Science.gov

Sample records for active brown adipose

  1. Salsalate activates brown adipose tissue in mice.

    PubMed

    van Dam, Andrea D; Nahon, Kimberly J; Kooijman, Sander; van den Berg, Susan M; Kanhai, Anish A; Kikuchi, Takuya; Heemskerk, Mattijs M; van Harmelen, Vanessa; Lombès, Marc; van den Hoek, Anita M; de Winther, Menno P J; Lutgens, Esther; Guigas, Bruno; Rensen, Patrick C N; Boon, Mariëtte R

    2015-05-01

    Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[(3)H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients. PMID:25475439

  2. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  3. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  4. Regulation of brown adipose tissue recruitment, metabolism and thermogenic function by peroxisome proliferator-activated receptor γ

    PubMed Central

    Bolsoni-Lopes, Andressa; Deshaies, Yves; Festuccia, William T

    2015-01-01

    Brown adipose tissue contributes importantly to homeothermy and energy balance in rodents due its ability under demand to produce heat through a process denominated nonshivering thermogenesis. Such thermogenic ability of brown adipocytes relies on the activity of mitochondrial uncoupling protein 1 that, when properly activated, dissipates energy from oxidative metabolism as heat. Brown adipose tissue sympathetic innervation through norepinephrine release not only induces brown adipocyte lipolysis and thermogenesis, but also acts as the major determinant of tissue mass, cellularity and mitochondrial content. Several pieces of evidence gathered over the years indicate that, in addition to tissue sympathetic innervation, the nuclear receptor peroxisome proliferator-activated receptor γ plays an important role in regulating the development, metabolism and thermogenic function of brown adipose tissue. Herein we review the main evidence supporting such key role of peroxisome proliferator-activated receptor γ to brown fat biology and discuss the future directions of this important area of research. PMID:27227067

  5. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning.

    PubMed

    Liu, Dianxin; Bordicchia, Marica; Zhang, Chaoying; Fang, Huafeng; Wei, Wan; Li, Jian-Liang; Guilherme, Adilson; Guntur, Kalyani; Czech, Michael P; Collins, Sheila

    2016-05-01

    A classic metabolic concept posits that insulin promotes energy storage and adipose expansion, while catecholamines stimulate release of adipose energy stores by hydrolysis of triglycerides through β-adrenergic receptor (βARs) and protein kinase A (PKA) signaling. Here, we have shown that a key hub in the insulin signaling pathway, activation of p70 ribosomal S6 kinase (S6K1) through mTORC1, is also triggered by PKA activation in both mouse and human adipocytes. Mice with mTORC1 impairment, either through adipocyte-specific deletion of Raptor or pharmacologic rapamycin treatment, were refractory to the well-known βAR-dependent increase of uncoupling protein UCP1 expression and expansion of beige/brite adipocytes (so-called browning) in white adipose tissue (WAT). Mechanistically, PKA directly phosphorylated mTOR and RAPTOR on unique serine residues, an effect that was independent of insulin/AKT signaling. Abrogation of the PKA site within RAPTOR disrupted βAR/mTORC1 activation of S6K1 without affecting mTORC1 activation by insulin. Conversely, a phosphomimetic RAPTOR augmented S6K1 activity. Together, these studies reveal a signaling pathway from βARs and PKA through mTORC1 that is required for adipose browning by catecholamines and provides potential therapeutic strategies to enhance energy expenditure and combat metabolic disease. PMID:27018708

  6. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning

    PubMed Central

    Liu, Dianxin; Bordicchia, Marica; Zhang, Chaoying; Fang, Huafeng; Wei, Wan; Guilherme, Adilson; Guntur, Kalyani; Czech, Michael P.

    2016-01-01

    A classic metabolic concept posits that insulin promotes energy storage and adipose expansion, while catecholamines stimulate release of adipose energy stores by hydrolysis of triglycerides through β-adrenergic receptor (βARs) and protein kinase A (PKA) signaling. Here, we have shown that a key hub in the insulin signaling pathway, activation of p70 ribosomal S6 kinase (S6K1) through mTORC1, is also triggered by PKA activation in both mouse and human adipocytes. Mice with mTORC1 impairment, either through adipocyte-specific deletion of Raptor or pharmacologic rapamycin treatment, were refractory to the well-known βAR-dependent increase of uncoupling protein UCP1 expression and expansion of beige/brite adipocytes (so-called browning) in white adipose tissue (WAT). Mechanistically, PKA directly phosphorylated mTOR and RAPTOR on unique serine residues, an effect that was independent of insulin/AKT signaling. Abrogation of the PKA site within RAPTOR disrupted βAR/mTORC1 activation of S6K1 without affecting mTORC1 activation by insulin. Conversely, a phosphomimetic RAPTOR augmented S6K1 activity. Together, these studies reveal a signaling pathway from βARs and PKA through mTORC1 that is required for adipose browning by catecholamines and provides potential therapeutic strategies to enhance energy expenditure and combat metabolic disease. PMID:27018708

  7. Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Saraf, Manish K; Annamalai, Palam; Yfanti, Christina; Chao, Tony; Wong, Daniel; Shinoda, Kosaku; Labbė, Sebastien M; Hurren, Nicholas M; Cesani, Fernardo; Kajimura, Shingo; Sidossis, Labros S

    2016-06-14

    Recent studies suggest that brown adipose tissue (BAT) plays a role in energy and glucose metabolism in humans. However, the physiological significance of human BAT in lipid metabolism remains unknown. We studied 16 overweight/obese men during prolonged, non-shivering cold and thermoneutral conditions using stable isotopic tracer methodologies in conjunction with hyperinsulinemic-euglycemic clamps and BAT and white adipose tissue (WAT) biopsies. BAT volume was significantly associated with increased whole-body lipolysis, triglyceride-free fatty acid (FFA) cycling, FFA oxidation, and adipose tissue insulin sensitivity. Functional analysis of BAT and WAT demonstrated the greater thermogenic capacity of BAT compared to WAT, while molecular analysis revealed a cold-induced upregulation of genes involved in lipid metabolism only in BAT. The accelerated mobilization and oxidation of lipids upon BAT activation supports a putative role for BAT in the regulation of lipid metabolism in humans. PMID:27238638

  8. Inhibition of the central melanocortin system decreases brown adipose tissue activity[S

    PubMed Central

    Kooijman, Sander; Boon, Mariëtte R.; Parlevliet, Edwin T.; Geerling, Janine J.; van de Pol, Vera; Romijn, Johannes A.; Havekes, Louis M.; Meurs, Illiana; Rensen, Patrick C. N.

    2014-01-01

    The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (−42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (−60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity. PMID:25016380

  9. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity.

    PubMed

    Broeders, Evie P M; Nascimento, Emmani B M; Havekes, Bas; Brans, Boudewijn; Roumans, Kay H M; Tailleux, Anne; Schaart, Gert; Kouach, Mostafa; Charton, Julie; Deprez, Benoit; Bouvy, Nicole D; Mottaghy, Felix; Staels, Bart; van Marken Lichtenbelt, Wouter D; Schrauwen, Patrick

    2015-09-01

    The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. PMID:26235421

  10. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation.

    PubMed

    Zeng, Xing; Jedrychowski, Mark P; Chen, Yi; Serag, Sara; Lavery, Gareth G; Gygi, Steve P; Spiegelman, Bruce M

    2016-08-15

    Brown adipocytes display phenotypic plasticity, as they can switch between the active states of fatty acid oxidation and energy dissipation versus a more dormant state. Cold exposure or β-adrenergic stimulation favors the active thermogenic state, whereas sympathetic denervation or glucocorticoid administration promotes more lipid accumulation. Our understanding of the molecular mechanisms underlying these switches is incomplete. Here we found that LSD1 (lysine-specific demethylase 1), a histone demethylase, regulates brown adipocyte metabolism in two ways. On the one hand, LSD1 associates with PRDM16 to repress expression of white fat-selective genes. On the other hand, LSD1 represses HSD11B1 (hydroxysteroid 11-β-dehydrogenase isozyme 1), a key glucocorticoid-activating enzyme, independently from PRDM16. Adipose-specific ablation of LSD1 impaired mitochondrial fatty acid oxidation capacity of the brown adipose tissue, reduced whole-body energy expenditure, and increased fat deposition, which can be significantly alleviated by simultaneously deleting HSD11B1. These findings establish a novel regulatory pathway connecting histone modification and hormone activation with mitochondrial oxidative capacity and whole-body energy homeostasis. PMID:27566776

  11. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

    PubMed Central

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R.; Kuipers, Eline N.; Loef, Marieke; Zonneveld, Tom C. M.; Lucassen, Eliane A.; Sips, Hetty C. M.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Meijer, Johanna H.; Coomans, Claudia P.; Biermasz, Nienke R.; Rensen, Patrick C. N.

    2015-01-01

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  12. Anatomical Grading for Metabolic Activity of Brown Adipose Tissue

    PubMed Central

    Becker, Anton S.; Nagel, Hannes W.; Wolfrum, Christian; Burger, Irene A.

    2016-01-01

    Background Recent advances in obesity research suggest that BAT activity, or absence thereof, may be an important factor in the growing epidemic of obesity and its manifold complications. It is thus important to assess larger populations for BAT-activating and deactivating factors. 18FDG-PET/CT is the standard method to detect and quantify metabolic BAT activity, however, the manual measurement is not suitable for large studies due to its time-consuming nature and poor reproducibility across different software and devices. Methodology/Main Findings In a retrospective study, 1060 consecutive scans of 1031 patients receiving a diagnostic 18FDG-PET/CT were examined for the presence of active BAT. Patients were classified according to a 3-tier system (supraclavicular, mediastinal, infradiaphragmatic) depending on the anatomical location of their active BAT depots, with the most caudal location being the decisive factor. The metabolic parameters (maximum activity, total volume and total glycolysis) were measured on a standard PET/CT workstation. Mean age of the population was 60±14.6y. 41.61% of patients were female. Metabolically active BAT was found in 53 patients (5.1%). Female, younger and leaner patients tended to have more active BAT, higher metabolic activity and more caudally active BAT. In total, 15 patients showed only supraclavicular, 27 additional mediastinal, and 11 infradiaphragmal activity. Interestingly, the activation of BAT always followed a cranio-caudal gradient. This anatomical pattern correlated with age and BMI as well as with all metabolic parameters, including maximum and total glycolysis (p<0.001). Conclusion Based on our data we propose a simple method to grade or quantify the degree of BAT amount/activity in patients based on the most caudally activated depot. As new modalities for BAT visualization may arise in the future, this system would allow direct comparability with other modalities, in contrary to the PET-metrics, which are

  13. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI

    PubMed Central

    Branca, Rosa Tamara; He, Ting; Zhang, Le; Floyd, Carlos S.; Freeman, Matthew; White, Christian; Burant, Alex

    2014-01-01

    The study of brown adipose tissue (BAT) in human weight regulation has been constrained by the lack of a noninvasive tool for measuring this tissue and its function in vivo. Existing imaging modalities are nonspecific and intrinsically insensitive to the less active, lipid-rich BAT of obese subjects, the target population for BAT studies. We demonstrate noninvasive imaging of BAT in mice by hyperpolarized xenon gas MRI. We detect a greater than 15-fold increase in xenon uptake by BAT during stimulation of BAT thermogenesis, which enables us to acquire background-free maps of the tissue in both lean and obese mouse phenotypes. We also demonstrate in vivo MR thermometry of BAT by hyperpolarized xenon gas. Finally, we use the linear temperature dependence of the chemical shift of xenon dissolved in adipose tissue to directly measure BAT temperature and to track thermogenic activity in vivo. PMID:25453088

  14. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to ...

  15. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance

    PubMed Central

    Poher, Anne-Laure; Altirriba, Jordi; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise

    2015-01-01

    Presence of brown adipose tissue (BAT), characterized by the expression of the thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in “beige cells” in white adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to “browning” of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others) improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans. PMID:25688211

  16. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    PubMed Central

    Razzoli, Maria; Frontini, Andrea; Gurney, Allison; Mondini, Eleonora; Cubuk, Cankut; Katz, Liora S.; Cero, Cheryl; Bolan, Patrick J.; Dopazo, Joaquin; Vidal-Puig, Antonio; Cinti, Saverio; Bartolomucci, Alessandro

    2015-01-01

    Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation

  17. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  18. Brown Adipose Tissue Growth and Development

    PubMed Central

    Symonds, Michael E.

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle. PMID:24278771

  19. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  20. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

    PubMed

    Verdeguer, Francisco; Soustek, Meghan S; Hatting, Maximilian; Blättler, Sharon M; McDonald, Devin; Barrow, Joeva J; Puigserver, Pere

    2016-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  1. Enhanced Sympathetic Activity in Mice with Brown Adipose Tissue Transplantation (TransBATation)

    PubMed Central

    Zhu, Zheng; Spicer, Elizabeth G; Gavini, Chaitanya K; Goudjo-Ako, Ashley J; Novak, Colleen M; Shi, Haifei

    2014-01-01

    Brown adipose tissue (BAT) burns calories to produce heat, and is thus relevant to energy balance. Interscapular BAT (IBAT) of donor mice was transplanted into recipient mice (transBATation). To test whether transBATation counteracts high-fat diet (HFD)-induced obesity, some sham-operated and recipient mice were fed a HFD (HFD-sham, HFD-trans) while others remained on a standard chow (chow-sham, chow-trans). HFD-trans mice had lower body weight and fat, greater energy expenditure, but similar caloric intake compared with HFD-sham mice. We hypothesized that HFD-trans mice had elevated sympathetic activity compared with HFD-sham mice, contributing to increased energy expenditure and fuel mobilization. This was supported by findings that HFD-trans mice had greater energy expenditure during a norepinephrine challenge test and higher core temperatures after cold exposure than did HFD-sham mice, implicating enhanced whole-body metabolic response and elevated sympathetic activity. Additionally, transBATation selectively increased sympathetic drive to some, but not all, white adipose tissue depots and skeletal muscles, as well as the endogenous IBAT, heart, and liver. Collectively, transBATation confers resistance to HFD-induced obesity via increase in whole-body sympathetic activity, and differential activation of sympathetic drive to some of the tissues involved in energy expenditure and fuel mobilization. PMID:24291381

  2. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health.

    PubMed

    Laurila, Pirkka-Pekka; Soronen, Jarkko; Kooijman, Sander; Forsström, Saara; Boon, Mariëtte R; Surakka, Ida; Kaiharju, Essi; Coomans, Claudia P; Van Den Berg, Sjoerd A A; Autio, Anu; Sarin, Antti-Pekka; Kettunen, Johannes; Tikkanen, Emmi; Manninen, Tuula; Metso, Jari; Silvennoinen, Reija; Merikanto, Krista; Ruuth, Maija; Perttilä, Julia; Mäkelä, Anne; Isomi, Ayaka; Tuomainen, Anita M; Tikka, Anna; Ramadan, Usama Abo; Seppälä, Ilkka; Lehtimäki, Terho; Eriksson, Johan; Havulinna, Aki; Jula, Antti; Karhunen, Pekka J; Salomaa, Veikko; Perola, Markus; Ehnholm, Christian; Lee-Rueckert, Miriam; Van Eck, Miranda; Roivainen, Anne; Taskinen, Marja-Riitta; Peltonen, Leena; Mervaala, Eero; Jalanko, Anu; Hohtola, Esa; Olkkonen, Vesa M; Ripatti, Samuli; Kovanen, Petri T; Rensen, Patrick C N; Suomalainen, Anu; Jauhiainen, Matti

    2016-01-27

    USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease. PMID:26819196

  3. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    PubMed Central

    Boon, Mariëtte R.; van den Berg, Sjoerd A. A.; Wang, Yanan; van den Bossche, Jan; Karkampouna, Sofia; Bauwens, Matthias; De Saint-Hubert, Marijke; van der Horst, Geertje; Vukicevic, Slobodan; de Winther, Menno P. J.; Havekes, Louis M.; Jukema, J. Wouter; Tamsma, Jouke T.; van der Pluijm, Gabri; van Dijk, Ko Willems; Rensen, Patrick C. N.

    2013-01-01

    Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to

  4. Activation of Human Brown Adipose Tissue by a β3-Adrenergic Receptor Agonist

    PubMed Central

    Cypess, Aaron M.; Weiner, Lauren S.; Roberts-Toler, Carla; Elía, Elisa Franquet; Kessler, Skyler H.; Kahn, Peter A.; English, Jeffrey; Chatman, Kelly; Trauger, Sunia A.; Doria, Alessandro; Kolodny, Gerald M.

    2015-01-01

    SUMMARY Increasing energy expenditure through activation of endogenous brown adipose tissue (BAT) is a potential approach to treat obesity and diabetes. The class of β3-adrenergic receptor (AR) agonists stimulates rodent BAT, but this activity has never been demonstrated in humans. Here we determined the ability of 200 mg oral mirabegron (Myrbetriq, Astellas Pharma, Inc.), a β3-AR agonist currently approved to treat overactive bladder, to stimulate BAT as compared to placebo. Mirabegron led to higher BAT metabolic activity as measured via 18F-fluorodeoxyglucose (18F-FDG) using positron emission tomography (PET) combined with computed tomography (CT) in all twelve healthy male subjects (p = 0.001), and it increased resting metabolic rate (RMR) by 203 ± 40 kcal/day (+13%; p = 0.001). BAT metabolic activity was also a significant predictor of the changes in RMR (p = 0.006). Therefore, a β3-AR agonist can stimulate human BAT thermogenesis and may be a promising treatment for metabolic disease. PMID:25565203

  5. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity

    PubMed Central

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or

  6. Vagus Nerve Stimulation Increases Energy Expenditure: Relation to Brown Adipose Tissue Activity

    PubMed Central

    Vijgen, Guy H. E. J.; Bouvy, Nicole D.; Leenen, Loes; Rijkers, Kim; Cornips, Erwin; Majoie, Marian; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2013-01-01

    Background Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. Methods and Findings Fifteen patients with stable VNS therapy (age: 45±10yrs; body mass index; 25.2±3.5 kg/m2) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUVMean; 0.55±0.25 versus 0.67±0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001). Conclusions VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. Trial Registration The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282. PMID:24194874

  7. ROS and Sympathetically Mediated Mitochondria Activation in Brown Adipose Tissue Contribute to Methamphetamine-Induced Hyperthermia

    PubMed Central

    Sanchez-Alavez, Manuel; Conti, Bruno; Wood, Malcolm R.; Bortell, Nikki; Bustamante, Eduardo; Saez, Enrique; Fox, Howard S.; Marcondes, Maria Cecilia Garibaldi

    2013-01-01

    Methamphetamine (Meth) abuse has been shown to induce alterations in mitochondrial function in the brain as well as to induce hyperthermia, which contributes to neurotoxicity and Meth-associated mortality. Brown adipose tissue (BAT), a thermogenic site known to be important in neonates, has recently regained importance since being identified in significant amounts and in correlation with metabolic balance in human adults. Given the high mitochondrial content of BAT and its role in thermogenesis, we aimed to investigate whether BAT plays any role in the development of Meth-induced hyperthermia. By ablating or denervating BAT, we identified a partial contribution of this organ to Meth-induced hyperthermia. BAT ablation decreased temperature by 0.5°C and reduced the length of hyperthermia by 1 h, compared to sham-operated controls. BAT denervation also affected the development of hyperthermia in correlation with decreased the expression of electron transport chain molecules, and increase on PCG1a levels, but without affecting Meth-induced uncoupling protein 1 upregulation. Furthermore, in isolated BAT cells in culture, Meth, but not Norepinephrine, induced H2O2 upregulation. In addition, we found that in vivo Reactive Oxygen Species (ROS) play a role in Meth hyperthermia. Thus, sympathetically mediated mitochondrial activation in the BAT and Meth-induced ROS are key components to the development of hyperthermia in Meth abuse. PMID:23630518

  8. Glucagon increases energy expenditure independently of brown adipose tissue activation in humans

    PubMed Central

    Salem, V; Izzi-Engbeaya, C; Coello, C; Thomas, D B; Chambers, E S; Comninos, A N; Buckley, A; Win, Z; Al-Nahhas, A; Rabiner, E A; Gunn, R N; Budge, H; Symonds, M E; Bloom, S R; Tan, T M; Dhillo, W S

    2016-01-01

    Aims To investigate, for a given energy expenditure (EE) rise, the differential effects of glucagon infusion and cold exposure on brown adipose tissue (BAT) activation in humans. Methods Indirect calorimetry and supraclavicular thermography was performed in 11 healthy male volunteers before and after: cold exposure; glucagon infusion (at 23 °C); and vehicle infusion (at 23 °C). All volunteers underwent 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT scanning with cold exposure. Subjects with cold-induced BAT activation on 18F-FDG PET/CT (n = 8) underwent a randomly allocated second 18F-FDG PET/CT scan (at 23 °C), either with glucagon infusion (n = 4) or vehicle infusion (n = 4). Results We observed that EE increased by 14% after cold exposure and by 15% after glucagon infusion (50 ng/kg/min; p < 0.05 vs control for both). Cold exposure produced an increase in neck temperature (+0.44 °C; p < 0.001 vs control), but glucagon infusion did not alter neck temperature. In subjects with a cold-induced increase in the metabolic activity of supraclavicular BAT on 18F-FDG PET/CT, a significant rise in the metabolic activity of BAT after glucagon infusion was not detected. Cold exposure increased sympathetic activation, as measured by circulating norepinephrine levels, but glucagon infusion did not. Conclusions Glucagon increases EE by a similar magnitude compared with cold activation, but independently of BAT thermogenesis. This finding is of importance for the development of safe treatments for obesity through upregulation of EE. PMID:26434748

  9. 3,5-Diiodo-L-thyronine activates brown adipose tissue thermogenesis in hypothyroid rats.

    PubMed

    Lombardi, Assunta; Senese, Rosalba; De Matteis, Rita; Busiello, Rosa Anna; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia

    2015-01-01

    3,5-Diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis. PMID:25658324

  10. 3,5-Diiodo-L-Thyronine Activates Brown Adipose Tissue Thermogenesis in Hypothyroid Rats

    PubMed Central

    Lombardi, Assunta; Senese, Rosalba; De Matteis, Rita; Busiello, Rosa Anna; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia

    2015-01-01

    3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis. PMID:25658324

  11. Metabolic activity of brown, "beige," and white adipose tissues in response to chronic adrenergic stimulation in male mice.

    PubMed

    Labbé, Sébastien M; Caron, Alexandre; Chechi, Kanta; Laplante, Mathieu; Lecomte, Roger; Richard, Denis

    2016-07-01

    Classical brown adipocytes such as those found in interscapular brown adipose tissue (iBAT) represent energy-burning cells, which have been postulated to play a pivotal role in energy metabolism. Brown adipocytes can also be found in white adipose tissue (WAT) depots [e.g., inguinal WAT (iWAT)] following adrenergic stimulation, and they have been referred to as "beige" adipocytes. Whether the presence of these adipocytes, which gives iWAT a beige appearance, can confer a white depot with some thermogenic activity remains to be seen. In consequence, we designed the present study to investigate the metabolic activity of iBAT, iWAT, and epididymal white depots in mice. Mice were either 1) kept at thermoneutrality (30°C), 2) kept at 30°C and treated daily for 14 days with an adrenergic agonist [CL-316,243 (CL)], or 3) housed at 10°C for 14 days. Metabolic activity was assessed using positron emission tomography imaging with fluoro-[(18)F]deoxyglucose (glucose uptake), fluoro-[(18)F]thiaheptadecanoic acid (fatty acid uptake), and [(11)C]acetate (oxidative activity). In each group, substrate uptakes and oxidative activity were measured in anesthetized mice in response to acute CL. Our results revealed iBAT as a major site of metabolic activity, which exhibited enhanced glucose and nonesterified fatty acid uptakes and oxidative activity in response to chronic cold and CL. On the other hand, beige adipose tissue failed to exhibit appreciable increase in oxidative activity in response to chronic cold and CL. Altogether, our results suggest that the contribution of beige fat to acute-CL-induced metabolic activity is low compared with that of iBAT, even after sustained adrenergic stimulation. PMID:27143559

  12. Surgical injury induces local and distant adipose tissue browning.

    PubMed

    Longchamp, Alban; Tao, Ming; Bartelt, Alexander; Ding, Kui; Lynch, Lydia; Hine, Christopher; Corpataux, Jean-Marc; Kristal, Bruce S; Mitchell, James R; Ozaki, C Keith

    2016-01-01

    The adipose organ, which comprises brown, white and beige adipocytes, possesses remarkable plasticity in response to feeding and cold exposure. The development of beige adipocytes in white adipose tissue (WAT), a process called browning, represents a promising route to treat metabolic disorders. While surgical procedures constantly traumatize adipose tissue, its impact on adipocyte phenotype remains to be established. Herein, we studied the effect of trauma on adipocyte phenotype one day after sham, incision control, or surgical injury to the left inguinal adipose compartment. Caloric restriction was used to control for surgery-associated body temperature changes and weight loss. We characterized the trauma-induced cellular and molecular changes in subcutaneous, visceral, interscapular, and perivascular adipose tissue using histology, immunohistochemistry, gene expression, and flow cytometry analysis. After one day, surgical trauma stimulated adipose tissue browning at the site of injury and, importantly, in the contralateral inguinal depot. Browning was not present after incision only, and was largely independent of surgery-associated body temperature and weight loss. Adipose trauma rapidly recruited monocytes to the injured site and promoted alternatively activated macrophages. Conversely, PDGF receptor-positive beige progenitors were reduced. In this study, we identify adipose trauma as an unexpected driver of selected local and remote adipose tissue browning, holding important implications for the biologic response to surgical injury. PMID:27386152

  13. A high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism.

    PubMed

    Madden, Christopher J; Morrison, Shaun F

    2016-08-01

    In dramatic contrast to rats on a control diet, rats maintained on a high-fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed the HFD-induced inhibition of cold-evoked BAT activity. Thus, a HFD does not prevent rats from mounting a robust, centrally driven BAT thermogenesis; however, a HFD does alter a vagal afferent input to NTS neurons, thereby preventing the normal activation of BAT thermogenesis to cooling. These results, paralleling the absence of cooling-evoked glucose uptake in the BAT of obese humans, reveal a neural mechanism through which consumption of a HFD contributes to reduced energy expenditure and thus to weight gain. PMID:27354235

  14. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible. PMID:26076904

  15. Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation.

    PubMed

    Ramage, Lynne E; Akyol, Murat; Fletcher, Alison M; Forsythe, John; Nixon, Mark; Carter, Roderick N; van Beek, Edwin J R; Morton, Nicholas M; Walker, Brian R; Stimson, Roland H

    2016-07-12

    The discovery of brown adipose tissue (BAT) in adult humans presents a new therapeutic target for metabolic disease; however, little is known about the regulation of human BAT. Chronic glucocorticoid excess causes obesity in humans, and glucocorticoids suppress BAT activation in rodents. We tested whether glucocorticoids regulate BAT activity in humans. In vivo, the glucocorticoid prednisolone acutely increased (18)fluorodeoxyglucose uptake by BAT (measured using PET/CT) in lean healthy men during mild cold exposure (16°C-17°C). In addition, prednisolone increased supraclavicular skin temperature (measured using infrared thermography) and energy expenditure during cold, but not warm, exposure in lean subjects. In vitro, glucocorticoids increased isoprenaline-stimulated respiration and UCP-1 in human primary brown adipocytes, but substantially decreased isoprenaline-stimulated respiration and UCP-1 in primary murine brown and beige adipocytes. The highly species-specific regulation of BAT function by glucocorticoids may have important implications for the translation of novel treatments to activate BAT to improve metabolic health. PMID:27411014

  16. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature.

    PubMed

    Bahler, L; Molenaars, R J; Verberne, H J; Holleman, F

    2015-12-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although the number of studies focusing on BAT in humans is limited, involvement of the sympathetic nervous system (SNS) in BAT activation is evident. Metabolic BAT activity can be visualized with (18)F-fluorodeoxyglucose, whereas sympathetic activation of BAT can be visualized with nuclear-medicine techniques using different radiopharmaceuticals. Also, interruption of the sympathetic nerves leading to BAT activation diminishes sympathetic stimulation, resulting in reduced metabolic BAT activity. Furthermore, both β- and α-adrenoceptors might be important in the stimulation process of BAT, as pretreatment with propranolol or α-adrenoceptor blockade also diminishes BAT activity. In contrast, high catecholamine levels are known to activate and recruit BAT. There are several interventional studies in which BAT was successfully inhibited, whereas only one interventional study aiming to activate BAT resulted in the intended outcome. Most studies have focused on the SNS for activating BAT, although the parasympathetic nervous system might also be a target of interest. To better define the possible role of BAT in strategies to combat the obesity epidemic, it seems likely that future studies focusing on both histology and imaging are essential for identifying the factors and receptors critical for activation of human BAT. PMID:26404650

  17. PDE3 and PDE4 Isozyme-Selective Inhibitors Are Both Required for Synergistic Activation of Brown Adipose Tissue

    PubMed Central

    Kraynik, Stephen M.; Miyaoka, Robert S.

    2013-01-01

    Brown adipose tissue (BAT) is a highly thermogenic organ that converts lipids and glucose into heat. Many of the metabolic and gene transcriptional hallmarks of BAT activation, namely increased lipolysis, uncoupling protein-1 (UCP1) mRNA, and glucose uptake, are regulated by the adrenergic second messenger, cAMP. Cyclic nucleotide phosphodiesterases (PDEs) catalyze the breakdown of cAMP, thereby regulating the magnitude and duration of this signaling molecule. In the absence of adrenergic stimulus, we found that it required a combination of a PDE3 and a PDE4 inhibitor to fully induce UCP1 mRNA and lipolysis in brown adipocytes, whereas neither PDE inhibitor alone had any substantial effect under basal conditions. Under submaximal β-adrenoceptor stimulation of brown adipocytes, a PDE3 inhibitor alone could potentiate induction of UCP1 mRNA, whereas a PDE4 inhibitor alone could augment lipolysis, indicating differential roles for each of these two PDEs. Neither induction of UCP1 nor lipolysis was altered by inhibition of PDE1, PDE2, or PDE8A. Finally, when injected into mice, the combination of PDE3 and PDE4 inhibitors stimulated glucose uptake in BAT under thermoneutral and fasted conditions, a response that was further potentiated by the global ablation of PDE8A. Taken together, these data reveal that multiple PDEs work in concert to regulate three of the important pathways leading to BAT activation, a finding that may provide an improved conceptual basis for the development of therapies for obesity-related diseases. PMID:23493317

  18. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging.

    PubMed

    Gifford, Aliya; Towse, Theodore F; Walker, Ronald C; Avison, Malcolm J; Welch, E Brian

    2016-07-01

    Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [(18)F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; -69.4 ± 11.5 vs. -74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own. PMID:27166284

  19. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation.

    PubMed

    Mottillo, Emilio P; Balasubramanian, Priya; Lee, Yun-Hee; Weng, Changren; Kershaw, Erin E; Granneman, James G

    2014-11-01

    Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous "beige," and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL. PMID:25193997

  20. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic β3-adrenergic receptor activation

    PubMed Central

    Mottillo, Emilio P.; Balasubramanian, Priya; Lee, Yun-Hee; Weng, Changren; Kershaw, Erin E.; Granneman, James G.

    2014-01-01

    Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous “beige,” and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL. PMID:25193997

  1. The effects of various carbohydrates on sympathetic activity in heart and interscapular brown adipose tissue of the rat.

    PubMed

    Walgren, M C; Young, J B; Kaufman, L N; Landsberg, L

    1987-06-01

    The present studies were undertaken to determine the effect of various carbohydrates on sympathetic nervous system (SNS) activity. Tritiated-norepinephrine (3H-NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of rats fed either chow or chow plus 50% caloric supplements of fructose, sucrose, dextrose, or corn starch. Additional studies were performed to examine whether absorption of carbohydrate plays a role in the SNS response, and to determine whether sweet taste in the form of artificial sweeteners may influence SNS activity. After five to ten days on the respective diets, 3H-NE turnover was increased to a similar extent by all carbohydrates tested (from 38% to 160% greater than controls in different studies). Addition of acarbose (which impairs sucrose absorption) to a sucrose-supplemented diet abolished the SNS stimulatory response, whereas cholestyramine (a drug that blocks fat absorption) had no effect. Finally, the addition of saccharin or aspartame to a chow diet failed to alter SNS activity. Thus, caloric supplementation with several carbohydrates, in addition to sucrose, stimulates both cardiac and IBAT SNS activity, absorption of carbohydrate is required for this effect, and noncaloric sugar substitutes do not alter SNS function. PMID:3587017

  2. Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+.

    PubMed

    de Meis, Leopoldo; Ketzer, Luisa A; da Costa, Rodrigo Madeiro; de Andrade, Ivone Rosa; Benchimol, Marlene

    2010-01-01

    Brown adipose tissue (BAT) mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1), GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER) membrane with the mitochondrial outer membrane of rats BAT. Ca(2+)-ATPase (SERCA 1) was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca(2+) effect in BAT mitochondria thermogenesis. We found that Ca(2+) increased the rate of respiration and heat production measured with a microcalorimeter both in coupled and uncoupled mitochondria, but had no effect on the rate of ATP synthesis. The Ca(2+) concentration needed for half-maximal activation varied between 0.08 and 0.11 microM. The activation of respiration was less pronounced than that of heat production. Heat production and ATP synthesis were inhibited by rotenone and KCN. Liver mitochondria have no UCP1 and during respiration synthesize a large amount of ATP, produce little heat, GDP had no effect on mitochondria coupling, Ca(2+) strongly inhibited ATP synthesis and had little or no effect on the small amount of heat released. These finding indicate that Ca(2+) activation of thermogenesis may be a specific feature of BAT mitochondria not found in other mitochondria such as liver. PMID:20209153

  3. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  4. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  5. [Cancer cachexia and white adipose tissue browning].

    PubMed

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research. PMID:27531474

  6. Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei.

    PubMed

    Chitravanshi, Vineet C; Kawabe, Kazumi; Sapru, Hreday N

    2016-08-01

    Hypothalamic arcuate nucleus (ARCN) stimulation elicited increases in sympathetic nerve activity (IBATSNA) and temperature (TBAT) of interscapular brown adipose tissue (IBAT). The role of hypothalamic dorsomedial (DMN) and paraventricular (PVN) nuclei in mediating these responses was studied in urethane-anesthetized, artificially ventilated, male Wistar rats. In different groups of rats, inhibition of neurons in the DMN and PVN by microinjections of muscimol attenuated the increases in IBATSNA and TBAT elicited by microinjections of N-methyl-d-aspartic acid into the ipsilateral ARCN. In other groups of rats, blockade of ionotropic glutamate receptors by combined microinjections of D(-)-2-amino-7-phosphono-heptanoic acid (D-AP7) and NBQX into the DMN and PVN attenuated increases in IBATSNA and TBAT elicited by ARCN stimulation. Blockade of melanocortin 3/4 receptors in the DMN and PVN in other groups of rats resulted in attenuation of increases in IBATSNA and TBAT elicited by ipsilateral ARCN stimulation. Microinjections of Fluoro-Gold into the DMN resulted in retrograde labeling of cells in the ipsilateral ARCN, and some of these cells contained proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH), or vesicular glutamate transporter-3. Since similar projections from ARCN to the PVN have been reported by us and others, these results indicate that neurons containing POMC, α-MSH, and glutamate project from the ARCN to the DMN and PVN. Stimulation of ARCN results in the release of α-MSH and glutamate in the DMN and PVN which, in turn, cause increases in IBATSNA and TBAT. PMID:27402666

  7. BROWN ADIPOSE TISSUE FUNCTION IN SHORT-CHAIN ACYL-COA DEHYDROGENASE DEFICIENT MICE

    PubMed Central

    Skilling, Helen; Coen, Paul M.; Fairfull, Liane; Ferrell, Robert E.; Goodpaster, Bret H.; Vockley, Jerry; Goetzman, Eric S.

    2010-01-01

    Brown adipose tissue is a highly specialized organ that uses mitochondrial fatty acid oxidation to fuel nonshivering thermogenesis. In mice, mutations in the acyl-CoA dehydrogenase family of fatty acid oxidation genes are associated with sensitivity to cold. Brown adipose tissue function has not previously been characterized in these knockout strains. Short-chain acyl-CoA dehydrogenase (SCAD) deficient mice were found to have increased brown adipose tissue mass as well as modest cardiac hypertrophy. Uncoupling protein-1 was reduced by 70% in brown adipose tissue and this was not due to a change in mitochondrial number, nor was it due to decreased signal transduction through protein kinase A which is known to be a major regulator of uncoupling protein-1 expression. PKA activity and in vitro lipolysis were normal in brown adipose tissue, although in white adipose tissue a modest increase in basal lipolysis was seen in SCAD−/ − mice. Finally, an in vivo norepinephrine challenge of brown adipose tissue thermogenesis revealed normal heat production in SCAD−/− mice. These results suggest that reduced brown adipose tissue function is not the major factor causing cold sensitivity in acyl-CoA dehydrogenase knockout strains. We speculate that other mechanisms such as shivering capacity, cardiac function, and reduced hepatic glycogen stores are involved. PMID:20727852

  8. NT-PGC-1α Activation Attenuates High-Fat Diet–Induced Obesity by Enhancing Brown Fat Thermogenesis and Adipose Tissue Oxidative Metabolism

    PubMed Central

    Jun, Hee-Jin; Joshi, Yagini; Patil, Yuvraj; Noland, Robert C.

    2014-01-01

    The transcriptional coactivator peroxisome proliferator–activated receptor γ coactivator (PGC)-1α and its splice variant N terminal (NT)-PGC-1α regulate adaptive thermogenesis by transcriptional induction of thermogenic and mitochondrial genes involved in energy metabolism. We previously reported that full-length PGC-1α (FL-PGC-1α) is dispensable for cold-induced nonshivering thermogenesis in FL-PGC-1α−/− mice, since a slightly shorter but functionally equivalent form of NT-PGC-1α (NT-PGC-1α254) fully compensates for the loss of FL-PGC-1α in brown and white adipose tissue. In the current study, we challenged FL-PGC-1α−/− mice with a high-fat diet (HFD) to investigate the effects of diet-induced thermogenesis on HFD-induced obesity. Despite a large decrease in locomotor activity, FL-PGC-1α−/− mice exhibited the surprising ability to attenuate HFD-induced obesity. Reduced fat mass in FL-PGC-1α−/− mice was closely associated with an increase in body temperature, energy expenditure, and whole-body fatty acid oxidation (FAO). Mechanistically, FL-PGC-1α−/− brown adipose tissue had an increased capacity to oxidize fatty acids and dissipate energy as heat, in accordance with upregulation of thermogenic genes UCP1 and DIO2. Furthermore, augmented expression of FAO and lipolytic genes in FL-PGC-1α−/− white adipose tissue was highly correlated with decreased fat storage in adipose tissue. Collectively, our data highlight a protective effect of NT-PGC-1α on diet-induced obesity by enhancing diet-induced thermogenesis and FAO. PMID:24848065

  9. Persistence of the effect of insulin on pyruvate dehydrogenase activity in rat white and brown adipose tissue during the preparation and subsequent incubation of mitochondria.

    PubMed

    Denton, R M; McCormack, J G; Marshall, S E

    1984-01-15

    Increases in the amount of the active non-phosphorylated form of pyruvate dehydrogenase in rat epididymal adipose tissue, as a result of incubation with insulin, persist not only during the preparation of mitochondria but also during subsequent incubation of coupled mitochondria in the presence of respiratory substrates. No effect on insulin was found if the hormone was added directly to mitochondria in the presence or absence of added plasma membranes. Concentrations of several possible regulators of pyruvate dehydrogenase kinase (ATP, ADP, NADH, NAD+, acetyl-CoA, CoA and potassium) were measured in rat epididymal-adipose-tissue mitochondria incubated under conditions where differences in pyruvate dehydrogenase activity persist as a result of insulin action. No alterations were found, and it is suggested that inhibition of the kinase is not the principal means by which insulin activates pyruvate dehydrogenase. The intramitochondrial concentration of magnesium was also unaffected. Differences in pyruvate dehydrogenase activity in interscapular brown adipose tissue associated with manipulation of plasma insulin concentrations of cold-adapted rats were also shown to persist during the preparation and subsequent incubation of mitochondria in the presence or absence of GDP. It is pointed out that the persistence of the effect of insulin on pyruvate dehydrogenase in incubated mitochondria will facilitate the recognition of the mechanism of this action of the hormone. Evidence that the short-term action of insulin involves an increase in pyruvate dehydrogenase phosphate phosphatase activity rather than inhibition of that of pyruvate dehydrogenase kinase is discussed. PMID:6320807

  10. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  11. C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor γ in brown adipose tissue of db/db mice.

    PubMed

    Zhang, Ning; Chen, Wei; Zhou, Xinbo; Zhou, Xiaolin; Xie, Xinni; Meng, Aimin; Li, Song; Wang, Lili

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes. PMID:23563593

  12. Brown Adipose Tissue in Cetacean Blubber

    PubMed Central

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  13. Inhibition of Sam68 triggers adipose tissue browning.

    PubMed

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  14. Inhibition of Sam68 triggers adipose tissue browning

    PubMed Central

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam Mina; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A.; Tang, Yao-Liang; Zhao, Ting C.; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-01-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms promoting energy expenditure may be utilized for effective therapy. Src-associated-in-mitosis-of-68kDa (Sam68) is potentially significant because knockout (KO) of Sam68 leads to markedly-reduced adiposity. Here we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We firstly found in Sam68-KO mice a significantly-reduced body weight with the difference explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake, but rather associated with enhanced physical activity. When fed high-fat diet, Sam68-KO mice gained much lesser body weight and fat mass as compared to wild-type (WT) littermates and displayed an improved glucose and insulin tolerance. The brown adipose tissue (BAT), inguinal and epididymal depots are smaller and their adipocytes less hypertrophy in Sam68-KO mice than in WT littermates. The BAT of Sam68-KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty-acid-oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68-KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16 and Ppargc1a genes was greater as compared to WT controls, suggesting that loss of Sam68 also promotes WAT browning. Furthermore, in all fat depots of Sam68-KO mice, the expression of M2 macrophage markers were upregulated and M1 markers downregulated. Thus Sam68 plays a crucial role in the control of thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  15. Endogenous ways to stimulate brown adipose tissue in humans.

    PubMed

    Broeders, Evie; Bouvy, Nicole D; van Marken Lichtenbelt, Wouter D

    2015-03-01

    Obesity is the result of disequilibrium between energy intake and energy expenditure (EE). Successful long-term weight loss is difficult to achieve with current strategies for the correction of this caloric imbalance. Non-shivering thermogenesis (NST) in brown adipose tissue (BAT) is a possible therapeutic target for the prevention and treatment of obesity and associated metabolic diseases. In recent years, more knowledge about the function and stimulation of bat has been obtained. The sympathetic nervous system (SNS) is currently seen as the main effector for brown fat function. Also, interplay between the thyroid axis and SNS plays an important role in BAT thermogenesis. Almost daily new pathways for the induction of BAT thermogenesis and 'browning' of white adipose tissue (WAT) are identified. Especially the activation of BAT via endogenous pathways has received strong scientific attention. Here we will discuss the relevance of several pathways in activating BAT and their implications for the treatment of obesity. In this review we will focus on the discussion of the most promising endocrine and paracrine pathways to stimulate BAT, by factors and pathways that naturally occur in the human body. PMID:24521443

  16. Brown adipose tissue: physiological function and evolutionary significance.

    PubMed

    Oelkrug, R; Polymeropoulos, E T; Jastroch, M

    2015-08-01

    In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species. PMID:25966796

  17. Thyroid Hormone Activates Brown Adipose Tissue and Increases Non-Shivering Thermogenesis - A Cohort Study in a Group of Thyroid Carcinoma Patients

    PubMed Central

    Broeders, Evie P. M.; Vijgen, Guy H. E. J.; Havekes, Bas; Bouvy, Nicole D.; Mottaghy, Felix M.; Kars, Marleen; Schaper, Nicolaas C.; Schrauwen, Patrick; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Background/Objectives Thyroid hormone receptors are present on brown adipose tissue (BAT), indicating a role for thyroid hormone in the regulation of BAT activation. The objective of this study was to examine the effect of thyroid hormone withdrawal followed by thyroid hormone in TSH-suppressive dosages, on energy expenditure and brown adipose tissue activity. Subjects/Methods This study was a longitudinal study in an academic center, with a follow-up period of 6 months. Ten patients with well-differentiated thyroid carcinoma eligible for surgical treatment and subsequent radioactive iodine ablation therapy were studied in a hypothyroid state after thyroidectomy and in a subclinical hyperthyroid state (TSH-suppression according to treatment protocol). Paired two-tailed t-tests and linear regression analyses were used. Results Basal metabolic rate (BMR) was significantly higher after treatment with synthetic thyroid hormone (levothyroxine) than in the hypothyroid state (BMR 3.8 ± 0.5 kJ/min versus 4.4 ± 0.6 kJ/min, P = 0.012), and non-shivering thermogenesis (NST) significantly increased from 15 ± 10% to 25 ± 6% (P = 0.009). Mean BAT activity was significantly higher in the subclinical hyperthyroid state than in the hypothyroid state (BAT standard uptake value (SUVMean) 4.0 ± 2.9 versus 2.4 ± 1.8, P = 0.039). Conclusions Our study shows that higher levels of thyroid hormone are associated with a higher level of cold-activated BAT. Trial Registration ClinicalTrials.gov NCT02499471 PMID:26784028

  18. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning.

    PubMed

    Zhang, Xueli; Tian, Yanli; Zhang, Hongbin; Kavishwar, Amol; Lynes, Matthew; Brownell, Anna-Liisa; Sun, Hongbin; Tseng, Yu-Hua; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Manipulation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can be promising new approaches to counter metabolic disorder diseases in humans. Imaging probes that could consistently monitor BAT mass and browning of WAT are highly desirable. In the course of our imaging probe screening, we found that BAT could be imaged with curcumin analogues in mice. However, the poor BAT selectivity over WAT and short emissions of the lead probes promoted further lead optimization. Limited uptake mechanism studies suggested that CD36/FAT (fatty acid transporter) probably contributed to the facilitated uptake of the probes. By increasing the stereo-hindrance of the lead compound, we designed CRANAD-29 to extend the emission and increase the facilitated uptake, thus increasing its BAT selectivity. Our data demonstrated that CRANAD-29 had significantly improved selectivity for BAT over WAT, and could be used for imaging BAT mass change in a streptozotocin-induced diabetic mouse model, as well as for monitoring BAT activation under cold exposure. In addition, CRANAD-29 could be used for monitoring the browning of subcutaneous WAT (sWAT) induced by β3-adrenoceptor agonist CL-316, 243. PMID:26269357

  19. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning

    PubMed Central

    Zhang, Xueli; Tian, Yanli; Zhang, Hongbin; Kavishwar, Amol; Lynes, Matthew; Brownell, Anna-Liisa; Sun, Hongbin; Tseng, Yu-Hua; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Manipulation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can be promising new approaches to counter metabolic disorder diseases in humans. Imaging probes that could consistently monitor BAT mass and browning of WAT are highly desirable. In the course of our imaging probe screening, we found that BAT could be imaged with curcumin analogues in mice. However, the poor BAT selectivity over WAT and short emissions of the lead probes promoted further lead optimization. Limited uptake mechanism studies suggested that CD36/FAT (fatty acid transporter) probably contributed to the facilitated uptake of the probes. By increasing the stereo-hindrance of the lead compound, we designed CRANAD-29 to extend the emission and increase the facilitated uptake, thus increasing its BAT selectivity. Our data demonstrated that CRANAD-29 had significantly improved selectivity for BAT over WAT, and could be used for imaging BAT mass change in a streptozotocin-induced diabetic mouse model, as well as for monitoring BAT activation under cold exposure. In addition, CRANAD-29 could be used for monitoring the browning of subcutaneous WAT (sWAT) induced by β3-adrenoceptor agonist CL-316, 243. PMID:26269357

  20. Is It Possible to Detect Activated Brown Adipose Tissue in Humans Using Single-Time-Point Infrared Thermography under Thermoneutral Conditions? Impact of BMI and Subcutaneous Adipose Tissue Thickness

    PubMed Central

    Gatidis, Sergios; Schmidt, Holger; Pfannenberg, Christina A.; Nikolaou, Konstantin; Schick, Fritz; Schwenzer, Nina F.

    2016-01-01

    Purpose To evaluate the feasibility to detect activated brown adipose tissue (BAT) using single-time-point infrared thermography of the supraclavicular skin region under thermoneutral conditions. To this end, infrared thermography was compared with 18-F-FDG PET, the current reference standard for the detection of activated BAT. Methods 120 patients were enrolled in this study. After exclusion of 18 patients, 102 patients (44 female, 58 male, mean age 58±17 years) were included for final analysis. All patients underwent a clinically indicated 18F-FDG-PET/CT examination. Immediately prior to tracer injection skin temperatures of the supraclavicular, presternal and jugular regions were measured using spatially resolved infrared thermography at room temperature. The presence of activated BAT was determined in PET by typical FDG uptake within the supraclavicular adipose tissue compartments. Local thickness of supraclavicular subcutaneous adipose tissue (SCAT) was measured on CT. Measured skin temperatures were statistically correlated with the presence of activated BAT and anthropometric data. Results Activated BAT was detected in 9 of 102 patients (8.8%). Local skin temperature of the supraclavicular region was significantly higher in individuals with active BAT compared to individuals without active BAT. However, after statistical correction for the influence of BMI, no predictive value of activated BAT on skin temperature of the supraclavicular region could be observed. Supraclavicular skin temperature was significantly negatively correlated with supraclavicular SCAT thickness. Conclusion We conclude that supraclavicular SCAT thickness influences supraclavicular skin temperature and thus makes a specific detection of activated BAT using single-time-point thermography difficult. Further studies are necessary to evaluate the possibility of BAT detection using alternative thermographic methods, e.g. dynamic thermography or MR-based thermometry taking into account BMI

  1. Browning attenuates murine white adipose tissue expansion during postnatal development.

    PubMed

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. PMID:23376694

  2. [Functional exploration of brown adipose tissue using beta3 agonists].

    PubMed

    Bertin, R; de Marco, F; Blancher, G; Portet, R

    1994-06-01

    In view to utilize beta 3 adrenoceptor agonists for the investigation of body lipid metabolism, a study of the effects of BRL 37344 on the functional activity of the brown adipose tissue was performed in the Rat. It is known that this tissue is the principal site of heat production for nonshivering thermogenesis mainly due to the oxidation of fatty acids under the control of norepinephrine (NA) released from the sympathetic nervous system. In order to stimulate the activity of the tissue, rats were reared at 16 degrees C. When they were one month old, they were divided in two groups; one group received a surgical sympathectomy of the interscapular brown adipose tissue (TABI) (S group); the other group was sham-operated (T group). The resting metabolism was estimated by the continuous measurement of O2 consumption and CO2 release, at an ambient temperature of 25 degrees C. The animal capacity for nonshivering thermogenesis was determined by increased O2 consumption following i.p. administration of NA or BRL 37344. In the S group a large decrease in TABI NA content and a decrease in resting metabolism were observed. In both groups VO2 was increased by the two drugs; the increase was linearly related to the dose of BRL (between 2.5 to 10 micrograms/kg); but it was 3 times as high in the T group as in the S group. Moreover, the effect of BRL was 40 fold greater than the effect of NA. These results seem to indicate that, in cold reared rats, a part of nonshivering thermogenesis may be mediated by the beta 3 receptors of the brown fat. It may be concluded that the rats born in cold conditions are good models to study the role of beta 3 receptors in the energetic activity of this tissue very profuse in infant but not in adult man. PMID:7994586

  3. Direct effects of leptin on brown and white adipose tissue.

    PubMed Central

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  4. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue.

    PubMed

    Kobayashi, Hiroko; Horiguchi-Babamoto, Emi; Suzuki, Mio; Makihara, Hiroko; Tomozawa, Hiroshi; Tsubata, Masahito; Shimada, Tsutomu; Sugiyama, Kiyoshi; Aburada, Masaki

    2016-01-01

    We have previously reported the effects of Kaempferia parviflora (KP), including anti-obesity, preventing various metabolic diseases, and regulating differentiation of white adipose cells. In this study we used Tsumura, Suzuki, Obese Diabetes (TSOD) mice--an animal model of spontaneous obese type II diabetes--and primary brown preadipocytes to examine the effects of the ethyl acetate extract of KP (KPE) on brown adipose tissue, which is one of the energy expenditure organs. TSOD mice were fed with MF mixed with either KPE 0.3 or 1% for 8 weeks. Computed tomography images showed that whitening of brown adipocytes was suppressed in the interscapular tissue of the KPE group. We also examined mRNA expression of uncoupling protein 1 (UCP-1) and β3-adrenalin receptor (β3AR) in brown adipose tissue. As a result, mRNA expression of UCP-1 significantly increased in the KPE 1% treatment group, indicating that KPE activated brown adipose tissue. We then evaluated the direct effects of KPE on brown adipocytes using primary brown preadipocytes isolated from interscapular brown adipocytes in ICR mice. Triacylglycerol (TG) accumulation in primary brown preadipocytes was increased by KPE in a dose-dependent manner. Each mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), UCP-1, and β3AR exhibited an upward trend compared with the control group. Moreover, some polymethoxyflavonoids (PMFs), the main compound in KP, also increased TG accumulation. This study therefore showed that KPE enhanced the thermogenesis effect of brown adipocytes as well as promoted the differentiation of brown adipocyte cells. PMID:26386971

  5. Differential responses of white adipose tissue and brown adipose tissue to caloric restriction in rats.

    PubMed

    Okita, Naoyuki; Hayashida, Yusuke; Kojima, Yumiko; Fukushima, Mayumi; Yuguchi, Keiko; Mikami, Kentaro; Yamauchi, Akiko; Watanabe, Kyoko; Noguchi, Mituru; Nakamura, Megumi; Toda, Toshifusa; Higami, Yoshikazu

    2012-05-01

    Caloric restriction (CR) slows the aging process and extends longevity, but the exact underlying mechanisms remain debatable. It has recently been suggested that the beneficial action of CR may be mediated in part by adipose tissue remodeling. Mammals have two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). In this study, proteome analysis using two-dimensional gel electrophoresis combined with MALDI-TOF MS, and subsequent analyses were performed on both WAT and BAT from 9-month-old male rats fed ad libitum or subjected to CR for 6 months. Our findings suggest that CR activates mitochondrial energy metabolism and fatty acid biosynthesis in WAT. It is likely that in CR animals WAT functions as an energy transducer from glucose to energy-dense lipid. In contrast, in BAT CR either had no effect on, or down-regulated, the mitochondrial electron transport chain, but enhanced fatty acid biosynthesis. This suggests that in CR animals BAT may change its function from an energy consuming system to an energy reservoir system. Based on our findings, we conclude that WAT and BAT cooperate to use energy effectively via a differential response of mitochondrial function to CR. PMID:22414572

  6. Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning

    PubMed Central

    Neinast, Michael D.; Frank, Aaron P.; Zechner, Juliet F.; Li, Quanlin; Vishvanath, Lavanya; Palmer, Biff F.; Aguirre, Vincent; Gupta, Rana K.; Clegg, Deborah J.

    2015-01-01

    Objective Roux-en-Y gastric bypass (RYGB) is an effective method of weight loss and remediation of type-2 diabetes; however, the mechanisms leading to these improvements are unclear. Additionally, adipocytes within white adipose tissue (WAT) depots can manifest characteristics of brown adipocytes. These ‘BRITE/beige’ adipocytes express uncoupling protein 1 (UCP1) and are associated with improvements in glucose homeostasis and protection from obesity. Interestingly, atrial and B-type natriuretic peptides (NPs) promote BRITE/beige adipocyte enrichment of WAT depots, an effect known as “browning.” Here, we investigate the effect of RYGB surgery on NP, NP receptors, and browning in the gonadal adipose tissues of female mice. We propose that such changes may lead to improvements in metabolic homeostasis commonly observed following RYGB. Methods Wild type, female, C57/Bl6 mice were fed a 60% fat diet ad libitum for six months. Mice were divided into three groups: Sham operated (SO), Roux-en-Y gastric bypass (RYGB), and Weight matched, sham operated (WM-SO). Mice were sacrificed six weeks following surgery and evaluated for differences in body weight, glucose homeostasis, adipocyte morphology, and adipose tissue gene expression. Results RYGB and calorie restriction induced similar weight loss and improved glucose metabolism without decreasing food intake. β3-adrenergic receptor expression increased in gonadal adipose tissue, in addition to Nppb (BNP), and NP receptors, Npr1, and Npr2. The ratio of Npr1:Npr3 and Npr2:Npr3 increased in RYGB, but not WM-SO groups. Ucp1 protein and mRNA, as well as additional markers of BRITE/beige adipose tissue and lipolytic genes increased in RYGB mice to a greater extent than calorie-restricted mice. Conclusions Upregulation of Nppb, Npr1, Npr2, and β3-adrenergic receptors in gonadal adipose tissue following RYGB was associated with increased markers of browning. This browning of gonadal adipose tissue may underpin the positive

  7. α/β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes.

    PubMed

    Zhao, Shangang; Mugabo, Yves; Ballentine, Gwynne; Attane, Camille; Iglesias, Jose; Poursharifi, Pegah; Zhang, Dongwei; Nguyen, Thuy Anne; Erb, Heidi; Prentki, Raphael; Peyot, Marie-Line; Joly, Erik; Tobin, Stephanie; Fulton, Stephanie; Brown, J Mark; Madiraju, S R Murthy; Prentki, Marc

    2016-03-29

    Suppression of α/β-domain hydrolase-6 (ABHD6), a monoacylglycerol (MAG) hydrolase, promotes glucose-stimulated insulin secretion by pancreatic β cells. We report here that high-fat-diet-fed ABHD6-KO mice show modestly reduced food intake, decreased body weight gain and glycemia, improved glucose tolerance and insulin sensitivity, and enhanced locomotor activity. ABHD6-KO mice also show increased energy expenditure, cold-induced thermogenesis, brown adipose UCP1 expression, fatty acid oxidation, and white adipose browning. Adipose browning and cold-induced thermogenesis are replicated by the ABHD6 inhibitor WWL70 and by antisense oligonucleotides targeting ABHD6. Our evidence suggests that one mechanism by which the lipolysis derived 1-MAG signals intrinsic and cell-autonomous adipose browning is via PPARα and PPARγ activation, and that ABHD6 regulates adipose browning by controlling signal competent 1-MAG levels. Thus, ABHD6 regulates energy homeostasis, brown adipose function, and white adipose browning and is a potential therapeutic target for obesity and type 2 diabetes. PMID:26997277

  8. White Adipose Tissue Browning: A Double-edged Sword.

    PubMed

    Abdullahi, Abdikarim; Jeschke, Marc G

    2016-08-01

    The study of white adipose tissue (WAT) 'browning' has become a 'hot topic' in various acute and chronic metabolic conditions, based on the idea that WAT browning might be able to facilitate weight loss and improve metabolic health. However, this view cannot be translated into all areas of medicine. Recent studies identified effects of browning associated with adverse outcomes, and as more studies are being conducted, a very different picture has emerged about WAT browning and its detrimental effect in acute and chronic hypermetabolic conditions. Therefore, the notion that browning is supposedly beneficial may be inadequate. In this review we analyze how and why browning in chronic hypermetabolic associated diseases can be detrimental and lead to adverse outcomes. PMID:27397607

  9. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  10. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet.

    PubMed

    Dinh, Chi H L; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-06-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  11. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  12. Molecular clock integration of brown adipose tissue formation and function.

    PubMed

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  13. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis.

    PubMed

    Kajimura, Shingo; Saito, Masayuki

    2014-01-01

    Brown adipose tissue (BAT) is specialized to dissipate chemical energy in the form of heat as a defense against cold and excessive feeding. Interest in the field of BAT biology has exploded in the past few years because of the therapeutic potential of BAT to counteract obesity and obesity-related diseases, including insulin resistance. Much progress has been made, particularly in the areas of BAT physiology in adult humans, developmental lineages of brown adipose cell fate, and hormonal control of BAT thermogenesis. As we enter into a new era of brown fat biology, the next challenge will be to develop strategies for activating BAT thermogenesis in adult humans to increase whole-body energy expenditure. This article reviews the recent major advances in this field and discusses emerging questions. PMID:24188710

  14. A New Era in Brown Adipose Tissue Biology: Molecular Control of Brown Fat Development and Energy Homeostasis

    PubMed Central

    Kajimura, Shingo; Saito, Masayuki

    2014-01-01

    Brown adipose tissue (BAT) is specialized to dissipate chemical energy in the form of heat as a defense against cold and excessive feeding. Interest in the field of BAT biology has exploded in the past few years because of the therapeutic potential of BAT to counteract obesity and obesity-related diseases, including insulin resistance. Much progress has been made, particularly in the areas of BAT physiology in adult humans, developmental lineages of brown adipose cell fate, and hormonal control of BAT thermogenesis. As we enter into a new era of brown fat biology, the next challenge will be to develop strategies for activating BAT thermogenesis in adult humans to increase whole-body energy expenditure. This article reviews the recent major advances in this field and discusses emerging questions. PMID:24188710

  15. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3

    PubMed Central

    Lateef, Dalya M.; Abreu-Vieira, Gustavo; Xiao, Cuiying

    2014-01-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3−/y) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3−/y metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3−/y mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3−/y mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3−/y mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3−/y mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue. PMID:24452453

  16. Fatty acid metabolism and the basis of brown adipose tissue function

    PubMed Central

    Calderon-Dominguez, María; Mir, Joan F.; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  17. Fatty acid metabolism and the basis of brown adipose tissue function.

    PubMed

    Calderon-Dominguez, María; Mir, Joan F; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  18. Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells.

    PubMed

    Lapid, Kfir; Lim, Ajin; Clegg, Deborah J; Zeve, Daniel; Graff, Jonathan M

    2014-01-01

    Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFβ programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases. PMID:25330806

  19. Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells

    PubMed Central

    Clegg, Deborah J.; Zeve, Daniel; Graff, Jonathan M.

    2016-01-01

    Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFβ programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases. PMID:25330806

  20. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome.

    PubMed

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-03-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  1. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome

    PubMed Central

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-01-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  2. Transcriptional and epigenetic control of brown and beige adipose cell fate and function

    PubMed Central

    Inagaki, Takeshi; Sakai, Juro; Kajimura, Shingo

    2016-01-01

    White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. PMID:27251423

  3. Transcriptional and epigenetic control of brown and beige adipose cell fate and function.

    PubMed

    Inagaki, Takeshi; Sakai, Juro; Kajimura, Shingo

    2016-08-01

    White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. PMID:27251423

  4. Brown adipose tissue (BAT) thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle (BRAC)

    PubMed Central

    Ootsuka, Youichirou; de Menezes, Rodrigo C.; Alimoradian, Abbas; Zaretsky, Dmitry V.; Hunt, Joseph; Stefanidis, Aneta; Oldfield, Brian J.; Blessing, William W.

    2009-01-01

    Brown adipose tissue (BAT), body and brain temperatures, as well as behavioral activity, arterial pressure and heart rate, increase episodically during the waking (dark) phase of the circadian cycle in rats. Phase-linking of combinations of these ultradian (<24 hour) events has previously been noted, but no synthesis of their overall interrelationships has emerged. We hypothesized that they are coordinated by brain central command, and that BAT thermogenesis, itself controlled by the brain, contributes to increases in brain and body temperature. We used chronically implanted instruments to measure combinations of BAT, brain and body temperatures, behavioral activity, tail artery blood flow, and arterial pressure and heart rate, in conscious freely moving Sprague-Dawley rats during the 12 hour dark active period. Ambient temperature was kept constant for any particular 24 hour day, varying between 22°C and 27°C on different days. Increases in BAT temperature (≥0.5°C) occurred in an irregular episodic manner every 94±43 min (mean±SD). Varying the temperature over a wider range (18–30°C) on different days did not change the periodicity, and neither body nor brain temperature fell before BAT temperature episodic increases. These increases are thus unlikely to reflect thermoregulatory homeostasis. Episodic BAT thermogenesis still occurred in food-deprived rats. Behavioral activity, arterial pressure (18±5 mmHg every 98±49 min) and heart rate (86±31 beats/min) increased approximately 3 min before each increase in BAT temperature. Increases in BAT temperature (1.1±0.4°C) were larger than corresponding increases in brain (0.8±0.4°C) and body (0.6±0.3°C) temperature and the BAT episodes commenced 2–3 min before body and brain episodes, suggesting that BAT thermogenesis warms body and brain. Hippocampal 5–8 Hz theta rhythm, indicating active engagement with the environment, increased before the behavioral and autonomic events, suggesting coordination

  5. Postnatal changes in fatty acids composition of brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ogawa, K.; Kuroshima, A.

    1992-03-01

    It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo- γ-linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT.

  6. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning.

    PubMed

    Bartelt, Alexander; Weigelt, Clara; Cherradi, M Lisa; Niemeier, Andreas; Tödter, Klaus; Heeren, Joerg; Scheja, Ludger

    2013-05-01

    Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. PMID:23228690

  7. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  8. Activating Brown Adipose Tissue for Weight Loss and Lowering of Blood Glucose Levels: A MicroPET Study Using Obese and Diabetic Model Mice

    PubMed Central

    Wu, Chenxi; Cheng, Wuying; Sun, Yi; Dang, Yonghong; Gong, Fengying; Zhu, Huijuan; Li, Naishi; Li, Fang; Zhu, Zhaohui

    2014-01-01

    Purpose This study aims at using 18F-FDG microPET to monitor the brown adipose tissue (BAT) glucose metabolism in obese and diabetic mouse models under different interventions, and study the therapeutic potential of BAT activation for weight loss and lowering of blood glucose in these models. Methods Obese mice were established by a high-fat diet for eight weeks, and diabetes mellitus(DM) models were induced with Streptozocin in obese mice. 18F-FDG microPET was used to monitor BAT function during obese and DM modeling, and also after BRL37344 (a β3-adrenergic receptor agonist) or levothyroxine treatment. The BAT function was correlated with the body weight and blood glucose levels. Results Compared with the controls, the obese mice and DM mice showed successively lower 18F-FDG uptake in the interscapular BAT (P = 0.036 and <0.001, respectively). After two-week BRL37344 treatment, the BAT uptake was significantly elevated in both obese mice (P = 0.010) and DM mice (P = 0.004), accompanied with significantly decreased blood glucose levels (P = 0.023 and 0.036, respectively). The BAT uptake was negatively correlated with the blood glucose levels in both obese mice (r = −0.71, P = 0.003) and DM mice (r = −0.74, P = 0.010). BRL37344 treatment also caused significant weight loss in the obese mice (P = 0.001). Levothyroxine treatment increased the BAT uptake in the control mice (P = 0.025) and obese mice (P = 0.013), but not in the DM mice (P = 0.45). Conclusion The inhibited BAT function in obese and DM mice can be re-activated by β3-adrenergic receptor agonist or thyroid hormone, and effective BAT activation may lead to weight loss and blood glucose lowering. Activating BAT can provide a new treatment strategy for obesity and DM. PMID:25462854

  9. Cerenkov luminescence imaging of interscapular brown adipose tissue.

    PubMed

    Zhang, Xueli; Kuo, Chaincy; Moore, Anna; Ran, Chongzhao

    2014-01-01

    Brown adipose tissue (BAT), widely known as a "good fat" plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of (18)F-FDG under certain conditions. In this video report, we demonstrate that Cerenkov luminescence imaging (CLI) with (18)F-FDG can be used to optically image BAT in small animals. BAT activation is observed after intraperitoneal injection of norepinephrine (NE) and cold treatment, and depression of BAT is induced by long anesthesia. Using multiple-filter Cerenkov luminescence imaging, spectral unmixing and 3D imaging reconstruction are demonstrated. Our results suggest that CLI with (18)F-FDG is a practical technique for imaging BAT in small animals, and this technique can be used as a cheap, fast, and alternative imaging tool for BAT research. PMID:25349986

  10. Central neural control of thermoregulation and brown adipose tissue.

    PubMed

    Morrison, Shaun F

    2016-04-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. PMID:26924538

  11. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    PubMed Central

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  12. Renaissance of brown adipose tissue research: integrating the old and new

    PubMed Central

    Granneman, J G

    2015-01-01

    The recent demonstration of active brown adipose tissue (BAT) in adult humans, along with the discovery of vast cellular and metabolic plasticity of adipocyte phenotypes, has given new hope of targeting adipose tissue for therapeutic benefit. Application of principles learned from the first wave of obesity-related BAT research, conducted 30 years earlier, suggests that the activity and/or mass of brown fat will need to be greatly expanded for it to significantly contribute to total energy expenditure. Although the thermogenic capacity of human brown fat is very modest, its presence often correlates with improved metabolic status, suggesting possible beneficial endocrine functions. Recent advances in our understanding of the nature of progenitors and the transcriptional programs that guide phenotypic diversity have demonstrated the possibility of expanding the population of brown adipocytes in rodent models. Expanded populations of brown and beige adipocytes will require tight control of their metabolic activity, which might be achieved by selective neural activation, tissue-selective signaling or direct activation of lipolysis, which supplies the central fuel of thermogenesis. PMID:27152176

  13. Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities?

    PubMed

    Mulya, Anny; Kirwan, John P

    2016-09-01

    Overweight and obesity are global health problems placing an ever-increasing demand on health care systems. Brown adipose tissue (BAT) is present in significant amounts in adults. BAT has potential as a fuel for oxidation and dissipation as heat production, which makes it an attractive target for obesity therapy. BAT activation results in increased energy expenditure via thermogenesis. The role of BAT/beige adipocyte activation on whole body energy homeostasis, body weight management/regulation, and whole body glucose and lipid homeostasis remains unproven. This paper reviews knowledge on brown/beige adipocytes in energy expenditure and how it may impact obesity therapy and its comorbidities. PMID:27519133

  14. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  15. Insights into Brown Adipose Tissue Physiology as Revealed by Imaging Studies

    PubMed Central

    Izzi-Engbeaya, Chioma; Salem, Victoria; Atkar, Rajveer S; Dhillo, Waljit S

    2014-01-01

    There has been resurgence in interest in brown adipose tissue (BAT) following radiological and histological identification of metabolically active BAT in adult humans. Imaging enables BAT to be studied non-invasively and therefore imaging studies have contributed a significant amount to what is known about BAT function in humans. In this review the current knowledge (derived from imaging studies) about the prevalence, function, activity and regulation of BAT in humans (as well as relevant rodent studies), will be summarized. PMID:26167397

  16. Brown adipose tissue development and metabolism in ruminants.

    PubMed

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  17. Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is Not Required for Brown Adipogenesis but Regulates Brown Adipose Tissue Development and Function.

    PubMed

    Zhou, Hongyi; Black, Stephen M; Benson, Tyler W; Weintraub, Neal L; Chen, Weiqin

    2016-08-01

    Brown adipose tissue (BAT) plays a unique role in regulating whole-body energy homeostasis by dissipating energy through thermogenic uncoupling. Berardinelli-Seip congenital lipodystrophy (BSCL) type 2 (BSCL2; also known as seipin) is a lipodystrophy-associated endoplasmic reticulum membrane protein essential for white adipocyte differentiation. Whether BSCL2 directly participates in brown adipocyte differentiation, development, and function, however, is unknown. We show that BSCL2 expression is increased during brown adipocyte differentiation. Its deletion does not impair the classic brown adipogenic program but rather induces premature activation of differentiating brown adipocytes through cyclic AMP (cAMP)/protein kinase A (PKA)-mediated lipolysis and fatty acid and glucose oxidation, as well as uncoupling. cAMP/PKA signaling is physiologically activated during neonatal BAT development in wild-type mice and greatly potentiated in mice with genetic deletion of Bscl2 in brown progenitor cells, leading to reduced BAT mass and lipid content during neonatal brown fat formation. However, prolonged overactivation of cAMP/PKA signaling during BAT development ultimately causes apoptosis of brown adipocytes through inflammation, resulting in BAT atrophy and increased overall adiposity in adult mice. These findings reveal a key cell-autonomous role for BSCL2 in controlling BAT mass/activity and provide novel insights into therapeutic strategies targeting cAMP/PKA signaling to regulate brown adipocyte function, viability, and metabolic homeostasis. PMID:27185876

  18. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  19. Prdm4 induction by the small molecule butein promotes white adipose tissue browning.

    PubMed

    Song, No-Joon; Choi, Seri; Rajbhandari, Prashant; Chang, Seo-Hyuk; Kim, Suji; Vergnes, Laurent; Kwon, So-Mi; Yoon, Jung-Hoon; Lee, Sukchan; Ku, Jin-Mo; Lee, Jeong-Soo; Reue, Karen; Koo, Seung-Hoi; Tontonoz, Peter; Park, Kye Won

    2016-07-01

    Increasing the thermogenic activity of adipocytes holds promise as an approach to combating human obesity and related metabolic diseases. We identified induction of mouse PR domain containing 4 (Prdm4) by the small molecule butein as a means to induce expression of uncoupling protein 1 (Ucp1), increase energy expenditure, and stimulate the generation of thermogenic adipocytes. This study highlights a Prdm4-dependent pathway, modulated by small molecules, that stimulates browning of white adipose tissue. PMID:27159578

  20. Quantitative image analysis in adipose tissue using an automated image analysis system: differential effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist on white and brown adipose tissue morphology in AKR obese and db/db diabetic mice.

    PubMed

    Okamoto, Yuji; Higashiyama, Hiroyuki; Inoue, Hiroki; Kanematsu, Masahiro; Kinoshita, Mine; Asano, Satoshi

    2007-06-01

    Morphometric analysis of adipocytes is widely used to demonstrate the effects of antiobesity drugs or anti-diabetic drugs on adipose tissues. However, adipocyte morphometry has been quantitatively performed by manual object extraction using conventional image analysis systems. The authors have developed an automated quantitative image analysis method for adipose tissues using an innovative object-based quantitative image analysis system (eCognition). Using this system, it has been shown quantitatively that morphological features of adipose tissues of mice treated with peroxisome proliferator-activated receptor (PPAR) agonists differ dramatically depending on the type of PPAR agonist. Marked alteration of morphological characteristics of brown adipose tissue (BAT) treated with GI259578A, a PPAR-alpha agonist, was observed in AKR/J (AKR) obese mice. Furthermore, there was a 22.8% decrease in the mean size of adipocytes in white adipose tissue (WAT) compared with vehicle. In diabetic db/db mice, the PPAR-gamma agonist GW347845X decreased the mean size of adipocytes in WAT by 15.4% compared with vehicle. In contrast to changes in WAT, GW347845X increased the mean size of adipocytes in BAT greatly by 96.1% compared with vehicle. These findings suggest that GI259578A may activate fatty acid oxidation in BAT and that GW347845X may cause adipocyte differentiation in WAT and enhancement of lipid storage in BAT. PMID:17539968

  1. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    SciTech Connect

    Rehnmark, S.; Nedergaard, J. )

    1989-02-01

    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  2. Brown adipose tissue. III. Effect of ethanol, nicotine and caffeine exposure.

    PubMed

    Sidlo, J; Zaviacic, M; Trutzová, H

    1996-05-01

    Brown adipose tissue is known to be the most important organ for generating heat in non-shivering thermogenesis. Process of thermogenesis and thermoregulation may be affected by many drugs. The paper deals with actual literary data of effect of ethanol, nicotine and caffeine on brown adipose tissue, heat production and its regulation in experimental animals and in human. PMID:9560910

  3. A soyabean diet does not modify the activity of brown adipose tissue but alters the rate of lipolysis in the retroperitoneal white adipose tissue of male rats recovering from early-life malnutrition.

    PubMed

    Paiva, Adriene Alexandra; Faiad, Jaline Zandonato; Taki, Marina Satie; de Lima Reis, Silvia Regina; de Souza, Letícia Martins Ignácio; Dos Santos, Maísa Pavani; Chaves, Valéria Ernestânia; Kawashita, Nair Honda; de Oliveira, Helena Coutinho Franco; Raposo, Helena Fonseca; Carneiro, Everardo Magalhães; Latorraca, Márcia Queiroz; Gomes-da-Silva, Maria Helena Gaíva; Martins, Maria Salete Ferreira

    2012-09-28

    Nutritional recovery with a soyabean diet decreases body and fat weights when compared with a casein diet. We investigated whether the reduced adiposity observed in rats recovering from early-life malnutrition with a soyabean diet results from alterations in lipid metabolism in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Male rats from mothers fed either 17 or 6 % protein during pregnancy and lactation were maintained on 17 % casein (CC and LC groups), 17 % soyabean (CS and LS groups) or 6 % casein (LL group) diets over 60 d. The rats maintained on a soyabean diet had similar relative food intakes, but lower body and retroperitoneal WAT weights and a reduced lipid content in the retroperitoneal WAT. The insulin levels were lower in the recovered rats and were elevated in those fed a soyabean diet. Serum T3 concentration and uncoupling protein 1 content in the BAT were decreased in the recovered rats. The thermogenic capacity of the BAT was not affected by the soyabean diet. The lipogenesis rate in the retroperitoneal WAT was similar in all of the groups except for the LL group, which had exacerbated lipogenesis. The enhancement of the lipolysis rate by isoproterenol was decreased in white adipocytes from the soyabean-recovered rats and was elevated in adipocytes from the soyabean-control rats. Thus, in animals maintained on a soyabean diet, the proportions of fat deposits are determined by the lipolysis rate, which differs depending on the previous nutritional status. PMID:22152781

  4. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity

    PubMed Central

    Shahid, Mohd; Javed, Ammar A.; Chandra, David; Ramsey, Haley E.; Shah, Dilip; Khan, Mohammed F.; Zhao, Liping; Wu, Mei X.

    2016-01-01

    Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1−/−) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1−/− mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT. PMID:27063893

  5. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity.

    PubMed

    Shahid, Mohd; Javed, Ammar A; Chandra, David; Ramsey, Haley E; Shah, Dilip; Khan, Mohammed F; Zhao, Liping; Wu, Mei X

    2016-01-01

    Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1(-/-)) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1(-/-) mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT. PMID:27063893

  6. MECHANISMS IN ENDOCRINOLOGY: Brown adipose tissue in humans: regulation and metabolic significance.

    PubMed

    Thuzar, Moe; Ho, Ken K Y

    2016-07-01

    The recent discovery that functional brown adipose tissue (BAT) persists in adult humans has enkindled a renaissance in metabolic research, with a view of harnessing its thermogenic capacity to combat obesity. This review focuses on the advances in the regulation and the metabolic significance of BAT in humans. BAT activity in humans is stimulated by cold exposure and by several factors such as diet and metabolic hormones. BAT function is regulated at two levels: an acute process involving the stimulation of the intrinsic thermogenic activity of brown adipocytes and a chronic process of growth involving the proliferation of pre-existing brown adipocytes or differentiation to brown adipocytes of adipocytes from specific white adipose tissue depots. BAT activity is reduced in the obese, and its stimulation by cold exposure increases insulin sensitivity and reduces body fat. These observations provide strong evidence that BAT plays a significant role in energy balance in humans and has the potential to be harnessed as a therapeutic target for the management of obesity. PMID:27220620

  7. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia.

    PubMed

    Kir, Serkan; White, James P; Kleiner, Sandra; Kazak, Lawrence; Cohen, Paul; Baracos, Vickie E; Spiegelman, Bruce M

    2014-09-01

    Cachexia is a wasting disorder of adipose and skeletal muscle tissues that leads to profound weight loss and frailty. About half of all cancer patients suffer from cachexia, which impairs quality of life, limits cancer therapy and decreases survival. One key characteristic of cachexia is higher resting energy expenditure levels than in healthy individuals, which has been linked to greater thermogenesis by brown fat. How tumours induce brown fat activity is unknown. Here, using a Lewis lung carcinoma model of cancer cachexia, we show that tumour-derived parathyroid-hormone-related protein (PTHrP) has an important role in wasting, through driving the expression of genes involved in thermogenesis in adipose tissues. Neutralization of PTHrP in tumour-bearing mice blocked adipose tissue browning and the loss of muscle mass and strength. Our results demonstrate that PTHrP mediates energy wasting in fat tissues and contributes to the broader aspects of cancer cachexia. Thus, neutralization of PTHrP might hold promise for ameliorating cancer cachexia and improving patient survival. PMID:25043053

  8. Tumor-derived PTHrP Triggers Adipose Tissue Browning and Cancer Cachexia

    PubMed Central

    Kir, Serkan; White, James P.; Kleiner, Sandra; Kazak, Lawrence; Cohen, Paul; Baracos, Vickie E.; Spiegelman, Bruce M.

    2014-01-01

    Summary Cachexia is a wasting disorder of adipose and skeletal muscle tissues that leads to profound weight loss and frailty. About half of all cancer patients suffer from cachexia, which impairs quality of life, limits cancer therapy and decreases survival. One key characteristic of cachexia is elevated resting energy expenditure, which has been linked to increased brown fat thermogenesis1-6. How tumors induce brown fat activity is unknown. Here, using lewis lung carcinoma model of cancer cachexia, we show that tumor-derived PTHrP plays an important role in wasting by driving thermogenic gene expression in adipose tissues. Neutralization of PTHrP in tumor-bearing mice blocks adipose tissue browning and also loss of muscle mass and strength. Our results demonstrate that PTHrP mediates energy wasting in fat tissues and contributes to broader aspects of cancer cachexia. Thus, neutralization of PTHrP might hold promise for fighting cancer cachexia and improving patient survival. PMID:25043053

  9. Adipose VEGF Links the White-to-Brown Fat Switch With Environmental, Genetic, and Pharmacological Stimuli in Male Mice.

    PubMed

    During, Matthew J; Liu, Xianglan; Huang, Wei; Magee, Daniel; Slater, Andrew; McMurphy, Travis; Wang, Chuansong; Cao, Lei

    2015-06-01

    Living in an enriched environment (EE) decreases adiposity, increases energy expenditure, causes resistance to diet induced obesity, and induces brown-like (beige) cells in white fat via activating a hypothalamic-adipocyte axis. Here we report that EE stimulated vascular endothelial growth factor (VEGF) expression in a fat depot-specific manner prior to the emergence of beige cells. The VEGF up-regulation was independent of hypoxia but required intact sympathetic tone to the adipose tissue. Targeted adipose overexpression of VEGF reproduced the browning effect of EE. Adipose-specific VEGF knockout or pharmacological VEGF blockade with antibodies abolished the induction of beige cell by EE. Hypothalamic brain-derived neurotrophic factor stimulated by EE regulated the adipose VEGF expression, and VEGF signaling was essential to the hypothalamic brain-derived neurotrophic factor-induced white adipose tissue browning. Furthermore, VEGF signaling was essential to the beige cells induction by exercise, a β3-adrenergic agonist, and a peroxisome proliferator-activated receptor-γ ligand, suggesting a common downstream pathway integrating diverse upstream mechanisms. Exploiting this pathway may offer potential therapeutic interventions to obesity and metabolic diseases. PMID:25763639

  10. Adipose VEGF Links the White-to-Brown Fat Switch With Environmental, Genetic, and Pharmacological Stimuli in Male Mice

    PubMed Central

    During, Matthew J.; Liu, Xianglan; Huang, Wei; Magee, Daniel; Slater, Andrew; McMurphy, Travis; Wang, Chuansong

    2015-01-01

    Living in an enriched environment (EE) decreases adiposity, increases energy expenditure, causes resistance to diet induced obesity, and induces brown-like (beige) cells in white fat via activating a hypothalamic-adipocyte axis. Here we report that EE stimulated vascular endothelial growth factor (VEGF) expression in a fat depot-specific manner prior to the emergence of beige cells. The VEGF up-regulation was independent of hypoxia but required intact sympathetic tone to the adipose tissue. Targeted adipose overexpression of VEGF reproduced the browning effect of EE. Adipose-specific VEGF knockout or pharmacological VEGF blockade with antibodies abolished the induction of beige cell by EE. Hypothalamic brain-derived neurotrophic factor stimulated by EE regulated the adipose VEGF expression, and VEGF signaling was essential to the hypothalamic brain-derived neurotrophic factor-induced white adipose tissue browning. Furthermore, VEGF signaling was essential to the beige cells induction by exercise, a β3-adrenergic agonist, and a peroxisome proliferator-activated receptor-γ ligand, suggesting a common downstream pathway integrating diverse upstream mechanisms. Exploiting this pathway may offer potential therapeutic interventions to obesity and metabolic diseases. PMID:25763639

  11. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis. PMID:26781688

  12. Adipose-specific lipoprotein lipase deficiency more profoundly affects brown than white fat biology.

    PubMed

    Garcia-Arcos, Itsaso; Hiyama, Yaeko; Drosatos, Konstantinos; Bharadwaj, Kalyani G; Hu, Yunying; Son, Ni Huiping; O'Byrne, Sheila M; Chang, Chuchun L; Deckelbaum, Richard J; Takahashi, Manabu; Westerterp, Marit; Obunike, Joseph C; Jiang, Hongfeng; Yagyu, Hiroaki; Blaner, William S; Goldberg, Ira J

    2013-05-17

    Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution. PMID:23542081

  13. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    PubMed

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity. PMID:26504234

  14. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue

    PubMed Central

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity. PMID:26504234

  15. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages. PMID:26167418

  16. Brown adipose tissue: The heat is on the heart.

    PubMed

    Thoonen, Robrecht; Hindle, Allyson G; Scherrer-Crosbie, Marielle

    2016-06-01

    The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart. PMID:27084389

  17. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  18. Desnutrin/ATGL is Regulated by AMPK and is Required for a Brown Adipose Phenotype

    PubMed Central

    Ahmadian, Maryam; Abbott, Marcia J.; Tang, Tianyi; Hudak, Carolyn S.S.; Kim, Yangha; Bruss, Matthew; Hellerstein, Marc K.; Lee, Hui-Young; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Duncan, Robin E.; Kang, Chulho; Sul, Hei Sook

    2011-01-01

    SUMMARY While fatty acids (FAs) released by white adipose tissue (WAT) provide energy for other organs, lipolysis is also critical in brown adipose tissue (BAT), generating FAs for oxidation and UCP-1 activation for thermogenesis. Here, we show that adipose-specific ablation of desnutrin/ATGL in mice converts BAT to a WAT-like tissue. These mice exhibit severely impaired thermogenesis with increased expression of WAT-enriched genes but decreased BAT genes including UCP-1 with lower PPARα binding to its promoter, revealing the requirement of desnutrin-catalyzed lipolysis for maintaining BAT phenotype. We also show that desnutrin is phosphorylated by AMPK at S406, increasing TAG hydrolase activity, and provide evidence for increased lipolysis by AMPK phosphorylation of desnutrin in adipocytes and in vivo. Despite adiposity and impaired BAT function, desnutrin-ASKO mice have improved hepatic insulin sensitivity with lower DAG levels. Overall, desnutrin is phosphorylated/activated by AMPK to increase lipolysis and brings FA oxidation and UCP-1 induction for thermogenesis. PMID:21641555

  19. Relationship of brown adipose tissue perfusion and function: a study through β2-adrenoreceptor stimulation.

    PubMed

    Ernande, Laura; Stanford, Kristin I; Thoonen, Robrecht; Zhang, Haihua; Clerte, Maëva; Hirshman, Michael F; Goodyear, Laurie J; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2016-04-15

    Brown adipose tissue (BAT) activation increases glucose and lipid consumption; as such, it is been considered as a potential therapy to decrease obesity. BAT is highly vascularized and its activation is associated with a necessary increase in blood flow. However, whether increasing BAT blood flow per se increases BAT activity is unknown. To examine this hypothesis, we investigated whether an isolated increase in BAT blood flow obtained by β2-adrenoreceptor (β2-AR) stimulation with salbutamol increased BAT activity. BAT blood flow was estimated in vivo in mice using contrast-enhanced ultrasound. The absence of direct effect of salbutamol on the function of isolated brown adipocytes was assessed by measuring oxygen consumption. The effect of salbutamol on BAT activity was investigated by measuring BAT glucose uptake in vivo. BAT blood flow increased by 2.3 ± 0.6-fold during β2-AR stimulation using salbutamol infusion in mice (P= 0.003). β2-AR gene expression was detectable in BAT but was extremely low in isolated brown adipocytes. Oxygen consumption of isolated brown adipocytes did not change with salbutamol exposure, confirming the absence of a direct effect of β2-AR agonist on brown adipocytes. Finally, β2-AR stimulation by salbutamol increased BAT glucose uptake in vivo (991 ± 358 vs. 135 ± 49 ng glucose/mg tissue/45 min in salbutamol vs. saline injected mice, respectively,P= 0.046). In conclusion, an increase in BAT blood flow without direct stimulation of the brown adipocytes is associated with increased BAT metabolic activity. Increasing BAT blood flow might represent a new therapeutic target in obesity. PMID:26823340

  20. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure

    PubMed Central

    Sun, Kai; Kusminski, Christine M.; Luby-Phelps, Kate; Spurgin, Stephen B.; An, Yu A.; Wang, Qiong A.; Holland, William L.; Scherer, Philipp E.

    2014-01-01

    We recently reported that local overexpression of VEGF-A in white adipose tissue (WAT) protects against diet-induced obesity and metabolic dysfunction. The observation that VEGF-A induces a “brown adipose tissue (BAT)-like” phenotype in WAT prompted us to further explore the direct function of VEGF-A in BAT. We utilized a doxycycline (Dox)-inducible, brown adipocyte-specific VEGF-A transgenic overexpression model to assess direct effects of VEGF-A in BAT in vivo. We observed that BAT-specific VEGF-A expression increases vascularization and up-regulates expression of both UCP1 and PGC-1α in BAT. As a result, the transgenic mice show increased thermogenesis during chronic cold exposure. In diet-induced obese mice, introducing VEGF-A locally in BAT rescues capillary rarefaction, ameliorates brown adipocyte dysfunction, and improves deleterious effects on glucose and lipid metabolism caused by a high-fat diet challenge. These results demonstrate a direct positive role of VEGF-A in the activation and expansion of BAT. PMID:24944907

  1. PPARγ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue.

    PubMed

    Choi, Sun-Sil; Kim, Eun-Sun; Jung, Ji-Eun; Marciano, David P; Jo, Ala; Koo, Ja Young; Choi, Soo Youn; Yang, Yong Ryoul; Jang, Hyun-Jun; Kim, Eung-Kyun; Park, Jiyoung; Kwon, Hyug Moo; Lee, In Hee; Park, Seung Bum; Myung, Kyung-Jae; Suh, Pann-Ghill; Griffin, Patrick R; Choi, Jang Hyun

    2016-04-01

    Blocking phosphorylation of peroxisome proliferator-activated receptor (PPAR)γ at Ser(273) is one of the key mechanisms for antidiabetes drugs to target PPARγ. Using high-throughput phosphorylation screening, we here describe that Gleevec blocks cyclin-dependent kinase 5-mediated PPARγ phosphorylation devoid of classical agonism as a PPARγ antagonist ligand. In high fat-fed mice, Gleevec improved insulin sensitivity without causing severe side effects associated with other PPARγ-targeting drugs. Furthermore, Gleevec reduces lipogenic and gluconeogenic gene expression in liver and ameliorates inflammation in adipose tissues. Interestingly, Gleevec increases browning of white adipose tissue and energy expenditure. Taken together, the results indicate that Gleevec exhibits greater beneficial effects on both glucose/lipid metabolism and energy homeostasis by blocking PPARγ phosphorylation. These data illustrate that Gleevec could be a novel therapeutic agent for use in insulin resistance and type 2 diabetes. PMID:26740599

  2. Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure

    PubMed Central

    Tupone, Domenico

    2014-01-01

    SUMMARY Thermogenesis, the production of heat energy, is the specific, neurally-regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically-driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis. PMID:24630813

  3. Brown Adipose Tissue Harbors a Distinct Sub-Population of Regulatory T Cells

    PubMed Central

    Medrikova, Dasa; Sijmonsma, Tjeerd P.; Sowodniok, Katharina; Richards, David M.; Delacher, Michael; Sticht, Carsten; Gretz, Norbert; Schafmeier, Tobias; Feuerer, Markus; Herzig, Stephan

    2015-01-01

    Regulatory T (Treg) cells are critical determinants of both immune responses and metabolic control. Here we show that systemic ablation of Treg cells compromised the adaptation of whole-body energy expenditure to cold exposure, correlating with impairment in thermogenic marker gene expression and massive invasion of pro-inflammatory macrophages in brown adipose tissue (BAT). Indeed, BAT harbored a unique sub-set of Treg cells characterized by a unique gene signature. As these Treg cells respond to BAT activation upon cold exposure, this study defines a BAT-specific Treg sub-set with direct implications for the regulation of energy homeostasis in response to environmental stress. PMID:25714366

  4. White Adipose Tissue Browning in the R6/2 Mouse Model of Huntington's Disease.

    PubMed

    McCourt, Andrew C; Jakobsson, Lovisa; Larsson, Sara; Holm, Cecilia; Piel, Sarah; Elmér, Eskil; Björkqvist, Maria

    2016-01-01

    Huntington's disease (HD) is a fatal, autosomal dominantly inherited neurodegenerative disorder, characterised not only by progressive cognitive, motor and psychiatric impairments, but also of peripheral pathology. In both human HD and in mouse models of HD there is evidence of increased energy expenditure and weight loss, alongside altered body composition. Unlike white adipose tissue (WAT), brown adipose tissue (BAT), as well as brown-like cells within WAT, expresses the mitochondrial protein, uncoupling protein 1 (UCP1). UCP1 enables dissociation of cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Hyperplasia of brown/beige cells in WAT has been suggested to enhance energy expenditure. In this study, we therefore investigated the gene expression profile, histological appearance, response to cold challenge and functional aspects of WAT in the R6/2 HD mouse model and selected WAT gene expression in the full-length Q175 mouse model of HD. WAT from R6/2 mice contained significantly more brown-like adipocyte regions and had a gene profile suggestive of the presence of brown-like adipocytes, such as higher Ucp1 expression. Cold exposure induced Ucp1 expression in R6/2 inguinal WAT to a markedly higher degree as compared to the thermogenic response in WT WAT. Alongside this, gene expression of transcription factors (Zfp516 and Pparα), important inducers of WAT browning, were increased in R6/2 inguinal WAT, and Creb1 was highlighted as a key transcription factor in HD. In addition to increased WAT Ucp1 expression, a trend towards increased mitochondrial oxygen consumption due to enhanced uncoupling activity was found in inguinal R6/2 WAT. Key gene expressional changes (increased expression of (Zfp516 and Pparα)) were replicated in inguinal WAT obtained from Q175 mice. In summary, for the first time, we here show that HD mouse WAT undergoes a process of browning, resulting in molecular and functional alterations that may

  5. Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans.

    PubMed

    Hanssen, Mark J W; van der Lans, Anouk A J J; Brans, Boudewijn; Hoeks, Joris; Jardon, Kelly M C; Schaart, Gert; Mottaghy, Felix M; Schrauwen, Patrick; van Marken Lichtenbelt, Wouter D

    2016-05-01

    Recruitment of brown adipose tissue (BAT) has emerged as a potential tool to combat obesity and associated metabolic complications. Short-term cold acclimation has been shown not only to enhance the presence and activity of BAT in lean humans but also to improve the metabolic profile of skeletal muscle to benefit glucose uptake in patients with type 2 diabetes. Here we examined whether short-term cold acclimation also induced such adaptations in 10 metabolically healthy obese male subjects. A 10-day cold acclimation period resulted in increased cold-induced glucose uptake in BAT, as assessed by [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography. BAT activity was negatively related to age, with a similar trend for body fat percentage. In addition, cold-induced glucose uptake in BAT was positively related to glucose uptake in visceral white adipose tissue, although glucose uptake in visceral and subcutaneous white adipose tissue depots was unchanged upon cold acclimation. Cold-induced skeletal muscle glucose uptake tended to increase upon cold acclimation, which was paralleled by increased basal GLUT4 localization in the sarcolemma, as assessed through muscle biopsies. Proximal skin temperature was increased and subjective responses to cold were slightly improved at the end of the acclimation period. These metabolic adaptations to prolonged exposure to mild cold may lead to improved glucose metabolism or prevent the development of obesity-associated insulin resistance and hyperglycemia. PMID:26718499

  6. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

    PubMed Central

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-01-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  7. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.

    PubMed

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-02-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  8. GADD45γ regulates the thermogenic capacity of brown adipose tissue.

    PubMed

    Gantner, Marin L; Hazen, Bethany C; Conkright, Juliana; Kralli, Anastasia

    2014-08-12

    The coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) is widely considered a central transcriptional regulator of adaptive thermogenesis in brown adipose tissue (BAT). However, mice lacking PGC-1α specifically in adipose tissue have only mild thermogenic defects, suggesting the presence of additional regulators. Using the activity of estrogen-related receptors (ERRs), downstream effectors of PGC-1α, as read-out in a high-throughput genome-wide cDNA screen, we identify here growth arrest and DNA-damage-inducible protein 45 γ (GADD45γ) as a cold-induced activator of uncoupling protein 1 (UCP1) and oxidative capacity in BAT. Mice lacking Gadd45γ have defects in Ucp1 induction and the thermogenic response to cold. GADD45γ works by activating MAPK p38, which is a potent activator of ERRβ and ERRγ transcriptional function. GADD45γ activates ERRγ independently of PGC-1 coactivators, yet synergizes with PGC-1α to induce the thermogenic program. Our findings elucidate a previously unidentified GADD45γ/p38/ERRγ pathway that regulates BAT thermogenesis and may enable new approaches for the stimulation of energy expenditure. Our study also implicates GADD45 proteins as general metabolic regulators. PMID:25071184

  9. GADD45γ regulates the thermogenic capacity of brown adipose tissue

    PubMed Central

    Gantner, Marin L.; Hazen, Bethany C.; Conkright, Juliana; Kralli, Anastasia

    2014-01-01

    The coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) is widely considered a central transcriptional regulator of adaptive thermogenesis in brown adipose tissue (BAT). However, mice lacking PGC-1α specifically in adipose tissue have only mild thermogenic defects, suggesting the presence of additional regulators. Using the activity of estrogen-related receptors (ERRs), downstream effectors of PGC-1α, as read-out in a high-throughput genome-wide cDNA screen, we identify here growth arrest and DNA-damage-inducible protein 45 γ (GADD45γ) as a cold-induced activator of uncoupling protein 1 (UCP1) and oxidative capacity in BAT. Mice lacking Gadd45γ have defects in Ucp1 induction and the thermogenic response to cold. GADD45γ works by activating MAPK p38, which is a potent activator of ERRβ and ERRγ transcriptional function. GADD45γ activates ERRγ independently of PGC-1 coactivators, yet synergizes with PGC-1α to induce the thermogenic program. Our findings elucidate a previously unidentified GADD45γ/p38/ERRγ pathway that regulates BAT thermogenesis and may enable new approaches for the stimulation of energy expenditure. Our study also implicates GADD45 proteins as general metabolic regulators. PMID:25071184

  10. Influencing Factors of Thermogenic Adipose Tissue Activity

    PubMed Central

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beige” adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  11. Influencing Factors of Thermogenic Adipose Tissue Activity.

    PubMed

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  12. Dicer1-miR-328-Bace1 signalling controls brown adipose tissue differentiation and function.

    PubMed

    Oliverio, Matteo; Schmidt, Elena; Mauer, Jan; Baitzel, Catherina; Hansmeier, Nils; Khani, Sajjad; Konieczka, Sandra; Pradas-Juni, Marta; Brodesser, Susanne; Van, Trieu-My; Bartsch, Deniz; Brönneke, Hella S; Heine, Markus; Hilpert, Hans; Tarcitano, Emilio; Garinis, George A; Frommolt, Peter; Heeren, Joerg; Mori, Marcelo A; Brüning, Jens C; Kornfeld, Jan-Wilhelm

    2016-03-01

    Activation of brown adipose tissue (BAT) controls energy homeostasis in rodents and humans and has emerged as an innovative strategy for the treatment of obesity and type 2 diabetes mellitus. Here we show that ageing- and obesity-associated dysfunction of brown fat coincides with global microRNA downregulation due to reduced expression of the microRNA-processing node Dicer1. Consequently, heterozygosity of Dicer1 in BAT aggravated diet-induced-obesity (DIO)-evoked deterioration of glucose metabolism. Analyses of differential microRNA expression during preadipocyte commitment and mouse models of progeria, longevity and DIO identified miR-328 as a regulator of BAT differentiation. Reducing miR-328 blocked preadipocyte commitment, whereas miR-328 overexpression instigated BAT differentiation and impaired muscle progenitor commitment-partly through silencing of the β-secretase Bace1. Loss of Bace1 enhanced brown preadipocyte specification in vitro and was overexpressed in BAT of obese and progeroid mice. In vivo Bace1 inhibition delayed DIO-induced weight gain and improved glucose tolerance and insulin sensitivity. These experiments reveal Dicer1-miR-328-Bace1 signalling as a determinant of BAT function, and highlight the potential of Bace1 inhibition as a therapeutic approach to improve not only neurodegenerative diseases but also ageing- and obesity-associated impairments of BAT function. PMID:26900752

  13. Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells

    PubMed Central

    KAEWSUWAN, SIREEWAN; PLUBRUKARN, ANUCHIT; UTSINTONG, MALEERUK; KIM, SEOK-HO; JEONG, JIN-HYUN; CHO, JIN GU; PARK, SANG GYU; SUNG, JONG-HYUK

    2016-01-01

    Interruptin B has been isolated from Cyclosorus terminans, however, its pharamcological effect has not been fully identified. In the present study, the effects of interruptin B, from C. terminans, on brown adipocyte differentiation and glucose uptake in adipose-derived stem cells (ASCs) were investigated. The results revealed that interruptin B dose-dependently enhanced the adipogenic differentiation of ASCs, with an induction in the mRNA expression levels of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. In addition, interruptin B efficiently increased the number and the membrane potential of mitochondria and upregulated the mRNA expression levels of uncoupling protein (UCP)-1 and cyclooxygenase (COX)-2, which are all predominantly expressed in brown adipocytes. Interruptin B increased glucose consumption in differentiated ASCs, accompanied by the upregulation in the mRNA expression levels of glucose transporter (GLUT)-1 and GLUT-4. The computational analysis of molecular docking, a luciferase reporter assay and surface plasmon resonance confirmed the marked binding affinity of interruptin B to PPAR-α and PPAR-γ (KD values of 5.32 and 0.10 µM, respectively). To the best of our knowledge, the present study is the first report to show the stimulatory effects of interruptin B on brown adipocyte differentiation and glucose uptake in ASCs, through its role as a dual PPAR-α and PPAR-γ ligand. Therefore, interruptin B could be further developed as a therapeutic agent for the treatment of diabetes. PMID:26781331

  14. Effect of maternal cold exposure on brown adipose tissue and thermogenesis in the neonatal lamb.

    PubMed Central

    Symonds, M E; Bryant, M J; Clarke, L; Darby, C J; Lomax, M A

    1992-01-01

    1. This study examines the effect of chronic cold exposure during pregnancy, induced by winter shearing twin-bearing ewes 4 weeks before predicted lambing date, on O2 consumption and CO2 production during non-rapid-eye-movement (REM) sleep in lambs maintained for at least 1 h at warm (28-18 degrees C) and cold (14-5 degrees C) ambient temperatures at 1, 4, 14 and 30 days of age. This was combined with measurement of the thermogenic activity (GDP binding to uncoupling protein in mitochondrial preparations) of perirenal adipose tissue from lambs immediately after birth and at 33 days of age. 2. Lambs born from shorn (cold-exposed) ewes were 15% heavier (P < 0.01) and possessed 21% (P < 0.01) more perirenal adipose tissue that contained 40% more protein and mitochondrial protein than unshorn (P < 0.05) controls. Total GDP binding in perirenal adipose tissue was 40% greater (P < 0.05) in lambs born from shorn ewes but there was no difference in lipid content of this tissue between the two groups. 3. At 1 day of age, lambs born from shorn ewes exhibited a 16% higher (P < 0.05) rate of O2 consumption (per kilogram bodyweight) at the warm temperature and a 40% greater metabolic response to the cold ambient temperature. All lambs born from shorn ewes responded to cold exposure without shivering (i.e. via non-shivering thermogenesis) whilst shivering was measured in four out of seven lambs in the unshorn group. These differences had disappeared by 4 days of age as a result of a 25% increased (P < 0.01) rate of O2 consumption in the warm in lambs born from unshorn ewes and a 20% decrease (P < 0.05) in the response to the cold in lambs from shorn ewes. Shivering during cold exposure was measured in six out of nine lambs born from shorn ewes indicating a rapid alteration in thermoregulatory responses to cold during the first few days of life. 4. The levels of GDP binding and mitochondrial protein in perirenal adipose tissue fell by one-third in both groups of lambs during the

  15. Fatty acid composition of brown adipose tissue in genetically heat-tolerant FOK rats

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Furuyama, F.; Kuroshima, A.

    The phospholipid fatty acid composition of brown adipose tissue (BAT) was examined in inbred heat-tolerant FOK rats and compared with that in conventional Wistar rats not previously exposed to heat. The FOK rats showed higher unsaturation states, as indicated by higher levels of polyunsaturated fatty acids and a higher unsaturation index and polyunsaturated fatty acids/saturated fatty acids ratio. This higher level of unsaturation was characterized by the higher amount of polyunsaturated fatty acids such as linoleic acid, arachidonic acid and docosahexaenoic acid. It may be concluded that the increased docosahexaenoic acid level in BAT phospholipids brings about the hyperplasia of BAT, causing an enhancement of its in vivo thermogernic activity as well as the systemic non-shivering thermogenesis observed in heat-tolerant FOK rats.

  16. Hypothalamic overexpression of mutant huntingtin causes dysregulation of brown adipose tissue

    PubMed Central

    Soylu-Kucharz, Rana; Adlesic, Natalie; Baldo, Barbara; Kirik, Deniz; Petersén, Åsa

    2015-01-01

    Expression of mutant huntingtin (htt) protein has been shown to cause metabolic imbalance in animal models of Huntington disease (HD). The pathways involved are not fully understood but dysfunction of both the hypothalamus and brown adipose tissue (BAT) has been implicated. Here we show that targeted expression of mutant HTT in the hypothalamus leads to loss of the A13 dopaminergic cell group located in the zona incerta and reduced mRNA expression of neuropeptide Y1 receptor in the hypothalamus. Furthermore, this is accompanied by downregulation of uncoupling protein 1 expression and PPARγ coactivator-1 alpha in BAT and a rapid body weight gain. Taken together, our data might provide a mechanistic link between expression of mutant HTT, reduced activity of a hypothalamic dopaminergic pathway and dysfunction of BAT and in part explain the development of an obese phenotype in HD mouse models. PMID:26419281

  17. Sympathetic denervation impairs responses of brown adipose tissue to VMH stimulation

    SciTech Connect

    Minokoshi, Y.; Saito, M.; Shimazu, T.

    1986-11-01

    Effects of unilateral surgical denervation of the interscapular brown adipose tissue (IBAT) on its thermogenic and lipogenic responses to electrical stimulation of the ventromedial hypothalamic (VMH) nucleus were studied in anesthetized rats. The rapid rise in IBAT temperature in response to VMH stimulation was greatly suppressed in the denervated IBAT, whereas the temperature response was not impaired in the contralateral innervated IBAT in the same animals. Similarly, the increased rates of conversion of (/sup 14/C) glucose and (/sup 3/H)H/sub 2/O to fatty acids and glyceride glycerol in vivo in IBAT after VMH stimulation were almost completely inhibited by sympathetic denervation. These results indicate clearly that the increases in lipogenic and thermogenic activities in IBAT in response to VMH stimulation are mediated by the sympathetic nerve supply of this tissue.

  18. Changes in GDP binding to brown adipose tissue mitochondria and the uncoupling protein

    SciTech Connect

    Swick, A.G.; Swick, R.W. )

    1988-12-01

    Incubation in vitro of brown adipose tissue (BAT) mitochondria with divalent cations, spermine, or alkaline phosphatase led to a marked increase in the binding of ({sup 3}H)GDP. The effect of Mg{sup 2+} appeared to be the most specific and led to the largest increase in GDP binding. A simplified method was developed for measuring GDP binding to purified uncoupling protein from rat BAT mitochondria. Application of this method indicates that uncoupling protein from cold-acclimated rats binds twice as much GDP as uncoupling protein from cold-acclimated rats that were briefly returned to thermoneutrality, paralleling changes in GDP binding to the mitochondria. Incubation of BAT mitochondria with Mg{sup 2+} led to a smaller increase in GDP binding to the subsequently purified uncoupling protein, suggesting that divalent cations may somehow participate in the regulation of the activity of the uncoupling protein.

  19. Translational issues in targeting brown adipose tissue thermogenesis for human obesity management

    PubMed Central

    Dulloo, Abdul G

    2013-01-01

    The recent advancements in unraveling novel mechanisms that control the induction, (trans)differentiation, proliferation, and thermogenic activity and capacity of brown adipose tissue (BAT), together with the application of imaging techniques for human BAT visualization, have generated optimism that these advances will provide novel strategies for targeting BAT thermogenesis, leading to efficacious and safe obesity therapies. This paper first provides an overview of landmark events of the past few decades that have been driving the search for pharmaceutical and nutraceutical compounds that would increase BAT thermogenesis for obesity management. It then addresses issues about what could be expected from an ideal thermogenic antiobesity approach, in particular to what extent daily energy expenditure will need to increase in order to achieve long-term weight loss currently achievable only through bariatric surgery, and whether the human body will have enough thermogenic capacity to reach this target weight loss by future therapies focused on BAT. PMID:24138104

  20. Ontogenic development of brown adipose tissue in Angus and Brahman fetal calves.

    PubMed

    Landis, M D; Carstens, G E; McPhail, E G; Randel, R D; Green, K K; Slay, L; Smith, S B

    2002-03-01

    Brahman calves experience greater neonatal mortality than Angus calves if cold-stressed. To establish a developmental basis for this, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Overall fetal BW tended (P = 0.08) to be greater for Angus than for Brahman fetuses. There was no difference between breed types in total brown adipose tissue (BAT) mass or grams of BAT/kg BW. Brown adipocyte density decreased 56%, whereas lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types. Glycerolipid synthesis from palmitate declined by 85% during the last trimester but still contributed 98% to total lipid synthesis at birth. The fetal age x breed interaction was significant for lipogenesis from glucose (P = 0.05) and palmitate (P = 0.005); rates were higher at 96 d before birth in Brahman BAT but declined to similar rates by birth. Uncoupling protein-1 (UCP1) mRNA tripled during gestation in both breed types (P = 0.002), whereas mitochondrial cross-sectional area did not change (P = 0.14) during gestation. Neither the breed nor the age x breed effect was significant (P > or = 0.24) for UCP1 mRNA concentration or mitochondrial cross-sectional area. In both breed types, a marked decrease in BAT UCP1 mRNA between 24 and 14 d prepartum was associated with a similar reduction in lipogenesis from palmitate and a noticeable change in BAT mitochondrial morphology, as the mitochondria became more elongated and the cristae became more elaborate. Uncoupling protein-1 mRNA initially was elevated in Angus tailhead s.c. adipose tissue, but was barely detectable by birth, and tended to be greater overall (P = 0.09) in Angus than in Brahman BAT. If uncoupling protein activity in s.c. adipose tissue persists after birth, then s.c. adipose tissue may contribute more to thermogenesis in Angus newborn calves than in Brahman calves. In contrast, we did not observe

  1. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome.

    PubMed

    Van De Pette, Matthew; Tunster, Simon J; McNamara, Grainne I; Shelkovnikova, Tatyana; Millership, Steven; Benson, Lindsay; Peirson, Stuart; Christian, Mark; Vidal-Puig, Antonio; John, Rosalind M

    2016-03-01

    The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to

  2. Cdkn1c Boosts the Development of Brown Adipose Tissue in a Murine Model of Silver Russell Syndrome

    PubMed Central

    Van De Pette, Matthew; Tunster, Simon J.; McNamara, Grainne I.; Shelkovnikova, Tatyana; Millership, Steven; Benson, Lindsay; Peirson, Stuart; Christian, Mark; Vidal-Puig, Antonio; John, Rosalind M.

    2016-01-01

    The accurate diagnosis and clinical management of the growth restriction disorder Silver Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to the myriad of genetic and epigenetic alterations reported in these patients and the lack of suitable animal models to test the contribution of specific gene alterations. Some genetic alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth that also regulates placental development, consistent with a proposed role for CDKN1C in these complex childhood growth disorders. Here, we report that a mouse modelling the rare microduplications present in some SRS patients exhibited phenotypes including low birth weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and significantly reduced adiposity as adults, all defining features of SRS. Further investigation revealed the presence of substantially more brown adipose tissue in very young mice, of both the classical or canonical type exemplified by interscapular-type brown fat depot in mice (iBAT) and a second type of non-classic BAT that develops postnatally within white adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure of the brown adipocyte lineage with a loss of markers of both brown adipose fate and function. We further show that Cdkn1c is required for post-transcriptional accumulation of the brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study reveals a key requirement for Cdkn1c in the early development of the brown adipose lineages. Importantly, active BAT consumes high amounts of energy to

  3. The K+ channel TASK1 modulates β-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway.

    PubMed

    Pisani, Didier F; Beranger, Guillaume E; Corinus, Alain; Giroud, Maude; Ghandour, Rayane A; Altirriba, Jordi; Chambard, Jean-Claude; Mazure, Nathalie M; Bendahhou, Saïd; Duranton, Christophe; Michiels, Jean-François; Frontini, Andrea; Rohner-Jeanrenaud, Françoise; Cinti, Saverio; Christian, Mark; Barhanin, Jacques; Amri, Ez-Zoubir

    2016-02-01

    Brown adipose tissue (BAT) is essential for adaptive thermogenesis and dissipation of caloric excess through the activity of uncoupling protein (UCP)-1. BAT in humans is of great interest for the treatment of obesity and related diseases. In this study, the expression of Twik-related acid-sensitive K(+) channel (TASK)-1 [a pH-sensitive potassium channel encoded by the potassium channel, 2-pore domain, subfamily K, member 3 (Kcnk3) gene] correlated highly with Ucp1 expression in obese and cold-exposed mice. In addition, Task1-null mice, compared with their controls, became overweight, mainly because of an increase in white adipose tissue mass and BAT whitening. Task1(-/-)-mouse-derived brown adipocytes, compared with wild-type mouse-derived brown adipocytes, displayed an impaired β3-adrenergic receptor response that was characterized by a decrease in oxygen consumption, Ucp1 expression, and lipolysis. This phenotype was thought to be caused by an exacerbation of mineralocorticoid receptor (MR) signaling, given that it was mimicked by corticoids and reversed by an MR inhibitor. We concluded that the K(+) channel TASK1 controls the thermogenic activity in brown adipocytes through modulation of β-adrenergic receptor signaling. PMID:26527067

  4. Analysis and Measurement of the Sympathetic and Sensory Innervation of White and Brown Adipose Tissue

    PubMed Central

    Vaughan, Cheryl H.; Zarebidaki, Eleen; Ehlen, J. Christopher; Bartness, Timothy J.

    2014-01-01

    Here, we provide a detailed account of how to denervate white and brown adipose tissue (WAT and BAT) and how to measure sympathetic nervous system (SNS) activity to these and other tissues neurochemically. The brain controls many of the functions of WAT and BAT via the SNS innervation of the tissues, especially lipolysis and thermogenesis, respectively. There is no clearly demonstrated parasympathetic innervation of WAT or the major interscapular BAT (IBAT) depot. WAT and BAT communicate with the brain neurally via sensory nerves. We detail the surgical denervation (eliminating both innervations) of several WAT pads and IBAT. We also detail more selective chemical denervation of the SNS innervation via intra-WAT/IBAT 6-hydroxy-dopamine (a catecholaminergic neurotoxin) injections and selective chemical sensory denervation via intra-WAT/IBAT capsaicin (a sensory nerve neurotoxin) injections. Verifications of the denervations are provided (HPLC-EC detection for SNS, ELIA for calcitonin gene-related peptide (proven sensory nerve marker)). Finally, assessment of the SNS drive to WAT/BAT or other tissues is described using the alpha-methyl-para-tyrosine method combined with HPLC-EC, a direct neurochemical measure of SNS activity. These methods have proven useful for us and for other investigators interested in innervation of adipose tissues. The chemical denervation approach has been extended to nonadipose tissues as well. PMID:24480348

  5. PACAP is essential for the adaptive thermogenic response of brown adipose tissue to cold exposure.

    PubMed

    Diané, Abdoulaye; Nikolic, Nikolina; Rudecki, Alexander P; King, Shannon M; Bowie, Drew J; Gray, Sarah L

    2014-09-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue, and neurohormone. Owing to its pleiotropic biological actions, knockout of Pacap (Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposed Pacap null mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response of Pacap null mice during cold exposure. We compared the adaptive thermogenic capacity of Pacap(-/-) to Pacap(+/+) mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposed Pacap(-/-) mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar (Adrb3)) and hormone-sensitive lipase (Hsl (Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly, Pacap(-/-) mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis in Pacap null mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation. PMID:25056115

  6. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    PubMed

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease. PMID:26569380

  7. Perilipin regulates the thermogenic actions of norepinephrine in brown adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to cold, norepinephrine (NE)-induced triacylglycerol hydrolysis (lipolysis) in adipocytes of brown adipose tissue (BAT) provides fatty acid substrates to mitochondria for heat generation (adaptive thermogenesis). NE-induced lipolysis is mediated by protein kinase A (PKA)-dependent phosp...

  8. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  9. Oxygen Deprivation and the Cellular Response to Hypoxia in Adipocytes – Perspectives on White and Brown Adipose Tissues in Obesity

    PubMed Central

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells – particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the “browning” of white fat depots through recruitment of UCP1 and the development of brite adipocytes. PMID:25745415

  10. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways.

    PubMed

    Müller, Sebastian; Balaz, Miroslav; Stefanicka, Patrik; Varga, Lukas; Amri, Ez-Zoubir; Ukropec, Jozef; Wollscheid, Bernd; Wolfrum, Christian

    2016-01-01

    Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology. PMID:27418403

  11. Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways

    PubMed Central

    Müller, Sebastian; Balaz, Miroslav; Stefanicka, Patrik; Varga, Lukas; Amri, Ez-Zoubir; Ukropec, Jozef; Wollscheid, Bernd; Wolfrum, Christian

    2016-01-01

    Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology. PMID:27418403

  12. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

    PubMed

    Liu, Xiaomeng; Wang, Siping; You, Yilin; Meng, Minghui; Zheng, Zongji; Dong, Meng; Lin, Jun; Zhao, Qianwei; Zhang, Chuanhai; Yuan, Xiaoxue; Hu, Tao; Liu, Lieqin; Huang, Yuanyuan; Zhang, Lei; Wang, Dehua; Zhan, Jicheng; Jong Lee, Hyuek; Speakman, John R; Jin, Wanzhu

    2015-07-01

    Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT. PMID:25830704

  13. Temperature-Acclimated Brown Adipose Tissue Modulates Insulin Sensitivity in Humans

    PubMed Central

    Lee, Paul; Smith, Sheila; Linderman, Joyce; Courville, Amber B.; Brychta, Robert J.; Dieckmann, William; Werner, Charlotte D.; Chen, Kong Y.

    2014-01-01

    In rodents, brown adipose tissue (BAT) regulates cold- and diet-induced thermogenesis (CIT; DIT). Whether BAT recruitment is reversible and how it impacts on energy metabolism have not been investigated in humans. We examined the effects of temperature acclimation on BAT, energy balance, and substrate metabolism in a prospective crossover study of 4-month duration, consisting of four consecutive blocks of 1-month overnight temperature acclimation (24°C [month 1] → 19°C [month 2] → 24°C [month 3] → 27°C [month 4]) of five healthy men in a temperature-controlled research facility. Sequential monthly acclimation modulated BAT reversibly, boosting and suppressing its abundance and activity in mild cold and warm conditions (P < 0.05), respectively, independent of seasonal fluctuations (P < 0.01). BAT acclimation did not alter CIT but was accompanied by DIT (P < 0.05) and postprandial insulin sensitivity enhancement (P < 0.05), evident only after cold acclimation. Circulating and adipose tissue, but not skeletal muscle, expression levels of leptin and adiponectin displayed reciprocal changes concordant with cold-acclimated insulin sensitization. These results suggest regulatory links between BAT thermal plasticity and glucose metabolism in humans, opening avenues to harnessing BAT for metabolic benefits. PMID:24954193

  14. Functional and anatomical characteristics of the nerve-brown adipose interaction in the rat

    NASA Technical Reports Server (NTRS)

    Flaim, K. E.; Horowitz, J. M.; Horwitz, B. A.

    1976-01-01

    Experiments were conducted on 12 male rats to study the coupling of signals from the sympathetic nervous system to the brown adipose tissue. Analysis of electron photomicrographs revealed considerable morphological heterogeneity among the nerves entering and leaving the interscapular fat pad. In response to electrical simulation of the nerves, the temperature of the brown fat increased following a rapid but transient temperature drop. Such changes were observed only on the ipsilateral side, indicating that the innervation to the interscapular brown fat of the rat is functionally bilateral rather than diffuse. The finding that brown fat is capable of responding in a graded fashion correlates well with observations suggesting that clusters of brown adipocytes may be electrically coupled.

  15. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue.

    PubMed

    Hoffmann, Linda S; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W C; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing β1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. PMID:26011238

  16. Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue.

    PubMed

    Shen, Wan; McIntosh, Michael K

    2016-07-17

    Obesity is the most widespread nutritional disease in the United States. Developing effective and safe strategies to manage excess body weight is therefore of paramount importance. One potential strategy to reduce obesity is to consume conjugated linoleic acid (CLA) supplements containing isomers cis-9, trans-11 and trans-10, cis-12, or trans-10, cis-12 alone. Proposed antiobesity mechanisms of CLA include regulation of (a) adipogenesis, (b) lipid metabolism, (c) inflammation, (d) adipocyte apoptosis, (e) browning or beiging of adipose tissue, and (f) energy metabolism. However, causality of CLA-mediated responses to body fat loss, particularly the linkage between inflammation, thermogenesis, and energy metabolism, is unclear. This review examines whether CLA's antiobesity properties are due to inflammatory signaling and considers CLA's linkage with lipogenesis, lipolysis, thermogenesis, and browning of white and brown adipose tissue. We propose a series of questions and studies to interrogate the role of the sympathetic nervous system in mediating CLA's antiobesity properties. PMID:27431366

  17. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    PubMed

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. PMID:25150689

  18. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease

    PubMed Central

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M.; Hanani, Menachem; Scherer, Philipp E.; Tanowitz, Herbert B.; Spray, David C.

    2015-01-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. PMID:25150689

  19. The role of thyroid hormone and brown adipose tissue in energy homoeostasis

    PubMed Central

    Bianco, Antonio C; McAninch, Elizabeth A

    2016-01-01

    The presence of brown adipose tissue (BAT) in adults has become increasingly well defined as a result of functional imaging studies of thermogenically active BAT. Findings from these studies have created a surge of scientific interest in BAT, because it represents a potential therapeutic target for obesity—a condition with profound health consequences and few successful therapies. BAT contributes to overall energy expenditure in small mammals and neonates through adaptive thermogenesis. Thyroid-hormone signalling, particularly through induction of type II deiodinase, has a central role in brown adipogenesis in vitro and BAT development in mouse embryos. Additionally, because of high intracellular expression of type II deiodinase, adult BAT has enhanced thyroid-hormone signalling with several thyroid-hormone-dependent thermogenic pathways, including expression of the genes Ppargc1a and Ucp1. BAT thermogenesis explains the essential part played by thyroid hormone in energy homoeostasis and adaptation to cold. Stimulation of BAT in adults, specifically through thyroid-hormone-mediated pathways, is a promising therapeutic target for obesity. PMID:24622373

  20. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. PMID:27015310

  1. Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue.

    PubMed

    Sun, Wuping; Uchida, Kunitoshi; Suzuki, Yoshiro; Zhou, Yiming; Kim, Minji; Takayama, Yasunori; Takahashi, Nobuyuki; Goto, Tsuyoshi; Wakabayashi, Shigeo; Kawada, Teruo; Iwata, Yuko; Tominaga, Makoto

    2016-03-01

    Brown adipose tissue (BAT), a major site for mammalian non-shivering thermogenesis, could be a target for prevention and treatment of human obesity. Transient receptor potential vanilloid 2 (TRPV2), a Ca(2+)-permeable non-selective cation channel, plays vital roles in the regulation of various cellular functions. Here, we show that TRPV2 is expressed in brown adipocytes and that mRNA levels of thermogenic genes are reduced in both cultured brown adipocytes and BAT from TRPV2 knockout (TRPV2KO) mice. The induction of thermogenic genes in response to β-adrenergic receptor stimulation is also decreased in TRPV2KO brown adipocytes and suppressed by reduced intracellular Ca(2+) concentrations in wild-type brown adipocytes. In addition, TRPV2KO mice have more white adipose tissue and larger brown adipocytes and show cold intolerance, and lower BAT temperature increases in response to β-adrenergic receptor stimulation. Furthermore, TRPV2KO mice have increased body weight and fat upon high-fat-diet treatment. Based on these findings, we conclude that TRPV2 has a role in BAT thermogenesis and could be a target for human obesity therapy. PMID:26882545

  2. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  3. Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue

    PubMed Central

    Sun, Chao; Zeng, Ruixia; Cao, Ge; Song, Zhibang; Zhang, Yibo; Liu, Chang

    2015-01-01

    Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibration enhanced ATP reduction and increased protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 in BAT. Interestingly, the adipocytes in retroperitoneal white adipose tissue (WAT) became smaller due to vibration exercise and had higher protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 and inflammatory relative proteins, IL-6 and TNFα. Simultaneously, ATP content and PPARγ protein level in WAT became less in rats compared with nonvibration group. The results indicated that vibration training changed lipid metabolism in rats and promoted brown fat-like change in white adipose tissues through triggering BAT associated gene expression, inflammatory reflect, and reducing energy reserve. PMID:26125027

  4. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice.

    PubMed

    Magdalon, Juliana; Chimin, Patricia; Belchior, Thiago; Neves, Rodrigo X; Vieira-Lara, Marcel A; Andrade, Maynara L; Farias, Talita S; Bolsoni-Lopes, Andressa; Paschoal, Vivian A; Yamashita, Alex S; Kowaltowski, Alicia J; Festuccia, William T

    2016-05-01

    Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents. Adipocyte-specific Tsc1 deletion reduced visceral, but not subcutaneous, fat mass, as well as adipocyte number and diameter, phenotypes that were associated with increased lipolysis, UCP-1 content (browning) and mRNA levels of pro-browning transcriptional factors C/EBPβ and ERRα. Adipocyte Tsc1 deletion enhanced mitochondrial oxidative activity, fatty acid oxidation and the expression of PGC-1α and PPARα in both visceral and subcutaneous fat. In brown adipocytes, however, Tsc1 deletion did not affect UCP-1 content and basal respiration. Adipocyte Tsc1 deletion also reduced visceral adiposity and enhanced glucose tolerance, liver and muscle insulin signaling and adiponectin secretion in mice fed with purified low- or high-fat diet. In conclusion, adipocyte-specific Tsc1 deletion enhances mitochondrial activity, induces browning and reduces visceral adiposity in mice. PMID:26923434

  5. Microbiota depletion promotes browning of white adipose tissue and reduces obesity

    PubMed Central

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J.; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-01-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity1. In response to cold or exercise brown fat cells also emerge in the white adipose tissue (named beige cells), a process known as browning2,3,4. Here, we show that the development of functional beige fat is promoted by microbiota depletion either by antibiotic treatment or in germ-free mice within the inguinal subcutaneous and perigonadal visceral adipose tissues (ingSAT and pgVAT, respectively). This leads to improved glucose tolerance, insulin sensitivity and decreased white fat and adipocyte size in lean mice and obese leptin-deficient (ob/ob) and high fat diet (HFD)-fed mice. These metabolic improvements are mediated by eosinophil infiltration and enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by suppression of the type 2 signaling and are reversed by recolonization of the antibiotic-treated, or the germ-free mice with microbes. These results provide insight into microbiota-fat signaling axis and beige fat development in health and metabolic disease. PMID:26569380

  6. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure

    PubMed Central

    Dijk, Wieneke; Heine, Markus; Vergnes, Laurent; Boon, Mariëtte R; Schaart, Gert; Hesselink, Matthijs KC; Reue, Karen; van Marken Lichtenbelt, Wouter D; Olivecrona, Gunilla; Rensen, Patrick CN; Heeren, Joerg; Kersten, Sander

    2015-01-01

    Brown adipose tissue (BAT) activation via cold exposure is increasingly scrutinized as a potential approach to ameliorate cardio-metabolic risk. Transition to cold temperatures requires changes in the partitioning of energy substrates, re-routing fatty acids to BAT to fuel non-shivering thermogenesis. However, the mechanisms behind the redistribution of energy substrates to BAT remain largely unknown. Angiopoietin-like 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL) activity, is highly expressed in BAT. Here, we demonstrate that ANGPTL4 is part of a shuttling mechanism that directs fatty acids derived from circulating triglyceride-rich lipoproteins to BAT during cold. Specifically, we show that cold markedly down-regulates ANGPTL4 in BAT, likely via activation of AMPK, enhancing LPL activity and uptake of plasma triglyceride-derived fatty acids. In contrast, cold up-regulates ANGPTL4 in WAT, abolishing a cold-induced increase in LPL activity. Together, our data indicate that ANGPTL4 is an important regulator of plasma lipid partitioning during sustained cold. DOI: http://dx.doi.org/10.7554/eLife.08428.001 PMID:26476336

  7. Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue.

    PubMed

    Matsushita, Mami; Yoneshiro, Takeshi; Aita, Sayuri; Kamiya, Tomoyasu; Kusaba, Nobutaka; Yamaguchi, Kazuya; Takagaki, Kinya; Kameya, Toshimitsu; Sugie, Hiroki; Saito, Masayuki

    2015-01-01

    Kaempferia parviflora extract (KP) has been reported to have a preventive effect on obesity in mice, probably by increasing energy expenditure (EE). The aims of the current study were to examine the acute effects of KP ingestion on whole-body EE in humans and to analyze its relation to the activity of brown adipose tissue (BAT), a site of non-shivering thermogenesis. After an oral ingestion of an ethanol extract of KP, EE increased significantly, showing a maximal increase of 229±69 kJ/d at 60 min, while it did not change after placebo ingestion. To evaluate BAT activity, the subjects underwent fluorodeoxyglucose-positron emission tomography, and divided into two groups with high- and low-BAT activities. A similar and greater response of EE to KP ingestion was observed in the high-BAT group (351±50 kJ/d at 60 min), but not in the low activity group. Placebo ingestion did not cause any significant EE change in either group. These results indicate that a single oral ingestion of the KP extract can potentially increase whole-body EE probably through the activation of BAT in healthy men, and may be useful as an anti-obesity regimen. PMID:25994142

  8. Effect of the acute crowding stress on the rat brown adipose tissue metabolic function.

    PubMed

    Djordjevic, Jelena; Cvijic, Gordana; Petrovic, Natasa; Davidovic, Vukosava

    2005-12-01

    Our previous results have shown that metabolic and thermal stressors influence interscapular brown adipose tissue (IBAT) metabolic activity by increasing oxygen consumption and, consequently, altering the toxic reactive oxygen species (ROS) production and the antioxidative system activity. Since there is not enough evidence about the effect of psychosocial stressors on these processes, we studied the effect of acute crowding stress on the IBAT and hypothalamic monoamine oxidase (MAO) activity as well as IBAT antioxidative enzymes, manganese (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT), as the relevant indicators of IBAT metabolic alternations under the stress exposure and the returning of animals to control conditions. The results indicated that acute crowding stress did not change the hypothalamic and IBAT MAO activities, the generation of ROS and, consequently, the IBAT CuZnSOD and CAT activities. However, all three antioxidative enzymes were affected only after the recovery period. It seems that peripheral overheating of rats during acute crowding changes the stress nature, by becoming more thermal than psychosocial and by suppression the hypothalamic efferent pathways involved in the IBAT thermogenesis regulation. However, it seems that returning of the animals to the control conditions after the stress termination causes the reactivation of IBAT thermogenesis with tendency to normalise the body temperature. PMID:16309937

  9. Effect of Diet and Cold Exposure on Norepinephrine Turnover in Brown Adipose Tissue of the Rat

    PubMed Central

    Young, James B.; Saville, Elizabeth; Rothwell, Nancy J.; Stock, Michael J.; Landsberg, Lewis

    1982-01-01

    Brown adipose tissue (BAT) is an important site of adaptive changes in thermogenesis in the rat. The sympathetic nervous system, which richly supplies BAT, is thought to play an important role in the regulation of BAT thermogenesis because catecholamines stimulate and beta adrenergic blocking agents inhibit oxygen consumption in this tissue. The present studies were carried out to assess directly sympathetic activity in BAT in response to cold exposure and to changes in dietary intake, both of which alter heat production in the rat. Sympathetic activity was determined from the rate of norepinephrine (NE) turnover in interscapular brown adipose tissue (IBAT) after preliminary experiments validated the use of NE turnover techniques in IBAT. Acute exposure to 4°C increased NE turnover in IBAT 4- to 12-fold compared with ambient temperature controls, depending upon the interval over which the turnover measurement was made, while in the heart NE turnover doubled in response to the same cold stimulus. In animals exposed to cold continuously for 10 d before study, NE turnover measurements in IBAT and in the heart were elevated comparably to those obtained during acute exposure. Alterations in feeding were also associated with changes in NE turnover in IBAT. Fasting for 2 d decreased NE turnover in IBAT (-35% from 29.2±4.2 ng NE/h to 18.9±5.9) and in heart (-52%). In animals fed a “cafeteria” diet, a model of voluntary overfeeding in the rat, NE turnover was increased in both IBAT (+108% from 24.8±4.5 ng NE/h to 51.7±6.8) and heart (+66%). Because ganglionic blockade exerted a greater effect on NE turnover in IBAT in cafeteria-fed rats than in controls, the increase in NE turnover in IBAT with this overfeeding regimen reflects enhanced central sympathetic outflow. Thus NE turnover techniques can be satisfactorily applied to the assessment of sympathetic nervous system activity in IBAT. The experiments reported here demonstrate changes in sympathetic activity in

  10. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way.

    PubMed

    Wang, Shan; Wang, Xiuchao; Ye, Zichen; Xu, Chengming; Zhang, Ming; Ruan, Banjun; Wei, Ming; Jiang, Yinghao; Zhang, Ying; Wang, Li; Lei, Xiaoying; Lu, Zifan

    2015-10-16

    Brown adipose tissue converts energy from food into heat via the mitochondrial uncoupling protein UCP1, defending against cold. In some conditions, inducible 'brown-like' adipocytes, also known as beige adipocytes, can develop within white adipose tissue (WAT). These beige adipocytes have characteristics similar to classical brown adipocytes and thus can burn lipids to produce heat. In the current study, we demonstrated that curcumin (50 or 100 mg/kg/day) decreased bodyweight and fat mass without affecting food intake in mice. We further demonstrated that curcumin improves cold tolerance in mice. This effect was possibly mediated by the emergence of beige adipocytes and the increase of thermogenic gene expression and mitochondrial biogenesis in inguinal WAT. In addition, curcumin promotes β3AR gene expression in inguinal WAT and elevates the levels of plasma norepinephrine, a hormone that can induce WAT browning. Taken together, our data suggest that curcumin can potentially prevent obesity by inducing browning of inguinal WAT via the norepinephrine-β3AR pathway. PMID:26362189

  11. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation.

    PubMed

    Hampton, Marshall; Melvin, Richard G; Andrews, Matthew T

    2013-01-01

    We used RNAseq to generate a comprehensive transcriptome of Brown Adipose Tissue (BAT) over the course of a year in the naturally hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus. During hibernation ground squirrels do not feed and use fat stored in White Adipose Tissue (WAT) as their primary source of fuel. Stored lipid is consumed at high rates by BAT to generate heat at specific points during the hibernation season. The highest rate of BAT activity occurs during periodic arousals from hypothermic torpor bouts, referred to as Interbout Arousals (IBAs). IBAs are characterized by whole body re-warming (from 5 to 37 °C) in 2-3 hours, and provide a unique opportunity to determine the genes responsible for the highly efficient lipid oxidation and heat generation that drives the arousal process. Illumina HighSeq sequencing identified 14,573 distinct BAT mRNAs and quantified their levels at four points: active ground squirrels in April and October, and hibernating animals during both torpor and IBA. Based on significant changes in mRNA levels across the four collection points, 2,083 genes were shown to be differentially expressed. In addition to providing detail on the expression of nuclear genes encoding mitochondrial proteins, and genes involved in beta-adrenergic and lipolytic pathways, we identified differentially expressed genes encoding various transcription factors and other regulatory proteins which may play critical roles in high efficiency fat catabolism, non-shivering thermogenesis, and transitions into and out of the torpid state. PMID:24386461

  12. Transcriptomic Analysis of Brown Adipose Tissue across the Physiological Extremes of Natural Hibernation

    PubMed Central

    Hampton, Marshall; Melvin, Richard G.; Andrews, Matthew T.

    2013-01-01

    We used RNAseq to generate a comprehensive transcriptome of Brown Adipose Tissue (BAT) over the course of a year in the naturally hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus. During hibernation ground squirrels do not feed and use fat stored in White Adipose Tissue (WAT) as their primary source of fuel. Stored lipid is consumed at high rates by BAT to generate heat at specific points during the hibernation season. The highest rate of BAT activity occurs during periodic arousals from hypothermic torpor bouts, referred to as Interbout Arousals (IBAs). IBAs are characterized by whole body re-warming (from 5 to 37 °C) in 2-3 hours, and provide a unique opportunity to determine the genes responsible for the highly efficient lipid oxidation and heat generation that drives the arousal process. Illumina HighSeq sequencing identified 14,573 distinct BAT mRNAs and quantified their levels at four points: active ground squirrels in April and October, and hibernating animals during both torpor and IBA. Based on significant changes in mRNA levels across the four collection points, 2,083 genes were shown to be differentially expressed. In addition to providing detail on the expression of nuclear genes encoding mitochondrial proteins, and genes involved in beta-adrenergic and lipolytic pathways, we identified differentially expressed genes encoding various transcription factors and other regulatory proteins which may play critical roles in high efficiency fat catabolism, non-shivering thermogenesis, and transitions into and out of the torpid state. PMID:24386461

  13. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People.

    PubMed

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M; Hurren, Nicholas M; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S

    2016-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT- group only (-0.34°C, 95% CI: -0.6 to -0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT- subjects (BAT+ vs. BAT-, 0.43°C, 95% CI: 0.20-0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT- group, BAT+ subjects tolerated a lower ambient temperature (BAT-: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068

  14. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M.; Hurren, Nicholas M.; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S.

    2016-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT−) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT− group only (−0.34°C, 95% CI: −0.6 to −0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT− subjects (BAT+ vs. BAT−, 0.43°C, 95% CI: 0.20–0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT− group, BAT+ subjects tolerated a lower ambient temperature (BAT−: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068

  15. Effect of running training on uncoupling protein mRNA expression in rat brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Yamashita, Hitoshi; Yamamoto, Mikio; Sato, Yuzo; Izawa, Tetsuya; Komabayashi, Takao; Saito, Daizo; Ohno, Hideki

    1993-03-01

    The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.

  16. Pronounced expression of the lipolytic inhibitor G0/G1 Switch Gene 2 (G0S2) in adipose tissue from brown bears (Ursus arctos) prior to hibernation.

    PubMed

    Jessen, Niels; Nielsen, Thomas S; Vendelbo, Mikkel H; Viggers, Rikke; Støen, Ole-Gunnar; Evans, Alina; Frøbert, Ole

    2016-04-01

    Prior to hibernation, the brown bear (Ursus arctos) exhibits unparalleled weight gain. Unlike humans, weight gain in bears is associated with lower levels of circulating free fatty acids (FFA) and increased insulin sensitivity. Understanding how free-ranging brown bears suppress lipolysis when gaining weight may therefore provide novel insight toward the development of human therapies. Blood and subcutaneous adipose tissue were collected from immobilized free-ranging brown bears (fitted with GPS-collars) during hibernation in winter and from the same bears during the active period in summer in Dalarna, Sweden. The expression of lipid droplet-associated proteins in adipose tissue was examined under the hypothesis that bears suppress lipolysis during summer while gaining weight by increased expression of negative regulators of lipolysis. Adipose triglyceride lipase (ATGL) expression did not differ between seasons, but in contrast, the expression of ATGL coactivator Comparative gene identification-58 (CGI-58) was lower in summer. In addition, the expression of the negative regulators of lipolysis, G0S2 and cell-death inducing DNA fragmentation factor-a-like effector (CIDE)C markedly increased during summer. Free-ranging brown bears display potent upregulation of inhibitors of lipolysis in adipose tissue during summer. This is a potential mechanism for increased insulin sensitivity during weight gain and G0S2 may serve as a target to modulate insulin sensitivity. PMID:27117803

  17. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    PubMed

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation. PMID:26530152

  18. BMP8B Increases Brown Adipose Tissue Thermogenesis through Both Central and Peripheral Actions

    PubMed Central

    Whittle, Andrew J.; Carobbio, Stefania; Martins, Luís; Slawik, Marc; Hondares, Elayne; Vázquez, María Jesús; Morgan, Donald; Csikasz, Robert I.; Gallego, Rosalía; Rodriguez-Cuenca, Sergio; Dale, Martin; Virtue, Samuel; Villarroya, Francesc; Cannon, Barbara; Rahmouni, Kamal; López, Miguel; Vidal-Puig, Antonio

    2012-01-01

    Summary Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b−/− mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b−/− mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT. PMID:22579288

  19. Maternal manipulation of brown adipose tissue and liver development in the ovine fetus during late gestation.

    PubMed

    Clarke, L; Bryant, M J; Lomax, M A; Symonds, M E

    1997-06-01

    We examined the effect of maternal chronic cold exposure, induced by winter-shearing ewes 4 weeks before their predicted lambing date, on brown adipose tissue (BAT) and liver development in lambs. Fetuses were sampled from under-fed (60% of energy requirements for maintenance and pregnancy of an unshorn ewe) shorn or unshorn ewes at 126, 140 and 145 d of gestation. Lambs were sampled from ewes within 2 h of birth. Throughout gestation fetal body, BAT and liver weights were similar in shorn and unshorn groups. The level of GDP binding to mitochondrial uncoupling protein remained low throughout gestation, but increased dramatically after birth. Lambs born to shorn ewes possessed more mitochondrial protein and exhibited a significantly higher total thermogenic activity in BAT. Type I iodothyronine 5' deiodinase (EC 3.8.1.4) activity in BAT peaked at birth, as did hepatic iodothyronine 5' deiodinase activity and was significantly greater in lambs born to under-fed shorn ewes, which exhibited a higher plasma triiodothyronine concentration. Chronic maternal adaptations to prolonged cold exposure appear to enable pregnant ewes to compensate for the negative effects of under-feeding on fetal growth and development. PMID:9227185

  20. Low level of trans-10, cis-12 conjugated linoleic acid decreases adiposity and increases browning independent of inflammatory signaling in overweight Sv129 mice

    PubMed Central

    Shen, Wan; Baldwin, Jessie; Collins, Brian; Hixson, Lindsay; Lee, Kuan-Ting; Herberg, Timothy; Starnes, Joseph; Cooney, Paula; Chuang, Chia-Chi; Hopkins, Robin; Reid, Tanya; Gupta, Sat; McIntosh, Michael

    2015-01-01

    The objective of this study was to determine the extent to which a low level of trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) decreases adiposity and increases browning in overweight mice, its dependence on inflammatory signaling, and potential synergistic effects of daily exercise. Young, Sv129 male mice were fed a high fat diet for 5 wk to make them fat and glucose intolerant, and then switch them to a low fat diet with or without 0.1% 10,12 CLA, sodium salicylate, or exercise for another 7 wk. 10,12 CLA decreased white adipose tissue (WAT) and brown adipose tissue mass, and increased the mRNA and protein levels, and activities of enzymes associated with thermogenesis or fatty acid oxidation in WAT. Mice fed 10,12 CLA had lower body temperatures compared to controls during cold exposure, which coincided with decreased adiposity. Although sodium salicylate decreased 10,12 CLA-mediated increases in markers of inflammation in WAT, it did not affect other outcomes. Exercise had no further effect on the outcomes measured. Collectively, these data indicate that 10,12 CLA-mediated reduction of adiposity is independent of inflammatory signaling, and possibly due to up-regulation of fatty acid oxidation and heat production in order to regulate body temperature. Although this low level of 10,12 CLA reduced adiposity in overweight mice, hepatomegaly and inflammation are major health concerns. PMID:25801353

  1. Rapid changes in number of GDP binding sites on brown adipose tissue mitochondria

    SciTech Connect

    Swick, A.G.; Swick, R.W.

    1986-08-01

    (TH)GDP binding to brown adipose tissue (BAT) mitochondria increased more than twofold in 20 min when rats were moved from 27 to 4C. When animals housed at 4C for 2 h were returned to 27C, GDP binding decreased sharply in 20 min and returned to control levels in 2 h. These results are consistent with a rapid unmasking and remasking of GDP bindings sites. GDP binding to mitochondria from warm and acutely cold treated rats was not modified by prior swelling, by freeze-thawing, nor by sonication of the mitochondria before assay. GDP-inhibitable proton conductance, as measured by passive swelling, was unaffected by this brief exposure to cold but more than doubled in rats kept at 4C for 10 days. The authors hypothesize that the rate of GDP-inhibitable swelling may be a reflection of uncoupling protein concentration in the BAT mitochondria, whereas physiological thermogenic activity is more appropriately indicated by GDP binding. The alterations in binding activity appear not to be due to changes in the mitochondrial membrane integrity.

  2. Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates

    PubMed Central

    De Meis, Leopoldo; Ketzer, Luisa A.; Camacho-Pereira, Juliana; Galina, Antonio

    2011-01-01

    The UCP1 [first UCP (uncoupling protein)] that is found in the mitochondria of brown adipocytes [BAT (brown adipose tissue)] regulates the heat production, a process linked to non-shivering thermogenesis. The activity of UCP1 is modulated by GDP and fatty acids. In this report, we demonstrate that respiration and heat released by BAT mitochondria vary depending on the respiratory substrate utilized and the coupling state of the mitochondria. It has already been established that, in the presence of pyruvate/malate, BAT mitochondria are coupled by faf-BSA (fatty-acid-free BSA) and GDP, leading to an increase in ATP synthesis and mitochondrial membrane potential along with simultaneous decreases in both the rates of respiration and heat production. Oleate restores the uncoupled state, inhibiting ATP synthesis and increasing the rates of both respiration and heat production. We now show that in the presence of succinate: (i) the rates of uncoupled mitochondria respiration and heat production are five times slower than in the presence of pyruvate/malate; (ii) faf-BSA and GDP accelerate heat and respiration as a result and, in coupled mitochondria, these two rates are accelerated compared with pyruvate/malate; (iii) in spite of the differences in respiration and heat production noted with the two substrates, the membrane potential and the ATP synthesized were the same; and (iv) oleate promoted a decrease in heat production and respiration in coupled mitochondria, an effect different from that observed using pyruvate/malate. These effects are not related to the production of ROS (reactive oxygen species). We suggest that succinate could stimulate a new route to heat production in BAT mitochondria. PMID:21561434

  3. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3

    PubMed Central

    Shan, Tizhong; Xiong, Yan; Zhang, Pengpeng; Li, Zhiguo; Jiang, Qingyang; Bi, Pengpeng; Yue, Feng; Yang, Gongshe; Wang, Yizhen; Liu, Xiaoqi; Kuang, Shihuan

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy through Ucp1-mediated uncoupled respiration and its activation may represent a therapeutic strategy to combat obesity. Here we show that Lkb1 controls BAT expansion and UCP1 expression in mice. We generate adipocyte-specific Lkb1 knockout mice and show that, compared with wild-type littermates, these mice exhibit elevated UCP1 expression in BAT and subcutaneous white adipose tissue, have increased BAT mass and higher energy expenditure. Consequently, KO mice have improved glucose tolerance and insulin sensitivity, and are more resistant to high-fat diet (HFD)-induced obesity. Deletion of Lkb1 results in a cytoplasm to nuclear translocation of CRTC3 in brown adipocytes, where it recruits C/EBPβ to enhance Ucp1 transcription. In parallel, the absence of Lkb1 also suppresses AMPK activity, leading to activation of the mTOR signalling pathway and subsequent BAT expansion. These data suggest that inhibition of Lkb1 or its downstream signalling in adipocytes could be a novel strategy to increase energy expenditure in the context of obesity, diabetes and other metabolic diseases. PMID:27461402

  4. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.

    PubMed

    Albert, Verena; Svensson, Kristoffer; Shimobayashi, Mitsugu; Colombi, Marco; Muñoz, Sergio; Jimenez, Veronica; Handschin, Christoph; Bosch, Fatima; Hall, Michael N

    2016-03-01

    Activation of non-shivering thermogenesis (NST) in brown adipose tissue (BAT) has been proposed as an anti-obesity treatment. Moreover, cold-induced glucose uptake could normalize blood glucose levels in insulin-resistant patients. It is therefore important to identify novel regulators of NST and cold-induced glucose uptake. Mammalian target of rapamycin complex 2 (mTORC2) mediates insulin-stimulated glucose uptake in metabolic tissues, but its role in NST is unknown. We show that mTORC2 is activated in brown adipocytes upon β-adrenergic stimulation. Furthermore, mice lacking mTORC2 specifically in adipose tissue (AdRiKO mice) are hypothermic, display increased sensitivity to cold, and show impaired cold-induced glucose uptake and glycolysis. Restoration of glucose uptake in BAT by overexpression of hexokinase II or activated Akt2 was sufficient to increase body temperature and improve cold tolerance in AdRiKO mice. Thus, mTORC2 in BAT mediates temperature homeostasis via regulation of cold-induced glucose uptake. Our findings demonstrate the importance of glucose metabolism in temperature regulation. PMID:26772600

  5. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3.

    PubMed

    Shan, Tizhong; Xiong, Yan; Zhang, Pengpeng; Li, Zhiguo; Jiang, Qingyang; Bi, Pengpeng; Yue, Feng; Yang, Gongshe; Wang, Yizhen; Liu, Xiaoqi; Kuang, Shihuan

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy through Ucp1-mediated uncoupled respiration and its activation may represent a therapeutic strategy to combat obesity. Here we show that Lkb1 controls BAT expansion and UCP1 expression in mice. We generate adipocyte-specific Lkb1 knockout mice and show that, compared with wild-type littermates, these mice exhibit elevated UCP1 expression in BAT and subcutaneous white adipose tissue, have increased BAT mass and higher energy expenditure. Consequently, KO mice have improved glucose tolerance and insulin sensitivity, and are more resistant to high-fat diet (HFD)-induced obesity. Deletion of Lkb1 results in a cytoplasm to nuclear translocation of CRTC3 in brown adipocytes, where it recruits C/EBPβ to enhance Ucp1 transcription. In parallel, the absence of Lkb1 also suppresses AMPK activity, leading to activation of the mTOR signalling pathway and subsequent BAT expansion. These data suggest that inhibition of Lkb1 or its downstream signalling in adipocytes could be a novel strategy to increase energy expenditure in the context of obesity, diabetes and other metabolic diseases. PMID:27461402

  6. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues.

    PubMed

    Hansen, Ida R; Jansson, Kim M; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin. PMID:25224322

  7. White Adipose Tissue Browning in the R6/2 Mouse Model of Huntington’s Disease

    PubMed Central

    McCourt, Andrew C.; Jakobsson, Lovisa; Larsson, Sara; Holm, Cecilia; Piel, Sarah; Elmér, Eskil; Björkqvist, Maria

    2016-01-01

    Huntington’s disease (HD) is a fatal, autosomal dominantly inherited neurodegenerative disorder, characterised not only by progressive cognitive, motor and psychiatric impairments, but also of peripheral pathology. In both human HD and in mouse models of HD there is evidence of increased energy expenditure and weight loss, alongside altered body composition. Unlike white adipose tissue (WAT), brown adipose tissue (BAT), as well as brown-like cells within WAT, expresses the mitochondrial protein, uncoupling protein 1 (UCP1). UCP1 enables dissociation of cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Hyperplasia of brown/beige cells in WAT has been suggested to enhance energy expenditure. In this study, we therefore investigated the gene expression profile, histological appearance, response to cold challenge and functional aspects of WAT in the R6/2 HD mouse model and selected WAT gene expression in the full-length Q175 mouse model of HD. WAT from R6/2 mice contained significantly more brown-like adipocyte regions and had a gene profile suggestive of the presence of brown-like adipocytes, such as higher Ucp1 expression. Cold exposure induced Ucp1 expression in R6/2 inguinal WAT to a markedly higher degree as compared to the thermogenic response in WT WAT. Alongside this, gene expression of transcription factors (Zfp516 and Pparα), important inducers of WAT browning, were increased in R6/2 inguinal WAT, and Creb1 was highlighted as a key transcription factor in HD. In addition to increased WAT Ucp1 expression, a trend towards increased mitochondrial oxygen consumption due to enhanced uncoupling activity was found in inguinal R6/2 WAT. Key gene expressional changes (increased expression of (Zfp516 and Pparα)) were replicated in inguinal WAT obtained from Q175 mice. In summary, for the first time, we here show that HD mouse WAT undergoes a process of browning, resulting in molecular and functional alterations that may

  8. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice

    PubMed Central

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E.; MacIntyre, David; Turner, Jeremy O.; Moore, Jonathan D.; Blackburn, Edith; Gullick, William J.; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G.

    2014-01-01

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a “brite” transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with “browning,” as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes. PMID:24549398

  9. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice.

    PubMed

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E; MacIntyre, David; Turner, Jeremy O; Moore, Jonathan D; Blackburn, Edith; Gullick, William J; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G; Christian, Mark

    2014-04-15

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes. PMID:24549398

  10. Glycogen Repletion in Brown Adipose Tissue upon Refeeding Is Primarily Driven by Phosphorylation-Independent Mechanisms

    PubMed Central

    Carmean, Christopher M.; Huang, Y. Hanna; Brady, Matthew J.

    2016-01-01

    Glycogen storage in brown adipose tissue (BAT) is generally thought to take place through passive, substrate-driven activation of glycogenesis rather than programmatic shifts favoring or opposing the storage and/or retention of glycogen. This perception exists despite a growing body of evidence suggesting that BAT glycogen storage is actively regulated by covalent modification of key glycogen-metabolic enzymes, protein turnover, and endocrine hormone signaling. Members of one such class of covalent-modification regulators, glycogen-binding Phosphoprotein Phosphatase-1 (PP1)-regulatory subunits (PPP1Rs), targeting PP1 to glycogen-metabolic enzymes, were dynamically regulated in response to 24 hr of starvation and/or 24 hr of starvation followed by ad libitum refeeding. Over-expression of the PPP1R Protein Targeting to Glycogen (PTG), under the control of the aP2 promoter in mice, inactivated glycogen phosphorylase (GP) and enhanced basal- and starvation-state glycogen storage. Total interscapular BAT glycogen synthase and the constitutive activity of GS were conditionally affected. During starvation, glucose-6-phosphate (G-6-P) levels and the relative phosphorylation of Akt (p-Ser-473-Akt) were both increased in PTG-overexpressing (Tg) mice, suggesting that elevated glycogen storage during starvation modifies broader cellular metabolic pathways. During refeeding, Tg and WT mice reaccumulated glycogen similarly despite altered GS and GP activities. All observations during refeeding suggest that the phosphorylation states of GS and GP are not physiologically rate-controlling, despite there being a clear balance of endogenous kinase- and phosphatase activities. The studies presented here reveal IBAT glycogen storage to be a tightly-regulated process at all levels, with potential effects on nutrient sensing in vivo. PMID:27213961

  11. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue

    PubMed Central

    Hoffmann, Linda S.; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W.C.; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41–8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing β1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces ‘browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. PMID:26011238

  12. Translocator Protein 18 kDa (TSPO) Is Regulated in White and Brown Adipose Tissue by Obesity

    PubMed Central

    Thompson, Misty M.; Manning, H. Charles; Ellacott, Kate L. J.

    2013-01-01

    Translocator protein 18 kDa (TSPO) is an outer-mitochondrial membrane transporter which has many functions including participation in the mitochondrial permeability transition pore, regulation of reactive oxygen species (ROS), production of cellular energy, and is the rate-limiting step in the uptake of cholesterol. TSPO expression is dysregulated during disease pathologies involving changes in tissue energy demands such as cancer, and is up-regulated in activated macrophages during the inflammatory response. Obesity is associated with decreased energy expenditure, mitochondrial dysfunction, and chronic low-grade inflammation which collectively contribute to the development of the Metabolic Syndrome. Therefore, we hypothesized that dysregulation of TSPO in adipose tissue may be a feature of disease pathology in obesity. Radioligand binding studies revealed a significant reduction in TSPO ligand binding sites in mitochondrial extracts from both white (WAT) and brown adipose tissue (BAT) in mouse models of obesity (diet-induced and genetic) compared to control animals. We also confirmed a reduction in TSPO gene expression in whole tissue extracts from WAT and BAT. Immunohistochemistry in WAT confirmed TSPO expression in adipocytes but also revealed high-levels of TSPO expression in WAT macrophages in obese animals. No changes in TSPO expression were observed in WAT or BAT after a 17 hour fast or 4 hour cold exposure. Treatment of mice with the TSPO ligand PK11195 resulted in regulation of metabolic genes in WAT. Together, these results suggest a potential role for TSPO in mediating adipose tissue homeostasis. PMID:24260329

  13. IRF3 promotes adipose inflammation and insulin resistance and represses browning.

    PubMed

    Kumari, Manju; Wang, Xun; Lantier, Louise; Lyubetskaya, Anna; Eguchi, Jun; Kang, Sona; Tenen, Danielle; Roh, Hyun Cheol; Kong, Xingxing; Kazak, Lawrence; Ahmad, Rasheed; Rosen, Evan D

    2016-08-01

    The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis. PMID:27400129

  14. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.

    PubMed

    Biggar, Yulia; Storey, Kenneth B

    2014-10-01

    Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels. PMID:25192827

  15. Brown Adipose Tissue Exhibits a Glucose-Responsive Thermogenic Biorhythm in Humans.

    PubMed

    Lee, Paul; Bova, Ron; Schofield, Lynne; Bryant, Wendy; Dieckmann, William; Slattery, Anthony; Govendir, Matt A; Emmett, Louise; Greenfield, Jerry R

    2016-04-12

    High abundance of brown adipose tissue (BAT) is linked to lower glycaemia in humans, leading to the belief that BAT may protect against diabetes. The relationship between BAT glucose utilization and systemic glucose homeostasis has not been defined. In this paper we have characterized glycaemic excursions and BAT thermogenic responses in human brown adipocytes, BAT explants, and healthy adults through supraclavicular temperature profiling, revealing their circadian coupling in vivo and in vitro, orchestrated by UCP1, GLUT4, and Rev-erbα biorhythms. Extent of glycated haemoglobin also correlated positively with environmental temperature among community-dwelling patients. These data uncover potential crosstalk between BAT and glucose regulatory pathways, evident on cellular, tissue, individual, and population levels, and provide impetus to search for BAT harnessing strategies for therapeutic purposes. PMID:26972823

  16. Increased Reliance on Muscle-based Thermogenesis upon Acute Minimization of Brown Adipose Tissue Function.

    PubMed

    Bal, Naresh C; Maurya, Santosh K; Singh, Sushant; Wehrens, Xander H T; Periasamy, Muthu

    2016-08-12

    Skeletal muscle has been suggested as a site of nonshivering thermogenesis (NST) besides brown adipose tissue (BAT). Studies in birds, which do not contain BAT, have demonstrated the importance of skeletal muscle-based NST. However, muscle-based NST in mammals remains poorly characterized. We recently reported that sarco/endoplasmic reticulum Ca(2+) cycling and that its regulation by SLN can be the basis for muscle NST. Because of the dominant role of BAT-mediated thermogenesis in rodents, the role of muscle-based NST is less obvious. In this study, we investigated whether muscle will become an important site of NST when BAT function is conditionally minimized in mice. We surgically removed interscapular BAT (iBAT, which constitutes ∼70% of total BAT) and exposed the mice to prolonged cold (4 °C) for 9 days. The iBAT-ablated mice were able to maintain optimal body temperature (∼35-37 °C) during the entire period of cold exposure. After 4 days in the cold, both sham controls and iBAT-ablated mice stopped shivering and resumed routine physical activity, indicating that they are cold-adapted. The iBAT-ablated mice showed higher oxygen consumption and decreased body weight and fat mass, suggesting an increased energy cost of cold adaptation. The skeletal muscles in these mice underwent extensive remodeling of both the sarcoplasmic reticulum and mitochondria, including alteration in the expression of key components of Ca(2+) handling and mitochondrial metabolism. These changes, along with increased sarcolipin expression, provide evidence for the recruitment of NST in skeletal muscle. These studies collectively suggest that skeletal muscle becomes the major site of NST when BAT activity is minimized. PMID:27298322

  17. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    PubMed

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. PMID:25968336

  18. Microarray Based Gene Expression Analysis of Murine Brown and Subcutaneous Adipose Tissue: Significance with Human

    PubMed Central

    Boparai, Ravneet K.; Kondepudi, Kanthi Kiran; Mantri, Shrikant; Bishnoi, Mahendra

    2015-01-01

    Background Two types of adipose tissues, white (WAT) and brown (BAT) are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models. Methodology/Principle Findings The present study was designed to: (a) investigate the differential expression of genes in LACA mice subcutaneous WAT (sWAT) and BAT using mouse DNA microarray, (b) to compare mouse differential gene expression with previously published human data; to understand any inter- species differences between the two and (c) to make a comparative assessment with C57BL/6 mouse strain. In mouse microarray studies, over 7003, 1176 and 401 probe sets showed more than two-fold, five-fold and ten-fold change respectively in differential expression between murine BAT and WAT. Microarray data was validated using quantitative RT-PCR of key genes showing high expression in BAT (Fabp3, Ucp1, Slc27a1) and sWAT (Ms4a1, H2-Ob, Bank1) or showing relatively low expression in BAT (Pgk1, Cox6b1) and sWAT (Slc20a1, Cd74). Multi-omic pathway analysis was employed to understand possible links between the organisms. When murine two fold data was compared with published human BAT and sWAT data, 90 genes showed parallel differential expression in both mouse and human. Out of these 90 genes, 46 showed same pattern of differential expression whereas the pattern was opposite for the remaining 44 genes. Based on our microarray results and its comparison with human data, we were able to identify genes (targets) (a) which can be studied in mouse model systems to extrapolate results to human (b) where caution should be exercised before extrapolation of murine data to human. Conclusion Our study provides evidence for inter species (mouse vs human) differences in differential gene expression between sWAT and BAT. Critical understanding of this data may help in development of novel ways to engineer one form of adipose

  19. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue.

    PubMed

    Pravenec, Michal; Mlejnek, Petr; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Šilhavý, Jan; Strnad, Hynek; Eigner, Sebastian; Eigner Henke, Kateřina; Škop, Vojtěch; Malínská, Hana; Trnovská, Jaroslava; Kazdová, Ludmila; Drahota, Zdeněk; Mráček, Tomáš; Houštěk, Josef

    2016-06-01

    Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat. PMID:27113533

  20. Bofutsushosan ameliorates obesity in mice through modulating PGC-1α expression in brown adipose tissues and inhibiting inflammation in white adipose tissues.

    PubMed

    Chen, Ying-Ying; Yan, Yan; Zhao, Zheng; Shi, Mei-Jing; Zhang, Yu-Bin

    2016-06-01

    The inducible co-activator PGC-1α plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT). Meanwhile, chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity. Bofutsushosan (BF), a traditional Chinese medicine composed of 17 crude drugs, has been widely used to treat obesity in China, Japan, and other Asia countries. However, the mechanism underlying anti-obesity remains to be elucidated. In the present study, we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P < 0.05), including blood glucose (Glu), total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C) and insulin. Our further results also indicated that oral BF administration increased the expression of PGC-1α and UCP1 in BAT. Moreover, BF also reduced the expression of inflammatory cytokines in WAT, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These findings suggested that the mechanism of BF against obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT. PMID:27473963

  1. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis

    PubMed Central

    Tupone, Domenico; Madden, Christopher J.; Morrison, Shaun F.

    2014-01-01

    From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis. PMID:24570653

  2. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    PubMed Central

    Jeong, Jae Hoon; Lee, Dong Kun; Blouet, Clemence; Ruiz, Henry H.; Buettner, Christoph; Chua, Streamson; Schwartz, Gary J.; Jo, Young-Hwan

    2015-01-01

    Objective Brown adipose tissue (BAT) thermogenesis is critical in maintaining body temperature. The dorsomedial hypothalamus (DMH) integrates cutaneous thermosensory signals and regulates adaptive thermogenesis. Here, we study the function and synaptic connectivity of input from DMH cholinergic neurons to sympathetic premotor neurons in the raphe pallidus (Rpa). Methods In order to selectively manipulate DMH cholinergic neuron activity, we generated transgenic mice expressing channelrhodopsin fused to yellow fluorescent protein (YFP) in cholinergic neurons (choline acetyltransferase (ChAT)-Cre::ChR2-YFP) with the Cre-LoxP technique. In addition, we used an adeno-associated virus carrying the Cre recombinase gene to delete the floxed Chat gene in the DMH. Physiological studies in response to optogenetic stimulation of DMH cholinergic neurons were combined with gene expression and immunocytochemical analyses. Results A subset of DMH neurons are ChAT-immunopositive neurons. The activity of these neurons is elevated by warm ambient temperature. A phenotype-specific neuronal tracing shows that DMH cholinergic neurons directly project to serotonergic neurons in the Rpa. Optical stimulation of DMH cholinergic neurons decreases BAT activity, which is associated with reduced body core temperature. Furthermore, elevated DMH cholinergic neuron activity decreases the expression of BAT uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ coactivator 1 α (Pgc1α) mRNAs, markers of BAT activity. Injection of M2-selective muscarinic receptor antagonists into the 4th ventricle abolishes the effect of optical stimulation. Single cell qRT-PCR analysis of retrogradely identified BAT-projecting neurons in the Rpa shows that all M2 receptor-expressing neurons contain tryptophan hydroxylase 2. In animals lacking the Chat gene in the DMH, exposure to warm temperature reduces neither BAT Ucp1 nor Pgc1α mRNA expression. Conclusion DMH cholinergic neurons directly

  3. Brown Adipose Tissue Thermogenic Capacity Is Regulated by Elovl6

    PubMed Central

    Tan, Chong Yew; Virtue, Samuel; Bidault, Guillaume; Dale, Martin; Hagen, Rachel; Griffin, Julian L.; Vidal-Puig, Antonio

    2015-01-01

    Summary Although many transcriptional pathways regulating BAT have been identified, the role of lipid biosynthetic enzymes in thermogenesis has been less investigated. Whereas cold exposure causes changes in the fatty acid composition of BAT, the functional consequences of this remains relatively unexplored. In this study, we demonstrate that the enzyme Elongation of Very Long Chain fatty acids 6 (Elovl6) is necessary for the thermogenic action of BAT. Elovl6 is responsible for converting C16 non-essential fatty acids into C18 species. Loss of Elovl6 does not modulate traditional BAT markers; instead, it causes reduced expression of mitochondrial electron transport chain components and lower BAT thermogenic capacity. The reduction in BAT activity appears to be counteracted by increased beiging of scWAT. When beige fat is disabled by thermoneutrality or aging, Elovl6 KO mice gain weight and have increased scWAT mass and impaired carbohydrate metabolism. Overall, our study suggests fatty acid chain length is important for BAT function. PMID:26628376

  4. Foraging at wastewater treatment works affects brown adipose tissue fatty acid profiles in banana bats

    PubMed Central

    Hill, Kate; van Aswegen, Sunet; Schoeman, M. Corrie; Claassens, Sarina; Jansen van Rensburg, Peet; Naidoo, Samantha; Vosloo, Dalene

    2016-01-01

    ABSTRACT In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW), such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT) in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa. Brown adipose tissue (BrAT) mass was lower in WWTW bats than in reference site bats. We found lower levels of saturated phospholipid fatty acids and higher levels of mono- and polyunsaturated fatty acids in WWTW bats than in reference site bats, while C18 desaturation and n-6 to n-3 ratios were higher in the WWTW bats. This was not associated with high lipid peroxidation levels in pectoral and cardiac muscle. Combined, these results indicate that WWTW bats rely on iBrAT as an energy source, and opportunistic foraging on abundant, pollutant-tolerant prey may change fatty acid profiles in their tissue, with possible effects on mitochondrial functioning, torpor and energy usage. PMID:26740572

  5. Browning of Subcutaneous White Adipose Tissue in Humans after Severe Adrenergic Stress.

    PubMed

    Sidossis, Labros S; Porter, Craig; Saraf, Manish K; Børsheim, Elisabet; Radhakrishnan, Ravi S; Chao, Tony; Ali, Arham; Chondronikola, Maria; Mlcak, Ronald; Finnerty, Celeste C; Hawkins, Hal K; Toliver-Kinsky, Tracy; Herndon, David N

    2015-08-01

    Since the presence of brown adipose tissue (BAT) was confirmed in adult humans, BAT has become a therapeutic target for obesity and insulin resistance. We examined whether human subcutaneous white adipose tissue (sWAT) can adopt a BAT-like phenotype using a clinical model of prolonged and severe adrenergic stress. sWAT samples were collected from severely burned and healthy individuals. A subset of burn victims were prospectively followed during their acute hospitalization. Browning of sWAT was determined by the presence of multilocular adipocytes, uncoupling protein 1 (UCP1), and increased mitochondrial density and respiratory capacity. Multilocular UCP1-positive adipocytes were found in sWAT samples from burn patients. UCP1 mRNA, mitochondrial density, and leak respiratory capacity in sWAT increased after burn trauma. Our data demonstrate that human sWAT can transform from an energy-storing to an energy-dissipating tissue, which opens new research avenues in our quest to prevent and treat obesity and its metabolic complications. PMID:26244931

  6. Exploratory Studies on Biomarkers: An Example Study on Brown Adipose Tissue

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Yamazaki, Naoshi; Kataoka, Masatoshi; Shinohara, Yasuo

    In mammals, two kinds of adipose tissue are known to exist, i.e., white (WAT) and brown (BAT) adipose tissue. The physiological role of WAT is storage of excess energy as fat, whereas that of BAT is the expenditure of excess energy as heat. The uncoupling protein UCP1, which is specifically expressed in brown fat mitochondria, dissipates the proton electrochemical potential across the inner mitochondrial membrane, known as a driving force of ATP synthesis, and thus it dissipates excess energy in a form of heat. Because deficiency in effective expenditure of excess energy causes accumulation of this energy in the form of fat (i.e., obesity), it is very important to understand the energy metabolism in this tissue for the development of anti-obesity drugs. In this article, in addition to providing a brief introduction to the functional properties of BAT and UCP1, the results of our exploratory studies on protein components involved in the energy-dissipating function in BAT.

  7. FGF21 Lowers Plasma Triglycerides by Accelerating Lipoprotein Catabolism in White and Brown Adipose Tissues.

    PubMed

    Schlein, Christian; Talukdar, Saswata; Heine, Markus; Fischer, Alexander W; Krott, Lucia M; Nilsson, Stefan K; Brenner, Martin B; Heeren, Joerg; Scheja, Ludger

    2016-03-01

    FGF21 decreases plasma triglycerides (TGs) in rodents and humans; however, the underlying mechanism or mechanisms are unclear. In the present study, we examined the role of FGF21 in production and disposal of TG-rich lipoproteins (TRLs) in mice. Treatment with pharmacological doses of FGF21 acutely reduced plasma non-esterified fatty acids (NEFAs), liver TG content, and VLDL-TG secretion. In addition, metabolic turnover studies revealed that FGF21 facilitated the catabolism of TRL in white adipose tissue (WAT) and brown adipose tissue (BAT). FGF21-dependent TRL processing was strongly attenuated in CD36-deficient mice and transgenic mice lacking lipoprotein lipase in adipose tissues. Insulin resistance in diet-induced obese and ob/ob mice shifted FGF21 responses from WAT toward energy-combusting BAT. In conclusion, FGF21 lowers plasma TGs through a dual mechanism: first, by reducing NEFA plasma levels and consequently hepatic VLDL lipidation and, second, by increasing CD36 and LPL-dependent TRL disposal in WAT and BAT. PMID:26853749

  8. The Great Roundleaf Bat (Hipposideros armiger) as a Good Model for Cold-Induced Browning of Intra-Abdominal White Adipose Tissue

    PubMed Central

    Ke, Shanshan; Fang, Na; Irwin, David M.; Lei, Ming; Zhang, Junpeng; Shi, Huizhen; Zhang, Shuyi; Wang, Zhe

    2014-01-01

    Background Inducing beige fat from white adipose tissue (WAT) is considered to be a shortcut to weight loss and increasingly becoming a key area in research into treatments for obesity and related diseases. However, currently, animal models of beige fat are restricted to rodents, where subcutaneous adipose tissue (sWAT, benign WAT) is more liable to develop into the beige fat under specific activators than the intra-abdominal adipose tissue (aWAT, malignant WAT) that is the major source of obesity related diseases in humans. Methods Here we induced beige fat by cold exposure in two species of bats, the great roundleaf bat (Hipposideros armiger) and the rickett's big-footed bat (Myotis ricketti), and compared the molecular and morphological changes with those seen in the mouse. Expression of thermogenic genes (Ucp1 and Pgc1a) was measured by RT-qPCR and adipocyte morphology examined by HE staining at three adipose locations, sWAT, aWAT and iBAT (interscapular brown adipose tissue). Results Expression of Ucp1 and Pgc1a was significantly upregulated, by 729 and 23 fold, respectively, in aWAT of the great roundleaf bat after exposure to 10°C for 7 days. Adipocyte diameters of WATs became significantly reduced and the white adipocytes became brown-like in morphology. In mice, similar changes were found in the sWAT, but much lower amounts of changes in aWAT were seen. Interestingly, the rickett's big-footed bat did not show such a tendency in beige fat. Conclusions The great roundleaf bat is potentially a good animal model for human aWAT browning research. Combined with rodent models, this model should be helpful for finding therapies for reducing harmful aWAT in humans. PMID:25393240

  9. Regulators of Human White Adipose Browning: Evidence for Sympathetic Control and Sexual Dimorphic Responses to Sprint Interval Training

    PubMed Central

    Scalzo, Rebecca L.; Peltonen, Garrett L.; Giordano, Gregory R.; Binns, Scott E.; Klochak, Anna L.; Paris, Hunter L. R.; Schweder, Melani M.; Szallar, Steve E.; Wood, Lacey M.; Larson, Dennis G.; Luckasen, Gary J.; Hickey, Matthew S.; Bell, Christopher

    2014-01-01

    The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21) were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11). The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE), but was increased during hypoxia mediated sympathetic activation (368±135); this response was abrogated (P = 0.035) with clonidine (269±93). Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21). Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5) was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT). SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046) but did not affect FNDC5 (P = 0.79). Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045) and increased in females (139±14 vs. 170±18). Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT. PMID:24603718

  10. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T sub 3 receptors

    SciTech Connect

    Bianco, A.C.; Silva, J.E. Harvard Medical School, Boston, MA )

    1988-10-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3{prime}-triiodothyronine (T{sub 3}), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T{sub 4}) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T{sub 3} levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5{prime}-deiodinase resulted in high levels of nuclear T{sub 3} receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T{sub 3} or T{sub 4} in rats exposed to 4{degree}C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear ({sup 125}I)T{sub 3} derived from the tracer ({sup 125}I)T{sub 4} injections (T{sub 3}(T{sub 4})) and a significant reduction in the nuclear ({sup 125}I)T{sub 3} derived from ({sup 125}I)T{sub 3} injections (T{sub 3}(T{sub 3})). The number of BAT nuclear T{sub 3} receptors did not increase for up to 3 wk of observation at 4{degree}C. The mass of nuclear-bound T{sub 3} was calculated from the nuclear tracer ({sup 125}I)T{sub 3}(T{sub 3}) and ({sup 125}I)T{sub 3}(T{sub 4}) at equilibrium and the specific activity of serum T{sub 3} and T{sub 4}, respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T{sub 3} receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism.

  11. Increased Brown Adipose Tissue Oxidative Capacity in Cold-Acclimated Humans

    PubMed Central

    Blondin, Denis P.; Labbé, Sébastien M.; Tingelstad, Hans C.; Noll, Christophe; Kunach, Margaret; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E.; Carpentier, André C.

    2014-01-01

    Context: Recent studies examining brown adipose tissue (BAT) metabolism in adult humans have provided convincing evidence of its thermogenic potential and role in clearing circulating glucose and fatty acids under acute mild cold exposure. In contrast, early indications suggest that BAT metabolism is defective in obesity and type 2 diabetes, which may have important pathological and therapeutic implications. Although many mammalian models have demonstrated the phenotypic flexibility of this tissue through chronic cold exposure, little is known about the metabolic plasticity of BAT in humans. Objective: Our objective was to determine whether 4 weeks of daily cold exposure could increase both the volume of metabolically active BAT and its oxidative capacity. Design: Six nonacclimated men were exposed to 10°C for 2 hours daily for 4 weeks (5 d/wk), using a liquid-conditioned suit. Using electromyography combined with positron emission tomography with [11C]acetate and [18F]fluorodeoxyglucose, shivering intensity and BAT oxidative metabolism, glucose uptake, and volume before and after 4 weeks of cold acclimation were examined under controlled acute cold-exposure conditions. Results: The 4-week acclimation protocol elicited a 45% increase in BAT volume of activity (from 66 ± 30 to 95 ± 28 mL, P < .05) and a 2.2-fold increase in cold-induced total BAT oxidative metabolism (from 0.725 ± 0.300 to 1.591 ± 0.326 mL·s−1, P < .05). Shivering intensity was not significantly different before compared with after acclimation (2.1% ± 0.7% vs 2.0% ± 0.5% maximal voluntary contraction, respectively). Fractional glucose uptake in BAT increased after acclimation (from 0.035 ± 0.014 to 0.048 ± 0.012 min−1), and net glucose uptake also trended toward an increase (from 163 ± 60 to 209 ± 50 nmol·g−1·min−1). Conclusions: These findings demonstrate that daily cold exposure not only increases the volume of metabolically active BAT but also increases its oxidative

  12. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet

    PubMed Central

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M. Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L.

    2012-01-01

    We measured the effects of a diet in which d-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [18F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.—Srivastava, S., Kashiwaya, Y., King, M. T. Baxa, U., Tam, J., Niu, G., Chen, X., Clarke, K., Veech, R. L. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. PMID:22362892

  13. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues

    PubMed Central

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.—Shan, T., Liu, W., Kuang, S. Fatty acid-binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. PMID:23047894

  14. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  15. In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

    PubMed Central

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  16. Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    We recently exploited a transgenic approach to coerce macrophage anti-inflammatory M2 polarization in vivo by lowering Receptor Interacting Protein 140 (RIP140) level in macrophages (mφRIP140KD), which induced browning of white adipose tissue (WAT). In vitro, conditioned medium from cultured adipose tissue macrophages (ATMs) of mφRIP140KD mice could trigger preadipocytes' differentiation into beige cells. Here we describe a cell therapy for treating high fat diet (HFD)-induced insulin resistance (IR). Injecting M2 ATMs retrieved from the WAT of mφRIP140KD mice into HFD-fed obese adult wild-type mice effectively triggers their WAT browning, reduces their pro-inflammatory responses, and improves their insulin sensitivity. These data provide a proof-of-concept that delivering engineered anti-inflammatory macrophages can trigger white fat browning, stimulate whole-body thermogenesis, and reduce obesity-associated IR. PMID:26167415

  17. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant

    PubMed Central

    Piston, David W.

    2015-01-01

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  18. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant.

    PubMed

    Gunawardana, Subhadra C; Piston, David W

    2015-06-15

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  19. Burn Induces Browning of the Subcutaneous White Adipose Tissue in Mice and Humans

    PubMed Central

    Patsouris, David; Qi, Peter; Abdullahi, Abdikarim; Stanojcic, Mile; Chen, Peter; Parousis, Alexandra; Amini-Nik, Saeid; Jeschke, Marc G.

    2015-01-01

    SUMMARY Burn is accompanied by long-lasting immunometabolic alterations referred to as hypermetabolism that are characterized by a considerable increase in resting energy expenditure and substantial whole-body catabolism. In burned patients, the length and magnitude of the hypermetabolic state is the highest of all patients and associated with profoundly increased morbidity and mortality. Unfortunately, the mechanisms involved in hypermetabolism are essentially unknown. We hypothesized that the adipose tissue plays a central role for the induction and persistence of hypermetabolism post-burn injury. Here, we show that burn induces a switch in the phenotype of the subcutaneous fat from white to beige, with associated characteristics such as increased mitochondrial mass and UCP1 expression. Our results further demonstrate the significant role of catecholamines and interleukin-6 in this process. We conclude that subcutaneous fat remodeling and browning represent an underlying mechanism that explains the elevated energy expenditure in burn-induced hypermetabolism. PMID:26586436

  20. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice.

    PubMed

    Zhou, Peng; Robles-Murguia, Maricela; Mathew, Deepa; Duffield, Giles E

    2016-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2-/- mice. Moreover, in Id2-/- BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner. PMID:27144179

  1. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice

    PubMed Central

    Zhou, Peng; Robles-Murguia, Maricela; Mathew, Deepa; Duffield, Giles E.

    2016-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2−/− mice. Moreover, in Id2−/− BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner. PMID:27144179

  2. Human and Mouse Brown Adipose Tissue Mitochondria Have Comparable UCP1 Function.

    PubMed

    Porter, Craig; Herndon, David N; Chondronikola, Maria; Chao, Tony; Annamalai, Palam; Bhattarai, Nisha; Saraf, Manish K; Capek, Karel D; Reidy, Paul T; Daquinag, Alexes C; Kolonin, Mikhail G; Rasmussen, Blake B; Borsheim, Elisabet; Toliver-Kinsky, Tracy; Sidossis, Labros S

    2016-08-01

    Brown adipose tissue (BAT) plays an important role in mammalian thermoregulation. The component of BAT mitochondria that permits this function is the inner membrane carrier protein uncoupling protein 1 (UCP1). To the best of our knowledge, no studies have directly quantified UCP1 function in human BAT. Further, whether human and rodent BAT have comparable thermogenic function remains unknown. We employed high-resolution respirometry to determine the respiratory capacity, coupling control, and, most importantly, UCP1 function of human supraclavicular BAT and rodent interscapular BAT. Human BAT was sensitive to the purine nucleotide GDP, providing the first direct evidence that human BAT mitochondria have thermogenically functional UCP1. Further, our data demonstrate that human and rodent BAT have similar UCP1 function per mitochondrion. These data indicate that human and rodent BAT are qualitatively similar in terms of UCP1 function. PMID:27508873

  3. The lipid profile of brown adipose tissue is sex-specific in mice.

    PubMed

    Hoene, Miriam; Li, Jia; Häring, Hans-Ulrich; Weigert, Cora; Xu, Guowang; Lehmann, Rainer

    2014-10-01

    Brown adipose tissue (BAT) is a thermogenic organ with a vital function in small mammals and potential as metabolic drug target in humans. By using high-resolution LC-tandem-mass spectrometry, we quantified 329 lipid species from 17 (sub)classes and identified the fatty acid composition of all phospholipids from BAT and subcutaneous and gonadal white adipose tissue (WAT) from female and male mice. Phospholipids and free fatty acids were higher in BAT, while DAG and TAG levels were higher in WAT. A set of phospholipids dominated by the residue docosahexaenoic acid, which influences membrane fluidity, showed the highest specificity for BAT. We additionally detected major sex-specific differences between the BAT lipid profiles, while samples from the different WAT depots were comparatively similar. Female BAT contained less triacylglycerol and more phospholipids rich in arachidonic and stearic acid whereas another set of fatty acid residues that included linoleic and palmitic acid prevailed in males. These differences in phospholipid fatty acid composition could greatly affect mitochondrial membranes and other cellular organelles and thereby regulate the function of BAT in a sex-specific manner. PMID:25128765

  4. Progress toward automatic classification of human brown adipose tissue using biomedical imaging

    NASA Astrophysics Data System (ADS)

    Gifford, Aliya; Towse, Theodore F.; Walker, Ronald C.; Avison, Malcom J.; Welch, E. B.

    2015-03-01

    Brown adipose tissue (BAT) is a small but significant tissue, which may play an important role in obesity and the pathogenesis of metabolic syndrome. Interest in studying BAT in adult humans is increasing, but in order to quantify BAT volume in a single measurement or to detect changes in BAT over the time course of a longitudinal experiment, BAT needs to first be reliably differentiated from surrounding tissue. Although the uptake of the radiotracer 18F-Fluorodeoxyglucose (18F-FDG) in adipose tissue on positron emission tomography (PET) scans following cold exposure is accepted as an indication of BAT, it is not a definitive indicator, and to date there exists no standardized method for segmenting BAT. Consequently, there is a strong need for robust automatic classification of BAT based on properties measured with biomedical imaging. In this study we begin the process of developing an automated segmentation method based on properties obtained from fat-water MRI and PET-CT scans acquired on ten healthy adult subjects.

  5. Effects of running training on in vitro brown adipose tissue thermogenesis in rats

    NASA Astrophysics Data System (ADS)

    Nozu, Tsukasa; Kikuchi, Kazue; Ogawa, Koji; Kuroshima, Akihiro

    1992-06-01

    Brown adipose tissue (BAT) is a major site of nonshivering thermogenesis (NST) during cold acclimation for most mammals. Repetitive nonthermal stress such as immobilization has been shown to enhance the capacity of NST as cold acclimation. In the present study, the effects of running training, another type of nonthermal stress, were investigated on in vitro thermogenesis and the cellularity of interscapular BAT in rats. The rats were subjected to treadmill running for 30 min daily at 30 m/min under 8° inclination for 4 5 weeks. In vitro thermogenesis was then measured in minced tissue blocks incubated in a Krebs-Ringer phosphate buffer containing glucose and albumin at 37° C, using a Clark type oxygen electrode. The trained rats showed less body weight gain during the experiment. The weights of BAT and epididymal white adipose tissue were smaller in the trained rats. Noradrenaline- and glucagon-stimulated oxygen consumption were also significantly smaller in the trained rats. The tissue DNA level was greater in the trained rats, but the DNA content per tissue pad did not significantly differ. The results indicate that running training reduces BAT thermogenesis, possibly as an adaptation to conserve energy substrates for physical work.

  6. Genetic Analysis of Brown Adipose Tissue, Obesity and Growth in Mice

    PubMed Central

    Saxton, A. M.; Eisen, E. J.

    1984-01-01

    The hypothesis developed from single-gene mutant obese rodents that brown adipose tissue (BAT), through its thermogenic ability, is an important factor in the development of obesity, was tested in a randombred population of mice in which degree of adiposity is polygenically determined. Additive direct genetic parameters for measures of body size, lean, fatness and BAT at 6 wk of age were estimated under control and high-fat postweaning dietary regimens. Heritabilities were generally similar for the two diets. However, the lipid-free dry (LFD) component of BAT had a heritability estimate of 0.70 ± 0.26 on the control diet, but only 0.09 ± 0.20 on the high-fat diet. For all traits, genotype by diet interactions indicated that additive direct genetic rankings were not significantly different for the two diets. Based on estimates of genetic parameters in the control diet, selection for 6-wk body weight or 3- to 6-wk gain is expected to increase body size and adiposity. Selection for BAT weight is predicted to result in large, lean individuals. However, selection for the LFD content of BAT, generally believed to be a better indicator of thermogenic ability, is predicted to increase fatness as well as body size. Selection for LFD as a proportion of 6-wk body weight reduced the expected correlated response in fatness. It was concluded that BAT does not play a major role in determining the correlated response in obesity that is often found in populations selected for large body size. PMID:6714662

  7. Evaluation of reference genes for gene expression studies in human brown adipose tissue

    PubMed Central

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values <0.5) in the samples analyzed, but the novel reference genes identified by microarray displayed an even lower variability (M-values <0.25). Our data suggests that PSMB2, GNB2 and GNB1 are suitable novel reference genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT. PMID:26451284

  8. Evaluation of reference genes for gene expression studies in human brown adipose tissue.

    PubMed

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values <0.5) in the samples analyzed, but the novel reference genes identified by microarray displayed an even lower variability (M-values <0.25). Our data suggests that PSMB2, GNB2 and GNB1 are suitable novel reference genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT. PMID:26451284

  9. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    PubMed Central

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D.; Bentzinger, C. Florian; Antoun, Ghadi; Thorn, Stephanie; Seale, Patrick; Fernando, Pasan; van IJcken, Wilfred; Grosveld, Frank; Dekemp, Robert A.; Boushel, Robert; Harper, Mary-Ellen; Rudnicki, Michael A.

    2013-01-01

    SUMMARY Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3′UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity. PMID:23395168

  10. Activation of Classical Brown Adipocytes in the Adult Human Perirenal Depot Is Highly Correlated with PRDM16–EHMT1 Complex Expression

    PubMed Central

    Nagano, Gaku; Ohno, Haruya; Oki, Kenji; Kobuke, Kazuhiro; Shiwa, Tsuguka; Yoneda, Masayasu; Kohno, Nobuoki

    2015-01-01

    Brown fat generates heat to protect against cold and obesity. Adrenergic stimulation activates the thermogenic program of brown adipocytes. Although the bioactivity of brown adipose tissue in adult humans had been assumed to very low, several studies using positron emission tomography–computed tomography (PET–CT) have detected bioactive brown adipose tissue in adult humans under cold exposure. In this study, we collected adipose tissues obtained from the perirenal regions of adult patients with pheochromocytoma (PHEO) or non-functioning adrenal tumors (NF). We demonstrated that perirenal brown adipocytes were activated in adult patients with PHEO. These cells had the molecular characteristics of classical brown fat rather than those of beige/brite fat. Expression of brown adipose tissue markers such as uncoupling protein 1 (UCP1) and cell death-inducing DFFA-like effector A (CIDEA) was highly correlated with the amounts of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16) – euchromatic histone-lysine N-methyltransferase 1 (EHMT1) complex, the key transcriptional switch for brown fat development. These results provide novel insights into the reconstruction of human brown adipocytes and their therapeutic application against obesity and its complications such as type 2 diabetes. PMID:25812118

  11. Autophagy in the CNS and Periphery Coordinate Lipophagy and Lipolysis in the Brown Adipose Tissue and Liver.

    PubMed

    Martinez-Lopez, Nuria; Garcia-Macia, Marina; Sahu, Srabani; Athonvarangkul, Diana; Liebling, Emily; Merlo, Paola; Cecconi, Francesco; Schwartz, Gary J; Singh, Rajat

    2016-01-12

    The integrative physiology of inter-organ communication in lipophagy regulation is not well understood. Lipophagy and the cytosolic lipases ATGL and HSL contribute to lipid droplet (LD) mobilization; however, whether autophagy proteins engage with lipases to promote lipid utilization remains unknown. Here, we show that cold induces autophagy in proopiomelanocortin (POMC) neurons and activates lipophagy in brown adipose tissue (BAT) and liver in mice. Targeted activation of autophagy in POMC neurons via intra-hypothalamic rapamycin is sufficient to trigger lipid utilization in room temperature-housed mice. Conversely, inhibiting autophagy in POMC neurons or in peripheral tissues or denervating BAT blocks lipid utilization. Unexpectedly, the autophagosome marker LC3 is mechanistically coupled to ATGL-mediated lipolysis. ATGL exhibits LC3-interacting region (LIR) motifs, and mutating a single LIR motif on ATGL displaces ATGL from LD and disrupts lipolysis. Thus, cold-induced activation of central autophagy activates lipophagy and cytosolic lipases in a complementary manner to mediate lipolysis in peripheral tissues. PMID:26698918

  12. Benzodiazepine binding sites in rat interscapular brown adipose tissue: effect of cold environment, denervation and endocrine ablations

    SciTech Connect

    Solveyra, C.G.; Romeo, H.E.; Rosenstein, R.E.; Estevez, A.G.; Cardinali, D.P.

    1988-01-01

    /sup 3/H-Flunitrazepam (FNZP) binding was examined in a crude membrane fraction obtained from rat interscapular brown adipose tissue (IBAT). A single population of binding sites was apparent with dissociation constant (K/sub D/) = 0.47 +/- 0.04 uM and maximal number of binding sites (B/sub max/ = 31 +/- 5 pmol.mg prot/sup -1/. From the activity of several benzodiazepine (BZP) analogs to compete for the binding, the peripheral nature of FNZP binding was tentatively established. Similar BZP binding sites were detectable in isolated IBAT mitochondria. Exposure of rats to 4 /sup 0/C for 15 days decreased B/sub max/ significantly without affecting K/sub D/. Cold-induced decrease in B/sub max/ of BZP binding was prevented by surgical IBAT denervation. Denervation prevented or impaired the increased activity of the mitochondrial markers succinate dehydrogenase and malate dehydrogenase in IBAT of cold-exposed rats, but did not affect monoamine oxidase activity. Their results indicate that BZP binding in rat IBAT may belong to the peripheral type, is decreased by a cold environment through activation of peripheral sympathetic nerves and is affected by hypophysectomy. BZP and GDP binding in IBAT mitochondria seem not to be functionally related. 23 references, 4 figures, 3 tables.

  13. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota.

    PubMed

    Geurts, Lucie; Everard, Amandine; Van Hul, Matthias; Essaghir, Ahmed; Duparc, Thibaut; Matamoros, Sébastien; Plovier, Hubert; Castel, Julien; Denis, Raphael G P; Bergiers, Marie; Druart, Céline; Alhouayek, Mireille; Delzenne, Nathalie M; Muccioli, Giulio G; Demoulin, Jean-Baptiste; Luquet, Serge; Cani, Patrice D

    2015-01-01

    Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. PMID:25757720

  14. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota

    PubMed Central

    Geurts, Lucie; Everard, Amandine; Van Hul, Matthias; Essaghir, Ahmed; Duparc, Thibaut; Matamoros, Sébastien; Plovier, Hubert; Castel, Julien; Denis, Raphael G. P.; Bergiers, Marie; Druart, Céline; Alhouayek, Mireille; Delzenne, Nathalie M.; Muccioli, Giulio G.; Demoulin, Jean-Baptiste; Luquet, Serge; Cani, Patrice D.

    2015-01-01

    Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. PMID:25757720

  15. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes.

    PubMed

    Sun, Wuping; Uchida, Kunitoshi; Takahashi, Nobuyuki; Iwata, Yuko; Wakabayashi, Shigeo; Goto, Tsuyoshi; Kawada, Teruo; Tominaga, Makoto

    2016-09-01

    Transient receptor potential vanilloid 2 (TRPV2) acts as a Ca(2+)-permeable non-selective cation channel that has been reported to be sensitive to temperature, mechanical force, and some chemicals. We recently showed that TRPV2 is critical for maintenance of the thermogenic function of brown adipose tissue in mice. However, the involvement of TRPV2 in the differentiation of brown adipocytes remains unexplored. We found that the expression of TRPV2 was dramatically increased during the differentiation of brown adipocytes. Non-selective TRPV2 agonists (2-aminoethoxydiphenyl borate and lysophosphatidylcholine) inhibited the differentiation of brown adipocytes in a dose-dependent manner during the early stage of differentiation of brown adipocytes. The inhibition was rescued by a TRPV2-selective antagonist, SKF96365 (SKF). Mechanical force, which activates TRPV2, also inhibited the differentiation of brown adipocytes in a strength-dependent manner, and the effect was reversed by SKF. In addition, the inhibition of adipocyte differentiation by either TRPV2 ligand or mechanical stimulation was significantly smaller in the cells from TRPV2KO mice. Moreover, calcineurin inhibitors, cyclosporine A and FK506, partially reversed TRPV2 activation-induced inhibition of brown adipocyte differentiation. Thus, we conclude that TRPV2 might be involved in the modulation of brown adipocyte differentiation partially via a calcineurin pathway. PMID:27318696

  16. Thioesterase superfamily member 1 suppresses cold thermogenesis by limiting the oxidation of lipid droplet-derived fatty acids in brown adipose tissue

    PubMed Central

    Okada, Kosuke; LeClair, Katherine B.; Zhang, Yongzhao; Li, Yingxia; Ozdemir, Cafer; Krisko, Tibor I.; Hagen, Susan J.; Betensky, Rebecca A.; Banks, Alexander S.; Cohen, David E.

    2016-01-01

    Objective Non-shivering thermogenesis in brown adipose tissue (BAT) plays a central role in energy homeostasis. Thioesterase superfamily member 1 (Them1), a BAT-enriched long chain fatty acyl-CoA thioesterase, is upregulated by cold and downregulated by warm ambient temperatures. Them1−/− mice exhibit increased energy expenditure and resistance to diet-induced obesity and diabetes, but the mechanistic contribution of Them1 to the regulation of cold thermogenesis remains unknown. Methods Them1−/− and Them1+/+ mice were subjected to continuous metabolic monitoring to quantify the effects of ambient temperatures ranging from thermoneutrality (30 °C) to cold (4 °C) on energy expenditure, core body temperature, physical activity and food intake. The effects of Them1 expression on O2 consumption rates, thermogenic gene expression and lipolytic protein activation were determined ex vivo in BAT and in primary brown adipocytes. Results Them1 suppressed thermogenesis in mice even in the setting of ongoing cold exposure. Without affecting thermogenic gene transcription, Them1 reduced O2 consumption rates in both isolated BAT and primary brown adipocytes. This was attributable to decreased mitochondrial oxidation of endogenous but not exogenous fatty acids. Conclusions These results show that Them1 may act as a break on uncontrolled heat production and limit the extent of energy expenditure. Pharmacologic inhibition of Them1 could provide a targeted strategy for the management of metabolic disorders via activation of brown fat. PMID:27110486

  17. MRI Detection of Brown Adipose Tissue with Low Fat Content in Newborns with Hypothermia

    PubMed Central

    Hu, Houchun H.; Wu, Tai-Wei; Yin, Larry; Kim, Mimi S.; Chia, Jonathan M.; Perkins, Thomas G.; Gilsanz, Vicente

    2013-01-01

    Purpose To report the observation of brown adipose tissue (BAT) with low fat content in neonates with hypoxic-ischemic encephalopathy (HIE) after they have undergone hypothermia therapy. Materials and Methods The local ethics committee approved the imaging study. Ten HIE neonates (3 males, 7 females, age range: 2-3 days) were studied on a 3T MRI system using a low-flip-angle (3 degrees) six-echo proton-density-weighted chemical-shift-encoded water-fat pulse sequence. Fat-signal fraction (FF) measurements of supraclavicular and interscapular (nape) BAT and adjacent subcutaneous white adipose tissues (WAT) were compared to those from five non-HIE neonates, two recruited for the present investigation and three from a previous study. Results In HIE neonates, the FF range for the supraclavicular, interscapular, and subcutaneous regions were 10.3-29.9%, 28.0-57.9%, and 62.6-88.0%, respectively. In non-HIE neonates, the values were 23.7-42.2% (p=0.01), 45.4-59.5% (p=0.06), and 67.8-86.3% (p=0.38), respectively. On an individual basis, supraclavicular BAT FF was consistently the lowest, interscapular BAT values were higher, and subcutaneous WAT values were the highest (p<0.01). Conclusion We speculate that hypothermia therapy in HIE neonates likely promotes BAT-mediated non-shivering thermogenesis, which subsequently leads to a depletion of the tissue's intracellular fat stores. We believe this is consequently reflected in lower FF values, particularly in the supraclavicular BAT depot, in contrast to non-HIE neonates. PMID:24239336

  18. Food restriction attenuates oxidative stress in brown adipose tissue of striped hamsters acclimated to a warm temperature.

    PubMed

    Zhang, Ji-Ying; Zhao, Xiao-Ya; Wang, Gui-Ying; Wang, Chun-Ming; Zhao, Zhi-Jun

    2016-05-01

    It has been suggested that the up-regulation of uncoupling proteins (UCPs) decreases reactive oxygen species (ROS) production, in which case there should be a negative relationship between UCPs expression and ROS levels. In this study, the effects of temperature and food restriction on ROS levels and metabolic rate, UCP1 mRNA expression and antioxidant levels were examined in the brown adipose tissue (BAT) of the striped hamsters (Cricetulus barabensis). The metabolic rate and food intake of hamsters which had been restricted to 80% of ad libitum food intake, and acclimated to a warm temperature (30°C), decreased significantly compared to a control group. Hydrogen peroxide (H2O2) levels were 42.9% lower in food restricted hamsters than in the control. Malonadialdehyde (MDA) levels of hamsters acclimated to 30°C that were fed ad libitum were significantly higher than those of the control group, but 60.1% lower than hamsters that had been acclimated to the same temperature but subject to food restriction. There were significantly positive correlations between H2O2 and, MDA levels, catalase activity, and total antioxidant capacity. Cytochrome c oxidase activity and UCP1 mRNA expression significantly decreased in food restricted hamsters compared to the control. These results suggest that warmer temperatures increase oxidative stress in BAT by causing the down-regulation of UCP1 expression and decreased antioxidant activity, but food restriction may attenuate the effects. PMID:27157336

  19. Adipose Tissue and Energy Expenditure: Central and Peripheral Neural Activation Pathways.

    PubMed

    Blaszkiewicz, Magdalena; Townsend, Kristy L

    2016-06-01

    Increasing energy expenditure is an appealing therapeutic target for the prevention and reversal of metabolic conditions such as obesity or type 2 diabetes. However, not enough research has investigated how to exploit pre-existing neural pathways, both in the central nervous system (CNS) and peripheral nervous system (PNS), in order to meet these needs. Here, we review several research areas in this field, including centrally acting pathways known to drive the activation of sympathetic nerves that can increase lipolysis and browning in white adipose tissue (WAT) or increase thermogenesis in brown adipose tissue (BAT), as well as other central and peripheral pathways able to increase energy expenditure of these tissues. In addition, we describe new work investigating the family of transient receptor potential (TRP) channels on metabolically important sensory nerves, as well as the role of the vagus nerve in regulating energy balance. PMID:27055864

  20. beta3-Adrenergic-dependent and -independent mechanisms participate in cold-induced modulation of insulin signal transduction in brown adipose tissue of rats.

    PubMed

    Gasparetti, Alessandra L; Alvarez-Rojas, Fernanda; de Araujo, Eliana P; Hirata, Aparecida E; Saad, Mário J A; Velloso, Lício A

    2005-03-01

    During cold exposure, homeothermic animals mobilize glucose with higher efficiency than at thermoneutrality. An interaction between the insulin signal transduction machinery and high sympathetic tonus is thought to play an important role in this phenomenon. In the present study, rats were exposed to cold during 8 days and treated, or not, with a beta3-adrenergic agonist, BRL37344 sodium 4-2-2-(3-chlorophenyl)-2-hydroxyethyl amino propyl phenoxy-acetic acid sodium (BRL37344), or antagonist, SR59230A 3-(2-ethylphenoxy)-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol oxalate (SR59230A), to evaluate the cross-talk between insulin and beta3-adrenergic intracellular signaling in brown adipose tissue. The drugs did not modify food ingestion, body temperature, and body weight in control and cold-exposed rats. Treatment of control rats with BRL37344 led to higher insulin-induced tyrosine phosphorylation of the insulin receptors, insulin receptor substrate (IRS)-1 and ERK, higher insulin-induced IRS-1/PI3-kinase association, and higher [Ser(473)] phosphorylation of Akt. Cold exposure alone promoted higher insulin-induced tyrosine phosphorylation of the insulin receptors, IRS-1, IRS-2, and ERK, and higher insulin-induced IRS-1 and IRS-2/PI3-kinase association. Except for the regulation of ERK, SR59230A abolished all the cold-induced effects upon the insulin signal transduction pathway. However, this antagonist only partially inhibited the cold-induced increase of glucose uptake. Thus, the sympathetic tonus generated during cold-exposure acts, in brown adipose tissue, through the beta3-adrenergic receptor and modulates insulin signal transduction, with the exception of ERK. However, insulin-independent mechanisms other than beta3-adrenergic activation participate in cold-induced glucose uptake in brown adipose tissue of rats. PMID:15750837

  1. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  2. Bioengineering Beige Adipose Tissue Therapeutics

    PubMed Central

    Tharp, Kevin M.; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  3. A New Role for Lipocalin Prostaglandin D Synthase in the Regulation of Brown Adipose Tissue Substrate Utilization

    PubMed Central

    Virtue, Sam; Feldmann, Helena; Christian, Mark; Tan, Chong Yew; Masoodi, Mojgan; Dale, Martin; Lelliott, Chris; Burling, Keith; Campbell, Mark; Eguchi, Naomi; Voshol, Peter; Sethi, Jaswinder K.; Parker, Malcolm; Urade, Yoshihiro; Griffin, Julian L.; Cannon, Barbara; Vidal-Puig, Antonio

    2012-01-01

    In this study, we define a new role for lipocalin prostaglandin D synthase (L-PGDS) in the control of metabolic fuel utilization by brown adipose tissue (BAT). We demonstrate that L-PGDS expression in BAT is positively correlated with BAT activity, upregulated by peroxisome proliferator–activated receptor γ coactivator 1α or 1β and repressed by receptor-interacting protein 140. Under cold-acclimated conditions, mice lacking L-PGDS had elevated reliance on carbohydrate to provide fuel for thermogenesis and had increased expression of genes regulating glycolysis and de novo lipogenesis in BAT. These transcriptional differences were associated with increased lipid content in BAT and a BAT lipid composition enriched with de novo synthesized lipids. Consistent with the concept that lack of L-PGDS increases glucose utilization, mice lacking L-PGDS had improved glucose tolerance after high-fat feeding. The improved glucose tolerance appeared to be independent of changes in insulin sensitivity, as insulin levels during the glucose tolerance test and insulin, leptin, and adiponectin levels were unchanged. Moreover, L-PGDS knockout mice exhibited increased expression of genes involved in thermogenesis and increased norepinephrine-stimulated glucose uptake to BAT, suggesting that sympathetically mediated changes in glucose uptake may have improved glucose tolerance. Taken together, these results suggest that L-PGDS plays an important role in the regulation of glucose utilization in vivo. PMID:22923471

  4. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function.

    PubMed

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D; Smith, Brennan K; Green, Alex E; Ducommun, Serge; Henriksen, Tora I; Rebalka, Irena A; Razi, Aida; Sakamoto, Kei; Scheele, Camilla; Kemp, Bruce E; Hawke, Thomas J; Ortega, Joaquin; Granneman, James G; Steinberg, Gregory R

    2016-07-12

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role in regulating BAT and WAT metabolism is unclear. We generated an inducible model for deletion of the two AMPK β subunits in adipocytes (iβ1β2AKO) and found that iβ1β2AKO mice were cold intolerant and resistant to β-adrenergic activation of BAT and beiging of WAT. BAT from iβ1β2AKO mice had impairments in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents and thermal stress, and protecting against nutrient-overload-induced NAFLD and insulin resistance. PMID:27411013

  5. Weight loss and brown adipose tissue reduction in rat model of sleep apnea

    PubMed Central

    Martinez, Denis; Vasconcellos, Luiz FT; de Oliveira, Patricia G; Konrad, Signorá P

    2008-01-01

    Background - Obesity is related to obstructive sleep apnea-hypopnea syndrome (OSAHS), but its roles in OSAHS as cause or consequence are not fully clarified. Isocapnic intermittent hypoxia (IIH) is a model of OSAHS. We verified the effect of IIH on body weight and brown adipose tissue (BAT) of Wistar rats. Methods Nine-month-old male breeders Wistar rats of two groups were studied: 8 rats submitted to IIH and 5 control rats submitted to sham IIH. The rats were weighed at the baseline and at the end of three weeks, after being placed in the IIH apparatus seven days per week, eight hours a day, in the lights on period, simulating an apnea index of 30/hour. After experimental period, the animals were weighed and measured as well as the BAT, abdominal, perirenal, and epididymal fat, the heart, and the gastrocnemius muscle. Results Body weight of the hypoxia group decreased 17 ± 7 grams, significantly different from the variation observed in the control group (p = 0,001). The BAT was 15% lighter in the hypoxia group and reached marginally the alpha error probability (p = 0.054). Conclusion Our preliminary results justify a larger study for a longer time in order to confirm the effect of isocapnic intermittent hypoxia on body weight and BAT. PMID:18671859

  6. Effects of repeated cycles of fasting-refeeding on brown adipose tissue composition in mice.

    PubMed

    Desautels, M; Dulos, R A

    1988-08-01

    Mice fasted for 24 h showed reductions in carcass fat and gonadal fat depots and atrophy of brown adipose tissue (BAT) that was characterized by loss of protein and succinate dehydrogenase. These changes were reversed on 24 h of refeeding. Cycling mice experienced 14 cycles of 1 day of fast followed by 2 days of refeeding, whereas control mice were fed ad libitum. Weight loss during each fast remained constant, and the animals lost and regained in excess of twice their initial weights within 6 wk. However, final weight and carcass and gonadal fat weights were similar to those of animals fed ad libitum. Total food intake was similar between cycling mice and those fed ad libitum suggesting an increase in feeding efficiency. There was no development of resistance to food deprivation since the preceding fasting experience of the animal had no effect on weight and carcass fat loss during a 24- or 48-h fast. Norepinephrine-stimulated oxygen consumption that was reduced in cycling mice was probably the result of a reduction of BAT thermogenic capacity. BAT succinate dehydrogenase content and the concentration of uncoupling protein in isolated mitochondria were significantly reduced. These changes in BAT composition were not observed when the refeeding period of each cycle was increased to 6 days. These results suggest that reduced energy expenditure in BAT may play a role in the conservation of energy during intermittent and frequent bouts of food deprivation. PMID:3407768

  7. Ethanol-induced hypothermia and thermogenesis of brown adipose tissue in the rat.

    PubMed

    Huttunen, P; Sämpi, M; Myllylä, R

    1998-05-01

    The effects of two ethanol doses (2 and 3 g/kg) on colonic temperature and levels of norepinephrine (NE) and uncoupling protein (UCP) mRNA in the interscapular brown adipose tissue (IBAT) were examined in rats exposed to 20 degrees C or 4 degrees C for 2 h. The controls received 0.9% NaCl solution. Ethanol produced a significant hypothermic effect versus saline at both temperature conditions. The dose at 3 g/kg reduced colonic temperature more in the cold than at room temperature (p < 0.01), whereas the ambient temperature did not affect the decrease in rats that received ethanol 2 g/kg. At room temperature ethanol did not significantly change the levels of NE or UCP mRNA, whereas after cold exposure (4 degrees C) NE levels in the ethanol-treated rats were significantly lower than in the controls (p < 0.001). Ethanol did not prevent a cold-induced increase in the UCP mRNA levels, although it reduced an increase. The magnitude of the reduction in increase was dependent on the dose, being significant at the dose of 3 g/kg (p < 0.05). The results show that the ethanol-induced drop in body temperature is not necessarily related to IBAT thermogenesis, as indicated by the levels of NE and UCP mRNA. PMID:9590517

  8. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    PubMed Central

    Anderson, Courtney M.; Kazantzis, Melissa; Wang, Jinshan; Venkatraman, Subramaniam; Goncalves, Renata L. S.; Quinlan, Casey L.; Ng, Ryan; Jastroch, Martin; Benjamin, Daniel I.; Nie, Biao; Herber, Candice; Ngoc Van, An-Angela; Park, Michael J.; Yun, Dawee; Chan, Karen; Yu, Angela; Vuong, Peter; Febbraio, Maria; Nomura, Daniel; Napoli, Joseph; Brand, Martin D.; Stahl, Andreas

    2014-01-01

    Summary Brown adipose tissue (BAT) possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ). While cells mostly synthesize CoQ endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function is not well understood. Here we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective non-shivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis. PMID:25620701

  9. Norepinephrine turnover in brown adipose tissue is stimulated by a single meal

    SciTech Connect

    Glick, Z.; Raum, W.J.

    1986-07-01

    A single meal stimulates brown adipose tissue (BAT) thermogenesis in rats. In the present study the role of norepinephrine in this thermogenic response was assessed from the rate of its turnover in BAT after a single test meal. For comparison, norepinephrine turnover was determined in the heart and spleen. A total of 48 male Wistar rats (200 g) were trained to eat during two feeding sessions per day. On the experimental day, one group (n = 24) was meal deprived and the other (n = 24) was given a low-protein high-carbohydrate test meal for 2 h. The synthesis inhibition method with ..cap alpha..-methyl-p-tyrosine was employed to determine norepinephrine turnover from its concentration at four hourly time points after the meal. Tissue concentrations of norepinephrine were determined by radioimmunoassay. Norepinephrine concentration and turnover rate were increased more than threefold in BAT of the meal-fed compared with the meal-deprived rats. Neither were significantly altered by the meal in the heart or spleen. The data suggest that norepinephrine mediates a portion of the thermic effect of meals that originate in BAT.

  10. Interaction between heat acclimation and exogenous insulin in brown adipose tissue of rats

    NASA Astrophysics Data System (ADS)

    Ohno, H.; Yamashita, H.; Sato, N.; Habara, Y.; Gasa, S.; Nagasawa, J.; Sato, Y.; Ishikawa, M.; Segawa, M.; Yamamoto, M.

    1992-09-01

    Seventy-one male Wistar strain rats (7 weeks old) were kept at 5, 25, or 34° C, respectively, for 2 weeks with or without insulin administration. Insulin (Novo Lente MC) was given subcutaneously in a dose of 3.62 nmol/125 µl saline per 100 g body weight. An apparent effect of insulin treatment was noted only in heat-exposed rats, resulting in a remarkable gain in inter-scapular brown adipose tissue (BAT) mass of heat-acclimated, insulin-treated rats in terms of weight or weight per unit body weight. The BAT from heat-acclimated, insulin-treated rats had significantly higher levels of protein, DNA, RNA, and triglyceride than BAT from heat-acclimated, saline-treated rats. Therefore, it seems likely that the growth of BAT in heat-acclimated, insulin-treated rats was mostly due to the anabolic effects of insulin. The uncoupling protein mRNA was, however, present in BAT of heat-acclimated, insulin-treated rats at rather a depressed level, explaining a corresponding decrease in cold tolerance. On the other hand, the expression of insulin receptor mRNA was attenuated in BAT of rats from all the insulin-treated groups, possibly due to the down-regulation of insulin. Thus, there appeared to be some linkage among BAT, heat acclimation, and insulin.

  11. Dependence of brown adipose tissue function on CD36-mediated coenzyme Q uptake.

    PubMed

    Anderson, Courtney M; Kazantzis, Melissa; Wang, Jinshan; Venkatraman, Subramaniam; Goncalves, Renata L S; Quinlan, Casey L; Ng, Ryan; Jastroch, Martin; Benjamin, Daniel I; Nie, Biao; Herber, Candice; Van, An-Angela Ngoc; Park, Michael J; Yun, Dawee; Chan, Karen; Yu, Angela; Vuong, Peter; Febbraio, Maria; Nomura, Daniel K; Napoli, Joseph L; Brand, Martin D; Stahl, Andreas

    2015-02-01

    Brown adipose tissue (BAT) possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ). While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis. PMID:25620701

  12. A percutaneous needle biopsy technique for sampling the supraclavicular brown adipose tissue depot of humans

    PubMed Central

    Annamalai, Palam; Chondronikola, Maria; Chao, Tony; Porter, Craig; Saraf, Manish K.; Cesani, Fernardo; Sidossis, Labros S.

    2015-01-01

    Brown adipose tissue (BAT) has been proposed as a potential target tissue against obesity and its related metabolic complications. Although the molecular and functional characteristics of BAT have been intensively studied in rodents, only a small number of studies have used human BAT specimens due to the difficulty of sampling human BAT deposits. We established a novel positron emission tomography and computed tomography-guided Bergström needle biopsy technique to acquire human BAT specimens from the supraclavicular area in human subjects. Forty-three biopsies were performed on 23 participants. The procedure was tolerated well by the majority of participants. No major complications were noted. Numbness (9.6%) and hematoma (2.3%) were the two minor complications noted, which fully resolved. Thus, the proposed biopsy technique can be considered safe with only minimal risk of adverse events. Adoption of the proposed method is expected to increase the sampling of the supraclavicular BAT depot for research purposes so as to augment the scientific knowledge of the biology of human BAT. PMID:25920777

  13. Duodenal Lipid Sensing Activates Vagal Afferents to Regulate Non-Shivering Brown Fat Thermogenesis in Rats

    PubMed Central

    Blouet, Clémence; Schwartz, Gary J.

    2012-01-01

    Previous evidence indicates that duodenal lipid sensing engages gut-brain neurocircuits to determine food intake and hepatic glucose production, but a potential role for gut-brain communication in the control of energy expenditure remains to be determined. Here, we tested the hypothesis that duodenal lipid sensing activates a gut–brain–brown adipose tissue neuraxis to regulate thermogenesis. We demonstrate that direct administration of lipids into the duodenum increases brown fat temperature. Co-infusion of the local anesthetic tetracaine with duodenal lipids abolished the lipid-induced increase in brown fat temperature. Systemic administration of the CCKA receptor antagonist devazepide blocked the ability of duodenal lipids to increase brown fat thermogenesis. Parenchymal administration of the N-methyl-d-aspartate receptor blocker MK-801 directly into the caudomedial nucleus of the solitary tract also abolished duodenal lipid-induced activation of brown fat thermogenesis. These findings establish that duodenal lipid sensing activates a gut–brain–brown fat axis to determine brown fat temperature, and thereby reveal a previously unappreciated pathway that regulates thermogenesis. PMID:23251649

  14. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice

    PubMed Central

    Zhi, Xu; Rohde, Kyle; List, Edward O.; Berryman, Darlene E.; Kopchick, John J.; Gesing, Adam; Fang, Yimin; Masternak, Michal M.

    2015-01-01

    Mice lacking the growth hormone receptor (GHRKO) exhibit improved lifespan and healthspan due to loss of growth hormone signaling. Both the distribution and activity of brown and white adipose tissue (BAT and WAT) are altered in GHRKO mice, but the contribution of each tissue to age-related phenotypes has remained unclear. We therefore used whole-genome microarrays to evaluate transcriptional differences in BAT and WAT depots between GHRKO and normal littermates at six months of age. Our findings reveal a unique BAT transcriptome as well as distinctive responses of BAT to Ghr ablation. BAT from GHRKO mice exhibited elevated expression of genes associated with mitochondria and metabolism, along with reduced expression of genes expressed by monocyte-derived cells (dendritic cells [DC] and macrophages). Largely the opposite was observed in WAT, with increased expression of DC-expressed genes and reduced expression of genes associated with metabolism, cellular respiration and the mitochondrial inner envelope. These findings demonstrate divergent response patterns of BAT and WAT to loss of GH signaling in GHRKO mice. These patterns suggest both BAT and WAT contribute in different ways to phenotypes in GHRKO mice, with Ghr ablation blunting inflammation in BAT as well as cellular metabolism and mitochondrial biogenesis in WAT. PMID:26436954

  15. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice.

    PubMed

    Stout, Michael B; Swindell, William R; Zhi, Xu; Rohde, Kyle; List, Edward O; Berryman, Darlene E; Kopchick, John J; Gesing, Adam; Fang, Yimin; Masternak, Michal M

    2015-09-29

    Mice lacking the growth hormone receptor (GHRKO) exhibit improved lifespan and healthspan due to loss of growth hormone signaling. Both the distribution and activity of brown and white adipose tissue (BAT and WAT) are altered in GHRKO mice, but the contribution of each tissue to age-related phenotypes has remained unclear. We therefore used whole-genome microarrays to evaluate transcriptional differences in BAT and WAT depots between GHRKO and normal littermates at six months of age. Our findings reveal a unique BAT transcriptome as well as distinctive responses of BAT to Ghr ablation. BAT from GHRKO mice exhibited elevated expression of genes associated with mitochondria and metabolism, along with reduced expression of genes expressed by monocyte-derived cells (dendritic cells [DC] and macrophages). Largely the opposite was observed in WAT, with increased expression of DC-expressed genes and reduced expression of genes associated with metabolism, cellular respiration and the mitochondrial inner envelope. These findings demonstrate divergent response patterns of BAT and WAT to loss of GH signaling in GHRKO mice. These patterns suggest both BAT and WAT contribute in different ways to phenotypes in GHRKO mice, with Ghr ablation blunting inflammation in BAT as well as cellular metabolism and mitochondrial biogenesis in WAT. PMID:26436954

  16. Effects of Inhaled Citronella Oil and Related Compounds on Rat Body Weight and Brown Adipose Tissue Sympathetic Nerve

    PubMed Central

    Batubara, Irmanida; Suparto, Irma H.; Sa’diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-01-01

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: “Sereh Wangi” on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations. PMID:25774603

  17. Effects of inhaled citronella oil and related compounds on rat body weight and brown adipose tissue sympathetic nerve.

    PubMed

    Batubara, Irmanida; Suparto, Irma H; Sa'diah, Siti; Matsuoka, Ryunosuke; Mitsunaga, Tohru

    2015-03-01

    Citronella oil is one of the most famous Indonesian essential oils, having a distinctive aroma. As with other essential oils, it is crucial to explore the effects of inhalation of this oil. Therefore, the aim of this research was to elucidate the effects of inhalation of citronella oil and its components isolated from Cymbopogon nardus L. (Poaceae), Indonesian local name: "Sereh Wangi" on the body weight, blood lipid profile, and liver function of rats, as well as on the sympathetic nerve activity and temperature of brown adipose tissue. Sprague-Dawley male adult rats fed with high fat diet (HFD) were made to inhale citronella oil, R-(+)-citronellal, and β-citronellol for five weeks, and the observations were compared to those of HFD rats that were not subjected to inhalation treatment. The results showed that inhalation of β-citronellol decreased feed consumption. As a consequence, the percentage of weight gain decreased compared with that in control group and the blood cholesterol level in the β-citronellol group was significantly lowered. Concentration of liver function enzymes were not significantly different among the groups. In conclusion, inhalation of citronella oil, specifically β-citronellol, decreased body weight by decreasing appetite, without any marked changes in liver enzyme concentrations. PMID:25774603

  18. Lipocalin 2, a Regulator of Retinoid Homeostasis and Retinoid-mediated Thermogenic Activation in Adipose Tissue.

    PubMed

    Guo, Hong; Foncea, Rocio; O'Byrne, Sheila M; Jiang, Hongfeng; Zhang, Yuanyuan; Deis, Jessica A; Blaner, William S; Bernlohr, David A; Chen, Xiaoli

    2016-05-20

    We have recently characterized the role of lipocalin 2 (Lcn2) as a new adipose-derived cytokine in the regulation of adaptive thermogenesis via a non-adrenergic pathway. Herein, we explored a potential non-adrenergic mechanism by which Lcn2 regulates thermogenesis and lipid metabolism. We found that Lcn2 is a retinoic acid target gene, and retinoic acid concurrently stimulated UCP1 and Lcn2 expression in adipocytes. Lcn2 KO mice exhibited a blunted effect of all-trans-retinoic acid (ATRA) on body weight and fat mass, lipid metabolism, and retinoic acid signaling pathway activation in adipose tissue under the high fat diet-induced obese condition. We further demonstrated that Lcn2 is required for the full action of ATRA on the induction of UCP1 and PGC-1α expression in brown adipocytes and the restoration of cold intolerance in Lcn2 KO mice. Interestingly, we discovered that Lcn2 KO mice have decreased levels of retinoic acid and retinol in adipose tissue. The protein levels of STRA6 responsible for retinol uptake were significantly decreased in adipose tissue. The retinol transporter RBP4 was increased in adipose tissue but decreased in the circulation, suggesting the impairment of RBP4 secretion in Lcn2 KO adipose tissue. Moreover, Lcn2 deficiency abolished the ATRA effect on RBP4 expression in adipocytes. All the data suggest that the decreased retinoid level and action are associated with impaired retinol transport and storage in adipose tissue in Lcn2 KO mice. We conclude that Lcn2 plays a critical role in regulating metabolic homeostasis of retinoids and retinoid-mediated thermogenesis in adipose tissue. PMID:27008859

  19. Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice

    PubMed Central

    Ravussin, Yann; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure) or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week) on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements. PMID:24465761

  20. Presence of Brown Adipose Tissue in an Adolescent With Severe Primary Hypothyroidism

    PubMed Central

    Hu, Houchun H.; Aggabao, Patricia C.; Geffner, Mitchell E.; Gilsanz, Vicente

    2014-01-01

    Context: Brown adipose tissue (BAT) generates heat during adaptive thermogenesis in response to cold temperature. Thyroid hormone (TH) receptors, type 2 deiodinase, and TSH receptors are present on brown adipocytes, indicating that the thyroid axis regulates BAT. It is unknown whether absent TH in humans would down-regulate development of BAT and its thermogenic function. Objective: The objective of the study was to examine BAT by magnetic resonance imaging (MRI) and infrared thermal imaging (IRT) in a pediatric patient with severe primary hypothyroidism before and after TH treatment. Design/Setting: This study was a case report with longitudinal follow-up in a tertiary center. Main Outcome Measures: BAT fat fraction (FF) by MRI and skin temperature by IRT were measured. Results: An 11.5-year-old female was severely hypothyroid (TSH, 989 μIU/mL; free T4, 0.10 ng/dL; low thyroglobulin, 3.0 ng/mL). Low MRI measures of FF (56.1% ± 3.7%) indicated that BAT was abundantly present in the supraclavicular fossa. IRT showed higher supraclavicular temperature (36.0°C ±0.16°C) than the suprasternal area (34.3°C ± 0.19°C). After 2 months of TH replacement, she was euthyroid (TSH, 4.3 μIU/mL; free T4, 1.49 ng/dL; T3, 102 ng/dL) at which time supraclavicular BAT decreased (increased FF 60.7% ± 3.8%). IRT showed a higher, more homogeneous skin temperature throughout the upper thorax (supraclavicular, 37.1°C ± 0.23°C; suprasternal, 36.4°C ± 0.13°C). The overall size of the supraclavicular fat depot decreased from 84.79 cm3 to 41.21 cm3. Conclusions: These findings document the presence of BAT and thermogenesis in profound hypothyroidism and suggest a role for TSH and/or TRH as a potential regulator of BAT. PMID:24915119

  1. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): Recommendations for Standardized FDG-PET/CT Experiments in Humans.

    PubMed

    Chen, Kong Y; Cypess, Aaron M; Laughlin, Maren R; Haft, Carol R; Hu, Houchun Harry; Bredella, Miriam A; Enerbäck, Sven; Kinahan, Paul E; Lichtenbelt, Wouter van Marken; Lin, Frank I; Sunderland, John J; Virtanen, Kirsi A; Wahl, Richard L

    2016-08-01

    Human brown adipose tissue (BAT) presence, metabolic activity, and estimated mass are typically measured by imaging [18F]fluorodeoxyglucose (FDG) uptake in response to cold exposure in regions of the body expected to contain BAT, using positron emission tomography combined with X-ray computed tomography (FDG-PET/CT). Efforts to describe the epidemiology and biology of human BAT are hampered by diverse experimental practices, making it difficult to directly compare results among laboratories. An expert panel was assembled by the National Institute of Diabetes and Digestive and Kidney Diseases on November 4, 2014 to discuss minimal requirements for conducting FDG-PET/CT experiments of human BAT, data analysis, and publication of results. This resulted in Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0). Since there are no fully validated best practices at this time, panel recommendations are meant to enhance comparability across experiments, but not to constrain experimental design or the questions that can be asked. PMID:27508870

  2. Responses of the Insulin Signaling Pathways in the Brown Adipose Tissue of Rats following Cold Exposure

    PubMed Central

    Wang, Xiaofei; Wahl, Richard

    2014-01-01

    The insulin signaling pathway is critical for the control of blood glucose levels. Brown adipose tissue (BAT) has also been implicated as important in glucose homeostasis. The effect of short-term cold exposure on this pathway in BAT has not been explored. We evaluated the effect of 4 hours of cold exposure on the insulin pathway in the BAT of rats. Whole genomic microarray chips were used to examine the transcripts of the pathway in BAT of rats exposed to 4°C and 22°C for 4 hours. The 4 most significantly altered pathways following 4 hours of cold exposure were the insulin signaling pathway, protein kinase A, PI3K/AKT and ERK/MAPK signaling. The insulin signaling pathway was the most affected. In the documented 142 genes of the insulin pathway, 42 transcripts (29.6%) responded significantly to this cold exposure with the least false discovery rate (Benjamini-Hochberg Multiple Testing: −log10 (p-value)  = 7.18). Twenty-seven genes (64%) were up-regulated, including the insulin receptor (Insr), insulin substrates 1 and 2 (Irs1 and Irs2). Fifteen transcripts (36%) were down-regulated. Multiple transcripts of the primary target and secondary effector targets for the insulin signaling were also up-regulated, including those for carbohydrate metabolism. Using western blotting, we demonstrated that the cold induced higher Irs2, Irs1, and Akt-p protein levels in the BAT than in the BAT of controls maintained at room temperature, and higher Akt-p protein level in the muscle. Conclusion: this study demonstrated that 4 hours of cold exposure stimulated the insulin signaling pathway in the BAT and muscle of overnight fasted rats. This raises the possibility that acute cold stimulation may have potential to improve glucose clearance and insulin sensitivity. PMID:24915042

  3. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue.

    PubMed

    Hilse, Karolina E; Kalinovich, Anastasia V; Rupprecht, Anne; Smorodchenko, Alina; Zeitz, Ute; Staniek, Katrin; Erben, Reinhold G; Pohl, Elena E

    2016-01-01

    UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression in brown adipose tissue (BAT) alongside UCP1 requires justification. In this work, we tested whether any correlation exists between the expression of UCP1 and UCP3 in BAT by quantification of protein amounts in mouse tissues at physiological conditions, in cold-acclimated and UCP1 knockout mice. Quantification using recombinant UCP3 revealed that the UCP3 amount in BAT (0.51ng/(μg total tissue protein)) was nearly one order of magnitude higher than that in muscles and heart. Cold-acclimated mice showed an approximate three-fold increase in UCP3 abundance in BAT in comparison to mice in thermoneutral conditions. Surprisingly, we found a significant decrease of UCP3 in BAT of UCP1 knockout mice, whereas the protein amount in skeletal and heart muscles remained constant. UCP3 abundance decreased even more in cold-acclimated UCP1 knockout mice. Protein quantification in UCP3 knockout mice revealed no compensatory increase in UCP1 or UCP2 expression. Our results do not support the participation of UCP3 in thermogenesis in the absence of UCP1 in BAT, but clearly demonstrate the correlation in abundance between both proteins. The latter is important for understanding UCP3's function in BAT. PMID:26518386

  4. Is Brown Adipose Tissue Visualization Reliable on 99mTc-Methoxyisobutylisonitrile Diagnostic SPECT Scintigraphy?

    PubMed Central

    Haghighatafshar, Mahdi; Farhoudi, Farinaz

    2016-01-01

    Abstract The 99mTc-MIBI has been used with great value as a diagnostic technique in patients with primary hyperparathyroidism. False-positive scans may occur due to misinterpretation of the physiologic distribution of the 99mTc-MIBI. Reviewing consecutive SPECT scans, we evaluated this possibility and assessed how frequently brown adipose tissue (BAT) is seen on 99mTc-MIBI scintigraphy. Here, we retrospectively reviewed scans of consecutive patients who were evaluated for parathyroid adenomas from March 2015 to June 2015, using dual-phase (early and delayed) planar imaging and SPECT. We identified 60 patients (48 female and 12 male; mean age, 52.25 ± 15.20 years; range, 22–86 years). We detected the presence of 99mTc-MIBI uptake in BAT in 20 of 60 patients (33.33%) in the neck. Although the patients with 99mTc-MIBI uptake in BAT were younger (mean age, 48.85 ± 15.27 years, range, 26–73 years) than the patients with no 99mTc-MIBI uptake (mean age, 53.95 ± 15.07 years, range, 22–86 years), this difference was not statistically significant (P = 0.224). The percentage of female patients with BAT detection was higher (17/48 patients; 37.5%) than that of the male population (3/12 patients; 25%), this difference was not also statistically significant (P = 0.85). In patient population referred to 99mTc MIBI scintigraphy of the parathyroid glands, uptake of 99mTc-MIBI in BAT should not be misinterpreted with 99mTc-MIBI-avid-tumors. Fused SPECT/CT images (not SPECT-only) are necessary to distinguish BAT from bone, muscle, thyroid, myocardium, parathyroids, and other structures in the neck and chest. PMID:26765463

  5. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function.

    PubMed

    Ballinger, Mallory A; Hess, Clair; Napolitano, Max W; Bjork, James A; Andrews, Matthew T

    2016-08-01

    Brown adipose tissue (BAT) is a thermogenic organ that is vital for hibernation in mammals. Throughout the hibernation season, BAT mitochondrial uncoupling protein 1 (UCP1) enables rapid rewarming from hypothermic torpor to periodic interbout arousals (IBAs), as energy is dissipated as heat. However, BAT's unique ability to rewarm the body via nonshivering thermogenesis is not necessary outside the hibernation season, suggesting a potential seasonal change in the regulation of BAT function. Here, we examined the BAT mitochondrial proteome and mitochondrial bioenergetics in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) across four time points: spring, fall, torpor, and IBA. Relative mitochondrial content of BAT was estimated by measuring BAT pad mass, UCP1 protein content, and mitochondrial DNA (mtDNA) copy number. BAT mtDNA content was significantly lower in spring compared with torpor and IBA (P < 0.05). UCP1 mRNA and protein levels were highest during torpor and IBA. Respiration rates of isolated BAT mitochondria were interrogated at each complex of the electron transport chain. Respiration at complex II was significantly higher in torpor and IBA compared with spring (P < 0.05), suggesting an enhancement in mitochondrial respiratory capacity during hibernation. Additionally, proteomic iTRAQ labeling identified 778 BAT mitochondrial proteins. Proteins required for mitochondrial lipid translocation and β-oxidation were upregulated during torpor and IBA and downregulated in spring. These data imply that BAT bioenergetics and mitochondrial content are not static across the year, despite the year-round presence of UCP1. PMID:27225952

  6. Is Brown Adipose Tissue Visualization Reliable on 99mTc-Methoxyisobutylisonitrile Diagnostic SPECT Scintigraphy?

    PubMed

    Haghighatafshar, Mahdi; Farhoudi, Farinaz

    2016-01-01

    The 99mTc-MIBI has been used with great value as a diagnostic technique in patients with primary hyperparathyroidism. False-positive scans may occur due to misinterpretation of the physiologic distribution of the 99mTc-MIBI. Reviewing consecutive SPECT scans, we evaluated this possibility and assessed how frequently brown adipose tissue (BAT) is seen on 99mTc-MIBI scintigraphy. Here, we retrospectively reviewed scans of consecutive patients who were evaluated for parathyroid adenomas from March 2015 to June 2015, using dual-phase (early and delayed) planar imaging and SPECT. We identified 60 patients (48 female and 12 male; mean age, 52.25 ± 15.20 years; range, 22-86 years).We detected the presence of 99mTc-MIBI uptake in BAT in 20 of 60 patients (33.33%) in the neck. Although the patients with T99mc-MIBI uptake in BAT were younger (mean age, 48.85 ± 15.27 years, range, 26-73 years) than the patients with no 99mTc-MIBI uptake (mean age, 53.95 ± 15.07 years, range, 22-86 years), this difference was not statistically significant (P = 0.224). The percentage of female patients with BAT detection was higher (17/48 patients; 37.5%) than that of the male population (3/12 patients; 25%), this difference was not also statistically significant (P = 0.85).In patient population referred to 99mTc MIBI scintigraphy of the parathyroid glands, uptake of 99mTc-MIBI in BAT should not be misinterpreted with 99mTc-MIBI-avid-tumors. Fused SPECT/CT images (not SPECT-only) are necessary to distinguish BAT from bone, muscle, thyroid, myocardium, parathyroids, and other structures in the neck and chest. PMID:26765463

  7. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system

    PubMed Central

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism. PMID:26673120

  8. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence.

    PubMed

    Shabalina, Irina G; Vrbacký, Marek; Pecinová, Alena; Kalinovich, Anastasia V; Drahota, Zdeněk; Houštěk, Josef; Mráček, Tomáš; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014). PMID:24769119

  9. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα.

    PubMed

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Rosa Dufour, Catherine; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-05-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  10. Apparent lack of beta 3-adrenoceptors and of insulin regulation of glucose transport in brown adipose tissue of guinea pigs.

    PubMed

    Himms-Hagen, J; Triandafillou, J; Begin-Heick, N; Ghorbani, M; Kates, A L

    1995-01-01

    Norepinephrine-induced thermogenesis was substantial in adipocytes from brown adipose tissue (BAT) of cold-acclimated guinea pigs but absent in adipocytes from BAT of warm-acclimated guinea pigs. There was no thermogenic response to any beta 3-adrenergic agonist (CL-316,243, ZD-7114, BRL-28410, CGP-12177). The receptor was characterized as a beta 1-adrenoceptor. Adrenergic agonists stimulated adenylate cyclase in membranes from BAT of both warm- and cold-acclimated guinea pigs also via a beta 1-adrenoceptor; beta 3-adrenergic agonists had no effect. Glucose transport by brown adipocytes from warm-acclimated guinea pigs was not stimulated by either norepinephrine or insulin. Cold acclimation induced the appearance of stimulation of glucose transport by norepinephrine in association with the appearance of a large capacity for thermogenesis, but there was little improvement in response to insulin. GLUT4 was present in membranes from BAT of both warm- and cold-acclimated guinea pigs. Insulin is known to have an antilipolytic effect on both BAT and white adipose tissue of guinea pigs. Thus there is a selective lack of insulin-regulated glucose transport that is not improved by cold acclimation. Guinea pigs may have a mutated component of the translocation mechanism for GLUT4. beta 3-Adrenoceptors appear to be absent in brown adipocytes of adult guinea pigs, as in white adipocytes of guinea pigs, yet are known to be present in the gut. Tissue-specific expression of beta 3-adrenergic receptors in guinea pigs may differ from that in rats, in which receptors are expressed in the adipose tissues and gut. PMID:7840345

  11. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development

    PubMed Central

    Berbée, Jimmy F. P.; Boon, Mariëtte R; Khedoe, P. Padmini S. J.; Bartelt, Alexander; Schlein, Christian; Worthmann, Anna; Kooijman, Sander; Hoeke, Geerte; Mol, Isabel M.; John, Clara; Jung, Caroline; Vazirpanah, Nadia; Brouwers, Linda P.J.; Gordts, Philip L.S.M.; Esko, Jeffrey D.; Hiemstra, Pieter S.; Havekes, Louis M.; Scheja, Ludger; Heeren, Joerg; Rensen, Patrick C.N.

    2015-01-01

    Brown adipose tissue (BAT) combusts high amounts of fatty acids, thereby lowering plasma triglyceride levels and reducing obesity. However, the precise role of BAT in plasma cholesterol metabolism and atherosclerosis development remains unclear. Here we show that BAT activation by β3-adrenergic receptor stimulation protects from atherosclerosis in hyperlipidemic APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism that unlike hyperlipidemic Apoe−/− and Ldlr−/− mice expresses functional apoE and LDLR. BAT activation increases energy expenditure and decreases plasma triglyceride and cholesterol levels. Mechanistically, we demonstrate that BAT activation enhances the selective uptake of fatty acids from triglyceride-rich lipoproteins into BAT, subsequently accelerating the hepatic clearance of the cholesterol-enriched remnants. These effects depend on a functional hepatic apoE-LDLR clearance pathway as BAT activation in Apoe−/− and Ldlr−/− mice does not attenuate hypercholesterolaemia and atherosclerosis. We conclude that activation of BAT is a powerful therapeutic avenue to ameliorate hyperlipidaemia and protect from atherosclerosis. PMID:25754609

  12. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    NASA Astrophysics Data System (ADS)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, P<0.01) and noradrenaline-stimulated maximum values of oxygen consumption (r=0.5, P<0.05). Our results show that heat acclimation modifies the BAT phospholipid fatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  13. Leptin Receptor Expressing Neurons in the Dorsomedial Hypothalamus and Median Preoptic Area Regulate Sympathetic Brown Adipose Tissue Circuits

    PubMed Central

    Zhang, Yan; Kerman, Ilan A.; Laque, Amanda; Nguyen, Phillip; Faouzi, Miro; Louis, Gwendolyn W.; Jones, Justin C.; Rhodes, Chris; Münzberg, Heike

    2011-01-01

    Brown adipose tissue (BAT) thermogenesis is critical to maintain homoeothermia and is centrally controlled via sympathetic outputs. Body temperature and BAT activity also impact energy expenditure and obesity is commonly associated with decreased BAT capacity and sympathetic tone. Severely obese mice that lack leptin or its receptor (LepRb) show decreased BAT capacity, sympathetic tone and body temperature, and thus are unable to adapt to acute cold exposure (Trayhurn et al., 1976). LepRb expressing neurons are found in several hypothalamic sites including the dorsomedial hypothalamus (DMH) and median preoptic area (mPOA), both critical sites to regulate sympathetic, thermoregulatory BAT circuits. Specifically, a subpopulation in the DMH/dorsal hypothalamic area (DMH/DHA) is stimulated by fever inducing endotoxins or cold exposure (Dimicco and Zaretsky, 2007;Morrison et al., 2008). Using the retrograde, transsynaptic tracer pseudorabies virus (PRV) injected into the BAT of mice we identified PRV labeled LepRb neurons in the DMH/DHA and mPOA (and other sites), thus indicating their involvement in the regulation of sympathetic BAT circuits. Indeed, acute cold exposure induced cFos (as a surrogate for neuronal activity) in DMH/DHA LepRb neurons, and a large number of mPOA LepRb neurons project to the DMH/DHA. Furthermore, DMH/DHA LepRb neurons (and a subpopulation of LepRb mPOA neurons) project and synaptically couple to rostral raphe pallidus neurons, consistent with the current understanding of BAT thermoregulatory circuits from the DMH/DHA and mPOA (Dimicco and Zaretsky, 2007;Morrison et al., 2008). Thus, these data present strong evidence that LepRb neurons in the DMH/DHA and mPOA mediate thermoregulatory leptin action. PMID:21289197

  14. Intracellular pH of brown adipose tissue increases during norepinephrine stimulation of thermogenesis

    SciTech Connect

    Horwitz, B.A.; Hamilton, J.S.

    1986-03-01

    Norepinephrine (NE) activation of brown fat (BAT) thermogenesis appears to involve dissociation of purine nucleotides from the mitochondrial uncoupling protein, resulting in release of normal respiratory control and enhanced substrate oxidation. Since the affinity of the uncoupling protein for purine nucleotides decreases significantly with increasing pH, the authors wished to determine if NE administration shifted the intracellular pH of BAT. To examine this question under in vivo conditions, they positioned a nuclear magnetic resonance (NMR) surface coil over the interscapular BAT of anesthetized male Syrian hamsters. The underlying and surrounding musculature was shielded to minimize their contribution to the /sup 31/P spectra. The hamster was placed in a Nicolet 200 Mhz spectrometer, operating in the Fourier Transform mode and tuned to /sup 31/P. Scans taken during infusion of ascorbate buffer (vehicle for NE) were compared to those taken during NE infusion (8 ng/g x min). During this infusion, BAT temperature increased 3.7 +/- 0.5/sup 0/C, confirming that BAT thermogenesis was activated. There also occurred a statistically significant PPM (parts per million) shift, averaging 0.070 +/- 0.022 (n = 22) and corresponding to an increase of approximately 0.07 pH units. This shift in intracellular pH from 7.32 to 7.39, although small, would facilitate the maintenance of loosely coupled brown fat mitochondria.

  15. [Brown fat tissue in humans].

    PubMed

    Medvedev, L N; Elsukova, E I

    2002-01-01

    Brown adipose tissue (BAT) is universally present in mammals. Thermal production in such tissue is physiologically important for maintaining temperature homeostasis and regulation of body mass in small-size homoiotherms. At present it is clearly established that unlike other large mammals, brown adipose in man and primates is retained throughout the whole postnatal othogenesis. Therefore, BAT appears as a possible effector of pharmacogenetic protection from human excessive adiposis. Systematic reserach of various functioning aspects of this unique organ of mammals were started abroad as early as 1960-es, and are actively developing at present. Domestic research of energy circulation physiology and of thermoregulation developed mostly outside the brown adipose tissue. Therefore, the principal objective of this publication is to draw attention of experimental and clinical researches to an intriguing aspect of the issue of energy circulation in humans--the issue of brown adipose functioning. PMID:12004574

  16. Interruptin B induces brown adipocyte differentiation and glucose consumption in adipose-derived stem cells.

    PubMed

    Kaewsuwan, Sireewan; Plubrukarn, Anuchit; Utsintong, Maleeruk; Kim, Seok-Ho; Jeong, Jin-Hyun; Cho, Jin Gu; Park, Sang Gyu; Sung, Jong-Hyuk

    2016-03-01

    Interruptin B has been isolated from Cyclosorus terminans, however, its pharamcological effect has not been fully identified. In the present study, the effects of interruptin B, from C. terminans, on brown adipocyte differentiation and glucose uptake in adipose‑derived stem cells (ASCs) were investigated. The results revealed that interruptin B dose‑dependently enhanced the adipogenic differentiation of ASCs, with an induction in the mRNA expression levels of peroxisome proliferator‑activated receptor (PPAR)‑α and PPAR‑γ. In addition, interruptin B efficiently increased the number and the membrane potential of mitochondria and upregulated the mRNA expression levels of uncoupling protein (UCP)‑1 and cyclooxygenase (COX)‑2, which are all predominantly expressed in brown adipocytes. Interruptin B increased glucose consumption in differentiated ASCs, accompanied by the upregulation in the mRNA expression levels of glucose transporter (GLUT)‑1 and GLUT‑4. The computational analysis of molecular docking, a luciferase reporter assay and surface plasmon resonance confirmed the marked binding affinity of interruptin B to PPAR‑α and PPAR‑γ (KD values of 5.32 and 0.10 µm, respectively). To the best of our knowledge, the present study is the first report to show the stimulatory effects of interruptin B on brown adipocyte differentiation and glucose uptake in ASCs, through its role as a dual PPAR‑α and PPAR‑γ ligand. Therefore, interruptin B could be further developed as a therapeutic agent for the treatment of diabetes. PMID:26781331

  17. Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice.

    PubMed

    Nishikawa, Sho; Aoyama, Hiroki; Kamiya, Misa; Higuchi, Jun; Kato, Aiko; Soga, Minoru; Kawai, Taeko; Yoshimura, Kazuki; Kumazawa, Shigenori; Tsuda, Takanori

    2016-01-01

    Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. PMID:27598888

  18. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice

    PubMed Central

    Almind, Katrine; Manieri, Monia; Sivitz, William I.; Cinti, Saverio; Kahn, C. Ronald

    2007-01-01

    C57BL/6 (B6) mice subjected to a high-fat diet develop metabolic syndrome with obesity, hyperglycemia, and insulin resistance, whereas 129S6/SvEvTac (129) mice are relatively protected from this disorder because of differences in higher basal energy expenditure in 129 mice, leading to lower weight gain. At a molecular level, this difference correlates with a marked higher expression of uncoupling protein 1 (UCP1) and a higher degree of uncoupling in vitro in mitochondria isolated from muscle of 129 versus B6 mice. Detailed histological examination, however, reveals that this UCP1 is in mitochondria of brown adipocytes interspersed between muscle bundles. Indeed, the number of UCP1-positive brown fat cells in intermuscular fat in 129 mice is >700-fold higher than in B6 mice. These brown fat cells are subject to further up-regulation of UCP1 after stimulation with a β3-adrenergic receptor agonist. Thus, ectopic deposits of brown adipose tissue in intermuscular depots with regulatable expression of UCP1 provide a genetically based mechanism of protection from weight gain and metabolic syndrome between strains of mice. PMID:17283342

  19. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    PubMed

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged. PMID:26041126

  20. Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss12

    PubMed Central

    Josse, Andrea R; Gburcik, Valentina; Raymond, Frederic; Good, Liam; Atherton, Philip J

    2016-01-01

    Background: A hypothesis exists whereby an exercise- or dietary-induced negative energy balance reduces human subcutaneous white adipose tissue (scWAT) mass through the formation of brown-like adipocyte (brite) cells. However, the validity of biomarkers of brite formation has not been robustly evaluated in humans, and clinical data that link brite formation and weight loss are sparse. Objectives: We used rosiglitazone and primary adipocytes to stringently evaluate a set of biomarkers for brite formation and determined whether the expression of biomarker genes in scWAT could explain the change in body composition in response to exercise training combined with calorie restriction in obese and overweight women (n = 79). Design: Gene expression was derived from exon DNA microarrays and preadipocytes from obesity-resistant and -sensitive mice treated with rosiglitazone to generate candidate brite biomarkers from a microarray. These biomarkers were evaluated against data derived from scWAT RNA from obese and overweight women before and after supervised exercise 5 d/wk for 16 wk combined with modest calorie restriction (∼0.84 MJ/d). Results: Forty percent of commonly used brite gene biomarkers exhibited an exon or strain-specific regulation. No biomarkers were positively related to weight loss in human scWAT. Greater weight loss was significantly associated with less uncoupling protein 1 expression (P = 0.006, R2 = 0.09). In a follow-up global analysis, there were 161 genes that covaried with weight loss that were linked to greater CCAAT/enhancer binding protein α activity (z = 2.0, P = 6.6 × 10−7), liver X receptor α/β agonism (z = 2.1, P = 2.8 × 10−7), and inhibition of leptin-like signaling (z = −2.6, P = 3.9 × 10−5). Conclusion: We identify a subset of robust RNA biomarkers for brite formation and show that calorie-restriction–mediated weight loss in women dynamically remodels scWAT to take on a more-white rather than a more-brown adipocyte phenotype

  1. Infrared thermography in the detection of brown adipose tissue in humans

    PubMed Central

    Jang, Christina; Jalapu, Sandya; Thuzar, Moe; Law, Phillip W; Jeavons, Susanne; Barclay, Johanna L.; Ho, Ken K.Y.

    2014-01-01

    Abstract PET‐CT using 18F‐FDG is employed for detecting brown adipose tissue (BAT) in humans. Alternative methods are needed because of the radiation and cost of PET‐CT imaging. The aim was to evaluate the accuracy of infrared thermography (IRT) in detecting human BAT benchmarked to PET‐CT imaging. Seventeen individuals underwent a total of 29 PET‐CT scans, 12 of whom were studied twice, after 2 h of cold stimulation at 19°C, in parallel with measurement of skin temperatures overlying the supraclavicular (SCV) fossa and the lateral upper chest (control), before and after cold stimulation. Of the 29 scans, 20 were BAT positive after cold stimulation. The mean left SCV temperature tended to be higher in the BAT‐positive group before and during cooling. It was significantly higher (P =0.04) than the temperature of the control area, which fell significantly during cooling in the BAT‐positive (−1.2 ± 0.3°C, P =0.002) but not in the negative (−0.2 ± 0.4°C) group. The temperature difference (Δtemp) between left SCV and chest increased during cooling in the BAT‐positive (1.2 ± 0.2 to 2.0 ± 0.3°C, P <0.002) but not in the negative group (0.6 ± 0.1 to 0.7 ± 0.1°C). A Δtemp of 0.9°C conferred a positive predictive value of 85% for SCV BAT, superior to that of SCV temperature. The findings were similar on the right. In conclusion, the Δtemp is significantly and consistently greater in BAT‐positive subjects. The Δtemp quantified by IRT after 2‐h cooling shows promise as a noninvasive convenient technique for studying SCV BAT function. PMID:25413316

  2. Infrared spectroscopic studies of detergent-solubilized uncoupling protein from brown-adipose-tissue mitochondria.

    PubMed

    Rial, E; Muga, A; Valpuesta, J M; Arrondo, J L; Goñi, F M

    1990-02-22

    The uncoupling protein of brown-adipose-tissue mitochondria has been purified in the form of mixed micelles with lipid and reduced Triton X-100. This surfactant has the advantage over conventional Triton X-100, that it does not interfere with amide bands in infrared spectra. The structure of the uncoupling protein in micellar form has been examined by Fourier-transform infrared spectroscopy (FTIR). In order to decompose the amide I contour into its components, band-narrowing (Fourier derivation and deconvolution) and band-decomposition techniques have been used. Combining data from spectra taken in H2O and 2H2O media, the following percentage distribution of secondary structure patterns has been obtained: 50% alpha-helix, 28-30% beta-structure; 13-15% beta-turns and 7% unordered. Thermal denaturation of the uncoupling protein has also been monitored by FTIR. In accordance with previous observations of different proteins, thermal denaturation is marked by a shift in the amide I maximum and the appearance of two new peaks in 2H2O, at around 1620 cm-1 and 1685 cm-1. Denaturation occurs in the 40-50 degrees C temperature range, in agreement with studies of GDP-binding capacity. Cooling down the thermally denatured protein produces a new change in its secondary structure; however, the original conformation is not restored. The uncoupling protein possesses a nucleotide-binding site. On addition of GDP, small changes in protein conformation occur, attributable to changes in tertiary structure. However, no detectable effects are seen in the presence or absence of the other physiological regulators, the free fatty acids. The uncoupling protein shares important similarities in its primary structure with other anion carriers of the mitochondrial membrane; one of these, the adenine-nucleotide translocator, has been used in a comparative study, applying the same FTIR techniques described above for the uncoupling protein. Both proteins have a similar proportion of alpha

  3. Alpha-1 adrenoceptors in brown adipose tissue of lean and ob/ob mice

    SciTech Connect

    Behrens-Zaror, G.; Himms-Hagen, J.

    1986-03-01

    Obese (ob/ob) mice have a low capacity to increase thyroxine 5'-deiodinase (T4 5'-D) in brown adipose tissue (BAT) when exposed to cold. This effect is mediated by alpha-1 (A-1) adrenoceptors. The authors objective was to find out whether BAT of the ob/ob mouse has normal A-1 receptors. Saturation analysis of binding of (3H)-WB4101 at 0.05 nM to 10 ..mu..M to crude membrane preparations (100,000 g pellets from Polytron homogenates) using the LIGAND program of Munson and Rodbard, showed two populations of binding sites in BAT of lean (+/+, 11-15 wk old) mice. Acute exposure (12 h, 14/sup 0/C) or acclimation to cold (3 wk, 14/sup 0/C) did not alter affinity or concentration of sites. Displacement with yohimbine and prazosin indicated binding of WB4101 to A-1 receptors. Very young (5 wk) lean (+/.) and obese mice had similar affinity constants (lean 0.13 +/- 0.043 and 34.2 +/- 14.9; obese, 0.12 +/- 0.028 and 20.9 +/- 5.48 nM) and concentrations (lean 22.4 +/- 3.8 and 647 +/- 137; obese, 28.6 +/- 4.6 and 547 +/- 105 fmol/mg protein) of sites. Old (1 yr) mice had high affinity sites similar to those in younger animals (KD lean 0.19 +/- 0.028, obese, 0.25 +/- 0.075; Bmax lean, 60.2 +/- 12.1; obese, 63.1 +/- 13.5 fmol/mg protein). The authors conclude that the ob/ob mouse has normal high affinity A-1 receptors in BAT. Anomalous properties of low affinity binding in old ob/ob mice could not be characterized because of high nonspecific binding. BAT of the ob/ob mouse does not lack A-1 receptors but may have a post-receptor alteration in the A-1 adrenoceptor-mediated response.

  4. Brown Adipose Tissue Quantification in Human Neonates Using Water-Fat Separated MRI

    PubMed Central

    Rasmussen, Jerod M.; Entringer, Sonja; Nguyen, Annie; van Erp, Theo G. M.; Guijarro, Ana; Oveisi, Fariba; Swanson, James M.; Piomelli, Daniele; Wadhwa, Pathik D.

    2013-01-01

    There is a major resurgence of interest in brown adipose tissue (BAT) biology, particularly regarding its determinants and consequences in newborns and infants. Reliable methods for non-invasive BAT measurement in human infants have yet to be demonstrated. The current study first validates methods for quantitative BAT imaging of rodents post mortem followed by BAT excision and re-imaging of excised tissues. Identical methods are then employed in a cohort of in vivo infants to establish the reliability of these measures and provide normative statistics for BAT depot volume and fat fraction. Using multi-echo water-fat MRI, fat- and water-based images of rodents and neonates were acquired and ratios of fat to the combined signal from fat and water (fat signal fraction) were calculated. Neonatal scans (n = 22) were acquired during natural sleep to quantify BAT and WAT deposits for depot volume and fat fraction. Acquisition repeatability was assessed based on multiple scans from the same neonate. Intra- and inter-rater measures of reliability in regional BAT depot volume and fat fraction quantification were determined based on multiple segmentations by two raters. Rodent BAT was characterized as having significantly higher water content than WAT in both in situ as well as ex vivo imaging assessments. Human neonate deposits indicative of bilateral BAT in spinal, supraclavicular and axillary regions were observed. Pairwise, WAT fat fraction was significantly greater than BAT fat fraction throughout the sample (ΔWAT-BAT = 38%, p<10−4). Repeated scans demonstrated a high voxelwise correlation for fat fraction (Rall = 0.99). BAT depot volume and fat fraction measurements showed high intra-rater (ICCBAT,VOL = 0.93, ICCBAT,FF = 0.93) and inter-rater reliability (ICCBAT,VOL = 0.86, ICCBAT,FF = 0.93). This study demonstrates the reliability of using multi-echo water-fat MRI in human neonates for quantification throughout the torso of BAT depot

  5. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat

    PubMed Central

    Suárez, Juan; Rivera, Patricia; Arrabal, Sergio; Crespillo, Ana; Serrano, Antonia; Baixeras, Elena; Pavón, Francisco J.; Cifuentes, Manuel; Nogueiras, Rubén; Ballesteros, Joan; Dieguez, Carlos; Rodríguez de Fonseca, Fernando

    2014-01-01

    β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity. PMID:24159189

  6. Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat.

    PubMed

    Suárez, Juan; Rivera, Patricia; Arrabal, Sergio; Crespillo, Ana; Serrano, Antonia; Baixeras, Elena; Pavón, Francisco J; Cifuentes, Manuel; Nogueiras, Rubén; Ballesteros, Joan; Dieguez, Carlos; Rodríguez de Fonseca, Fernando

    2014-01-01

    β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity. PMID:24159189

  7. Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation.

    PubMed

    Hui, Xiaoyan; Gu, Ping; Zhang, Jialiang; Nie, Tao; Pan, Yong; Wu, Donghai; Feng, Tianshi; Zhong, Cheng; Wang, Yu; Lam, Karen S L; Xu, Aimin

    2015-08-01

    Adiponectin is an abundant adipokine with pleiotropic protective effects against a cluster of obesity-related cardiometabolic disorders. However, its role in adaptive thermogenesis has scarcely been explored. Here we showed that chronic cold exposure led to a markedly elevated production of adiponectin in adipocytes of subcutaneous white adipose tissue (scWAT), which in turn bound to M2 macrophages in the stromal vascular fraction. Chronic cold exposure-induced accumulation of M2 macrophages, activation of beige cells, and thermogenic program were markedly impaired in scWAT of adiponectin knockout (ADN KO) mice, whereas these impairments were reversed by replenishment with adiponectin. Mechanistically, adiponectin was recruited to the cell surface of M2 macrophages via its binding partner T-cadherin and promoted the cell proliferation by activation of Akt, consequently leading to beige cell activation. These findings uncover adiponectin as a key efferent signal for cold-induced adaptive thermogenesis by mediating the crosstalk between adipocytes and M2 macrophages in scWAT. PMID:26166748

  8. A Role for Phosphodiesterase 3B in Acquisition of Brown Fat Characteristics by White Adipose Tissue in Male Mice

    PubMed Central

    Hockman, Steven; Chung, Youn Wook; Ahmad, Faiyaz; Gavrilova, Oksana; Raghavachari, Nalini; Yang, Yanqin; Niu, Gang; Chen, Xiaoyuan; Yu, Zu Xi; Liu, Shiwei; Degerman, Eva

    2013-01-01

    Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes. PMID:23766131

  9. Visfatin expression analysis in association with recruitment and activation of human and rodent brown and brite adipocytes.

    PubMed

    Pisani, Didier F; Dumortier, Olivier; Beranger, Guillaume E; Casamento, Virginie; Ghandour, Rayane A; Giroud, Maude; Gautier, Nadine; Balaguer, Thierry; Chambard, Jean-Claude; Virtanen, Kirsi A; Nuutila, Pirjo; Niemi, Tarja; Taittonen, Markku; Van Obberghen, Emmanuel; Hinault, Charlotte; Amri, Ez-Zoubir

    2016-01-01

    Human brown adipocytes are able to burn fat and glucose and are now considered as a potential strategy to treat obesity, type 2 diabetes and metabolic disorders. Besides their thermogenic function, brown adipocytes are able to secrete adipokines. One of these is visfatin, a nicotinamide phosphoribosyltransferase involved in nicotinamide dinucleotide synthesis, which is known to participate in the synthesis of insulin by pancreatic β cells. In a therapeutic context, it is of interest to establish whether a potential correlation exists between brown adipocyte activation and/or brite adipocyte recruitment, and adipokine expression. We analyzed visfatin expression, as a pre-requisite to its secretion, in rodent and human biopsies and cell models of brown/brite adipocytes. We found that visfatin was preferentially expressed in mature adipocytes and that this expression was higher in brown adipose tissue of rodents compared to other fat depots. However, using various rodent models we were unable to find any correlation between visfatin expression and brown or brite adipocyte activation or recruitment. Interestingly, the situation is different in humans where visfatin expression was found to be equivalent between white and brown or brite adipocytes in vivo and in vitro. In conclusion, visfatin can be considered only as a rodent brown adipocyte biomarker, independently of tissue activation. PMID:27386154

  10. More insights into a human adipose tissue GPAT activity assay

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra; Jensen, Michael D

    2016-01-01

    ABSTRACT Adipose tissue fatty acid storage varies according to sex, adipose tissue depot and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We recently published findings based on the glycerol 3-phosphate acyltransferase (GPAT) enzyme activity assay we optimized for use with human adipose tissue. These findings include a decrease in total GPAT and GPAT1 as a function of adipocyte size in both omental and subcutaneous adipose tissue and a strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots and between these storage factors and palmitate storage rates into TAG. The aim of this commentary is to expand upon the data from our recent publication. We describe here additional details on the optimization of the GPAT enzyme activity assay, a correlation between DGAT and percentage palmitate in the diacylglycerol fraction, and sex differences in fatty acid storage factors and storage rates into TAG at high palmitate concentrations. PMID:27144101

  11. Brown adipose tissue at the intersection of sleep and temperature regulation

    PubMed Central

    Kapás, Levente; Szentirmai, Éva

    2014-01-01

    The article demonstrates the importance of brown fat in creating and maintaining a metabolic environment which is permissive for optimal restorative sleep after sleep loss. The authors propose that impaired brown fat function could be a common underlying cause of poor sleep and metabolic disorders.

  12. Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance[S

    PubMed Central

    Grimpo, Kirsten; Völker, Maximilian N.; Heppe, Eva N.; Braun, Steve; Heverhagen, Johannes T.; Heldmaier, Gerhard

    2014-01-01

    We used noninvasive magnetic resonance imaging (MRI) and magnetic resonance spectroscopy to compare interscapular brown adipose tissue (iBAT) of wild-type (WT) and uncoupling protein 1 (UCP1)-knockout mice lacking UCP1-mediated nonshivering thermogenesis (NST). Mice were sequentially acclimated to an ambient temperature of 30°C, 18°C, and 5°C. We detected a remodeling of iBAT and a decrease in its lipid content in all mice during cold exposure. Ratios of energy-rich phosphates (ATP/ADP, phosphocreatine/ATP) in iBAT were maintained stable during noradrenergic stimulation of thermogenesis in cold- and warm-adapted mice and no difference between the genotypes was observed. As free fatty acids (FFAs) serve as fuel for thermogenesis and activate UCP1 for uncoupling of oxidative phosphorylation, brown adipose tissue is considered to be a main acceptor and consumer of FFAs. We measured a major loss of FFAs from iBAT during noradrenergic stimulation of thermogenesis. This mobilization of FFAs was observed in iBAT of WT mice as well as in mice lacking UCP1. The high turnover and the release of FFAs from iBAT suggests an enhancement of lipid metabolism, which in itself contributes to the sympathetically activated NST and which is independent from uncoupled respiration mediated by UCP1. Our study demonstrates that MRI, besides its potential for visualizing and quantification of fat tissue, is a valuable tool for monitoring functional in vivo processes like lipid and phosphate metabolism during NST. PMID:24343897

  13. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity.

    PubMed

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  14. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity

    PubMed Central

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I.; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  15. Brown Adipose Tissue Response Dynamics: In Vivo Insights with the Voltage Sensor 18F-Fluorobenzyl Triphenyl Phosphonium

    PubMed Central

    Madar, Igal; Naor, Elinor; Holt, Daniel; Ravert, Hayden; Dannals, Robert; Wahl, Richard

    2015-01-01

    Brown adipose tissue (BAT) thermogenesis is an emerging target for prevention and treatment of obesity. Mitochondria are the heat generators of BAT. Yet, there is no noninvasive means to image the temporal dynamics of the mitochondrial activity in BAT in vivo. Here, we report a technology for quantitative monitoring of principal kinetic components of BAT adaptive thermogenesis in the living animal, using the PET imaging voltage sensor 18F-fluorobenzyltriphenylphosphonium (18F-FBnTP). 18F-FBnTP targets the mitochondrial membrane potential (ΔΨm)—the voltage analog of heat produced by mitochondria. Dynamic 18F-FBnTP PET imaging of rat’s BAT was acquired just before and during localized skin cooling or systemic pharmacologic stimulation, with and without administration of propranolol. At ambient temperature, 18F-FBnTP demonstrated rapid uptake and prolonged steady-state retention in BAT. Conversely, cold-induced mitochondrial uncoupling resulted in an immediate washout of 18F-FBnTP from BAT, which was blocked by propranolol. Specific variables of BAT evoked activity were identified and quantified, including response latency, magnitude and kinetics. Cold stimulation resulted in partial washout of 18F-FBnTP (39.1%±14.4% of basal activity). The bulk of 18F-FBnTP washout response occurred within the first minutes of the cold stimulation, while colonic temperature remained nearly intact. Drop of colonic temperature to shivering zone did not have an additive effect. The ß3-adrenergic agonist CL-316,243 elicited 18F-FBnTP washout from BAT of kinetics similar to those caused by cold stimulation. Thus, monitoring ΔΨm in vivo using 18F-FBnTP PET provides insights into the kinetic physiology of BAT. 18F-FBnTP PET depicts BAT as a highly sensitive and rapidly responsive organ, emitting heat in short burst during the first minutes of stimulation, and preceding change in core temperature. 18F-FBnTP PET provides a novel set of quantitative metrics highly important for

  16. Transport of fatty acids and monoacylglycerols in white and brown adipose tissues.

    PubMed

    Scow, R O; Blanchette-Mackie, E J

    1991-01-01

    Long chain fatty acids (FA) and 2-monoacylglycerols (MG) are produced by lipoprotein lipase (LPL) from plasma triacylglycerols (TG) in capillaries of adipose tissue and transported to adipocytes for TG synthesis. It is widely proposed FA may be transported in cells by FA-binding protein. Mode of transport of MG has received little attention. Our findings in tissues and model membranes indicate that FA (as 1:1 acid-soaps) and MG can be transported in vivo by lateral movement in an interfacial continuum (IFC) of the outer leaflets of plasma and intracellular membranes of capillary endothelium and adipocytes. We postulate that FA and MG enter the IFC in capillaries and flow in the IFC across endothelium and extracellular space to sites in adipocytes where MG are hydrolyzed by MG-lipase (MGL) to FA and glycerol, and FA are esterified in endoplasmic reticulum or transferred to inner mitochondrial membrane for oxidation. FA and MG produced by hormone-sensitive lipase also enter the IFC. These MG flow in the IFC to sites of MGL activity, and the FA flow in the IFC to capillaries for transport to other tissues by albumin, or to mitochondria for heat production. PMID:1959050

  17. Maternal low protein diet reduces birth weight and increases brown adipose tissue UCP-1 and FNDC5 gene expression in male neonatal Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

  18. Maternal low protein diet-induced low birth weight in male, neonate Sprague-Dawley rats is mediated by altered brown adipose tissue thermogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

  19. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    PubMed

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis. PMID:26538237

  20. Searching for Classical Brown Fat in Humans: Development of a Novel Human Fetal Brown Stem Cell Model.

    PubMed

    Di Franco, Alessandra; Guasti, Daniele; Squecco, Roberta; Mazzanti, Benedetta; Rossi, Francesca; Idrizaj, Eglantina; Gallego-Escuredo, José M; Villarroya, Francesc; Bani, Daniele; Forti, Gianni; Vannelli, Gabriella Barbara; Luconi, Michaela

    2016-06-01

    The potential therapeutic applications of targeting brown adipose tissue open new clinical avenues in fighting against metabolic pathologies. However, due to the limited extension in adult humans of brown depots, which are dramatically reduced after birth, solid cell models to study human brown adipogenesis and its regulatory factors in pathophysiology are urgently needed. Here, we generated a novel human model of brown adipose stem cells, hfB-ASC, derived for the first time from fetal interscapular brown fat depots. Besides the characterization of their stem and classical brown adipose properties, we demonstrated that these cells retain a specific intrinsic differentiation program to functional brown adipocytes, even spontaneously generating organoid structures with brown features. Moreover, for the first time, we investigated the thermogenic and electrophysiological activity of the in vitro-derived fetal brown adipocytes compared to their undifferentiated precursors hfB-ASC, in basal and norepinephrine-induced conditions. In conclusion, from interscapular brown fat of the human fetus we developed and functionally characterized a novel physiological brown adipose stem cell model early programmed to brown differentiation, which may represent a unique opportunity for further studies on brown adipogenesis processes in humans as well as the most suitable target to study novel therapeutic approaches for stimulating brown activity in metabolic pathologies. Stem Cells 2016;34:1679-1691. PMID:26866833

  1. Functional and anatomical characterization of brown adipose tissue in heart failure with blood oxygen level dependent magnetic resonance.

    PubMed

    Panagia, Marcello; Chen, Yin-Ching Iris; Chen, Howard H; Ernande, Laura; Chen, Chan; Chao, Wei; Kwong, Kenneth; Scherrer-Crosbie, Marielle; Sosnovik, David E

    2016-07-01

    Recent studies have suggested that brown adipose tissue (BAT) plays an important role in obesity, insulin resistance and heart failure. The characterization of BAT in vivo, however, has been challenging. No technique to comprehensively image BAT anatomy and function has been described. Moreover, the impact on BAT of the neuroendocrine activation seen in heart failure has only recently begun to be evaluated in vivo. The aim of this study was to use MRI to characterize the impact of heart failure on the morphology and function of BAT. Mice subjected to permanent ligation of the left coronary artery were imaged with MRI 6 weeks later. T2 weighted MRI of BAT volume and blood oxygen level dependent MRI of BAT function were performed. T2 * maps of BAT were obtained at multiple time points before and after administration of the β3 adrenergic agonist CL 316 243 (CL). Blood flow to BAT was studied after CL injection using the flow alternating inversion recovery (FAIR) approach. Excised BAT tissue was analyzed for lipid droplet content and for uncoupling protein 1 (UCP1) mRNA expression. BAT volume was significantly lower in heart failure (51 ± 1 mm(3) versus 65 ± 3 mm(3) ; p < 0.05), and characterized by a reduction in lipid globules and a fourfold increase in UCP1 mRNA (p < 0.05). CL injection increased BAT T2 * in healthy animals but not in mice with heart failure (24 ± 4% versus 6 ± 2%; p < 0.01), consistent with an increase in flow in control BAT. This was confirmed by a significant difference in the FAIR response in BAT in control and heart failure mice. Heart failure results in the chronic activation of BAT, decreased BAT lipid stores and decreased BAT volume, and it is associated with a marked decrease in ability to respond to acute physiological stimuli. This may have important implications for substrate utilization and overall metabolic homeostasis in heart failure. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27226402

  2. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  3. Myostatin Attenuation In Vivo Reduces Adiposity, but Activates Adipogenesis.

    PubMed

    Li, Naisi; Yang, Qiyuan; Walker, Ryan G; Thompson, Thomas B; Du, Min; Rodgers, Buel D

    2016-01-01

    A potentially novel approach for treating obesity includes attenuating myostatin as this increases muscle mass and decreases fat mass. Notwithstanding, conflicting studies report that myostatin stimulates or inhibits adipogenesis and it is unknown whether reduced adiposity with myostatin attenuation results from changes in fat deposition or adipogenesis. We therefore quantified changes in the stem, transit amplifying and progenitor cell pool in white adipose tissue (WAT) and brown adipose tissue (BAT) using label-retaining wild-type and mstn(-/-) (Jekyll) mice. Muscle mass was larger in Jekyll mice, WAT and BAT mass was smaller and label induction was equal in all tissues from both wild-type and Jekyll mice. The number of label-retaining cells, however, dissipated quicker in WAT and BAT of Jekyll mice and was only 25% and 17%, respectively, of wild-type cell counts 1 month after induction. Adipose cell density was significantly higher in Jekyll mice and increased over time concomitant with label-retaining cell disappearance, which is consistent with enhanced expansion and differentiation of the stem, transit amplifying and progenitor pool. Stromal vascular cells from Jekyll WAT and BAT differentiated into mature adipocytes at a faster rate than wild-type cells and although Jekyll WAT cells also proliferated quicker in vitro, those from BAT did not. Differentiation marker expression in vitro, however, suggests that mstn(-/-) BAT preadipocytes are far more sensitive to the suppressive effects of myostatin. These results suggest that myostatin attenuation stimulates adipogenesis in vivo and that the reduced adiposity in mstn(-/-) animals results from nutrient partitioning away from fat and in support of muscle. PMID:26580671

  4. A diurnal rhythm in glucose uptake in brown adipose tissue revealed by in vivo PET-FDG imaging

    PubMed Central

    van der Veen, Daan R; Shao, Jinping; Chapman, Sarah; Leevy, W Matthew; Duffield, Giles E

    2012-01-01

    Using a micro-PET/CT scanner, we have measured 18F-fluorodeoxyglucose uptake in interscapular brown adipose tissue (iBAT) in C57Bl/6 mice at intervals across a 24-hour light-dark cycle. Our data reveals a strong 24-hour profile of glucose uptake of iBAT, peaking at approximately 9 hours into the light phase of the 12 hour light, 12 hour dark day. BAT is increasingly gaining attention as being involved in metabolic phenotypes and obesity, where BAT, as observed by PET analysis, negatively correlates with obesity and age. Conversely, animals that show perturbations in circadian clocks, behavior and physiology show metabolic phenotypes. The observation of a 24-hour rhythm in glucose uptake in iBAT makes this tissue a candidate site of interaction between metabolic and circadian systems. PMID:22447290

  5. The Effect of Xanthigen on the Expression of Brown Adipose Tissue Assessed by 18F-FDG PET

    PubMed Central

    Kim, Kwang-Min; Kim, Sang-Man; Cho, Doo-Yeon; Park, Soo-Jung

    2016-01-01

    Brown adipose tissue (BAT) is related with energy expenditure, in contrary to fat-storing white adipose tissue. Recent studies have shown that cold exposure could be related with the expression of BAT in adult subjects assessed by 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). In addition, the application in previous clinical trials showed positive effect of xanthigen containing fucoxanthin and punicic acid on body weight and liver fat content. In this short-term intervention study, we evaluated the effect of xanthigen on the expression of BAT by 18F-FDG PET. Two healthy obese premenopausal women were enrolled and xanthigen 600 mg (2 capsules including fucoxanthin 3 mg, punicic acid 174 mg) was given for 3 months without dietary and exercise intervention. Body composition and dietary intake were assessed monthly. Laboratory test and 18F-FDG PET were performed before and after intervention. After intervention, there was neither weight reduction nor remarkable laboratory change. However, BAT, assessed by 18F-FDG PET, was detected in both cervical, supraclavicular and paravertebral space in one subject, even though her body weight showed mild increase. This result suggested that xanthigen can induce BAT in a healthy adult. However, a further large well-controlled study is needed. PMID:27189303

  6. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.

    PubMed

    Velotta, Jonathan P; Jones, Jennifer; Wolf, Cole J; Cheviron, Zachary A

    2016-06-01

    For small mammals living at high altitude, aerobic heat generation (thermogenesis) is essential for survival during prolonged periods of cold, but is severely impaired under conditions of hypobaric hypoxia. Recent studies in deer mice (Peromyscus maniculatus) reveal adaptive enhancement of thermogenesis in high- compared to low-altitude populations under hypoxic cold stress, an enhancement that is attributable to modifications in the aerobic metabolism of muscles used in shivering. However, because small mammals rely heavily on nonshivering mechanisms for cold acclimatization, we tested for evidence of adaptive divergence in nonshivering thermogenesis (NST) under hypoxia. To do so, we measured NST and characterized transcriptional profiles of brown adipose tissue (BAT) in high- and low-altitude deer mice that were (i) wild-caught and acclimatized to their native altitude, and (ii) born and reared under common garden conditions at low elevation. We found that NST performance under hypoxia is enhanced in wild-caught, high-altitude deer mice, a difference that is associated with increased expression of coregulated genes that influence several physiological traits. These traits include vascularization and O2 supply to BAT, brown adipocyte proliferation and the uncoupling of oxidative phosphorylation from ATP synthesis in the generation of heat. Our results suggest that acclimatization to hypoxic cold stress is facilitated by enhancement of nonshivering heat production, which is driven by regulatory plasticity in a suite of genes that influence intersecting physiological pathways. PMID:27126783

  7. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  8. Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity.

    PubMed

    Wainright, Katherine S; Fleming, Nicholas J; Rowles, Joe L; Welly, Rebecca J; Zidon, Terese M; Park, Young-Min; Gaines, T'Keaya L; Scroggins, Rebecca J; Anderson-Baucum, Emily K; Hasty, Alyssa H; Vieira-Potter, Victoria J; Padilla, Jaume

    2015-09-01

    Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately -24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype. PMID:26180183

  9. Functions of AMP-activated protein kinase in adipose tissue

    PubMed Central

    Daval, Marie; Foufelle, Fabienne; Ferré, Pascal

    2006-01-01

    AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes. PMID:16709632

  10. Brown adipose and central nervous system glucose uptake is lower during cold exposure in older compared to young men: a preliminary PET study.

    PubMed

    Kindred, John H; Tuulari, Jetro J; Simon, Stacey; Luckasen, Gary J; Bell, Christopher; Rudroff, Thorsten

    2016-06-01

    The purpose of this study was to determine the activity of brown adipose tissue (BAT) and the central nervous system (CNS) during cold exposure in young and older men. Two young, 24 and 21 years, and two older, 76 and 74 years, men participated in the study. Positron emission tomography images showed cold-induced BAT activity was absent in older men but clearly present in the clavicular region of the young men (Standardized Uptake Value: SUVmean: 3.12 and 3.71). Statistical parametric mapping revealed cortical brain activity was lower in the older men within areas of the frontal, parietal, temporal, and occipital lobes, and the thalamus (peak-level p uncorr  < 0.036). Cervical spinal cord SUVmean values tended to be lower for older (SUVmean: 1.64 and 1.61) compared to young men (SUVmean: 1.91 and 1.71). These preliminary findings suggest lower BAT activity in older men may in part be due to lower CNS activity. PMID:26754046

  11. A change in liver metabolism but not in brown adipose tissue thermogenesis is an early event in ovariectomy-induced obesity in rats.

    PubMed

    Nigro, Mariana; Santos, Anderson T; Barthem, Clarissa S; Louzada, Ruy A N; Fortunato, Rodrigo S; Ketzer, Luisa A; Carvalho, Denise P; de Meis, Leopoldo

    2014-08-01

    Menopause is associated with increased visceral adiposity and disrupted glucose homeostasis, but the underlying molecular mechanisms related to these metabolic changes are still elusive. Brown adipose tissue (BAT) plays a key role in energy expenditure that may be regulated by sexual steroids, and alterations in glucose homeostasis could precede increased weight gain after ovariectomy. Thus, the aim of this work was to evaluate the metabolic pathways in both the BAT and the liver that may be disrupted early after ovariectomy. Ovariectomized (OVX) rats had increased food efficiency as early as 12 days after ovariectomy, which could not be explained by differences in feces content. Analysis of isolated BAT mitochondria function revealed no differences in citrate synthase activity, uncoupling protein 1 expression, oxygen consumption, ATP synthesis, or heat production in OVX rats. The addition of GDP and BSA to inhibit uncoupling protein 1 decreased oxygen consumption in BAT mitochondria equally in both groups. Liver analysis revealed increased triglyceride content accompanied by decreased levels of phosphorylated AMP-activated protein kinase and phosphorylated acetyl-CoA carboxylase in OVX animals. The elevated expression of gluconeogenic enzymes in OVX and OVX + estradiol rats was not associated with alterations in glucose tolerance test or in serum insulin but was coincident with higher glucose disposal during the pyruvate tolerance test. Although estradiol treatment prevented the ovariectomy-induced increase in body weight and hepatic triglyceride and cholesterol accumulation, it was not able to prevent increased gluconeogenesis. In conclusion, the disrupted liver glucose homeostasis after ovariectomy is neither caused by estradiol deficiency nor is related to increased body mass. PMID:24914935

  12. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines.

    PubMed

    Carmean, Christopher M; Bobe, Alexandria M; Yu, Justin C; Volden, Paul A; Brady, Matthew J

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4-12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology. PMID:23861810

  13. A Clinical Approach to Brown Adipose Tissue in the Para-Aortic Area of the Human Thorax

    PubMed Central

    Wei, Huixing; Chiba, Seiichi; Moriwaki, Chinatsu; Kitamura, Hirokazu; Ina, Keisuke; Aosa, Taishi; Tomonari, Kenichiro; Gotoh, Koro; Masaki, Takayuki; Katsuragi, Isao; Noguchi, Hitoshi; Kakuma, Tetsuya; Hamaguchi, Kazuyuki; Shimada, Tatsuo; Fujikura, Yoshihisa; Shibata, Hirotaka

    2015-01-01

    Background Human thoracic brown adipose tissue (BAT), composed of several subdivisions, is a well-known target organ of many clinical studies; however, the functional contribution of each part of human thoracic BAT remains unknown. The present study analyzed the significance of each part of human thoracic BAT in the association between regional distribution, cellularity, and factors involved in the functional regulation of thoracic BAT. Methods We analyzed 1550 healthy adults who underwent medical check-ups by positron-emission tomography and computed tomography (PET–CT) imaging, 8 cadavers, and 78 autopsy cases in an observational study. We first characterized the difference between the mediastinum and the supraclavicular areas using counts of BAT detection and conditions based on PET–CT outcomes. The measurable important area was then subjected to systematic anatomical and immunohistochemical analyses using anti-uncoupling protein 1 (UCP1) antibody to characterize the cellularity in association with age and sex. Results In PET–CT scanning, the main site of thoracic BAT was the mediastinum rather than the supraclavicular area (P < 0.05). Systemic macroanatomy revealed that the thumb-sized BAT in the posterior mediastinal descending para-aortic area (paBAT) had feeding vessels from the posterior intercostal arteries and veins and sympathetic/parasympathetic innervation from trunks of the sympathetic and vagus nerves, respectively. Immunohistochemical analysis indicated that the paBAT exhibited immunoreactivity for tyrosine hydroxylase and vesicular acetylcholine transporter located in the pericellular nervous fibers and intracellular UCP1. The brown adipose cells of paBAT showed age-dependent decreases in UCP1 expression (P < 0.05), accompanied by a significant increase in vacuole formation, indicating fat accumulation (P < 0.05), from 10 to 37 years of age (P < 0.01). Conclusions paBAT may be one of the essential sites for clinical application in BAT study

  14. BFIT, a unique acyl-CoA thioesterase induced in thermogenic brown adipose tissue: cloning, organization of the human gene and assessment of a potential link to obesity.

    PubMed Central

    Adams, S H; Chui, C; Schilbach, S L; Yu, X X; Goddard, A D; Grimaldi, J C; Lee, J; Dowd, P; Colman, S; Lewin, D A

    2001-01-01

    We hypothesized that certain proteins encoded by temperature-responsive genes in brown adipose tissue (BAT) contribute to the remarkable metabolic shifts observed in this tissue, thus prompting a differential mRNA expression analysis to identify candidates involved in this process in mouse BAT. An mRNA species corresponding to a novel partial-length gene was found to be induced 2-3-fold above the control following cold exposure (4 degrees C), and repressed approximately 70% by warm acclimation (33 degrees C, 3 weeks) compared with controls (22 degrees C). The gene displayed robust BAT expression (i.e. approximately 7-100-fold higher than other tissues in controls). The full-length murine gene encodes a 594 amino acid ( approximately 67 kDa) open reading frame with significant homology to the human hypothetical acyl-CoA thioesterase KIAA0707. Based on cold-inducibility of the gene and the presence of two acyl-CoA thioesterase domains, we termed the protein brown-fat-inducible thioesterase (BFIT). Subsequent analyses and cloning efforts revealed the presence of a novel splice variant in humans (termed hBFIT2), encoding the orthologue to the murine BAT gene. BFIT was mapped to syntenic regions of chromosomes 1 (human) and 4 (mouse) associated with body fatness and diet-induced obesity, potentially linking a deficit of BFIT activity with exacerbation of these traits. Consistent with this notion, BFIT mRNA was significantly higher ( approximately 1.6-2-fold) in the BAT of obesity-resistant compared with obesity-prone mice fed a high-fat diet, and was 2.5-fold higher in controls compared with ob/ob mice. Its strong, cold-inducible BAT expression in mice suggests that BFIT supports the transition of this tissue towards increased metabolic activity, probably through alteration of intracellular fatty acyl-CoA concentration. PMID:11696000

  15. GQ-16, a TZD-Derived Partial PPARγ Agonist, Induces the Expression of Thermogenesis-Related Genes in Brown Fat and Visceral White Fat and Decreases Visceral Adiposity in Obese and Hyperglycemic Mice

    PubMed Central

    Coelho, Michella S.; de Lima, Caroline L.; Royer, Carine; Silva, Janaina B.; Oliveira, Fernanda C. B.; Christ, Camila G.; Pereira, Sidney A.; Bao, Sonia N.; Lima, Maria C. A.; Pitta, Marina G. R.; Pitta, Ivan R.; Neves, Francisco A. R.; Amato, Angélica A.

    2016-01-01

    Background Beige adipocytes comprise a unique thermogenic cell type in the white adipose tissue (WAT) of rodents and humans, and play a critical role in energy homeostasis. In this scenario, recruitment of beige cells has been an important focus of interest for the development of novel therapeutic strategies to treat obesity. PPARγ activation by full agonists (thiazolidinediones, TZDs) drives the appearance of beige cells, a process so-called browning of WAT. However, this does not translate into increased energy expenditure, and TZDs are associated with weight gain. Partial PPARγ agonists, on the other hand, do not induce weight gain, but have not been shown to drive WAT browning. The present study was designed to investigate the effects of GQ-16 on BAT and on browning of WAT in obese mice. Methods Male Swiss mice with obesity and hyperglycemia induced by high fat diet were treated with vehicle, rosiglitazone (4 mg/kg/d) or the TZD-derived partial PPARγ agonist GQ-16 (40 mg/kg/d) for 14 days. Fasting blood glucose, aspartate aminotransferase, alanine aminotransferase and lipid profile were measured. WAT and brown adipose tissue (BAT) depots were excised for determination of adiposity, relative expression of Ucp-1, Cidea, Prdm16, Cd40 and Tmem26 by RT-qPCR, histological analysis, and UCP-1 protein expression analysis by immunohistochemistry. Liver samples were also removed for histological analysis and determination of hepatic triglyceride content. Results GQ-16 treatment reduced high fat diet-induced weight gain in mice despite increasing energy intake. This was accompanied by reduced epididymal fat mass, reduced liver triglyceride content, morphological signs of increased BAT activity, increased expression of thermogenesis-related genes in interscapular BAT and epididymal WAT, and increased UCP-1 protein expression in interscapular BAT and in epididymal and inguinal WAT. Conclusion This study suggests for the first time that a partial PPARγ agonist may

  16. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  17. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  18. Physical activity as a mediator of the relationship between active commuting to school and adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Active commuting to school (ACS) has been associated with more moderate-to vigorous physical activity (MVPA) and decreased adiposity among youth. However, no studies have examined if MVPA mediates the relationship between ACS and adiposity. We hypothesized that ACS would be inversely associated with...

  19. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis

    PubMed Central

    Young, Colin N.; Morgan, Donald A.; Butler, Scott D.; Rahmouni, Kamal; Gurley, Susan B.; Coffman, Thomas M.; Mark, Allyn L.; Davisson, Robin L.

    2015-01-01

    Objective Elevations in brain angiotensin-II cause increased energy expenditure and a lean phenotype. Interestingly, the metabolic effects of increased brain angiotensin-II mimic the actions of leptin, suggesting an interaction between the two systems. Here we demonstrate that angiotensin-type 1a receptors (AT1aR) in the subfornical organ (SFO), a forebrain structure emerging as an integrative metabolic center, play a key role in the body weight-reducing effects of leptin via brown adipose tissue (BAT) thermogenesis. Methods Cre/LoxP technology coupled with targeted viral delivery to the SFO in a mouse line bearing a conditional allele of the Agtr1a gene was utilized to determine the interaction between leptin and SFO AT1aR in metabolic regulation. Results Selective deletion of AT1aR in the SFO attenuated leptin-induced weight loss independent of changes in food intake or locomotor activity. This was associated with diminished leptin-induced increases in core body temperature, blunted upregulation of BAT thermogenic markers, and abolishment of leptin-mediated sympathetic activation to BAT. Conclusions These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation. PMID:25830096

  20. Two-Point Magnitude MRI for Rapid Mapping of Brown Adipose Tissue and Its Application to the R6/2 Mouse Model of Huntington Disease

    PubMed Central

    Müller, Hans-Peter; Bornstedt, Axel; Ludolph, Albert C.; Landwehrmeyer, G. Bernhard; Rottbauer, Wolfgang; Kassubek, Jan; Rasche, Volker

    2014-01-01

    The recent discovery of active brown fat in human adults has led to renewed interest in the role of this key metabolic tissue. This is particularly true for neurodegenerative conditions like Huntington disease (HD), an adult-onset heritable disorder with a prominent energy deficit phenotype. Current methods for imaging brown adipose tissue (BAT) are in limited use because they are equipment-wise demanding and often prohibitively expensive. This prompted us to explore how a standard MRI set-up can be modified to visualize BAT in situ by taking advantage of its characteristic fat/water content ratio to differentiate it from surrounding white fat. We present a modified MRI protocol for use on an 11.7 T small animal MRI scanner to visualize and quantify BAT in wild-type and disease model laboratory mice. In this application study using the R6/2 transgenic mouse model of HD we demonstrate a significantly reduced BAT volume in HD mice vs. matched controls (n = 5 per group). This finding provides a plausible structural explanation for the previously described temperature phenotype of HD mice and underscores the significance of peripheral tissue pathology for the HD phenotype. On a more general level, the results demonstrate the feasibility of MR-based BAT imaging in rodents and open the path towards transferring this imaging approach to human patients. Future studies are needed to determine if this method can be used to track disease progression in HD and other disease entities associated with BAT abnormalities, including metabolic conditions such as obesity, cachexia, and diabetes. PMID:25144457

  1. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    SciTech Connect

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  2. Searching for signatures of cold adaptations in modern and archaic humans: hints from the brown adipose tissue genes.

    PubMed

    Sazzini, M; Schiavo, G; De Fanti, S; Martelli, P L; Casadio, R; Luiselli, D

    2014-09-01

    Adaptation to low temperatures has been reasonably developed in the human species during the colonization of the Eurasian landmass subsequent to Out of Africa migrations of anatomically modern humans. In addition to morphological and cultural changes, also metabolic ones are supposed to have favored human isolation from cold and body heat production and this can be hypothesized also for most Neandertal and at least for some Denisovan populations, which lived in geographical areas that strongly experienced the last glacial period. Modulation of non-shivering thermogenesis, for which adipocytes belonging to the brown adipose tissue are the most specialized cells, might have driven these metabolic adaptations. To perform an exploratory analysis aimed at looking into this hypothesis, variation at 28 genes involved in such functional pathway was investigated in modern populations from different climate zones, as well as in Neandertal and Denisovan genomes. Patterns of variation at the LEPR gene, strongly related to increased heat dissipation by mitochondria, appeared to have been shaped by positive selection in modern East Asians, but not in Europeans. Moreover, a single potentially cold-adapted LEPR allele, different from the supposed adaptive one identified in Homo sapiens, was found also in Neandertal and Denisovan genomes. These findings suggest that independent mechanisms for cold adaptations might have been developed in different non-African human groups, as well as that the evolution of possible enhanced thermal efficiency in Neandertals and in some Denisovan populations has plausibly entailed significant changes also in other functional pathways than in the examined one. PMID:24667833

  3. Mice lacking GPR3 receptors display late-onset obese phenotype due to impaired thermogenic function in brown adipose tissue

    PubMed Central

    Godlewski, Grzegorz; Jourdan, Tony; Szanda, Gergő; Tam, Joseph; Resat Cinar; Harvey-White, Judith; Liu, Jie; Mukhopadhyay, Bani; Pacher, Pál; Ming Mo, Fong; Osei-Hyiaman, Douglas; George Kunos

    2015-01-01

    We report an unexpected link between aging, thermogenesis and weight gain via the orphan G protein-coupled receptor GPR3. Mice lacking GPR3 and maintained on normal chow had similar body weights during their first 5 months of life, but gained considerably more weight thereafter and displayed reduced total energy expenditure and lower core body temperature. By the age of 5 months GPR3 KO mice already had lower thermogenic gene expression and uncoupling protein 1 protein level and showed impaired glucose uptake into interscapular brown adipose tissue (iBAT) relative to WT littermates. These molecular deviations in iBAT of GPR3 KO mice preceded measurable differences in body weight and core body temperature at ambient conditions, but were coupled to a failure to maintain thermal homeostasis during acute cold challenge. At the same time, the same cold challenge caused a 17-fold increase in Gpr3 expression in iBAT of WT mice. Thus, GPR3 appears to have a key role in the thermogenic response of iBAT and may represent a new therapeutic target in age-related obesity. PMID:26455425

  4. Searching for signatures of cold adaptations in modern and archaic humans: hints from the brown adipose tissue genes

    PubMed Central

    Sazzini, M; Schiavo, G; De Fanti, S; Martelli, P L; Casadio, R; Luiselli, D

    2014-01-01

    Adaptation to low temperatures has been reasonably developed in the human species during the colonization of the Eurasian landmass subsequent to Out of Africa migrations of anatomically modern humans. In addition to morphological and cultural changes, also metabolic ones are supposed to have favored human isolation from cold and body heat production and this can be hypothesized also for most Neandertal and at least for some Denisovan populations, which lived in geographical areas that strongly experienced the last glacial period. Modulation of non-shivering thermogenesis, for which adipocytes belonging to the brown adipose tissue are the most specialized cells, might have driven these metabolic adaptations. To perform an exploratory analysis aimed at looking into this hypothesis, variation at 28 genes involved in such functional pathway was investigated in modern populations from different climate zones, as well as in Neandertal and Denisovan genomes. Patterns of variation at the LEPR gene, strongly related to increased heat dissipation by mitochondria, appeared to have been shaped by positive selection in modern East Asians, but not in Europeans. Moreover, a single potentially cold-adapted LEPR allele, different from the supposed adaptive one identified in Homo sapiens, was found also in Neandertal and Denisovan genomes. These findings suggest that independent mechanisms for cold adaptations might have been developed in different non-African human groups, as well as that the evolution of possible enhanced thermal efficiency in Neandertals and in some Denisovan populations has plausibly entailed significant changes also in other functional pathways than in the examined one. PMID:24667833

  5. Concentration of rat brown adipose tissue uncoupling protein may not be correlated with /sup 3/H-GDP binding

    SciTech Connect

    Henningfield, M.F.; Swick, A.G.; Swick, R.W.

    1986-03-01

    Rats fed diets low in protein or exposed to cold show an increase in brown adipose tissue (BAT) mitochondrial /sup 3/H-GDP binding. To investigate this phenomenon further, the uncoupling protein associated with BAT function was measured immunochemically on nitrocellulose blots. Quantitation of uncoupling protein was achieved by densitometer scanning with a BioRad densitometer. Peaks were integrated with Chromatochart software and an Apple IIe computer. A standard curve of purified uncoupling protein (50 to 500 ng) was used to calculate uncoupling protein concentration. There is a 1.5-fold increase in uncoupling protein per mg of protein in BAT mitochondria from rats exposed to cold for 15 days. There was no decrease in uncoupling protein from rats exposed to the cold followed by 24 h at 27/sup 0/C although /sup 3/H-GDP binding had decreased by half. Rats fed diets containing either 5 or 15% lactalbumin for 3 weeks did not show differences in uncoupling protein concentration although /sup 3/H-GDP binding was 1.5-fold greater in BAT mitochondria from the low protein group. These results indicate that GDP binding does not necessarily reflect the concentration of uncoupling protein in BAT mitochondria.

  6. Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders

    PubMed Central

    Kim, So Hun

    2016-01-01

    Brown fat is a specialized fat depot that can increase energy expenditure and produce heat. After the recent discovery of the presence of active brown fat in human adults and novel transcription factors controlling brown adipocyte differentiation, the field of the study of brown fat has gained great interest and is rapidly growing. Brown fat expansion and/or activation results in increased energy expenditure and a negative energy balance in mice and limits weight gain. Brown fat is also able to utilize blood glucose and lipid and results in improved glucose metabolism and blood lipid independent of weight loss. Prolonged cold exposure and beta adrenergic agonists can induce browning of white adipose tissue. The inducible brown adipocyte, beige adipocyte evolving by thermogenic activation of white adipose tissue have different origin and molecular signature from classical brown adipocytes but share the characteristics of high mitochondria content, UCP1 expression and thermogenic capacity when activated. Increasing browning may also be an efficient way to increase whole brown fat activity. Recent human studies have shown possibilities that findings in mice can be reproduced in human, making brown fat a good candidate organ to treat obesity and its related disorders. PMID:26912151

  7. Sympathetic activation by chemical stimulation of white adipose tissues in rats.

    PubMed

    Shi, Zhen; Chen, Wei-Wei; Xiong, Xiao-Qing; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing

    2012-03-01

    Injection of leptin into white adipose tissue (WAT) increases sympathetic outflow. The present study was designed to determine the effects of capsaicin and other chemicals in WAT on the sympathetic outflow and blood pressure and the roles of WAT afferents and hypothalamic paraventricular nucleus (PVN) in the adipose afferent reflex (AAR). The AAR was induced by injection of capsaicin, bradykinin, adenosine, adenosine triphosphate (ATP), or leptin into inguinal WAT (iWAT) or retroperitoneal WAT (rWAT) in anesthetized rats. The iWAT injection of capsaicin increased the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) but not the heart rate. Bradykinin, adenosine, or leptin but not ATP in the iWAT caused similar effects to capsaicin on the RSNA and MAP. Intravenous, intramuscular, or intradermal injection of capsaicin had no significant effects on the RSNA and MAP. The effects of capsaicin in rWAT were similar to that in iWAT on the RSNA and MAP. Furthermore, injection of capsaicin into the iWAT increased the WAT afferent nerve activities, WAT efferent nerve activity, and brown adipose tissue efferent nerve activity. The iWAT denervation or chemical lesion of the PVN neurons with kainic acid abolished the AAR induced by the iWAT injection of capsaicin. These results indicate that the stimulation of iWAT afferents with capsaicin, bradykinin, adenosine, or leptin reflexly increases the RSNA and blood pressure. The iWAT afferents and the PVN are involved in the AAR induced by capsaicin in the iWAT. PMID:22223453

  8. Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy.

    PubMed

    Nirengi, Shinsuke; Homma, Toshiyuki; Inoue, Naohiko; Sato, Hitoshi; Yoneshiro, Takeshi; Matsushita, Mami; Kameya, Toshimitsu; Sugie, Hiroki; Tsuzaki, Kokoro; Saito, Masayuki; Sakane, Naoki; Kurosawa, Yuko; Hamaoka, Takafumi

    2016-09-01

    18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDGPET/CT) is widely used as a standard method for evaluating human brown adipose tissue (BAT), a recognized therapeutic target of obesity. However, a longitudinal BAT study using FDG-PET/CT is lacking owing to limitations of the method. Near-infrared time-resolved spectroscopy (NIR(TRS)) is a technique for evaluating human BAT density noninvasively. This study aimed to test whether NIRTRS could detect changes in BAT density during or after long-term intervention. First, using FDG-PET/CT, we confirmed a significant increase (+48.8%, P < 0.05) in BAT activity in the supraclavicular region after 6-week treatment with thermogenic capsaicin analogs, capsinoids. Next, 20 volunteers were administered either capsinoids or placebo daily for 8 weeks in a double-blind design, and BAT density was measured using NIR(TRS) every 2 weeks during the 8-week treatment period and an 8-week period after stopping treatment. Consistent with FDG-PET/CT results, NIR(TRS) successfully detected an increase in BAT density during the 8-week treatment (+46.4%, P < 0.05), and a decrease in the 8-week follow-up period (-12.5%, P = 0.07), only in the capsinoid-treated, but not the placebo, group. Thus, NIR(TRS) can be applied for quantitative assessment of BAT in longitudinal intervention studies in humans. PMID:27135066

  9. Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes.

    PubMed

    Than, Aung; He, Hui Ling; Chua, Si Hui; Xu, Dan; Sun, Lei; Leow, Melvin Khee-Shing; Chen, Peng

    2015-06-01

    Brown adipose tissue expends energy in the form of heat via the mitochondrial uncoupling protein UCP1. Recent studies showed that brown adipose tissue is present in adult humans and may be exploited for its anti-obesity and anti-diabetes actions. Apelin is an adipocyte-derived hormone that plays important roles in energy metabolism. Here, we report that apelin-APJ signaling promotes brown adipocyte differentiation by increasing the expressions of brown adipogenic and thermogenic transcriptional factors via the PI3K/Akt and AMPK signaling pathways. It is also found that apelin relieves the TNFα inhibition on brown adipogenesis. In addition, apelin increases the basal activity of brown adipocytes, as evidenced by the increased PGC1α and UCP1 expressions, mitochondrial biogenesis, and oxygen consumption. Finally, we provide both in vitro and in vivo evidence that apelin is able to increase the brown-like characteristics in white adipocytes. This study, for the first time, reveals the brown adipogenic and browning effects of apelin and suggests a potential therapeutic route to combat obesity and related metabolic disorders. PMID:25931124

  10. Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes*

    PubMed Central

    Than, Aung; He, Hui Ling; Chua, Si Hui; Xu, Dan; Sun, Lei; Leow, Melvin Khee-Shing; Chen, Peng

    2015-01-01

    Brown adipose tissue expends energy in the form of heat via the mitochondrial uncoupling protein UCP1. Recent studies showed that brown adipose tissue is present in adult humans and may be exploited for its anti-obesity and anti-diabetes actions. Apelin is an adipocyte-derived hormone that plays important roles in energy metabolism. Here, we report that apelin-APJ signaling promotes brown adipocyte differentiation by increasing the expressions of brown adipogenic and thermogenic transcriptional factors via the PI3K/Akt and AMPK signaling pathways. It is also found that apelin relieves the TNFα inhibition on brown adipogenesis. In addition, apelin increases the basal activity of brown adipocytes, as evidenced by the increased PGC1α and UCP1 expressions, mitochondrial biogenesis, and oxygen consumption. Finally, we provide both in vitro and in vivo evidence that apelin is able to increase the brown-like characteristics in white adipocytes. This study, for the first time, reveals the brown adipogenic and browning effects of apelin and suggests a potential therapeutic route to combat obesity and related metabolic disorders. PMID:25931124

  11. Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes.

    PubMed

    Townsend, K L; Tseng, Y-H

    2015-08-01

    Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed 'browning'. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of 'browning'. We also provide an overview of constitutive BAT vs rBAT in mouse and human. PMID:27152169

  12. Mitochondria in White, Brown, and Beige Adipocytes

    PubMed Central

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  13. Acute effects of food, 2-deoxy-D-glucose and noradrenaline on metabolic rate and brown adipose tissue in normal and atropinised lean and obese (fa/fa) Zucker rats.

    PubMed

    Rothwell, N J; Saville, M E; Stock, M J

    1981-12-01

    1. Intragastric feeding (40 kJ) produced a 17% rise in metabolic rate in lean Zucker rats but only an 8% increase in obese (fa/fa) rats, and both of these responses were significantly reduced by beta-adrenergic blockade with propranolol (10 mg/kg, s.c.). 2. Parasympathetic blockade with atropine (0.5 mg/kg, s.c.) caused a doubling of the response to food in lean rats and a threefold increase in the obese mutants, such that all atropinised animals showed the same increase in metabolic rate after food. 3. Feeding also caused a significant rise in interscapular brown adipose tissue temperature, which was greatest in the lean animals and was enhanced by atropine in both groups. 4. Injection of noradrenaline (250 micrograms/kg, s.c.) caused a similar (40%) rise in metabolic rate in lean and obese animals but this response was unaffected by atropine. 5. 2-Deoxy-D-glucose injection (360 mg/kg, s.c.) depressed oxygen consumption by 25 and 8% in lean and obese rats respectively and this effect was totally abolished by atropine. 6. These results suggest that the rise in metabolic rate after a meal is partly due to sympathetic activation of brown adipose tissue. The reduced thermic response in obese Zucker rats is not due to insensitivity to noradrenaline, but may be partly due to parasympathetic inhibition of thermogenesis and partly to insensitivity to glucose availability. PMID:7322844

  14. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  15. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis

    PubMed Central

    McGlashon, Jacob M.; Gorecki, Michelle C.; Kozlowski, Amanda E.; Thirnbeck, Caitlin K.; Markan, Kathleen R.; Leslie, Kirstie L.; Kotas, Maya E.; Potthoff, Matthew J.; Richerson, George B.; Gillum, Matthew P.

    2015-01-01

    Summary Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the central nervous system are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1bf/f/p mice, in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes. PMID:25955206

  16. Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat

    PubMed Central

    Mohammed, Mazher; Ootsuka, Youichirou

    2014-01-01

    Body temperature increases when individuals experience salient, emotionally significant events. There is controversy concerning the contribution of nonshivering thermogenesis in brown adipose tissue (BAT) to emotional hyperthermia. In the present study we compared BAT, core body, and brain temperature, and tail blood flow, simultaneously measured, to determine whether BAT thermogenesis contributes to emotional hyperthermia in a resident Sprague-Dawley rat when an intruder rat, either freely-moving or confined to a small cage, is suddenly introduced into the cage of the resident rat for 30 min. Introduction of the intruder rat promptly increased BAT, body, and brain temperatures in the resident rat. For the caged intruder these temperature increases were 1.4 ± 0.2, 0.8 ± 0.1, 1.0 ± 0.1°C, respectively, with the increase in BAT temperature being significantly greater (P < 0.01) than the increases in body and brain. The initial 5-min slope of the BAT temperature record (0.18 ± 0.02°C/min) was significantly greater (P < 0.01) than the corresponding value for body (0.10 ± 0.01°C/min) and brain (0.09 ± 0.02°C/min). Tail artery pulse amplitude fell acutely when the intruder rat was introduced, possibly contributing to the increases in body and brain temperature. Prior blockade of β3 adrenoceptors (SR59230A 10 mg/kg ip) significantly reduced the amplitude of each temperature increase. Intruder-evoked increases in BAT temperature were similar in resident rats maintained at 11°C for 3 days. In the caged intruder situation there is no bodily contact between the rats, so the stimulus is psychological rather than physical. Our study thus demonstrates that BAT thermogenesis contributes to increases in body and brain temperature occurring during emotional hyperthermia. PMID:24452545

  17. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction.

    PubMed

    Wang, Haibin; Shi, Jinxin; Wang, Yan; Yin, Yujing; Wang, Liman; Liu, Jianfeng; Liu, Zhiqiang; Duan, Cuimi; Zhu, Ping; Wang, Changyong

    2014-04-01

    The ability to restore heart function by replacement of diseased myocardium is one of the great challenges in biomaterials and regenerative medicine. Brown adipose derived stem cells (BADSCs) present a new source of cardiomyocytes to regenerate the myocardium after infarction. In this study, we explored an injectable tissue engineering strategy to repair damaged myocardium, in which chitosan hydrogels were investigated as a carrier for BADSCs. In vitro, the effect and mechanism of chitosan components on the cardiac differentiation of BADSCs were investigated. In vivo, BADSCs carrying double-fusion reporter gene (firefly luciferase and monomeric red fluorescent protein (fluc-mRFP)) were transplanted into infarcted rat hearts with or without chitosan hydrogel. Multi-techniques were used to assess the effects of treatments. We observed that chitosan components significantly enhanced cardiac differentiation of BADSCs, which was assessed by percentages of cTnT(+) cells and expression of cardiac-specific markers, including GATA-4, Nkx2.5, Myl7, Myh6, cTnI, and Cacna1a. Treatment with collagen synthesis inhibitors, cis-4-hydroxy-D-proline (CIS), significantly inhibited the chitosan-enhanced cardiac differentiation, indicating that the enhanced collagen synthesis by chitosan accounts for its promotive role in cardiac differentiation of BADSCs. Longitudinal in vivo bioluminescence imaging and histological staining revealed that chitosan enhanced the survival of engrafted BADSCs and significantly increased the differentiation rate of BADSCs into cardiomyocytes in vivo. Furthermore, BADSCs delivered by chitosan hydrogel prevented adverse matrix remodeling, increased angiogenesis, and preserved heart function. These results suggested that the injectable cardiac tissue engineering based on chitosan hydrogel and BADSCs is a useful strategy for myocardium regeneration. PMID:24508080

  18. Impact of Maternal Melatonin Suppression on Amount and Functionality of Brown Adipose Tissue (BAT) in the Newborn Sheep

    PubMed Central

    Seron-Ferre, Maria; Reynolds, Henry; Mendez, Natalia Andrea; Mondaca, Mauricio; Valenzuela, Francisco; Ebensperger, Renato; Valenzuela, Guillermo J.; Herrera, Emilio A.; Llanos, Anibal J.; Torres-Farfan, Claudia

    2015-01-01

    In human and sheep newborns, brown adipose tissue (BAT) accrued during fetal development is used for newborn thermogenesis. Here, we explored the role of maternal melatonin during gestation on the amount and functionality of BAT in the neonate. We studied BAT from six lambs gestated by ewes exposed to constant light from 63% gestation until delivery to suppress melatonin (LL), six lambs gestated by ewes exposed to LL but receiving daily oral melatonin (12 mg at 1700 h, LL + Mel) and another six control lambs gestated by ewes maintained in 12 h light:12 h dark (LD). Lambs were instrumented at 2 days of age. At 4–6 days of age, they were exposed to 24°C (thermal neutrality conditions) for 1 h, 4°C for 1 h, and 24°C for 1 h. Afterward, lambs were euthanized and BAT was dissected for mRNA measurement, histology, and ex vivo experiments. LL newborns had lower central BAT and skin temperature under thermal neutrality and at 4°C, and higher plasma norepinephrine concentration than LD newborns. In response to 4°C, they had a pronounced decrease in skin temperature and did not increase plasma glycerol. BAT weight in LL newborns was about half of that of LD newborns. Ex vivo, BAT from LL newborns showed increased basal lipolysis and did not respond to NE. In addition, expression of adipogenic/thermogenic genes (UCP1, ADBR3, PPARγ, PPARα, PGC1α, C/EBPβ, and perilipin) and of the clock genes Bmal1, Clock, and Per2 was increased. Remarkably, the effects observed in LL newborns were absent in LL + Mel newborns. Thus, our results support that maternal melatonin during gestation is important in determining amount and normal functionality of BAT in the neonate. PMID:25610428

  19. Regulation of cholesteryl ester transfer activity in adipose tissue: comparison between hamster and rat species.

    PubMed

    Shen, G X; Angel, A

    1995-07-01

    The present study demonstrates cholesteryl ester transfer activity (CETA) in cultured hamster and rat adipose tissue. Cultured hamster and rat adipose tissue fragments released CETA into the conditioned medium, and this was associated with a reciprocal decrease in adipose tissue CETA. Regional variations in adipose CETA were observed. The levels of CETA released from cultured hamster and rat adipocytes were higher than those from adipose tissue fragments. In hamsters but not in rats, the secretion of CETA from cultured adipose tissue was increased by insulin and inhibited by EDTA in a dose-dependent fashion. Monoclonal antibodies against human cholesteryl ester transfer protein inhibited the CETA secreted from hamster adipose tissue but not that from rat adipose tissue. Fasting for 24 h and a high-cholesterol saturated fat-rich diet increased adipose CETA in hamsters and rats, and this was associated with an elevation of plasma CETA only in hamsters. This supports the view that, in hamsters, adipose CETA has in situ and intravascular functions, whereas in rats the role of adipose CETA is restricted to tissue-specific functions. Hamster cholesteryl ester transfer protein may differ from rat adipose-associated CETA in the structure of the active site and the regulatory mechanism for its secretion. PMID:7631784

  20. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  1. Shc depletion stimulates brown fat activity in vivo and in vitro.

    PubMed

    Tomilov, Alexey; Bettaieb, Ahmed; Kim, Kyoungmi; Sahdeo, Sunil; Tomilova, Natalia; Lam, Adam; Hagopian, Kevork; Connell, Michelle; Fong, Jennifer; Rowland, Douglas; Griffey, Stephen; Ramsey, Jon; Haj, Fawaz; Cortopassi, Gino

    2014-12-01

    Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole-body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well-established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity. Thus, BAT stimulation therapy is a rational strategy for the looming pandemic of obesity, whose consequences and comorbidities have a huge impact on the aged. Shc-deficient mice (ShcKO) were previously shown to be lean, insulin sensitive, and resistant to high-fat diet and obesity. We investigated the contribution of BAT to this phenotype. Insulin-dependent BAT glucose uptake was higher in ShcKO mice. Primary ShcKO BAT cells exhibited increased mitochondrial respiration; increased expression of several mitochondrial and lipid-oxidative enzymes was observed in ShcKO BAT. Levels of brown fat-specific markers of differentiation, UCP1, PRDM16, ELOVL3, and Cox8b, were higher in ShcKO BAT. In vitro, Shc knockdown in BAT cell line increased insulin sensitivity and metabolic activity. In vivo, pharmacological stimulation of ShcKO BAT resulted in higher energy expenditure. Conversely, pharmacological inhibition of BAT abolished the improved metabolic parameters, that is the increased insulin sensitivity and glucose tolerance of ShcKO mice. Similarly, in vitro Shc knockdown in BAT cell lines increased their expression of UCP1 and metabolic activity. These data suggest increased BAT activity significantly contributes to the improved metabolic phenotype of ShcKO mice. PMID:25257068

  2. Shc depletion stimulates brown fat activity in vivo and in vitro

    PubMed Central

    Tomilov, Alexey; Bettaieb, Ahmed; Kim, Kyoungmi; Sahdeo, Sunil; Tomilova, Natalia; Lam, Adam; Hagopian, Kevork; Connell, Michelle; Fong, Jennifer; Rowland, Douglas; Griffey, Stephen; Ramsey, Jon; Haj, Fawaz; Cortopassi, Gino

    2014-01-01

    Adipose tissue is an important metabolic organ that integrates a wide array of homeostatic processes and is crucial for whole-body insulin sensitivity and energy metabolism. Brown adipose tissue (BAT) is a key thermogenic tissue with a well-established role in energy expenditure. BAT dissipates energy and protects against both hypothermia and obesity. Thus, BAT stimulation therapy is a rational strategy for the looming pandemic of obesity, whose consequences and comorbidities have a huge impact on the aged. Shc-deficient mice (ShcKO) were previously shown to be lean, insulin sensitive, and resistant to high-fat diet and obesity. We investigated the contribution of BAT to this phenotype. Insulin-dependent BAT glucose uptake was higher in ShcKO mice. Primary ShcKO BAT cells exhibited increased mitochondrial respiration; increased expression of several mitochondrial and lipid-oxidative enzymes was observed in ShcKO BAT. Levels of brown fat-specific markers of differentiation, UCP1, PRDM16, ELOVL3, and Cox8b, were higher in ShcKO BAT. In vitro, Shc knockdown in BAT cell line increased insulin sensitivity and metabolic activity. In vivo, pharmacological stimulation of ShcKO BAT resulted in higher energy expenditure. Conversely, pharmacological inhibition of BAT abolished the improved metabolic parameters, that is the increased insulin sensitivity and glucose tolerance of ShcKO mice. Similarly, in vitro Shc knockdown in BAT cell lines increased their expression of UCP1 and metabolic activity. These data suggest increased BAT activity significantly contributes to the improved metabolic phenotype of ShcKO mice. PMID:25257068

  3. EBF2 determines and maintains brown adipocyte identity

    PubMed Central

    Rajakumari, Sona; Wu, Jun; Ishibashi, Jeff; Hee-Woong, Lim; Giang, An-Hoa; Won, Kyoung-Jae; Reed, Randall R.; Seale, Patrick

    2013-01-01

    Summary The master transcription factor, Pparγ regulates the general differentiation program of both brown and white adipocytes. However, it has been unclear whether Pparγ also controls fat lineage-specific characteristics. Here, we show that Early B-Cell Factor-2 (Ebf2) regulates Pparγ binding activity to determine brown versus white adipocyte identity. The Ebf DNA-binding motif was highly enriched within brown adipose-specific Pparγ binding sites that we identified by genome-wide ChIP-Seq. Of the Ebf isoforms, Ebf2 was selectively expressed in brown relative to white adipocytes and was bound at brown adipose-specific Pparγ target genes. When expressed in myoblasts or white pre-adipose cells, Ebf2 recruited Pparγ to its brown-selective binding sites and reprogrammed cells to a brown fat fate. Brown adipose cells and tissue from Ebf2-deficient mice displayed a loss of brown-specific characteristics and thermogenic capacity. Together, these results identify Ebf2 as a key transcriptional regulator of brown fat cell fate and function. PMID:23499423

  4. Altered White Adipose Tissue Protein Profile in C57BL/6J Mice Displaying Delipidative, Inflammatory, and Browning Characteristics after Bitter Melon Seed Oil Treatment

    PubMed Central

    Hsieh, Cheng-Hsien; Chen, Gou-Chun; Chen, Pei-Hsuan; Wu, Ting-Feng; Chao, Pei-Min

    2013-01-01

    Objective We have previously shown that bitter melon seed oil (BMSO), which is rich in cis-9, trans-11, trans-13 conjugated linolenic acid, is more potent than soybean oil in attenuating body fat deposition in high-fat diet-induced obese C57BL/6J mice. The aim of this study was to obtain a comprehensive insight into how white adipose tissue (WAT) is affected by BMSO administration and to explore the underlying mechanisms of the anti-adiposity effect of BMSO. Methods and Results A proteomic approach was used to identify proteins differentially expressed in the WAT of mice fed diets with or without BMSO for 11 wks. The WAT was also analyzed histologically for morphological changes. Two-dimensional gel electrophoresis (pH 4–7) revealed 32 spots showing a statistically significant difference (P<0.05) in intensity in BMSO-treated mice and 30 of these were shown to code for 23 proteins (15 increased and 8 decreased expression; >2-fold change). Combined with histological evidence of macrophage infiltration and brown adipocyte recruitment, the proteomic and immunoblotting data showed that the WAT in mice subjected to long-term high dose BMSO administration was characterized by reduced caveolae formation, increased ROS insult, tissue remodeling/repair, mitochondria uncoupling, and stabilization of the actin cytoskeleton, this last change being putatively related to an increased inflammatory response. Conclusion The anti-adiposity effect of BMSO is associated with WAT delipidation, inflammation, and browning. Some novel proteins participating in these processes were identified. In addition, the BMSO-mediated WAT browning may account for the increased inflammation without causing adverse metabolic effects. PMID:24039822

  5. Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning

    PubMed Central

    Bayindir, Irem; Babaeikelishomi, Rohollah; Kocanova, Silvia; Sousa, Isabel Sofia; Lerch, Sarah; Hardt, Olaf; Wild, Stefan; Bosio, Andreas; Bystricky, Kerstin; Herzig, Stephan; Vegiopoulos, Alexandros

    2015-01-01

    De novo formation of beige/brite adipocytes from progenitor cells contributes to the thermogenic adaptation of adipose tissue and holds great potential for the therapeutic remodeling of fat as a treatment for obesity. Despite the recent identification of several factors regulating browning of white fat, there is a lack of physiological cell models for the mechanistic investigation of progenitor-mediated beige/brite differentiation. We have previously revealed prostacyclin (PGI2) as one of the few known endogenous extracellular mediators promoting de novo beige/brite formation by relaying β-adrenergic stimulation to the progenitor level. Here, we present a cell model based on murine primary progenitor cells defined by markers previously shown to be relevant for in vivo browning, including a simplified isolation procedure. We demonstrate the specific and broad induction of thermogenic gene expression by PGI2 signaling in the absence of lineage conversion, and reveal the previously unidentified nuclear relocalization of the Ucp1 gene locus in association with transcriptional activation. By profiling the time course of the progenitor response, we show that PGI2 signaling promoted progenitor cell activation through cell cycle and adhesion pathways prior to metabolic maturation toward an oxidative cell phenotype. Our results highlight the importance of core progenitor activation pathways for the recruitment of thermogenic cells and provide a resource for further mechanistic investigation. PMID:26347713

  6. Brown (BAT) and white (WAT) adipose tissue in high-fat junk food (HFJF) and chow-fed rats with dorsomedial hypothalamic lesions (DMNL rats).

    PubMed

    Bernardis, L L; Bellinger, L L

    1991-05-15

    Male weanling rats received dorsomedial hypothalamic nucleus lesions (DMNL) or sham operations and were fed for 173 postoperative days a high-fat diet and given a 32% sucrose solution as drinking fluid. This was supplemented with chocolate chip cookies, potato chips and marshmallows. Other DMNL and sham-operated controls were fed lab chow instead of the above high-fat junk food diet (HFJF) and given tap water instead of 32% sucrose solution. All animals were killed on postoperative day 174. Caloric intake per 100 g body weight was similar in all groups; however, the HFJF fed control and DMNL rats had significantly elevated carcass fat. Since HFJF-DMNL rats were not nearly as obese as the HFJF control animals, it appears that the DMNL offered some protection against the HFJF-diet-produced obesity. When their smaller body size is considered. DMN lesions had no effect on brown adipose tissue (BAT) mass in chow-fed or HFJF fed rats, whereas BAT size was significantly enlarged in HFJF-fed control animals. This suggests but does not prove that HFJF-fed controls, but not DMNL rats, may be using dietary-induced thermogenesis (DIT) to attenuate their obesity. We hypothesize that the HFJF-fed DMNL may not be enhancing DIT as reflected in normal BAT size, because they had not attained a degree of fatness to activate this system, or the DMN lesions impaired its activation. Both HFJF-fed groups showed reduced linear growth compared to their counterparts. The reason for stunting is uncertain, but may be related to their low plasma insulin concentrations. PMID:1867761

  7. Metabolically Active Brown Fat Mimicking Pericardial Metastasis on PET/CT: The Discriminating Role of Cardiac Magnetic Resonance Imaging.

    PubMed

    Pagé, Maude; Quarto, Cesare; Mancuso, Enrico; Mohiaddin, Raad H

    2016-08-01

    Metabolically active mediastinal brown adipose tissue may be mistakenly diagnosed as a malignancy on 18F-fluoro-2-deoxy-D-glucose (FDG)/positron emission tomography (PET). We report the case of a patient with locally recurrent breast carcinoma in which staging PET/CT revealed a suspicious pericardial lesion for which the patient was referred to our centre. The novelty of this case resides in the fact that by tissue characterization, cardiac magnetic resonance imaging allowed the determination that the lesion corresponded to brown fat, a reassuring finding with important impact on management, because the presence of pericardial metastasis would have disqualified this patient for curative resection of her cancer recurrence. PMID:26860773

  8. Imaging human brown adipose tissue under room temperature conditions with 11C-MRB, a selective norepinephrine transporter PET ligand

    PubMed Central

    Hwang, Janice J.; Yeckel, Catherine W.; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E.; Sherwin, Robert; Ding, Yu-Shin

    2015-01-01

    Introduction Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with 11C-MRB ((S,S)-11C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Methods Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7 kg/m2; 5 F: age 25.4±2.1, BMI 22.1±1.0 kg/m2) underwent 11C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to 18F-FDG PET-CT imaging. Uptake of 11C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. Results As expected, 18F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT 11C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of 11C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with 18F-FDG (p=0.63). Furthermore, there were gender differences in 11C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in 11C-MRB as a function of both body composition and body temperature. Conclusions Unlike 18F-FDG, the uptake of 11C-MRB in BAT offers a unique opportunity to

  9. Triiodothyronine causes rapid reversal of alpha 1/cyclic adenosine monophosphate synergism on brown adipocyte respiration and type II deiodinase activity.

    PubMed

    Noronha, M; Raasmaja, A; Moolten, N; Larsen, P R

    1991-12-01

    Previous studies have shown that thyroid status affects the response of brown adipose tissue (BAT) to the sympathetic nervous system. For example, hypothyroidism is associated with the development of a marked synergism between alpha 1- and beta-adrenergic pathways to stimulate type II iodothyronine 5'-deiodinase activity. Hypothyroidism also attenuates the respiratory response (thermogenesis) of isolated brown adipocytes to norepinephrine. To explore the interactions of the sympathetic nervous system and thyroid status in these cells, we compared the thermogenic and 5'-deiodinase responses to adrenergic agonists in isolated brown adipocytes from hypothyroid rats during treatment with 3,5,3'-triiodothyronine (T3). The fivefold synergism of alpha 1- and beta-adrenergic catecholamines to increase the deiodinase activity was progressively reduced, reaching a control euthyroid value of unity after 5 days of T3 treatment. Hypothyroidism reduced both the O2max (twofold to threefold) and increased the concentration of agonist required for 50% stimulation (10-fold) for both norepinephrine and forskolin. In hypothyroid cells, there was a twofold synergism between the alpha 1-agonist cirazoline and forskolin to increase respiration, which was blocked by prazosin and reproduced by the calcium ionophore, A23187. This synergistic effect of the alpha 1-agonist was lost within 2 days of T3 administration. These studies identify a second Ca(2+)-dependent intra-adrenergic synergism, which functions to ameliorate the reduced cyclic adenosine monophosphate (cAMP) responsiveness of the hypothyroid brown adipocyte. PMID:1683679

  10. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity.

    PubMed

    Chen, Yong; Buyel, Joschka J; Hanssen, Mark J W; Siegel, Franziska; Pan, Ruping; Naumann, Jennifer; Schell, Michael; van der Lans, Anouk; Schlein, Christian; Froehlich, Holger; Heeren, Joerg; Virtanen, Kirsi A; van Marken Lichtenbelt, Wouter; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy and its activity correlates with leanness in human adults. (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography coupled with computer tomography (PET/CT) is still the standard for measuring BAT activity, but exposes subjects to ionizing radiation. To study BAT function in large human cohorts, novel diagnostic tools are needed. Here we show that brown adipocytes release exosomes and that BAT activation increases exosome release. Profiling miRNAs in exosomes released from brown adipocytes, and in exosomes isolated from mouse serum, we show that levels of miRNAs change after BAT activation in vitro and in vivo. One of these exosomal miRNAs, miR-92a, is also present in human serum exosomes. Importantly, serum concentrations of exosomal miR-92a inversely correlate with human BAT activity measured by (18)F-FDG PET/CT in two unique and independent cohorts comprising 41 healthy individuals. Thus, exosomal miR-92a represents a potential serum biomarker for BAT activity in mice and humans. PMID:27117818

  11. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity

    PubMed Central

    Chen, Yong; Buyel, Joschka J.; Hanssen, Mark J. W.; Siegel, Franziska; Pan, Ruping; Naumann, Jennifer; Schell, Michael; van der Lans, Anouk; Schlein, Christian; Froehlich, Holger; Heeren, Joerg; Virtanen, Kirsi A.; van Marken Lichtenbelt, Wouter; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy and its activity correlates with leanness in human adults. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography coupled with computer tomography (PET/CT) is still the standard for measuring BAT activity, but exposes subjects to ionizing radiation. To study BAT function in large human cohorts, novel diagnostic tools are needed. Here we show that brown adipocytes release exosomes and that BAT activation increases exosome release. Profiling miRNAs in exosomes released from brown adipocytes, and in exosomes isolated from mouse serum, we show that levels of miRNAs change after BAT activation in vitro and in vivo. One of these exosomal miRNAs, miR-92a, is also present in human serum exosomes. Importantly, serum concentrations of exosomal miR-92a inversely correlate with human BAT activity measured by 18F-FDG PET/CT in two unique and independent cohorts comprising 41 healthy individuals. Thus, exosomal miR-92a represents a potential serum biomarker for BAT activity in mice and humans. PMID:27117818

  12. Effect of glucocorticoids on the activity, expression and proximal promoter of type II deiodinase in rat brown adipocytes.

    PubMed

    Martinez-deMena, Raquel; Calvo, Rosa-Maria; Garcia, Laura; Obregon, Maria Jesus

    2016-06-15

    Triiodothyronine (T3) is important for thermogenesis in brown adipose tissue (BAT). Type II deiodinase (DIO2) produces T3 required for intracellular needs in BAT. Brown adipocytes in culture require T3 for the adrenergic stimulation of DIO2. Glucocorticoids induce adipocyte differentiation (lipogenesis). We investigated the regulation of DIO2 activity, Dio2 mRNA and Dio2 promoter activity by glucocorticoids in primary cultures of rat brown adipocytes using dexamethasone (DEX) and hydrocortisone (HC). DEX and HC regulated the adrenergic stimulation of DIO2 activity in a dose- and time-dependent manner, inhibiting DIO2 activity at short treatment times and large doses (1-10 μM) and stimulating DIO2 at low HC doses (1-100 nM) and longer times (DEX). Insulin depletion reduced DIO2 activity but the response to glucocorticoids remained unchanged. DEX and HC inhibited basal DIO2 activity. DEX had no effect on DIO2 half-life, whereas HC stabilized DIO2 activity. DEX and HC inhibited the adrenergic stimulation of Dio2 mRNA expression (100-10000 nM, 14-96 h), but stabilized Dio2 mRNA, particularly DEX. DEX increased basal Dio2 mRNA levels, possibly through stabilization of Dio2 mRNA. An 807 bp construct of the murine Dio2 proximal promoter showed maximal reporter activity, with the cAMP response element (CRE) essential for transcriptional activity. DEX caused inhibition in most constructs containing the CRE element whereas HC stimulated reporter activity in the 807 bp construct. Glucocorticoids inhibited the adrenergic stimulation of Dio2 at the transcriptional level in brown adipocytes, although DIO2 activity increased with HC, possibly due to stabilization of Dio2 activity and mRNA. The CRE and cEBP elements of the Dio2 promoter seem involved in the regulation by glucocorticoids. PMID:26994513

  13. Active commuting to school and association with physical activity and adiposity among US youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Walking or bicycling to school, i.e., "active commuting", was associated with greater physical activity and lower adiposity. However, findings were mixed and may be due to small sample sizes, subjectively measured physical activity, or not controlling for dietary energy intake. Our objective was to ...

  14. Active commuting to school and association with physical activity and adiposity among US youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Walking or bicycling to school, i.e. active commuting, has shown promise for improving physical activity and preventing obesity in youth. Our objectives were to examine, among US youth, whether active commuting was inversely associated with adiposity and positively associated with moderate-to vigoro...

  15. Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue.

    PubMed

    Drägert, Katja; Bhattacharya, Indranil; Hall, Michael N; Humar, Rok; Battegay, Edouard; Haas, Elvira

    2016-04-22

    In adipose tissue mTOR complex 2 (mTORC2) contributes to the regulation of glucose/lipid metabolism and inflammatory molecule expression. Both processes display diurnal variations during the course of the day. RICTOR and mSIN1 are unique and essential components of mTORC2, which is activated by growth factors including insulin. To assess whether mTORC2 components display diurnal variations, we analyzed steady state mRNA expression levels of Rictor, mSin1, and mTor in various adipose tissues during a 24 h period. Diurnally regulated expression of Rictor was detected in brown adipose tissues displaying highest mRNA expression levels at the beginning of the 12 h light period (zeitgeber time 2, ZT2). Gene expression patterns of mSin1 and mTor displayed a similar diurnal regulation as Rictor in PVAT while smaller changes were detected for these genes in aorta during the course of the day. Basal mTORC2 activity was measured by phosphorylation of protein kinase C (PKC) α at serine 657 was higher at ZT14 as compared with ZT2 in PVAT. In line, gene expression of inflammatory molecules nitric oxide synthase 2 and tumor necrosis factor α was lower at ZT 14 compared to ZT2. Our findings provide evidence for a diurnal regulation of expression of mTORC2 components and activity. Hence, mTORC2 is possibly an integral part of diurnally regulated signaling pathways in PVAT and possibly in other adipose tissues. PMID:27016480

  16. Adipose tissue and vascular phenotypic modulation by voluntary physical activity and dietary restriction in obese insulin-resistant OLETF rats

    PubMed Central

    Crissey, Jacqueline M.; Jenkins, Nathan T.; Lansford, Kasey A.; Thorne, Pamela K.; Bayless, David S.; Vieira-Potter, Victoria J.; Rector, R. Scott; Thyfault, John P.; Laughlin, M. Harold

    2014-01-01

    Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation. PMID:24523340

  17. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  18. Comparative proteome analysis of brown adipose tissue in obese C57BL/6J mice using iTRAQ-coupled 2D LC-MS/MS.

    PubMed

    Li, Juan; Zhao, Wei-Gang; Shen, Zhu-Fang; Yuan, Tao; Liu, Shuai-Nan; Liu, Quan; Fu, Yong; Sun, Wei

    2015-01-01

    High-fat diet (HFD) leads to the development of obesity accompanied by insulin resistance, which increases the risk of type 2 diabetes mellitus and cardiovascular disease. Brown adipose tissue (BAT) plays an essential role in energy metabolism, thus it will give us promising treatment targets through elucidating underlying mechanisms of BAT in obesity. In this study, female C57BL/6J mice were fed HFD or normal diet (ND) for 22 weeks. Hyperinsulinemic-euglycemic clamp was performed to evaluate insulin sensitivity, which was independently correlated with obesity. Using isobaric tag for relative and absolute quantification (iTRAQ) coupled with 2D LC-MS/MS, we quantitated 3048 proteins in BAT. As compared HFD with ND, we obtained 727 differentially expressed proteins. Functional analysis found that those proteins were mainly assigned to the pathway of mitochondrial function. In this pathway, carnitine O-palmitoyltransferase 2 (CPT2), uncoupling protein 1 (UCP1) and apoptosis-inducing factor 1 (AIF1) were up-regulated significantly by HFD, and they were confirmed by western blotting. The results indicated that HFD might induce the apoptosis of brown adipocytes via the up-regulated AIF1. Meanwhile, HFD also stimulated fatty acid β-oxidation and raised compensatory energy consuming through the increases of CPT2 and UCP1, respectively. However, the apoptosis of brown adipocytes might weaken the compensatory energy expenditure, and finally contribute to overweight/obesity. So, preventing the apoptosis of brown adipocytes may be the key target to treat obesity. PMID:25747866

  19. Effect of Chronic Athletic Activity on Brown Fat in Young Women

    PubMed Central

    Singhal, Vibha; Maffazioli, Giovana D.; Ackerman, Kate E.; Lee, Hang; Elia, Elisa F.; Woolley, Ryan; Kolodny, Gerald; Cypess, Aaron M.; Misra, Madhusmita

    2016-01-01

    Background The effect of chronic exercise activity on brown adipose tissue (BAT) is not clear, with some studies showing positive and others showing negative associations. Chronic exercise is associated with increased resting energy expenditure (REE) secondary to increased lean mass and a probable increase in BAT. Many athletes are in a state of relative energy deficit suggested by lower fat mass and hypothalamic amenorrhea. States of severe energy deficit such as anorexia nervosa are associated with reduced BAT. There are no data regarding the impact of chronic exercise activity on BAT volume or activity in young women and it is unclear whether relative energy deficiency modifies the effects of exercise on BAT. Purpose We assessed cold induced BAT volume and activity in young female athletes compared with non-athletes, and further evaluated associations of BAT with measures of REE, body composition and menstrual status. Methods The protocol was approved by our Institutional Review Board. Written informed consent was obtained from all participants prior to study initiation. This was a cross-sectional study of 24 women (16 athletes and8 non-athletes) between 18–25 years of age. Athletes were either oligo-amenorrheic (n = 8) or eumenorrheic (n = 8).We used PET/CT scans to determine cold induced BAT activity, VMAX Encore 29 metabolic cart to obtain measures of REE, and DXA for body composition. Results Athletes and non-athletes did not differ for age or BMI. Compared with non-athletes, athletes had lower percent body fat (p = 0.002), higher percent lean mass (p = 0.01) and trended higher in REE (p = 0.09). BAT volume and activity in athletes trended lower than in non-athletes (p = 0.06; p = 0.07, respectively). We found negative associations of BAT activity with duration of amenorrhea (r = -0.46, p = 0.02).BAT volume correlated inversely with lean mass (r = -0.46, p = 0.02), and positively with percent body fat, irisin and thyroid hormones. Conclusions Our study

  20. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  1. Activity of thyroxine 5' deiodinase in brown fat of lean and obese zucker rats

    SciTech Connect

    Wu, S.Y.; Fisher, D.A.; Stern, J.S.; Glick, Z.

    1986-03-01

    This study examines the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for conversion of T/sub 4/ to T/sub 3/ in BAT, through activity of T/sub 4/ 5' deiodinase. Eighteen lean (Fa/.) and 18 age matched obese (fa/fa), about 16 weeks old, were each divided into 3 groups (n=6 per group). Group 1 and 2 were fed Purina Rat Chow and a cafeteria diet respectively for 21 days, and maintained at 22/sup 0/C+/-2. Group 3 was fed rat chow and maintained at 8/sup 0/C+/-1 for 7 days. Activity of T/sub 4/5'deiodinase was determined in vitro. T/sub 3/ was measured by a radioimmunoassay. The rate of T/sub 4/ to T/sub 3/ conversion was similar in the lean and the obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet (about 40 to 50 pmol T/sub 3//scapular BAT depot, per hour). However, lean rats exposed to the cold displayed about a 5 fold increase in T/sub 4/5' deiodinase activity (p<0.0001), with only a small increase displayed by the cold exposed obese rats. Our data suggest that a reduced capacity of the brown rat to produce T/sub 3/ may account for the reduced tolerance of obese animals to cold, but it does not account for their reduced diet induced BAT thermogenesis.

  2. Adipose triglyceride lipase (Atgl) mediates the antibiotic jinggangmycin-stimulated reproduction in the brown planthopper, Nilaparvata lugens Stål

    PubMed Central

    Jiang, Yi-Ping; Li, Lei; Liu, Zong-Yu; You, Lin-Lin; Wu, You; Xu, Bing; Ge, Lin-Quan; Song, Qi-Sheng; Wu, Jin-Cai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is an agrochemical product widely used in China for controlling rice sheath blight, Rhizoctonia solani. Unexpectedly, it stimulates reproduction in the brown planthopper (BPH), Nilaparvata lugens (Stål). However, the underlying molecular mechanisms of the stimulation are unclear. The present investigation demonstrates that adipose triglyceride lipase (Atgl) is one of the enzymes involved in the JGM-stimulated reproduction in BPH. Silence of Atgl in JGM-treated (JGM + dsAtgl) females eliminated JGM-stimulated fecundity of BPH females. In addition, Atgl knockdown significantly reduced the protein and glycerin contents in the ovaries and fat bodies of JGM + dsAtgl females required for reproduction. We conclude that Atgl is one of the key enzymes responsible for JGM-stimulated reproduction in BPH. PMID:26739506

  3. Adipose triglyceride lipase (Atgl) mediates the antibiotic jinggangmycin-stimulated reproduction in the brown planthopper, Nilaparvata lugens Stål.

    PubMed

    Jiang, Yi-Ping; Li, Lei; Liu, Zong-Yu; You, Lin-Lin; Wu, You; Xu, Bing; Ge, Lin-Quan; Song, Qi-Sheng; Wu, Jin-Cai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is an agrochemical product widely used in China for controlling rice sheath blight, Rhizoctonia solani. Unexpectedly, it stimulates reproduction in the brown planthopper (BPH), Nilaparvata lugens (Stål). However, the underlying molecular mechanisms of the stimulation are unclear. The present investigation demonstrates that adipose triglyceride lipase (Atgl) is one of the enzymes involved in the JGM-stimulated reproduction in BPH. Silence of Atgl in JGM-treated (JGM + dsAtgl) females eliminated JGM-stimulated fecundity of BPH females. In addition, Atgl knockdown significantly reduced the protein and glycerin contents in the ovaries and fat bodies of JGM + dsAtgl females required for reproduction. We conclude that Atgl is one of the key enzymes responsible for JGM-stimulated reproduction in BPH. PMID:26739506

  4. Movements and activity of juvenile Brown Treesnakes (Boiga irregularis)

    USGS Publications Warehouse

    Lardner, Bjorn; Savidge, Julie A.; Reed, Robert N.; Rodda, Gordon H.

    2014-01-01

    Understanding the spatial ecology and foraging strategy of invasive animals is essential for success in control or eradication. We studied movements and activity in juvenile Brown Treesnakes on Guam, as this population segment has proven particularly difficult to control. Distance between daytime refugia (from telemetry of 18 juveniles, 423-800 mm snout-vent length) ranged from 0-118 m (n  =  86), with a grand mean of 43 m. There were tendencies for shorter snake movements on nights directly following a full moon and on dry nights, but variation among snakes was of a larger magnitude and would greatly reduce chances to detect moon or rain effects unless corrected for. Snake activity was estimated from audio recordings of signals from “tipping” radio transmitters, analyzed for pulse period and amplitude. Activity was highest in the hours immediately after sunset, and gradually declined throughout the night before dropping abruptly in conjunction with sunrise. Snake activity was higher on rainy nights, and tended to be highest during waning moons and when the moon was below the horizon. We conclude that small Brown Treesnakes forage actively and appear to move far enough to regularly encounter the traps and bait used on Guam for control purposes, suggesting that alternative explanations are required for their low capture rates with these control tools.

  5. Absence of intracellular ion channels TPC1 and TPC2 leads to mature-onset obesity in male mice, due to impaired lipid availability for thermogenesis in brown adipose tissue.

    PubMed

    Lear, Pamela V; González-Touceda, David; Porteiro Couto, Begoña; Viaño, Patricia; Guymer, Vanessa; Remzova, Elena; Tunn, Ruth; Chalasani, Annapurna; García-Caballero, Tomás; Hargreaves, Iain P; Tynan, Patricia W; Christian, Helen C; Nogueiras, Rubén; Parrington, John; Diéguez, Carlos

    2015-03-01

    Intracellular calcium-permeable channels have been implicated in thermogenic function of murine brown and brite/beige adipocytes, respectively transient receptor potential melastin-8 and transient receptor potential vanilloid-4. Because the endo-lysosomal two-pore channels (TPCs) have also been ascribed with metabolic functionality, we studied the effect of simultaneously knocking out TPC1 and TPC2 on body composition and energy balance in male mice fed a chow diet. Compared with wild-type mice, TPC1 and TPC2 double knockout (Tpcn1/2(-/-)) animals had a higher respiratory quotient and became obese between 6 and 9 months of age. Although food intake was unaltered, interscapular brown adipose tissue (BAT) maximal temperature and lean-mass adjusted oxygen consumption were lower in Tpcn1/2(-/-) than in wild type mice. Phosphorylated hormone-sensitive lipase expression, lipid density and expression of β-adrenergic receptors were also lower in Tpcn1/2(-/-) BAT, whereas mitochondrial respiratory chain function and uncoupling protein-1 expression remained intact. We conclude that Tpcn1/2(-/-) mice show mature-onset obesity due to reduced lipid availability and use, and a defect in β-adrenergic receptor signaling, leading to impaired thermogenic activity, in BAT. PMID:25545384

  6. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21

    PubMed Central

    Kim, Eun Kyung; Lee, Seung Hoon; Jhun, Joo Yeon; Byun, Jae Kyeong; Jeong, Jeong Hee; Lee, Seon-Young; Kim, Jae Kyung; Choi, Jong Young; Cho, Mi-La

    2016-01-01

    Obesity and its associated metabolic disorders are related to the onset of fatty liver and the balance of white adipose tissue (WAT) and brown adipose tissue (BAT). We hypothesized that metformin, an effective pharmacological treatment for type 2 diabetes, would inhibit white adipogenesis, fatty liver, and metabolic dysfunction. Metformin was treated daily for 14 weeks in a high-fat dieting C57BL/6J mice. Serum biomarkers were analyzed and protein level was assessed using confocal staining or flow cytometry. The development of lipid drops in the liver cells and white adipocyte was measured using hematoxylin and eosin or Oil Red O stains. Gene expressions were analyzed with quantitative real-time PCR. Metformin treatment decreased the body weight and improved the metabolic profile of obese mice. In obese mice, metformin also induced the expression of BAT-related markers and increased fibroblast growth factor (FGF) 21 expression in the liver and in white adipocyte. Metformin suppressed white adipocyte differentiation via induction of FGF21. Metformin improves Treg/Th17 balance in CD4+ T cells in mice with high-fat diet-induced obesity. Metformin also improves glucose metabolism and metabolic disorder. Interleukin-17 deficiency also decreases inflammation in mice. Therefore, metformin may be therapeutically useful for the treatment of obesity and metabolic dysfunction. PMID:27057099

  7. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21.

    PubMed

    Kim, Eun Kyung; Lee, Seung Hoon; Jhun, Joo Yeon; Byun, Jae Kyeong; Jeong, Jeong Hee; Lee, Seon-Young; Kim, Jae Kyung; Choi, Jong Young; Cho, Mi-La

    2016-01-01

    Obesity and its associated metabolic disorders are related to the onset of fatty liver and the balance of white adipose tissue (WAT) and brown adipose tissue (BAT). We hypothesized that metformin, an effective pharmacological treatment for type 2 diabetes, would inhibit white adipogenesis, fatty liver, and metabolic dysfunction. Metformin was treated daily for 14 weeks in a high-fat dieting C57BL/6J mice. Serum biomarkers were analyzed and protein level was assessed using confocal staining or flow cytometry. The development of lipid drops in the liver cells and white adipocyte was measured using hematoxylin and eosin or Oil Red O stains. Gene expressions were analyzed with quantitative real-time PCR. Metformin treatment decreased the body weight and improved the metabolic profile of obese mice. In obese mice, metformin also induced the expression of BAT-related markers and increased fibroblast growth factor (FGF) 21 expression in the liver and in white adipocyte. Metformin suppressed white adipocyte differentiation via induction of FGF21. Metformin improves Treg/Th17 balance in CD4+ T cells in mice with high-fat diet-induced obesity. Metformin also improves glucose metabolism and metabolic disorder. Interleukin-17 deficiency also decreases inflammation in mice. Therefore, metformin may be therapeutically useful for the treatment of obesity and metabolic dysfunction. PMID:27057099

  8. 1-Benzyl-4-phenyl-1H-1,2,3-triazoles improve the transcriptional functions of estrogen-related receptor γ and promote the browning of white adipose.

    PubMed

    Xu, Shilin; Mao, Liufeng; Ding, Ping; Zhuang, Xiaoxi; Zhou, Yang; Yu, Lei; Liu, Yingxue; Nie, Tao; Xu, Tingting; Xu, Yong; Liu, Jinsong; Smaill, Jeff; Ren, Xiaomei; Wu, Donghai; Ding, Ke

    2015-07-01

    The estrogen-related receptor γ (ERRγ) is a potential molecular target for the development of small molecules to stimulate the adipose browning process, which may represent a novel attractive strategy to treat obesity related disorders. The receptor possesses a very small ligand binding cavity and therefore identification of small molecule ERRγ modulators is a considerable challenge. We have successfully designed and synthesized a series of 1-benzyl-4-phenyl-1H-1,2,3-triazoles and demonstrated that they improve the transcriptional functions of ERRγ, potently elevating both the mRNA levels and the protein levels of ERRγ downstream targets. One of the most promising compounds, 4-(1-(4-iso-propylbenzyl)-1H-1,2,3-triazol-4-yl)benzene-1,2-diol (2e) was further shown to directly bind with the ERRγ ligand binding domain (ERRγ-LBD) in an isothermal calorimetric (ITC) assay and to thermally stabilize ERRγ-LBD protein by increasing its melting temperature (Tm) as demonstrated by circular dichroism (CD) spectroscopy. Furthermore, 2e potently stimulates the adipocyte browning process and induces mitochondrial biogenesis both in vitro and in vivo, suggesting the considerable therapeutic potential of this compound for the treatment of obesity and related disorders. PMID:25910584

  9. The brown fat secretome: metabolic functions beyond thermogenesis

    PubMed Central

    Wang, Guo-Xiao; Zhao, Xu-Yun; Lin, Jiandie D.

    2015-01-01

    Brown fat is highly active in fuel oxidation and dissipates chemical energy through uncoupling protein 1 (UCP1)-mediated heat production. Activation of brown fat leads to increased energy expenditure, reduced adiposity, and lower plasma glucose and lipid levels, thus contributing to better homeostasis. Uncoupled respiration and thermogenesis have been considered to be responsible for the metabolic benefits of brown adipose tissue. Recent studies have demonstrated that brown adipocytes also secrete factors that act locally and systemically to influence fuel and energy metabolism. This review discusses the evidence supporting a thermogenesis-independent role of brown fat, particularly through its release of secreted factors, and their implications in physiology and therapeutic development. PMID:25843910

  10. Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue.

    PubMed

    Nadra, Karim; Médard, Jean-Jacques; Mul, Joram D; Han, Gil-Soo; Grès, Sandra; Pende, Mario; Metzger, Daniel; Chambon, Pierre; Cuppen, Edwin; Saulnier-Blache, Jean-Sébastien; Carman, George M; Desvergne, Béatrice; Chrast, Roman

    2012-12-01

    Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity. PMID:23028044

  11. Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation

    SciTech Connect

    Sundin, U.; Moore, G.; Nedergaard, J.; Cannon, B.

    1987-05-01

    To investigate the acclimation process in a hibernator, four different parameters of thermogenin amount and activity were investigated in brown adipose tissue mitochondria from cold-exposed and cold-acclimated Syrian hamsters. Hamsters, which are hibernators, have been considered to be primed for thermogenesis and thus not to show cold-acclimation effects, but here a significant increase in (/sup 3/H)GDP-binding capacity was observed, and this increase was paralleled by an increase in thermogenin antigen amount, as measured in an enzyme-linked immunosorbent assay. The transient nature of the effect of cold exposure on (/sup 3/H)GDP binding, characteristically observed with rat mitochondria, was not observed with hamster mitochondria, and the increase in (/sup 3/H)GDP binding occurred without a change in the dissociation constant. The increase in thermogenin amount was paralleled by an increase both in GDP-sensitive Cl/sup -/ permeability of the mitochondria and in GDP-sensitive respiration. It was established that it is the maximal activity of thermogenin that is rate limiting for thermogenesis in isolated mitochondria, provided that an optimal substrate is used (such as palmitoyl carnitine). Cold acclimation also increased the total amount of mitochondria in the tissue, leading totally to a sixfold increase in thermogenin content of the hamster. It is concluded that hamsters show the expected physiological, pharmacological, and biochemical signs of cold acclimation.

  12. Effects of Long-Term Food Restriction Under Thermoneutral Conditions on Brown Adipose Tissue of Laboratory Mice.

    PubMed

    Elsukova, E I; Mizonova, O V; Medvedev, L N

    2015-09-01

    Long-term food restriction (3 weeks, 60% of normal consumption of control animals) was followed by an increase in DNA and protein content in the intercapsular brown fat of mice. As the animals were kept under thermoneutral conditions, these changes are thought to be a result of food restriction. PMID:26459485

  13. Activation of prostaglandin E2-EP4 signaling reduces chemokine production in adipose tissue.

    PubMed

    Tang, Eva H C; Cai, Yin; Wong, Chi Kin; Rocha, Viviane Z; Sukhova, Galina K; Shimizu, Koichi; Xuan, Ge; Vanhoutte, Paul M; Libby, Peter; Xu, Aimin

    2015-02-01

    Inflammation of adipose tissue induces metabolic derangements associated with obesity. Thus, determining ways to control or inhibit inflammation in adipose tissue is of clinical interest. The present study tested the hypothesis that in mouse adipose tissue, endogenous prostaglandin E2 (PGE2) negatively regulates inflammation via activation of prostaglandin E receptor 4 (EP4). PGE2 (5-500 nM) attenuated lipopolysaccharide-induced mRNA and protein expression of chemokines, including interferon-γ-inducible protein 10 and macrophage-inflammatory protein-1α in mouse adipose tissue. A selective EP4 antagonist (L161,982) reversed, and two structurally different selective EP4 agonists [CAY10580 and CAY10598] mimicked these actions of PGE2. Adipose tissue derived from EP4-deficient mice did not display this response. These findings establish the involvement of EP4 receptors in this anti-inflammatory response. Experiments performed on adipose tissue from high-fat-fed mice demonstrated EP4-dependent attenuation of chemokine production during diet-induced obesity. The anti-inflammatory actions of EP4 became more important on a high-fat diet, in that EP4 activation suppressed a greater variety of chemokines. Furthermore, adipose tissue and systemic inflammation was enhanced in high-fat-fed EP4-deficient mice compared with wild-type littermates, and in high-fat-fed untreated C57BL/6 mice compared with mice treated with EP4 agonist. These findings provide in vivo evidence that PGE2-EP4 signaling limits inflammation. In conclusion, PGE2, via activation of EP4 receptors, functions as an endogenous anti-inflammatory mediator in mouse adipose tissue, and targeting EP4 may mitigate adipose tissue inflammation. PMID:25510249

  14. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  15. Effect of dietary vitamin E supplements on cholesteryl ester transfer activity in hamster adipose tissue.

    PubMed

    Shen, G X; Novak, C; Angel, A

    1996-08-01

    Increased concentration of cholesteryl ester transfer protein (CETP) in plasma favours a lipoprotein profile characterized by a reduced high density lipoprotein (HDL) cholesterol. Previous studies have demonstrated that a diet high in cholesterol and saturated fat (HCSF) is associated with elevated plasma CETP and increased release of cholesterol ester transfer activity (CETA) from hamster adipose tissue incubated in vitro. The present study investigated the effects of vitamin E (Vit.E) ingestion on plasma CETP activity and adipose tissue CETA in Syrian Golden hamsters. A regular diet supplemented by the addition of 1% cholesterol and 10% coconut oil (w/w) was associated with a time-dependent increase in plasma CETP activity and increased release of adipose CETA following incubation of fragments of perirenal adipose tissue. Vit.E ingestion (100 mg/kg body weight per day for 8 weeks) suppressed 85% of the increase of CETA released from cultured hamster adipose tissue and 70% of the increase of plasma CETP activity induced by the HCSF diet. Significant decreases in plasma total and LDL cholesterol and an increase in HDL cholesterol were found in hamsters receiving the HCSF diet plus Vit.E compared to the animals on the HCSF diet alone. In the hamsters on regular chow, Vit.E ingestion alone did not significantly alter adipose tissue CETA, plasma CETP activity or plasma lipoproteins. The results indicate that Vit.E prevents the HCSF diet-induced increase in plasma CETP activity, probably via a reduction of CETA secretion from hamster adipose tissue. This suggests that Vit.E supplementation may help to ameliorate the dyslipidemia caused by a HCSF diet through its inhibitory influence on CETP production in adipose tissue. PMID:8830934

  16. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice.

    PubMed

    Douris, Nicholas; Stevanovic, Darko M; Fisher, Ffolliott M; Cisu, Theodore I; Chee, Melissa J; Nguyen, Ngoc L; Zarebidaki, Eleen; Adams, Andrew C; Kharitonenkov, Alexei; Flier, Jeffrey S; Bartness, Timothy J; Maratos-Flier, Eleftheria

    2015-07-01

    Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis. PMID:25924103

  17. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice

    PubMed Central

    Douris, Nicholas; Stevanovic, Darko M.; Fisher, ffolliott M.; Cisu, Theodore I.; Chee, Melissa J.; Nguyen, Ngoc L.; Zarebidaki, Eleen; Adams, Andrew C.; Kharitonenkov, Alexei; Flier, Jeffrey S.; Bartness, Timothy J.

    2015-01-01

    Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis. PMID:25924103

  18. Methods in Enzymology (MIE): Methods of Adipose Tissue Biology-

    PubMed Central

    Berry, Ryan; Church, Christopher; Gericke, Martin T.; Jeffery, Elise; Colman, Laura; Rodeheffer, Matthew S.

    2014-01-01

    Adipose tissue is an endocrine organ that specializes in lipid metabolism and is distributed throughout the body in distinct white adipose tissue (WAT) and brown adipose tissue (BAT) depots. These tissues have opposing roles in lipid metabolism with WAT storing excessive caloric intake in the form of lipid, and BAT burning lipid through non-shivering thermogenesis. As accumulation of lipid in mature adipocytes of WAT leads to obesity and increased risk of comorbidity (Pi-Sunyer et al., 1998), detailed understanding of the mechanisms of BAT activation and WAT accumulation could produce therapeutic strategies for combatting metabolic pathologies. As morphological changes accompany alterations in adipose function, imaging of adipose tissue is one of the most important tools for understanding how adipose tissue mass fluctuates in response to various physiological contexts. Therefore, this chapter details several methods of processing and imaging adipose tissue, including brightfield colorimetric imaging of paraffin sectioned adipose tissue with a detailed protocol for automated adipocyte size analysis; fluorescent imaging of paraffin and frozen sectioned adipose tissue; and confocal fluorescent microscopy of whole mounted adipose tissue. We have also provided many example images showing results produced using each protocol, as well as commentary on the strengths and limitations of each approach. PMID:24480341

  19. Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle.

    PubMed

    Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc

    2004-07-01

    Uncoupling proteins (UCPs) present in the inner mitochondrial membrane are involved in uncoupling respiration from ATP synthesis. Five UCP isoforms have been identified but information about their presence and level of expression in the central nervous system remains incomplete. To determine the nature and proportion of UCP isoform mRNAs present in brain cortex, we developed and optimized a specific quantitative reverse-transcription polymerase chain reaction procedure. Optimal range of RNA concentrations to be used in the reverse-transcriptase reaction was determined. Primer design and concentration were optimized for each target gene while polymerase chain reaction efficiency was assessed for a range of reverse-transcriptase dilutions. Genomic contribution to the quantitative signal was evaluated for each isoform and minimized. Three reference genes were tested for normalization, and beta-actin was found to be the most stable among tissues. Results indicate that brain cortex contains significant amounts of all UCP mRNAs, with UCP5 and UCP4 being the most abundant, as opposed to brown adipose tissue and skeletal muscle, which predominantly express UCP1 and UCP3, respectively. These data provide a first quantitative assessment of UCP mRNA expression in mouse brain, showing the presence of all five isoforms with distinct proportions, thus suggesting specific roles in the central nervous system. PMID:15241186

  20. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation

    PubMed Central

    Alexaki, Vasileia I.; Qin, Nan; Rubín de Celis, María F.; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R.; Eisenhofer, Graeme; Breier, Georg; Blüher, Matthias; Hampe, Jochen; El-Armouche, Ali; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin

    2015-01-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction. PMID:26572826

  1. Transcription regulation of gene expression in rat brown adipose tissue in response to unloading or 2G loading during growing period

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Hitomi, Y.; Kawano, F.; Ohira, Y.; Kizaki, T.; Nakano, N.; Sakurai, T.; Izawa, T.; Suzuki, K.; Sudoh, M.; Roy, R. R.; Ohno, H.

    2007-05-01

    The effects were investigated of long-term unloading and macrogravity on the expression of 15 genes at the mRNA levels in brown adipose tissue (BAT) from rat pups, particularly focusing on uncoupling protein (UCP) family, nitric oxide synthase (NOS) isoenzymes, and antioxidant enzymes. The animals in the unloaded group (a simulation model of spaceflight) were hindlimb-unloaded by tail suspension between postnatal day 4 and month 3, followed by 2-mo ambulation recovery. Moreover, centrifugation at 2G (an imitation of the hypergravity effects) was performed during the same period as the unloading, also followed by 2-mo ambulation recovery (adaptation to 1G from 2G). Compared with the age-matched control group, significantly lower expression levels of mRNA for UCP2, iNOS, and Cu,Zn-superoxide dismutase (Cu, Zn-SOD) in BAT were observed immediately after unloading, but not immediately after exposure to 2G. During 2-mo ambulation recovery from both extreme conditions, the expression of mRNA for Mn-SOD was enhanced, suggesting an increase in oxidative stress. These findings suggest that both micro- and macrogravity may have some influence upon the function of BAT, and that changes in the BAT function may be involved in the mechanisms subserving adaptation to such extreme conditions by what humans have to be faced with during the spaceflight and return to 1G.

  2. Effects of cold exposure on cyclic AMP concentration in plasma, liver, and brown and white adipose tissues in cold-acclimated rats

    NASA Astrophysics Data System (ADS)

    Habara, Yoshiaki

    1989-06-01

    Effects of acute cold exposure on plasma energy substrates and tissue 3',5'-adenosine monophosphate (cAMP) were analyzed in intact rats, to define an involvement of the nucleotide in nonshivering thermogenesis (NST) and resultant cold acclimation. After an acute cold exposure to -5°C, the plasma glucose level increased gradually in warm-kept control rats (C) while it decreased significantly in cold-acclimated rats (CA). However, it was increased considerably by an extreme cold exposure to -15°C in both C and CA. By contrast, plasma levels of free fatty acids (FFA) increased immediately after cold exposure and the release lasted during the period of exposure especially in C. The cold exposure also increased plasma cAMP concentration but no concomitant increase was found in the liver. In both brown (IBAT) and white (WAT) adipose tissues the nucleotide concentration showed a stepwise decrease. The observed correlation between lipolysis and plasma cAMP response after cold exposure suggests an involvement of the adenylate cyclase-cAMP system in NST via lipid metabolism, at least, in the early stages of cold acclimation.

  3. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    PubMed Central

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes. PMID:27066503

  4. Energy metabolism and biochemical features of adipose tissues in ICR mice after long-term calorie-restricted diet.

    PubMed

    Mizonova, O V; Elsukova, E I; Medvedev, L N

    2013-10-01

    Long-term calorie-restricted diet (8 weeks, 60% of control food intake) was followed by an increase in thermogenic activity of interscapular brown fat. The relative amount of DNA and protein and the rate of oxygen consumption increased and tissue-specific marker of brown fat (uncoupling protein UCP1) appeared in significantly reduced deep-pink abdominal adipose tissue. PMID:24288756

  5. Severe Brown Fat Lipoatrophy Aggravates Atherosclerotic Process in Male Mice.

    PubMed

    Gómez-Hernández, Almudena; Beneit, Nuria; Escribano, Óscar; Díaz-Castroverde, Sabela; García-Gómez, Gema; Fernández, Silvia; Benito, Manuel

    2016-09-01

    Obesity is one of the major risk factors for the development of cardiovascular diseases and is characterized by abnormal accumulation of adipose tissue, including perivascular adipose tissue (PVAT). However, brown adipose tissue (BAT) activation reduces visceral adiposity. To demonstrate that severe brown fat lipoatrophy might accelerate atherosclerotic process, we generated a new mouse model without insulin receptor (IR) in BAT and without apolipoprotein (Apo)E (BAT-specific IR knockout [BATIRKO];ApoE(-/-) mice) and assessed vascular and metabolic alterations associated to obesity. In addition, we analyzed the contribution of the adipose organ to vascular inflammation. Brown fat lipoatrophy induces visceral adiposity, mainly in gonadal depot (gonadal white adipose tissue [gWAT]), severe glucose intolerance, high postprandial glucose levels, and a severe defect in acute insulin secretion. BATIRKO;ApoE(-/-) mice showed greater hypertriglyceridemia than the obtained in ApoE(-/-) and hypercholesterolemia similar to ApoE(-/-) mice. BATIRKO;ApoE(-/-) mice, in addition to primary insulin resistance in BAT, also showed a significant decrease in insulin signaling in liver, gWAT, heart, aorta artery, and thoracic PVAT. More importantly, our results suggest that severe brown fat lipoatrophy aggravates the atherosclerotic process, characterized by a significant increase of lipid depots, atherosclerotic coverage, lesion size and complexity, increased macrophage infiltration, and proinflammatory markers expression. Finally, an increase of TNF-α and leptin as well as a decrease of adiponectin by BAT, gWAT, and thoracic PVAT might also be responsible of vascular damage. Our results suggest that severe brown lipoatrophy aggravates atherosclerotic process. Thus, BAT activation might protect against obesity and its associated metabolic alterations. PMID:27414981

  6. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    PubMed Central

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was

  7. STS-103 Commander Curtis Brown during TCDT activities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-103 Commander Curtis L. Brown Jr. gets ready to take the helm of a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The other STS-103 crew members are Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith , C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), plus Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, who are with the European Space Agency. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  8. Dietary Fructose Feeding Increases Adipose Methylglyoxal Accumulation in Rats in Association with Low Expression and Activity of Glyoxalase-2

    PubMed Central

    Masterjohn, Christopher; Park, Youngki; Lee, Jiyoung; Noh, Sang K.; Koo, Sung I.; Bruno, Richard S.

    2013-01-01

    Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to d-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipose, mediated by tissue-specific differences in the glyoxalase system. We fed six week old male Sprague-Dawley rats a low-fructose diet (10% w/w) or a high-fructose diet (60% w/w) containing no GTE or GTE at 0.5% or 1.0% for nine weeks. Fructose-fed rats had higher (P < 0.05) adipose methylglyoxal, but GTE had no effect. Plasma and hepatic methylglyoxal were unaffected by fructose and GTE. Fructose and GTE also had no effect on the expression or activity of glyoxalase-1 and glyoxalase-2 at liver or adipose. Regardless of diet, adipose glyoxalase-2 activity was 10.8-times lower (P < 0.05) than adipose glyoxalase-1 activity and 5.9-times lower than liver glyoxalase-2 activity. Adipose glyoxalase-2 activity was also inversely related to adipose methylglyoxal (r = −0.61; P < 0.05). These findings suggest that fructose-mediated adipose methylglyoxal accumulation is independent of GTE supplementation and that its preferential accumulation in adipose compared to liver is due to low constitutive expression of glyoxalase-2. PMID:23966111

  9. Dietary fructose feeding increases adipose methylglyoxal accumulation in rats in association with low expression and activity of glyoxalase-2.

    PubMed

    Masterjohn, Christopher; Park, Youngki; Lee, Jiyoung; Noh, Sang K; Koo, Sung I; Bruno, Richard S

    2013-08-01

    Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to D-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipose, mediated by tissue-specific differences in the glyoxalase system. We fed six week old male Sprague-Dawley rats a low-fructose diet (10% w/w) or a high-fructose diet (60% w/w) containing no GTE or GTE at 0.5% or 1.0% for nine weeks. Fructose-fed rats had higher (P < 0.05) adipose methylglyoxal, but GTE had no effect. Plasma and hepatic methylglyoxal were unaffected by fructose and GTE. Fructose and GTE also had no effect on the expression or activity of glyoxalase-1 and glyoxalase-2 at liver or adipose. Regardless of diet, adipose glyoxalase-2 activity was 10.8-times lower (P < 0.05) than adipose glyoxalase-1 activity and 5.9-times lower than liver glyoxalase-2 activity. Adipose glyoxalase-2 activity was also inversely related to adipose methylglyoxal (r = -0.61; P < 0.05). These findings suggest that fructose-mediated adipose methylglyoxal accumulation is independent of GTE supplementation and that its preferential accumulation in adipose compared to liver is due to low constitutive expression of glyoxalase-2. PMID:23966111

  10. Ablation of the Id2 Gene Results in Altered Circadian Feeding Behavior, and Sex-Specific Enhancement of Insulin Sensitivity and Elevated Glucose Uptake in Skeletal Muscle and Brown Adipose Tissue

    PubMed Central

    Mathew, Deepa; Zhou, Peng; Pywell, Cameron M.; van der Veen, Daan R.; Shao, Jinping; Xi, Yang; Bonar, Nicolle A.; Hummel, Alyssa D.; Chapman, Sarah; Leevy, W. Matthew; Duffield, Giles E.

    2013-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2−/−) mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles of liver genes including those involved in lipid metabolism. In the present phenotypic study we intended to decipher, on a sex-specific basis, the role of ID2 in glucose metabolism and in the circadian regulation of activity, important components of energy balance. We find that Id2−/− mice exhibited altered daily and circadian rhythms of feeding and locomotor activity; activity profiles extended further into the late night/dark phase of the 24-hr cycle, despite mice showing reduced total locomotor activity. Also, male Id2−/− mice consumed a greater amount of food relative to body mass, and displayed less weight gain. Id2−/− females had smaller adipocytes, suggesting sexual-dimorphic programing of adipogenesis. We observed increased glucose tolerance and insulin sensitivity in male Id2−/− mice, which was exacerbated in older animals. FDG-PET analysis revealed increased glucose uptake by skeletal muscle and brown adipose tissue of male Id2−/− mice, suggesting increased glucose metabolism and thermogenesis in these tissues. Reductions in intramuscular triacylglycerol and diacylglycerol were detected in male Id2−/− mice, highlighting its possible mechanistic role in enhanced insulin sensitivity in these mice. Our findings indicate a role for ID2 as a regulator of glucose and lipid metabolism, and in the circadian control of feeding/locomotor behavior; and contribute to the understanding of the development of obesity and diabetes, particularly in shift

  11. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    PubMed

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  12. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  13. Novel Function of Rev-erbα in Promoting Brown Adipogenesis

    PubMed Central

    Nam, Deokhwa; Chatterjee, Somik; Yin, Hongshan; Liu, Ruya; Lee, Jeongkyung; Yechoor, Vijay K.; Ma, Ke

    2015-01-01

    Brown adipose tissue is a major thermogenic organ that plays a key role in maintenance of body temperature and whole-body energy homeostasis. Rev-erbα, a ligand-dependent nuclear receptor and transcription repressor of the molecular clock, has been implicated in the regulation of adipogenesis. However, whether Rev-erbα participates in brown fat formation is not known. Here we show that Rev-erbα is a key regulator of brown adipose tissue development by promoting brown adipogenesis. Genetic ablation of Rev-erbα in mice severely impairs embryonic and neonatal brown fat formation accompanied by loss of brown identity. This defect is due to a cell-autonomous function of Rev-erbα in brown adipocyte lineage commitment and terminal differentiation, as demonstrated by genetic loss- and gain-of-function studies in mesenchymal precursors and brown preadipocytes. Moreover, pharmacological activation of Rev-erbα activity promotes, whereas its inhibition suppresses brown adipocyte differentiation. Mechanistic investigations reveal that Rev-erbα represses key components of the TGF-β cascade, an inhibitory pathway of brown fat development. Collectively, our findings delineate a novel role of Rev-erbα in driving brown adipocyte development, and provide experimental evidence that pharmacological interventions of Rev-erbα may offer new avenues for the treatment of obesity and related metabolic disorders. PMID:26058812

  14. Brown adipose tissue thermogenesis does not explain the intra-administration hyperthermic sign-reversal induced by serial administrations of 60% nitrous oxide to rats.

    PubMed

    Al-Noori, Salwa; Ramsay, Douglas S; Cimpan, Andreas; Maltzer, Zoe; Zou, Jessie; Kaiyala, Karl J

    2016-08-01

    Initial administration of ≥60% nitrous oxide (N2O) to rats promotes hypothermia primarily by increasing whole-body heat loss. We hypothesized that the drug promotes heat loss via the tail and might initially inhibit thermogenesis via brown adipose tissue (BAT), major organs of thermoregulation in rodents. Following repeated administrations, N2O inhalation evokes hyperthermia underlain by increased whole-body heat production. We hypothesized that elevated BAT thermogenesis plays a role in this thermoregulatory sign reversal. Using dual probe telemetric temperature implants and infrared (IR) thermography, we assessed the effects of nine repeated 60% N2O administrations compared to control (con) administrations on core temperature, BAT temperature, lumbar back temperature and tail temperature. Telemetric core temperature, telemetric BAT temperature, and IR BAT temperature were reduced significantly during initial 60% N2O inhalation (p≤0.001 compared to con). IR thermography revealed that acute N2O administration unexpectedly reduced tail temperature (p=0.0001) and also inhibited IR lumbar temperature (p<0.0001). In the 9th session, N2O inhalation significantly increased telemetric core temperature (p=0.007) indicative of a hyperthermic sign reversal, yet compared to control administrations, telemetric BAT temperature (p=0.86), IR BAT temperature (p=0.85) and tail temperature (p=0.47) did not differ significantly. Thus, an initial administration of 60% N2O at 21°C may promote hypothermia via reduced BAT thermogenesis accompanied by tail vasoconstriction as a compensatory mechanism to limit body heat loss. Following repeated N2O administrations rats exhibit a hyperthermic core temperature but a normalized BAT temperature, suggesting induction of a hyperthermia-promoting thermogenic adaptation of unknown origin. PMID:27503733

  15. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    PubMed

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. PMID:25308659

  16. Combination of deep sea water and Sesamum indicum leaf extract prevents high-fat diet-induced obesity through AMPK activation in visceral adipose tissue

    PubMed Central

    YUAN, HAIDAN; CHUNG, SUNGHYUN; MA, QIANQIAN; YE, LI; PIAO, GUANGCHUN

    2016-01-01

    The aim of the present study was to evaluate the protective effects of a combination of deep sea water (DSW) and Sesamum indicum leaf extract (SIE) against high-fat diet (HFD)-induced obesity and investigate its molecular mechanisms in adipose tissue. ICR mice were randomly divided into three groups: HFD control (HFC), DSW and DSW + 125 mg/kg SIE (DSS) groups. The mice in the HFC group had free access to drinking water while those in the DSW and DSS groups had free access to DSW. The mice in the DSS group were treated with SIE once per day for 8 weeks. The mice in all three groups were allowed to freely access a HFD. Compared with the HFC group, the DSS group showed lower body weight gain and serum levels of glucose, triglycerides and leptin. Histological analyses of the epididymal white, retroperitoneal white and scapular brown adipose tissue of mice in the DSS group revealed that the adipocytes were markedly decreased in size compared with those in the HFC group. Moreover, DSS significantly increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase (ACC) in mice epididymal adipose tissues. Furthermore, DSS upregulated the expression levels of lipolysis-associated mRNA, specifically peroxisome proliferator-activated receptor-α (PPAR-α) and cluster of differentiation 36 (CD36), and energy expenditure-associated mRNA, namely uncoupling protein 2 (UCP2) and carnitine palmitoyltransferase-1 (CPT1) in the epididymal adipose tissues. By contrast, DSS suppressed the expression of the lipogenesis-related gene sterol regulatory element-binding protein-1 (SREBP1) at the mRNA level. These results suggest that DSS is effective for suppressing body weight gain and enhancing the lipid profile. PMID:26889265

  17. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in Type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasminogen activator inhibitor-1 (PAI-1) production by adipose tissue is increased in obesity, and its circulating levels are high in type 2 diabetes. PAI-1 increases cardiovascular risk by favoring clot stability, interfering with vascular remodeling, or both. We investigated in obese diabetic per...

  18. Differential modulation of cytosolic lipases activities in liver and adipose tissue by high-carbohydrate diets.

    PubMed

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Mario, Érica Guilhen; de Souza Cordeiro, Letícia Maria; Avelar, Gleide Fernandes; Botion, Leida Maria; Chaves, Valéria Ernestânia

    2016-08-01

    Several studies have demonstrated that a high-fructose (FRUC) diet induces metabolic and haemodynamic abnormalities, known as the metabolic syndrome, which are characterised by obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. In this study, the effect of a FRUC diet (60 % fructose) for 8 weeks on the metabolism of lipids in liver and epididymal adipose tissue from Wistar rats was compared with the AIN-93M diet and the effects of the AIN-93M diet were compared with a chow diet. The FRUC diet induced marked increases in both hepatocyte lipid droplet volume and postprandial serum levels of triacylglycerol (TAG), but reduced the postprandial serum levels of insulin. The AIN-93M diet induced marked increases in the hepatocyte lipid droplet volume and the serum levels of insulin, without affecting the serum levels of TAG. We found that isocaloric substitution of cornstarch, dextrinised cornstarch and sucrose (AIN-93M diet) for fructose did not affect the hepatic VLDL-TAG secretion and adipose tissue glucose uptake, lipolysis and cytosolic lipases activities in rats. However, the high-fructose diet induced a severe steatosis in liver accompanied by a decrease in cytosolic lipases activities. In adipose tissue, the FRUC diet induced a decrease in the lipoprotein lipase activity, and an increase in lipogenesis. FRUC and AIN-93M diets induced changes in lipid homeostasis in liver and adipose tissue by distinct biochemical mechanisms. PMID:26874528

  19. Mex3c mutation reduces adiposity partially through increasing physical activity.

    PubMed

    Han, Changjie; Jiao, Yan; Zhao, Qingguo; Lu, Baisong

    2014-06-01

    MEX3C is an RNA-binding protein with unknown physiological function. We have recently reported that a Mex3c mutation in mice causes growth retardation and reduced adiposity, but how adiposity is reduced remains unclear. Herein, we show that homozygous Mex3c gene trap mice have increased physical activity. The Mex3c mutation consistently conferred full protection from diet-induced obesity, hyperglycemia, insulin resistance, hyperlipidemia, and hepatic steatosis. In ob/ob mice with leptin deficiency, the Mex3c mutation also increased physical activity and improved glucose and lipid profiles. Expressing cre in the neurons of Mex3c gene trap mice, an attempt to partially restoring neuronal Mex3c expression, significantly increased white adipose tissue deposition, but had no effects on body length. Our data suggest that one way in which Mex3c regulates adiposity is through controlling physical activity, and that neuronal Mex3c expression could play an important role in this process. PMID:24741071

  20. A bioaccessible fraction of parboiled germinated brown rice exhibits a higher anti-inflammatory activity than that of brown rice.

    PubMed

    Tuntipopipat, Siriporn; Muangnoi, Chawanphat; Thiyajai, Parunya; Srichamnong, Warangkana; Charoenkiatkul, Somsri; Praengam, Kemika

    2015-05-01

    Parboiled germinated brown rice (PGBR) has been suggested as a functional food because it is relatively rich in a number of nutrients and health promoting compounds. Here we compared the bioaccessibility of several of the bioactive compounds in cooked PGBR and brown rice (BR) by simulating oral, gastric and small intestinal digestion. The uptake and retention of bioactive compounds from a bioaccessible fraction also was determined using Caco-2 human intestinal cells. The anti-inflammatory activity of the bioaccessible fraction from digested BR and PGBR was then assessed with Caco-2 cells that were activated with H2O2 + IL-1β. PGBR had a higher content of GABA, γ-oryzanol, γ-tocotrienol, ferulic acid and p-coumaric acid than BR. The amounts of these compounds transferred to the aqueous fraction during digestion and the quantities accumulated by Caco-2 cells were proportional to those in cooked PGBR and BR. The anti-inflammatory activity of the bioaccessible fraction from digested BR and PGBR was then assessed for Caco-2 cells that were activated with H2O2 + IL-1β. Pre-treatment of the cells with the bioaccessible fractions from PGBR and BR suppressed the secretion of IL-8 and MCP-1 and the ROS content in activated cells. Inhibitory activities were attenuated to a greater extent after cells had been pre-exposed to the bioaccessible fraction from digested PGBR compared to BR. These results suggest that digested PGBR contains and delivers greater amounts of compounds with anti-inflammatory activity to absorptive epithelial cells than digested BR. PMID:25811291

  1. Cold-induced reduction in Gi alpha proteins in brown adipose tissue. Effects on the cellular hypersensitization to noradrenaline caused by pertussis-toxin treatment.

    PubMed Central

    Svoboda, P; Unelius, L; Dicker, A; Cannon, B; Milligan, G; Nedergaard, J

    1996-01-01

    The significance of Gi proteins for the physiological desensitization phenomena observed in brown-fat cells from cold-acclimated hamsters was investigated. For this purpose, pertussis toxin (the inhibitor of Gi function) was injected into control and cold-acclimated hamsters. After 3 days the thermogenic response to noradrenaline injection was monitored in the intact animals. It was found that the pertussis-toxin pretreatment did not affect the thermogenic response to noradrenaline. Nonetheless, the pertussis toxin pretreatment had a dramatic effect on the noradrenaline-sensitivity of isolated brown-fat cells (measured the following day as the respiratory response): a 250-fold-increased sensitivity to noradrenaline was observed in cells from control animals that had been pertussis-toxin pretreated. However, only a 20-fold increase was observed in cells from cold-acclimated hamsters, implying a lower complement of the Gi system in these cells. Therefore the content of Gi proteins was determined by quantitative immunoblotting of purified plasma-membrane proteins. Cold acclimation resulted in a nearly 50% reduction in the content of Gi 1 alpha and Gi 2 alpha, as well as of the beta-subunit, both when expressed on a protein basis and when related to the content of forskolin-stimulated adenylyl cyclase; when expressed per unit of [3H]ouabain-binding (NA+/K+-ATPase), the reduction was even higher. In view of the magnitude of the pertussis-toxin effect, it was concluded that Gi proteins must play a substantial role in the regulation of the response of brown-fat cells to noradrenaline. As the capacity of the Gi pathway is reduced rather than augmented during cold acclimation, Gi activity cannot be responsible for the desensitization to noradrenaline observed in cells from cold-acclimated animals. However, the reduced Gi content may explain the earlier observed desensitization to adenosine that occurs after acclimation to cold. PMID:8615767

  2. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  3. The adipose organ at a glance.

    PubMed

    Cinti, Saverio

    2012-09-01

    The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ - a feature that I propose is crucial for this organ's plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that 'browning' of the adipose organ curbs these disorders. PMID:22915020

  4. Exercise regulation of adipose tissue.

    PubMed

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  5. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  6. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    SciTech Connect

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; Massiera, Florence; Teboul, Michele; Ailhaud, Gerard; Kim, Jung; Moustaid-Moussa, Naima; Voy, Brynn H

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  7. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake

    PubMed Central

    Zeve, Daniel; Seo, Jin; Suh, Jae Myoung; Stenesen, Drew; Tang, Wei; Berglund, Eric D.; Wan, Yihong; Williams, Linda J.; Lim, Ajin; Martinez, Myrna J.; McKay, Renée M.; Millay, Douglas P.; Olson, Eric N.; Graff, Jonathan M.

    2012-01-01

    SUMMARY Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. β-catenin activation in PPARγ–expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism. PMID:22482731

  8. The independent prospective associations of activity intensity and dietary energy density with adiposity in young adolescents.

    PubMed

    van Sluijs, Esther M F; Sharp, Stephen J; Ambrosini, Gina L; Cassidy, Aedin; Griffin, Simon J; Ekelund, Ulf

    2016-03-14

    There is limited evidence on the prospective association of time spent in activity intensity (sedentary (SED), moderate (MPA) or vigorous (VPA) physical activity) and dietary intake with adiposity indicators in young people. This study aimed to assess associations between (1) baseline objectively measured activity intensity, dietary energy density (DED) and 4-year change in adiposity and (2) 4-year change in activity intensity/DED and adiposity at follow-up. We conducted cohort analyses including 367 participants (10 years at baseline, 14 years at follow-up) with valid data for objectively measured activity (Actigraph), DED (4-d food diary), anthropometry (waist circumference (WC), %body fat (%BF), fat mass index (FMI), weight status) and covariates. Linear and logistic regression models were fit, including adjustment for DED and moderate-to-vigorous physical activity. Results showed that baseline DED was associated with change in WC (β for 1kJ/g difference: 0·71; 95% CI 0·26, 1·17), particularly in boys (1·26; 95% CI 0·41, 2·16 v. girls: 0·26; 95% CI -0·34, 0·87), but not with %BF, FMI or weight status. In contrast, baseline SED, MPA or VPA were not associated with any of the outcomes. Change in DED was negatively associated with FMI (β for 1kJ/g increase: -0·86; 95% CI -1·59, -0·12) and %BF (-0·86; 95% CI -1·25, -0·11) but not WC (-0·27; 95% CI -1·02, 0·48). Change in SED, MPA and VPA did not predict adiposity at follow-up. In conclusion, activity intensity was not prospectively associated with adiposity, whereas the directions of associations with DED were inconsistent. To inform public health efforts, future studies should continue to analyse longitudinal data to further understand the independent role of different energy-balance behaviours in changes in adiposity in early adolescence. PMID:26758859

  9. Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes

    PubMed Central

    Townsend, K L; Tseng, Y-H

    2015-01-01

    Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed ‘browning'. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of ‘browning'. We also provide an overview of constitutive BAT vs rBAT in mouse and human. PMID:27152169

  10. First description of a musculoskeletal linkage in an adipose fin: innovations for active control in a primitively passive appendage.

    PubMed

    Stewart, Thomas A; Hale, Melina E

    2013-01-01

    Adipose fins are enigmatic appendages found between the dorsal and caudal fins of some teleostean fishes. Long thought to be vestigial, degenerate second dorsal fins, remnants of the primitive gnathostome condition, adipose fins have since been recognized as novel morphologies. Unique among the fins of extant fishes, adipose fins have uniformly been described as passive structures, with no associated musculature. Here we provide the first description of a musculoskeletal linkage in an adipose fin, identified in the sun catfish Horabagrus brachysoma. Modified supracarinalis posterior muscles insert from the dorsal midline anterior to the adipose fin by tendons onto the fin base. An additional pair of posterior adipose-fin muscles also inserts upon the fin base and lay posterolateral to the fin, superficial to the axial muscle. This musculoskeletal linkage is an evolutionary innovation, a novel mechanism for controlling adipose-fin movement. These muscles appear to exemplify two approaches by which fins evolve to be actively controlled. We hypothesize that the anterior muscles arose through co-option of an existing fin linkage, while the posterior muscles originated as de novo fin muscles. These findings present adipose fins as a rich system within which to explore the evolution of novel vertebrate appendages. PMID:23135670

  11. Active carbons and clean briquettes from the modified Kansk-Achinsk brown coal

    SciTech Connect

    Kuznetsov, P.N.; Kuznetsova, L.I.; Kontzevoi, A.A.; Pozharnikov, V.A.

    1996-12-31

    The effect of modification of Kansk Achinsk Brown coal by means of chemical and mechanical pretreatments as well as by hydrolyzed lignin addition on coal briquetting was studied. Coal briquettes were then pyrolyzed and steam activated at 700--800 C to prepare the active carbons. The main focus was to analyze how macromolecular structure of brown coal affect the properties of briquettes and the sorption and mechanical properties of activated carbons and to investigate the potential for the production of clean briquetted fuel and high performance carbon adsorbents through the directive modification of coal.

  12. The brown and brite adipocyte marker Cox7a1 is not required for non-shivering thermogenesis in mice

    PubMed Central

    Maurer, Stefanie F.; Fromme, Tobias; Grossman, Lawrence I.; Hüttemann, Maik; Klingenspor, Martin

    2015-01-01

    The cytochrome c oxidase subunit isoform Cox7a1 is highly abundant in skeletal muscle and heart and influences enzyme activity in these tissues characterised by high oxidative capacity. We identified Cox7a1, well-known as brown adipocyte marker gene, as a cold-responsive protein of brown adipose tissue. We hypothesised a mechanistic relationship between cytochrome c oxidase activity and Cox7a1 protein levels affecting the oxidative capacity of brown adipose tissue and thus non-shivering thermogenesis. We subjected wildtype and Cox7a1 knockout mice to different temperature regimens and tested characteristics of brown adipose tissue activation. Cytochrome c oxidase activity, uncoupling protein 1 expression and maximal norepinephrine-induced heat production were gradually increased during cold-acclimation, but unaffected by Cox7a1 knockout. Moreover, the abundance of uncoupling protein 1 competent brite cells in white adipose tissue was not influenced by presence or absence of Cox7a1. Skin temperature in the interscapular region of neonates was lower in uncoupling protein 1 knockout pups employed as a positive control, but not in Cox7a1 knockout pups. Body mass gain and glucose tolerance did not differ between wildtype and Cox7a1 knockout mice fed with high fat or control diet. We conclude that brown adipose tissue function in mice does not require the presence of Cox7a1. PMID:26635001

  13. Enhanced pan-peroxisome proliferator-activated receptor gene and protein expression in adipose tissue of diet-induced obese mice treated with telmisartan.

    PubMed

    Penna-de-Carvalho, Aline; Graus-Nunes, Francielle; Rabelo-Andrade, Júlia; Mandarim-de-Lacerda, Carlos Alberto; Souza-Mello, Vanessa

    2014-12-01

    Telmisartan has previously been used to target obesity, showing peroxisome proliferator-activated receptor (PPAR) β/δ-related effects in white adipose tissue (WAT). We sought to evaluate whether telmisartan enhances gene and protein expression of all PPAR isoforms in WAT and brown adipose tissue (BAT), as well as their downstream effects upon insulin resistance, adipokine profile and adaptive thermogenesis. Male C57BL/6 mice were fed standard chow (SC; 10% lipids) or high-fat diet (HF; 50% lipids) for 10 weeks. Animals were then randomly allocated into the following four groups: SC, SC-T, HF and HF-T. Telmisartan [10 mg (kg diet)(-1)] was administered for 4 weeks in the diet. Animals in the HF group were overweight and exhibited hypertension, insulin resistance, decreased energy expenditure, a pro-inflammatory adipokine profile and abnormal fat pad mass distribution. Animals in the HF group showed decreased expression of PPARα, β/δ and γ in WAT and BAT, resulting in impaired glucose uptake and insufficient thermogenesis. Due to the improvement in the adipokine profile and enhanced insulin sensitivity with adequate insulin-stimulated glucose uptake after treatment with telmisartan, the activation of all PPAR isoforms in WAT was beneficial. In BAT, telmisartan induced sustained sympathetic activation, because the β3-adrenergic receptor was induced by PPARβ/δ, while uncoupling protein 1 was induced by PPARα to promote thermogenesis. Telmisartan exerted anti-obesity effects through higher pan-PPAR gene and protein expression. Upon PPARα, β/δ and γ (pan-PPAR) agonism in adipose tissue of obese mice, telmisartan ameliorates inflammation and insulin resistance, as well as inducing non-shivering thermogenesis. Our results point to new therapeutic targets for the control of obesity and comorbidities through pan-PPAR-related effects. PMID:25326526

  14. Decreased RB1 mRNA, Protein, and Activity Reflect Obesity-Induced Altered Adipogenic Capacity in Human Adipose Tissue

    PubMed Central

    Moreno-Navarrete, José María; Petrov, Petar; Serrano, Marta; Ortega, Francisco; García-Ruiz, Estefanía; Oliver, Paula; Ribot, Joan; Ricart, Wifredo; Palou, Andreu; Bonet, Mª Luisa; Fernández-Real, José Manuel

    2013-01-01

    Retinoblastoma (Rb1) has been described as an essential player in white adipocyte differentiation in mice. No studies have been reported thus far in human adipose tissue or human adipocytes. We aimed to investigate the possible role and regulation of RB1 in adipose tissue in obesity using human samples and animal and cell models. Adipose RB1 (mRNA, protein, and activity) was negatively associated with BMI and insulin resistance (HOMA-IR) while positively associated with the expression of adipogenic genes (PPARγ and IRS1) in both visceral and subcutaneous human adipose tissue. BMI increase was the main contributor to adipose RB1 downregulation. In rats, adipose Rb1 gene expression and activity decreased in parallel to dietary-induced weight gain and returned to baseline with weight loss. RB1 gene and protein expression and activity increased significantly during human adipocyte differentiation. In fully differentiated adipocytes, transient knockdown of Rb1 led to loss of the adipogenic phenotype. In conclusion, Rb1 seems to play a permissive role for human adipose tissue function, being downregulated in obesity and increased during differentiation of human adipocytes. Rb1 knockdown findings further implicate Rb1 as necessary for maintenance of adipogenic characteristics in fully differentiated adipocytes. PMID:23315497

  15. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential.

    PubMed

    Murata, M; Nishimura, M; Murai, N; Haruta, M; Homma, S; Itoh, Y

    2001-02-01

    Polyphenol oxidase (PPO) is responsible for enzymatic browning of apples. Apples lacking PPO activity might be useful not only for the food industry but also for studies of the metabolism of polyphenols and the function of PPO. Transgenic apple calli were prepared by using Agrobacterium tumefaciens carrying the kanamycin (KM) resistant gene and antisense PPO gene. Four KM-resistant callus lines were obtained from 356 leaf explants. Among these transgenic calli, three calli grew on the medium containing KM at the same rate as non-transgenic callus on the medium without KM. One callus line had an antisense PPO gene, in which the amount and activity of PPO were reduced to half the amount and activity in non-transgenic callus. The browning potential of this line, which was estimated by adding chlorogenic acid, was also half the browning potential of non-transgenic callus. PMID:11302173

  16. Shades of Brown: A Model for Thermogenic Fat

    PubMed Central

    Dempersmier, Jon; Sul, Hei Sook

    2015-01-01

    Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like cells, so-called beige/brite cells, which arise in white adipose tissue in response to cold and hormonal stimuli. These cells may derive from distinct origins, and while functionally similar, have different gene signatures. Here, we highlight recent advances in the understanding of brown and beige/brite adipocytes as well as transcriptional regulation for development and function of murine brown and beige/brite adipocytes focusing on EBF2, IRF4, and ZFP516, in addition to PRDM16 as a coregulator. We also discuss hormonal regulation of brown and beige/brite adipocytes including several factors secreted from various tissues, including BMP7, FGF21, and irisin, as well as those from BAT itself, such as Nrg4 and adenosine. PMID:26005433

  17. The adipose organ: morphological perspectives of adipose tissues.

    PubMed

    Cinti, S

    2001-08-01

    Anatomically, an organ is defined as a series of tissues which jointly perform one or more interconnected functions. The adipose organ qualifies for this definition as it is made up of two tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy contained in lipids between thermogenesis and the other metabolic functions. In rats and mice the adipose organ consists of several subcutaneous and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. The number of brown adipocytes found in white areas varies with age, strain of animal and environmental conditions. Brown and white adipocyte precursors are morphologically dissimilar. Together with a rich vascular supply, brown areas receive abundant noradrenergic parenchymal innervation. The gross anatomy and histology of the organ vary considerably in different physiological (cold acclimation, warm acclimation, fasting) and pathological conditions such as obesity; many important genes, such as leptin and uncoupling protein-1, are also expressed very differently in the two cell types. These basic mechanisms should be taken into account when addressing the physiopathology of obesity and its treatment. PMID:11681806

  18. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis.

    PubMed

    Lucas, Stéphanie; Tavernier, Geneviève; Tiraby, Claire; Mairal, Aline; Langin, Dominique

    2003-01-01

    Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis. PMID:12518034

  19. Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity

    PubMed Central

    Barra, Nicole G.; Palanivel, Rengasamy; Denou, Emmanuel; Chew, Marianne V.; Gillgrass, Amy; Walker, Tina D.; Kong, Josh; Richards, Carl D.; Jordana, Manel; Collins, Stephen M.; Trigatti, Bernardo L.; Holloway, Alison C.; Raha, Sandeep; Steinberg, Gregory R.; Ashkar, Ali A.

    2014-01-01

    Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function. PMID:25517731

  20. Apple Browning.

    ERIC Educational Resources Information Center

    Chemecology, 1992

    1992-01-01

    Describes an activity in which students investigate the effects of selected natural and synthetic substances on the rate of apple browning. Includes background information for the teacher, a list of necessary materials, and student instructions. (KR)

  1. New Atglistatin closely related analogues: Synthesis and structure-activity relationship towards adipose triglyceride lipase inhibition.

    PubMed

    Roy, Pierre-Philippe; D'Souza, Kenneth; Cuperlovic-Culf, Miroslava; Kienesberger, Petra C; Touaibia, Mohamed

    2016-08-01

    Adipose Triglyceride Lipase (ATGL) performs the first and rate-limiting step in lipolysis by hydrolyzing triacylglycerols stored in lipid droplets to diacylglycerols. By mediating lipolysis in adipose and non-adipose tissues, ATGL is a major regulator of overall energy metabolism and plasma lipid levels. Since chronically high levels of plasma lipids are linked to metabolic disorders including insulin resistance and type 2 diabetes, ATGL is an interesting therapeutic target. In the present study, fourteen closely related analogues of Atglistatin (1), a newly discovered ATGL inhibitor, were synthesized, and their ATGL inhibitory activity was evaluated. The effect of these analogues on lipolysis in 3T3-L1 adipocytes clearly shows that inhibition of the enzyme by Atglistatin (1) is due to the presence of the carbamate and N,N-dimethyl moieties on the biaryl central core at meta and para position, respectively. Mono carbamate-substituted analogue C2, in which the carbamate group was in the meta position as in Atglistatin (1), showed slight inhibition. Low dipole moment of Atglistatin (1) compared to the synthesized analogues possibly explains the lower inhibitory activities. PMID:27155760

  2. Absence of humoral mediated 5'AMP-activated protein kinase activation in human skeletal muscle and adipose tissue during exercise.

    PubMed

    Kristensen, Jonas Møller; Johnsen, Anders Bo; Birk, Jesper B; Nielsen, Jakob Nis; Jensen, Bente Rona; Hellsten, Ylva; Richter, Erik A; Wojtaszewski, Jørgen F P

    2007-12-15

    5'AMP-activated protein kinase (AMPK) exists as a heterotrimer comprising a catalytic alpha subunit and regulatory beta and gamma subunits. The AMPK system is activated under conditions of cellular stress, indicated by an increase in the AMP/ATP ratio, as observed, e.g. in muscles during contractile activity. AMPK was originally thought to be activated only by local intracellular mechanisms. However, recently it has become apparent that AMPK in mammals is also regulated by humoral substances, e.g. catecholamines. We studied whether humoral factors released during exercise regulate AMPK activity in contracting and resting muscles as well as in abdominal subcutaneous adipose tissue in humans. In resting leg muscle and adipose tissue the AMPK activity was not up-regulated by humoral factors during one-legged knee extensor exercise even when arm cranking exercise, inducing a approximately 20-fold increase in plasma catecholamine level, was added simultaneously. In exercising leg muscle the AMPK activity was increased by one-legged knee extensor exercise eliciting a whole body respiratory load of only 30% .VO(2,peak) but was not further increased by adding arm cranking exercise. In conclusion, during exercise with combined leg kicking and arm cranking, the AMPK activity in human skeletal muscle is restricted to contracting muscle without influence of marked increased catecholamine levels. Also, with this type of exercise the catecholamines or other humoral factors do not seem to be physiological regulators of AMPK in the subcutaneous adipose tissue. PMID:17962330

  3. Adiposity, physical activity and neuromuscular performance in children.

    PubMed

    Haapala, Eero A; Väistö, Juuso; Lintu, Niina; Tompuri, Tuomo; Brage, Soren; Westgate, Kate; Ekelund, Ulf; Lampinen, Eeva-Kaarina; Sääkslahti, Arja; Lindi, Virpi; Lakka, Timo A

    2016-09-01

    We investigated the associations of body fat percentage (BF%), objectively assessed moderate-to-vigorous physical activity (MVPA) and different types of physical activity assessed by a questionnaire with neuromuscular performance. The participants were 404 children aged 6-8 years. BF% was assessed using dual-energy x-ray absorptiometry and physical activity by combined heart rate and movement sensing and a questionnaire. The results of 50-m shuttle run, 15-m sprint run, hand grip strength, standing long jump, sit-up, modified flamingo balance, box-and-block and sit-and-reach tests were used as measures of neuromuscular performance. Children who had a combination of higher BF% and lower levels of physical activity had the poorest performance in 50-m shuttle run, 15-m sprint run and standing long jump tests. Higher BF% was associated with slower 50-m shuttle run and 15-m sprint times, shorter distance jumped in standing long jump test, fewer sit-ups, more errors in balance test and less cubes moved in box-and-block test. Higher levels of physical activity and particularly MVPA assessed objectively by combined accelerometer and heart rate monitor were related to shorter 50-m shuttle run and 15-m sprint times. In conclusion, higher BF% and lower levels of physical activity and particularly the combination of these two factors were associated with worse neuromuscular performance. PMID:26734777

  4. gamma-Radiation influences browning, antioxidant activity, and malondialdehyde level of apple juice.

    PubMed

    Fan, Xuetong; Thayer, Donald W

    2002-02-13

    Apple juice was gamma-irradiated at 5 degrees C at doses ranging from 0 to 8.9 kGy and then stored at 5 degrees C for 15 days. Ionizing radiation reduced the browning of apple juice and increased antioxidant activity measured by the ferric-reducing antioxidant power (FRAP) assay. The magnitude of changes increased with radiation dose. The level of malondialdehyde (MDA) measured using the thiobarbituric acid reactive substrates assay increased at radiation doses above 2.67 kGy. The browning of irradiated juices increased during storage at 5 degrees C, but the irradiated juices were still lighter than controls at the end of storage. Differences in FRAP values disappeared during early periods of storage while higher MDA levels were observed in irradiated samples during most of the storage period. Elimination of suspended matter from apple juice did not alter irradiation-induced changes in browning, FRAP, or MDA formation. As compared to irradiation conducted at 5 and 20 degrees C, treatment at -15 degrees C was less effective in reducing browning and in increasing MDA formation but elevated FRAP values. The exclusion of oxygen from juices did not affect the reduction in browning due to irradiation but promoted the increase in FRAP values and decreased the irradiation-induced MDA formation. PMID:11829633

  5. Diurnal activities of the brown stink bug (Hemiptera: Pentatomidae) in and near tasseling corn fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand for effective management of the brown stink bug, Euschistus servus, in corn and other crops has been increasing in recent years. To identify when and where the stink bugs are most likely to occur for targeted insecticide application, diurnal activities of stink bugs in and near the field...

  6. PPAR{alpha} does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte

    SciTech Connect

    Walden, Tomas B.; Petrovic, Natasa; Nedergaard, Jan

    2010-06-25

    Brown adipocytes and myocytes develop from a common adipomyocyte precursor. PPAR{alpha} is a nuclear receptor important for lipid and glucose metabolism. It has been suggested that in brown adipose tissue, PPAR{alpha} represses the expression of muscle-associated genes, in this way potentially acting to determine cell fate in brown adipocytes. To further understand the possible role of PPAR{alpha} in these processes, we measured expression of muscle-associated genes in brown adipose tissue and brown adipocytes from PPAR{alpha}-ablated mice, including structural genes (Mylpf, Tpm2, Myl3 and MyHC), regulatory genes (myogenin, Myf5 and MyoD) and a myomir (miR-206). However, in our hands, the expression of these genes was not influenced by the presence or absence of PPAR{alpha}, nor by the PPAR{alpha} activator Wy-14,643. Similarly, the expression of genes common for mature brown adipocyte and myocytes (Tbx15, Meox2) were not affected. However, the brown adipocyte-specific regulatory genes Zic1, Lhx8 and Prdm16 were affected by PPAR{alpha}. Thus, it would not seem that PPAR{alpha} represses muscle-associated genes, but PPAR{alpha} may still play a role in the regulation of the bifurcation of the adipomyocyte precursor into a brown adipocyte or myocyte phenotype.

  7. miR-133a Regulates Adipocyte Browning In Vivo

    PubMed Central

    Shan, Tizhong; Yang, Xin; Yin, Hang; Wang, Yong-Xu; Liu, Ning; Rudnicki, Michael A.; Kuang, Shihuan

    2013-01-01

    Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3′ UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1−/−a2+/−) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1−/−a2+/− mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo. PMID:23874225

  8. Ebf2 is a selective marker of brown and beige adipogenic precursor cells

    PubMed Central

    Wang, Wenshan; Kissig, Megan; Rajakumari, Sona; Huang, Li; Lim, Hee-woong; Won, Kyoung-Jae; Seale, Patrick

    2014-01-01

    Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α+, myogenic factor 5Cre-lineage–marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells. PMID:25197048

  9. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    PubMed Central

    Tompuri, Tuomo T.

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor. PMID:26321958

  10. Natural Killer T Cells in Adipose Tissue Are Activated in Lean Mice

    PubMed Central

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism. PMID:24172196

  11. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from obese and nonobese adults for measures of GPAT and GPAT1 activities, ex vivo palmitate storage, acyl-CoA synthetase (ACS) and diacylglycerol-acyltransferase (DGAT) activities, and CD36 protein. Total GPAT and GPAT1 activities decreased as a function of adipocyte size in both omental (r = −0.71, P = 0.003) and subcutaneous (r = −0.58, P = 0.04) fat. The relative contribution of GPAT1 to total GPAT activity increased as a function of adipocyte size, accounting for up to 60% of GPAT activity in those with the largest adipocytes. We found strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots (r values 0.58–0.91) and between these storage factors and palmitate storage rates into TAG (r values 0.55–0.90). We conclude that: 1) total GPAT activity decreases as a function of adipocyte size; 2) GPAT1 can account for over half of adipose GPAT activity in hypertrophic obesity; and 3) ACS, GPAT, and DGAT are coordinately regulated. PMID:25738782

  12. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles.

    PubMed

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C; Langer, Robert

    2016-05-17

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  13. Effects of seasonal adiposity on ovarian activity of Vespertilionid bat, Scotophilus heathi: Proteomics analysis

    PubMed Central

    Singh, Ajit; Powell, Michael D.; Sridaran, Rajagopala; Krishna, Amitabh

    2014-01-01

    In present study comparative proteomics was utilized to identify ovarian protein profiles and correlate the expression of these proteins with adiposity induced changes in ovarian activity leading to suppression of ovulation (delayed ovulation) in the bat, S. heathi. To achieve this, two-dimension gel electrophoresis combined with protein identification by tandem mass spectrometry (LC–MS/MS) was applied. Protein profiles were obtained from intact ovaries of bats collected during recrudescence (basal body weight) and delayed ovulation (increased body weight) phases of reproductive cycle. Out of 42 differentially expressed protein spots, 15 protein spots were identified by LC–MS/MS. A majority of the 15 protein spots identified belonged to a group of enzymes within the glycolytic and citrate cycles. Greater concentrations of these enzymes were found during the period of delayed ovulation, which may be responsible for an increase in the production of ATP within the ovary. The increased metabolic activity and energy production observed within the ovary during winter dormancy may be required for increased steroidogenic activity during this period. The protein 14-3-3 identified by LC–MS/MS was verified by immunoblotting, which confirmed its increased expression during the period of delayed ovulation and may be associated with development of insulin resistance. Treatment with adipokines (adiponectin, resistin) is responsible for increased expression of 14-3-3 protein in the ovary of S. heathi. Adiposity-associated rise in adipokines are thus responsible for increased expression of 14-3-3 protein in the ovary of S. heathi, which may be responsible for prolonged survival of antral follicles and suppression of ovulation. The 14-3-3 protein may represent a new marker for adiposity associated ovarian anovulation (disorders). PMID:25305638

  14. Adipose tissue fibrosis

    PubMed Central

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. Thereby adipose tissue growth is limited and excess triglycerides are stored in ectopic tissues. Stressed adipocytes and hypoxia contribute to immune cell immigration and activation which further aggravates adipose tissue fibrosis. There is substantial evidence that adipose tissue fibrosis is linked to metabolic dysfunction, both in rodent models and in the clinical setting. Peroxisome proliferator activated receptor gamma agonists and adiponectin both reduce adipose tissue fibrosis, inflammation and insulin resistance. Current knowledge suggests that antifibrotic drugs, increasing adipose tissue oxygen supply or HIF-1 antagonists will improve adipose tissue function and thereby ameliorate metabolic diseases. PMID:25987952

  15. RAAS Activation Is Associated With Visceral Adiposity and Insulin Resistance Among HIV-infected Patients

    PubMed Central

    Srinivasa, Suman; Fitch, Kathleen V.; Wong, Kimberly; Torriani, Martin; Mayhew, Caitlin; Stanley, Takara; Lo, Janet; Adler, Gail K.

    2015-01-01

    Context: Little is known about renin-angiotensin-aldosterone system (RAAS) activation in relationship to visceral adipose tissue (VAT) accumulation in HIV-infected patients, a population at significant risk for insulin resistance and other metabolic disease. Design: Twenty HIV and 10 non-HIV-infected subjects consumed a standardized low sodium or liberal sodium diet to stimulate or suppress the RAAS, respectively. RAAS parameters were evaluated in response to each diet and a graded angiotensin II infusion. Further analyses were performed after groups were substratified by median VAT measured by magnetic resonance imaging. Results: Aldosterone concentrations during the low-sodium diet were higher in HIV than non-HIV-infected subjects [13.8 (9.7, 30.9) vs 9.2 (7.6, 13.6) ng/dL, P = .03] and increased across groups stratified by visceral adipose tissue (VAT) [8.5 (7.1, 12.8), 9.2 (8.1, 21.5), 11.4 (9.4, 13.8), and 27.2 (13.0, 36.9) ng/dL in non-HIV-infected without increased VAT, non-HIV-infected with increased VAT, HIV-infected without increased VAT, HIV-infected with increased VAT, respectively, overall trend P = .02]. Under this condition, plasma renin activity [3.50 (2.58, 4.65) vs 1.45 (0.58, 2.33) ng/mL · h, P = .002] was higher among the HIV-infected subjects with vs without increased VAT. Differences in the suppressibility of plasma renin activity by graded angiotensin infusion were seen stratifying by VAT among the HIV-infected group (P < .02 at each dose). In addition, aldosterone (P = .007) was an independent predictor of insulin resistance in multivariate modeling, controlling for VAT and adiponectin. Conclusion: These data suggest excess RAAS activation in relationship to visceral adiposity in HIV-infected patients that may independently contribute to insulin resistance. Mineralocorticoid blockade may have therapeutic potential to reduce metabolic complications in HIV-infected patients with increased visceral adiposity. PMID:26086328

  16. TNF-alpha, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue.

    PubMed

    Plomgaard, Peter; Keller, Pernille; Keller, Charlotte; Pedersen, Bente Klarlund

    2005-06-01

    Plasminogen activator inhibitor-1 (PAI-1) is produced by adipose tissue, and elevated PAI-1 levels in plasma are a risk factor in the metabolic syndrome. We investigated the regulatory effects of TNF-alpha and IL-6 on PAI-1 gene induction in human adipose tissue. Twenty healthy men underwent a 3-h infusion of either recombinant human TNF-alpha (n = 8), recombinant human IL-6 (n = 6), or vehicle (n = 6). Biopsies were obtained from the subcutaneous abdominal adipose tissue at preinfusion, at 1, 2, and 3 h during the infusion, and at 2 h after the infusion. The mRNA expression of PAI-1 in the adipose tissue was measured using real-time PCR. The plasma levels of TNF-alpha and IL-6 reached 18 and 99 pg/ml, respectively, during the infusions. During the TNF-alpha infusion, adipose PAI-1 mRNA expression increased 2.5-fold at 1 h, 6-fold at 2 h, 9-fold at 3 h, and declined to 2-fold 2 h after the infusion stopped but did not change during IL-6 infusion and vehicle. These data demonstrate that TNF-alpha rather than IL-6 stimulates an increase in PAI-1 mRNA in the subcutaneous adipose tissue, suggesting that TNF-alpha may be involved in the pathogenesis of related metabolic disorders. PMID:15677734

  17. Adipose-Specific Disruption of Signal Transducer and Activator of Transcription 3 Increases Body Weight and Adiposity

    PubMed Central

    Cernkovich, Erin R.; Deng, Jianbei; Bond, Michael C.; Combs, Terry P.; Harp, Joyce B.

    2008-01-01

    To determine the role of STAT3 in adipose tissue, we used Cre-loxP DNA recombination to create mice with an adipocyte-specific disruption of the STAT3 gene (ASKO mice). aP2-Cre-driven disappearance of STAT3 expression occurred on d 6 of adipogenesis, a time point when preadipocytes have already undergone conversion to adipocytes. Thus, this knockout model examined the role of STAT3 in mature but not differentiating adipocytes. Beginning at 9 wk of age, ASKO mice weighed more than their littermate controls and had increased adipose tissue mass, associated with adipocyte hypertrophy, but not adipocyte hyperplasia, hyperphagia, or reduced energy expenditure. Leptin-induced, but not isoproterenol-induced, lipolysis was impaired in ASKO adipocytes, which may partially explain the increased cell size. Despite reduced adiponectin and increased liver triacylglycerol, ASKO mice displayed normal glucose tolerance. Overall, these findings demonstrate that adipocyte STAT3 regulates body weight homeostasis in part through direct effects of leptin on adipocytes. PMID:18096662

  18. Effects of Vitamin A Status on Expression of Ucp1 and Brown/Beige Adipocyte-Related Genes in White Adipose Tissues of Beef Cattle

    PubMed Central

    KANAMORI, Yohei; YAMADA, Tomoya; ASANO, Hiroki; KIDA, Ryosuke; QIAO, Yuhang; ABD ELDAIM, Mabrouk A.; TOMONAGA, Shozo; MATSUI, Tohru; FUNABA, Masayuki

    2014-01-01

    ABSTRACT We previously reported the presence of brown/beige adipocytes in the white fat depots of mature cattle. The present study examined the effects of dietary vitamin A on the expression of brown/beige adipocyte-related genes in the white fat depots of fattening cattle. No significant differences were observed in the expression of Ucp1 between vitamin A-deficient cattle and control cattle. However, the expression of the other brown/beige adipocyte-related genes was slightly higher in the mesenteric fat depots of vitamin A-deficient cattle. The present results suggest that a vitamin A deficiency does not markedly affect the expression of Ucp1 in white fat depots, but imply that it may stimulate the emergence of beige adipocytes in the mesenteric fat depots of fattening cattle. PMID:24859730

  19. Effects of vitamin a status on expression of ucp1 and brown/beige adipocyte-related genes in white adipose tissues of beef cattle.

    PubMed

    Kanamori, Yohei; Yamada, Tomoya; Asano, Hiroki; Kida, Ryosuke; Qiao, Yuhang; Abd Eldaim, Mabrouk A; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2014-09-01

    We previously reported the presence of brown/beige adipocytes in the white fat depots of mature cattle. The present study examined the effects of dietary vitamin A on the expression of brown/beige adipocyte-related genes in the white fat depots of fattening cattle. No significant differences were observed in the expression of Ucp1 between vitamin A-deficient cattle and control cattle. However, the expression of the other brown/beige adipocyte-related genes was slightly higher in the mesenteric fat depots of vitamin A-deficient cattle. The present results suggest that a vitamin A deficiency does not markedly affect the expression of Ucp1 in white fat depots, but imply that it may stimulate the emergence of beige adipocytes in the mesenteric fat depots of fattening cattle. PMID:24859730

  20. Dietary whole cottonseed depresses lipogenesis but has no effect on stearoyl coenzyme desaturase activity in bovine subcutaneous adipose tissue.

    PubMed

    Page, A M; Sturdivant, C A; Lunt, D K; Smith, S B

    1997-09-01

    The primary objective of this study was to determine the effect of long-term feeding of whole cottonseed (WCS) on lipogenesis and stearoyl-coenzyme A desaturase activity in growing steers. Brangus steers were fed either a control, cornbased diet (n = 11) or 30% WCS (n = 12). The 30% WCS contributed an estimated 6.6% additional lipid to the diet. Steers fed the added WCS had greater live weights (P = 0.04) and kidney, pelvic, and heart fat (P = 0.005). Subcutaneous fat thickness was not different (P = 0.20) between treatment groups, although WCS elicited an increase in the proportion of large diameter subcutaneous adipocytes. The rate of [U-14C]acetate incorporation into fatty acids in subcutaneous adipose tissue was reduced by dietary WCS (171.4 vs 122.1 nmol x 100 mg adipose tissue-1 x 2 hr-1, P = 0.03), indicating that the increased dietary fat depressed de novo lipogenesis. Hepatic desaturase activity was much lower than that of subcutaneous adipose tissue, a feature common to cattle. We anticipated that added WCS also would depress stearoyl-coenzyme A desaturase activity in subcutaneous adipose tissue and liver due to its cyclopropene fatty acid content. Instead, desaturase activity was numerically (although not significantly) greater in liver (P = 0.37) and adipose tissue (P = 0.23). PMID:9417995

  1. Semicarbazide-sensitive amine oxidase activation promotes adipose conversion of 3T3-L1 cells.

    PubMed Central

    Mercier, N; Moldes, M; El Hadri, K; Fève, B

    2001-01-01

    Semicarbazide-sensitive amine oxidase (SSAO) is an amine oxidase related to the copper-containing amine oxidase family. The tissular form of SSAO is located at the plasma membrane, and is mainly expressed in vascular smooth muscle cells and adipocytes. Recent studies have suggested that SSAO could activate glucose transport in fat cells. In the present work, we investigated the potential role of a chronic SSAO activation on adipocyte maturation of the 3T3-L1 pre-adipose cell line. Exposure of post-confluent 3T3-L1 pre-adipocytes to methylamine, a physiological substrate of SSAO, promoted adipocyte differentiation in a time- and dose-dependent manner. This effect could be related to SSAO activation, since it was antagonized in the presence of the SSAO inhibitor semicarbazide, but not in the presence of the monoamine oxidase inhibitor pargyline. In addition, methylamine-induced adipocyte maturation was mimicked by 3T3-L1 cell treatment with other SSAO substrates. Finally, the large reversion of methylamine action by catalase indicated that hydrogen peroxide generated by SSAO was involved, at least in part, in the modulation of adipocyte maturation. Taken together, our results suggest that SSAO may contribute to the control of adipose tissue development. PMID:11513731

  2. Voluntary physical activity abolishes the proliferative tumor growth microenvironment created by adipose tissue in animals fed a high fat diet.

    PubMed

    Theriau, Christopher F; Shpilberg, Yaniv; Riddell, Michael C; Connor, Michael K

    2016-07-01

    The molecular mechanisms behind the obesity-breast cancer association may be regulated via adipokine secretion by white adipose tissue. Specifically, adiponectin and leptin are altered with adiposity and exert antagonistic effects on cancer cell proliferation. We set out to determine whether altering adiposity in vivo via high fat diet (HFD) feeding changed the tumor growth supporting nature of adipose tissue and whether voluntary physical activity (PA) could ameliorate these HFD-dependent effects. We show that conditioned media (CM) created from the adipose tissue of HFD fed animals caused an increase in the proliferation of MCF7 cells compared with cells exposed to CM prepared from the adipose of lean chow diet fed counterparts. This increased proliferation was driven within the MCF7 cells by an HFD-dependent antagonism between AMP-activated protein kinase (AMPK) and protein kinase B (Akt) signaling pathways, decreasing p27 protein levels via reduced phosphorylation at T198 and downregulation of adiponectin receptor 1 (AdipoR1). PA can ameliorate these proliferative effects of HFD-CM on MCF7 cells, increasing p27(T198) by AMPK, reducing pAkt(T308), and increasing AdipoR1, resulting in cell cycle withdrawal in a manner that depends on the PA intensity. High physical activity (>3 km/day) completely abolished the effects of HFD feeding. In addition, AdipoR1 overexpression mimics the effects of exercise, abolishing the proliferative effects of the HFD-CM on MCF7 cells and further enhancing the antiproliferative effects of PA on the HFD-CM. Thus voluntary PA represents a means to counteract the proliferative effects of adipose tissue on breast cancers in obese patients. PMID:27150834

  3. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation. PMID:27498007

  4. Moderate‐to‐Vigorous Physical Activity With Accelerometry is Associated With Visceral Adipose Tissue in Adults

    PubMed Central

    Murabito, Joanne M.; Pedley, Alison; Massaro, Joseph M.; Vasan, Ramachandran S.; Esliger, Dale; Blease, Susan J.; Hoffman, Udo; Fox, Caroline S.

    2015-01-01

    Background We examined the relation between objectively measured physical activity with accelerometry and subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in a community‐based sample. Methods and Results We evaluated 1249 participants of the Framingham Third Generation and Omni II cohorts (mean age 51.7 years, 47% women) who underwent assessment of moderate‐to‐vigorous physical activity (MVPA) with accelerometry over 5 to 7 days, and multi‐detector computed tomography for measurement of SAT and VAT volume; fat attenuation was estimated by SAT and VAT hounsfield units (HU). In women, higher levels of MVPA were associated with decreased SAT (P<0.0001) and VAT volume (P<0.0001). The average decrement in VAT per 30 minute/day increase in MVPA was −453 cm3 (95% CI −574, −331). The association was attenuated but persisted upon adjustment for BMI (−122 cm3, P=0.002). Higher levels of MVPA were associated with higher SAT HU (all P≤0.01), a marker of fat quality, even after adjustment for SAT volume. Similar findings were observed in men but the magnitude of the association was less. Sedentary time was not associated with SAT or VAT volume or quality in men or women. Conclusions MVPA was associated with less VAT and SAT and better fat quality. PMID:25736442

  5. The "Skinny" on brown fat, obesity, and bone.

    PubMed

    Devlin, Maureen J

    2015-02-01

    The discovery that metabolically active brown fat is present in humans throughout ontogeny raises new questions about the interactions between thermoregulatory, metabolic, and skeletal homeostasis. Brown adipose tissue (BAT) is distinct from white adipose tissue (WAT) for its ability to burn, rather than store, energy. BAT uniquely expresses uncoupling protein-1 (abbreviated as UCP1), which diverts the energy produced by cellular respiration to generate heat. While BAT is found in small mammals, hibernators, and newborns, this depot was thought to regress in humans during early postnatal life. Recent studies revealed that human BAT remains metabolically active throughout childhood and even in adulthood, particularly in response to cold exposure. In addition to the constitutive BAT depots present at birth, BAT cells can be induced within WAT depots under specific metabolic and climatic conditions. These cells, called inducible brown fat, "brite," or beige fat, are currently the focus of intense investigation as a possible treatment for obesity. Inducible brown fat is associated with higher bone mineral density, suggesting that brown fat interacts with bone growth in previously unrecognized ways. Finally, BAT may have contributed to climatic adaptation in hominins. Here, I review current findings on the role of BAT in thermoregulation, bone growth, and metabolism, describe the potential role of BAT in moderating the obesity epidemic, and outline possible functions of BAT across hominin evolutionary history. PMID:25388370

  6. Metabolic interplay between white, beige, brown adipocytes and the liver.

    PubMed

    Scheja, Ludger; Heeren, Joerg

    2016-05-01

    In mammalian evolution, three types of adipocytes have developed, white, brown and beige adipocytes. White adipocytes are the major constituents of white adipose tissue (WAT), the predominant store for energy-dense triglycerides in the body that are released as fatty acids during catabolic conditions. The less abundant brown adipocytes, the defining parenchymal cells of brown adipose tissue (BAT), internalize triglycerides that are stored intracellularly in multilocular lipid droplets. Beige adipocytes (also known as brite or inducible brown adipocytes) are functionally very similar to brown adipocytes and emerge in specific WAT depots in response to various stimuli including sustained cold exposure. The activation of brown and beige adipocytes (together referred to as thermogenic adipocytes) causes both the hydrolysis of stored triglycerides as well as the uptake of lipids and glucose from the circulation. Together, these fuels are combusted for heat production to maintain body temperature in mammals including adult humans. Given that heating by brown and beige adipocytes is a very-well controlled and energy-demanding process which entails pronounced shifts in energy fluxes, it is not surprising that an intensive interplay exists between the various adipocyte types and parenchymal liver cells, and that this influences systemic metabolic fluxes and endocrine networks. In this review we will emphasize the role of hepatic factors that regulate the metabolic activity of white and thermogenic adipocytes. In addition, we will discuss the relevance of lipids and hormones that are secreted by white, brown and beige adipocytes regulating liver metabolism in order to maintain systemic energy metabolism in health and disease. PMID:26829204

  7. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    SciTech Connect

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-03-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of (/sup 125/)Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10/sup -5/ M) suggesting predominate beta/sub 2/-type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/