissue as a therapeutic target of metabolic diseases, the identity of adipocyte precursor cells (preadipocytes) and the formation of adipose tissue during embryonic development are still poorly understood. Here, we clarified the identity and dynamic processes of preadipocytes in mouse white adipose tissue during embryogenesis through direct examination, lineage tracing and culture systems. Surprisingly, we found that lipid-lacking but perilipin(+) or adiponectin(+) proliferating preadipocytes started to emerge at embryonic day 16.5, and these cells underwent active proliferation until birth. Moreover, these preadipocytes resided as clusters and were distributed along growing adipose vasculatures. Importantly, the embryonic preadipocytes exhibited considerable coexpression of stem cell markers, such as CD24, CD29 and PDGFRα, and a small portion of preadipocytes were derived from PDGFRβ(+) mural cells, in contrast to the adult preadipocytes present in the stromal vascular fraction. Further analyses with in vitro and ex vivo culture systems revealed a stepwise but dynamic regulation of preadipocyte formation and differentiation during prenatal adipogenesis. To conclude, we unraveled the identity and characteristics of embryonic preadipocytes, which are crucial for the formation and expansion of adipose tissue during embryogenesis.

  14. Combination of deep sea water and Sesamum indicum leaf extract prevents high-fat diet-induced obesity through AMPK activation in visceral adipose tissue

    PubMed Central

    YUAN, HAIDAN; CHUNG, SUNGHYUN; MA, QIANQIAN; YE, LI; PIAO, GUANGCHUN

    2016-01-01

    The aim of the present study was to evaluate the protective effects of a combination of deep sea water (DSW) and Sesamum indicum leaf extract (SIE) against high-fat diet (HFD)-induced obesity and investigate its molecular mechanisms in adipose tissue. ICR mice were randomly divided into three groups: HFD control (HFC), DSW and DSW + 125 mg/kg SIE (DSS) groups. The mice in the HFC group had free access to drinking water while those in the DSW and DSS groups had free access to DSW. The mice in the DSS group were treated with SIE once per day for 8 weeks. The mice in all three groups were allowed to freely access a HFD. Compared with the HFC group, the DSS group showed lower body weight gain and serum levels of glucose, triglycerides and leptin. Histological analyses of the epididymal white, retroperitoneal white and scapular brown adipose tissue of mice in the DSS group revealed that the adipocytes were markedly decreased in size compared with those in the HFC group. Moreover, DSS significantly increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase (ACC) in mice epididymal adipose tissues. Furthermore, DSS upregulated the expression levels of lipolysis-associated mRNA, specifically peroxisome proliferator-activated receptor-α (PPAR-α) and cluster of differentiation 36 (CD36), and energy expenditure-associated mRNA, namely uncoupling protein 2 (UCP2) and carnitine palmitoyltransferase-1 (CPT1) in the epididymal adipose tissues. By contrast, DSS suppressed the expression of the lipogenesis-related gene sterol regulatory element-binding protein-1 (SREBP1) at the mRNA level. These results suggest that DSS is effective for suppressing body weight gain and enhancing the lipid profile. PMID:26889265

  15. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in Type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasminogen activator inhibitor-1 (PAI-1) production by adipose tissue is increased in obesity, and its circulating levels are high in type 2 diabetes. PAI-1 increases cardiovascular risk by favoring clot stability, interfering with vascular remodeling, or both. We investigated in obese diabetic per...

  16. Adiposity and Physical Activity Are Not Related to Academic Achievement in School-Aged Children

    PubMed Central

    LeBlanc, Monique M.; Martin, Corby K.; Han, Hongmei; Newton, Robert; Sothern, Melinda; Webber, Larry S.; Davis, Allison B.; Williamson, Donald A.

    2012-01-01

    Objective To investigate the hypotheses that in elementary school students: 1) adiposity and academic achievement are negatively correlated and 2) physical activity and academic achievement are positively correlated. Method Participants were 1963 children in fourth through sixth grades. Adiposity was assessed by calculating body mass index (BMI) percentile and percent body fat and academic achievement with statewide standardized tests in four content areas. Socioeconomic status and age were control variables. A subset of participants (n = 261) wore an accelerometer for three days to provide objective measurement of physical activity. Additionally, the association between weight status and academic achievement was examined by comparing children who could be classified as “extremely obese” and the rest of the sample, as well as comparing children who could be classified as normal weight, overweight, or obese. Extreme obesity was defined as >= 1.2 times the 95th percentile. Results Results indicated that there were no significant associations between adiposity or physical activity and achievement in students. No academic achievement differences were found between children with BMI percentiles within the extreme obesity range and those who did not fall within the extreme obesity classification. Additionally, no academic achievement differences were found for children with BMI percentiles within the normal weight, overweight, or obese ranges. Conclusion These results do not support the hypotheses that increased adiposity is associated with decreased academic achievement or that greater physical activity is related to improved achievement. However, these results are limited by methodological weaknesses, especially the use of cross-sectional data. PMID:22617499

  17. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  18. Associations between Accelerometer-derived Physical Activity and Regional Adiposity in Young Men and Women

    PubMed Central

    Smith, H A; Storti, K L; Arena, VC; Kriska, A M; Gabriel, K K Pettee; Sutton-Tyrrell, K; Hames, K C; Conroy, M B

    2013-01-01

    Objective Empirical evidence supports an inverse relationship between physical activity (PA) and adiposity, but studies using detailed measures of both are scarce. We described the relationship between regional adiposity and accelerometer-derived PA in men and women. Design and Methods Cross-sectional analysis included 253 participants from a weight loss study limited to ages 20–45 years and BMI 25–39.9 kg/m2. PA data were collected with accelerometers and expressed as total accelerometer counts and average amount of time per day accumulated in different intensity levels (sedentary, light-, and moderate- to vigorous- intensity PA (MVPA)). Accumulation of time spent above 100 counts was expressed as total active time. Computed tomography (CT) was used to measure abdominal and adipose tissue (AT). Multivariate linear regression analyses were used to assess the relationship between regional adiposity (dependent variable) and the various PA levels (independent variable), and were executed separately for men and women, adjusting for wear time, age, race, education, and BMI. Results Among males light activity was inversely associated with total AT (β=−0.19; p=0.02) as well as visceral AT (VAT) (β=−0.30; p=0.03). Among females sedentary time was positively associated with VAT (β=0.11; p=0.04) and total active time was inversely associated with VAT (β=−0.12; p=0.04). Conclusions Findings from this study suggest that PA intensity level may influence regional adiposity differently in men and women. Additional research is needed in larger samples to clarify the difference in these associations by sex, create recommendations for the frequency, duration and intensity of PA needed to target fat deposits, and determine if these recommendations should differ by sex. PMID:23408709

  19. Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis.

    PubMed

    Bi, Sheng

    2013-09-10

    In addition to controlling food intake, the dorsomedial hypothalamus (DMH) plays an important role in thermoregulation. Within the DMH, a number of neuropeptides and receptors have been found and their roles in controlling energy balance are being investigated. We recently found that the orexigenic neuropeptide Y (NPY) in the DMH has specific actions on body adiposity and thermogenesis using a viral-mediated manipulation of NPY in the DMH. Knockdown of NPY in the DMH promotes the development of brown adipocytes in white adipose tissue and increases brown adipocyte activity. DMH NPY knockdown also causes increased thermogenesis and energy expenditure. Finally, DMH NPY knockdown prevents high-fat diet-induced obesity and improves glucose homeostasis. This review focuses on the role of DMH NPY in modulating body adiposity and thermogenesis.

  20. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake

    PubMed Central

    Zeve, Daniel; Seo, Jin; Suh, Jae Myoung; Stenesen, Drew; Tang, Wei; Berglund, Eric D.; Wan, Yihong; Williams, Linda J.; Lim, Ajin; Martinez, Myrna J.; McKay, Renée M.; Millay, Douglas P.; Olson, Eric N.; Graff, Jonathan M.

    2012-01-01

    SUMMARY Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. β-catenin activation in PPARγ–expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism. PMID:22482731

  1. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake.

    PubMed

    Zeve, Daniel; Seo, Jin; Suh, Jae Myoung; Stenesen, Drew; Tang, Wei; Berglund, Eric D; Wan, Yihong; Williams, Linda J; Lim, Ajin; Martinez, Myrna J; McKay, Renée M; Millay, Douglas P; Olson, Eric N; Graff, Jonathan M

    2012-04-01

    Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. β-catenin activation in PPARγ-expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell-surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism.

  2. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    SciTech Connect

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; Massiera, Florence; Teboul, Michele; Ailhaud, Gerard; Kim, Jung; Moustaid-Moussa, Naima; Voy, Brynn H

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  3. Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes

    PubMed Central

    Townsend, K L; Tseng, Y-H

    2015-01-01

    Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed ‘browning'. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of ‘browning'. We also provide an overview of constitutive BAT vs rBAT in mouse and human. PMID:27152169

  4. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  5. The independent prospective associations of activity intensity and dietary energy density with adiposity in young adolescents.

    PubMed

    van Sluijs, Esther M F; Sharp, Stephen J; Ambrosini, Gina L; Cassidy, Aedin; Griffin, Simon J; Ekelund, Ulf

    2016-03-14

    There is limited evidence on the prospective association of time spent in activity intensity (sedentary (SED), moderate (MPA) or vigorous (VPA) physical activity) and dietary intake with adiposity indicators in young people. This study aimed to assess associations between (1) baseline objectively measured activity intensity, dietary energy density (DED) and 4-year change in adiposity and (2) 4-year change in activity intensity/DED and adiposity at follow-up. We conducted cohort analyses including 367 participants (10 years at baseline, 14 years at follow-up) with valid data for objectively measured activity (Actigraph), DED (4-d food diary), anthropometry (waist circumference (WC), %body fat (%BF), fat mass index (FMI), weight status) and covariates. Linear and logistic regression models were fit, including adjustment for DED and moderate-to-vigorous physical activity. Results showed that baseline DED was associated with change in WC (β for 1kJ/g difference: 0·71; 95% CI 0·26, 1·17), particularly in boys (1·26; 95% CI 0·41, 2·16 v. girls: 0·26; 95% CI -0·34, 0·87), but not with %BF, FMI or weight status. In contrast, baseline SED, MPA or VPA were not associated with any of the outcomes. Change in DED was negatively associated with FMI (β for 1kJ/g increase: -0·86; 95% CI -1·59, -0·12) and %BF (-0·86; 95% CI -1·25, -0·11) but not WC (-0·27; 95% CI -1·02, 0·48). Change in SED, MPA and VPA did not predict adiposity at follow-up. In conclusion, activity intensity was not prospectively associated with adiposity, whereas the directions of associations with DED were inconsistent. To inform public health efforts, future studies should continue to analyse longitudinal data to further understand the independent role of different energy-balance behaviours in changes in adiposity in early adolescence. PMID:26758859

  6. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential.

    PubMed

    Murata, M; Nishimura, M; Murai, N; Haruta, M; Homma, S; Itoh, Y

    2001-02-01

    Polyphenol oxidase (PPO) is responsible for enzymatic browning of apples. Apples lacking PPO activity might be useful not only for the food industry but also for studies of the metabolism of polyphenols and the function of PPO. Transgenic apple calli were prepared by using Agrobacterium tumefaciens carrying the kanamycin (KM) resistant gene and antisense PPO gene. Four KM-resistant callus lines were obtained from 356 leaf explants. Among these transgenic calli, three calli grew on the medium containing KM at the same rate as non-transgenic callus on the medium without KM. One callus line had an antisense PPO gene, in which the amount and activity of PPO were reduced to half the amount and activity in non-transgenic callus. The browning potential of this line, which was estimated by adding chlorogenic acid, was also half the browning potential of non-transgenic callus.

  7. The brown and brite adipocyte marker Cox7a1 is not required for non-shivering thermogenesis in mice

    PubMed Central

    Maurer, Stefanie F.; Fromme, Tobias; Grossman, Lawrence I.; Hüttemann, Maik; Klingenspor, Martin

    2015-01-01

    The cytochrome c oxidase subunit isoform Cox7a1 is highly abundant in skeletal muscle and heart and influences enzyme activity in these tissues characterised by high oxidative capacity. We identified Cox7a1, well-known as brown adipocyte marker gene, as a cold-responsive protein of brown adipose tissue. We hypothesised a mechanistic relationship between cytochrome c oxidase activity and Cox7a1 protein levels affecting the oxidative capacity of brown adipose tissue and thus non-shivering thermogenesis. We subjected wildtype and Cox7a1 knockout mice to different temperature regimens and tested characteristics of brown adipose tissue activation. Cytochrome c oxidase activity, uncoupling protein 1 expression and maximal norepinephrine-induced heat production were gradually increased during cold-acclimation, but unaffected by Cox7a1 knockout. Moreover, the abundance of uncoupling protein 1 competent brite cells in white adipose tissue was not influenced by presence or absence of Cox7a1. Skin temperature in the interscapular region of neonates was lower in uncoupling protein 1 knockout pups employed as a positive control, but not in Cox7a1 knockout pups. Body mass gain and glucose tolerance did not differ between wildtype and Cox7a1 knockout mice fed with high fat or control diet. We conclude that brown adipose tissue function in mice does not require the presence of Cox7a1. PMID:26635001

  8. Shades of Brown: A Model for Thermogenic Fat

    PubMed Central

    Dempersmier, Jon; Sul, Hei Sook

    2015-01-01

    Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like cells, so-called beige/brite cells, which arise in white adipose tissue in response to cold and hormonal stimuli. These cells may derive from distinct origins, and while functionally similar, have different gene signatures. Here, we highlight recent advances in the understanding of brown and beige/brite adipocytes as well as transcriptional regulation for development and function of murine brown and beige/brite adipocytes focusing on EBF2, IRF4, and ZFP516, in addition to PRDM16 as a coregulator. We also discuss hormonal regulation of brown and beige/brite adipocytes including several factors secreted from various tissues, including BMP7, FGF21, and irisin, as well as those from BAT itself, such as Nrg4 and adenosine. PMID:26005433

  9. Shades of brown: a model for thermogenic fat.

    PubMed

    Dempersmier, Jon; Sul, Hei Sook

    2015-01-01

    Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like cells, so-called beige/brite cells, which arise in white adipose tissue in response to cold and hormonal stimuli. These cells may derive from distinct origins, and while functionally similar, have different gene signatures. Here, we highlight recent advances in the understanding of brown and beige/brite adipocytes as well as transcriptional regulation for development and function of murine brown and beige/brite adipocytes focusing on EBF2, IRF4, and ZFP516, in addition to PRDM16 as a coregulator. We also discuss hormonal regulation of brown and beige/brite adipocytes including several factors secreted from various tissues, including BMP7, FGF21, and irisin, as well as those from BAT itself, such as Nrg4 and adenosine. PMID:26005433

  10. Expression of beta 1- and beta 3-adrenergic-receptor messages and adenylate cyclase beta-adrenergic response in bovine perirenal adipose tissue during its transformation from brown into white fat.

    PubMed Central

    Casteilla, L; Muzzin, P; Revelli, J P; Ricquier, D; Giacobino, J P

    1994-01-01

    Possible modifications of the beta-adrenergic effector system during the development of bovine perirenal brown adipose tissue (BAT) in utero and its transformation into white-like adipose tissue after birth were studied. The parameters assessed were the level of expression of beta 1-, beta 2- and beta 3-adrenergic receptor (AR) mRNAs and the response of the plasma-membrane adenylate cyclase to (-)-isoprenaline and to the beta 3-agonist BRL 37344. The beta 3-AR mRNA was found to be expressed very early in utero, i.e. before the third month of foetal life. Then it increased dramatically (9-fold) between month 6 of foetal life and birth. A high beta 3-AR mRNA level was maintained after birth up to an age of 3 months. After conversion of BAT into white-like adipose tissue, i.e. in the adult bovine, the beta 3-AR mRNA expression became small or not detectable, and the beta 1-AR mRNA, which was expressed much less than the beta 3-AR mRNA in foetal life, became predominant. A response of the adenylate cyclase to (-)-isoprenaline was observed in foetal life (3.1-fold stimulation). It decreased after birth (1.8-fold stimulation) and then remained constant until adulthood. A response to BRL 37344 was also observed in foetal life (1.8-fold stimulation). It was maintained after birth, but disappeared in the adult. A possible relationship between the beta-AR expression and the adenylate cyclase response to (-)-isoprenaline on the one hand and the uncoupling-protein expression on the other is discussed. The bovine might represent a good model to understand the transition from brown to white fat in the human. Images Figure 3 PMID:7904157

  11. Enhanced pan-peroxisome proliferator-activated receptor gene and protein expression in adipose tissue of diet-induced obese mice treated with telmisartan.

    PubMed

    Penna-de-Carvalho, Aline; Graus-Nunes, Francielle; Rabelo-Andrade, Júlia; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa

    2014-12-01

    Telmisartan has previously been used to target obesity, showing peroxisome proliferator-activated receptor (PPAR) β/δ-related effects in white adipose tissue (WAT). We sought to evaluate whether telmisartan enhances gene and protein expression of all PPAR isoforms in WAT and brown adipose tissue (BAT), as well as their downstream effects upon insulin resistance, adipokine profile and adaptive thermogenesis. Male C57BL/6 mice were fed standard chow (SC; 10% lipids) or high-fat diet (HF; 50% lipids) for 10 weeks. Animals were then randomly allocated into the following four groups: SC, SC-T, HF and HF-T. Telmisartan [10 mg (kg diet)(-1)] was administered for 4 weeks in the diet. Animals in the HF group were overweight and exhibited hypertension, insulin resistance, decreased energy expenditure, a pro-inflammatory adipokine profile and abnormal fat pad mass distribution. Animals in the HF group showed decreased expression of PPARα, β/δ and γ in WAT and BAT, resulting in impaired glucose uptake and insufficient thermogenesis. Due to the improvement in the adipokine profile and enhanced insulin sensitivity with adequate insulin-stimulated glucose uptake after treatment with telmisartan, the activation of all PPAR isoforms in WAT was beneficial. In BAT, telmisartan induced sustained sympathetic activation, because the β3-adrenergic receptor was induced by PPARβ/δ, while uncoupling protein 1 was induced by PPARα to promote thermogenesis. Telmisartan exerted anti-obesity effects through higher pan-PPAR gene and protein expression. Upon PPARα, β/δ and γ (pan-PPAR) agonism in adipose tissue of obese mice, telmisartan ameliorates inflammation and insulin resistance, as well as inducing non-shivering thermogenesis. Our results point to new therapeutic targets for the control of obesity and comorbidities through pan-PPAR-related effects. PMID:25326526

  12. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis.

    PubMed

    Lucas, Stéphanie; Tavernier, Geneviève; Tiraby, Claire; Mairal, Aline; Langin, Dominique

    2003-01-01

    Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis. PMID:12518034

  13. The adipose organ: morphological perspectives of adipose tissues.

    PubMed

    Cinti, S

    2001-08-01

    Anatomically, an organ is defined as a series of tissues which jointly perform one or more interconnected functions. The adipose organ qualifies for this definition as it is made up of two tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy contained in lipids between thermogenesis and the other metabolic functions. In rats and mice the adipose organ consists of several subcutaneous and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. The number of brown adipocytes found in white areas varies with age, strain of animal and environmental conditions. Brown and white adipocyte precursors are morphologically dissimilar. Together with a rich vascular supply, brown areas receive abundant noradrenergic parenchymal innervation. The gross anatomy and histology of the organ vary considerably in different physiological (cold acclimation, warm acclimation, fasting) and pathological conditions such as obesity; many important genes, such as leptin and uncoupling protein-1, are also expressed very differently in the two cell types. These basic mechanisms should be taken into account when addressing the physiopathology of obesity and its treatment. PMID:11681806

  14. The influence of sex steroids on adipose tissue growth and function.

    PubMed

    Law, James; Bloor, Ian; Budge, Helen; Symonds, Michael E

    2014-07-01

    Obesity remains a major global health concern. Understanding the metabolic influences of the obesity epidemic in the human population on maintenance of a healthy weight and metabolic profile is still of great significance. The importance and role of white adipose tissue has been long established, particularly with excess adiposity. Brown adipose tissue (BAT), however, has only recently been shown to contribute significantly to the metabolic signature of mammals outside the previously recognised role in small mammals and neonates. BAT's detection in adults has led to a renewed interest and is now considered to be a potential therapeutic target to prevent excess white fat accumulation in obesity, a theory further promoted by the recent discovery of beige fat. Adipose tissue distribution varies significantly between genders. Pre-menopausal females often show enhanced lower and peripheral fat deposition in adiposity deposition compared to the male profile of central and visceral fat accumulation with obesity. This sex disparity is partly attributed to the different effects of sex hormone profiles and interactions on the adipose tissue system. In this review, we explore this intricate relationship and show how modifications in the effects of sex hormones impact on both brown and white adipose tissues. We also discuss the impact of sex hormones on activation of the hypothalamic-pituitary-adrenal (HPA) axis and how the three pathways between adiposity, HPA and sex steroids can have a major contribution to the prevention or maintenance of obesity and therefore on overall health.

  15. Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity

    PubMed Central

    Barra, Nicole G.; Palanivel, Rengasamy; Denou, Emmanuel; Chew, Marianne V.; Gillgrass, Amy; Walker, Tina D.; Kong, Josh; Richards, Carl D.; Jordana, Manel; Collins, Stephen M.; Trigatti, Bernardo L.; Holloway, Alison C.; Raha, Sandeep; Steinberg, Gregory R.; Ashkar, Ali A.

    2014-01-01

    Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function. PMID:25517731

  16. Circulating insulin stimulates fatty acid retention in white adipose tissue via KATP channel activation in the central nervous system only in insulin-sensitive mice[S

    PubMed Central

    Coomans, Claudia P.; Geerling, Janine J.; Guigas, Bruno; van den Hoek, Anita M.; Parlevliet, Edwin T.; Ouwens, D. Margriet; Pijl, Hanno; Voshol, Peter J.; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin signaling in the central nervous system (CNS) is required for the inhibitory effect of insulin on glucose production. Our aim was to determine whether the CNS is also involved in the stimulatory effect of circulating insulin on the tissue-specific retention of fatty acid (FA) from plasma. In wild-type mice, hyperinsulinemic-euglycemic clamp conditions stimulated the retention of both plasma triglyceride-derived FA and plasma albumin-bound FA in the various white adipose tissues (WAT) but not in other tissues, including brown adipose tissue (BAT). Intracerebroventricular (ICV) administration of insulin induced a similar pattern of tissue-specific FA partitioning. This effect of ICV insulin administration was not associated with activation of the insulin signaling pathway in adipose tissue. ICV administration of tolbutamide, a KATP channel blocker, considerably reduced (during hyperinsulinemic-euglycemic clamp conditions) and even completely blocked (during ICV administration of insulin) WAT-specific retention of FA from plasma. This central effect of insulin was absent in CD36-deficient mice, indicating that CD36 is the predominant FA transporter in insulin-stimulated FA retention by WAT. In diet-induced insulin-resistant mice, these stimulating effects of insulin (circulating or ICV administered) on FA retention in WAT were lost. In conclusion, in insulin-sensitive mice, circulating insulin stimulates tissue-specific partitioning of plasma-derived FA in WAT in part through activation of KATP channels in the CNS. Apparently, circulating insulin stimulates fatty acid uptake in WAT but not in BAT, directly and indirectly through the CNS. PMID:21700834

  17. Adequate evaluation of HSL mass and activity in rat adipose tissue in fasting and aging-related obesity.

    PubMed

    Tsujita, Takahiro; Sumiyoshi, Maho; Morimoto, Chie; Kameda, Kenji; Okuda, Hiromichi

    2002-04-01

    Adipose tissue is a unique tissue because its mass is readily changed by altering nutritional conditions. Therefore the activity and content of enzyme in the adipose tissue is significantly differed according to the way of their presentation: per g tissue, per whole tissue, or per cell number. In the present study, the effects of the ways of expressing the hormone sensitive lipase (HSL) activity and content were studied in rat by decreasing or increasing adipose tissue. Fasting caused a progressive decline in body weight and in the weight of the epididymal fat pad. When the HSL content was expressed per g of adipose tissue, the lipase activity and immunoreactive HSL protein content in fasting rats were higher than those in fed rats. On the other hand, when they were expressed as per fat pad, the lipase activity and immunoreactive HSL protein in fasting rats were lower than those in fed rats. The opposite results were observed in obesity. When the HSL content was expressed per g of adipose tissue, the lipase activity and immunoreactive HSL protein in obese rats were lower than in control rats. However, when the HSL content was expressed per fat pad, the lipase activity and immunoreactive HSL protein in the obese rats were higher than in the control rats. Therefore we must pay careful attention to the way of presentation of adipose tissue enzyme contents.

  18. Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning.

    PubMed

    Plazas, Mariola; López-Gresa, María P; Vilanova, Santiago; Torres, Cristina; Hurtado, Maria; Gramazio, Pietro; Andújar, Isabel; Herráiz, Francisco J; Bellés, José M; Prohens, Jaime

    2013-09-18

    Eggplant (Solanum melongena) varieties with increased levels of phenolics in the fruit present enhanced functional quality, but may display greater fruit flesh browning. We evaluated 18 eggplant accessions for fruit total phenolics content, chlorogenic acid content, DPPH scavenging activity, polyphenol oxidase (PPO) activity, liquid extract browning, and fruit flesh browning. For all the traits we found a high diversity, with differences among accessions of up to 3.36-fold for fruit flesh browning. Variation in total content in phenolics and in chlorogenic acid content accounted only for 18.9% and 6.0% in the variation in fruit flesh browning, and PPO activity was not significantly correlated with fruit flesh browning. Liquid extract browning was highly correlated with chlorogenic acid content (r = 0.852). Principal components analysis (PCA) identified four groups of accessions with different profiles for the traits studied. Results suggest that it is possible to develop new eggplant varieties with improved functional and apparent quality.

  19. Diurnal activities of the brown stink bug (Hemiptera: Pentatomidae) in and near tasseling corn fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand for effective management of the brown stink bug, Euschistus servus, in corn and other crops has been increasing in recent years. To identify when and where the stink bugs are most likely to occur for targeted insecticide application, diurnal activities of stink bugs in and near the field...

  20. A computational model of adipose tissue metabolism: Evidence for intracellular compartmentation and differential activation of lipases

    PubMed Central

    Kim, Jaeyeon; Saidel, Gerald M.; Kalhan, Satish C.

    2008-01-01

    Regulation of lipolysis in adipose tissue is critical to whole body fuel homeostasis and to the development of insulin resistance. Due to the challenging nature of laboratory investigations of regulatory mechanisms in adipose tissue, mathematical models could provide a valuable adjunct to such experimental work. We have developed a computational model to analyze key components of adipose tissue metabolism in vivo in human in the fasting state. The various key components included triglyceride-fatty acid cycling, regulation of lipolytic reactions, and glyceroneogenesis. The model, consisting of spatially lumped blood and cellular compartments, included essential transport processes and biochemical reactions. Concentration dynamics for major substrates were described by mass balance equations. Model equations were solved numerically to simulate dynamic responses to intravenous epinephrine infusion. Model simulations were compared with the corresponding experimental measurements of the arteriovenous difference across the abdominal subcutaneous fat bed in humans. The model can simulate physiological responses arising from the different expression levels of lipases. Key findings of this study are as follows: (1) Distinguishing the active metabolic subdomain (~3% of total tissue volume) is critical for simulating data. (2) During epinephrine infusion, lipases are differentially activated such that diglyceride breakdown is ~4 times faster than triglyceride breakdown. (3) Glyceroneogenesis contributes more to glycerol-3-phosphate synthesis during epinephrine infusion when pyruvate oxidation is inhibited by a high acetyl-CoA/free-CoA ratio. PMID:18234232

  1. New Atglistatin closely related analogues: Synthesis and structure-activity relationship towards adipose triglyceride lipase inhibition.

    PubMed

    Roy, Pierre-Philippe; D'Souza, Kenneth; Cuperlovic-Culf, Miroslava; Kienesberger, Petra C; Touaibia, Mohamed

    2016-08-01

    Adipose Triglyceride Lipase (ATGL) performs the first and rate-limiting step in lipolysis by hydrolyzing triacylglycerols stored in lipid droplets to diacylglycerols. By mediating lipolysis in adipose and non-adipose tissues, ATGL is a major regulator of overall energy metabolism and plasma lipid levels. Since chronically high levels of plasma lipids are linked to metabolic disorders including insulin resistance and type 2 diabetes, ATGL is an interesting therapeutic target. In the present study, fourteen closely related analogues of Atglistatin (1), a newly discovered ATGL inhibitor, were synthesized, and their ATGL inhibitory activity was evaluated. The effect of these analogues on lipolysis in 3T3-L1 adipocytes clearly shows that inhibition of the enzyme by Atglistatin (1) is due to the presence of the carbamate and N,N-dimethyl moieties on the biaryl central core at meta and para position, respectively. Mono carbamate-substituted analogue C2, in which the carbamate group was in the meta position as in Atglistatin (1), showed slight inhibition. Low dipole moment of Atglistatin (1) compared to the synthesized analogues possibly explains the lower inhibitory activities.

  2. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    SciTech Connect

    Walden, Tomas B.; Petrovic, Natasa; Nedergaard, Jan

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  3. Follistatin promotes adipocyte differentiation, browning, and energy metabolism.

    PubMed

    Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B; Norris, Keith C; Devaskar, Sherin U; Reue, Karen; Singh, Rajan

    2014-03-01

    Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism. PMID:24443561

  4. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits.

    PubMed

    Mohd Esa, Norhaizan; Abdul Kadir, Khairul-Kamilah; Amom, Zulkhairi; Azlan, Azrina

    2013-11-15

    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes. PMID:23790918

  5. Brown's syndrome.

    PubMed

    Wilson, M E; Eustis, H S; Parks, M M

    1989-01-01

    Brown's syndrome is a well-recognized clinical disorder of ocular motility manifesting most notably a restriction of active and passive elevation in adduction. The original name, "superior oblique tendon sheath syndrome," is no longer appropriate, since it has been shown that the tissue surrounding the anterior superior oblique tendon is blameless as a restrictive force. "True" and "simulated" as descriptive modifiers should also be discarded, as they relate to the disproven sheath concept. Brown's syndrome occurs as a congenital or acquired, constant or intermittent condition; the common link is restriction of free movement through the trochlea pulley mechanism. The various etiologic theories are reviewed and the spectrum of medical and surgical treatments are described and evaluated. Evidence suggests that subtypes of Brown's syndrome lie on a single continuum and that spontaneous resolution occurs in each group, probably more often than previously recognized. A simplified classification scheme is encouraged and possible future directions in Brown's syndrome research are introduced.

  6. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity.

    PubMed

    Tompuri, Tuomo T

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor.

  7. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    PubMed Central

    Tompuri, Tuomo T.

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor. PMID:26321958

  8. Natural killer T cells in adipose tissue are activated in lean mice.

    PubMed

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism.

  9. Spatial distribution of total phenolic content, enzymatic activities and browning in white yam (Dioscorea rotundata) tubers.

    PubMed

    Graham-Acquaah, Seth; Ayernor, George Sodah; Bediako-Amoa, Betty; Saalia, Firibu Kwesi; Afoakwa, Emmanuel Ohene

    2014-10-01

    Browning in raw and processed yams resulting from enzymes, polyphenol oxidase (PPO) and peroxidase (POD), activities is a major limitation to the industrial utilization of Dioscorea varieties of yams. Two elite cultivars of D. rotundata species were selected to study the spatial distribution of total phenols and enzymes (PPO and POD) activities. The intensities of tissue darkening in fresh yam chips prepared from the tuber sections of cultivars during frozen storage were also studied. Total phenolic content was observed to be highest in the head and mid sections of the cultivars than at the tail end. PPO activity did not have any specific distribution pattern whereas POD activity was found to be more concentrated in the head than in the middle and tail regions. Browning was found to be most intense in the head regions of the two cultivars studied; and was observed to correlate with total phenol and dry matter contents of tubers. Between the two enzymes, POD activity appeared to be more related to browning than PPO.

  10. Spatial distribution of total phenolic content, enzymatic activities and browning in white yam (Dioscorea rotundata) tubers.

    PubMed

    Graham-Acquaah, Seth; Ayernor, George Sodah; Bediako-Amoa, Betty; Saalia, Firibu Kwesi; Afoakwa, Emmanuel Ohene

    2014-10-01

    Browning in raw and processed yams resulting from enzymes, polyphenol oxidase (PPO) and peroxidase (POD), activities is a major limitation to the industrial utilization of Dioscorea varieties of yams. Two elite cultivars of D. rotundata species were selected to study the spatial distribution of total phenols and enzymes (PPO and POD) activities. The intensities of tissue darkening in fresh yam chips prepared from the tuber sections of cultivars during frozen storage were also studied. Total phenolic content was observed to be highest in the head and mid sections of the cultivars than at the tail end. PPO activity did not have any specific distribution pattern whereas POD activity was found to be more concentrated in the head than in the middle and tail regions. Browning was found to be most intense in the head regions of the two cultivars studied; and was observed to correlate with total phenol and dry matter contents of tubers. Between the two enzymes, POD activity appeared to be more related to browning than PPO. PMID:25328234

  11. Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy.

    PubMed

    Peng, Xin-Gui; Ju, Shenghong; Fang, Fang; Wang, Yu; Fang, Ke; Cui, Xin; Liu, George; Li, Peng; Mao, Hui; Teng, Gao-Jun

    2013-01-15

    Brown adipose tissue (BAT) plays a key role in thermogenesis to protect the body from cold and obesity. White adipose tissue (WAT) stores excess energy in the form of triglycerides. To better understand the genetic effect on regulation of WAT and BAT, we investigated the fat fraction (FF) in two types of adipose tissues in ob/ob, human BSCL2/seipin gene knockout (SKO), Fsp27 gene knockout (Fsp27(-/-)), and wild-type (WT) mice in vivo using chemical shift selective imaging and (1)H-MR spectroscopy. We reported that the visceral fat volume in WAT was significantly larger in ob/ob mice, but visceral fat volumes were lower in SKO and Fsp27(-/-) mice compared with WT mice. BAT FF was significantly higher in ob/ob mice than the WT group and similar to that of WAT. In contrast, WAT FFs in SKO and Fsp27(-/-) mice were lower and similar to that of BAT. The adipocyte size of WAT in ob/ob mice and the BAT adipocyte size in ob/ob, SKO, and Fsp27 mice were significantly larger compared with WT mice. However, the WAT adipocyte size was significantly smaller in SKO mice than in WT mice. Positive correlations were observed between the adipocyte size and FFs of WAT and BAT. These results suggested that smaller adipocyte size correlates with lower FFs of WAT and BAT. In addition, the differences in FFs in WAT and BAT measured by MR methods in different mouse models were related to the different regulation effects of ob, seipin, or Fsp27 gene on developing WAT and BAT.

  12. RAAS Activation Is Associated With Visceral Adiposity and Insulin Resistance Among HIV-infected Patients

    PubMed Central

    Srinivasa, Suman; Fitch, Kathleen V.; Wong, Kimberly; Torriani, Martin; Mayhew, Caitlin; Stanley, Takara; Lo, Janet; Adler, Gail K.

    2015-01-01

    Context: Little is known about renin-angiotensin-aldosterone system (RAAS) activation in relationship to visceral adipose tissue (VAT) accumulation in HIV-infected patients, a population at significant risk for insulin resistance and other metabolic disease. Design: Twenty HIV and 10 non-HIV-infected subjects consumed a standardized low sodium or liberal sodium diet to stimulate or suppress the RAAS, respectively. RAAS parameters were evaluated in response to each diet and a graded angiotensin II infusion. Further analyses were performed after groups were substratified by median VAT measured by magnetic resonance imaging. Results: Aldosterone concentrations during the low-sodium diet were higher in HIV than non-HIV-infected subjects [13.8 (9.7, 30.9) vs 9.2 (7.6, 13.6) ng/dL, P = .03] and increased across groups stratified by visceral adipose tissue (VAT) [8.5 (7.1, 12.8), 9.2 (8.1, 21.5), 11.4 (9.4, 13.8), and 27.2 (13.0, 36.9) ng/dL in non-HIV-infected without increased VAT, non-HIV-infected with increased VAT, HIV-infected without increased VAT, HIV-infected with increased VAT, respectively, overall trend P = .02]. Under this condition, plasma renin activity [3.50 (2.58, 4.65) vs 1.45 (0.58, 2.33) ng/mL · h, P = .002] was higher among the HIV-infected subjects with vs without increased VAT. Differences in the suppressibility of plasma renin activity by graded angiotensin infusion were seen stratifying by VAT among the HIV-infected group (P < .02 at each dose). In addition, aldosterone (P = .007) was an independent predictor of insulin resistance in multivariate modeling, controlling for VAT and adiponectin. Conclusion: These data suggest excess RAAS activation in relationship to visceral adiposity in HIV-infected patients that may independently contribute to insulin resistance. Mineralocorticoid blockade may have therapeutic potential to reduce metabolic complications in HIV-infected patients with increased visceral adiposity. PMID:26086328

  13. Effects of vitamin a status on expression of ucp1 and brown/beige adipocyte-related genes in white adipose tissues of beef cattle.

    PubMed

    Kanamori, Yohei; Yamada, Tomoya; Asano, Hiroki; Kida, Ryosuke; Qiao, Yuhang; Abd Eldaim, Mabrouk A; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2014-09-01

    We previously reported the presence of brown/beige adipocytes in the white fat depots of mature cattle. The present study examined the effects of dietary vitamin A on the expression of brown/beige adipocyte-related genes in the white fat depots of fattening cattle. No significant differences were observed in the expression of Ucp1 between vitamin A-deficient cattle and control cattle. However, the expression of the other brown/beige adipocyte-related genes was slightly higher in the mesenteric fat depots of vitamin A-deficient cattle. The present results suggest that a vitamin A deficiency does not markedly affect the expression of Ucp1 in white fat depots, but imply that it may stimulate the emergence of beige adipocytes in the mesenteric fat depots of fattening cattle.

  14. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation. PMID:27498007

  15. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation.

  16. Dietary whole cottonseed depresses lipogenesis but has no effect on stearoyl coenzyme desaturase activity in bovine subcutaneous adipose tissue.

    PubMed

    Page, A M; Sturdivant, C A; Lunt, D K; Smith, S B

    1997-09-01

    The primary objective of this study was to determine the effect of long-term feeding of whole cottonseed (WCS) on lipogenesis and stearoyl-coenzyme A desaturase activity in growing steers. Brangus steers were fed either a control, cornbased diet (n = 11) or 30% WCS (n = 12). The 30% WCS contributed an estimated 6.6% additional lipid to the diet. Steers fed the added WCS had greater live weights (P = 0.04) and kidney, pelvic, and heart fat (P = 0.005). Subcutaneous fat thickness was not different (P = 0.20) between treatment groups, although WCS elicited an increase in the proportion of large diameter subcutaneous adipocytes. The rate of [U-14C]acetate incorporation into fatty acids in subcutaneous adipose tissue was reduced by dietary WCS (171.4 vs 122.1 nmol x 100 mg adipose tissue-1 x 2 hr-1, P = 0.03), indicating that the increased dietary fat depressed de novo lipogenesis. Hepatic desaturase activity was much lower than that of subcutaneous adipose tissue, a feature common to cattle. We anticipated that added WCS also would depress stearoyl-coenzyme A desaturase activity in subcutaneous adipose tissue and liver due to its cyclopropene fatty acid content. Instead, desaturase activity was numerically (although not significantly) greater in liver (P = 0.37) and adipose tissue (P = 0.23). PMID:9417995

  17. Antioxidant Activity of Brown Soybean Ethanolic Extracts and Application to Cooked Pork Patties

    PubMed Central

    Kim, Hyun-Wook; Choi, Yun-Sang

    2016-01-01

    The brown soybean extract (BE, extracted by distilled water, 50%, 75%, and 95% ethanol) were analyzed for their total phenol, flavonoid, anthocyanin content, and DPPH radical-scavenging activity to determine antioxidant activities. Brown soybean extract with 75% ethanol showed significantly higher DPPH radical scavenging activity, total phenol and anthocyanin content compared to the other treatments (p<0.05). Then, brown soybean extract with 75% ethanol was applied to pork patties at different concentration (0.05%, 0.1%, and 0.2%) and lipid oxidation was evaluated during 15 d of refrigerated storage. Addition of BE significantly increased redness and pH values, respectively (p<0.05). Moreover, TBARS value of pork patties decreased significantly (p<0.05) as BE concentration increased. In sensory evaluation, pork patties with 0.1% BE had significantly higher score than other treatments in flavor and overall acceptability (p<0.05). Consequently, these results indicate that 0.1% BE could be an effective natural antioxidant to inhibit lipid oxidation in pork patties. PMID:27433107

  18. Antioxidant Activity of Brown Soybean Ethanolic Extracts and Application to Cooked Pork Patties.

    PubMed

    Lee, Choong-Hee; Hwang, Ko-Eun; Kim, Hyun-Wook; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Choi, Yun-Sang; Jang, Sung-Jin; Jeong, Tae-Jun; Kim, Cheon-Jei

    2016-01-01

    The brown soybean extract (BE, extracted by distilled water, 50%, 75%, and 95% ethanol) were analyzed for their total phenol, flavonoid, anthocyanin content, and DPPH radical-scavenging activity to determine antioxidant activities. Brown soybean extract with 75% ethanol showed significantly higher DPPH radical scavenging activity, total phenol and anthocyanin content compared to the other treatments (p<0.05). Then, brown soybean extract with 75% ethanol was applied to pork patties at different concentration (0.05%, 0.1%, and 0.2%) and lipid oxidation was evaluated during 15 d of refrigerated storage. Addition of BE significantly increased redness and pH values, respectively (p<0.05). Moreover, TBARS value of pork patties decreased significantly (p<0.05) as BE concentration increased. In sensory evaluation, pork patties with 0.1% BE had significantly higher score than other treatments in flavor and overall acceptability (p<0.05). Consequently, these results indicate that 0.1% BE could be an effective natural antioxidant to inhibit lipid oxidation in pork patties. PMID:27433107

  19. Metabolic interplay between white, beige, brown adipocytes and the liver.

    PubMed

    Scheja, Ludger; Heeren, Joerg

    2016-05-01

    In mammalian evolution, three types of adipocytes have developed, white, brown and beige adipocytes. White adipocytes are the major constituents of white adipose tissue (WAT), the predominant store for energy-dense triglycerides in the body that are released as fatty acids during catabolic conditions. The less abundant brown adipocytes, the defining parenchymal cells of brown adipose tissue (BAT), internalize triglycerides that are stored intracellularly in multilocular lipid droplets. Beige adipocytes (also known as brite or inducible brown adipocytes) are functionally very similar to brown adipocytes and emerge in specific WAT depots in response to various stimuli including sustained cold exposure. The activation of brown and beige adipocytes (together referred to as thermogenic adipocytes) causes both the hydrolysis of stored triglycerides as well as the uptake of lipids and glucose from the circulation. Together, these fuels are combusted for heat production to maintain body temperature in mammals including adult humans. Given that heating by brown and beige adipocytes is a very-well controlled and energy-demanding process which entails pronounced shifts in energy fluxes, it is not surprising that an intensive interplay exists between the various adipocyte types and parenchymal liver cells, and that this influences systemic metabolic fluxes and endocrine networks. In this review we will emphasize the role of hepatic factors that regulate the metabolic activity of white and thermogenic adipocytes. In addition, we will discuss the relevance of lipids and hormones that are secreted by white, brown and beige adipocytes regulating liver metabolism in order to maintain systemic energy metabolism in health and disease. PMID:26829204

  20. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds

    PubMed Central

    Rocha de Souza, Micheline Cristiane; Marques, Cybelle Teixeira; Guerra Dore, Celina Maria; Ferreira da Silva, Fernando Roberto; Oliveira Rocha, Hugo Alexandre

    2006-01-01

    The in vitro antioxidant activities of the following six sulfated polysaccharides were investigated: iota, kappa and lambda carrageenans, which are widely used in the food industry, fucoidan (homofucan) from the edible seaweed Fucus vesiculosus and fucans (heterofucans) F0.5 and F1.1 from the seaweed Padina gymnospora. With respect to the inhibition of superoxide radical formation, fucoidan had an IC50 (the half maximal inhibitory concentration) of 0.058 mg·mL−1, while the IC50 for the kappa, iota and lambda carrageenans were 0.112, 0.332 and 0.046 mg·mL−1, respectively. All of the samples had an inhibitory effect on the formation of hydroxyl radicals. The results of peroxidation tests showed that fucoidan had an IC50 of 1.250 mg·mL−1 and that the kappa, iota and lambda carrageenans had an IC50 of 2.753 and 2.338 and 0.323 mg·mL−1, respectively. Fucan fractions showed low antioxidant activity relative to fucoidan. These results clearly indicate the beneficial effect of algal polysaccharides as antioxidants. PMID:19396353

  1. The "Skinny" on brown fat, obesity, and bone.

    PubMed

    Devlin, Maureen J

    2015-02-01

    The discovery that metabolically active brown fat is present in humans throughout ontogeny raises new questions about the interactions between thermoregulatory, metabolic, and skeletal homeostasis. Brown adipose tissue (BAT) is distinct from white adipose tissue (WAT) for its ability to burn, rather than store, energy. BAT uniquely expresses uncoupling protein-1 (abbreviated as UCP1), which diverts the energy produced by cellular respiration to generate heat. While BAT is found in small mammals, hibernators, and newborns, this depot was thought to regress in humans during early postnatal life. Recent studies revealed that human BAT remains metabolically active throughout childhood and even in adulthood, particularly in response to cold exposure. In addition to the constitutive BAT depots present at birth, BAT cells can be induced within WAT depots under specific metabolic and climatic conditions. These cells, called inducible brown fat, "brite," or beige fat, are currently the focus of intense investigation as a possible treatment for obesity. Inducible brown fat is associated with higher bone mineral density, suggesting that brown fat interacts with bone growth in previously unrecognized ways. Finally, BAT may have contributed to climatic adaptation in hominins. Here, I review current findings on the role of BAT in thermoregulation, bone growth, and metabolism, describe the potential role of BAT in moderating the obesity epidemic, and outline possible functions of BAT across hominin evolutionary history.

  2. Sonication inhibited browning but decreased polyphenols contents and antioxidant activity of fresh apple (malus pumila mill, cv. Red Fuji) juice.

    PubMed

    Sun, Yujing; Zhong, Liezhou; Cao, Lianfei; Lin, Wenwen; Ye, Xingqian

    2015-12-01

    Enzyme browning is the main challenge in the preparation of fresh apple juice. The influence of sonication on browning, as well as polyphenols and antioxidant activity of fresh apple juice was investigated. It was found that ultrasound can inhibit the browning of fresh apple (Malus pumila Mill, cv. Red Fuji) juice, but decreased the contents of total phenolic content (TPC), total flavonoid content (TFC) and chlorogenic acid and reduced the antioxidant activity. On the whole, ultrasound technology cannot be used to the antibrowning of fresh apple (Malus pumila Mill, cv. Red Fuji) juice.

  3. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension.

    PubMed

    Xiong, Xiao-Qing; Chen, Wei-Wei; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing

    2012-11-01

    We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

  4. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation.

    PubMed

    Spencer, Michael; Yao-Borengasser, Aiwei; Unal, Resat; Rasouli, Neda; Gurley, Catherine M; Zhu, Beibei; Peterson, Charlotte A; Kern, Philip A

    2010-12-01

    Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.

  5. Adiposity is Associated with Endothelial Activation in Healthy 2- to 3-Year-Old Children

    PubMed Central

    Castro, Cecilia; Tracy, Russell P.; Deckelbaum, Richard J.; Basch, Charles E.; Shea, Steven

    2013-01-01

    Adiposity is associated with C-reactive protein level in healthy 2–3 year old children and with other markers of endothelial activation adults, but data are lacking in very young children. Data from 491 healthy Hispanic children were analyzed. Mean age was 2.7 years (S.D. 0.5, range 2 to 3 years); mean body mass index (BMI) was 17.2 kg/m2 (S.D. 1.9) among boys and 17.1 kg/m2 (S.D. 2.1) among girls. E-selectin level was associated with BMI (R =0.11; p < 0.02), ponderal index (p < 0.02), waist circumference (p = 0.02), fasting insulin (p < 0.02), and insulin resistance (p ≤ 0.05); these associations remained significant after adjustment for age, sex and fasting glucose. sVCAM was also associated with BMI (R = 0.12; P<0.05). These observations indicate that adiposity is associated with inflammation and endothelial activation in very early childhood. PMID:20020578

  6. Adipose tissues as endocrine target organs.

    PubMed

    Lanthier, Nicolas; Leclercq, Isabelle A

    2014-08-01

    In the context of obesity, white adipocyte hypertrophy and adipose tissue macrophage infiltration result in the production of pro-inflammatory adipocytokines inducing insulin resistance locally but also in distant organs and contributing to low grade inflammatory status associated with the metabolic syndrome. Visceral adipose tissue is believed to play a prominent role. Brown and beige adipose tissues are capable of energy dissipation, but also of cytokine production and their role in dysmetabolic syndrome is emerging. This review focuses on metabolic and inflammatory changes in these adipose depots and contribution to metabolic syndrome. Also we will review surgical and pharmacological procedures to target adiposity as therapeutic interventions to treat obesity-associated disorders.

  7. Differentiation of rat brown adipocytes during late foetal development: role of insulin-like growth factor I.

    PubMed Central

    Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M

    1995-01-01

    Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409

  8. Effects of 24-epibrassinolide on enzymatic browning and antioxidant activity of fresh-cut lotus root slices.

    PubMed

    Gao, Hui; Chai, HongKang; Cheng, Ni; Cao, Wei

    2017-02-15

    Fresh-cut lotus root slices were treated with 80nM 24-epibrassinolide (EBR) and then stored at 4°C for 8days to investigate the effects on cut surface browning. The results showed that EBR treatment reduced cut surface browning in lotus root slices and alleviated membrane lipid peroxidation as reflected by low malondialdehyde content and lipoxygenase activity. EBR treatment inhibited the activity of phenylalanine ammonia lyase and polyphenol oxidase, and subsequently decreased phenolics accumulation and soluble quniones formation. The treatment also stimulated the activity of peroxidase, catalase and ascorbate peroxidase and delayed the loss of ascorbic acid, which would help prevent membrane lipid peroxidation, as a consequence, reducing decompartmentation of enzymes and substrates causing enzymatic browning. These results indicate that EBR treatment is a promising attempt to control browning at cut surface of fresh-cut lotus root slices.

  9. Effects of 24-epibrassinolide on enzymatic browning and antioxidant activity of fresh-cut lotus root slices.

    PubMed

    Gao, Hui; Chai, HongKang; Cheng, Ni; Cao, Wei

    2017-02-15

    Fresh-cut lotus root slices were treated with 80nM 24-epibrassinolide (EBR) and then stored at 4°C for 8days to investigate the effects on cut surface browning. The results showed that EBR treatment reduced cut surface browning in lotus root slices and alleviated membrane lipid peroxidation as reflected by low malondialdehyde content and lipoxygenase activity. EBR treatment inhibited the activity of phenylalanine ammonia lyase and polyphenol oxidase, and subsequently decreased phenolics accumulation and soluble quniones formation. The treatment also stimulated the activity of peroxidase, catalase and ascorbate peroxidase and delayed the loss of ascorbic acid, which would help prevent membrane lipid peroxidation, as a consequence, reducing decompartmentation of enzymes and substrates causing enzymatic browning. These results indicate that EBR treatment is a promising attempt to control browning at cut surface of fresh-cut lotus root slices. PMID:27664606

  10. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    PubMed

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  11. Skeletal muscle adiposity is associated with physical activity, exercise capacity and fibre shift in COPD

    PubMed Central

    Maddocks, Matthew; Shrikrishna, Dinesh; Vitoriano, Simone; Natanek, Samantha A.; Tanner, Rebecca J.; Hart, Nicholas; Kemp, Paul R.; Moxham, John; Polkey, Michael I.; Hopkinson, Nicholas S.

    2014-01-01

    Quadriceps muscle phenotype varies widely between patients with chronic obstructive pulmonary disease (COPD) and cannot be determined without muscle biopsy. We hypothesised that measures of skeletal muscle adiposity could provide noninvasive biomarkers of muscle quality in this population. In 101 patients and 10 age-matched healthy controls, mid-thigh cross-sectional area, percentage intramuscular fat and skeletal muscle attenuation were calculated using computed tomography images and standard tissue attenuation ranges: fat -190– -30 HU; skeletal muscle -29–150 HU. Mean±sd percentage intramuscular fat was higher in the patient group (6.7±3.5% versus 4.3±1.2%, p = 0.03). Both percentage intramuscular fat and skeletal muscle attenuation were associated with physical activity level, exercise capacity and type I fibre proportion, independent of age, mid-thigh cross-sectional area and quadriceps strength. Combined with transfer factor of the lung for carbon monoxide, these variables could identify >80% of patients with fibre type shift with >65% specificity (area under the curve 0.83, 95% CI 0.72–0.95). Skeletal muscle adiposity assessed by computed tomography reflects multiple aspects of COPD related muscle dysfunction and may help to identify patients for trials of interventions targeted at specific muscle phenotypes. PMID:24993908

  12. Skeletal muscle adiposity is associated with physical activity, exercise capacity and fibre shift in COPD.

    PubMed

    Maddocks, Matthew; Shrikrishna, Dinesh; Vitoriano, Simone; Natanek, Samantha A; Tanner, Rebecca J; Hart, Nicholas; Kemp, Paul R; Moxham, John; Polkey, Michael I; Hopkinson, Nicholas S

    2014-11-01

    Quadriceps muscle phenotype varies widely between patients with chronic obstructive pulmonary disease (COPD) and cannot be determined without muscle biopsy. We hypothesised that measures of skeletal muscle adiposity could provide noninvasive biomarkers of muscle quality in this population. In 101 patients and 10 age-matched healthy controls, mid-thigh cross-sectional area, percentage intramuscular fat and skeletal muscle attenuation were calculated using computed tomography images and standard tissue attenuation ranges: fat -190- -30 HU; skeletal muscle -29-150 HU. Mean±sd percentage intramuscular fat was higher in the patient group (6.7±3.5% versus 4.3±1.2%, p = 0.03). Both percentage intramuscular fat and skeletal muscle attenuation were associated with physical activity level, exercise capacity and type I fibre proportion, independent of age, mid-thigh cross-sectional area and quadriceps strength. Combined with transfer factor of the lung for carbon monoxide, these variables could identify >80% of patients with fibre type shift with >65% specificity (area under the curve 0.83, 95% CI 0.72-0.95). Skeletal muscle adiposity assessed by computed tomography reflects multiple aspects of COPD related muscle dysfunction and may help to identify patients for trials of interventions targeted at specific muscle phenotypes.

  13. Android Adiposity and Lack of Moderate and Vigorous Physical Activity Are Associated With Insulin Resistance and Diabetes in Aging Adults

    PubMed Central

    Al Snih, Soham; Serra-Rexach, José A.; Burant, Charles

    2015-01-01

    Background. Physical inactivity and excess adiposity are thought to be interdependent “lifestyle” factors and thus, many older adults are at exaggerated risk for preventable diseases. The purposes of this study were to determine the degree of discordance between body mass index (BMI) and adiposity among adults older than 50 years, and to determine the extent to which direct measures of adiposity, and objectively measured sedentary behavior (SB) and physical activity (PA) are associated with insulin resistance (IR) or diabetes. Methods. A population representative sample of 2,816 individuals, aged 50–85 years, was included from the combined 2003–2006 National Health and Nutrition Examination Survey (NHANES) datasets. BMI, percent body fat (%BF) and android adiposity as determined by dual energy x-ray absorptiometry, objectively measured SB and PA, established markers of cardiometabolic risk, IR, and type 2 diabetes were analyzed. Results. Approximately 50% of the men and 64% of the women who were normal weight according to BMI had excessive %BF. Adults with the least SB and greatest moderate and vigorous PA exhibited the healthiest cardiometabolic profiles, whereas adults with the greatest SB and lowest activity had highest risk. Greater android adiposity stores were robustly associated with IR or diabetes in all adults, independent of SB and activity. Among men, less moderate-to-vigorous PA was associated with IR or diabetes; whereas among women, less lifestyle moderate activity was associated with IR or diabetes. Conclusions. Android adiposity and low moderate and vigorous PA are the strongest predictors of IR or diabetes among aging adults. PMID:25711528

  14. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  15. Developmental programming, adiposity, and reproduction in ruminants.

    PubMed

    Symonds, M E; Dellschaft, N; Pope, M; Birtwistle, M; Alagal, R; Keisler, D; Budge, H

    2016-07-01

    Although sheep have been widely adopted as an animal model for examining the timing of nutritional interventions through pregnancy on the short- and long-term outcomes, only modest programming effects have been seen. This is due in part to the mismatch in numbers of twins and singletons between study groups as well as unequal numbers of males and females. Placental growth differs between singleton and twin pregnancies which can result in different body composition in the offspring. One tissue that is especially affected is adipose tissue which in the sheep fetus is primarily located around the kidneys and heart plus the sternal/neck region. Its main role is the rapid generation of heat due to activation of the brown adipose tissue-specific uncoupling protein 1 at birth. The fetal adipose tissue response to suboptimal maternal food intake at defined stages of development differs between the perirenal abdominal and pericardial depots, with the latter being more sensitive. Fetal adipose tissue growth may be mediated in part by changes in leptin status of the mother which are paralleled in the fetus. Then, over the first month of life plasma leptin is higher in females than males despite similar adiposity, when fat is the fastest growing tissue with the sternal/neck depot retaining uncoupling protein 1, whereas other depots do not. Future studies should take into account the respective effects of fetal number and sex to provide more detailed insights into the mechanisms by which adipose and related tissues can be programmed in utero. PMID:27173959

  16. A metabolomic study of adipose tissue in mice with a disruption of the circadian system.

    PubMed

    Castro, C; Briggs, W; Paschos, G K; FitzGerald, G A; Griffin, J L

    2015-07-01

    Adipose tissue functions in terms of energy homeostasis as a rheostat for blood triglyceride, regulating its concentration, in response to external stimuli. In addition it acts as a barometer to inform the central nervous system of energy levels which can vary dramatically between meals and according to energy demand. Here a metabolomic approach, combining both Mass Spectrometry and Nuclear Magnetic Resonance spectroscopy, was used to analyse both white and brown adipose tissue in mice with adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component. The results are consistent with a peripheral circadian clock playing a central role in metabolic regulation of both brown and white adipose tissue in rodents and show that Arntl induced global changes in both tissues which were distinct for the two types. In particular, anterior subcutaneous white adipose tissue (ASWAT) tissue was effected by a reduction in the degree of unsaturation of fatty acids, while brown adipose tissue (BAT) changes were associated with a reduction in chain length. In addition the aqueous fraction of metabolites in BAT were profoundly affected by Arntl disruption, consistent with the dynamic role of this tissue in maintaining body temperature across the day-night cycle and an upregulation in fatty acid oxidation and citric acid cycle activity to generate heat during the day when rats are inactive (increases in 3-hydroxybutyrate and glutamate), and increased synthesis and storage of lipids during the night when rats feed more (increased concentrations of glycerol, choline and glycerophosphocholine).

  17. A metabolomic study of adipose tissue in mice with a disruption of the circadian system.

    PubMed

    Castro, C; Briggs, W; Paschos, G K; FitzGerald, G A; Griffin, J L

    2015-07-01

    Adipose tissue functions in terms of energy homeostasis as a rheostat for blood triglyceride, regulating its concentration, in response to external stimuli. In addition it acts as a barometer to inform the central nervous system of energy levels which can vary dramatically between meals and according to energy demand. Here a metabolomic approach, combining both Mass Spectrometry and Nuclear Magnetic Resonance spectroscopy, was used to analyse both white and brown adipose tissue in mice with adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component. The results are consistent with a peripheral circadian clock playing a central role in metabolic regulation of both brown and white adipose tissue in rodents and show that Arntl induced global changes in both tissues which were distinct for the two types. In particular, anterior subcutaneous white adipose tissue (ASWAT) tissue was effected by a reduction in the degree of unsaturation of fatty acids, while brown adipose tissue (BAT) changes were associated with a reduction in chain length. In addition the aqueous fraction of metabolites in BAT were profoundly affected by Arntl disruption, consistent with the dynamic role of this tissue in maintaining body temperature across the day-night cycle and an upregulation in fatty acid oxidation and citric acid cycle activity to generate heat during the day when rats are inactive (increases in 3-hydroxybutyrate and glutamate), and increased synthesis and storage of lipids during the night when rats feed more (increased concentrations of glycerol, choline and glycerophosphocholine). PMID:25907923

  18. Adipokines and the Endocrine Role of Adipose Tissues.

    PubMed

    Giralt, Marta; Cereijo, Rubén; Villarroya, Francesc

    2016-01-01

    The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.

  19. Regulation of UCP gene expression in brown adipocytes differentiated in primary culture. Effects of a new beta-adrenoceptor agonist.

    PubMed

    Champigny, O; Holloway, B R; Ricquier, D

    1992-07-01

    Primary cultures of precursor cells from mouse and rat brown adipose tissue (BAT) were used to study the effect of a new beta-agonist (ICI D7114) on the uncoupling protein (UCP) gene expression. ICI 215001 (the active metabolite of D7114) increased the expression of UCP and its mRNA in brown adipocytes differentiating in vitro in a dose-dependent manner. This stimulating effect was not inhibited by propranolol, a non-specific beta-antagonist, but was partially reduced by bupranolol, a beta 3-antagonist. No expression of UCP mRNA was ever induced by ICI 215001 in white adipocytes differentiated in vitro. It was concluded that the drug could affect the brown adipose cells through a beta 3-pathway. It could clearly modulate the expression of UCP in brown adipocytes differentiated in vitro, but was not able by itself to turn on the gene. PMID:1355051

  20. Coordinate Functional Regulation between Microsomal Prostaglandin E Synthase-1 (mPGES-1) and Peroxisome Proliferator-activated Receptor γ (PPARγ) in the Conversion of White-to-brown Adipocytes*

    PubMed Central

    García-Alonso, Verónica; López-Vicario, Cristina; Titos, Esther; Morán-Salvador, Eva; González-Périz, Ana; Rius, Bibiana; Párrizas, Marcelina; Werz, Oliver; Arroyo, Vicente; Clària, Joan

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor and a master regulator of adipogenesis. Microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is an inducible enzyme that couples with cyclooxygenase-2 for the biosynthesis of PGE2. In this study we demonstrate the existence of a coordinate functional interaction between PPARγ and mPGES-1 in controlling the process of pre-adipocyte differentiation in white adipose tissue (WAT). Adipocyte-specific PPARγ knock-out mice carrying an aP2 promoter-driven Cre recombinase transgene showed a blunted response to the adipogenic effects of a high fat diet. Pre-adipocytes from these knock-out mice showed loss of PPARγ and were resistant to rosiglitazone-induced WAT differentiation. In parallel, WAT from these mice showed increased expression of uncoupling protein 1, a mitochondrial enzyme that dissipates chemical energy as heat. Adipose tissue from mice lacking PPARγ also showed mPGES-1 up-regulation and increased PGE2 levels. In turn, PGE2 suppressed PPARγ expression and blocked rosiglitazone-induced pre-adipocyte differentiation toward white adipocytes while directly elevating uncoupling protein 1 expression and pre-adipocyte differentiation into mature beige/brite adipocytes. Consistently, pharmacological mPGES-1 inhibition directed pre-adipocyte differentiation toward white adipocytes while suppressing differentiation into beige/brite adipocytes. This browning effect was reproduced in knockdown experiments using a siRNA directed against mPGES-1. The effects of PGE2 on pre-adipocyte differentiation were not seen in mice lacking PPARγ in adipose tissue and were not mirrored by other eicosanoids (i.e. leukotriene B4). Taken together, these findings identify PGE2 as a key regulator of white-to-brown adipogenesis and suggest the existence of a coordinate regulation of adipogenesis between PPARγ and mPGES-1. PMID:23943621

  1. The regulation of adipose tissue pyruvate dehydrogenase activity of dietary fiber.

    PubMed

    Ogunwole, J O; Knight, E M; Adkins, J S; Thomaskutty, K G; Pointer, R H

    1987-05-01

    In vitro studies have established that insulin enhances the oxidation of pyruvate to acetyl CoA by the stimulation of mitochondrial pyruvate dehydrogenase (PDH) activity through plasma membrane binding response (Jarett and Seals 1979; Kiechle, Jarett, Dennis and Kotagal 1980). In the present study adipose tissue PDH activity was utilized as a marker for insulin responsiveness. The metabolic response of this enzyme to exogenous insulin was employed to test the hypothesis that dietary fiber enhances tissue responsiveness to insulin using adipose tissue from male weanling Sprague Dawley rats. Eight groups of rats (n = 5 per group) were fed ad libitum various diets containing different levels of cellulose and protein as already reported elsewhere (Ogunwole, Knight, Adkins, Thomaskutty and Pointer 1985). Percent insulin stimulation of PDH from basal activity (PDS) was utilized as an index of insulin responsiveness. Compared to all fiber treated groups, both basal (PDB) and insulin stimulated (PDI) activities were significantly lower (P less than 0.05) in the fiber free groups at both low (10%) and high (20%) protein levels. At all fiber levels tested (0, 5, 15 and 30%) protein intake resulted in a significant increase in both PDB and PDI. Gradual increase in cellulose intake resulted in a biphasic increase in PDS in both protein groups at the 5% and 30% fiber levels. PDS was higher (P less than 0.05) in the 10% protein groups than the 20% protein group at all fiber levels tested. A significant interaction effect of protein and fiber was observed on PDB (P less than 0.001) and PDI (P less than 0.04) when caloric intake was held constant as a covariate.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Characterization of a primary brown adipocyte culture system derived from human fetal interscapular fat

    PubMed Central

    Seiler, Sarah E; Xu, Dan; Ho, Jia-Pei; Lo, Kinyui Alice; Buehrer, Benjamin M; Ludlow, Y John W; Kovalik, Jean-Paul; Sun, Lei

    2015-01-01

    Brown fat has gained widespread attention as a potential therapeutic target to treat obesity and associated metabolic disorders. Indeed, the anti-obesity potential of multiple targets to stimulate both brown adipocyte differentiation and recruitment have been verified in rodent models. However, their therapeutic potential in humans is unknown due to the lack of a human primary brown adipocyte cell culture system. Likewise, the lack of a well-characterized human model has limited the discovery of novel targets for the activation of human brown fat. To address this current need, we aimed to identify and describe the first primary brown adipocyte cell culture system from human fetal interscapular brown adipose tissue. Pre-adipocytes isolated from non-viable human fetal interscapular tissue were expanded and cryopreserved. Cells were then thawed and plated alongside adult human subcutaneous and omental pre-adipocytes for subsequent differentiation and phenotypic characterization. Interscapular pre-adipocytes in cell culture differentiated into mature adipocytes that were morphologically indistinguishable from the adult white depots. Throughout differentiation, cultured human fetal interscapular adipocytes demonstrated increased expression of classical brown fat markers compared to subcutaneous and omental cells. Further, functional analysis revealed an elevation in fatty acid oxidation as well as maximal and uncoupled oxygen consumption in interscapular brown adipocytes compared to white control cells. These data collectively identify the brown phenotype of these cells. Thus, our primary cell culture system derived from non-viable human fetal interscapular brown adipose tissue provides a valuable tool for the study of human brown adipocyte biology and for the development of anti-obesity therapeutics. PMID:26451287

  3. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    PubMed Central

    Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes. PMID:27015423

  4. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    PubMed

    Zeve, Daniel; Millay, Douglas P; Seo, Jin; Graff, Jonathan M

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes. PMID:27015423

  5. Fucans from a Tunisian brown seaweed Cystoseira barbata: structural characteristics and antioxidant activity.

    PubMed

    Sellimi, Sabrine; Kadri, Nabil; Barragan-Montero, Veronique; Laouer, Hocine; Hajji, Mohamed; Nasri, Moncef

    2014-05-01

    Sulfated polysaccharides from brown seaweeds are known to be a topic of numerous studies, due to their beneficial biological properties including antioxidant activity. Fucans were isolated from the brown seaweed Cystoseira barbata harvested in Tunisia. ATR-FTIR and (1)H-NMR spectroscopies demonstrated that C. barbata sulfated polysaccharides (CBSPs) consisted mainly of 3-linked-α-l-fucopyranosyl backbone, acetylated and mostly sulfated at C-4. Molar degrees of sulfation and acetylation of CBSPs were 0.79 and 0.27, respectively. Neutral sugars analysis determined by gas chromatography-mass spectrometry (GC-MS) showed that CBSPs were mainly co