Science.gov

Sample records for active cathode material

  1. Cells having cathodes with thiocyanogen-containing cathode-active materials

    SciTech Connect

    Rao, B.M.

    1980-03-11

    An electric current-producing cell which contains: (A) an anode metal higher than hydrogen in the electromotive series and having an atomic number no greater than 30; (B) a cathode material containing thiocyanogen, said material being selected from the group consisting of: (I) thiocyanogen of the formula: (ScN)/sub 2/ (II) parathiocyanogen of the formula: (ScN)/sub x/ wherein X is greater than 2; (III) halothiocyanogen of the formula: YScN wherein Y is a halogen selected from the group consisting of F, Cl, Br and I; (IV) parahalothiocyanogen of the formula: (YScN)/sub y/ wherein Y is as described above and wherein Y is equal to or greater than 2; (V) perthiocyanogen complex of an amine; (VI) perthiocyanogen complex of an ammonium ion; (VII) thiocyanogen complex of a metal cation which is the same as the metal cation in the anode; (VIII) thiocyanogen complex of a metal cation which is higher in the electromotive series than the metal cation in the anode; (IX) cathode intercalated material having halothiocyanogen of paragraph (III) above intercalated therein; (X) cathode intercalated material having parahalothiocyanogen of paragraph (IV) above intercalated therein; (XI) polymeric thiocyanogen-containing material obtained from oxidation of a polyvinyl thiocyanate; (XII) ammonium thiocyanate salt complex of thiocyanogen of paragraph (I) above; (XIII) ammonium thiocyanate salt complex of parathiocyanogen of paragraph (II) above; (XIV) ammonium thiocyanate salt complex of halothiocyanogen of paragraph (III) above; and (XV) ammonium thiocyanate salt complex of parahalothiocyanogen of paragraph (IV) above; and (C) an electrolyte which is chemically inert with respect to said anode and said cathode.

  2. Cathode materials review

    NASA Astrophysics Data System (ADS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  3. Cathode materials review

    SciTech Connect

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  4. Activated porous carbon wrapped sulfur sub-microparticles as cathode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yan, Y. L.; Ren, B.; Yang, R.; Zhang, W.; Xu, Y. H.

    2017-03-01

    The lithium-sulfur batteries holds a high theoretical capacity and specific energy, which is 4-5 times larger than that of today’s lithium-ion batteries, yet the low sulfur loading and large particles in the cathode greatly offset its advantage in high energy density. In the present paper, a liquid phase deposition method was introduced to synthesize sub-micro sulfur particles, which utilized as cathode materials after composed with activated porous carbon. Compared with common sublimed sulfur cathodes, as-obtained composite cathode shows an enhanced initial discharge capacity from 840.7 mAh/g to 1093 mAh/g at C/10. The reversible specific capacity after 50 cycles increased from 383 mAh/g to 504 mAh/g. The developed method has the advantages of simple process, convenient operation and low cost, and is suitable for the industrial preparation of lithium/sulfur batteries.

  5. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  6. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  7. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  8. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  9. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.

    PubMed

    Huan, Long; Xie, Ju; Chen, Ming; Diao, Guowang; Zhao, Rongfang; Zuo, Tongfei

    2017-04-01

    The applicability of a novel macrocyclic multi-carbonyl compound, pillar[4]quinone (P4Q), as the cathode active material for lithium-ion batteries (LIBs) was assessed theoretically. The molecular geometry, electronic structure, Li-binding thermodynamic properties, and the redox potential of P4Q were obtained using density functional theory (DFT) at the M06-2X/6-31G(d,p) level of theory. The results of the calculations indicated that P4Q interacts with Li atoms via three binding modes: Li-O ionic bonding, O-Li···O bridge bonding, and Li···phenyl noncovalent interactions. Calculations also indicated that, during the LIB discharging process, P4Q could yield a specific capacity of 446 mAh g(-1) through the utilization of its many carbonyl groups. Compared with pillar[5]quinone and pillar[6]quinone, the redox potential of P4Q is enhanced by its high structural stability as well as the effect of the solvent. These results should provide the theoretical foundations for the design, synthesis, and application of novel macrocyclic carbonyl compounds as electrode materials in LIBs in the future. Graphical Abstract Schematic representation of the proposed charge-discharge mechanism of Pillar[4]quinone as cathode for lithium-ion batteries.

  10. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Mosavati, Negar; Salley, Steven O.; Ng, K. Y. Simon

    2017-02-01

    The Lithium Sulfur (Li-S) battery system is one of the most promising candidates for electric vehicle applications due to its higher energy density when compared to conventional lithium ion batteries. However, there are some challenges facing Li-S battery commercialization, such as: low active material utilization, high self-discharge rate, and high rate of capacity fade. In this work, a series of transition metal nitrides: Tungsten nitride (WN), Molybdenum Nitride (Mo2N), and Vanadium Nitride (VN) was investigated as cathode materials for lithium polysulfide conversion reactions. Capacities of 697, 569, and 264 mAh g-1 were observed for WN, Mo2N, VN, respectively, with 8 mg cm-2 loading, after 100 cycles at a 0.1 C rate. WN higher electrochemical performance may be attributed to a strong reversible reaction between nitrides and polysulfide, which retains the sulfur species on the electrode surface, and minimizes the active material and surface area loss. X-ray photoelectron spectroscopy (XPS) analysis was performed to gain a better understanding of the mechanism underlying each metal nitride redox reactions.

  11. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  12. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  13. Synopsis of Cathode #4 Activation

    SciTech Connect

    Kwan, Joe; Ekdahl, C.; Harrison, J.; Kwan, J.; Leitner, M.; McCruistian, T.; Mitchell, R.; Prichard, B.; Roy, P.

    2006-05-26

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature.

  14. 2013 Estorm - Invited Paper - Cathode Materials Review

    SciTech Connect

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood III, David L

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  15. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.

    PubMed

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2015-11-01

    This work is focussed on the processing of cathodic active material of spent lithium ion batteries (LIBs) to ensure resource recovery and minimize environmental degradation. The sulfuric acid leaching of metals was carried out for the recovery of all the valuable metals including nickel and manganese along with the frequently targeted metals like lithium and cobalt. The process parameters such as acid concentration, pulp density, time and temperature for the leaching of metals from the cathode powder containing 35.8% Co, 6.5% Li, 11.6% Mn and 10.06% Ni, were optimized. Results show the optimized leach recovery of 93.4% Li, 66.2% Co, 96.3% Ni and 50.2% Mn when the material was leached in 1M H2SO4 at 368 K and 50 g/L pulp density for 240 min. The need of a reductant for improved recovery of cobalt and manganese has been explained by the thermodynamic analysis (Eh-pH diagram) for these metals. Leaching of the valuable metals was found to follow the logarithmic rate law controlled by surface layer diffusion of the lixiviant reacting with the particles. The mode of leaching of the metals from the spent LIBs was further examined by chemical analysis of the samples at various stage of processing which was further corroborated by characterizing the untreated sample and the leach residues by XRD phase identification and the SEM-EDS studies.

  16. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  17. Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material.

    PubMed

    Aravindan, Vanchiappan; Mhamane, Dattakumar; Ling, Wong Chui; Ogale, Satishchandra; Madhavi, Srinivasan

    2013-12-01

    One HEC of a material: The use of trigol-reduced graphene oxide nanosheets as cathode material in hybrid lithium-ion electrochemical capacitors (Li-HECs) results in an energy density of 45 Wh kg(-1) ; much enhanced when compared to similar devices. The mass loading of the active materials is optimized, and the devices show good cycling performance. Li-HECs employing these materials outperform other supercapacitors, making them attractive for use in power sources.

  18. Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials

    NASA Astrophysics Data System (ADS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Appetecchi, Giovanni B.; Winter, Martin; Passerini, Stefano

    2014-01-01

    Poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI-Pyr14TFSI)-based 4 V-class composite cathodes, incorporating either Li(Ni1/3Co1/3Mn1/3)O2 or Li(Ni0.8Co0.15Al0.05)O2 were prepared by a hot-pressing process and successively investigated in terms of their morphological, thermal, and electrochemical properties. Thereby, excellent mechanical and thermal properties could be demonstrated for all composite cathodes. The electrochemical performance of truly dry all-solid-state Li/P(EO)10LiTFSI-(Pyr14TFSI)2/composite cathode batteries at temperatures as low as 40 °C revealed high delivered capacities. However, in comparison with LiFePO4, the 4 V-class composite cathodes also indicated much lower capacity retention. In-depth investigations on the interfacial properties of Li(Ni0.8Co0.15Al0.05)O2 composite cathodes revealed a strong dependence on the anodic cut-off potential and the presence of current flow through the cell, whereby different degradation mechanisms could be characterized upon cycling, according to which the finite growth of a surface films at both electrode/polymer electrolyte interfaces inhibited continuous decomposition of the polymer electrolyte even at potentials as high as 4.3 V. Moreover, the presence of Pyr14TFSI in the 4 V-class composite cathodes sustainably reduced the cathode interfacial resistance and presumably diminished the corrosion of the aluminum current collector.

  19. Improved cathode materials for microbial electrosynthesis

    SciTech Connect

    Zhang, T; Nie, HR; Bain, TS; Lu, HY; Cui, MM; Snoeyenbos-West, OL; Franks, AE; Nevin, KP; Russell, TP; Lovley, DR

    2013-01-01

    Microbial electrosynthesis is a promising strategy for the microbial conversion of carbon dioxide to transportation fuels and other organic commodities, but optimization of this process is required for commercialization. Cathodes which enhance electrode-microbe electron transfer might improve rates of product formation. To evaluate this possibility, biofilms of Sporomusa ovata, which are effective in acetate electrosynthesis, were grown on a range of cathode materials and acetate production was monitored over time. Modifications of carbon cloth that resulted in a positive-charge enhanced microbial electrosynthesis. Functionalization with chitosan or cyanuric chloride increased acetate production rates 6-7 fold and modification with 3-aminopropyltriethoxysilane gave rates 3-fold higher than untreated controls. A 3-fold increase in electrosynthesis over untreated carbon cloth cathodes was also achieved with polyaniline cathodes. However, not all strategies to provide positively charged surfaces were successful, as treatment of carbon cloth with melamine or ammonia gas did not stimulate acetate electrosynthesis. Treating carbon cloth with metal, in particular gold, palladium, or nickel nanoparticles, also promoted electrosynthesis, yielding electrosynthesis rates that were 6-,4.7- or 4.5-fold faster than the untreated control, respectively. Cathodes comprised of cotton or polyester fabric treated with carbon nanotubes yielded cathodes that supported acetate electrosynthesis rates that were similar to 3-fold higher than carbon cloth controls. Recovery of electrons consumed in acetate was similar to 80% for all materials. The results demonstrate that one approach to increase rates of carbon dioxide reduction in microbial electrosynthesis is to modify cathode surfaces to improve microbe-electrode interactions.

  20. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.

    PubMed

    Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae

    2014-10-01

    We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) .

  1. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors.

    PubMed

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M P

    2013-10-21

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg⁻¹ and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li₄Ti₅O₁₂ anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors.

  2. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    PubMed Central

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-01-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg−1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors. PMID:24141527

  3. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

    NASA Astrophysics Data System (ADS)

    Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Kumar, Palaniswamy Suresh; Balasubramanian, Rajasekhar; Ramakrishna, Seeram; Madhavi, Srinivasan; Srinivasan, M. P.

    2013-10-01

    In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg-1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors.

  4. NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION

    SciTech Connect

    Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01

    Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

  5. The loss of material from the cathode of metal arcs

    NASA Technical Reports Server (NTRS)

    Seeliger, R.; Wulfhekel, H.

    1985-01-01

    A study was made of the effect of arc length, cathode thickness, current strength, gas pressure and the chemical nature of the cathode material and filling gases upon the material loss from Cu, Fe, and Ag cathodes in arcs. The results show that the analysis of the phenomenon is complex and the energy balance is difficult to formulate.

  6. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Burnwal, Suman Kumar; Bharadwaj, S.; Kistaiah, P.

    2016-11-01

    The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600-800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.

  7. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  8. Oxide diffusion in innovative SOFC cathode materials.

    PubMed

    Hu, Y; Thoréton, V; Pirovano, C; Capoen, E; Bogicevic, C; Nuns, N; Mamede, A-S; Dezanneau, G; Vannier, R N

    2014-01-01

    Oxide diffusion was studied in two innovative SOFC cathode materials, Ba(2)Co(9)O(14) and Ca(3)Co(4)O(9)+δ derivatives. Although oxygen diffusion was confirmed in the promising material Ba(2)Co(9)O(14), it was not possible to derive accurate transport parameters because of an oxidation process at the sample surface which has still to be clarified. In contrast, oxygen diffusion in the well-known Ca(3)Co(4)O(9)+δ thermoelectric material was improved when calcium was partly substituted with strontium, likely due to an increase of the volume of the rock salt layers in which the conduction process takes place. Although the diffusion coefficient remains low, interestingly, fast kinetics towards the oxygen molecule dissociation reaction were shown with surface exchange coefficients higher than those reported for the best cathode materials in the field. They increased with the strontium content; the Sr atoms potentially play a key role in the mechanism of oxygen molecule dissociation at the solid surface.

  9. Performance and stability of different cathode base materials for use in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Janicek, Anthony; Fan, Yanzhen; Liu, Hong

    2015-04-01

    Metal supporting materials are increasingly being used as base materials for microbial fuel cell (MFC) cathodes. However, the potential for corrosion may limit their use as base materials of MFCs during scale-up and long-term operation. In this study, the electrochemical performance, power generation in MFCs, hydrostatic pressure tolerance, and stability of activated carbon (catalyst) cathodes with carbon cloth or different size metal mesh as base materials are investigated. Electrochemical testing results show that the finest stainless steel mesh (250 × 250 openings per inch) outperforms carbon cloth cathodes by 10-40% at current densities ranging from 6 to 11.2 A m-2 over the typical cathode operating range of 0.1 V-0 V. When tested in MFCs, however, carbon cloth based cathodes out perform all stainless steel mesh cathodes by as much as 34%, reaching 1.72 W m-2; probably due to the corrosion and salt build-up on the surface of the stainless steel mesh cathodes. Carbon cloth cathodes also maintained high static pressure heads of 1.9 m. The high electrochemical performance, hydrostatic pressure tolerance, and corrosion resistance of carbon cloth suggest that carbon fiber based materials may be more suitable than metal based materials for use as MFC cathodes base material for some applications.

  10. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  11. Nanostructured cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  12. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    PubMed

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC.

  13. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  14. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    PubMed

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives.

  15. Chromium (V) compounds as cathode material in electrochemical power sources

    DOEpatents

    Delnick, Frank M.; Guidotti, Ronald A.; McCarthy, David K.

    1985-01-01

    A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca.sub.5 (CrO.sub.4).sub.3 Cl, Ca.sub.5 (CrO.sub.4).sub.3 OH, and Cr.sub.2 O.sub.5. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.

  16. Chromium (V) compounds as cathode material in electrochemical power sources

    DOEpatents

    Delnick, F.M.; Guidotti, R.A.; McCarthy, D.K.

    A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca/sub 5/(CrO/sub 4/)/sub 3/Cl, Ca/sub 5/(CrO/sub 4/)OH, and Cr/sub 2/O/sub 5/. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.

  17. Developing Polymer Cathode Material for the Chloride Ion Battery.

    PubMed

    Zhao, Xiangyu; Zhao, Zhigang; Yang, Meng; Xia, Hui; Yu, Tingting; Shen, Xiaodong

    2017-01-25

    The chloride ion battery is an attractive rechargeable battery owing to its high theoretical energy density and sustainable components. An important challenge for research and development of chloride ion batteries lies in the innovation of the cathode materials. Here we report a nanostructured chloride ion-doped polymer, polypyrrole chloride, as a new type of potential cathode material for the chloride ion battery. The as-prepared polypyrrole chloride@carbon nanotubes (PPyCl@CNTs) cathode shows a high reversible capacity of 118 mAh g(-1) and superior cycling stability. Reversible electrochemical reactions of the PPyCl@CNTs cathode based on the redox reactions of nitrogen species and chloride ion transfer are demonstrated. Our work may guide and offer electrode design principles for accelerating the development of rechargeable batteries with anion transfer.

  18. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.

  19. High-Current Cold Cathode Employing Diamond and Related Materials

    SciTech Connect

    Hirshfield, Jay L.

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  20. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect

    Thurston, Anthony

    2012-10-31

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  1. Ruthenium dioxide as cathode material for hydrogen evolution in hydroxide and chlorate solutions

    SciTech Connect

    Cornell, A.; Simonsson, D. . Dept. of Applied Electrochemistry and Corrosion Science)

    1993-11-01

    Ruthenium dioxide as electrocatalyst on an activated cathode for chlorate production was investigated with respect to its activity towards hydrogen evolution, hypochlorite reduction, and chlorate reduction, respectively. Investigations were made in the presence, as well as in the absence, of a chromium hydroxide film in 1M NaOH and in typical chlorate electrolyte. Low overvoltages for hydrogen evolution were found and, at technical current densities, an effect of catalyst coating thickness. Commercial DSA electrodes with RuO[sub 2] as the active compound were tested as cathodes and were less active but more stable than the coatings produced by the authors. Hypochlorite and chlorate were reduced in the absence of chromate, chlorate reduction being fast on ruthenium dioxide compared to the other electrode materials and by far the dominating cathodic reaction in chlorate electrolyte without chromate and hypochlorite at 70 C, 3 kA/m[sup 2].

  2. Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High-Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material.

    PubMed

    Xiao, Biwei; Liu, Jian; Sun, Qian; Wang, Biqiong; Banis, Mohammad Norouzi; Zhao, Dong; Wang, Zhiqiang; Li, Ruying; Cui, Xiaoyu; Sham, Tsun-Kong; Sun, Xueliang

    2015-05-01

    Ultrathin amorphous FePO4 coating derived by atomic layer deposition (ALD) is used to coat the 5 V LiNi0.5Mn1.5O4 cathode material powders, which dramatically increases the capacity retention of LiNi0.5Mn1.5O4. It is believed that the amorphous FePO4 layer could act as a lithium-ions reservoir and electrochemically active buffer layer during the charge/discharge cycling, helping achieve high capacities in LiNi0.5Mn1.5O4, especially at high current densities.

  3. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect

    Ward, R.M.; Vaughey, J.T.

    2006-01-01

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  4. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2006-06-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. In this report, further measurements of the oxygen deficient double perovskite PrBaCo{sub 2}O{sub 5.5+{delta}} are reported. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. Preliminary measurements in symmetric cells have shown low ASR values at 600 C. Here we describe the first complete cell measurements on Ni/CGO/CGO/PBCO/CGO cells.

  5. Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating.

    PubMed

    Qin, CanCan; Cao, JiaLi; Chen, Jun; Dai, GaoLe; Wu, TongFu; Chen, Yanbin; Tang, YueFeng; Li, AiDong; Chen, Yanfeng

    2016-06-21

    LiNi0.6Co0.2Mn0.2O2 cathode material has been surface-modified by coating with ultrathin TiO2via atomic layer deposition (ALD) technology to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathodes for lithium ion batteries. Within the cut-off voltage of 2.5-4.3 V, the coated sample delivers an initial discharge capacity of 187.7 mA h g(-1) at 0.1 C and with a capacity retention about 85.9% after 100 cycles at 1 C, which provides a significant improvement in terms of discharge capacity and cyclability, as compared with those of the bare one. Such enhanced electrochemical performance of the coated sample is ascribed to its high-quality ultrathin coating of amorphous TiO2, which can protect the active material from HF attack, withstand the dissolution of metal ions in the electrode and favor the lithium diffusion of oxide as proved by electrochemical impedance spectroscopy (EIS) tests. TiO2 coating via the ALD process provides a potential approach for battery factories to surface-modify Ni-rich electrode materials so as to realize improvements in electrochemical performance.

  6. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    SciTech Connect

    Dunn, Jennifer B.; James, Christine; Gaines, Linda; Gallagher, Kevin; Dai, Qiang; Kelly, Jarod C.

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  7. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Susarla, Naresh; Dees, Dennis W.

    2017-02-01

    The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day-1. The results indicate that the process will consume approximately 4 kWh kgNMC-1 of energy, 15 L kgNMC-1 of process water, and cost 23 to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na2CO3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. A combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.

  8. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    SciTech Connect

    Dunn, Jennifer B.; James, Christine; Gaines, Linda G.; Gallagher, Kevin

    2014-09-30

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  9. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  10. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOEpatents

    Hanson, Eric J.; Kooyer, Richard L.

    2003-01-01

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  11. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOEpatents

    Hanson, Eric J.; Kooyer, Richard L.

    2001-01-01

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  12. Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material.

    PubMed

    Seki, Shiro; Kobayashi, Yo; Miyashiro, Hajime; Ohno, Yasutaka; Usami, Akira; Mita, Yuichi; Watanabe, Masayoshi; Terada, Nobuyuki

    2006-02-07

    For the purpose of realizing high-voltage, high-capacity, long-life and safe rechargeable batteries, a lithium secondary battery that uses high-voltage stable ZrO2-coated LiCoO2 cathode powder and a nonvolatile high-safety room temperature ionic liquid was fabricated.

  13. Copper oxide as a high temperature battery cathode material

    NASA Astrophysics Data System (ADS)

    Ritchie, A. G.; Mullins, A. P.

    1994-10-01

    Copper oxide has been tested as a cathode material for high temperature primary reserve thermal batteries in single cells at 530 to 600 C and at current densities of 0.1 to 0.25 A cm(exp -2) using lithium-aluminium alloy anodes and lithium fluoride-lithium chloride-lithium bromide molten salt electrolytes. Initial on-load voltages were around 2.3 V, falling to 1.5 V after about 0.5 F mol(exp -1) had been withdrawn. Lithium copper oxide, LiCu2O2, and cuprous oxide, Cu2O, were identified as discharge products.

  14. A study of layered lithium manganese oxide cathode materials

    NASA Astrophysics Data System (ADS)

    Eriksson, Tom A.; Doeff, Marca M.

    Substituted layered sodium manganese oxide bronzes with the P2 structure were prepared by glycine-nitrate combustion synthesis. The Na in the as-prepared materials could be completely ion-exchanged for Li under mild conditions. All lithium manganese oxide compounds obtained after ion-exchange have O2 stacking of the layers. Cyclic voltammetry and stepped potential experiments on lithium cells containing these materials show that the main redox reaction around 3.1 V is a diffusion-controlled process and is completely reversible. O2-Li 0.6[Al 0.1Mn 0.85□ 0.05]O 2 and O2-Li 0.6[Ni 0.1Mn 0.85□ 0.05]O 2 are particularly promising as cathode materials in lithium cells because of the high reversible discharge capacities (180 mAh/g).

  15. Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries

    SciTech Connect

    Shkrob, Ilya A.; Abraham, Daniel P.

    2016-07-06

    A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives. Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.

  16. Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries

    DOE PAGES

    Shkrob, Ilya A.; Abraham, Daniel P.

    2016-07-06

    A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less

  17. Discharge characteristics of lithium/molten nitrate thermal battery cells using silver salts as solid cathode materials

    NASA Astrophysics Data System (ADS)

    McManis, G. E.; Miles, M. H.; Fletcher, A. N.

    1985-12-01

    Thermal battery cells using molten nitrate electrolytes and liquid lithium anodes have been evaluated using several silver salts with low solubility in molten nitrates as solid cathode materials. These cathode materials do not readily diffuse into the anolyte and, thus, do not have parasitic reactions with the lithium anode. Furthermore, the solid cathode materials have voltammetric characteristics as favorable as many soluble silver salt cathodes. This paper presents the effects of temperature, current density, and cathode material on cell discharge characteristics.

  18. Polaron formation and transport in olivine cathode materials

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Hoang, Khang

    2011-03-01

    One of the critical factors limiting Li ion battery performance is electronic conduction through the cathode material. In the olivine structure type materials, such as LiFe PO4 , the parent materials are insulators with a gap of approximately 4 (or more) eV. The withdrawal of an electron results not in a band-type hole state, but rather a localized polaronic state. Transport then occurs via hopping of the polaron through the crystal. The measured electronic conduction in olivine materials depends on the transition metal cation type. In this study, we use density functional theory to compare formation of polarons in olivine materials with different transition metal cations: Mn, Fe, Co, and Ni. We show that the underlying electronic structure of the fully lithiated material (or fully delithiated material) essentially determines whether or not polaron formation is possible in localized d -states or whether the holes that result from adding or removing an electron reside in oxygen-derived states. We also investigate the facility of polaronic hopping by calculating the barrier between adjacent polaron sites in each of the four materials.

  19. Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries.

    PubMed

    Ma, Chuze; Alvarado, Judith; Xu, Jing; Clément, Raphaële J; Kodur, Moses; Tong, Wei; Grey, Clare P; Meng, Ying Shirley

    2017-04-05

    Large-scale electric energy storage is fundamental to the use of renewable energy. Recently, research and development efforts on room-temperature sodium-ion batteries (NIBs) have been revitalized, as NIBs are considered promising, low-cost alternatives to the current Li-ion battery technology for large-scale applications. Herein, we introduce a novel layered oxide cathode material, Na0.78Ni0.23Mn0.69O2. This new compound provides a high reversible capacity of 138 mAh g(-1) and an average potential of 3.25 V vs Na(+)/Na with a single smooth voltage profile. Its remarkable rate and cycling performances are attributed to the elimination of the P2-O2 phase transition upon cycling to 4.5 V. The first charge process yields an abnormally excess capacity, which has yet to be observed in other P2 layered oxides. Metal K-edge XANES results show that the major charge compensation at the metal site during Na-ion deintercalation is achieved via the oxidation of nickel (Ni(2+)) ions, whereas, to a large extent, manganese (Mn) ions remain in their Mn(4+) state. Interestingly, electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (sXAS) results reveal differences in electronic structures in the bulk and at the surface of electrochemically cycled particles. At the surface, transition metal ions (TM ions) are in a lower valence state than in the bulk, and the O K-edge prepeak disappears. On the basis of previous reports on related Li-excess LIB cathodes, it is proposed that part of the charge compensation mechanism during the first cycle takes place at the lattice oxygen site, resulting in a surface to bulk transition metal gradient. We believe that by optimizing and controlling oxygen activity, Na layered oxide materials with higher capacities can be designed.

  20. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries.

    PubMed

    Wong, Lee Loong; Chen, Haomin; Adams, Stefan

    2017-03-15

    The obvious cost advantage as well as attractive electrochemical properties, including excellent cycling stability and the potential of high rate performance, make sodium-ion batteries prime candidates in the race to technically and commercially enable large-scale electrochemical energy storage. In this work, we apply our bond valence site energy modelling method to further the understanding of rate capabilities of a wide range of potential insertion-type sodium-ion battery cathode materials. We demonstrate how a stretched exponential function permits us to systematically quantify the rate performance, which in turn reveals guidelines for the design of novel sodium-ion battery chemistries suitable for high power, grid-scale applications. Starting from a diffusion relaxation model, we establish a semi-quantitative prediction of the rate-performance of half-cells from the structure of the cathode material that factors in dimensionality of Na(+) ion migration pathways, the height of the migration barriers and the crystallite size of the active material. With the help of selected examples, we also illustrate the respective roles of unoccupied low energy sites within the pathway and temperature towards the overall rate capability of insertion-type cathode materials.

  1. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2006-09-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study were perovskite oxides based on substituted LaFeO{sub 3} (P1 compositions), where significant data in single cell tests exist at PNNL for example, for La{sub 0.8}Sr{sub 0.2}FeO{sub 3} cathodes on both YSZ and CSO/YSZ. The materials selection was then extended to La{sub 2}NiO{sub 4} compositions (K1 compositions), and then in a longer range task we evaluated the possibility of completely unexplored group of materials that are also perovskite related, the ABM{sub 2}O{sub 5+{delta}}. A key component of the research strategy was to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. In the initial phase, we did this in parallel with

  2. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries

    NASA Astrophysics Data System (ADS)

    Li, Xuelei; Zhang, Jin; Song, Dawei; Song, Jishun; Zhang, Lianqi

    2017-03-01

    A new green recycling process (named as direct regeneration process) of cathode material mixture from scrapped LiFePO4 batteries is designed for the first time. Through this direct regeneration process, high purity cathode material mixture (LiFePO4 + acetylene black), anode material mixture (graphite + acetylene black) and other by-products (shell, Al foil, Cu foil and electrolyte solvent, etc.) are recycled from scrapped LiFePO4 batteries with high yield. Subsequently, recycled cathode material mixture without acid leaching is further directly regenerated with Li2CO3. Direct regeneration procedure of recycled cathode material mixture from 600 to 800 °C is investigated in detail. Cathode material mixture regenerated at 650 °C display excellent physical, chemical and electrochemical performances, which meet the reuse requirement for middle-end Li-ion batteries. The results indicate the green direct regeneration process with low-cost and high added-value is feasible.

  3. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  4. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is

  5. Studies of sulfur-based cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Wu, Min

    Developing alternative cathodes with high capacity is critical for the next generation rechargeable batteries to meet the ever-increasing desires of global energy storage market. This thesis is focused on two sulfur-based cathode materials ranging from inorganic lithium sulfide to organotrisulfide. For lithium sulfide cathode, we developed a nano-Li2S/MWCNT paper electrode through solution filtration method, which involved a low temperature of 100 °C. The Li2S nanocrystals with a size less than 10 nm were formed uniformly in the pores of carbon paper network. These electrodes show an unprecedented low overpotential (0.1 V) in the first charges, also show high discharge capacities, good rate capability, and excellent cycling performance. This superior electrochemical performance makes them promising for use with lithium metal-free anodes in rechargeable Li-S batteries for practical applications. For organotrisulfide cathode, we use a small organotrisulfide compound, e.g. dimethyl trisulfide, to be a high capacity and high specific energy organosulfide cathode material for rechargeable lithium batteries. Based on XRD, XPS, SEM, and GC-MS analysis, we investigated the cell reaction mechanism. The redox reaction of DMTS is a 4e- process and the major discharge products are LiSCH3 and Li2S. The following cell reaction becomes quite complicated, apart from the major product DMTS, the high order organic polysulfide dimethyl tetrasulfide (DMTtS) and low order organic polysulfide dimethyl disulfide (DMDS) are also formed and charged/discharged in the following cycles. With a LiNO3 containing ether-based electrolyte, DMTS cell delivers an initial discharge capacity of 720 mAh g -1 and retains 74% of the initial capacity over 70 cycles with high DMTS loading of 6.7 mg cm-2 at C/10 rate. When the DMTS loading is increased to 11.3 mg cm -2, the specific energy is 1025 Wh kg -1 for the active materials (DMTS and lithium) and the specific energy is 229 Wh kg-1 for the cell

  6. Spectroscopic studies of cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Totir, Dana Alexa

    2000-10-01

    Structural changes that occur during electrochemical cycling of lithium-ion battery cathode materials have been investigated using in situ spectroscopic techniques. A new method was developed for the preparation of carbon and binder free cathodes utilizing powder materials of interest for commercial batteries. The extraordinary quality of the cyclic voltammetric curves recorded for this type of electrodes during the in situ measurements allows direct correlations to be made between the state of charge of the material and its structural and electronic characteristics. LiCoO2, LiMn2O4 and LiCo0.15Ni 0.85O2 electrodes were evaluated using cycling voltammetry and the mean diffusion coefficient for Li-ions in the lattice (DLi) was calculated for LiMn2O4. LiMn2O4 electrodes prepared by this technique have been studied in situ using Mn K-edge XAS. Data analysis for the species formed at different potentials indicated a contraction of the lattice associated with the increase in the oxidation state of manganese. In situ Raman spectra of particles of LiMn2O 4, and LiCoO2 embedded in Au and also of KS-44 graphite and carbon microfibers MCF28 embedded in thermally annealed Ni have been recorded as a function of the applied potential. Fe K-edge XAFS of pyrite electrodes in a Li/PEO(LiClO4)/FeS 2 cell and S K-edge XANES measurements of a FeS2 electrode in a non-aqueous electrolyte have been acquired as a function of the state of charge. The studies have clearly evidenced the formation of metallic Fe and Li2S as intermediates after 4 e- discharge and the formation of Li2FeS2 after 2 e- recharge. While Fe K-edge studies have indicated that there is no change in the Fe environment and oxidation state upon 4 e- recharge, the results obtained from S K-edge studies are inconclusive for this stage. Finally, in situ Co K-edge XAFS data were obtained for the first time during the electrochemical cycling of electrodeposited Co(OH) 2 films in alkaline solutions. The results support

  7. Development of Cathode Materials for Low Temperature SOFCs

    SciTech Connect

    Simner, Steve P. ); Bonnett, Jeff F. ); Canfield, Nathan L. ); Meinhardt, Kerry D. ); Shelton, Jayne P.; Sprenkle, Vince L. ); Stevenson, Jeffry W. )

    2002-11-21

    This paper details some of the recent efforts towards SOFC cathode development conducted at Pacific Northwest National Laboratory (PNNL). It is widely established that the performance of low-temperature SOFCs is highly dependent on cathode polarization losses, which must be minimized to optimize the SOFC power densities.

  8. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  9. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs).

    PubMed

    Banerjee, Abhik; Upadhyay, Kush Kumar; Puthusseri, Dhanya; Aravindan, Vanchiappan; Madhavi, Srinivasan; Ogale, Satishchandra

    2014-04-21

    Lithium ion hybrid capacitors (Li-HECs) have attracted significant attention for use in next generation advanced energy storage technologies to satisfy the demand of both high power density as well as energy density. Herein we demonstrate the use of very high surface area 3D carbon cuboids synthesized from a metal-organic framework (MOF) as a cathode material with Li₄Ti₅O₁₂ as the anode for high performance Li-HECs. The energy density of the cell is ∼65 W h kg(-1) which is significantly higher than that achievable with commercially available activated carbon (∼36 W h kg(-1)) and a symmetric supercapacitor based on the same MOF-derived carbon (MOF-DC ∼20 W h kg(-1)). The MOF-DC/Li₄Ti₅O₁₂ Li-HEC assembly also shows good cyclic performance with ∼82% of the initial value (∼25 W h kg(-1)) retained after 10,000 galvanostatic cycles under high rate cyclic conditions. This result clearly indicates that MOF-DC is a very promising candidate for future P-HEVs in a Li-HEC configuration.

  10. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; de Souza, Michèle O.; Becker, Márcia R.; Martini, Emilse M. A.; de Souza, Roberto F.

    2015-04-01

    The hydrogen evolution reaction (HER) performed with platinum (Pt), nickel (Ni), stainless steel 304 (SS) or glassy carbon (GC) cathodes in 0.1 M 3-triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS.BF4) solution is studied using quasi-potentiostatic and impedance spectroscopy techniques. The objective is to compare the catalytic effect on the cathode using different materials to obtain hydrogen by water electrolysis. Furthermore, the catalytic effect of the ionic liquid (IL) on the cathode compared with that of a hydrochloric acid (HCl) solution with same pH value (0.8) is reported. A low activation energy (Ea) of 8.7 kJ mol-1 is found for the glassy carbon cathode. Tafel plots obtained with TEA-PS.BF4 IL suggest the formation of an electroactive layer of IL on the cathode, which may be responsible for the catalytically enhanced performance observed.

  11. The Impact of Cathode Material and Shape on Current Density in an Aluminum Electrolysis Cell

    NASA Astrophysics Data System (ADS)

    Song, Yang; Peng, Jianping; Di, Yuezhong; Wang, Yaowu; Li, Baokuan; Feng, Naixiang

    2016-02-01

    A finite element model was developed to determine the impact of cathode material and shape on current density in an aluminum electrolysis cell. For the cathode material, results show that increased electrical resistivity leads to a higher cathode voltage drop; however, the horizontal current is reduced in the metal. The horizontal current magnitude for six different cathode materials in decreasing order is graphitized, semi-graphitized, full graphitic, 50% anthracite (50% artificial graphite), 70% anthracite (30% artificial graphite), 100% anthracite. The modified cathode shapes with an inclined cathode surface, higher collector bar and cylindrical protrusions are intended to improve horizontal current and flow resistance. Compared to a traditional cathode, modified collector bar sizes of 70 mm × 230 mm and 80 mm × 270 mm can reduce horizontal current density component Jx by 10% and 19%, respectively, due to better conductivity of the steel. The horizontal current in the metal decreases with increase of cathode inclination. The peak value of Jx can be approximately reduced by 20% for a 2° change in inclination. Cylindrical protrusions lead to local horizontal current increase on their tops, but the average current is less affected and the molten metal is effectively slowed down.

  12. Synthesis, strctural and electrochemical characterizations of lithium- manganese- rich composite cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng

    The electrification trend for transportation systems requires alternative cathode materials to LiCoO2 with improved safety, lowered cost and extended cycle life. Lithium- manganese- rich composite cathode materials, which can be presented in a two component notation as xLi2MnO3·(1-x)LiMO 2, (M= Ni, Co or Mn) have superior cost and energy density advantages. These cathode materials have shown success in laboratory scale experiments, but are still facing challenges such as voltage fade, moderate rate capacity and tap density for commercialization. The synthesis of precursors with high packing density and suitable physical properties is critical to achieve high energy density as well as the other acceptable electrochemical performance for the next generation lithium ion batteries. The aim of this study is to correlate the electrochemical properties of materials to their structural, morphological, and physical properties by coordinating the science of synthesis with the science of function, in order to enable the use of these compounds in vehicle technologies. Three different precursors including carbonate, hydroxide and oxalate were synthesized by co-precipitation reactions using continuous stirred tank reactor (CSTR) under various conditions. Research focused on areas such as nucleation and growth mechanisms, synthesis optimizations, and intrinsic limitations of each co-precipitation method. A combination of techniques such as PSA, BET, SEM, EDX FIB, TEM, Raman, FTIR, TGA-DSC, XRD, and ICP-MS, as well as electrochemical test methods such as cycling, CV, EIS and HPPC tests were used in correlation with each other in order to deepen our understanding to these materials. Related topics such as the composite structure formation process during the solid state reaction, lithium and nickel content effects on the cathode properties were also discussed. Additionally, the side reactions between the active materials and electrolyte as a result of the high charge potential were

  13. Enhanced electrochemical performance and manganese redox activity of LiFe0.4Mn0.6PO4 by iodine anion substitution as cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Sin, Byung Cheol; Singh, Laxman; An, JiEun; Lee, Hansol; Lee, Hyung-il; Lee, Youngil

    2016-05-01

    For the first time, an attempt has been made for the possible augmentation and exploration of iodine substitution into LiFe0.4Mn0.6PO4 (LFMP) material is assessed as a cathode material for lithium ion batteries. Iodine substituted LiFe0.4Mn0.6(PO4)1-xIx (LFMPI, x = 0, 0.01, 0.015, and 0.02) have been synthesized by a solid-state reaction without any external carbon source. X-ray diffraction shows that the LFMP and LFMPI cathode materials have formed the same single crystalline phase; the values of lattice parameters and unit cell volume have been insignificantly changed by I- anion substitution. Uniformly distributed grains of the LFMPI samples with grain sizes in the range of 250 nm to 0.9 μm have been obtained by scanning electron microscopy. X-ray photoelectron spectroscopy for the LFMPI with x = 0.02 have clearly observed at 619.5 and 630.7 eV for I 3d5/2 and I 3d3/2, respectively. The electrochemical properties of the pure LFMP cathode material have been compared with those of I- anion substituted LFMPI samples. LFMPI with x = 0.015 has delivered the highest discharge capacity of 141.5 mAh g-1 at 0.1C, and LFMPI with x = 0.01 has 102.1 mAh g-1 at high rate of 3C. Iodine substituted LFMPI have demonstrated improved electrochemical properties with excellent reversible cycling.

  14. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.

    PubMed

    Yu, Zhijing; Kang, Zepeng; Hu, Zongqian; Lu, Jianhong; Zhou, Zhigang; Jiao, Shuqiang

    2016-08-16

    Hexagonal NiS nanobelts served as novel cathode materials for rechargeable Al-ion batteries based on an AlCl3/[EMIm]Cl ionic liquid electrolyte system. The nano-banded structure of the materials can facilitate the electrolyte immersion and enhance Al(3+) diffusion. The hexagonal NiS nanobelt based cathodes exhibit high storage capacity, good cyclability and low overpotential.

  15. A Systematic Cathode Study-Activation of a Thermionic Cathode, and Measuring Cesium Evaporation from a Dispenser Photocathode

    DTIC Science & Technology

    2010-06-01

    This principle is demonstrated in Figure 2. Figure 2. FEL Injector, Wiggler, and Beam Dump (From: [ 6 ]) 4 . Optical Resonator Not all FELs...DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE A Systematic Cathode Study⎯Activation of a Thermionic Cathode, and Measuring Cesium...Evaporation from a Dispenser Photocathode 6 . AUTHOR(S) Justin C. Jimenez 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval

  16. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.

    PubMed

    He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo

    2015-12-01

    Cathode materials are difficult to separate from Al-foil substrates during the recycling of spent lithium-ion batteries (LIBs), because of the strong bonding force present. In this study, ultrasonic cleaning was used to separate and recycle these cathode materials. The mechanism of separation was ascribed to the dissolution of polyvinylidene fluoride (PVDF) and the cavitation caused by ultrasound. Based on this mechanism, the key parameters affecting the peel-off efficiency of cathode materials from Al foil was identified as solvent nature, temperature, ultrasonic power, and ultrasonic time. The peel-off efficiency of cathode materials achieved ∼ 99% under the optimized conditions of N-methyl-2-pyrrolidone (NMP) cleaning fluid, 70°C process temperature, 240 W ultrasonic power, and 90 min of ultrasonication. The cathode materials separated from Al foil displayed a low agglomeration degree, which is beneficial to the subsequent leaching process. Finally, a new, environmentally-sound process was proposed to efficiently recycle cathode materials and Al from spent LIBs, consisting of manual dismantling, ultrasonic cleaning, and picking.

  17. Lithium iron phosphates as cathode materials in lithium ion batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Gaojun; Chen, Linfeng; Mathur, Gyanesh N.; Varadan, Vijay K.

    2012-04-01

    Olivine-structured lithium iron phosphates are promising cathode materials in the development of high power lithium ion batteries for electric vehicles. However, the low electronic conductivity and ionic conductivity of lithium iron phosphates hinder their commercialization pace. This work aims to verify the approaches for improving the electrochemical properties of lithium iron phosphates. In this work, sol-gel method was used to synthesize carbon coated lithium iron phosphates and nickel doped lithium iron phosphates, and their particle sizes were controlled in the nanometer to sub-micrometer range. The crystalline structures of the synthesized lithium iron phosphates were characterized by X-ray diffraction, and their morphologies were analyzed by scanning electron microscopy. To study their electrochemical properties, prototype lithium ion batteries were assembled with the synthesized lithium iron phosphates as cathode active materials, and with lithium metal discs as the anodes, and the discharge / charge properties and cycling behaviors of the prototype batteries were tested at different rates. The synthesized lithium iron phosphate materials exhibited high capacity and high cycling stability. It was confirmed that particle size reduction, carbon coating and metal doping are three effective approaches for increasing the conductivity of lithium iron phosphates, and thus improving their electrochemical properties. Experimental results show that by combing the three approaches for improving the electrochemical properties, lithium iron phosphate composites with characteristics favorable for their applications in lithium ion batteries for electric vehicles can be developed, including high specific capacity, high rate capacity, flat discharge voltage plateau and high retention ratio.

  18. Dependence of property, crystal structure and electrode characteristics on Li content for Li xNi 0.8Co 0.2O 2 as a cathode active material for Li secondary battery

    NASA Astrophysics Data System (ADS)

    Idemoto, Yasushi; Takanashi, Yu; Kitamura, Naoto

    We investigated the dependence of the properties, crystal and electronic structures and electrode characteristics of Li xNi 0.8Co 0.2O 2 as a cathode active material for Li secondary batteries. Li xNi 0.8Co 0.2O 2 was prepared by a solid-state method and solution method. The crystal structure was determined by neutron and X-ray diffractions using the Rietveld analysis. All the samples were obtained as the α-NaFeO 2 type with the space group R-3 m. From the charge-discharge test, the cycle performance was improved with the decreasing Li content (x ≦ 1.066) although the discharge capacity decreased. Samples made by the solid-state method showed a better electrode performance than those made by the solution method. We measured the chemical diffusion coefficient of Li (DLi+ ˜) by the GITT method. The DLi+ ˜ in the stable cycle region was much improved in the sample prepared by the solid-state method than by the solution method. From the neutron powder diffraction, it was confirmed that Li 2CO 3 was formed by increasing the Li content (0.994 < x ≦ 1.066) as a secondary phase. Cation mixing was improved with the decreasing Li content. The bond length of the 3b site-6c site decreased with decreasing Li content. From the electron density images on the (1 1 0) plane for Li xNi 0.8Co 0.2O 2, the covalent bond of the 3b site-6c site increased with the decreasing Li content. This may be one of the reasons why the cycle performance improved with the decreasing Li content.

  19. Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces

    SciTech Connect

    Kevin Blinn; Yongman Choi; Meilin Liu

    2009-08-11

    The objective of this project is to gain a fundamental understanding of the oxygen-reduction mechanism on mixed conducting cathode materials by means of quantum-chemical calculations coupled with direct experimental measurements, such as vibrational spectroscopy. We have made progress in the elucidation of the mechanisms of oxygen reduction of perovkite-type cathode materials for SOFCs using these quantum chemical calculations. We established computational framework for predicting properties such as oxygen diffusivity and reaction rate constants for adsorption, incorporation, and TPB reactions, and formulated predictions for LSM- and LSC-based cathode materials. We have also further developed Raman spectroscopy as well as SERS as a characterization tool for SOFC cathode materials. Raman spectroscopy was used to detect chemical changes in the cathode from operation conditions, and SERS was used to probe for pertinent adsorbed species in oxygen reduction. However, much work on the subject of unraveling oxygen reduction for SOFC cathodes remains to be done.

  20. Improved electrochemical performance of the Cr doped cathode materials for energy storage/conversion devices

    NASA Astrophysics Data System (ADS)

    Sangeeta, Agnihotri, Shruti; Arya, Anil; Sharma, A. L.

    2016-05-01

    Successful synthesis of a nanostructured Cr-doped LiFePO4 cathode material has been prepared by a sol-gel technique followed by a single step thermal treatment at 750° C for 12 hours. As olivine type LiFePO4 has already gained much attention due to its advantages over other cathode materials, doping of metal ion is done in the paper to improve its drawback of lower conductivity. FESEM couples with EDX were done to characterize the morphology and particle size of the materials. LiFe(1-x)CrxPO4 (x=0.1, 0.2, 0.3) materials have average particle size of 30 to 50 nm. EDX analysis confirmed the precursor used and also confirmed the presence of carbon which is in good agreement with chemical analysis result. Electrical conductivity of the prepared cathode materials is estimated of the order of 10-5 Scm-1 by AC impedance analysis. The energy density and power density of the cathode materials is improved drastically after addition of Cr as dopant. The estimated parameters appear at desirable value for use of materials as cathode in energy storage/conversion devices.

  1. Effects of cathode design parameters on in vitro antimicrobial efficacy of electrically-activated silver-based iontophoretic system.

    PubMed

    Tan, Zhuo; Ganapathy, Anirudh; Orndorff, Paul E; Shirwaiker, Rohan A

    2015-01-01

    Post-operative infection is a major risk associated with implantable devices. Prior studies have demonstrated the effectiveness of ionic silver as an alternative to antibiotic-based infection prophylaxis and treatment. The focus of this study is on an electrically activated implant system engineered for active release of antimicrobial silver ions. The objective was to evaluate the effects of the cathode design, especially the cathode material, on the in vitro antimicrobial efficacy of the system. A modified Kirby-Bauer diffusion technique was used for the antimicrobial efficacy evaluations (24 h testing interval). In phase-1 of the study, a three-way ANOVA (n = 6, α = 0.05) was performed to determine the effects of cathode material (silver, titanium, and stainless steel), cathode surface area and electrode separation distance on the efficacy of the system against Staphylococcus aureus. The results show that within the design space tested, none of these parameters had a statistically significant effect on the antimicrobiality of the system (P > 0.15). Subsequently, one-way ANOVA (n = 6, α = 0.05) was conducted in phase-2 to validate the inference regarding the non-significance of the cathode material to the system efficacy using a broader spectrum of pathogens (methicillin-resistant S. aureus, Escherichia coli, Streptococcus agalactiae and Aspergillus flavus) responsible for osteomyelitis. The results confirmed the lack of statistical difference between efficacies of the three cathode material configurations against all pathogens tested (P > 0.58). Overall, the results demonstrate the ability to alter the cathode material and related design parameters in order to minimize the silver usage in the system without adversely affecting its antimicrobial efficacy.

  2. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials.

  3. Enhanced catalytic activity and inhibited biofouling of cathode in microbial fuel cells through controlling hydrophilic property

    NASA Astrophysics Data System (ADS)

    Li, Da; Liu, Jia; Wang, Haiman; Qu, Youpeng; Zhang, Jie; Feng, Yujie

    2016-11-01

    The hydrophilicity of activated carbon cathode directly determines the distribution of three-phase interfaces where oxygen reduction occurs. In this study, activated carbon cathodes are fabricated by using hydrophobic polytetrafluoroethylene (PTFE) and amphiphilic LA132 at various weight ratio to investigate the effect of hydrophilic property on cathode performance. Contact angle tests confirm the positive impact of LA132 content on hydrophilicity. Cathode with 67 wt% LA132 content shows the highest electrochemical activity as exchange current density increases by 71% and charge transfer resistance declines by 44.6% compared to that of PTFE cathode, probably due to the extended reaction interfaces by optimal hydrophilicity of cathode so that oxygen reduction is facilitated. As a result, the highest power density of 1171 ± 71 mW m-2 is obtained which is 14% higher than PTFE cathode. In addition to the hydrophilicity, this cathode had more negative charged surface of catalyst layer, therefore the protein content of cathodic biofilm decreased by 47.5%, indicating the effective bacterial inhibition when 67 wt% LA132 is used. This study shows that the catalytic activity of cathode is improved by controlling proper hydrophilicity of cathode, and that biofilm can be reduced by increasing hydrophilicity and lowering the surface potential.

  4. Performance analysis of new cathode materials for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Paoletti, C.; Carewska, M.; Presti, R. Lo; Phail, S. Mc; Simonetti, E.; Zaza, F.

    The slow dissolution of the lithiated nickel oxide cathode represents one of the main causes of performance degradation in molten carbonate fuel cells (MCFC). Two main approaches were studied in ENEA laboratories to overcome this problem: protecting the nickel cathode covering it by a thin layer of a material with a low solubility in molten carbonate and stabilizing the nickel cathode doping it with iron and magnesium. Among several materials, due to its low solubility and good conductivity, lithium cobaltite was chosen to cover the nickel cathode and slow down its dissolution. A nickel electrode covered with a thin layer of lithium cobaltite doped with magnesium, was fabricated by complex sol-gel process. To simplify electrode preparation, no thermal treatments were made after covering to produce lithium cobaltite, and during the cell start-up LiMg 0.05Co 0.95O 2 was obtained in situ. To stabilize the nickel cathode, metal oxides Fe 2O 3 and MgO were chosen as dopant additives to be mixed with NiO powder in a tape-casting process (Mg 0.05Fe 0.01Ni 0.94O). On the prepared materials TGA analysis, morphological analysis by scanning electron microscopy (SEM-EDS) and electrical conductivity measurements were carried out. A conventional nickel cathode, the nickel cathode covered by lithium cobaltite precursors and the nickel cathode stabilized by iron and magnesium oxides were each tested in a 100 cm 2 fuel cell. Polarization curves and internal resistance (iR) measurements were acquired during the cell lifetime (1000 h) and the effect of gas composition variation on the cell performance was studied. From a comparison with the conventional nickel cathode it can be observed that the new materials have similar performance and show a good potential stability during the cell operating time. From the post-test analysis both the nickel cathode covered by lithium cobaltite and the nickel cathode doped with iron and magnesium seem to succeed in reducing nickel dissolution.

  5. On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoheng; Jin, Jun; Wen, Zhaoyin; Zhang, Sanpei; Wang, Qingsong; Shen, Chen; Rui, Kun

    2016-08-01

    Sodium carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR), sodium alginate (SA) and LA132 are utilized as the polymer binders for the cathodes of Li-S batteries to study their dispersion mechanism on the cathode materials and the consequent influence on the performance of Li-S batteries. Zeta potential tests, differential scanning calorimetry analysis and calculations of the rotational barriers of the links of the polymer chains by General Atomic and Molecular Electronic Structure System (GAMESS) reveal that higher charge densities and better chain flexibility of the binders promise the dispersion of the downsized cathode materials. LA132 is found to have optimal characteristic for dispersing and stabilizing the cathode materials in aqueous environment. The cycling performance and SEM images of the cathodes demonstrate that cathodes with higher dispersion degree achieve higher discharge capacities. The electrochemical impedance spectroscopy (EIS) results further support that better dispersed cathodes have lower impedance resulting from their well established conducting frameworks.

  6. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries.

    PubMed

    Xiang, Xingde; Zhang, Kai; Chen, Jun

    2015-09-23

    Sodium-ion batteries (SIBs) receive significant attention for electrochemical energy storage and conversion owing to their wide availability and the low cost of Na resources. However, SIBs face challenges of low specific energy, short cycling life, and insufficient specific power, owing to the heavy mass and large radius of Na(+) ions. As an important component of SIBs, cathode materials have a significant effect on the SIB electrochemical performance. The most recent advances and prospects of inorganic and organic cathode materials are summarized here. Among current cathode materials, layered transition-metal oxides achieve high specific energies around 600 mW h g(-1) owing to their high specific capacities of 180-220 mA h g(-1) and their moderate operating potentials of 2.7-3.2 V (vs Na(+) /Na). Porous Na3 V2 (PO4 )3 /C nanomaterials exhibit excellent cycling performance with almost 100% retention over 1000 cycles owing to their robust structural framework. Recent emerging cathode materials, such as amorphous NaFePO4 and pteridine derivatives show interesting electrochemical properties and attractive prospects for application in SIBs. Future work should focus on strategies to enhance the overall performance of cathode materials in terms of specific energy, cycling life, and rate capability with cationic doping, anionic substitution, morphology fabrication, and electrolyte matching.

  7. Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries.

    PubMed

    NuLi, Yanna; Chen, Qiang; Wang, Weikun; Wang, Ying; Yang, Jun; Wang, Jiulin

    2014-01-01

    We report the formation of carbyne polysulfide by coheating carbon containing carbyne moieties and elemental sulfur. The product is proved to have a sp2 hybrid carbon skeleton with polysulfide attached on it. The electrochemical performance of carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries is firstly investigated. The material exhibits a high discharge capacity of 327.7 mAh g(-1) at 3.9 mA g(-1). These studies show that carbyne polysulfide is a promising candidate as cathode material for rechargeable Mg batteries if the capacity retention can be significantly improved.

  8. Studies on niobium triselenide cathode material for lithium rechargeable cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.

    1988-01-01

    NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.

  9. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  10. Gas evolution behaviors for several cathode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kong, Weihe; Li, Hong; Huang, Xuejie; Chen, Liquan

    Several 18650 lithium-ion batteries using LiCoO 2, LiMn 2O 4, and LiFePO 4 as cathode materials were assembled separately. Gas species of these batteries under normal cycling and overcharging to 4.5 and 5.0 V conditions were examined by means of GC-MS method. Under the normal charge and discharge voltage range, it is found that gas components are independent to the cathode materials. C 2H 5F gas was detected in all cases. A formation mechanism is proposed. Under overcharging condition, it is found that the gas components are different and there is a correlation between the C 2H 2 product and the oxidation ability of various delithiated cathode materials.

  11. Critical parameters governing energy density of Li-storage cathode materials unraveled by confirmatory factor analysis

    NASA Astrophysics Data System (ADS)

    Sohn, Kee-Sun; Han, Su Cheol; Park, Woon Bae; Pyo, Myoungho

    2016-03-01

    Despite extensive effort during the past few decades, a comprehensive understanding of the key variables governing the electrochemical properties of cathode materials in Li-ion batteries is still far from complete. To elucidate the critical parameters affecting energy density (ED) and capacity (Q) retention in layer and spinel cathodes, we data-mine the existing experimental data via confirmatory factor analysis (CFA) based on a structural equation model (SEM), which is a proven, versatile tool in understanding complex problems in the social science. The data sets are composed of 18 and 15 parameters extracted from 38 layer and 33 spinel compounds, respectively. CFA reveals the irrelevance of Q retention to all the parameters we adopt, but it also reveals the sensitive variations of ED with specific parameters. We validate the usefulness of CFA in material science and pinpointed critical parameters for high-ED cathodes, hoping to suggest a new insight in materials design.

  12. Nanoscale visualization of redox activity at lithium-ion battery cathodes.

    PubMed

    Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu

    2014-11-17

    Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.

  13. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    NASA Astrophysics Data System (ADS)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  14. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  15. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge

    NASA Astrophysics Data System (ADS)

    Liu, R. L.; Hurley, M. F.; Kvryan, A.; Williams, G.; Scully, J. R.; Birbilis, N.

    2016-06-01

    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes.

  16. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge.

    PubMed

    Liu, R L; Hurley, M F; Kvryan, A; Williams, G; Scully, J R; Birbilis, N

    2016-06-28

    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes.

  17. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    SciTech Connect

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  18. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    SciTech Connect

    White, Ralph E.; Popov, Branko N.

    2002-10-31

    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  19. Beyond Conventional Cathode Materials for Lithium-ion Batteries and Sodium-ion Batteries Nickel fluoride conversion materials and P2 type Sodium-ion intercalation cathodes

    NASA Astrophysics Data System (ADS)

    Lee, Dae Hoe

    The Li-ion battery is one of the most important rechargeable energy storage devices due to its high energy density, long cycle life, and reliable safety. Although the performances of Li-ion batteries have been improved dramatically, the limit in terms of the energy density still needs to be resolved to meet the growing demands for large-scale mobile devices. Choosing the cathode material is the most pivotal issue in achieving higher energy, since the energy density is directly correlated to the specific capacity of the cathode. Intercalation-based cathode materials have been widely utilized in commercial products; however they yield a limited capacity due to restricted crystallographic sites for Li-ions. In this thesis, the NiF2 and NiO doped NiF2/C conversion materials, which display substantially greater capacities, are intensively studied using various synchrotron X-ray techniques and magnetic measurements. The enhanced electronic conductivity of NiO doped NiF2/C is associated with a significant improvement in the reversible conversion reaction. While bimodal Ni nanoparticles are maintained for NiO doped NiF2/C upon the discharge, for pure NiF2 only smaller nanoparticles remain following the 2nd discharge. Based on the electronic conductivity, it is demonstrated that the size of Ni nanoparticles is associated with the conversion kinetics and consequently the reversibility. Although Li-ion batteries offer the highest energy density among all the secondary batteries, the amount of the reserves and the cost associated with the Li sources are still a concern. In the second part of the thesis, P2 type Na2/3[Ni1/3Mn2/3]O2 is investigated to understand the structural stability in the Na-ion batteries. Significantly improved battery performances are obtained by excluding the phase transformation region. In addition, the structural evolution of the P2-Na0.8[Li0.12Ni0.22Mn0.66]O 2 is tracked by in situ technique and revealed no phase transformation during the cycling. It

  20. Aerospace applications of sodium batteries using novel cathode materials

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Di Stefano, S.; Bankston, C. P.

    1989-01-01

    Preliminary fundamental investigations aimed at evaluating sodium metal chloride systems for future aerospace applications are described. Since the sodium metal chloride systems are relatively new, the approach has been to characterize their fundamental properties in order to understand their limitations. To this end, a series of fundamental electrochemical investigations have been carried out, the results of which are reported here. The metal chloride cathodes show high exchange current densities which corroborate their good reversibility in a battery application. The reduction mechanisms appear to be complex and involve multielectron transfer steps and intermediates. Such intermediates in the reaction mechanism have already been identified in the case of FeCl2. Similar mechanisms may be operative in the case of NiCl2. CuCl2, however, exhibits a second relaxation loop in the impedance plot at low frequencies and also a sloping discharge curve, unlike FeCl2 and NiCl2, which may indicate the existence of monovalent copper in the reduction mechanism.

  1. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells.

    PubMed

    Pan, Yajun; Mo, Xiaoping; Li, Kexun; Pu, Liangtao; Liu, Di; Yang, Tingting

    2016-04-01

    In order to improve the performance of microbial fuel cell (MFC), iron-nitrogen-activated carbon (Fe-N-C) as an excellent oxygen reduction reaction (ORR) catalyst was prepared here using commercial activated carbon (AC) as matrix and employed in single chamber MFC. In MFC, the maximum power density increased to 2437±55 mW m(-2), which was 2 times of that with AC. The open circuit potential (OCP) of Fe-N-C cathode (0.47) was much higher than that of AC cathode (0.21 V). The R0 of Fe-N-C decreased by 47% from 14.36 Ω (AC) to 7.6 Ω (Fe-N-C). From X-ray photoelectron spectroscopy (XPS), pyridinic nitrogen, quaternary nitrogen and iron species were present, which played an important role in the ORR performance of Fe-N-C. These results demonstrated that the as-prepared Fe-N-C material provided a potential alternative to Pt in AC air cathode MFC for relatively desirable energy generation and wastewater treatment.

  2. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.

    PubMed

    Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano

    2016-09-01

    Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.

  3. Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Capece, Angela M.

    2015-05-01

    Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.

  4. Synthesis of Li-Rich Cathode Material with High C-Rate Performance by Reductive Treatment

    NASA Astrophysics Data System (ADS)

    Lim, Sung Nam; Seo, Jung Yoon; Song, Shin Ae; Kim, Ki Young; Park, Seung Bin; Jung, Dae Soo

    2017-01-01

    Li-rich cathode materials have intrinsically poor rate capability along with low electronic conductivity, which remain as unsolved drawbacks limiting their use in applications that require cathode material with layered structures. Here, we prepared surface-modified Li-rich cathode materials to address these drawbacks via reductive treatment. After reductive treatment, we confirmed that these samples feature better electrochemical performance; the reductive treated samples show higher capacity and better capacity retention during cycling compared to samples treated only in air. In particular, the reductive treated samples showed excellent rate capability of 168 mAh g-1 at a current density of 400 mA g-1 compared to 138 mAh g-1 for the air treated sample. We confirmed that reductive treatment reduces the resistance for charge transfer based on electrochemical impedance spectroscopy analysis. We also investigated the effects of reductive treatment on the cathode structure of both samples using x-ray diffraction as well as x-ray photoelectron spectroscopy.

  5. An investigation of anode and cathode materials in photomicrobial fuel cells.

    PubMed

    Schneider, Kenneth; Thorne, Rebecca J; Cameron, Petra J

    2016-02-28

    Photomicrobial fuel cells (p-MFCs) are devices that use photosynthetic organisms (such as cyanobacteria or algae) to turn light energy into electrical energy. In a p-MFC, the anode accepts electrons from microorganisms that are either growing directly on the anode surface (biofilm) or are free floating in solution (planktonic). The nature of both the anode and cathode material is critical for device efficiency. An ideal anode is biocompatible and facilitates direct electron transfer from the microorganisms, with no need for an electron mediator. For a p-MFC, there is the additional requirement that the anode should not prevent light from perfusing through the photosynthetic cells. The cathode should facilitate the rapid reaction of protons and oxygen to form water so as not to rate limit the device. In this paper, we first review the range of anode and cathode materials currently used in p-MFCs. We then present our own data comparing cathode materials in a p-MFC and our first results using porous ceramic anodes in a mediator-free p-MFC.

  6. Synthesis of Li-Rich Cathode Material with High C-Rate Performance by Reductive Treatment

    NASA Astrophysics Data System (ADS)

    Lim, Sung Nam; Seo, Jung Yoon; Song, Shin Ae; Kim, Ki Young; Park, Seung Bin; Jung, Dae Soo

    2017-03-01

    Li-rich cathode materials have intrinsically poor rate capability along with low electronic conductivity, which remain as unsolved drawbacks limiting their use in applications that require cathode material with layered structures. Here, we prepared surface-modified Li-rich cathode materials to address these drawbacks via reductive treatment. After reductive treatment, we confirmed that these samples feature better electrochemical performance; the reductive treated samples show higher capacity and better capacity retention during cycling compared to samples treated only in air. In particular, the reductive treated samples showed excellent rate capability of 168 mAh g-1 at a current density of 400 mA g-1 compared to 138 mAh g-1 for the air treated sample. We confirmed that reductive treatment reduces the resistance for charge transfer based on electrochemical impedance spectroscopy analysis. We also investigated the effects of reductive treatment on the cathode structure of both samples using x-ray diffraction as well as x-ray photoelectron spectroscopy.

  7. Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Genc, Arda; Xiao, Jie; Xu, Pinghong; Chen, Xilin; Zhu, Zihua; Zhao, Wenbo; Pullan, Lee; Wang, Chong M.; Zhang, Jiguang

    2014-04-07

    Li-rich and Mn-rich (LMR) layered structured materials are very promising cathodes for high-energy lithium-ion batteries. However, their fundamental structure and voltage fading mechanisms are far from being well understood. Here we report the first evidence on the reduced voltage and energy fade of LMR cathode by improving the atomic level spatial distribution of the chemical species. LMR cathode (Li[Li0.2Ni0.2M0.6]O2) prepared by co-precipitation and sol-gel methods are dominated by R-3m phase and show significant Ni-segregation at the surface of the particles. They exhibit large voltage-fade and fast capacity degradation. In contrast, LMR cathode prepared by hydrothermal assisted method is dominated by C2/m phase and minimal Ni-segregation. It also demonstrates much smaller voltage-fade and excellent capacity retention. The fundamental correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials found in this work also guide the design of other functional materials with enhanced stabilities.

  8. Chemically synthesized boron carbon oxynitride as a new cold cathode material

    NASA Astrophysics Data System (ADS)

    Banerjee, Diptonil; Maity, Supratim; Chattopadhyay, K. K.

    2015-11-01

    Synthesis of boron carbon oxynitride (BCNO) nanosheets at different temperature from amorphous to crystalline regime has been reported. The synthesis was done by a simple molten salt process using sodium borohydride and urea as precursors. Transmission electron microscopic study confirms the formation of sheet-like structure of the as-synthesized material. The performances of the as-synthesized BCNO nanosheets as cold cathode materials have been studied for the first time in the high vacuum electron field emission set up. It has been seen that the material gives considerable field emission current with turn on field as low as 2.95 V/μm with good stability and thus a new cold cathode material can be postulated.

  9. Electron microscopy characterization of Li-based cathode materials for battery applications

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick; Klie, Robert

    2014-03-01

    The role of aberration-corrected scanning transmission electron microscopy (STEM) in materials characterization is examined with respect to Li-based cathode materials for battery applications. STEM-based methods are quickly becoming the most promising characterization tools for these materials, owed largely to the wide-range of techniques available on advanced STEM instruments, including the direct imaging of both heavy and light elements, and both energy-dispersive X-ray (EDX) and electron energy loss (EEL) spectroscopies. The current talk with focus on structural and chemical characterization of a Li-based cathode material, both in a pristine and irradiated state. Focus will remain on the nucleation of structural transitions, while also characterizing relevant parameters such as the manganese valence and oxygen presence. Various imaging modes, including high/low angle annular dark field (H/LAADF) and annular bright field (ABF), in conjunction with EELS, will be used extensively for this analysis.

  10. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  11. Effect of potassium impurities deliberately introduced into cathode materials on the electrochemical performance of a Li-O2 battery

    SciTech Connect

    Curtiss, Larry A.; Lau, Kah Chun; Zhai, Dengyun; Wen, Jianguo; Miller, Dean J.; Kang, Feiyu; Zavadil, Kevin

    2015-12-21

    Rechargeable lithium-air (Li-O-2) batteries have drawn much interest owing to their high energy density. We report on the effect of deliberately introducing potassium impurities into the cathode material on the electrochemical performance of a Li-O-2 battery. Small amounts of potassium introduced into the activated carbon (AC) cathode material in the synthesis process are found to have a dramatic effect on the performance of the Li-O-2 cell. An increased amount of potassium significantly increases capacity, cycle life, and round-trip efficiency. This improved performance is probably due to a larger amount of LiO2 in the discharge product, which is a mixture of LiO2 and Li2O2, resulting from the increase in the amount of potassium present. No substantial correlation with porosity or surface area in an AC cathode is found. Experimental and computational studies indicate that potassium can act as an oxygen reduction catalyst, which can account for the dependence of performance on the amount of potassium.

  12. Cu2Se with facile synthesis as a cathode material for rechargeable sodium batteries.

    PubMed

    Yue, Ji-Li; Sun, Qian; Fu, Zheng-Wen

    2013-07-04

    A Cu2Se electrode on a copper grid substrate has been directly fabricated by a facile post-selenized method and tested as a positive material for sodium ion batteries. Cu2Se exhibits large reversible capacities (about 250 mA h g(-1)), good cyclic stabilities and low polarization. These results indicate that Cu2Se is a promising candidate as a cathode material for sodium ion batteries.

  13. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Yiqing

    2O7 from XAS and XPS analysis. Safety of batteries not only depends on the stability of the active materials, but also the interactions between the active materials and electrolyte. Thus we study the stability between the cathode materials and the electrolyte. The thermal stability of electrochemically delithiated Li0.1N 0.8C0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4 and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability is found in the order: NCA< VOPO4< MFP< FP=LiVOPO4=Li2VOPO4. Sealed capsule high pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC: DMC=1:1) between 200 and 300 °C. Finally, we characterize the lithium storage and release mechanism of V2O5 aerogels by x-ray photoelectron spectroscopy (XPS). We study the influence of n--butyllithium (n--BuLi) treatments on the electrochemical performance of the aerogel. In addition to fully reversible V reduction and oxidation due to the intercalation reaction, we observe the formation of LiOH species that are only partially reversible. This is attributed to reaction with the interlayer water and is considered responsible for the gradual capacity fade. The n--BuLi treated aerogels display a higher capacity than those without and our XPS analysis reveals an additional reversible formation of Li2O.

  14. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Shaojun; Zhang, Saisai; Wu, Zhijun; Wang, Ting; Zong, Jianbo; Zhao, Mengxi; Yang, Gang

    2017-01-01

    In technologically important Li-rich layered cathode materials, the synthesis time is a critical determinant to overcome the practical difficulties. Normal technology costs at least one day or even more to obtain final Li-rich cathode material. Full microwave synthesis is performed here to obtain final Li1.2Mn0.56Ni0.16Co0.08O2 within 60 min with high time-efficiency and power economization. The as-prepared Li-rich oxides keep the spherical hierarchical structure of the precursor. Compared to the same material obtained by traditional calcination, it exhibits well-formed layered structure with higher ordered ion arrangement. X-ray photoelectron spectroscopy (XPS) indicates that microwave assisted heating contributes to a more ordered and stable surface with desired Mn, Co, Ni element states and less impurity. Thus, the as-prepared material reveals remarkable electrochemical property with high discharge capacity of 159.3 mAh g-1 at high current density of 2000 mA g-1. And 88.6% specific capacity is remained after 300 cycles at such high current density. Furthermore, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) are carried out to overall investigate and estimate the material. It is concluded that such full microwave synthesis is really promising as one of the dominant way to obtain Li-rich layered cathode material for applications.

  15. Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium–sulfur batteries

    NASA Astrophysics Data System (ADS)

    Yu, Qiuhong; Lu, Yang; Peng, Tao; Hou, Xiaoyi; Luo, Rongjie; Wang, Yange; Yan, Hailong; Liu, Xianming; Kim, Jang-Kyo; Luo, Yongsong

    2017-03-01

    A promising hybrid material composed of tubular polypyrrole (T-PPy)-wrapped monodisperse biomass-derived carbon nanospheres (BCSs) was first synthesized successfully via a simple hydrothermal approach by using watermelon juice as the carbon source, and further used as an anchoring object for sulfur (S) of lithium–sulfur (Li–S) batteries. The use of BCSs with hydrophilic nature as a framework could provide large interface areas between the active materials and electrolyte, and improve the dispersion of T-PPy, which could help in the active material utilization. As a result, BCS@T-PPy/S as a cathode material exhibited a high capacity of 1143.6 mA h g‑1 and delivered a stable capacity up to 685.8 mA h g‑1 after 500 cycles at 0.5 C, demonstrating its promising application for rechargeable Li–S batteries.

  16. Structural and Chemical Evolution of Li- and Mn-rich Layered Cathode Material

    SciTech Connect

    Zheng, Jianming; Xu, Pinghong; Gu, Meng; Xiao, Jie; Browning, Nigel D.; Yan, Pengfei; Wang, Chong M.; Zhang, Jiguang

    2015-02-24

    Lithium (Li)- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being sufficiently understood. Here we report the detailed phase transformation pathway in the LMR cathode (Li[Li0.2Ni0.2Mn0.6]O2) during cycling for the samples prepared by hydro-thermal assistant method. It is found the transformation pathway of LMR cathode is closely correlated to its initial structure and preparation conditions. The results reveal that LMR cathode prepared by HA approach experiences a phase transformation from the layered structure to a LT-LiCoO2 type defect spinel-like structure (Fd-3m space group) and then to a disordered rock-salt structure (Fm-3m space group). The voltage fade can be well correlated with the Li ion insertion into octahedral sites, rather than tetrahedral sites, in both defect spinel-like structure and disordered rock-salt structure. The reversible Li insertion/removal into/from the disordered rock-salt structure is ascribed to the Li excess environment that can satisfy the Li percolating in the disordered rock-salt structure despite the increased kinetic barrier. Meanwhile, because of the presence of a great amount of oxygen vacancies, a significant decrease of Mn valence is detected in the cycled particle, which is below that anticipated for a potentially damaging Jahn-Teller distortion (+3.5). Clarification of the phase transformation pathway, cation redistribution, oxygen vacancy and Mn valence change undoubtedly provides insights into a profound understanding on the voltage fade, and capacity degradation of LMR cathode. The results also inspire us to further enhance the reversibility of LMR cathode via improving its surface structural stability.

  17. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.

    PubMed

    Zeng, Xianlai; Li, Jinhui

    2014-04-30

    Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling.

  18. Synthesis and investigation of novel cathode materials for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Sawicki, Monica

    Environmental pollution and eventual depletion of fossil fuels and lithium has increased the need for research towards alternative electrical energy storage systems. In this context, research in sodium ion batteries (NIBs) has become more prevalent since the price in lithium has increased due to its demand and reserve location. Sodium is an abundant resource that is low cost, and safe; plus its chemical properties are similar to that of Li which makes the transition into using Na chemistry for ion battery systems feasible. In this study, we report the effects of processing conditions on the electrochemical properties of Na-ion batteries made of the NaCrO2 cathode. NaCrO2 is synthesized via solid state reactions. The as-synthesized powder is then subjected to high-energy ball milling under different conditions which reduces particle size drastically and causes significant degradation of the specific capacity for NaCrO2. X-ray diffraction reveals that lattice distortion has taken place during high-energy ball milling and in turn affects the electrochemical performance of the cathode material. This study shows that a balance between reducing particle size and maintaining the layered structure is essential to obtain high specific capacity for the NaCrO2 cathode. In light of the requirements for grid scale energy storage: ultra-long cycle life (> 20,000 cycles and calendar life of 15 to 20 years), high round trip efficiency (> 90%), low cost, sufficient power capability, and safety; the need for a suitable cathode materials with excellent capacity retention such as Na2MnFe(CN)6 and K2MnFe(CN)6 will be investigated. Prussian blue (A[FeIIIFeII (CN)6]•xH2O, A=Na+ or K+ ) and its analogues have been investigated as an alkali ion host for use as a cathode material. Their structure (FCC) provides large ionic channels along the direction enabling facile insertion and extraction of alkali ions. This material is also capable of more than one Na ion insertion per unit formula

  19. Development of Boride Composite Materials for Cold Cathode Devices

    DTIC Science & Technology

    1981-05-01

    22 7. Diagram of the Induction Heating Facilities .. .. .....24 8. Typical Pellet After RF Heating...technique in an RF induction furnace. Pellets of the eu- tectic composition available from the literature were melted as well as pellets of a composition...com- pounds with the metals and metal oxides . Pure boron is silvery gray in color. In order to avoid reactions with Other materials at high tempera

  20. Commercial materials as cathode for hydrogen production in microbial electrolysis cell.

    PubMed

    Farhangi, Sara; Ebrahimi, Sirous; Niasar, Mojtaba Shariati

    2014-10-01

    The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.

  1. Electrochemical Effects of Atomic Layer Deposition on Cathode Materials for Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Scott, Isaac David

    One of the greatest challenges of modern society is to stabilize a consistent energy supply that will meet our growing energy demand while decreasing the use of fossil fuels and the harmful green house gases which they produce. Developing reliable and safe solutions has driven research into exploring alternative energy sources for transportation including fuel cells, hydrogen storage, and lithium-ion batteries (LIBs). For the foreseeable future, though, rechargeable batteries appear to be the most practically viable power source. To deploy LIBs in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Unfortunately, the power capability of LIBs is generally hindered by Li+-ion diffusion in micrometer-sized materials and the formation of an insulating solid electrolyte interface (SEI) layer on the surface of the active material. In addition, degradation of the battery material due to chemical and electrochemical reactions with the electrolyte lead to both capacity fade and safety concerns both at room and higher temperatures. The current study focuses on mitigating these issues for high voltage cathode materials by both using nanoscale particles to improve Li+-ion diffusion and using ultrathin nanoscale coatings to protect the battery materials from undesirable side reactions. The electrode material is coated with Al2O3 using atomic layer deposition (ALD), which is a method to grow conformal thin films with atomic thickness (angstrom level control) using sequential, self-limiting surface reactions. First, nano-LiCoO 2 is employed to demonstrate the effectiveness of ALD coatings and demonstrates a profound increase in rate performance (>250% improvement) over generally employed micrometer-sized particles. Second, the cathode materials LiNi 0.8Co0.15Al0.05O2, LiNi0.33Mn 0.33Co0.33O2, LiMn2O4, and LiNi0.5Mn1.5O4 were used to demonstrate the benefits ALD coatings have on thermal runaway. The results show a

  2. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.

    PubMed

    Zhang, Jicheng; Gao, Rui; Sun, Limei; Li, Zhengyao; Zhang, Heng; Hu, Zhongbo; Liu, Xiangfeng

    2016-09-14

    Recently, spinel-layered integrated Li-rich cathode materials have attracted great interest due to the large enhancement of their electrochemical performances. However, the modification mechanism and the effect of the integrated spinel phase on Li-rich layered cathode materials are still not very clear. Herein, we have successfully synthesized the spinel-layered integrated Li-rich cathode material using a facile non-stoichiometric strategy (NS-LNCMO). The rate capability (84 mA h g(-1)vs. 28 mA h g(-1), 10 C), cycling stability (92.4% vs. 80.5%, 0.2 C), low temperature electrochemical capability (96.5 mA h g(-1)vs. 59 mA h g(-1), -20 °C), initial coulomb efficiency (92% vs. 79%) and voltage fading (2.77 V vs. 3.02 V, 200 cycles@1 C) of spinel-layered integrated Li-rich cathode materials have been significantly improved compared with a pure Li-rich phase cathode. Some new insights into the effect of the integrated spinel phase on a layered Li-rich cathode have been proposed through a comparison of the structure evolution of the integrated and Li-rich only materials before and after cycling. The Li-ion diffusion coefficient of NS-LNCMO has been enlarged by about 3 times and almost does not change even after 100 cycles indicating an enhanced structure stability. The integration of the spinel phase not only enhances the structure stability of the layered Li-rich phase during charging-discharging but also expands the interslab spacing of the Li-ion diffusion layer, and elongates TM-O covalent bond lengths, which lowers the activation barrier of Li(+)-transportation, and alleviates the structure strain during the cycling procedure.

  3. Low-threshold field emission in planar cathodes with nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Petukhov, V.; Emelianov, A.; Timoshenkov, V.; Chaplygin, Yu.; Pavlov, A.; Shamanaev, A.

    2016-12-01

    Nanocarbon materials are of great interest as field emission cathodes due to their low threshold voltage. In this work current-voltage characteristics of nanocarbon electrodes were studied. Low-threshold emission was found in planar samples where field enhancement is negligible (<10). Electron work function values, calculated by Fowler-Nordheim theory, are anomalous low (<1 eV) and come into collision with directly measured work function values in fabricated planar samples (4.1-4.4 eV). Non-applicability of Fowler-Nordheim theory for the nanocarbon materials was confirmed. The reasons of low-threshold emission in nanocarbon materials are discussed.

  4. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    DOEpatents

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  5. Layered cathode materials for lithium ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  6. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  7. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis

    PubMed Central

    2014-01-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At −600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm–3 d–1) and the highest biotic methane production rate (250 ± 90 nmol cm–3 d–1). At −550 mV, plain graphite (76 nmol cm–3 d–1) performed similarly to platinum (73 nmol cm–3 d–1). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production. PMID:24741468

  8. Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Higuchi, Akitoshi; Ankei, Naoki; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2016-10-01

    Selective recovery of lithium from four kinds of cathode materials, manganese-type, cobalt-type, nickel-type, and ternary-type, of spent lithium ion battery was investigated. In all cathode materials, leaching of lithium was improved by adding sodium persulfate (Na2S2O8) as an oxidant in the leaching solution, while the leaching of other metal ions (manganese, cobalt, and nickel) was significantly suppressed. Optimum leaching conditions, such as pH, temperature, amount of Na2S2O8, and solid/liquid ratio, for the selective leaching of lithium were determined for all cathode materials. Recovery of lithium from the leachate as lithium carbonate (Li2CO3) was then successfully achieved by adding sodium carbonate (Na2CO3) to the leachate. Optimum recovery conditions, such as pH, temperature, and amount of Na2CO3, for the recovery of lithium as Li2CO3 were determined for all cases. Purification of Li2CO3 was achieved by lixiviation in all systems, with purities of the Li2CO3 higher than 99.4%, which is almost satisfactory for the battery-grade purity of lithium.

  9. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  10. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    SciTech Connect

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  11. Li2S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Han, Kai; Shen, Jingmei; Hayner, Cary M.; Ye, Hongqi; Kung, Mayfair C.; Kung, Harold H.

    2014-04-01

    A lithium sulfide-reduced graphene oxide nanocomposite (Li2S-rGO) was synthesized and evaluated as the cathode material and Li source for the assembly of Li-S batteries. The composite, with a unique 3-D pocket structure, was synthesized by a combination of facile solution chemistry and thermal treatment. The as-prepared Li2S-rGO nanocomposites were characterized by X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy, which showed 20-40 nm Li2S particles homogeneously dispersed between reduced graphene oxide sheets. Li2S contents as high as ∼66% could be obtained. When used with an electrolyte containing LiNO3 and polysulfide, the Li2S-rGO nanocomposites exhibited a high initial capacity of 982 mAh g-1 Li2S. However, there was noticeable capacity fade in subsequent cycles, probably due to polysulfide dissolution and the shuttle mechanism, but a capacity of 315 mAh g-1 could still be obtained after 100 cycles, with 90-95% coulomb efficiency. The effect of polysulfide additive in the electrolyte on the activation of Li2S in the first delithiation step was discussed.

  12. Binary and ternary nano-catalysts as cathode materials in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Trimm, Bryan Dunning

    The need for alternative energy, in order to reduce dependence on petroleum based fuels, has increased in recent years. Public demand is at an all-time high for low emitting or none polluting energy sources, driving the research for cleaner technology. Lithium batteries and fuel cells have the ability to produce this alternative energy with much cleaner standards, while allowing for portability and high energy densities. This work focuses on the performance of nanocatalysts in Proton Exchange Membrane Fuel Cell or PEMFC. A key technical challenge is the sluggish rate for oxygen reduction reaction at the cathode of PEMFC, which requires highly-active and stable catalysts. Our investigation is directed at increasing stability and durability as well as reducing high loading of noble metals in these catalyst materials. Binary and ternary structured nanomaterials, e.g., Pt51V1Co48/C and Pd xCu1-x/C, have been synthesized and tested in a PEMFC, in order to gain a better understanding of their durability and efficiency. In addition to electrochemical characterization, synchrotron x-ray techniques at the Advance Photon Source in Argonne National Lab have also been used for the structural characterization.

  13. Lithium-sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Swiderska-Mocek, Agnieszka; Rudnicka, Ewelina

    2015-01-01

    In this study a binder-free activated carbon cloth-sulphur (ACC-S) composite cathode is presented. Such a cathode was obtained using the impregnating technique of microporous activated carbon cloth with elemental melted sulphur. The surface morphology of an activated carbon cloth-sulphur electrode was studied using a scanning electron microscope (SEM), which was equipped with an EDX spectroscopy attachment. Electrochemical properties of the ACC-S composite cathode was tested in an ionic liquid electrolyte consisting of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulphonyl)imide (EtMeImNTf2) and bis(trifluoromethanesulphonyl)imide (LiNTf2). The ACC-sulphur cathode working together with lithium anode was tested with the use of cyclic voltammetry (CV), galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy (EIS). The capacity and cyclic stability of the ACC-S composite cathode were much better than those for the sulphur cathode (a mixture of sulphur from graphene nanoplatelets and carbon black) tested in the same ionic liquid electrolyte. The ACC-sulphur cathode showed good cyclability and coulombic efficiency (99%) with the ionic liquid electrolyte. The reversible capacity of the ACC-S|electrolyte|Li cell was ca. 830 mAh g-1 after 50 cycles.

  14. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    PubMed

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  15. Compatiblitity of hydrophobic ionic liquids with high performance cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Carnes-Mason, Ezekial Robert

    Lithium batteries are widely seen as the best choice for the future of energy storage but significant improvements are still required. One important area for improvement is searching for new cathode materials that incorporate lithium at higher capacities and voltages. This increases the energy and power available from an individual electrochemical cell, which reduces the number of cells required thereby reducing the size of a battery pack. While several high voltage cathode materials have been discovered, research has been hindered due to safety concerns with current standard electrolytes at high voltages. Ionic liquids are a new class of materials that exhibit excellent electrochemical and thermal stability as well as high ionic conductivity. These qualities make them excellent candidates to replace current battery electrolytes but difficulties in purification and the sheer number of possible chemistries have inhibited their study. In this study four hydrophobic ionic liquids based on pyrrolidinium and piperidinium cations paired with bis(trifluoromethylsulfonyl)imide anions were synthesized using bench top methods. These ionic liquids were successfully incorporated into working half-cells with LiNi1/3Mn1/3Co 1/3O2, a high capacity layered cathode and LiNi0.5Mn 1.5O4, a high voltage spinel type cathode. By comparing the behavior of the ionic liquids a clear relationship between cation size and rate capability was shown. The improved performance and safety at elevated temperatures was also demonstrated showing that ionic liquids are excellent candidates for use as battery electrolytes.

  16. Nanostructured hybrid layered-spinel cathode material synthesized by hydrothermal method for lithium-ion batteries.

    PubMed

    Liu, Cong; Wang, Zhiyuan; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Zhao, Naiqin

    2014-06-11

    Nanostructured spinel LiMn1.5Ni0.5O4, layered Li1.5Mn0.75Ni0.25O2.5 and layered-spinel hybrid particles have been successfully synthesized by hydrothermal methods. It is found that the nanostructured hybrid cathode contains both spinel and layered components, which could be expressed as Li1.13Mn0.75Ni0.25O2.32. Diffraction-contrast bright-field (BF) and dark-field (DF) images illustrate that the hybrid cathode has well dispersed spinel component. Electrochemical measurements reveal that the first-cycle efficiency of the layered-spinel hybrid cathode is greatly improved (up to 90%) compared with that of the layered material (71%) by integrating spinel component. Our investigation demonstrates that the spinel containing hybrid material delivers a high capacity of 240 mAh g(-1) with good cycling stability between 2.0 and 4.8 V at a current rate of 0.1 C.

  17. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca

    2016-03-01

    The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.

  18. Optimization of electron transport and cathode materials for efficient organic solar cells

    NASA Astrophysics Data System (ADS)

    Colsmann, Alexander; Junge, Johannes; Wellinger, Thomas; Kayser, Christian; Lemmer, Uli

    2006-04-01

    In this work we discuss improvements of organic solar cells based on poly(3-hexylthiophene-2,5-diyl) : C 61-butyric acid methyl ester (P3HT:PCBM) blends. The polymer layer is combined with various electron transport materials and different cathodes. We were able to utilize the good charge carrier separation and transport properties of the P3HT:PCBM blend together with the flexibility of evaporated heterostructures. The systematic use of different cathodes such as calcium, aluminium/lithiumfluoride and organic intermediate layers resulted in higher fill factors and open circuit voltages compared to simple aluminium cathodes. In particular we studied the influence of additional layers of electron transport layer consisting of C 60, lithium doped bathophenanthroline (BPhen:Li) 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and 2,9- dimethyl-4,7-diphenyl-1,10-phenantrolene (BCP) on the cell properties. Solar cells with power conversion efficiencies well above 3% have been fabricated.

  19. Optimization of the cathode material for nitrate removal by a paired electrolysis process.

    PubMed

    Reyter, David; Bélanger, Daniel; Roué, Lionel

    2011-08-30

    Ni, Cu, Cu(90)Ni(10) and Cu(70)Ni(30) were evaluated as cathode materials for the conversion of nitrate to nitrogen by a paired electrolysis process using an undivided flow-through electrolyzer. Firstly, corrosion measurements revealed that Ni and Cu(70)Ni(30) electrodes have a much better corrosion resistance than Cu and Cu(90)Ni(10) in the presence of chloride, nitrate and ammonia. Secondly, nitrate electroreduction experiments showed that the cupro-nickel electrodes are the most efficient for reducing nitrate to ammonia with a selectivity of 100%. Finally, paired electrolysis experiments confirmed the efficiency of Cu(70)Ni(30) and Cu(90)Ni(10) cathodes for the conversion of nitrate to nitrogen. During a typical electrolysis, the concentration of nitrate varied from 620ppm to less than 50ppm NO(3)(-) with an N(2) selectivity of 100% and a mean energy consumption of 20kWh/kg NO(3)(-) (compared to ∼35 and ∼220kWh/kg NO(3)(-) with Cu and Ni cathodes, respectively).

  20. Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Geng, Tianfeng; Du, Chunyu; Zuo, Pengjian; Cheng, Xinqun; Ma, Yulin; Yin, Geping

    2016-11-01

    This work reports the facile surface coating of lithium-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material by nano-SnO2 for lithium ion batteries. Thus-obtained nano-SnO2 coated Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as NTO-LMO) material is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. It is revealed that the SnO2 layer with a thickness of 4-8 nm is uniformly coated on the surface of Li1.2Mn0.54Ni0.13Co0.13O2. This NTO-LMO material exhibits outstanding rate capability and cyclic stability in comparison with pristine material, which should be ascribed to the nano-SnO2 coating layer that limits the side reactions and produces a thin and stable solid electrolyte interface film. More importantly, in contrast to the conventional surface coatings that usually reduce the reversible capacity of active materials, the discharge capacity of our NTO-LMO material increases by 38 mAh g-1 at the current density of 30 mA g-1, which is attributed to the enhanced activation of Li2MnO3 component. The oxygen vacancies in nano-SnO2 coating layer are revealed to facilitate the transfer of high valence state oxygen through the coating layer and be responsible for the promoted activation of Li2MnO3. These insightful findings are very helpful to developing effective strategies for the surface modification of Li-rich oxide materials.

  1. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge

    PubMed Central

    Liu, R. L.; Hurley, M. F.; Kvryan, A.; Williams, G.; Scully, J. R.; Birbilis, N.

    2016-01-01

    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes. PMID:27350286

  2. Elastomeric Cathode Binder

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. S.; Somoano, R. B.

    1985-01-01

    Soluble copolymer binder mixed with cathode material and solvent forms flexible porous cathode used in lithium and Ni/Cd batteries. Cathodes prepared by this process have lower density due to expanding rubbery binder and greater flexibility than conventional cathodes. Fabrication procedure readily adaptable to scaled-up processes.

  3. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  4. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  5. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    DOE PAGES

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi0.4Mn0.4Co0.2O2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. The subject powders show superiormore » resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less

  6. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    SciTech Connect

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; Li, Yuyi; Quan, Matthew K.; Cheng, Lei; Weng, Tsu -Chien; Liu, Yijin; Doeff, Marca M.

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi0.4Mn0.4Co0.2O2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. The subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.

  7. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

    NASA Astrophysics Data System (ADS)

    Choi, YongMan; Lin, M. C.; Liu, Meilin

    The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.

  8. Synthesis and characterization of nanostructured cathode materials for rechargeable lithium/lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Jingsi

    The rapidly increasing markets of portable electronic devices and electric/hybrid vehicles have raised worldwide R&D efforts in developing high-energy rechargeable lithium and lithium ion batteries. High performance intercalation cathodes are key to the success of these batteries. The nanotechnology has endowed the electrode materials with a variety of improved features as well as unique characteristics. Synthesis approaches were designed in this thesis work to utilize these advantages and investigate the exceptional phenomena raised by the nanostructured materials. A novel sol-gel method was designed for the synthesis of carbon-coated phase-pure lithium iron phosphate with submicron particle sizes and uniform size distribution. The surface carbon coating was formed in-situ through pyrolysis of the precursor gel, which improved the apparent electronic conductivity of the as prepared material to 10-2 S/cm compared with 10-9-10-10 S/cm of the pristine LiFePO 4. The favorable physical characteristics of the synthesized LiFePO 4 particles and the improved electronic conductivity through the carbon coating led to electrochemical properties comparable to the best performances reported so far. Amorphous manganese oxide cryogels with nanoarchitecture were obtained by freeze-drying Mn (IV) oxide hydrogels. The combination of the advantages of the amorphous structure and the nano-architecture of the materials gave high capacities and excellent rate capabilities. This work led to the finding of a nanocrystalline Li2MnO3-like compound with a surprising electrochemical activity, which is in sharp contrast to the microcrystalline rock-salt Li2MnO3 that has been known to be electrochemically inactive. The study highlights the possibility of qualitative difference in intercalation behavior of nanostructured intercalation compounds compared with their microcrystalline counterparts. Bismuth and copper modified amorphous manganese oxides were synthesized by aqueous coprecipitation

  9. Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction

    SciTech Connect

    Liu, Haodong; An, Ke; Venkatachalam, Subramanian; Qian, Danna; Zhang, Minghao; Meng, Ying Shirley

    2016-04-06

    Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li-rich Li(Lix/3Ni(3/8-3x/8)Co(1/4-x/4)Mn(3/8+7x/24)O2 (x = 0.6, HLR) and low Li-rich Li(Lix/3Ni(1/3-x/3)Co(1/3-x/3)Mn(1/3+x/3)O2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the end of charge. Density functional theory calculations show the presence of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. The lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate once the high voltage plateau is reached.

  10. Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction

    DOE PAGES

    Liu, Haodong; An, Ke; Venkatachalam, Subramanian; ...

    2016-04-06

    Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li-rich Li(Lix/3Ni(3/8-3x/8)Co(1/4-x/4)Mn(3/8+7x/24)O2 (x = 0.6, HLR) and low Li-rich Li(Lix/3Ni(1/3-x/3)Co(1/3-x/3)Mn(1/3+x/3)O2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the end of charge. Density functional theory calculations show the presencemore » of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. The lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate once the high voltage plateau is reached.« less

  11. Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cetin, Deniz

    The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+delta (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-delta (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe 1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being

  12. Electrochemical studies on silver bimetallic cathode materials for long life batteries

    NASA Astrophysics Data System (ADS)

    Sharma, Munish Kumar

    Due to the current energy crisis going across the globe, scientific community is continuously in search for alternate sources of energy. One of the potential solutions to handle this crisis situation is to look for electrical sources of energy such as batteries. Inside a battery, chemical energy is converted into electrical energy by means of an electrochemical reaction. At present, lithium batteries seem to be a good example due to their various advantages. Lithium batteries are currently being used to meet the power demands of electronics industry such as in laptops, digital cameras, and cellular devices etc. The reasons these batteries are in great demand today are high voltage of 3.6 V, high specific energy of 200 Wh/kg, and high calendar life of 10 years. In this research work, we focused on the lithium batteries in which Silver Vanadium Oxyphosphate (SVOP-1) Ag2VO2PO4, Silver Vanadium Oxide (SVO) Ag2V4O11, acts as the cathode and lithium metal as the anode. At present, these batteries are being used in implantable cardiac defibrillators and artificial pacemakers for biomedical applications. Therefore, it becomes important to understand the proper functioning and electrochemical mechanism of these batteries. An understanding of the reduction mechanism will help us in knowing proper functioning, performance and reliability of these battery systems. We addressed this problem by first synthesizing the SVOP-1 material using reflux and hydrothermal routes. After that, the material was characterized using Brunauer Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analyzer, optical microscopy, and differential scanning calorimetry (DSC) successfully. To understand the reduction mechanism of Li-SVOP(reflux) and Li-SVOP(hydrothermal) battery systems, we calculated thermodynamic parameters such as enthalpy, entropy and Gibb's free energy of lithium intercalation. We also did thermodynamic studies on other systems such as

  13. The performance and mechanism of modified activated carbon air cathode by non-stoichiometric nano Fe3O4 in the microbial fuel cell.

    PubMed

    Fu, Zhou; Yan, Litao; Li, Kexun; Ge, Baochao; Pu, Liangtao; Zhang, Xi

    2015-12-15

    Cathodic catalyst is one of the key materials in microbial fuel cell (MFC). The addition of non-stoichiometric nano Fe3O4 in activated carbon (NSFe3O4/AC) air cathode was beneficial to boosting the charge transfer of the cathode accompanying with the enhancement of power performance in MFC. The air cathode modified by NSFe3O4 (5%, Wt%) increased the maximum power density by 83.3% from 780 mW/m(2) to 1430 mW/m(2) compared with bare air cathode. The modified cathodes showed enhanced electrochemical properties and appeared the maximum exchange current density of 18.71×10(-4) A/cm(2) for oxygen reduction reaction. The mechanism of oxygen reduction for the NSFe3O4/AC catalyst was a 4-electron pathway. The oxygen vacancy of the NSFe3O4 played a crucial role in electrochemical catalytic activity. The great catalytic performance made NSFe3O4 have a promising outlook applied in MFC.

  14. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Artyushkova, Kateryna; Babanova, Sofia; Atanassov, Plamen; Ieropoulos, Ioannis; Grattieri, Matteo; Cristiani, Pierangela; Trasatti, Stefano; Li, Baikun; Schuler, Andrew J

    2014-07-01

    Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested.

  15. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    SciTech Connect

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-11-01

    There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO{sub 2}, LiNiO{sub 2} and LiMn{sub 2}O{sub 4} are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO{sub 2} is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO{sub 2} is isostructural with LiCoO{sub 2}. It offers lower cost and high energy density than LiCoO{sub 2}. However, it has much poorer thermal stability than LiCoO{sub 2}, in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO{sub 2} system in order to increase the thermal stability. LiMn{sub 2}O{sub 4} has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2}, LiNi{sub 0.5}Co{sub 0.5}O{sub 2}, and LiAl{sub x}Ni{sub 1-x}O{sub 2} cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery

  16. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems.

    PubMed

    Liu, Shentan; Song, Hailiang; Wei, Size; Yang, Fei; Li, Xianning

    2014-08-01

    To optimize the performance of a vertical subsurface flow constructed wetland-microbial fuel cell (CW-MFC), studies of bio-cathode materials and reactor configurations were carried out. Three commonly used bio-cathode materials including stainless steel mesh (SSM), carbon cloth (CC) and granular activated carbon (GAC) were compared and evaluated. GAC-SSM bio-cathode achieved the highest maximum power density of 55.05 mWm(-2), and it was most suitable for CW-MFCs application because of its large surface area and helpful capillary water absorption. Two types of CW-MFCs with roots were constructed, one was placed in the anode and the other was placed in the cathode. Both planted CW-MFCs obtained higher power output than non-planted CW-MFC. Periodic voltage fluctuations of planted CW-MFCs were caused by light/dark cycles, and the influent substrate concentration significantly affected the amplitude of oscillation. The coulombic efficiencies of CW-MFCs decreased greatly with the increase of the influent substrate concentration.

  17. Development and characterization of novel cathode materials for molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Giorgi, L.; Carewska, M.; Patriarca, M.; Scaccia, S.; Simonetti, E.; Dibartolomeo, A.

    1994-04-01

    In the development of molten carbonate fuel cell (MCFC) technology, the corrosion of materials is a serious problem for long-term operation. Indeed, slow dissolution of lithiated-NiO cathode in molten carbonates is the main obstacle for the commercialization of MCFCs. In the search of new, more stable, cathode materials, alternative compounds such as LiFeO2, Li2MnO3, and La(1-x)Sr(x)CoO3 are presently under investigation to replace the currently used lithiated-NiO. The aim of the present work was to investigate the possibility to produce electrode based on LiCoO2, a promising cathode material. At first, Li(x)CoO2 powder samples (0.8 less than x less than 1.1) were made by thermal decomposition of carbonate precursors in air. The synthesis processes were monitored by thermal analysis (TGA, DTA). The calcined and sintered powder samples were characterized by x ray diffraction (XRD) andatomic absorption spectrophotometry (F-AAS). A single phase was detected in all the samples, without any change in crystal structure as a function of lithium content. Porous sintered electrodes were prepared starting from lithium cobaltite powders mixed with different pore-formers by cold pressing and sintering. A bimodal pore-size distribution with a mean pore diameter in the range of 0.15 to 8 micron, a surface area of 2 to 12 sq m/g and a porosity of 10 to 65%, determined by the Hg-intrusion technique, were observed in all the materials. Conductivity measurements were carried out in the temperature range of 500-700 C, in air. The influence of the deviations from stoichiometry on the electronic properties was determined, the conductivity value of the stoichiometric compound being the lowest. A linear relationship between the electronic conductivity and the sample porosity was found. Solubility testing of the materials was carried out to evaluate their chemical stability in the electrolyte. The sampling method (F-AAS) and square wave voltammetry (SWV) were used to determine the

  18. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    PubMed Central

    Cui, Xinwei; Chen, Jian; Wang, Tianfei; Chen, Weixing

    2014-01-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the reversible fluorination/defluorination reactions and lithium-ion storage/release at the CNTA paper cathodes, resulting in a dual-storage mechanism. The rechargeable battery with this dual-storage mechanism demonstrated a maximum discharging capacity of 2174 mAh gcarbon−1 and a specific energy of 4113 Wh kgcarbon−1 with good cycling performance. PMID:24931036

  19. Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries

    PubMed Central

    Lv, Meixiang; Zhang, Fen; Wu, Yiwen; Chen, Mujuan; Yao, Chunfeng; Nan, Junmin; Shu, Dong; Zeng, Ronghua; Zeng, Heping; Chou, Shu-Lei

    2016-01-01

    The heteroaromatic organic compound, N,N’-diphenyl-1,4,5,8-naphthalenetetra- carboxylic diimide (DP-NTCDI-250) as the cathode material of lithium batteries is prepared through a simple one-pot N-acylation reaction of 1,4,5,8-naphthalenetetra-carboxylic dianhydride (NTCDA) with phenylamine (PA) in DMF solution followed by heat treatment in 250 °C. The as prepared sample is characterized by the combination of elemental analysis, NMR, FT-IR, TGA, XRD, SEM and TEM. The electrochemical measurements show that DP-NTCDI-250 can deliver an initial discharge capacity of 170 mAh g−1 at the current density of 25 mA g−1. The capacity of 119 mAh g−1 can be retained after 100 cycles. Even at the high current density of 500 mA g−1, its capacity still reaches 105 mAh g−1, indicating its high rate capability. Therefore, the as-prepared DP-NTCDI-250 could be a promising candidate as low cost cathode materials for lithium batteries. PMID:27064938

  20. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    PubMed

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  1. Kinetic modelling of molten carbonate fuel cells: Effects of cathode water and electrode materials

    NASA Astrophysics Data System (ADS)

    Arato, E.; Audasso, E.; Barelli, L.; Bosio, B.; Discepoli, G.

    2016-10-01

    Through previous campaigns the authors developed a semi-empirical kinetic model to describe MCFC performance for industrial and laboratory simulation. Although effective in a wide range of operating conditions, the model was validated for specific electrode materials and dry feeding cathode compositions. The new aim is to prove that with appropriate improvements it is possible to apply the model to MCFC provided by different suppliers and to new sets of reactant gases. Specifically, this paper describes the procedures to modify the model to switch among different materials and identify a new parameter taking into account the effects of cathode water vapour. The new equation is integrated as the kinetic core within the SIMFC (SIMulation of Fuel Cells) code, an MCFC 3D model set up by the PERT group of the University of Genova, for reliability test. Validation is performed using data collected through tests carried out at the University of Perugia using single cells. The results are discussed giving examples of the simulated performance with varying operating conditions. The final formulation average percentage error obtained for all the simulated cases with respect to experimental results is maintained around 1%, despite the difference between the basic and the new conditions and facilities.

  2. A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries

    SciTech Connect

    Choi, Hyunji; Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Cho, Kwon-Koo; Ahn, Jou-Hyeon

    2014-10-15

    Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time, sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g{sup −1} at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g{sup −1} at 0.1 C and 578 mA h g{sup −1} at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries.

  3. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review

    NASA Astrophysics Data System (ADS)

    Pelosato, Renato; Cordaro, Giulio; Stucchi, Davide; Cristiani, Cinzia; Dotelli, Giovanni

    2015-12-01

    Nowadays, the cathode is the most studied component in Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFCs). Decreasing SOFCs operating temperature implies slow oxygen reduction kinetics and large polarization losses. Double perovskites with general formula REBaCo2O5+δ are promising mixed ionic-electronic conductors, offering a remarkable enhancement of the oxygen diffusivity and surface exchange respect to disordered perovskites. In this review, more than 250 compositions investigated in the literature were analyzed. The evaluation was performed in terms of electrical conductivity, Area Specific Resistance (ASR), chemical compatibility with electrolytes and Thermal Expansion Coefficient (TEC). The most promising materials have been identified as those bearing the mid-sized rare earths (Pr, Nd, Sm, Gd). Doping strategies have been analyzed: Sr doping on A site promotes higher electrical conductivity, but worsen ASR and TECs; B-site doping (Fe, Ni, Mn) helps lowering TECs, but is detrimental for the electrochemical properties. A promising boost of the electrochemical activity is obtained by simply introducing a slight Ba under-stoichiometry. Still, the high sensitivity of the electrochemical properties against slight changes in the stoichiometry hamper a conclusive comparison of all the investigated compounds. Opportunities for an improvement of double perovskite cathodes performance is tentatively foreseen in combining together the diverse effective doping strategies.

  4. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.

    PubMed

    Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum

    2011-01-15

    Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes.

  5. Plasma parameters of an active cathode during relativistic magnetron operation

    NASA Astrophysics Data System (ADS)

    Hadas, Y.; Kweller, T.; Sayapin, A.; Krasik, Ya. E.; Bernshtam, V.

    2009-09-01

    The results of time- and space-resolved spectroscopic studies of the plasma produced at the surface of the ferroelectric cathode during the operation of an S-band relativistic magnetron generating ˜50 MW microwave power at f =3005 MHz and powered by a linear induction accelerator (LIA) (150 kV, 1.5 kA, 250 ns) are presented. The surface plasma was produced by a driving pulse (3 kV, 150 ns) prior to the application of the LIA accelerating high-voltage pulse. The cathode plasma electron density and temperature were obtained by analyzing hydrogen Hα and Hβ, and carbon ions CII and CIII spectral lines, and using the results of nonstationary collision radiative modeling. It was shown that the microwave generation causes an increase in plasma ion and electron temperature up to ˜4 and ˜7 eV, respectively, and the plasma density increases up to ˜7×1014 cm-3. Estimates of the plasma transport parameters and its interaction with microwave radiation are also discussed.

  6. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries.

    PubMed

    Zhai, Dengyun; Lau, Kah Chun; Wang, Hsien-Hau; Wen, Jianguo; Miller, Dean J; Kang, Feiyu; Li, Baohua; Zavadil, Kevin; Curtiss, Larry A

    2015-12-21

    Rechargeable lithium-air (Li-O2) batteries have drawn much interest owing to their high energy density. We report on the effect of deliberately introducing potassium impurities into the cathode material on the electrochemical performance of a Li-O2 battery. Small amounts of potassium introduced into the activated carbon (AC) cathode material in the synthesis process are found to have a dramatic effect on the performance of the Li-O2 cell. An increased amount of potassium significantly increases capacity, cycle life, and round-trip efficiency. This improved performance is probably due to a larger amount of LiO2 in the discharge product, which is a mixture of LiO2 and Li2O2, resulting from the increase in the amount of potassium present. No substantial correlation with porosity or surface area in an AC cathode is found. Experimental and computational studies indicate that potassium can act as an oxygen reduction catalyst, which can account for the dependence of performance on the amount of potassium.

  7. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  8. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  9. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    SciTech Connect

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; Zhou, Yong -Ning; Yang, Xiao -Qing

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.

  10. Nonactivated and activated biochar derived from bananas as alternative cathode catalyst in microbial fuel cells.

    PubMed

    Yuan, Haoran; Deng, Lifang; Qi, Yujie; Kobayashi, Noriyuki; Tang, Jiahuan

    2014-01-01

    Nonactivated and activated biochars have been successfully prepared by bananas at different thermotreatment temperatures. The activated biochar generated at 900°C (Biochar-act900) exhibited improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances in alkaline media, in terms of the onset potential and generated current density. Rotating disk electron result shows that the average of 2.65 electrons per oxygen molecule was transferred during ORR of Biochar-act900. The highest power density of 528.2 mW/m(2) and the maximum stable voltage of 0.47 V were obtained by employing Biochar-act900 as cathode catalyst, which is comparable to the Pt/C cathode. Owning to these advantages, it is expected that the banana-derived biochar cathode can find application in microbial fuel cell systems.

  11. Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.

    PubMed

    Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K

    2011-07-21

    Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer.

  12. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Zhang, Jie-Nan; He, Min; Zhang, Xu-Dong; Yin, Ya-Xia; Li, Hong; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2016-08-10

    Li-rich layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, they suffer from severe voltage decay upon cycling, which hinders their further commercialization. Here, we report a Li-rich layered material 0.5Li2MnO3·0.5LiNi0.8Co0.1Mn0.1O2 with high nickel content, which exhibits much slower voltage decay during long-term cycling compared to conventional Li-rich materials. The voltage decay after 200 cycles is 201 mV. Combining in situ X-ray diffraction (XRD), ex situ XRD, ex situ X-ray photoelectron spectroscopy, and scanning transmission electron microscopy, we demonstrate that nickel ions act as stabilizing ions to inhibit the Jahn-Teller effect of active Mn(3+) ions, improving d-p hybridization and supporting the layered structure as a pillar. In addition, nickel ions can migrate between the transition-metal layer and the interlayer, thus avoiding the formation of spinel-like structures and consequently mitigating the voltage decay. Our results provide a simple and effective avenue for developing Li-rich layered materials with mitigated voltage decay and a long lifespan, thereby promoting their further application in lithium-ion batteries with high energy density.

  13. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.

    PubMed

    Xia, Xue; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m(2), which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m(2)) and comparable to Pt cathodes (1550 ± 10 mW/m(2)). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC.

  14. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries

    PubMed Central

    Antipov, Evgeny V.; Khasanova, Nellie R.; Fedotov, Stanislav S.

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4)n− and F−] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications. PMID:25610630

  15. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.

    PubMed

    Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  16. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  17. Tailorable electrochemical performance of spinel cathode materials via in-situ integrating a layered Li2MnO3 phase for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Jianqing; Wang, Hao; Xie, Zhiqiang; Ellis, Sara; Kuai, Xiaoxiao; Guo, Jun; Zhu, Xing; Wang, Ying; Gao, Lijun

    2016-11-01

    Electrochemical performances of spinel cathode materials have been evaluated in a broad voltage range of 2.0-4.8 V vs. Li/Li+ via in-situ integrating a layered Li2MnO3 phase for high-voltage and high-capacity lithium ion batteries. Effects of sintering temperatures on manipulating hybrid spinel-layered structures have been systematically studied during the decomposition of nonstoichiometric Li0.65Mn0.59Ni0.12Co0.13Oδ material. The spinel component undergoes a phase transition from an initial Li4Mn5O12-type to a LiMn1.5Ni0.5O4-type spinel structure under high temperatures above 700 °C; meanwhile the content of layered Li2MnO3 component is increased. Li2MnO3-stabilized spinel-layered cathodes can deliver the discharge capacity more than 225 mA h/g at 0.1 C and exhibit outstanding capacity retentions above 90% at 0.5 C (1 C = 250 mA/g) in an extended voltage range between 2.0 and 4.8 V. In addition to clarify significant Li2MnO3 impacts on improving cycling stability of spinel cathode materials, it is noticeable that LiMn1.5Ni0.5O4-based spinel materials can effectively suppress the electrochemical activation of the layered Li2MnO3 up to 4.8 V. This work sheds lights on tailoring hybrid structures and maximizing electrochemical performances of Li2MnO3-based spinel-layered cathode materials for superior lithium ion batteries.

  18. Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium-sulfur battery application

    NASA Astrophysics Data System (ADS)

    Sun, Zhenjie; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2015-07-01

    Sulfur is a promising cathode material with a high theoretical capacity of 1672 mAh g-1, but the challenges of the low electrical conductivity of sulfur and the high solubility of polysulfide intermediates still hinder its practical application. In this work, we design and synthesize a special carbon black nanoparticle-sulfur composite cathode material (NCB-S@NCB) with a novel structure and a high sulfur content of 84 wt% for lithium-sulfur battery application. The NCB-S@NCB composite cathode delivers a high initial discharge capacity of 1258 mAh g-1 and still maintains a reversible capacity of 865 mAh g-1 after 100 cycles with a relatively constant Coulombic efficiency around 98.0%.

  19. Pore development in carbonized hemoglobin by concurrently generated MgO template for activity enhancement as fuel cell cathode catalyst.

    PubMed

    Maruyama, Jun; Hasegawa, Takahiro; Amano, Taiji; Muramatsu, Yasuji; Gullikson, Eric M; Orikasa, Yuki; Uchimoto, Yoshiharu

    2011-12-01

    Various carbon materials with a characteristic morphology and pore structure have been produced using template methods in which a carbon-template composite is once formed and the characteristic features derived from the template are generated after the template removal. In this study, hemoglobin, which is a natural compound that could be abundantly and inexpensively obtained, was used as the carbon material source to produce a carbonaceous noble-metal-free fuel cell cathode catalyst. Magnesium oxide was used as the template concurrently generated with the hemoglobin carbonization from magnesium acetate mixed with hemoglobin as the starting material mixture to enable pore development for improving the activity of the carbonized hemoglobin for the cathodic oxygen reduction. After removal of the MgO template, the substantially developed pores were generated in the carbonized hemoglobin with an amorphous structure observed by total-electron-yield X-ray absorption. The extended X-ray absorption fine structure at the Fe-K edge indicated that Fe was coordinated with four nitrogen atoms (Fe-N(4) moiety) in the carbonized hemoglobin. The oxygen reduction activity of the carbonized hemoglobin evaluated using rotating disk electrodes was dependent on the pore structure. The highly developed pores led to an improved activity.

  20. Impact of ALD Coating on Mn-rich Cathode Materials (Presentation)

    SciTech Connect

    Santhanagopalan, S.

    2013-06-01

    LG Chem Power Inc. (LGCPI) and NREL have collaborated to demonstrate the scalability of the atomic layer deposition (ALD) coating process over the last 6 months, and the benefits of ALD coatings for long-term cycling and calendar life are being quantified. The objectives of this work are two-fold: 1) to evaluate the scalability of the process to coat LGCPI cathodes with alumina using the ALD technique, and 2) to demonstrate improvements in rate capability and life of ALD-coated LGCPI electrodes. NREL received samples of baseline material to be coated from LGCPI. NREL carried out ALD coating of the samples with help from a subcontractor, ALD Nanosolutions. NREL fabricated cells from those samples for quick screening and feedback to ALD Nanosolutions. LGCPI is currently fabricating larger-format cells for further evaluation.

  1. Sulfur-Immobilized, Activated Porous Carbon Nanotube Composite Based Cathodes for Lithium-Sulfur Batteries.

    PubMed

    Lee, Jun Seop; Jun, Jaemoon; Jang, Jyongsik; Manthiram, Arumugam

    2017-03-01

    Activated highly porous carbon nanotubes are synthesized with a facile dual-nozzle co-electrospinning and a redox process to apply the framework of a sulfur-immobilized composite as a high-performance cathode in lithium-sulfur batteries.

  2. Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.

    PubMed

    Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap

    2015-03-01

    LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.

  3. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries.

    PubMed

    Zhang, Tao; Li, Jun-tao; Liu, Jie; Deng, Ya-ping; Wu, Zhen-guo; Yin, Zu-wei; Guo, Dong; Huang, Ling; Sun, Shi-gang

    2016-03-28

    Guar gum (GG) has been applied as a binder for layered lithium-rich cathode materials of Li-ion batteries for the first time. Compared with the conventional PVDF binder, electrodes with GG as the binder exhibit significantly suppressed voltage and capacity fading. This study has introduced a multi-functional binder for layered lithium-rich cathode materials.

  4. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3-δ

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Ni, Meng; He, Wei; Chen, Yubo; Yang, Guangming; Chen, Dengjie; Shao, Zongping

    2016-09-01

    The B-site substitution with the minor amount of tin in BaFeO3-δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3-δ (BFS) as a new cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized and characterized. Special attention is paid to the exploration of some basic properties including phase structure, oxygen non-stoichiometry, electrical conductivity, oxygen bulk diffusion coefficient, and surface exchange coefficient, which are of significant importance to the electrochemical activity of cathode materials. BFS holds a single cubic perovskite structure over temperature range of cell operation, determined by in-situ X-ray diffraction and scanning transmission electron microscope. A high oxygen vacancy concentration at cell operating temperatures is observed by combining thermo-gravimetric data and iodometric titration result. Furthermore, electrical conductivity relaxation measurement illustrates the fast oxygen bulk diffusion and surface exchange kinetics. Accordingly, testing cells based on BFS cathode material demonstrate the low polarization resistance of 0.033 Ω cm2 and high peak power density of 1033 mW cm-2 at 700 °C, as well as a relatively stable long-term operation for ∼300 h. The results obtained suggest that BFS perovskite oxide holds a great promise as an oxygen reduction electrocatalyst for IT-SOFCs.

  5. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  6. About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature.

    PubMed

    Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand

    2016-10-12

    The reactivity of mixtures of high voltage spinel cathode materials Li2NiMn3O8, Li2FeMn3O8, and LiCoMnO4 cosintered with Li1.5Al0.5Ti1.5(PO4)3 and Li6.6La3Zr1.6Ta0.4O12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li6.6La3Zr1.6Ta0.4O12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li2MnO3 and then decompose to form stable and often insulating phases such as La2Zr2O7, La2O3, La3TaO7, TiO2, and LaMnO3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li1.5Al0.5Ti1.5(PO4)3 mixtures, the Mn tends to oxidize to MnO2 or Mn2O3, supplying lithium to the electrolyte for the formation of Li3PO4 and metal phosphates such as AlPO4 and LiMPO4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.

  7. Diagnosing, Optimizing and Designing Ni & Mn based Layered Oxides as Cathode Materials for Next Generation Li-ion Batteries and Na-ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Haodong

    The progressive advancements in communication and transportation has changed human daily life to a great extent. While important advancements in battery technology has come since its first demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. One considerable bottleneck is the cathode energy density, the Li-rich layered oxide compounds xLi2MnO3.(1-x)LiMO 2 (M= Ni, Mn, Co) (0.5= Co) (0.5=discharge capacities greater than 280 mAh g-1 (almost twice the practical capacity of LiCoO 2). In this work, neutron diffraction under operando battery cycling is developed to study the lithium and oxygen dynamics of Li-rich compounds that exhibits oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show movement of oxygen and lattice contractions during the high voltage plateau until the end of charge. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer and transition metal layer are related to the different charge and discharge characteristics. In the second part, a combination of multi-modality surface sensitive tools was applied in an attempt to obtain a complete picture to understand the role of NH4F and Al2O3 surface co-modification on Li-rich. The enhanced discharge capacity of the modified material can be primary assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material was facilitated with pre-activated Mn3+ on the surface, and stabilization of the Ni redox pair. These insights will provide guidance for the surface modification in high voltage cathode battery materials of the future. In the last part, the idea of Li-rich has transferred to the Na-ion battery cathode. A new O3 - Na0.78Li0.18Ni0.25Mn 0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high

  8. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  9. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  10. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells.

    PubMed

    Cheng, Shaoan; Wu, Jiancheng

    2013-08-01

    A cathode is a critical factor that limits the practical application of microbial fuel cells (MFCs) in terms of cost and power generation. To develop a cost-effective cathode, we investigate a cathode preparation technique using nickel foam as a current collector, activated carbon as a catalyst and PTFE as a binder. The effects of the type and loading of conductive carbon, the type and loading of activated carbon, and PTFE loading on cathode performance are systematically studied by linear sweep voltammetry (LSV). The nickel foam cathode MFC produces a power density of 1190±50 mW m(-2), comparable with 1320 mW m(-2) from a typical carbon cloth Pt cathode MFC. However, the cost of a nickel foam activated carbon cathode is 1/30 of that of carbon cloth Pt cathode. The results indicate that a nickel foam cathode could be used in scaling up the MFC system.

  11. Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer.

    PubMed

    Nian, Li; Chen, Zhenhui; Herbst, Stefanie; Li, Qingyuan; Yu, Chengzhuo; Jiang, Xiaofang; Dong, Huanli; Li, Fenghong; Liu, Linlin; Würthner, Frank; Chen, Junwu; Xie, Zengqi; Ma, Yuguang

    2016-09-01

    An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

  12. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  13. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Kexun; Liu, Xianhua

    2014-10-01

    Highly active and low-cost electrocatalysts are of great importance for large-scale commercial applications of microbial fuel cells (MFCs). In this work, we prepared an activated carbon (AC) air cathode containing electrodeposited γ-MnO2 using a potentiostatic method. The results indicated that carnation-like MnO2 crystals were bound to the surface of the AC air cathode after a deposition time of 10 min, which greatly improved the performance of the cathode. BET analysis results demonstrated that the electrodeposition of MnO2 decreased the micropore surface area of the cathode but increased the mesopore surface area. When compared with a bare AC air cathode, the electrodeposited MnO2 cathode exhibited higher catalytic activity for oxygen reduction reaction. The maximum power density of the MFC equipped with the electrodeposited MnO2 AC air cathode was 1554 mW m-2, which is 1.5 times higher than the control cathode.

  14. Facet-dependent disorder in pristine high-voltage lithium-manganese-rich cathode material.

    PubMed

    Dixit, Hemant; Zhou, Wu; Idrobo, Juan-Carlos; Nanda, Jagjit; Cooper, Valentino R

    2014-12-23

    Defects and surface reconstructions are thought to be crucial for the long-term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occurs under harsh conditions, making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Li1.2Ni0.175Mn0.525Co0.1O2 (LNMCO) particles. Using atomic-resolution Z-contrast imaging and electron energy loss spectroscopy measurements, we show that there is indeed a significant amount of antisite defects present in this material, with transition metals substituting on Li metal sites. Furthermore, we find a strong segregation tendency of these types of defects toward open facets (surfaces perpendicular to the layered arrangement of atoms) rather than closed facets (surfaces parallel to the layered arrangement of atoms). First-principles calculations identify antisite defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites was observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni is the predominant cause of disorder. These insights suggest that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.

  15. Facet Dependent Disorder in the Pristine High Voltage Lithium-Manganese-Rich Cathode Material

    DOE PAGES

    Dixit, Hemant M.; Zhou, Wu; Idrobo Tapia, Juan Carlos; ...

    2014-11-21

    Defects and surface reconstructions are thought to be crucial for the long term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occur under harsh conditions making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Limore » $$_{1.2}$$Ni$$_{0.175}$$Mn$$_{0.525}$$Co$$_{0.1}$$O$$_2$$ (LNMCO) particles. Using atomic resolution Z-contrast imaging and electron energy-loss spectroscopy measurements we show that there are indeed a significant amount of anti-site defects present in this material; with transition metals substituting on Li metal sites. Furthermore, we find a strong tendency of segregation of these types of defects towards open facets (surfaces perpendicular to the layered arrangement of atoms), rather than closed facets (surfaces parallel to the layered arrangement of atoms). First principles calculations identify anti-site defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites were observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni are the predominant cause of disorder. These insights suggests that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.« less

  16. Facet Dependent Disorder in the Pristine High Voltage Lithium-Manganese-Rich Cathode Material

    SciTech Connect

    Dixit, Hemant M.; Zhou, Wu; Idrobo Tapia, Juan Carlos; Nanda, Jagjit; Cooper, Valentino R.

    2014-11-21

    Defects and surface reconstructions are thought to be crucial for the long term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occur under harsh conditions making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Li$_{1.2}$Ni$_{0.175}$Mn$_{0.525}$Co$_{0.1}$O$_2$ (LNMCO) particles. Using atomic resolution Z-contrast imaging and electron energy-loss spectroscopy measurements we show that there are indeed a significant amount of anti-site defects present in this material; with transition metals substituting on Li metal sites. Furthermore, we find a strong tendency of segregation of these types of defects towards open facets (surfaces perpendicular to the layered arrangement of atoms), rather than closed facets (surfaces parallel to the layered arrangement of atoms). First principles calculations identify anti-site defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites were observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni are the predominant cause of disorder. These insights suggests that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.

  17. Development of a Green Soft Chemical Method for the Synthesis of Cathode Materials Utilized in Lithium-ion Energy Storage Technologies

    NASA Astrophysics Data System (ADS)

    Wicker, Scott Ambrose

    The statement of the problem is to develop an environmental friendly, cost effective cathode material with the technical requirements to withstand the energy demand of directly storing electricity for the uses in today society. The author solved the problem by designing a water soluble, thermally stable organic moiety that is used as fuel and a template in the low temperature solution combustion synthesis of cathode materials utilized in lithium-ion energy storage devices. The Green Soft Chemical method (MADHAMS) is a useful alternative solution-combustion method for the synthesis of highly pure, fine-sized, spherical & cubic cathode powders. With the global demand pushing industrial applications toward green chemistry, we developed this technique with environmental friendly solvents. This MADHAMS method would fall within the "Self-Propagation Combustion Synthesis (SPCS)" family. SPCS is a family of methods that utilize metal nitrates as conventional oxidants and organic compounds as fuels. As the nitrate decomposes and the fuel is oxidized, energy is released into the local system as heat energy. The energy can be controlled by the metal-ion-to-fuel ratio. As part of this study, the properties and characteristics of the cathode powders prepared by a green soft chemical method are extensively investigated. This report also describes the non-isothermal investigation of the dependence of the activation energy on the extent of conversion of lithium cobalt dioxide using the iso-conversional method of Friedman. Lithium cobalt dioxide was prepared by the direct reaction of lithium carbonate and cobalt oxide. Cobalt oxide was prepared from the thermal decomposition of Cobalt (II) propenoate so that the starting materials used in the kinetic investigation would closely resemble or represent the natural decomposition products that are produced during the green soft chemical synthetic methods. The kinetic analysis of the variation in Ealpha with alpha revealed that this

  18. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    PubMed

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  19. Synthesis and electrochemical performance of nano-metastructured LiFePO4/C cathode material.

    PubMed

    Zhi, Xiaoke; Liang, Guangchuan; Wang, Li; Cui, Junyan; Yang, Limei

    2010-11-01

    The nano-metastructured LiFePO4/C composites were synthesized by carbothermal reduction method using starch gel as carbon source and dispersing media to obtain high tap density LiFePO4 with excellent electrochemical performance. The raw materials were coated by starch gel as compact precursors, which was sintered at 750 degrees C for 8 h to obtain high-density LiFePO4/C composite aggregated with nano-sized particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations showed that the primary particles had an average size of about 50-80 nm and the aggregates had a homogeneous particle size distribution of about 400 nm. The asprepared samples had a shortened lithium-ion diffusion length but with higher tap density, thus leading to the excellent electrochemical performance of the cathode materials. Electrochemical results showed that the samples delivered high discharge capacities of 155.6 and 120.7 mAh/g at 0.2C and 5C rates, respectively, with excellent cycling performance.

  20. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries.

    PubMed

    Wu, Feng; Xing, Yi; Li, Li; Qian, Ji; Qu, Wenjie; Wen, Jianguo; Miller, Dean; Ye, Yusheng; Chen, Renjie; Amine, Khalil; Lu, Jun

    2016-09-14

    To improve the electrochemical performance of the high energy Li-O2 batteries, it is important to design and construct a suitable and effective oxygen-breathing cathode. Herein, a three-dimensional (3D) porous boron-doped reduction graphite oxide (B-rGO) material with a hierarchical structure has been prepared by a facile freeze-drying method. In this design, boric acid as the boron source helps to form the 3D porous structure, owing to its cross-linking and pore-forming function. This architecture facilitates the rapid oxygen diffusion and electrolyte penetration in the electrode. Meanwhile, the boron-oxygen functional groups linking to the carbon surface or edge serve as additional reaction sites to activate the ORR process. It is vital that boron atoms have been doped into the carbon lattices to greatly activate the electrons in the carbon π system, which is beneficial for fast charge under large current densities. Density functional theory calculation demonstrates that B-rGO exhibits much stronger interactions with Li5O6 clusters, so that B-rGO more effectively activates Li-O bonds to decompose Li2O2 during charge than rGO does. With B-rGO as a catalytic substrate, the Li-O2 battery achieves a high discharge capacity and excellent rate capability. Moreover, catalysts could be added into the B-rGO substrate to further lower the overpotential and enhance the cycling performance in future.

  1. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  2. Cosmogenic activation of materials

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Beltrán, B.; Capelli, S.; Capozzi, F.; Carmona, J. M.; Cebrián, S.; Cremonesi, O.; García, E.; Irastorza, I. G.; Gómez, H.; Luzón, G.; Martínez, M.; Morales, J.; Ortiz de Solórzano, A.; Pavan, M.; Pobes, C.; Puimedón, J.; Rodríguez, A.; Ruz, J.; Sarsa, M. L.; Torres, L.; Villar, J. A.

    2005-09-01

    The problem of cosmogenic activation produced at sea level in materials typically used in underground experiments looking for rare events is being studied. Several nuclear data libraries have been screened looking for relevant isotope production cross-sections and different codes which can be applied to activation studies have been reviewed. The excitation functions for some problems of interest like production of 60Co and 68Ge in germanium and production of 60Co in tellurium have been obtained taking into account both measurements and calculations and a preliminary estimate of the corresponding rates of production at sea level has been performed.

  3. On the catalytic activity of NiMoFe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen

    NASA Astrophysics Data System (ADS)

    Arul Raj, I.

    Nickel-based composite surface coatings were assessed for their utility as catalytic hydrogen evolving cathodes in alkaline water electrolysers, chlor-alkali cells, chlorate cells, etc. Transition-metal-based hydrogen cathodes from metals, namely Ni, Mo, Cu, Fe, W, Co and Cr, obtained as thin electrolytic surface coatings on mild steel substrates were investigated in this laboratory. NiMoFe electrolytic ternary surface coatings had exhibited acceptable catalytic activity for the cathodic hydrogen evolution reaction (h.e.r.). The reduction in the hydrogen overpotential value (ν H2) that could be practically realised by replacing the mild steel cathodes which are in use by convention, with the present NiMoFe coated cathodes, amounts to 0.3 V minimum at typical industrial operation conditions, namely 300 mA cm -2 and 353 K. A critical assessment of the catalytic application of NiMoFe composite for the h.e.r. had been carried out. The results of the range of examined conditions such as the ease of preparation of the NiMoFe surface coatings through electrolytic codeposition technique, the microstructural features of the coatings, the X-ray diffraction data, the influence of chloride on the polarisation characteristics, the effect of synthetic seawater treatment, the susceptibility to thermochemical reactions with oxygen and the welting agent in the PTFE binder at temperatures above 623 K and the effect of simulated application of asbestos separator on the catalytic activity of NiMoFe composite are presented. It is proposed that this new catalytic material does meet out the stability requirements. A laboratory size unit electrolytic cell assembled with catalytic electrodes working at 1.8 V, 300 mA cm -2 in 6M KOH is described. A discussion on the possible energy saving by employing the proposed NiMoFe catalyst for cathodes in the industrial production of hydrogen is also included.

  4. Thermodynamic Properties of Polymorphs of Fluorosulfate Based Cathode Materials with Exchangeable Potassium Ions.

    PubMed

    Shivaramaiah, Radha; Lander, Laura; Nagabhushana, G P; Rousse, Gwenaëlle; Tarascon, Jean-Marie; Navrotsky, Alexandra

    2016-11-04

    FeSO4 F-based frameworks have recently emerged as attractive candidates for alkali insertion electrodes. Mainly owing to their rich crystal chemistry, they offer a variety of new host structures with different electrochemical performances and physical properties. In this paper we report the thermodynamic stability of two such K-based "FeSO4 F" host structures based on direct solution calorimetric measurements. KFeSO4 F has been reported to crystallize in two different polymorphic modifications-monoclinic and orthorhombic. The obtained enthalpies of formation from binary components (KF plus FeSO4 ) are negative for both polymorphs, indicating that they are thermodynamically stable at room temperature, which is very promising for the future exploration of sulfate based cathode materials. Our measurements show that the low-temperature monoclinic polymorph is enthalpically more stable than the orthorhombic phase by ≈10 kJ mol(-1) , which is consistent with the preferential formation of monoclinic KFeSO4 F at low temperature. Furthermore, observed phase transformations and difficulties in the synthesis process can be explained based on the obtained calorimetric results. The KMnSO4 F orthorhombic phase is more stable than both polymorphs of KFeSO4 F.

  5. Kinetic behavior of LiFeMgPO 4 cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian; Wang, Chunsheng; Kasavajjula, Uday

    LiFe 0.9Mg 0.1PO 4 material was prepared by mechanical milling method, followed by heat treatment. The equilibrium potential-composition isotherm of LiFe 0.9Mg 0.1PO 4 and charge-discharge kinetics of LiFe 0.9Mg 0.1PO 4 were measured using galvanostatic intermittent titration technique (GITT), potential-step chronoamperometry (PSCA), and electrochemical impedance spectroscopy (EIS). The rate performance of the cathode is controlled by the charge-transfer kinetics, electronic conductivity, Li-ion diffusion capability, and phase transformation rate. Since LiFe 0.9Mg 0.1PO 4 has a fast charge-transfer reaction and high electronic and ionic diffusivity, the phase transformation between LiFe 0.9Mg 0.1PO 4 and Li 0.1Fe 0.9Mg 0.1PO 4 begins to play a more important role in the charge-discharge process, as is evident by an inductive loop induced by the phase transformation in the low frequency region of EIS. The phase purity and morphology of LiFe 0.9Mg 0.1PO 4 were also observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  6. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  7. Nondestructive Thickness Quantification for Nanoscale Coatings on Li-Ion Battery Cathode Material.

    PubMed

    Ouyang, Wuye; Todd, Clifford S

    2017-03-07

    Nickel manganese cobalt oxide (NMC) is a high energy capacity cathode material that attracts the interest of many research groups. Coating a protection layer on the NMC surface is one approach to improve its cycling and safety performance. However, there is no standard and consistent way to characterize the coating performance (thickness) of this protection layer, especially due to the nanoscale of primary particle and spherical morphology of the secondary particle. In this paper, a novel empirical method based on energy dispersive X-ray spectroscopy (EDX) analysis at low accelerating voltage is proposed to evaluate the protection layer thickness on the scale of tens of nanometers. The layer thickness is characterized by measuring the intensity decrease of a substrate element due to absorption by overlying coating layers. An internal standard coating (metal layer) is applied to mimic the morphology influence and improve the accuracy of thickness quantitation. For the model sample evaluation, carbon layer coatings of 1 to 10 nm thickness were successfully quantified by this method.

  8. Nanosized LiFePO4 cathode materials for lithium ion batteries.

    PubMed

    Gu, Hal-Bon; Jun, Dae-Kyoo; Park, Gye-Choon; Jin, Bo; Jin, En Mei

    2007-11-01

    In this study, we prepared nano-particles of LiFePO4 as cathode material for lithium ion batteries by the solid-state reaction. A simple one-step heat treatment has been employed with control of heating temperature and heated LiFePO4 at 650 degrees C exhibited higher 125 mA h/g of the discharge capacity than 600 degrees C, 700 degrees C. To improve conductivity of the inter-particle, carbon coating was carried out by raw carbon or pyrene as carbon sources and their morphological properties of particles on the carbon coating was compared with by FE-SEM, TEM. From the FE-SEM results, the particles of carbon added LiFePO4 have much smaller size than LiFePO4 as below 300 nm. When adding pyrene (10 wt%), the carbon surrounded non-uniformly with surface of the particles compared with adding raw carbon which wrapped uniformly with carbon web and it was exhibited 152 mA h/g of the discharge capacity on LiFePO4/C composite cells at 10th cycle.

  9. Li 3V 2(PO 4) 3 cathode material synthesized by chemical reduction and lithiation method

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Chao; Li, Xin-Hai; Wang, Zhi-Xing; Guo, Hua-Jun; Hu, Qi-Yang; Peng, Wen-Jie

    The monoclinic-type Li 3V 2(PO 4) 3 cathode material was synthesized via calcining amorphous Li 3V 2(PO 4) 3 obtained by chemical reduction and lithiation of V 2O 5 using oxalic acid as reducer and lithium carbonate as lithium source in alcohol solution. The amorphous Li 3V 2(PO 4) 3 precursor was characterized by using TG-DSC and XPS. The results showed that the V 5+ was reduced to V 3+ by oxalic acid at ambient temperature and pressure. The prepared Li 3V 2(PO 4) 3 was characterized by XRD and SEM. The results indicated the Li 3V 2(PO 4) 3 powder had good crystallinity and mesoporous morphology with an average diameter of about 30 nm. The pure Li 3V 2(PO 4) 3 exhibits a stable discharge capacity of 130.08 mAh g -1 at 0.1 C (14 mA g -1).

  10. Surface modified CFx cathode material for ultrafast discharge and high energy density

    SciTech Connect

    Dai, Yang; Zhu, Yimei; Cai, Sendan; Wu, Lijun; Yang, Weijing; Xie, Jingying; Wen, Wen; Zheng, Jin-Cheng; Zheng, Yi

    2014-11-10

    Li/CFx primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance and an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.

  11. Surface modified CFx cathode material for ultrafast discharge and high energy density

    DOE PAGES

    Dai, Yang; Zhu, Yimei; Cai, Sendan; ...

    2014-11-10

    Li/CFx primary possesses the highest energy density of 2180 W h kg⁻¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance andmore » an excellent rate-capability. Indeed, a capacity of 500 mA h g⁻¹ and a maximum power density of 44 800 W kg⁻¹ can be realized at the ultrafast rate of 30 C (24 A g⁻¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.« less

  12. Electrochemical studies on niobium triselenide cathode material for lithium rechargeable cells

    SciTech Connect

    Ratnakumar, B.V.; Ni, C.L.; DiStefano, S.; Nagasubramanian, G.; Bankston, C.P.

    1989-01-01

    Niobium triselenide offers promise as a high energy density cathode material for ambient temperature lithium rechargeable cells. The electrochemical behavior of NbSe/sub 3/ in the battery electrolyte, i.e., 1.5m LiAsF/sub 6//2 Me-THF is reported here. A detailed study has been carried out using various ac and dc electrochemical techniques to establish the mechanism of intercalation of three equivalents of Li with NbSe/sub 3/ as well as the rate governing processes in the reduction of NbSe/sub 3/. Based on the experimental data, an equivalent circuit has been formulated to represent the NbSe/sub 3/-solution interface. The kinetic parameters for the reduction of NbSe/sub 3/ were evaluated from the ac and dc measurements. Finally, the structural change in NbSe/sub 3/ on lithiation during initial discharge which results in higher cell voltages and different electrochemical response as compared to virgin NbSe/sub 3/ was identified to be a loss of crystallographic order, i.e., amorphous by x-ray diffraction.

  13. Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Xianyou; Yang, Xiukang; Yu, Ruizhi; Ge, Long; Shu, Hongbo

    2015-10-01

    The spherical lithium-rich cathode material with a layered-spinel hybrid structure is successfully synthesized and coated by polyaniline (PANI). The spherical material with layered-spinel hybrid structure is firstly prepared via the hydrothermal method, and then the conducting PANI is coated on the surface of the as-prepared spherical particle through an in-situ polymerization. Based on the analysis of scanning electron microscope (SEM), transmission electron microscope (TEM), high rate transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), it can be found that the size distribution of the spherical particles modified by PANI are about ∼1 μm, meanwhile the average thickness of the PANI layer on the surface of each particle is about 6.3 nm. The electrochemical performance of the spherical lithium-rich cathode material modified by PANI is apparently improved, the capacity retention is still 92.4% after 200 cycles at a rate of 0.5 C. The discharge capacities at 0.1 C and 10 C are as high as 302.9 mAh g-1 and 146.2 mAh g-1, respectively. Therefore, the modification of PANI for the spherical lithium-rich cathode material with a layered-spinel hybrid structure will be a promising technical route for the application with high capacity, long cycle life and good safety.

  14. Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young

    2014-10-01

    Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.

  15. Na2CoSiO4 as a cathode material for sodium-ion batteries: structure, electrochemistry and diffusion pathways.

    PubMed

    Treacher, Joshua C; Wood, Stephen M; Islam, M Saiful; Kendrick, Emma

    2016-12-07

    The importance of developing new low-cost and safe cathodes for large-scale sodium batteries has led to recent interest in silicate compounds. A novel cobalt orthosilicate, Na2CoSiO4, shows promise as a high voltage (3.3 V vs. Na/Na(+)) cathode material for sodium-ion batteries. Here, the synthesis and room temperature electrochemical performance of Na2CoSiO4 have been investigated with the compound found to yield a reversible capacity greater than 100 mA h g(-1) at a rate of 5 mA g(-1). Insights into the crystal structures of Na2CoSiO4 were obtained through refinement of structural models for its two polymorphs, Pn and Pbca. Atomistic modelling results indicate that intrinsic defect levels are not significant and that Na(+) diffusion follows 3D pathways with low activation barriers, which suggest favourable electrode kinetics. The new findings presented here provide a platform on which future optimisation of Na2CoSiO4 as a cathode for Na-ion batteries can be based.

  16. Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material.

    PubMed

    Lefebvre, Olivier; Tan, Zi; Shen, Yujia; Ng, How Y

    2013-01-01

    Microbial fuel cell (MFC) for wastewater treatment is still hindered by the prohibitive cost of cathode material, especially when platinum is used to catalyze oxygen reduction. In this study, recycled scrap metals could be used efficiently as cathode material in a specially-designed MFC. In terms of raw power, the scrap metals ranked as follows: W/Co > Cu/Ni > Inconel 718 > carpenter alloy; however, in terms of cost and long term stability, Inconel 718 was the preferred choice. Treatment performance--assessed on real and synthetic wastewater--was considerably improved either by filling the anode compartment with carbon granules or by operating the MFC in full-loop mode. The latter option allowed reaching 99.7% acetate removal while generating a maximum power of 36 W m(-3) at an acetate concentration of 2535 mg L(-1). Under these conditions, the energy produced by the system averaged 0.1 kWh m(-3) of wastewater treated.

  17. Preparation and characterization of SnO2 and Carbon Co-coated LiFePO4 cathode materials.

    PubMed

    Wang, Haibin; Liu, Shuxin; Huang, Yongmao

    2014-04-01

    The SnO2 and carbon co-coated LiFePO4 cathode materials were successfully synthesized by solid state method. The microstructure and morphology of LiFePO4 composites were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscope. The results showed that the SnO2 and carbon co-coated LiFePO4 cathode materials exhibited more uniform particle size distribution. Compared with the uncoated LiFePO4/C, the structure of LiFePO4 with SnO2 and carbon coating had no change. The existence of SnO2 and carbon coating layer effectively enhanced the initial discharge capacity. Among the investigated samples, the one with DBTDL:LiFePO4 molar ratios of 7:100 exhibited the best electrochemical performance.

  18. Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.

    PubMed

    Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong

    2014-09-01

    The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.

  19. Defect Physics, Delithiation Mechanism, and Electronic and Ionic Conduction in Layered Lithium Manganese Oxide Cathode Materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2015-02-01

    Layered Li Mn O2 and Li2Mn O3 are of great interest for lithium-ion battery cathodes because of their high theoretical capacities. The practical application of these materials is, however, limited due to poor electrochemical performance. We herein report a comprehensive first-principles study of defect physics in Li Mn O2 and Li2Mn O3 using hybrid density-functional calculations. We find that manganese antisites have low formation energies in Li Mn O2 and may act as nucleation sites for the formation of impurity phases. The antisites can also occur with high concentrations in Li2Mn O3 ; however, unlike in Li Mn O2 , they can be eliminated by tuning the experimental conditions during preparation. Other intrinsic point defects may also occur and have an impact on the materials' properties and functioning. An analysis of the formation of lithium vacancies indicates that lithium extraction from Li Mn O2 is associated with oxidation at the manganese site, resulting in the formation of manganese small hole polarons; whereas in Li2Mn O3 the intrinsic delithiation mechanism involves oxidation at the oxygen site, leading to the formation of bound oxygen hole polarons ηO+ . The layered oxides are found to have no or negligible bandlike carriers, and they cannot be doped n or p type. The electronic conduction proceeds through hopping of hole and/or electron polarons; the ionic conduction occurs through lithium monovacancy and/or divacancy migration mechanisms. Since ηO+ is not stable in the absence of negatively charged lithium vacancies in bulk Li2Mn O3 , the electronic conduction near the start of delithiation is likely to be poor. We suggest that the electronic conduction associated with ηO+ and, hence, the electrochemical performance of Li2Mn O3 can be improved through nanostructuring and/or ion substitution.

  20. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials

    SciTech Connect

    Davis, Jacob N.; Miara, Lincoln J.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Gopalan, Srikanth; Pal, Uday B.; Woicik, Joseph C.; Basu, Soumendra N.; Ludwig, Karl F.

    2012-12-01

    Commonly, SOFCs are operated at high temperatures (above 800°C). At these temperatures expensive housing is needed to contain an operating stack as well as coatings to contain the oxidation of the metallic interconnects. Lowering the temperature of an operating device would allow for more conventional materials to be used, thus lowering overall cost. Understanding the surface chemical states of cations in the surface of the SOFC cathode is vital to designing a system that will perform well at lower temperatures. The samples studied were grown by pulsed laser deposition (PLD) at the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). 20% strontium doped lanthanum manganite (LSM-20) was grown on YSZ and NGO (neodymium gallate). The films on YSZ have a fiber texture. LSM-20 on NGO is heteroepitaxial. Lanthanum strontium cobalt ferrite (LSCF-6428) films were grown on LAO and YSZ with a GDC barrier layer. Total X-ray Reflection Fluorescence (TXRF) was used to depth profile the samples. In a typical experiment, the angle of the incident beam is varied though the critical angle. Below the critical angle, the x-ray decays as an evanescent wave and will only penetrate the top few nanometers. TXRF experiments done on LSM films have suggested strontium segregates to the surface and form strontium enriched nanoparticles (1). It should be pointed out that past studies have focused on 30% strontium A-site doping, but this project uses 20% strontium doped lanthanum manganite. XANES and EXAFS data were taken as a function of incoming angle to probe composition as a function of depth. XANES spectra can be difficult to analyze fully. For other materials density functional theory calculations compared to near edge measurements have been a good way to understand the 3d valence electrons (2).

  1. Synthesis and Electrochemical Performance of LixMn2-yCoyO4-dCld Cathode Material

    DTIC Science & Technology

    2016-06-13

    Historically, cycle life enhancements of spinels have been achieved through transition metal doping on the “B” site of the lattice. In this effort...variants of this material, the electrochemical performance and cycle life data of the Co “B” site and Cl “O” site manganese-based AB2O4 spinel is... cycle life of rechargeable lithium manganese-based electrochemical systems, namely capacity fading of the cathode. These two characteristics are

  2. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.

    PubMed

    Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying

    2017-01-01

    A promising Li-rich high-capacity cathode material (xLi2MnO3·(1-x)LiMn0.5Ni0.5O2) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.

  3. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    PubMed Central

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-01-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg−1 and 84.6 Wh kg−1 at power densities of 731.25 W kg−1 and 24375 W kg−1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode. PMID:28155853

  4. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-01

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg‑1 and 84.6 Wh kg‑1 at power densities of 731.25 W kg‑1 and 24375 W kg‑1, respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  5. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid.

    PubMed

    Chen, Xiangping; Ma, Hongrui; Luo, Chuanbao; Zhou, Tao

    2017-03-15

    Sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) may be necessary to alleviate the depletion of strategic metal resources and potential risk of environmental pollution. Herein a hydrometallurgical process was proposed to explore the possibility for the recovery of valuable metals from the cathode materials (LiCoO2) of spent LIBs using phosphoric acid as both leaching and precipitating agent under mild leaching conditions. According to the leaching results, over 99% Co can be separated and recovered as Co3(PO4)2 in a short-cut process involved merely with leaching and filtrating, under the optimized leaching conditions of 40°C (T), 60min (t), 4 vol.% H2O2, 20mLg(-1) (L/S) and 0.7mol/L H3PO4. Then leaching kinetics was investigated based on the logarithmic rate kinetics model and the obtained results indicate that the leaching of Co and Li fits well with this model and the activation energies (Ea) for Co and Li are 7.3 and 10.2kJ/mol, respectively. Finally, it can be discovered from characterization results that the obtained product is 97.1% pure cobalt phosphate (Co3(PO4)2).

  6. Reaction mechanism and thermal stability study on cathode materials for rechargeable lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Fang, Jin

    Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4

  7. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes.

    PubMed

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-23

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H(+) to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H(+), and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m(2)). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  8. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    PubMed Central

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815

  9. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  10. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  11. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g-1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  12. Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Gomez, Iñaki; Mecerreyes, David; Blazquez, J. Alberto; Leonet, Olatz; Ben Youcef, Hicham; Li, Chunmei; Gómez-Cámer, Juan Luis; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide

    2016-10-01

    Lithium-Sulfur (Li-S) battery technology is one of the promising candidates for next generation energy storage systems. Many studies have focused on the cathode materials to improve the cell performance. In this work we present a series of poly (S-DVB) copolymers synthesised by inverse vulcanization of sulfur with divinylbenzene (DVB). The poly (S-DVB) cathode shows excellent cycling performances at C/2 and C/4 current rates, respectively. It was demonstrated poly (S-DVB) copolymer containing 20% DVB did not influence the electrochemical performance of the sulfur material, compared to elemental sulfur as high specific capacities over ∼700 mAh g-1 at 500 cycles were achieved at C/4 current rate, comparable to conventional carbon-based S cathodes. However, the use of copolymer network is assumed to act firstly as sulfur reservoir and secondly as mechanical stabilizer, enhancing significantly the cycling lifetime. The Li-poly (S-DVB) cell demonstrated an extremely low degradation rate of 0.04% per cycle achieving over 1600 cycles at C/2 current rate.

  13. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    DOE PAGES

    Cao, Ming -Hui; Wang, Yong; Shadike, Zulipiya; ...

    2017-02-14

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g–1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway formore » NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. Lastly, these results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.« less

  14. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    SciTech Connect

    Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya; Yue, Ji-Li; Hu, Enyuan; Bak, Seong-Min; Zhou, Yong-Ning; Yang, Xiao-Qing; Fu, Zheng-Wen

    2017-01-01

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.

  15. One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery.

    PubMed

    Li, Sha; Shu, Kewei; Zhao, Chen; Wang, Caiyun; Guo, Zaiping; Wallace, Gordon; Liu, Hua Kun

    2014-10-08

    The significance of developing implantable, biocompatible, miniature power sources operated in a low current range has become manifest in recent years to meet the demands of the fast-growing market for biomedical microdevices. In this work, we focus on developing high-performance cathode material for biocompatible zinc/polymer batteries utilizing biofluids as electrolyte. Conductive polymers and graphene are generally considered to be biocompatible and suitable for bioengineering applications. To harness the high electrical conductivity of graphene and the redox capability of polypyrrole (PPy), a polypyrrole fiber/graphene composite has been synthesized via a simple one-step route. This composite is highly conductive (141 S cm(-1)) and has a large specific surface area (561 m(2) g(-1)). It performs more effectively as the cathode material than pure polypyrrole fibers. The battery constructed with PPy fiber/reduced graphene oxide cathode and Zn anode delivered an energy density of 264 mWh g(-1) in 0.1 M phosphate-buffer saline.

  16. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    PubMed Central

    Kozawa, Takahiro; Naito, Makio

    2015-01-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g−1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs. PMID:27877756

  17. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials.

    PubMed

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g(-1), the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  18. Effect of commercial activated carbons in sulfur cathodes on the electrochemical properties of lithium/sulfur batteries

    SciTech Connect

    Park, Jin-Woo; Kim, Icpyo; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo; Ahn, Jou-Hyeon; Ryu, Ho-Suk; Ahn, Hyo-Jun

    2016-10-15

    Highlights: • The sulfur/activated carbon composite is fabricated using commercial activated carbons. • The sulfur/activated carbon composite with coal shows the best performance. • The Li/S battery has capacities of 1240 mAh g{sup −1} at 1 C and 567 mAh g{sup −1} at 10 C. - Abstract: We prepared sulfur/active carbon composites via a simple solution-based process using the following commercial activated carbon-based materials: coal, coconut shells, and sawdust. Although elemental sulfur was not detected in any of the sulfur/activated carbon composites based on Thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy, Energy-dispersive X-ray spectroscopy results confirmed its presence in the activated carbon. These results indicate that sulfur was successfully impregnated in the activated carbon and that all of the activated carbons acted as sulfur reservoirs. The sulfur/activated carbon composite cathode using coal exhibited the highest discharge capacity and best rate capability. The first discharge capacity at 1 C (1.672 A g{sup −1}) was 1240 mAh g{sup −1}, and a large reversible capacity of 567 mAh g{sup −1} was observed at 10 C (16.72 A g{sup −1}).

  19. Ti/Au Cathode for Electronic transport material-free organic-inorganic hybrid perovskite solar cells

    PubMed Central

    Shi, Tongfei; Chen, Jian; Zheng, Jianqiang; Li, Xinhua; Zhou, Bukang; Cao, Huaxiang; Wang, Yuqi

    2016-01-01

    We have fabricated organic-inorganic hybrid perovskite solar cell that uses a Ti/Au multilayer as cathode and does not use electron transport materials, and achieved the highest power conversion efficiency close to 13% with high reproducibility and hysteresis-free photocurrent curves. Our cell has a Schottky planar heterojunction structure (ITO/PEDOT:PSS/perovskite/Ti/Au), in which the Ti insertion layer isolate the perovskite and Au layers, thus proving good contact between the Au and perovskite and increasing the cells’ shunt resistance greatly. Moreover, the Ti/Au cathode in direct contact with hybrid perovskite showed no reaction for a long-term exposure to the air, and can provide sufficient protection and avoid the perovskite and PEDOT:PSS layers contact with moisture. Hence, the Ti/Au based devices retain about 70% of their original efficiency after 300 h storage in the ambient environment. PMID:27995951

  20. Ti/Au Cathode for Electronic transport material-free organic-inorganic hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Tongfei; Chen, Jian; Zheng, Jianqiang; Li, Xinhua; Zhou, Bukang; Cao, Huaxiang; Wang, Yuqi

    2016-12-01

    We have fabricated organic-inorganic hybrid perovskite solar cell that uses a Ti/Au multilayer as cathode and does not use electron transport materials, and achieved the highest power conversion efficiency close to 13% with high reproducibility and hysteresis-free photocurrent curves. Our cell has a Schottky planar heterojunction structure (ITO/PEDOT:PSS/perovskite/Ti/Au), in which the Ti insertion layer isolate the perovskite and Au layers, thus proving good contact between the Au and perovskite and increasing the cells’ shunt resistance greatly. Moreover, the Ti/Au cathode in direct contact with hybrid perovskite showed no reaction for a long-term exposure to the air, and can provide sufficient protection and avoid the perovskite and PEDOT:PSS layers contact with moisture. Hence, the Ti/Au based devices retain about 70% of their original efficiency after 300 h storage in the ambient environment.

  1. Synthesis and electrochemical characterization of mesoporous Li2FeSiO4/C composite cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna

    2015-03-01

    Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.

  2. Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs

    SciTech Connect

    Eric D. Wachsman

    2006-09-30

    This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

  3. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability

    NASA Astrophysics Data System (ADS)

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-01

    We report the synthesis of a graphene-sulfur composite material by wrapping polyethyleneglycol (PEG) coated submicron sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ~600mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  4. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability.

    PubMed

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-13

    We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  5. Mechanism of high luminous efficacy in plasma display panel with high secondary electron emission coefficient cathode material analyzed through three-dimensional fluid model simulation

    SciTech Connect

    Kwon, Ohyung; Lee, Tae-Ho; Cheong, Hee-Woon; Whang, Ki-Woong; Bae, Hyun Sook; Jung, Hae-Yoon

    2011-08-15

    The mechanism to realize high luminous efficacy in a plasma display panel fabricated with a cathode material possessing a high secondary electron emission coefficient ({gamma}) for Ne and Xe ions was studied via three-dimensional numerical simulation. When a high {gamma} cathode material is used, the increased electron heating efficacy is responsible for increasing vacuum ultraviolet (VUV) efficacy with 10% Xe content gas. However, the continued availability of sufficient secondary electrons during the dynamic moving phase of the cathode sheath in which the electric field remains weakened causes increasing VUV efficacy with 30% Xe content gas. It was found that the improvement of the luminous efficacy of the plasma display panel with a high {gamma} cathode material is maximized under the condition of high Xe content gas because of the simultaneous increase of the electron heating efficacy and Xe excitation efficacy.

  6. Cathode materials for lithium-ion batteries: Synthesis, analysis, and thermal studies

    NASA Astrophysics Data System (ADS)

    Kim, Jeom-Soo

    2001-12-01

    The effect of synthesis technique was studied with two representative techniques such as solid-state reaction (SSR) and sol-gel methods used for LixMn2O4 (x = 1.03) preparation. For the in-cell performance of LixMn2O4 as electrode material, variation in processing temperature and intermittent grinding were found to be the key parameters of synthesis. The characteristics of powder synthesized by these different methods were investigated and compared with stoichiometric LiMn2O4 spinel using a combination of physicochemical and electrochemical techniques. Physicochemical characteristics investigated including phase identification, particle size, density, BET surface area, and composition. The electrochemical performance was characterized with 2016 coin type cells, using a battery tester. In addition, the electro-analytical response was studied using slow sweep cyclic voltammetry (SSCV) and current pulse response (CPR). The hybrid pulse power characterization (HPPC), one of the test profiles proposed by the Partnership for New Generation Vehicle (PNGV), was applied to check the possibility of using LixMn 2O4 electrodes in HEV batteries. Chemical diffusion coefficients of lithium (D Li+) in spinel LixMn2O 4 were measured by various electrochemical techniques such as potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). DLi+ varied with x in LixMn2O4, showing strong dependence on the concentration of lithium. The thermal behavior of major cathode materials for Li-ion battery (LiCoO 2, LiNi0.8Co0.2O2, and LiMn2O 4) was investigated using an isothermal microcalorimeter, in combination with a battery tester. The total heat generation rate was found to be dependent on the concentration of lithium in LixMn2O4 and LixCoO2 while it was relatively constant in the case of LixNi0.8Co0.2O2. The area-specific impedance (ASI) measured in these tests indicated that the heat

  7. Mechanically Active Electrospun Materials

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  8. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Di; Yu, Ruizhi; Wang, Xianyou; Ge, Long; Yang, Xiukang

    2015-02-01

    Homogeneous lithium-rich layered-spinel 0.5Li2MnO3.0.5LiMn1/3Ni1/3Co1/3O2 microspheres (~1 μm) are successfully prepared by a solvothermal method and subsequent high-temperature calcinations process. The effects of temperature on the structure and performance of the as-prepared cathode material are systemically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatical charge/discharge and electrochemical impedance spectra. The results show that a spinel Li4Mn5O12 component can be controllably introduced into the lithium-rich layered material at 750°C. Besides, it has been found that the obtained layered-spinel cathode material represents excellent electrochemical characteristics. For example, it can deliver a high initial discharge capacity of 289.6 mAh g-1 between 2.0 V and 4.6 V at a rate of 0.1 C at room temperature, and a discharge capacity of 144.9 mAh g-1 at 5 C and 122.8 mAh g-1 even at 10 C. In addition, the retention of the capacity is still as high as 88% after 200 cycles, while only 79.9% for the single-phase layered material. The excellent electrochemical performance of the as-prepared cathode material can probably be attributed to the hybrid structures combining a fast Li-ion diffusion rate of 3D spinel Li4Mn5O12 phase and a high capacity of the layered Li-Mn-Ni-Co-O component.

  9. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries

    PubMed Central

    Wang, Di; Yu, Ruizhi; Wang, Xianyou; Ge, Long; Yang, Xiukang

    2015-01-01

    Homogeneous lithium-rich layered-spinel 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 microspheres (~1 μm) are successfully prepared by a solvothermal method and subsequent high-temperature calcinations process. The effects of temperature on the structure and performance of the as-prepared cathode material are systemically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatical charge/discharge and electrochemical impedance spectra. The results show that a spinel Li4Mn5O12 component can be controllably introduced into the lithium-rich layered material at 750°C. Besides, it has been found that the obtained layered-spinel cathode material represents excellent electrochemical characteristics. For example, it can deliver a high initial discharge capacity of 289.6 mAh g−1 between 2.0 V and 4.6 V at a rate of 0.1 C at room temperature, and a discharge capacity of 144.9 mAh g−1 at 5 C and 122.8 mAh g−1 even at 10 C. In addition, the retention of the capacity is still as high as 88% after 200 cycles, while only 79.9% for the single-phase layered material. The excellent electrochemical performance of the as-prepared cathode material can probably be attributed to the hybrid structures combining a fast Li-ion diffusion rate of 3D spinel Li4Mn5O12 phase and a high capacity of the layered Li-Mn-Ni-Co-O component. PMID:25672573

  10. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries.

    PubMed

    Wang, Di; Yu, Ruizhi; Wang, Xianyou; Ge, Long; Yang, Xiukang

    2015-02-12

    Homogeneous lithium-rich layered-spinel 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 microspheres (~1 μm) are successfully prepared by a solvothermal method and subsequent high-temperature calcinations process. The effects of temperature on the structure and performance of the as-prepared cathode material are systemically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatical charge/discharge and electrochemical impedance spectra. The results show that a spinel Li4Mn5O12 component can be controllably introduced into the lithium-rich layered material at 750°C. Besides, it has been found that the obtained layered-spinel cathode material represents excellent electrochemical characteristics. For example, it can deliver a high initial discharge capacity of 289.6 mAh g(-1) between 2.0 V and 4.6 V at a rate of 0.1 C at room temperature, and a discharge capacity of 144.9 mAh g(-1) at 5 C and 122.8 mAh g(-1) even at 10 C. In addition, the retention of the capacity is still as high as 88% after 200 cycles, while only 79.9% for the single-phase layered material. The excellent electrochemical performance of the as-prepared cathode material can probably be attributed to the hybrid structures combining a fast Li-ion diffusion rate of 3D spinel Li4Mn5O12 phase and a high capacity of the layered Li-Mn-Ni-Co-O component.

  11. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; Zhou, Haoshen; Okabayashi, Jun; Ban, Chunmei; Glans, Per-Anders; Guo, Jinghua; Mizokawa, Takashi; Chen, Gang; Achkar, Andrew J.; Hawthron, David G.; Regier, Thomas Z.; Wadati, Hiroki

    2016-03-01

    We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathode materials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  12. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass.

    PubMed

    Yuan, Wenyi; Li, Jinhui; Zhang, Qiwu; Saito, Fumio

    2012-04-03

    The disposal of scrap cathode ray tube (CRT) funnel glass has become a global environmental problem due to the rapid shrinkage of new CRT monitor demand, which greatly reduces the reuse for remanufacturing. To detoxificate CRT funnel glass by lead recovery with traditional metallurgical methods, mechanical activation by ball milling was introduced to pretreat the funnel glass. As a result, substantial physicochemical changes have been observed after mechanical activation including chemical breakage and defects formation in glass inner structure. These changes contribute to the easy dissolution of the activated sample in solution. High yield of 92.5% of lead from activated CRT funnel glass by diluted nitric acid leaching and successful formation of lead sulfide by sulfur sulfidization in water have also been achieved. All the results indicate that the application of mechanical activation on recovering lead from CRT funnel glass is efficient and promising, which is also probably appropriate to detoxificate any other kind of leaded glass.

  13. Is alpha-V2O5 a cathode material for Mg insertion batteries?

    SciTech Connect

    Sa, Niya; Wang, Hao; Proffit, Danielle L.; Lipson, Albert L.; Key, Baris; Liu, Miao; Feng, Zhenxing; Fister, Timothy T.; Ren, Yang; Sun, Cheng-Jun; Vaughey, John T.; Fenter, Paul A.; Persson, Kristin A.; Burrell, Anthony K.

    2016-08-01

    When designing a high energy density battery, one of the critical features is a high voltage, high capacity cathode material. In the development of Mg batteries, oxide cathodes that can reversibly intercalate Mg, while at the same time being compatible with an electrolyte that can deposit Mg reversibly are rare. Herein, we report the compatibility of Mg anodes with a-V2O5 by employing magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolytes at very low water levels. Electrolytes that contain a high water level do not reversibly deposit Mg, but interestingly these electrolytes appear to enable much higher capacities for an a-V2O5 cathode. Solid state NMR indicates that the major source of the higher capacity in high water content electrolytes originates from reversible proton insertion. In contrast, we found that lowering the water level of the magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte is critical to achieve reversible Mg deposition and direct evidence for reversible Mg intercalation is shown. Findings we report here elucidate the role of proton intercalation in water-containing electrolytes and clarify numerous conflicting reports of Mg insertion into a-V2O5.

  14. Influence of Parameters of the Glow Discharge on Change of Structure and the Isotope Composition of the Cathode Materials

    NASA Astrophysics Data System (ADS)

    Savvatimova, I. B.; Gavritenkov, D. V.

    Results of examinations of changes in structure, element, and isotope composition of cathodes after the glow discharge exposure in hydrogen, deuterium, argon, and xenon are submitted. The voltage of the discharge was less than 1000 V and the current was 5-150 mA. Samples before and after ions bombardment in the glow discharge were explored by the methods of mass spectrometry: the secondary ions (SIMS), the secondary ions with additional ionization of neutral sprayed particles (SNMS), spark (SMS), and thermo-ionization (TIMS), and also methods of energy dispersion X-ray spectral analysis (EDX). The alpha-, beta-, gamma- emission, and gamma- spectrometry for radioactive uranium specimens were also carried out before and after experiments in the glow discharge. Changes in structure, isotope, and element composition of the cathode samples depend on current density, integrated ions flow (fluence of ions), kind of irradiating ions and other experimental conditions. Attempts are made to estimate qualitatively and quantitatively the role of each of the parameters on intensity of the observed changes in cathode composition. It is shown that the maximum changes in structure, chemical and isotope composition of the cathode material occur in "hot points," such as craters from microexplosions, phase segregations, blisters and other new formations. Various methods of the analysis revealed that the basic elements Mg, O, Si, Al, and Ca with quantities up to per cents and more were prevailing in these zones and not found out before experiment. The greatest changes of the isotope relations were observed for iron, calcium, silicon, chromium after experiments with pulsing current. EDX method finds out the elements missing in the samples before experiment such as cadmium, strontium, tin. The isotopes with mass number 59 (Co 100%), 55 (Mn 100%), 45 (Sc 100%) are also not found in initial samples and background measurement by TIMS method. Results of changes in the element and isotope

  15. The influence of reduced graphene oxide on electrical conductivity of LiFePO{sub 4}-based composite as cathode material

    SciTech Connect

    Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto; Abdullah, Mikrajuddin; Iskandar, Ferry

    2016-02-08

    LiFePO{sub 4} is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g{sup −1}. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO{sub 4}-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO{sub 4}−based composite by varying mass of rGO in composition. Vibration of LiFePO{sub 4}-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO{sub 4} nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.

  16. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    PubMed Central

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  17. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries.

    PubMed

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-12

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g(-1) after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li(+)-ion transfer rate, affording a rate performance of 1210, mAh g(-1) at 0.1 C and 730 mAh g(-1) at 5 C.

  18. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  19. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

    NASA Astrophysics Data System (ADS)

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-01

    In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g‑1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g‑1 after 100 cycles at 0.1 C 84.5% retention) and high rate capability (specific capacity of 301 mA h g‑1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  20. Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium–Selenium Secondary Battery Applications

    PubMed Central

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    In this study, graphene–selenium hybrid microballs (G–SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G–SeHMs thus prepared is investigated for use as cathode material in applications of lithium–selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g−1 at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g−1 after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g−1 at 5 C). These electrochemical properties are attributed to the fact that the G–SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials. PMID:27480798

  1. Effect of Transition Metal Ordering on the Electronic Properties of LiNi1 - y - xCoyMnxO2 Cathode Materials for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team

    2015-03-01

    Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.

  2. Enhanced Electrochemical Performance of Layered Lithium-Rich Cathode Materials by Constructing Spinel-Structure Skin and Ferric Oxide Islands.

    PubMed

    Chen, Shi; Zheng, Yu; Lu, Yun; Su, Yuefeng; Bao, Liying; Li, Ning; Li, Yitong; Wang, Jing; Chen, Renjie; Wu, Feng

    2017-03-15

    Layered lithium-rich cathode materials have been considered as competitive candidates for advanced lithium-ion batteries because they are environmentally benign, high capacity (more than 250 mAh·g(-1)), and low cost. However, they still suffer from poor rate capability and modest cycling performance. To address these issues, we have proposed and constructed a spinel-structure skin and ferric oxide islands on the surface of layered lithium-rich cathode materials through a facile wet chemical method. During the surface modification, Li ions in the surface area of pristine particles could be partially extracted by H(+), along with the depositing process of ferric hydrogen. After calcination, the surface structure transformed to spinel structure, and ferric hydrogen was oxidized to ferric oxide. The as-designed surface structure was verified by EDX, HRTEM, XPS, and CV. The experimental results demonstrated that the rate performance and capacity retentions were significantly enhanced after such surface modification. The modified sample displayed a high discharge capacity of 166 mAh·g(-1) at a current density of 1250 mA·g(-1) and much more stable capacity retention of 84.0% after 50 cycles at 0.1C rate in contrast to 60.6% for pristine material. Our surface modification strategy, which combines the advantages of spinel structure and chemically inert ferric oxide nanoparticles, has been shown to be effective for realizing the layered lithium-rich cathodes with surface construction of fast ion diffusing capability as well as robust electrolyte corroding durability.

  3. Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices.

    PubMed

    Li, Jing; Nandagopal, Saravanan; Wu, Dan; Romanuik, Sean F; Paul, Kausik; Thomson, Douglas J; Lin, Francis

    2011-04-07

    Immune cell migration is a fundamental process that enables immunosurveillance and immune responses. Understanding the mechanism of immune cell migration is not only of importance to the biology of cells, but also has high relevance to cell trafficking mediated physiological processes and diseases such as embryogenesis, wound healing, autoimmune diseases and cancers. In addition to the well-known chemical concentration gradient based guiding mechanism (i.e. chemotaxis), recent studies have shown that lymphocytes can respond to applied physiologically relevant direct current (DC) electric fields by migrating toward the cathode of the fields (i.e. electrotaxis) in both in vitro and in vivo settings. In the present study, we employed two microfluidic devices allowing controlled application of electric fields inside the microfluidic channel for quantitative studies of lymphocyte electrotaxis in vitro at the single cell level. The first device is fabricated by soft-lithography and the second device is made in glass with integrated on-chip electrodes. Using both devices, we for the first time showed that anti-CD3/CD28 antibodies activated human blood T cells migrate to the cathode of the applied DC electric field. This finding is consistent with previous electrotaxis studies on other lymphocyte subsets suggesting electrotaxis is a novel guiding mechanism for immune cell migration. Furthermore, the characteristics of electrotaxis and chemotaxis of activated T cells in PDMS microfluidic devices are compared.

  4. Preliminary study of structural changes in Li2MnSiO4 cathode material during electrochemical reaction

    NASA Astrophysics Data System (ADS)

    Świętosławski, Michał; Molenda, Marcin; Gajewska, Marta

    2016-06-01

    In this paper, we present exsitu observations of a structure of particular Li2MnSiO4 grains at different states of charge (SOC). The goal of these studies is structural analysis of Li2MnSiO4 cathode material for Li-ion batteries at different stages of electrochemical reaction using transmission electron microscopy. Performed analysis suggests that amorphization process of Li2MnSiO4 is not directly connected with lithium ions deintercalation but with additional electrochemical reactions running in the working cell.

  5. Cathode including a non fluorinated linear chain polymer as the binder, method of making the cathode, and lithium electrochemical cell containing the cathode

    NASA Astrophysics Data System (ADS)

    Plichta, Edward J.; Salomon, Mark

    1986-08-01

    A cathode suitable for use in a lithium electrochemical cell is made from a mixture of active cathode material, carbon, and non fluorinated linear chain polymer by a method including the following steps: (1) dissolving the non fluorinated linear polymer in a non polar solvent at a temperature near the melting point of the polymer; (2) adding the active cathode material and carbon and evaporating the solvent; and (3) grinding the dried mixture into a fine powder and making it into a cathode by pressing the powdered mixture onto both sides of an expanded metal screen and then cutting to the desired dimensions. The cathode can be combined with lithium as the anode and a solution of 0.8 mol/cu dm LiAlCl4 in a mixed organic solvent of 24 mass percent 4-butyrolactone in 1, 2 dimethoxyethane as the electrolyte to provide a mechanically stable, relatively inexpensive lithium electrochemical cell having good cell performance.

  6. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge

    NASA Astrophysics Data System (ADS)

    Mendoza-Hernandez, Omar Samuel; Ishikawa, Hiroaki; Nishikawa, Yuuki; Maruyama, Yuki; Umeda, Minoru

    2015-04-01

    The analysis of Li-ion secondary cells under outstanding conditions, as overcharge and high temperatures, is important to determine thermal abuse characteristics of electroactive materials and precise risk assessments on Li-ion cells. In this work, the thermal runaway behavior of LiCoO2 and LiMn2O4 cathode materials were compared at different state of charges (SOCs), including overcharge, by carrying out accelerating rate calorimetry (ARC) measurements using 18650 Li-ion cells. Onset temperatures of self-heating reactions and thermal runaway behavior were identified, and by using these onset points thermal mapping plots were made. We were able to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge and temperature. The cell using LiMn2O4 cathode material was found to be more thermally stable than the cell using LiCoO2. In parallel with the ARC measurements, the electrochemical behavior of the cells was monitored by measuring the OCV and internal resistance of the cells. The electrochemical behavior of the cells showed a slightly dependency on SOC.

  7. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-12-18

    For LiMO2 (M=Co, Ni, Mn) cathode materials, lattice parameters, a(b), contract during charge. Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A ‘unit cell breathing’ mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of the metal-metal bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking metal-oxygen bond as controlling factor in ‘normal’ materials. The cation mixing caused by migration of molybdenum ions at higher oxidation state provides the benefits of reducing the c expansion range in the early stage of charging and suppressing the structure collapse at high voltage charge. These results may open a new strategy for designing layered cathode materials for high energy density lithium-ion batteries.

  8. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  9. Electrodeposited Na2VOx[Fe(CN)6] films As a Cathode Material for Aqueous Na-Ion Batteries.

    PubMed

    Paulitsch, Bianca; Yun, Jeongsik; Bandarenka, Aliaksandr S

    2017-03-08

    The so-called Prussian blue analogues (PBAs) are spotlighted as promising cathode materials for aqueous Na-ion batteries regarding their good performance for the application in future large-scale energy storage systems. In this work, we demonstrate that one of the PBA representatives, namely Na2VOx[Fe(CN)6] thin films (VHCFs), is a promising cathode material for aqueous Na-ion batteries with very positive intercalation/deintercalation potentials, which might likely designate a new benchmark in the field. To maximize the material utilization, we have formed VHCF thin films on model current collectors from aqueous solutions. The resulting films demonstrated a very positive half-charge potential (ΔE1/2 ≈ 0.91 V vs Ag/AgCl reference electrode) in acidic media with a specific capacity of ∼80 mAh g(-1) recorded at high C-rates (30 C) in 1 M LiNO3, 3 M NaNO3 and 3 M KNO3 electrolytes in the presence of 3.6 M H2SO4. It is also shown that well-known solvation effects related to the nature of the alkali metal cations during intercalation and deintercalation are surprisingly not pronounced in the case of VHCFs.

  10. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE PAGES

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; ...

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more » The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  11. Lithium Diffusion & Magnetism in Battery Cathode Material LixNi1/3Co1/3Mn1/3O2

    NASA Astrophysics Data System (ADS)

    Månsson, M.; Nozaki, H.; Wikberg, J. M.; Prša, K.; Sassa, Y.; Dahbi, M.; Kamazawa, K.; Sedlak, K.; Watanabe, I.; Sugiyama, J.

    2014-12-01

    We have studied low-temperature magnetic properties as well as high-temperature lithium ion diffusion in the battery cathode materials LixNi1/3Co1/3Mn1/3O2 by the use of muon spin rotation/relaxation. Our data reveal that the samples enter into a 2D spin-glass state below TSG ≈ 12 K. We further show that lithium diffusion channels become active for T >= Tdiff ~ 125 K where the Li-ion hopping-rate [v(T)] starts to increase exponentially. Further, v(T) is found to fit very well to an Arrhenius type equation and the activation energy for the diffusion process is extracted as Ea ≈ 100 meV.

  12. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0active material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.

  13. Preparation for CeO2/Nanographite Composite Materials and Electrochemical Degradation of Phenol by CeO2/Nanographite Cathodes.

    PubMed

    Yu, Li; Yu, Xiujuan; Sun, Tianyi; Wang, Na

    2015-07-01

    CeO2/nanographite (CeO2/nano-G) composite materials were got by chemical precipitation method with nanographite (nano-G) and cerous nitrate hexahydrate as raw materials. The microstructures of CeO2/nano-G composite materials were characterized by means of SEM, XRD, XPS and Raman. The cathodes were made by nano-G and CeO2/nano-G composite materials, respectively. The electrolysis phenol was conducted by the diaphragm cell prepared cathode and the Ti/RuO2 anode. The results indicated that the Cerium oxide is mainly in nanoscale spherical state, uniformly dispersed in the nanographite sheet surface, and there are two different oxidation states for elemental Ce, namely, Ce(III) and Ce(IV). In the diaphragm electrolysis system with the aeration conditions, the degradation rate of phenol reached 93.9% under 120 min's electrolysis. Ceria in the cathode materials might lead to an increase in the local oxygen concentration, which accelerated the two-electron reduction of O2 to hydrogen peroxide (H2O2). The removal efficiency of phenol by using the CeO2/nano-G composite cathode was better than that of the nano-G cathode.

  14. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  15. In-situ electrochemically active surface area evaluation of an open-cathode polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.

    2016-09-01

    The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.

  16. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g‑1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g‑1 is obtained at a high current density of 600 mA g‑1, and the electrode recovers a capacity of 230 mAh g‑1 when the current density is reset to 15 mA g‑1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications.

  17. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    PubMed Central

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g−1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g−1 is obtained at a high current density of 600 mA g−1, and the electrode recovers a capacity of 230 mAh g−1 when the current density is reset to 15 mA g−1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications. PMID:28098231

  18. High Rate, Long Lifespan LiV3 O8 Nanorods as a Cathode Material for Lithium-Ion Batteries.

    PubMed

    Chen, Zhongxue; Xu, Fei; Cao, Shunan; Li, Zhengfeng; Yang, Hanxi; Ai, Xinping; Cao, Yuliang

    2017-03-06

    LiV3 O8 nanorods with controlled size are successfully synthesized using a nonionic triblock surfactant Pluronic-F127 as the structure directing agent. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques are used to characterize the samples. It is observed that the nanorods with a length of 4-8 µm and diameter of 0.5-1.0 µm distribute uniformly. The resultant LiV3 O8 nanorods show much better performance as cathode materials in lithium-ion batteries than normal LiV3 O8 nanoparticles, which is associated with the their unique micro-nano-like structure that can not only facilitate fast lithium ion transport, but also withstand erosion from electrolytes. The high discharge capacity (292.0 mAh g(-1) at 100 mA g(-1) ), high rate capability (138.4 mAh g(-1) at 6.4 A g(-1) ), and long lifespan (capacity retention of 80.5% after 500 cycles) suggest the potential use of LiV3 O8 nanorods as alternative cathode materials for high-power and long-life lithium ion batteries. In particular, the synthetic strategy may open new routes toward the facile fabrication of nanostructured vanadium-based compounds for energy storage applications.

  19. Electrochemical properties of large-sized pouch-type lithium ion batteries with bio-inspired organic cathode materials

    NASA Astrophysics Data System (ADS)

    Yeo, Jae-Seong; Yoo, Eun-Ji; Ha, Sang-Hyeon; Cheong, Dong-Ik; Cho, Sung-Baek

    2016-05-01

    To investigate the feasibility of scaling up bio-inspired organic materials as cathode materials in lithium ion batteries, large-sized pouch cells are successfully prepared via tape casting using lumichrome with an alloxazine structure and aqueous styrene butadiene rubber-carboxymethyl cellulose (SBR-CMC) binders. A battery module with a two-in-series, six-in-parallel (2S6P) configuration is also successfully fabricated and is able to power blue LEDs (850 mW). Lumichrome shows no structural changes during the fabrication processes used to produce the positive electrode. The large-sized pouch cells show two sets of cathodic and anodic peaks with average potentials of 2.58 V and 2.26 V vs. Li/Li+, respectively. The initial discharge capacities are 142 mAh g-1 and 148 mAh g-1 for ethylene carbonate-dimethyl carbonate (EC-DMC) and tetraethylene glycol dimethyl ether (TEGDME) electrolytes, respectively, similar to that of a coin cell (149 mAh g-1). The EC-DMC-injected pouch cells exhibit higher rate performance and cyclability than the TEGDME-injected ones. The TEGDME electrolyte is not suitable for lithium metal anodes because of electrolyte decomposition and subsequent cell swelling.

  20. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  1. Hollow spherical carbonized polypyrrole/sulfur composite cathode materials for lithium/sulfur cells with long cycle life

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Zhang, Shichao; Zhang, Lan; Lin, Ruoxu; Wu, Xiaomeng; Fang, Hua; Ren, Yanbiao

    2014-02-01

    Hollow carbonized polypyrrole (PPy) spheres are synthesized using poly(methyl methacrylate-ethyl acrylate-acrylic acid) latex spheres as sacrificial templates. The hollow spherical carbonized PPy/sulfur composite cathode materials are prepared by heating the mixture of hollow carbonized PPy spheres and element sulfur at 155 °C for 24 h. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the hollow structures of the carbonized PPy spheres and the homogeneous distribution of sulfur on the carbonized PPy shells. The hollow spherical carbonized PPy/sulfur composite with 60.9 wt.% S shows high specific capacity and excellent cycling stability when used as the cathode materials in lithium/sulfur cells, whose initial specific discharge capacity reaches as high as 1320 mA h g-1 and the reversible discharge capacity retains 758 mA h g-1 after 400 cycles at 0.2C. The excellent electrochemical properties benefit from the hollow structures and the flexible shells of the carbonized PPy spheres.

  2. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    PubMed Central

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley

    2016-01-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g−1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g−1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944

  3. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    DOE PAGES

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; ...

    2016-07-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high asmore » 301 mAh g–1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g–1 still remains without any obvious decay in voltage. Lastly, this study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.« less

  4. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    SciTech Connect

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley; Hy, Sunny

    2016-07-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g–1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g–1 still remains without any obvious decay in voltage. Lastly, this study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.

  5. Nitrogen--sulfur--carbon nanocomposites and their application as cathode materials in lithium--sulfur batteries

    DOEpatents

    Dai, Sheng; Sun, Xiao-Guang; Guo, Bingkun; Wang, Xiqing; Mayes, Richard T.; Ben, Teng; Qiu, Shilun

    2016-09-27

    The invention is directed in a first aspect to electron-conducting porous compositions comprising an organic polymer matrix doped with nitrogen atoms and having elemental sulfur dispersed therein, particularly such compositions having an ordered framework structure. The invention is also directed to composites of such S/N-doped electron-conducting porous aromatic framework (PAF) compositions, or composites of an S/N-doped mesoporous carbon composition, which includes the S/N-doped composition in admixture with a binder, and optionally, conductive carbon. The invention is further directed to cathodes for a lithium-sulfur battery in which such composites are incorporated.

  6. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    PubMed

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  7. Hydrogen determination in chemically delithiated lithium ion battery cathodes by prompt gamma activation analysis

    NASA Astrophysics Data System (ADS)

    Alvarez, Emilio, II

    2007-12-01

    Lithium ion batteries, due to their relatively high energy density, are now widely used as the power source for portable electronics. Commercial lithium ion cells currently employ layered LiCoO2 as a cathode but only 50% of its theoretical capacity can be utilized. The factors that cause the limitation are not fully established in the literature. With this perspective, prompt gamma-ray activation analysis (PGAA) has been employed to determine the hydrogen content in various oxide cathodes that have undergone chemical extraction of lithium (delithiation). The PGAA data is complemented by data obtained from atomic absorption spectroscopy (AAS), redox titration, thermogravimetric analysis (TGA), and mass spectroscopy to better understand the capacity limitations and failure mechanisms of lithium ion battery cathodes. As part of this work, the PGAA facility has been redesigned and reconstructed. The neutron and gamma-ray backgrounds have been reduced by more than an order of magnitude. Detection limits for elements have also been improved. Special attention was given to the experimental setup including potential sources of error and system calibration for the detection of hydrogen. Spectral interference with hydrogen arising from cobalt was identified and corrected for. Limits of detection as a function of cobalt mass present in a given sample are also discussed. The data indicates that while delithiated layered Li1- xCoO2, Li1-xNi 1/3Mn1/3Co1/3O2, and Li1- xNi0.5Mn0.5O2 take significant amounts of hydrogen into the lattice during deep extraction, orthorhombic Li 1-xMnO2, spinel Li1- xMn2O4, and olivine Li1- xFePO4 do not. Layered LiCoO2, LiNi 0.5Mn0.5O2, and LiNi1/3Mn1/3Co 1/3O2 have been further analyzed to assess their relative chemical instabilities while undergoing stepped chemical delithiation. Each system takes increasing amounts of protons at lower lithium contents. The differences are attributed to the relative chemical instabilities of the various cathodes

  8. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    NASA Astrophysics Data System (ADS)

    Crowe, Adam J.; Bartlett, Bart M.

    2016-10-01

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg2+), relative to lithium-ion (Li+) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg2+, improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recent advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes.

  9. Porous LiFePO4/C microspheres as high-power cathode materials for lithium ion batteries.

    PubMed

    Sun, Bing; Wang, Ying; Wang, Bei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu

    2013-05-01

    Porous LiFePO4/C microspheres were synthesized by a novel hydrothermal reaction combined with high-temperature calcinations. The morphology of the prepared material was investigated by field-emission scanning electron microscopy. Porous microspheres with diameters around 1-3 microm were obtained, which consisting of primary LiFePO4 nanoparticles. The electrochemical performances of the as-prepared LiFePO4 microspheres were evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge cycling. The carbon coated LiFePO4 microspheres showed lower polarization, higher rate capability, and better cycling stability than that of pristine LiFePO4 microspheres, indicating the potential application as the cathode material for high-power lithium ion batteries.

  10. Lithium transport investigation in LixFeSiO4: A promising cathode material

    NASA Astrophysics Data System (ADS)

    Araujo, Rafael B.; Scheicher, Ralph H.; de Almeida, J. S.; Ferreira da Silva, A.; Ahuja, Rajeev

    2013-11-01

    In this paper we investigate lithium mobility in both Li2FeSiO4 and its half-lithiated state LiFeSiO4 considering an orthorhombic crystal structure. We find that the calculated activation energy of Li+ ions hopping between adjacent equilibrium sites predicts two least hindered diffusion pathways in both materials. One of them is along the [100] direction characterizing an ionic diffusion in a straight line and the other follows a zig-zag way between the Fe-Si-O layers. We also show that diffusion of Li+ ions in the half-lithiated structure follows the same behavior as in the lithiated structure. As a whole, the activation energies for the investigated compounds present a greater value compared with the activation energies in currently used materials such as LiFePO4. The results were calculated in the framework of density functional theory in conjunction with the climbing image nudged elastic band method. The Hubbard term was added to the Kohn-Sham Hamiltonian to overcome the delocalization problem of d electrons. Furthermore, the diffusion coefficients were calculated for both structures considering temperatures ranging from 300 to 700 K.

  11. A basic thin film study of spinel LiMn{sub 2}O{sub 4} as a possible cathode material for lithium secondary cells

    SciTech Connect

    Miura, Takashi; Kishi, Tomiya

    1995-12-31

    In a series of fundamental studies on the cathode active materials for a lithium secondary cell using geometrically well-defined sample electrodes, thin films of spinel LiMn{sub 2}O{sub 4} on a platinum plate were investigated in this work in an LiClO{sub 4}/propylene carbonate solution. These pyrolytically prepared films exhibit reversible extraction/insertion behavior for lithium under galvanostatic charge/discharge cycling between 4.3--3.5 V. The chemical diffusion coefficient of lithium in Li{sub x}Mn{sub 2}O{sub 4} determined by the galvanostatic intermittent titration technique (GITT) was in the order of 10{sup {minus}7}--10{sup {minus}10} cm{sup 2} {center_dot} s{sup {minus}1} within a spinel single-phase region of 0.6 < x < 1.0 and increased with increasing x.

  12. Investigating the reversibility of structural modifications of LixNiyMnzCo1-y-zO₂ cathode materials during initial charge/discharge, at multiple length scales

    DOE PAGES

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min; ...

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of LixNiyMnzCo1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors, which is deviate frommore » the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.« less

  13. Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li0.2Ni0.2Mn0.6]O2

    SciTech Connect

    Zheng, Jianming; Shi, Wei; Gu, Meng; Xiao, Jie; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2013-10-10

    Lithium-rich, manganese-rich (LMR) layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2 has been successfully prepared by a co-precipitation method and its structure is confirmed by XRD characterization. The material delivers a high discharge capacity of 281 mAh g-1, when charged and discharged at a low current density of 10 mA g-1. However, significant increase of cell polarization and decrease of discharge capacity are observed at voltages below 3.5 V with increasing current densities. Galvanostatic intermittent titration technique (GITT) analysis demonstrates that lithium ion intercalation/de-intercalation reactions in this material are kinetically controlled by Li2MnO3 and its activated MnO2 component. The relationship between the electrochemical kinetics and rate performance as well as cycling stability has been systematically investigated. High discharge capacity of 149 mAh g-1 can be achieved at 10 C charge rate and C/10 discharge rate. The result demonstrates that the Li2MnO3 based material could withstand high charge rate (except initial activation process), which is very promising for practical applications. A lower discharge current density is preferred to overcome the kinetic barrier of lithium ion intercalation into MnO2 component, in order to achieve higher discharge capacity even at high charge rates.

  14. A preliminary investigation into the new class of lithium intercalating LiNiSiO4 cathode material

    NASA Astrophysics Data System (ADS)

    Jayaprakash, N.; Kalaiselvi, N.; Periasamy, P.

    2008-01-01

    A unique attempt to exploit silicate chemistry for a possible enhancement of the electrochemical properties of a lithium ion system via exploration of the novel category lithium intercalating LiNiSiO4 cathode has been made through the present study. A novel citric acid assisted modified sol-gel method (CAM sol-gel) has been adopted to synthesize the title compound with a formation temperature positioned well below 500 °C, as derived from thermal studies. A powder x-ray diffraction (PXRD) pattern evidenced the absence of undesirable peaks and confirmed the formation of a hexagonal lattice structure with enhanced crystallinity and phase purity, and the presence of uniformly distributed particles of ~200 nm size with well defined grain boundaries is obvious from the scanning electron microscopy (SEM) image of LiNiSiO4 material. Further, magic angle spinning (MAS) 7Li nuclear magnetic resonance (NMR) results from LiNiSiO4 confirmed the presence of a layered type of crystal arrangement. A cyclic voltammetry (CV) study performed on a LiNiSiO4 cathode revealed an excellent reversibility without any change in the peak position upon extended cycling, thus substantiating the structural stability upon progressive cycling.

  15. The synergistic effect of inert oxide and metal fluoride dual coatings on advanced cathode materials for lithium ion battery applications.

    PubMed

    Park, Kwangjin; Lee, Byoung-Sun; Park, Jun-Ho; Hong, Suk-Gi

    2016-06-21

    The effect of Al2O3/LiF dual coatings on the electrochemical performance of over-lithiated layered oxide (OLO) has been investigated. A uniform coating of Al2O3 and LiF is obtained on the surface of the layered pristine material. The OLO with a dual Al2O3/LiF coating with a ratio of 1 : 1.5 exhibits excellent electrochemical performance. An initial discharge capacity of 265.66 mA h g(-1) is obtained at a C-rate of 0.1C. This capacity is approximately 15 mA h g(-1) higher than that of pristine OLO. The capacity retention (92.8% at the 50th cycle) is also comparable to that of pristine OLO (91.4% at the 50th cycle). Coating the cathode with a dual layer comprising Al2O3 and LiF leads to improved charging and discharging kinetics, and prevents direct contact between the cathode and the electrolyte.

  16. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    PubMed

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-02

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.

  17. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation.

    PubMed

    Wang, Wei; Jiang, Bo; Xiong, Weiyi; Sun, He; Lin, Zheshuai; Hu, Liwen; Tu, Jiguo; Hou, Jungang; Zhu, Hongmin; Jiao, Shuqiang

    2013-11-29

    Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg(-1), the discharge capacity remains 116 mAhg(-1) after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity.

  18. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation

    PubMed Central

    Wang, Wei; Jiang, Bo; Xiong, Weiyi; Sun, He; Lin, Zheshuai; Hu, Liwen; Tu, Jiguo; Hou, Jungang; Zhu, Hongmin; Jiao, Shuqiang

    2013-01-01

    Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg−1, the discharge capacity remains 116 mAhg−1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity. PMID:24287676

  19. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery.

    PubMed

    Nishimura, Shin-ichi; Nakamura, Megumi; Natsui, Ryuichi; Yamada, Atsuo

    2010-10-06

    A new pyrophosphate compound Li(2)FeP(2)O(7) was synthesized by a conventional solid-state reaction, and its crystal structure was determined. Its reversible electrode operation at ca. 3.5 V vs Li was identified with the capacity of a one-electron theoretical value of 110 mAh g(-1) even for ca. 1 μm particles without any special efforts such as nanosizing or carbon coating. Li(2)FeP(2)O(7) and its derivatives should provide a new platform for related lithium battery electrode research and could be potential competitors to commercial olivine LiFePO(4), which has been recognized as the most promising positive cathode for a lithium-ion battery system for large-scale applications, such as plug-in hybrid electric vehicles.

  20. Cathodes - Technological review

    NASA Astrophysics Data System (ADS)

    Cherkouk, Charaf; Nestler, Tina

    2014-06-01

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  1. Electrochemical properties of ZrO 2-coated LiNi 0.8Co 0.2O 2 cathode materials

    NASA Astrophysics Data System (ADS)

    Lee, Sang Myoung; Oh, Si Hyoung; Ahn, Jae Pyoung; Cho, Won Il; Jang, Ho

    The effect of a ZrO 2 coating on the structure and electrochemical properties of the cathode material LiNi 0.8Co 0.2O 2 was investigated using EPMA, TEM, XRD, and electrochemical impedance spectroscopy (EIS). In particular, we focused on the distribution of the ZrO 2 on the particle surface to study the relationship between electrochemical properties of the coated cathode and the distribution of the coating materials in the particle. Based on the results from composition analysis and electrochemical tests, it was found that the coating layer consisted of nano-sized ZrO 2 particles attached nonuniformly to the particle surface and the ZrO 2 layer significantly improved the electrochemical properties of the cathode by suppressing the impedance growth at the interface between the electrodes and the electrolyte.

  2. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Zhang, Jiguang

    2014-11-25

    Li- and Mn-rich (LMR) material is a very promising cathode for lithium ion batteries because of their high theoretical energy density (~900 Wh kg-1) and low cost. However, their poor long-term cycling stability, voltage fade, and low rate capability are significant barriers hindered their practical applications. Surface coating, e.g. AlF3 coating, can significantly improve the capacity retention and enhance the rate capability. However, the fundamental mechanism of this improvement and the microstructural evolution related to the surface coating is still not well understood. Here, we report systematic studies of the microstructural changes of uncoated and AlF3-coated materials before and after cycling using aberration-corrected scanning/transmission electron microscopy and electron energy loss spectroscopy. The results reveal that surface coating can reduce the oxidation of electrolyte at high voltage, thus suppressing the accumulation of SEI layer on electrode particle surface. Surface coating also enhances structural stability of the surface region (especially the electrochemically transformed spinel-like phase), and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, therefore limiting the degradation of the material. Moreover, surface coating can alleviate the undesirable voltage fade by minimize layered-spinel phase transformation in the bulk region of the materials. These fundamental findings may also be widely applied to explain the functioning mechanism of other surface coatings used in a broad range of electrode materials.

  3. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Lv, Dongping; Wei, Yi; Zheng, Jiaxin; Wang, Zhiguo; Kuppan, Saravanan; Yu, Jianguo; Luo, Langli; Edwards, Danny J.; Olszta, Matthew J.; Amine, Khalil; Liu, Jun; Xiao, Jie; Pan, Feng; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  4. Preliminary studies of biominerals-coated spinel LiMn2 O4 as a cathode material on electrochemical performances for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Vediappan, Kumaran; Lee, Chang Woo

    2010-05-01

    Lithium manganese oxide (LiMn2O4) is an inexpensive and pollution-free cathode material for Li-ion rechargeable batteries. In this study, spinel LiMn2O4 cathode material was coated with biomineral powders by the mechano-chemical method. In the course of the material synthesis, citric acid and acryl amide were added to serve as a complexing agent and a gelling agent, respectively, followed by a calcination process at 700 °C for 6 h in a high-purity argon atmosphere. The spinel LiMn2O4 and biominerals-coated spinel LiMn2O4 cathode materials were, from diverse viewpoints, characterized by x-ray diffraction, field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and the electrochemical cycling method to understand the mechanism of improvements in electrochemical performances. We suggest that the biominerals-coated spinel LiMn2O4 is a good candidate as a low cost and environmentally friendly cathode material showing the enlarged capacity characteristic of Li-ion rechargeable batteries.

  5. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries.

    PubMed

    Yu, Hong; Rui, Xianhong; Tan, Huiteng; Chen, Jing; Huang, Xin; Xu, Chen; Liu, Weiling; Yu, Denis Y W; Hng, Huey Hoon; Hoster, Harry E; Yan, Qingyu

    2013-06-07

    Hierarchical Cu doped vanadium pentoxide (V2O5) flowers were prepared via a simple hydrothermal approach followed by an annealing process. The flower precursors are self-assembled with 1D nanobelts surrounding a central core. The morphological evolution is investigated and a plausible mechanism is proposed. As the cathode material for lithium ion batteries, the Cu doped V2O5 samples exhibit improved electrochemical performance compared to the un-doped ones. Among them Cu0.02V1.98O5 delivered higher reversible specific capacities, better cycling stabilities and excellent rate capabilities, e.g. 97 mA h g(-1) at 20.0 C.

  6. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries

    PubMed Central

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g-1 at room temperature and 138 mAh g-1 and 50°C, along with a superior cyclability. PMID:24855459

  7. Study of the Durability of Doped Lanthanum Manganite and Cobaltite Cathode Materials under ''Real World'' Air Exposure Atmospheres

    SciTech Connect

    Singh, Prabhakar; Mahapatra, Manoj; Ramprasad, Rampi; Minh, Nguyen; Misture, Scott

    2014-11-30

    The overall objective of the program is to develop and validate mechanisms responsible for the overall structural and chemical degradation of lanthanum manganite as well as lanthanum ferrite cobaltite based cathode when exposed to “real world” air atmosphere exposure conditions during SOFC systems operation. Of particular interest are the evaluation and analysis of degradation phenomena related to and responsible for (a) products formation and interactions with air contaminants, (b) dopant segregation and oxide exolution at free surfaces, (c) cation interdiffusion and reaction products formation at the buried interfaces, (d) interface morphology changes, lattice transformation and the development of interfacial porosity and (e) micro-cracking and delamination from the stack repeat units. Reaction processes have been studied using electrochemical and high temperature materials compatibility tests followed by structural and chemical characterization. Degradation hypothesis has been proposed and validated through further experimentation and computational simulation.

  8. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability.

  9. Template-Engaged Synthesis of 1D Hierarchical Chainlike LiCoO2 Cathode Materials with Enhanced High-Voltage Lithium Storage Capabilities.

    PubMed

    Wu, Naiteng; Zhang, Yun; Wei, Yunhong; Liu, Heng; Wu, Hao

    2016-09-28

    A novel 1D hierarchical chainlike LiCoO2 organized by flake-shaped primary particles is synthesized via a facile template-engaged strategy by using CoC2O4·2H2O as a self-sacrificial template obtained from a simple coprecipitation method. The resultant LiCoO2 has a well-built hierarchical structure, consisting of secondary micrometer-sized chains and sub-micrometer-sized primary flakes, while these primary LiCoO2 flakes have specifically exposed fast-Li(+)-diffused active {010} facets. Owing to this unique hierarchical structure, the chainlike LiCoO2 serves as a stable cathode material for lithium-ion batteries (LIBs) operated at a high cutoff voltage up to 4.5 V, enabling highly reversible capacity, remarkable rate performance, and long-term cycle life. Specifically, the chainlike LiCoO2 can deliver a reversible discharge capacity as high as 168, 156, 150, and 120 mAh g(-1) under the current density of 0.1, 0.5, 1, and 5 C, respectively, while about 85% retention of the initial capacity can be retained after 200 cycles under 1 C at room temperature. Moreover, the chainlike LiCoO2 also shows an excellent cycling stability at a wide operating temperature range, showing the capacity retention of ∼73% after 200 cycles at 55 °C and of ∼68% after 50 cycles at -10 °C, respectively. The work described here suggests the great potential of the hierarchical chainlike LiCoO2 as high-voltage cathode materials aimed toward developing advanced LIBs with high energy density and power density.

  10. Transparent organic bistable memory device with pure organic active material and Al/indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Yook, Kyoung Soo; Lee, Jun Yeob; Kim, Sung Hyun; Jang, Jyongsik

    2008-06-01

    Transparent organic bistable memory devices (OBDs) were developed by employing indium tin oxide (ITO) as an anode and a cathode for OBD. A cathode structure of aluminum (Al)/ITO was used and bistability could be realized with pure polyphenylenevilylene based polymer active material without any metal nanoparticle. Transmittance of over 50% could be obtained in Al/ITO based OBD at an Al thickness of 10nm, and an average on/off ratio around 100 was observed.

  11. Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review

    PubMed Central

    2016-01-01

    Background The cathodic polarization seems to be an electrochemical method capable of modifying and coat biomolecules on titanium surfaces, improving the surface activity and promoting better biological responses. Objective The aim of the systematic review is to assess the scientific literature to evaluate the cellular response produced by treatment of titanium surfaces by applying the cathodic polarization technique. Data, Sources, and Selection The literature search was performed in several databases including PubMed, Web of Science, Scopus, Science Direct, Scielo and EBSCO Host, until June 2016, with no limits used. Eligibility criteria were used and quality assessment was performed following slightly modified ARRIVE and SYRCLE guidelines for cellular studies and animal research. Results Thirteen studies accomplished the inclusion criteria and were considered in the review. The quality of reporting studies in animal models was low and for the in vitro studies it was high. The in vitro and in vivo results reported that the use of cathodic polarization promoted hydride surfaces, effective deposition, and adhesion of the coated biomolecules. In the experimental groups that used the electrochemical method, cellular viability, proliferation, adhesion, differentiation, or bone growth were better or comparable with the control groups. Conclusions The use of the cathodic polarization method to modify titanium surfaces seems to be an interesting method that could produce active layers and consequently enhance cellular response, in vitro and in vivo animal model studies. PMID:27441840

  12. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy.

    PubMed

    Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A

    2014-09-10

    In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.

  13. Electrolytic Reduction of Spent Nuclear Oxide Fuel -- Effects of Fuel Form and Cathode Containment Materials on Bench-Scale Operations

    SciTech Connect

    S. D. Herrmann

    2007-09-01

    A collaborative effort between the Idaho National Laboratory (INL) and Korea Atomic Energy Research Institute (KAERI) is underway per an International Nuclear Energy Research Initiative to advance the development of a pyrochemical process for the treatment of spent nuclear oxide fuel. To assess the effects of specific process parameters that differ between oxide reduction operations at INL and KAERI, a series of 4 electrolytic reduction runs will be performed with a single salt loading of LiCl-Li2O at 650 °C using a test apparatus located inside of a hot cell at INL. The spent oxide fuel for the tests will be irradiated UO2 that has been subjected to a voloxidation process to form U3O8. The primary variables in the 4 electrolytic reduction runs will be fuel basket containment material and Li2O concentration in the LiCl salt. All 4 runs will be performed with comparable fuel loadings (approximately 50 g) and fuel compositions and will utilize a platinum anode and a Ni/NiO reference electrode. The first 2 runs will elucidate the effect of fuel form on the electrolytic reduction process by comparison of the above test results with U3O8 versus results from previous tests with UO2. The first 3 runs will investigate the impact that the cathode containment material has on the electrolytic reduction of spent oxide fuel. The 3rd and 4th runs will investigate the effect of Li2O concentration on the reduction process with a porous MgO cathode containment.

  14. First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Feng-Ya, Rao; Fang-Hua, Ning; Li-Wei, Jiang; Xiang-Ming, Zeng; Mu-Sheng, Wu; Bo, Xu; Chu-Ying, Ouyang

    2016-02-01

    From first principle calculations, we demonstrate that LiXS2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS2 lattice with relatively small volume change and the XS4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS2 (LiInS2) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS2 are insulating with band gaps of 2.88 eV and 1.99 eV for X = Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS2 compounds can be as good as those in the currently widely used electrode materials. Project supported by the National High Technology and Development Key Program, China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010, 20142BAB212002, and 20132BAB212005), and the Foundation of Jiangxi Provincial Education Committee, China (Grant Nos. GJJ14254 and KJLD14024).

  15. Highly durable and active non-precious air cathode catalyst for zinc air battery

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Choi, Ja-Yeon; Wang, Haijiang; Li, Hui; Chen, Zhongwei

    The electrochemical stability of non-precious FeCo-EDA and commercial Pt/C cathode catalysts for zinc air battery have been compared using accelerated degradation test (ADT) in alkaline condition. Outstanding oxygen reduction reaction (ORR) stability of the FeCo-EDA catalyst was observed compared with the commercial Pt/C catalyst. The FeCo-EDA catalyst retained 80% of the initial mass activity for ORR whereas the commercial Pt/C catalyst retained only 32% of the initial mass activity after ADT. Additionally, the FeCo-EDA catalyst exhibited a nearly three times higher mass activity compared to that of the commercial Pt/C catalyst after ADT. Furthermore, single cell test of the FeCo-EDA and Pt/C catalysts was performed where both catalysts exhibited pseudolinear behaviour in the 12-500 mA cm -2 range. In addition, 67% higher peak power density was observed from the FeCo-EDA catalyst compared with commercial Pt/C. Based on the half cell and single cell tests the non-precious FeCo-EDA catalyst is a very promising ORR electrocatalyst for zinc air battery.

  16. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  17. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

    PubMed Central

    2015-01-01

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827

  18. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization.

    PubMed

    Nenning, Andreas; Opitz, Alexander K; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Klötzer, Bernhard; Fleig, Jürgen

    2016-01-28

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as Fe(III) in oxidizing atmosphere and as mixed Fe(II/III) in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe(0) phase.

  19. SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium-sulfur batteries.

    PubMed

    Campbell, Brennan; Bell, Jeffrey; Bay, Hamed Hosseini; Favors, Zachary; Ionescu, Robert; Ozkan, Cengiz S; Ozkan, Mihrimah

    2015-04-28

    For the first time, SiO2-coated sulfur particles (SCSPs) were fabricated via a facile two-step wet chemical process for application as a novel lithium-sulfur cathode material. With the addition of mildly reduced graphene oxide (mrGO), SCSPs demonstrate even greater cycling stability, maintaining over 700 mA h g(-1) after the 50(th) cycle.

  20. SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Bell, Jeffrey; Hosseini Bay, Hamed; Favors, Zachary; Ionescu, Robert; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-04-01

    For the first time, SiO2-coated sulfur particles (SCSPs) were fabricated via a facile two-step wet chemical process for application as a novel lithium-sulfur cathode material. With the addition of mildly reduced graphene oxide (mrGO), SCSPs demonstrate even greater cycling stability, maintaining over 700 mA h g-1 after the 50th cycle.

  1. Evaluation of wear rates and mechanisms of titanium diboride-graphite composite materials proposed for use as cathodes in Hall-Heroult cells

    SciTech Connect

    Pool, K.H.; Brimhall, J.L.; Raney, P.J.; Hart, P.E.

    1987-01-01

    Purpose of this study was to measure the initial wear rates of TiB/sub 2/ carbon-containing cathode materials (TiB/sub 2/-G) under electrolytic conditions. Parameters evaluated included bath ratio, current density, and aluminum pad thickness. In order to measure initial wear rates, the tests were limited to 8 h.

  2. Preparation of Nanocomposite GDC/LSCF Cathode Material for IT-SOFC by Induction Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Almeida, Veronica Alexandra B.; Gitzhofer, François

    2011-01-01

    Homogeneous mixtures of Ce0.8Gd0.2O1.9 (GDC) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) nanopowders were successfully synthesized using induction plasma by axial injection of a solution. The resulting nanocomposite powders consisted of two kinds of nanopowders with different mass ratio of GDC/LSCF, such as 3/7 and 6/4. The morphological features, crystallinity, and the phases of the synthesized powders were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), local energy-dispersive x-ray spectroscopy (EDS) analysis, and x-ray diffraction (XRD). The nanopowders are almost globular in shape with a diameter smaller than 100 nm and their BET specific areas are around 20 m2 g-1. The GDC and LSCF phases are well distributed in the nanopowders. In addition, suspensions, made with the as-synthesized composite nanopowders and ethanol, were used to deposit cathode coatings using suspension plasma spray (SPS). Micro-nanostructures of the coatings are discussed. The coatings are homogeneous and porous (51% porosity) with cauliflower structures.

  3. Multi-Functional Surface Engineering for Li-Excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties.

    PubMed

    Bian, Xiaofei; Fu, Qiang; Pang, Qiang; Gao, Yu; Wei, Yingjin; Zou, Bo; Du, Fei; Chen, Gang

    2016-02-10

    The Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2 cathode material is modified by a Li4M5O12-like heterostructure and a BiOF surface layer. The interfacial heterostructure triggers the layered-to-Li4M5O12 transformation of the material which is different from the layered-to-LiMn2O4 transformation of the pristine Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2. This Li4M5O12-like transformation helps the material to keep high working voltage, long cycle life and excellent rate capability. Mass spectrometry, in situ X-ray diffraction and transmission electron microscope show that the Li4M5O12-like phase prohibits oxygen release from the material bulk at elevated temperatures. In addition, the BiOF coating layer protects the material from harmful side reactions with the electrolyte. These advantages significantly improve the electrochemical performance of Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2. The material shows a discharge capacity of 292 mAh g(-1) at 0.2 C with capacity retention of 92% after 100 cycles. Moreover, a high discharge capacity of 78 mAh g(-1) could be obtained at 25 C. The exothermic temperature of the fully charged electrode is elevated from 203 to 261 °C with 50% reduction of the total thermal release, highlighting excellent thermal safety of the material.

  4. Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries.

    PubMed

    Chen, Ruiyong; Witte, Ralf; Heinzmann, Ralf; Ren, Shuhua; Mangold, Stefan; Hahn, Horst; Hempelmann, Rolf; Ehrenberg, Helmut; Indris, Sylvio

    2016-03-21

    Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V.

  5. Synthesis, physical and electrochemical characterization of Gd (III) doped LiMn2O4 cathode material for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Singhal, Rahul; Ram, Pura; Sharma, Rakesh Kumar

    2015-03-01

    The spinel structured LiMn2-xGdxO4 (x =0.01-0.05) have been synthesized via sol gel method. The physical and electrochemical characterization were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive x-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, Raman spectroscopy, cyclic voltammetry and charge-discharge studies. The reversibility of synthesized cathode was supported through cyclic voltammetry in 3.0 - 4.5 voltage range. The initial charge discharge capacity of cathode materials was found in range 130-140 mAhg-1. The fabricated coin cell was tested up to 50 charge -discharge cycles with 0.5 C rate. The small amount of rare earth metal, Gd, doping showed improvement in capacity fading compared to LiMn2O4 cathode, offer its applicability for Li-ion rechargeable battery

  6. Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications

    NASA Astrophysics Data System (ADS)

    Hu, Enyuan

    Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as

  7. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material

    NASA Astrophysics Data System (ADS)

    Chae, Munseok S.; Heo, Jongwook W.; Kwak, Hunho H.; Lee, Hochun; Hong, Seung-Tae

    2017-01-01

    This study demonstrates an organic electrolyte-based rechargeable zinc-ion battery (ZIB) using Prussian blue (PB) analogue potassium nickel hexacyanoferrate K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-086) as the cathode material. KNF-086 is prepared via electrochemical extraction of potassium ions from K1.51Ni[Fe(CN)6]0.954(H2O)0.766 (KNF-151). The cell is composed of a KNF-086 cathode, a zinc metal anode, and a 0.5 M Zn(ClO4)2 acetonitrile electrolyte. This cell shows a reversible discharge capacity of 55.6 mAh g-1 at 0.2 C rate with the discharge voltage at 1.19 V (vs. Zn2+/Zn). As evidenced by Fourier electron density analysis with powder XRD data, the zinc-inserted phase is confirmed as Zn0.32K0.86Ni[Fe(CN)6]0.954(H2O)0.766 (ZKNF-086), and the position of the zinc ion in ZKNF-086 is revealed as the center of the large interstitial cavities of the cubic PB. Compared to KNF-086, ZKNF-086 exhibits a decreased unit cell parameter (0.9%) and volume (2.8%) while the interatomic distance of d(Fe-C) increased (from 1.84 to 1.98 Å), and the oxidation state of iron decreases from 3 to 2.23. The organic electrolyte system provides higher zinc cycling efficiency (>99.9%) than the aqueous system (ca. 80%). This result demonstrates an organic electrolyte-based ZIB, and offers a crucial basis for understanding the electrochemical intercalation chemistry of zinc ions in organic electrolytes.

  8. Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultra-nanocrystalline hybrid diamond materials as cathodes.

    PubMed

    Chang, Tinghsun; Lou, Shiucheng; Chen, Huangchin; Chen, Chulung; Lee, Chiyoung; Tai, Nyanhwa; Lin, Inan

    2013-08-21

    The properties of capacity-type microplasma devices were significantly enhanced due to the utilisation of hybrid diamond films as cathodes. The performance of the microplasma devices was closely correlated with the electron field emission (EFE) properties of the diamond cathode materials. The nanoemitters, which were prepared by growing duplex-structured diamond films [microcrystalline diamond (MCD)/ultra-nanocrystalline diamond (UNCD)] on Si-pyramid templates via a two-step microwave plasma enhanced chemical vapour deposition (MPE-CVD) process, exhibited improved EFE properties (E0 = 5.99 V μm(-1), J(e) = 1.10 mA cm(-2) at 8.50 V μm(-1) applied field), resulting in superior microplasma device performance (with a lower threshold field of 200 V mm(-1) and a higher plasma current density of 7.80 mA cm(-2)) in comparison with UNCD film devices prepared using a single-step MPE-CVD process. The superior EFE properties of the duplex-structured MCD-UNCD films relative to those of the UNCD films can be attributed to the unique granular structure of the diamond films. High-resolution transmission electron microscopy reveals that the MCD-UNCD films consisted of abundant graphitic phases located at the periphery of large diamond aggregates and at the boundaries between the ultra-small diamond grains. The presence of the graphite phase is presumed to be the prime factor that renders these films more conductive and causes these films to exhibit higher EFE properties, thus resulting in the improved plasma illumination properties of the microplasma devices.

  9. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  10. Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries

    PubMed Central

    Zhang, Xinyi; Yang, Le; Hao, Feng; Chen, Haosen; Yang, Meng; Fang, Daining

    2015-01-01

    Lithium-excess and nano-sized Li2+xMn1−x/2TiO4 (x = 0, 0.2, 0.4) cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD) experiments indicate that the obtained main phases of Li2.0MnTiO4 and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM) images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20–30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g−1 increases from 112.2 mAh g−1 of Li2.0MnTiO4 to 187.5 mAh g−1 of Li2.4Mn0.8TiO4. In addition, the ex situ XRD experiments indicate that the monoclinic Li2MnTiO4 tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li2MnTiO4 phase shows better structural reversibility and stability.

  11. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale

    DOE PAGES

    Wu, Yan; Ma, Cheng; Yang, Jihui; ...

    2015-01-01

    Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. However, their application is limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 tomore » 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. Thus, this discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.« less

  12. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale

    SciTech Connect

    Wu, Yan; Ma, Cheng; Yang, Jihui; Li, Zicheng; Allard, Jr., Lawrence Frederick; Liang, Chengdu; Chi, Miaofang

    2015-01-01

    Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. However, their application is limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 to 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. Thus, this discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.

  13. Preparation and electrical properties of Ca-doped La(2)NiO(4+δ) cathode materials for IT-SOFC.

    PubMed

    Shen, Yongna; Zhao, Hailei; Liu, Xiaotong; Xu, Nansheng

    2010-12-07

    Ca-doped La(2)NiO(4+δ) is synthesized via the nitrate-citrate route. The effects of Ca substitution for La on the sinterability, lattice structure and electrical properties of La(2)NiO(4+δ) are investigated. Ca-doping is unfavorable for the densification process of La(2-x)Ca(x)NiO(4+δ) materials. The introduction of Ca leads to the elongation of the La-O(2) bond length, which provides more space for the migration of oxygen ion in La(2)O(2) rock salt layers. The substitution of Ca increases remarkably the electronic conductivity of La(2-x)Ca(x)NiO(4+δ). With increasing Ca-doping level, both the excess oxygen concentration and the activation energy of oxygen ion migration decrease, resulting in an optimization where a highest ionic conductivity is presented. Ca-doping is charge compensated by the oxidation of Ni(2+) to Ni(3+) and the desorption of excess oxygen. The substitution of Ca enhances the structural stability of La(2)NiO(4+δ) material at high temperatures and renders the material a good thermal cycleability. La(1.7)Ca(0.3)NiO(4+δ) exhibits an excellent chemical compatibility with CGO electrolyte. La(2-x)Ca(x)NiO(4+δ) is a promising cathode alternative for solid oxide fuel cells.

  14. S-band relativistic magnetron operation with an active plasma cathode

    SciTech Connect

    Hadas, Y.; Sayapin, A.; Kweller, T.; Krasik, Ya. E.

    2009-04-15

    Results of experimental research on a relativistic S-band magnetron with a ferroelectric plasma source as a cathode are presented. The cathode plasma was generated using a driving pulse (approx3 kV, 200 ns) applied to the ferroelectric cathode electrodes via inductive decoupling prior to the beginning of an accelerating pulse (200 kV, 150 ns) delivered by a linear induction accelerator. The magnetron and generated microwave radiation parameters obtained for the ferroelectric plasma cathode and the explosive emission plasma were compared. It was shown that the application of the ferroelectric plasma cathode allows one to avoid a time delay in the appearance of the electron emission to achieve a better matching between the magnetron and linear induction accelerator impedances and to increase significantly (approx30%) the duration of the microwave pulse with an approx10% increase in the microwave power. The latter results in the microwave radiation generation being 30% more efficient than when the explosive emission cathode is used, where efficiency does not exceed 20%.

  15. Na0.282V2O5: A high-performance cathode material for rechargeable lithium batteries and sodium batteries

    NASA Astrophysics Data System (ADS)

    Cai, Yangsheng; Zhou, Jiang; Fang, Guozhao; Cai, Gemei; Pan, Anqiang; Liang, Shuquan

    2016-10-01

    Na0.282V2O5 nanorods have been successfully prepared using a facile hydrothermal reaction followed by a calcination treatment, which is then used as a cathode for lithium batteries and sodium batteries for the first time. The crystal structure is refined to be a monoclinic lattice, which contains 3D tunnels along the b-axis. The Na ions are located inside the tunnels and form "pillar effect" to prevent the collapse of the crystal structure. As cathode material for lithium batteries, the Na0.282V2O5 nanorods deliver a high discharge specific capacity of 264, 186, 191 and 149 mA h g-1 at the current density of 50, 500, 1000 and 1500 mA g-1, respectively. The Na0.282V2O5 nanorods demonstrate the excellent cycling performance up to 400 cycles at 1 and 1.5 A g-1. Importantly, as cathode material for sodium batteries, Na0.282V2O5 exhibits superior long-term cyclic stability up to 1000 cycles at 0.3 A g-1. The results of ex-situ XRD, EIS and first-principle calculation indicate that the Na0.282V2O5 possesses good electrical conductivity and structural stability. Our work demonstrates that the Na0.282V2O5 material could be considered as a potential cathode for lithium-ion batteries, and even sodium ion batteries.

  16. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  17. Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping

    NASA Astrophysics Data System (ADS)

    Kiziltas-Yavuz, Nilüfer; Bhaskar, Aiswarya; Dixon, Ditty; Yavuz, Murat; Nikolowski, Kristian; Lu, Li; Eichel, Rüdiger-A.; Ehrenberg, Helmut

    2014-12-01

    The citric acid-assisted sol-gel method was used to produce the high-voltage cathodes LiNi0.5Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 at 800 °C and 1000 °C final calcination temperatures. High resolution powder diffraction using synchrotron radiation, inductively coupled plasma - optical emission spectroscopy and scanning electron microscopy analyses were carried out to characterize the structure, chemical composition and morphology. X-ray absorption spectroscopy studies were conducted to confirm Ru doping inside the spinel as well as to compare the oxidation states of transition metals. The formation of an impurity LixNi1-xO in LiNi0.5Mn1.5O4 powders annealed at high temperatures (T ≥ 800 °C) can be suppressed by partial substitution of Ni2+ by Ru4+ ion. The LiNi0.4Ru0.05Mn1.5O4 powder synthesized at 1000 °C shows the highest performance regarding the rate capability and cycling stability. It has an initial capacity of ∼139 mAh g-1 and capacity retention of 84% after 300 cycles at C/2 charging-discharging rate between 3.5 and 5.0 V. The achievable discharge capacity at 20 C for a charging rate of C/2 is ∼136 mAh g-1 (∼98% of the capacity delivered at C/2). Since the electrode preparation plays a crucial role on parameters like the rate capability, the influence of the mass loading of active materials in the cathode mixture is discussed.

  18. Electrochemical behavior of polyamides with cyclic disulfide structure and their application to positive active material for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Oyari, Yoshiaki; Onimura, Kenjiro; Oishi, Tsutomu

    Polyamides (DTA-I, DTA-II, and DTA-III) containing cyclic disulfide structure were prepared by condensation between 1,2-dithiane-3,6-dicarboxylic acid (DTA) and alkyl diamine, NH 2-(CH 2) n-NH 2 (DTA-I; n=4, DTA-II; n=6, DTA-III; n=8) and their application to positive active material for lithium secondary batteries was investigated. Cyclic voltammetry (CV) measurements under slow sweep rate (0.5 mV s -1) with a carbon paste electrode containing the polyamide (DTA-I, DTA-II, or DTA-III) were performed. The results indicated that the polyamides were electroactive in the organic electrolyte solution (propylene carbonate (PC)-1,2-dimethoxyethane (DME), 1:1 by volume containing lithium salt, such as LiClO 4). The responses based on the redox of the disulfide bonds in the polyamide were observed. Test cells, Li/PC-DME (1:1. by volume) with 1 mol dm -3 LiClO 4/the polyamide cathode, were constructed and their performance was tested under constant current charge/discharge condition. The average capacity of the test cells with the DTA-III cathode was 64.3 Ah kg -1 of cathode (135 Wh kg -1 of cathode, capacity (Ah kg -1) of the cathode×average cell voltage (2.10 V)). Performance of the cell with linear polyamide containing disulfide bond (-CO-(CH 2) 2-S-S-(CH 2) 2-CONH-(CH 2) 8-NH-, GTA-III) was also investigated and the average capacity was 56.8 Ah kg -1 of cathode (100 Wh kg -1 of cathode, capacity (Ah kg -1) of the cathode×average cell voltage (1.76 V)). Cycle efficiency of the test cell with the DTA-III cathode was higher than that with the GTA-III cathode.

  19. Layered-Layered-Spinel Cathode Materials Prepared by a High-Energy Ball-Milling Process for Lithium-ion Batteries.

    PubMed

    Kim, Soo; Noh, Jae-Kyo; Aykol, Muratahan; Lu, Zhi; Kim, Haesik; Choi, Wonchang; Kim, Chunjoong; Chung, Kyung Yoon; Wolverton, Chris; Cho, Byung-Won

    2016-01-13

    In this work, we report the electrochemical properties of 0.5Li2MnO3·0.25LiNi0.5Co0.2Mn0.3O2·0.25LiNi0.5Mn1.5O4 and 0.333Li2MnO3·0.333LiNi0.5Co0.2Mn0.3O2·0.333LiNi0.5Mn1.5O4 layered-layered-spinel (L*LS) cathode materials prepared by a high-energy ball-milling process. Our L*LS cathode materials can deliver a large and stable capacity of ∼200 mAh g(-1) at high voltages up to 4.9 V, and do not show the anomalous capacity increase upon cycling observed in previously reported three-component cathode materials synthesized with different routes. Furthermore, we have performed synchrotron-based in situ X-ray diffraction measurements and found that there are no significant structural distortions during charge/discharge runs. Lastly, we carry out (opt-type) van der Waals-corrected density functional theory (DFT) calculations to explain the enhanced cycle characteristics and reduced phase transformations in our ball-milled L*LS cathode materials. Our simple synthesis method brings a new perspective on the use of the high-power L*LS cathodes in practical devices.

  20. Robust Low-Cost Cathode for Commercial Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    2007-01-01

    Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.

  1. MxMn8O16 (M = Ag or K) as promising cathode materials for secondary Mg based batteries: The role of the cation M

    DOE PAGES

    Huang, Jianping; Takeuchi, Esther S.; Altug S. Poyraz; ...

    2016-01-01

    Here, AgxMn8O16 (Ag-OMS-2) and KxMn8O16 (K-OMS-2) were investigated as high voltage cathode materials for Mg based batteries. Both MxMn8O16 materials delivered high initial capacities (>180 mA h g–1), and KxMn8O16 showed high cycle stability with a reversible capacity of >170 mA h g–1 after 20 cycles.

  2. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries

    SciTech Connect

    Dzwiniel, Trevor L.; Pupek, Krzysztof Z.; Krumdick, Gregory K.

    2016-10-04

    Sharp Laboratories of America (SLA) approached Argonne National Laboratory with a bench-scale process to produce material for a sodium-ion battery, referred to as Prussian Blue, and a request to produce 1 kg of material for their ARPA-E program. The target performance criteria was an average capacity of >150 mAh/g.

  3. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    PubMed

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  4. Coaxial-cable structure composite cathode material with high sulfur loading for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zhang, Zhian; Guo, Zaiping; Zhang, Kai; Lai, Yanqing; Li, Jie

    2015-01-01

    Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) coaxial-cable structure composite, which is carbonized from HCNF@polydopamine, is prepared as an improved high conductive carbon matrix for encapsulating sulfur as a composite cathode material for lithium-sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of approximately 80 wt% shows an obvious coaxial-cable structure with an NPC layer coating on the surface of the linear HCNFs along the length and sulfur homogeneously distributes in the coating layer. This material exhibits much better electrochemical performance than the HCNF-S composite, delivers initial discharge capacity of 982 mAh g-1 and maintains a high capacity retention rate of 63% after 200 cycles at a high current density of 837.5 mA g-1. The significantly enhanced electrochemical performance of the HCNF@NPC-S composite is attributed to the unique coaxial-cable structure, in which the linear HCNF core provides electronic conduction pathways and works as mechanical support, and the NPC shell with nitrogen-doped and porous structure can trap sulfur/polysulfides and provide Li+ conductive pathways.

  5. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    PubMed Central

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-01-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575

  6. Electrochemical studies of molybdate-doped LiFePO4 as a cathode material in Li-ion batteries.

    PubMed

    Kim, Ketack; Kam, Daewoong; Kim, Yeonjoo; Kim, Sinwoong; Kim, Minsoo; Kim, Hyun-Soo

    2013-05-01

    The use of molybdate as a new anionic dopant that replaces phosphate in LiFePO4 was studied. When a small amount of molybdate (0.5 mol%) was used as a dopant, the olivine structure was maintained, while the lattice volume increased by 0.4%. The expanded volume facilitates ionic transfer, because of which the capacity of doped LiFePO4 at high current discharge rates is higher than that of pure LiFePO4. The discharge value increased by 25.2% at a charge rate of 5 C when the material was doped with 0.5 mol% molybdate ions. The slight expansion of the lattice volume in the olivine structure facilitates a fast redox reaction by lowering the charge transfer resistance. The current values from cyclic voltammetry indicate that the oxidation (charge) process of the cathode material is more improved than the corresponding reduction (discharge) process. Increasing the level of doping beyond 0.5 mol% had no effect on the results. At some discharge rates, the discharge capacity became worse. Because molybdate is divalent while phosphate is trivalent, a large number of molybdate ions in the lattice can exert considerable stress on the structure.

  7. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.

    PubMed

    Zhou, Sa; Yang, Xiaogang; Lin, Yongjing; Xie, Jin; Wang, Dunwei

    2012-01-24

    The performance of advanced energy conversion and storage devices, including solar cells and batteries, is intimately connected to the electrode designs at the nanoscale. Consider a rechargeable Li ion battery, a prevalent energy storage technology, as an example. Among other factors, the electrode material design at the nanoscale is key to realizing the goal of measuring fast ionic diffusion and high electronic conductivity, the inherent properties that determine power rates, and good stability upon repeated charge and discharge, which is critical to the sustainable high capacities. Here we show that such a goal can be achieved by forming heteronanostructures on a radically new platform we discovered, TiSi(2) nanonets. In addition to the benefits of high surface area, good electrical conductivity, and superb mechanical strength offered by the nanonet, the design also takes advantage of how TiSi(2) reacts with O(2) upon heating. The resulting TiSi(2)/V(2)O(5) nanostructures exhibit a specific capacity of 350 Ah/kg, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles of charge and discharge. These figures indicate that a cathode material significantly better than V(2)O(5) of other morphologies is produced.

  8. Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium–Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Xu, Maowen; Jia, Min; Mao, Cuiping; Liu, Sangui; Bao, Shujuan; Jiang, Jian; Liu, Yang; Lu, Zhisong

    2016-01-01

    A novel approach was developed to prepare porous carbon materials with an extremely high surface area of 2459.6 m2g‑1 by using Aspergillus flavus conidia as precursors. The porous carbon serves as a superior cathode material to anchor sulfur due to its uniform and tortuous morphology, enabling high capacity and good cycle lifetime in lithium sulfur-batteries. Under a current rate of 0.2 C, the carbon-sulfur composites with 56.7 wt% sulfur loading deliver an initial capacity of 1625 mAh g‑1, which is almost equal to the theoretical capacity of sulfur. The good performance may be ascribed to excellent electronic networks constructed by the high-surface-area carbon species. Moreover, the semi-closed architecture of derived carbons can effectively retard the polysulfides dissolution during charge/discharge, resulting in a capacity of 940 mAh g‑1 after 120 charge/discharge cycles.

  9. Development program on a cold cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Holland, C. E.

    1985-01-01

    During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.

  10. Cheaper Hydride-Forming Cathodes

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary

    1990-01-01

    Hydride-forming cathodes for electrochemical experiments made of materials or combinations of materials cheaper and more abundant than pure palladium, according to proposal. Concept prompted by needs of experimenters in now-discredited concept of electrochemical nuclear fusion, cathodes useful in other electrochemical applications involving generation or storage of hydrogen, deuterium, or tritium.

  11. Praseodymium-deficiency Pr0.94BaCo2O6-δ double perovskite: A promising high performance cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Meng, Fuchang; Xia, Tian; Wang, Jingping; Shi, Zhan; Zhao, Hui

    2015-10-01

    Praseodymium-deficiency Pr0.94BaCo2O6-δ (P0.94BCO) double perovskite has been evaluated as a cathode material for intermediate-temperature solid oxide fuel cells. X-ray diffraction pattern shows the orthorhombic structure with double lattice parameters from the primitive perovskite cell in Pmmm space group. P0.94BCO has a good chemical compatibility with Ce0.9Gd0.1O1.95 (CGO) electrolyte even at 1000 °C for 24 h. It is observed that the Pr-deficiency can introduce the extra oxygen vacancies in P0.94BCO, further enhancing its electrocatalytic activity for oxygen reduction reaction. P0.94BCO demonstrates the promising cathode performance as evidenced by low polarization are-specific resistance (ASR), e. g. 0.11 Ω cm2 and low cathodic overpotential e. g. -56 mV at a current density of -78 mA cm-2 at 600 °C in air. These features are comparable to those of the benchmark cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ. The fuel cell CGO-Ni|CGO|P0.94BCO presents the attractive peak power density of 1.05 W cm-2 at 600 °C. Furthermore, the oxygen reduction kinetics of P0.94BCO material is also investigated, and the rate-limiting steps for oxygen reduction reaction are determined.

  12. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.

    PubMed

    Meng, Ying Shirley; Arroyo-de Dompablo, M Elena

    2013-05-21

    To meet the increasing demands of energy storage, particularly for transportation applications such as plug-in hybrid electric vehicles, researchers will need to develop improved lithium-ion battery electrode materials that exhibit high energy density, high power, better safety, and longer cycle life. The acceleration of materials discovery, synthesis, and optimization will benefit from the combination of both experimental and computational methods. First principles (ab Initio) computational methods have been widely used in materials science and can play an important role in accelerating the development and optimization of new energy storage materials. These methods can prescreen previously unknown compounds and can explain complex phenomena observed with these compounds. Intercalation compounds, where Li(+) ions insert into the host structure without causing significant rearrangement of the original structure, have served as the workhorse for lithium ion rechargeable battery electrodes. Intercalation compounds will also facilitate the development of new battery chemistries such as sodium-ion batteries. During the electrochemical discharge reaction process, the intercalating species travel from the negative to the positive electrode, driving the transition metal ion in the positive electrode to a lower oxidation state, which delivers useful current. Many materials properties change as a function of the intercalating species concentrations (at different state of charge). Therefore, researchers will need to understand and control these dynamic changes to optimize the electrochemical performance of the cell. In this Account, we focus on first-principles computational investigations toward understanding, controlling, and improving the intrinsic properties of five well known high energy density Li intercalation electrode materials: layered oxides (LiMO2), spinel oxides (LiM2O4), olivine phosphates (LiMPO4), silicates-Li2MSiO4, and the tavorite-LiM(XO4)F (M = 3d

  13. Silver-coated LiVPO4F composite with improved electrochemical performance as cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Yang, Lin

    2015-12-01

    Nano-structured LiVPO4F/Ag composite cathode material has been successfully synthesized via a sol-gel route. The structural and physical properties, as well as the electrochemical performance of the material are compared with those of the pristine LiVPO4F. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that Ag particles are uniformly dispersed on the surface of LiVPO4F without destroying the crystal structure of the bulk material. An analysis of the electrochemical measurements show that the Ag-modified LiVPO4F material exhibits high discharge capacity, good cycle performance (108.5 mAh g-1 after 50th cycles at 0.1 C, 93% of initial discharge capacity) and excellent rate behavior (81.8 mAh g-1 for initial discharge capacity at 5 C). The electrochemical impedance spectroscopy (EIS) results reveal that the adding of Ag decreases the charge-transfer resistance (Rct) of LiVPO4F cathode. This study demonstrates that Ag-coating is a promising way to improve the electrochemical performance of the pristine LiVPO4F for lithium-ion batteries cathode material.

  14. Synthesis and Electrochemical Evaluation of Li, Mn-Rich Cathode Materials for Advanced Lithium Batteries.

    PubMed

    Yang, Sun-Woo; Kim, Min Young; Oh, Hyun; Lee, Moo Sung; Park, Sun-Il; Kim, Ho-Sung

    2016-02-01

    Li2MnO3-based composite, xLi2MnO3-(1--x)LiMO2 (M = Ni, Co, Mn, etc.), was synthesized via co-precipitation with sintering treatment. The composite material has hexagonal structure including a little of monoclinic with a nano-crystallite size. As a result, the material showed a specific redox behavior in the voltage range of 2.0-4.6 V and approximately 267 mAh/g of discharge capacity was obtained at the room temperature.

  15. Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries.

    PubMed

    Yin, Wei; Shen, Yue; Zou, Feng; Hu, Xianluo; Chi, Bo; Huang, Yunhui

    2015-03-04

    Tremendous efforts have been devoted to exploring various Li-O2 cathode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, most of the high-activity ORR/OER catalysts can also accelerate side-reactions, such as electrolyte degradation on cycling. To address this issue, we change our strategy from pursuing highly active catalysts to developing stable cathodes that are compatible with the electrolyte. In this work, hierarchical mesoporous ZnO/ZnFe2O4/C (ZZFC) nanocages are synthesized from the templates of metal-organic framework (MOF) nanocages. Such ZZFC nanocages have lower ORR/OER catalytic activity as compared with the widely used catalysts for fuel cells, but they do not catalyze the degradation of organic electrolyte during operation. Furthermore, the optimized porosity and conductivity can fit well the needs of the Li-O2 cathode. When employed in a Li-O2 battery, the ZZFC cathode delivers a primary discharge/charge capacity exceeding 11 000 mAh g(-1) at a current density of 300 mA g(-1) and an improved cyclability with capacity of 5000 mAh g(-1) for 15 cycles. The superior electrochemical performance is ascribed to the hierarchical porosity and little degradation of the organic electrolyte.

  16. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes

    NASA Astrophysics Data System (ADS)

    Liu, Jianhong; Chen, Hongyu; Xie, Jiaona; Sun, Zhaoqin; Wu, Ningning; Wu, Borong

    2014-04-01

    The spherical Li-rich materials 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 are synthesized by a standard co-precipitation method followed by solid state sintering. The primary particle size and morphologies of the 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 materials can be readily controlled by altering the heat-treatment temperature. With different primary size, the materials show different rate discharge capabilities. However, due to similar chemical composition, they show similar discharge capacity at high temperature and low current density. Subsequent galvanostatic intermittent titration tests indicate that the larger the particle size, the larger the chemical diffusion coefficient of the Li+. The relationship between the primary particle size and electrochemical kinetics is discussed. Of all the samples in this study, the material with a primary particle size of 200 nm, obtained at 900 °C, exhibits the best integrated electrochemical performance.

  17. Synthesis of LiFePO4/Pani/C composite as a cathode material for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Hidayat, Sahrul; Aryadi, Lutfi

    2016-02-01

    In recent years, LiFePO4 studied intensively as a cathode material for Li-ion batteries because of high theoretical capacity, stability, and environmental friendly. However, its low intrinsic electronic conductivity. One way to improve its conductivity is addition of conductive material. Polyaniline (PANI) is one of the conductive polymer materials that widely studied because its unique physical and chemical properties which can be an insulator and conductor by doping-dedoping processes and has large potential application. The purpose of this research is to improve the conductivity of LiFePO4 with conductive polymer PANI. The method is performed by the addition of LiFePO4 during the polymerization process to form LiFePO4 polyaniline then added to the C-PANI with the addition of mass percent variation of 5%, 10%, 15%, 20% form-LiFePO4 composite PANI-C. In LiFePO4 added during polymerization PANI provide a smooth surface profile after composited with the carbon to LiFePO4-PANI-C compared to LiFePO4-C. LiFePO4-PANI-C composite provided higher conductivity is 18.45×10-4 S/cm compared to LiFePO4-C is 10.48×10-4 S/cm at 20% addition of carbon. This is due to PANI in LiFePO4 is added to the polyaniline polymerization process can act as a conductive adhesive to glue between carbon and LiFePO4.

  18. Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations.

    PubMed

    Longo, R C; Kong, F T; KC, Santosh; Park, M S; Yoon, J; Yeon, D-H; Park, J-H; Doo, S-G; Cho, K

    2014-06-21

    In this work, we present a density-functional theory (DFT) investigation of the phase stability, electrochemical stability and phase transformation mechanisms of the layered and over-lithiated Mn oxides. This study includes the thermodynamic stability of Li and oxygen vacancies, to examine the electrochemical activation mechanisms of these cathode materials. The DFT calculations provide phase diagrams of the Li-Mn-O system in both physical and chemical potential spaces, including the crystals containing vacancies as independent phases. The results show the ranges of electrochemical activity for both layered LiMnO2 and over-lithiated Li2MnO3. By using a thermodynamic model analysis, we found that the required temperature for oxygen evolution and Li vacancy formation is too high to be compatible with any practical synthesis temperature. Using solid-state transition calculations, we have identified the key steps in the phase transition mechanism of the layered LiMnO2 into the spinel phase. The calculated effects of pH on the Li-Mn-O phase stability elucidated the mechanism of Mn(2+) formation from the spinel phase under acidic conditions.

  19. The swelling mechanism of cathodes in Li/(CFx)(sub n) cells

    NASA Technical Reports Server (NTRS)

    Margalit, Nehemiah; Baxam, Carl C.

    1992-01-01

    Active material particles spatial arrangement in combination with the nature of the electrochemical reduction mechanism were found to be the major cause of excessive swelling in cathodes in Li/(CF(x))n cells. A better understanding of the chemical reaction mechanism, a possible new role for the carbon, and a model for cathode growth are discussed.

  20. Temperature-dependent Li-ion diffusion and Activation Energy of Li1.2Co0.13Ni0.13Mn0.54O2 thin film cathode at Nanoscale by using Electrochemical Strain Microscopy.

    PubMed

    Yang, Shan; Yan, Binggong; Wu, Jiaxiong; Lu, Li; Zeng, Kaiyang

    2017-04-07

    This paper presents the in situ mapping of temperature-dependent lithium ions diffusion at nanometer level in thin film Li1.2Co0.13Ni0.13Mn0.54O2 cathode using Electrochemical Strain Microscopy (ESM). Thin film Li1.2Co0.13Ni0.13Mn0.54O2 cathode exhibits higher Li-ions diffusivities with increasing the temperature, which explains the higher capacity ob-served in the Li-ion batteries with Li-rich cathode at elevated temperature. In addition, the activation energy for lithi-um ions diffusion can be extracted in an Arrhenius-type plot at the level of grain structure with the assumption that the ionic movement is diffusion controlled. Compared with the grain interiors, the grain boundaries show relatively lower activation energy hence it is preferred diffusion path for Li-ions. This study has bridged the gap between atomis-tic calculations and traditional macroscopic experiments, showing the direct evidence as well as the mechanisms for ionic diffusion for Li-rich cathode material.

  1. Systematic investigation on Cadmium-incorporation in Li₂FeSiO₄/C cathode material for lithium-ion batteries.

    PubMed

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-05-27

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li(+)-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material.

  2. LiFePO4 - 3D carbon nanofiber composites as cathode materials for Li-ions batteries

    NASA Astrophysics Data System (ADS)

    Dimesso, L.; Spanheimer, C.; Jaegermann, W.; Zhang, Y.; Yarin, A. L.

    2012-03-01

    The characterization of carbon nanofiber 3D nonwovens, prepared by electrospinning process, coated with olivine structured lithium iron phosphate is reported. The LiFePO4 as cathode material for lithium ion batteries was prepared by a Pechini-assisted reversed polyol process. The coating has been successfully performed on carbon nanofiber 3D nonwovens by soaking in aqueous solution containing lithium, iron salts and phosphates at 70 °C for 2-4 h. After drying-out, the composites were annealed at 600 °C for 5 h under nitrogen. The surface investigation of the prepared composites showed a uniform coating of the carbon nonwoven nanofibers as well as the formation of cauliflower-like crystalline structures which are uniformly distributed all over the surface area of the carbon nanofibers. The electrochemical measurements on the composites showed good performances delivering a discharge specific capacity of 156 mAhg- 1 at a discharging rate of C/25 and 152 mAhg- 1 at a discharging rate of C/10 at room temperature.

  3. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.

    PubMed

    Ni, Haifang; Liu, Jinkun; Fan, Li-Zhen

    2013-03-07

    This work introduces a facile strategy for the synthesis of carbon-coated LiFePO(4)-porous carbon (C-LiFePO(4)-PC) composites as a cathode material for lithium ion batteries. The LiFePO(4) particles obtained are about 200 nm in size and homogeneously dispersed in porous carbon matrix. These particles are further coated with the carbon layers pyrolyzed from sucrose. The C-LiFePO(4)-PC composites display a high initial discharge capacity of 152.3 mA h g(-1) at 0.1 C, good cycling stability, as well as excellent rate capability (112 mA h g(-1) at 5 C). The likely contributing factors to the excellent electrochemical performance of the C-LiFePO(4)-PC composites could be related to the combined effects of enhancement of conductivity by the porous carbon matrix and the carbon coating layers. It is believed that further carbon coating is a facile and effective way to improve the electrochemical performance of LiFePO(4)-PC.

  4. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect

    Ding, Y.H.; Ren, H.M.; Huang, Y.Y.; Chang, F.H.; Zhang, P.

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup −1} at 0.1 C and 114 mAh g{sup −1} at 5 C without further incorporation of conductive agents.

  5. Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yanglin; Wang, Yaping; Zhang, Yifang; Liang, Shuquan; Pan, Anqiang

    2016-12-01

    Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvothermal solution. As cathode materials for lithium-ion batteries, the nanosheet-assembled V2O5/graphene composite exhibits better rate capability and long-term cycling stability. The V2O5/graphene composites can deliver discharge capacities of 133, 131, and 122 mAh g-1 at 16 C, 32 C, and 64 C, respectively, in the voltage range of 2.5-4.0 V vs. Li/Li+. Moreover, the electrodes can retain 85% of their original capacity at 1C rate after 500 cycles. The superior electrochemical performances are attributed to the porous structures created by the connected V2O5 nanosheets and the electron conductivity improvement by graphene.

  6. An Effectively Activated Hierarchical Nano-/Microspherical Li1.2Ni0.2Mn0.6O2 Cathode for Long-Life and High-Rate Lithium-Ion Batteries.

    PubMed

    Li, Yu; Bai, Ying; Bi, Xuanxuan; Qian, Ji; Ma, Lu; Tian, Jun; Wu, Chuan; Wu, Feng; Lu, Jun; Amine, Khalil

    2016-04-07

    Rechargeable lithium-ion batteries with high energy and high power density are required in the application of electric vehicles and portable electronics. Herein, we introduce a type of spherical Li-rich cathode material, Li1.2Ni0.2Mn0.6O2, assembled from uniform nanocubes by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal method. The material with a hierarchical nano-/microstructure exhibits stable high-rate performance. Furthermore, the precipitant (i.e., urea) and the structure-directing agent (i.e., PVP) effectively activated the Li2 MnO3 components in the microscale material to achieve a high specific capacity of 298.5 mAh g(-1) in the first cycle. This Li-rich cathode material still delivered 243 mAh g(-1) at 0.1 C after 200 cycles and the capacity retentions at 0.5, 1, 2, and 5 C were 94.4, 78.7, 76.3, and 67.8% after 150 cycles, respectively. The results make this Li-rich nano-/microstructure a promising cathode material for long-life and high-performance lithium-ion batteries.

  7. Synthesis and Electrochemical Properties Characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries

    DTIC Science & Technology

    2009-01-01

    Synthesis and electrochemical properties characterization of SnO2 -coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries Ping Yang...China Key words: Li-ion battery; cathode materials; LiNi1/3Co1/3Mn1/3O2; heterogeneous nucleation; SnO2 -coated; electrochemical performance...Abstract LiNi1/3Co1/3Mn1/3O2 cathode materials have been coated with SnO2 (3% wt) by heterogeneous nucleation process to improve its electrochemical

  8. Ab initio study of vacancy formation in cubic LaMnO3 and SmCoO3 as cathode materials in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H.

    2016-07-01

    Doped LaMnO3 and SmCoO3 are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO3 has proven to be a more efficient cathode material than LaMnO3 at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials' properties at the atomic level. However, while LaMnO3 has been widely studied, ab initio studies on SmCoO3 are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co d-electrons to obtain a proper description of SmCoO3 that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO3, but barely affect LaMnO3. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode.

  9. Heteroatomic SenS8-n Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries.

    PubMed

    Sun, Fugen; Cheng, Hongye; Chen, Jianzhuang; Zheng, Nan; Li, Yongsheng; Shi, Jianlin

    2016-09-27

    A reversible cathode material in an ether-based electrolyte for high-energy lithium batteries was successfully fabricated by homogeneously confining heteroatomic SenS8-n molecules into nitrogen-doped mesoporous carbons (NMCs) via a facile melt-impregnation route. The resultant SenS8-n/NMC composites exhibit highly reversible electrochemical behavior, where selenium sulfides are recovered through the reversible conversion of polysulfoselenide intermediates during discharge-charge cycles. The recovery of selenium sulfide molecules endows the SenS8-n/NMC cathodes with the rational integration of S and Se cathodes. Density functional theory calculations further reveal that heteroatomic selenium sulfide molecules with higher polarizability could bind more strongly with NMCs than homoatomic sulfur molecules, which provides more efficient suppression of the shuttling phenomenon. Therefore, with further assistance of mesopore confinement of the nitrogen-doped carbons, the Se2S6/NMC composite with an optimal Se/S mole ratio of 2/6 presents excellent cycle stability with a high initial Coulombic efficiency of 96.5% and a high reversible capacity of 883 mAh g(-1) after 100 cycles and 780 mAh g(-1) after 200 cycles at 250 mA g(-1). These encouraging results suggest that the heteroatomization of chalcogen (such as S, Se, or Te) molecules in mesostructured carbon hosts is a promising strategy in enhancing the electrochemical performances of chalcogen/carbon-based cathodes for Li batteries.

  10. Understanding the effects of a multi-functionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials

    NASA Astrophysics Data System (ADS)

    Yim, Taeeun; Kang, Kyoung Seok; Mun, Junyoung; Lim, Sang Hoo; Woo, Sang-Gil; Kim, Ki Jae; Park, Min-Sik; Cho, Woosuk; Song, Jun Ho; Han, Young-Kyu; Yu, Ji-Sang; Kim, Young-Jun

    2016-01-01

    Nickel-rich lithium nickel cobalt manganese oxides have received considerable attention as a promising cathode material, however, they have suffered from poor interfacial stability, especially at high temperature. Here, we suggest a bi-functionalized divinyl sulfone that enhances the applicability of a nickel-rich cathode via stabilization of the electrolyte-electrode interface. The divinyl sulfone forms a protective layer on the cathode surface by electrochemical oxidation reactions and this greatly decreases the internal pressure of the cell via stabilization of the Ni-rich cathode-electrolyte interface. The cell controlled with divinyl sulfone shows remarkable cycling performance with 91.9% capacity retention at elevated temperature even after 100 cycles. Additional electrode analyses and first-principles calculations provide critical spectroscopic evidences to demonstrate the combined effects of the sulfone and vinyl functional groups. Once the divinyl sulfone is electrochemically oxidized, the vinyl functional groups readily participate in further stabilizing sulfone-based solid electrolyte interphase intermediates and afford a durable protective layer on the nickel-rich electrode surface.

  11. 81.114- University Reactor Infrastructure and Education Support / Prompt Gamma-ray Activation Analysis of Lithioum Ion Battery Cathodes

    SciTech Connect

    Manthiram, Arumugam; Landsberger, S.

    2006-11-11

    This project focuses on the use of the Prompt Gamma-ray Activation Analysis (PGAA) technique available at the Nuclear Engineering Teaching Laboratory of the University of Texas at Austin to precisely determine the hydrogen (proton) contents in layered oxide cathode samples obtained by chemical lithium extraction in order to obtain a better understanding of the factors limiting the practical capacities and overall performance of lithium ion battery cathodes. The project takes careful precautionary experimental measures to avoid proton contamination both from solvents used in chemical delithiation and from ambient moisture. The results obtained from PGAA are complemented by the data obtained from other techniques such as thermogravimetric analysis, redox titration, atomic absorption spectroscopy, X-ray diffraction, and mass spectroscopic analysis of the evolved gas on heating. The research results broaden our understanding of the structure-property-performance relationships of lithium ion battery cathodes and could aid the design and development of new better performing lithium ion batteries for consumer (portable and electric vehicles), military, and space applications.

  12. Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor.

    PubMed

    Shin, Tae Ho; Myung, Jae-Ha; Verbraeken, Maarten; Kim, Guntae; Irvine, John T S

    2015-01-01

    A-site ordered PrBaMn2O(5+δ) was investigated as a potential cathode for CO2 electrolysis using a La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O3 (LSGM) electrolyte. The A-site ordered layered double perovskite, PrBaMn2O(5+δ), was found to enhance electrocatalytic activity for CO2 reduction on the cathode side since it supports mixed valent transition metal cations such as Mn, which could provide high electrical conductivity and maintain a large oxygen vacancy content, contributing to fast oxygen ion diffusion. It was found that during the oxidation of the reduced PrBaMn2O(5+δ) (O5 phase) to PrBaMn2O(6-δ) (O6 phase), a reversible oxygen switchover in the lattice takes place. In addition, here the successful CO2 electrolysis was measured in LSGM electrolyte with this novel oxide electrode. It was found that this PrBaMn2O(5+δ), layered perovskite cathode exhibits a performance with a current density of 0.85 A cm(-2) at 1.5 V and 850 °C and the electrochemical properties were also evaluated by impedance spectroscopy.

  13. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells.

  14. Enhanced Photoelectrocatalytic Decomplexation of Cu-EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction.

    PubMed

    Zeng, Huabin; Liu, Shanshan; Chai, Buyu; Cao, Di; Wang, Yan; Zhao, Xu

    2016-06-21

    In order to enhance Cu-EDTA decomplexation and copper cathodic recovery via the photoelectrocatalytic (PEC) process, S2O8(2-) was introduced into the PEC system with a TiO2/Ti photoanode. At a current density of 0.2 mA/cm(2) and initial solution pH of 3.0, the decomplexation ratio of Cu complexes was increased from 47.5% in the PEC process to 98.4% with 5 mM S2O8(2-) addition into the PEC process (PEC/S2O8(2-)). Correspondently, recovery percentage of Cu was increased to 98.3% from 47.4% within 60 min. It was observed that nearly no copper recovery occurred within the initial reaction period of 10 min. Combined with the analysis of ESR and electrochemical LSV curves, it was concluded that activation of S2O8(2-) into SO4(·-) radicals by cathodic reduction occurred, which was prior to the reduction of liberated Cu(2+) ions. UV irradiation of S2O8(2-) also led to the production of SO4(·-). The generated SO4(·-) radicals enhanced the oxidation of Cu-EDTA. After the consumption of S2O8(2-), the Cu recovery via cathodic reduction proceeded quickly. Acidification induced by the transformation of SO4(·-) to OH· favored the copper cathodic recovery. The combined PEC/S2O8(2-) process was also efficient for the TOC removal from a real electroplating wastewater with the Cu recovery efficiency higher than 80%.

  15. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2017-04-01

    We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.

  16. Microanalysis of extended-test xenon hollow cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Patterson, Michael J.

    1991-01-01

    Four hollow cathode electron sources were analyzed via boroscopy, scanning electron microscopy, energy dispersive x ray analysis, and x ray diffraction analysis. These techniques were used to develop a preliminary understanding of the chemistry of the devices that arise from contamination due to inadequate feed-system integrity and improper insert activation. Two hollow cathodes were operated in an ion thruster simulator at an emission current of 23.0 A for approximately 500 hrs. The two tests differed in propellant-feed systems, discharge power supplies, and activation procedures. Tungsten deposition and barium tungstate formation on the internal cathode surfaces occurred during the first test, which were believed to result from oxygen contamination of the propellant feed-system. Consequently, the test facility was upgraded to reduce contamination, and the test was repeated. The second hollow cathode was found to have experienced significantly less tungsten deposition. A second pair of cathodes examined were the discharge and the neutralizer hollow cathodes used in a life-test of a 30-cm ring-cusp ion thruster at a 5.5 kW power level. The cathodes' test history was documented and the post-test microanalyses are described. The most significant change resulting from the life-test was substantial tungsten deposition on the internal cathode surfaces, as well as removal of material from the insert surface. In addition, barium tungstate and molybdate were found on insert surfaces. As a result of the cathode examinations, procedures and approaches were proposed for improved discharge ignition and cathode longevity.

  17. Analysis of optimization processses for solid state fabrication of olivine cathode materials

    NASA Astrophysics Data System (ADS)

    Oladimeji, Charles

    Lithium ion battery discovered since the 1980s has become pivotal to our energy needs. With the need for a shift to renewable energy and increased use of portable devices, energy storage has become a very important aspect of modern day life and technology. In the thesis, optimization techniques for solid state calcination of lithium olivine batteries are characterized and analyzed. A brief introduction into lithium ion battery is discussed, the chemistry and physics of the materials is studied in details. Emphasis is placed on the olivine structure, industrially utilized synthesis method and the performance of olivine lithium ion batteries are also discussed in details. Olivine structure LiFePO4 (LFP) was synthesized via solid state processes, using Li2CO3, NH4H 2PO4 and FeC2O4˙H2O and C12H22O11 as precursor materials. The effects of calendaring in terms of charge/discharge capacity, cycle life performance, surface morphology, and ac impedance was analyzed. The resulting LFP electrode was divided in part, Part A was left as is and Part B was calendared. The calendared electrode exhibited lower impedance under electrochemical impedance test. The calendared electrode also exhibited a higher discharge capacity of about 130 mAh/g at 0.1C compared to the as-is electrode with discharge capacity of about 120mAh/g. Olivine structure LiMnPO4 (LMP) was also synthesized via solid state processes, using Li2CO3, NH4H 2PO4, MnCO3 and C12H22O 11 as precursor materials. Comparison of the carbon addition process was done by adding sucrose to the initial precursor mix and carbon black at the later stages of fabrication. The 3 step carbon addition exhibited the highest specific capacity of about 72mAh/g, 1 step carbon addition possessed the least capacity of about 45mAh/g, while the 2 step process had a capacity of about 65mA/g.

  18. Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55°C

    NASA Astrophysics Data System (ADS)

    Mori, Takuya; Orikasa, Yuki; Nakanishi, Koji; Kezheng, Chen; Hattori, Masashi; Ohta, Toshiaki; Uchimoto, Yoshiharu

    2016-05-01

    The aluminum rechargeable battery is a desirable device for large-scale energy storage owing to the high capacity derived from the properties of the aluminum metal anode. The development of cathode materials is needed to compose battery systems. However, the design principles of the cathode materials have not been determined. We focus on the high capacity FeS2 cathode materials and investigate the discharge/charge reaction mechanisms in chloroaluminate ionic liquids as the electrolyte at 55°C. X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements are performed for the discharged and charged samples. S 3p-orbitals are shown to play an important role in the redox reactions from the results of the S and Fe K-edge XANES spectra. As a result of the redox reaction, FeS2 is transformed into low crystalline FeS and amorphous Al2S3, as shown by the XRD and S, Al, and Fe K-edge XANES spectra. This reaction mechanism is different from the reaction observed with lithium ion.

  19. Preparation, structure study and electrochemistry of layered H2V3O8 materials: High capacity lithium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudeep; Bhowmik, Arghya; Pan, Jaysree; Bharadwaj, Mridula Dixit; Mitra, Sagar

    2016-10-01

    The present study explores H2V3O8 as high capacity cathode material for lithium-ion batteries (LIB's). Despite having high discharge capacity, H2V3O8 material suffers from poor electrochemical stability for prolonged cycle life. Ultra-long H2V3O8 nanobelts with ordered crystallographic patterns are synthesized via a hydrothermal process to mitigate this problem. The growth of the crystal is facile along [001] direction, and the most common surface is (001) as suggested by Wulff construction study. Electrochemical performance of H2V3O8 cathode is tested against Li/Li+ at various current rates. At 50 mA g-1current rate, it delivers a discharge capacity of 308 mAh g-1, whereas, at 3000 mA g-1, an initial discharge capacity of 144 mAh g-1 is observed and stabilized at 100 mAh g-1 till 500 cycles. Further, the density functional theory (DFT) based simulations study of both the pristine and lithiated phase of H2V3O8 cathode materials is undertaken. DFT study reveals the presence of hydrogen as hydroxyl unit in the framework of the host. In correlation, the magnetic property of vanadium atoms is examined in detail with through partial density of states (PDOS) calculation during three stage lithiation processes and evaluating various potential steps involved in lithium insertion.

  20. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cui, Kai; Hu, Shuchun; Li, Yongkui

    2016-09-01

    In this study, nitrogen-doped graphene decorated LiVPO4F cathode material is firstly synthesized via a facile method. Well-dispersed LiVPO4F nanoparticles are embedded in nitrogen-doped graphene nanosheets, forming an effective conducting network. The added nitrogen-doped graphene nanosheets greatly enhance the electronic conductivity and Li-ion diffusion of LiVPO4F sample. When tested as cathode material for rechargeable lithium-ion batteries, the hybrid electrode exhibits superior high-rate performance and long-term cycling stability between 3.0 and 4.5 V. It delivers a large discharge capacity of 152.7 mAhg-1 at 0.1 C and shows a capacity retention of 97.8% after 60 cycles. Moreover, a reversible capacity of 90.1 mAhg-1 is maintained even after 500 cycles at a high rate of 20 C. The charge-transfer resistance of LiVPO4F electrode is also reduced in the nitrogen-doped graphene, revealing that its electrode-electrolyte complex reactions take place easily and thus improve the electrochemical performance. The above results provide a facile and effective strategy for the synthesis of LiVPO4F cathode material for high-performance lithium-ion batteries.

  1. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Matthias; Bohlen, Oliver; Roscher, Michael A.; Bäker, Bernard

    2011-05-01

    Current density distributions and local state of charge (SoC) differences that are caused by temperature gradients inside actively cooled Li-ion battery cells are discussed and quantified. As an example, a cylindrical Li-ion cell with LiFePO4 as cathode material (LiFePO4-cell) is analyzed in detail both experimentally and by means of spatial electro-thermal co-simulations. The reason for current density inhomogeneities is found to be the local electrochemical impedance varying with temperature in different regions of the jelly roll. For the investigated cell, high power cycling and the resulting temperature gradient additionally cause SoC-gradients inside the jelly roll. The local SoCs inside one cell diverge firstly because of asymmetric current density distributions during charge and discharge inside the cell and secondly because of the temperature dependence of the local open circuit potential. Even after long relaxation periods, the SoC distribution in cycled LiFePO4-cells remains inhomogeneous across the jelly roll as a result of hysteresis in the open circuit voltage. The occurring thermal electrical inhomogeneities are expected to influence local aging differences and thus, global cell aging. Additionally the occurrence of inhomogeneous current flow and SoC-development inside non-uniformly cooled battery packs of parallel connected LiFePO4-cells is measured and discussed.

  2. In quest of cathode materials for Ca ion batteries: the CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni).

    PubMed

    Arroyo-de Dompablo, M E; Krich, C; Nava-Avendaño, J; Palacín, M R; Bardé, F

    2016-07-20

    Basic electrochemical characteristics of CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni) as cathode materials for Ca ion batteries are investigated using first principles calculations at the Density Functional Theory level (DFT). Calculations have been performed within the Generalized Gradient Approximation (GGA) and GGA+U methodologies, and considering cubic and orthorhombic perovskite structures for CaxMO3 (x = 0, 0.25, 0.5, 0.75 and 1). The analysis of the calculated voltage-composition profile and volume variations identifies CaMoO3 as the most promising perovskite compound. It combines good electronic conductivity, moderate crystal structure modifications, and activity in the 2-3 V region with several intermediate CaxMoO3 phases. However, we found too large barriers for Ca diffusion (around 2 eV) which are inherent to the perovskite structure. The CaMoO3 perovskite was synthesized, characterized and electrochemically tested, and results confirmed the predicted trends.

  3. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    PubMed Central

    Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2014-01-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0–4.55 V. PMID:24595232

  4. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials

    PubMed Central

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-01-01

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe3+ ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe3+ on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries. PMID:27293181

  5. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials.

    PubMed

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-06-13

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe(3+) ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe(3+) on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries.

  6. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials

    NASA Astrophysics Data System (ADS)

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-06-01

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe3+ ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe3+ on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries.

  7. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.

    PubMed

    Dai, Chao-Shuan; Chien, Pei-Yi; Lin, Jeng-Yu; Chou, Shu-Wei; Wu, Wen-Kai; Li, Ping-Hsuan; Wu, Kuan-Yi; Lin, Tsung-Wu

    2013-11-27

    The Ni3S2 nanoparticles with the diameters ranging from 10 to 80 nm are grown on the backbone of conductive multiwalled carbon nanotubes (MWCNTs) using a glucose-assisted hydrothermal method. It is found that the Ni3S2 nanoparticles deposited on MWCNTs disassemble into smaller components after the composite electrode is activated by the consecutive cyclic voltammetry scan in a 2 M KOH solution. Therefore, the active surface area of the Ni3S2 nanoparticles is increased, which further enhances the capacitive performance of the composite electrode. Because the synergistic effect of the Ni3S2 nanoparticles and MWCNTs on the capacitive performance of the composite electrode is pronounced, the composite electrode shows a high specific capacitance of 800 F/g and great cycling stability at a current density of 3.2 A/g. To examine the capacitive performance of the composite electrode in a full-cell configuration, an asymmetric supercapacitor device was fabricated by using the composite of Ni3S2 and MWCNTs as the cathode and activated carbon as the anode. The fabricated device can be operated reversibly between 0 and 1.6 V, and obtain a high specific capacitance of 55.8 F/g at 1 A/g, which delivers a maximum energy density of 19.8 Wh/kg at a power density of 798 W/kg. Furthermore, the asymmetric supercapacitor shows great stability based on the fact that the device retains 90% of its initial capacitance after a consecutive 5000 cycles of galvanostatic charge-discharge performed at a current density of 4 A/g.

  8. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.

    PubMed

    Wang, Jiulin; Yin, Lichao; Jia, Hao; Yu, Haitao; He, Yushi; Yang, Jun; Monroe, Charles W

    2014-02-01

    Composite materials of porous pyrolyzed polyacrylonitrile-sulfur@graphene nanosheet (pPAN-S@GNS) are fabricated through a bottom-up strategy. Microspherical particles are formed by spray drying of a mixed aqueous colloid of PAN nanoparticles and graphene nanosheets, followed by a simple heat treatment with elemental sulfur. The pPAN-S primary nanoparticles are wrapped homogeneously and loosely within a three-dimensional network of graphene nanosheets (GNS). The hierarchical pPAN-S@GNS composite shows a high reversible capacity of 1449.3 mAh g(-1) sulfur or 681.2 mAh g(-1) composite in the second cycle; after 300 cycles at a 0.2 C charge/discharge rate the capacity retention is 88.8 % of its initial reversible value. Additionally, the coulombic efficiency (CE) during cycling is near 100 %, apart from in the first cycle, in which CE is 81.1 %. A remarkable capacity of near 700 mAh g(-1) sulfur is obtained, even at a high discharge rate of 10 C. The superior performance of pPAN-S@GNS is ascribed to the spherical secondary GNS structure that creates an electronically conductive 3D framework and also reinforces structural stability.

  9. Oxalic acid-assisted combustion synthesized LiVO3 cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jian, X. M.; Wenren, H. Q.; Huang, S.; Shi, S. J.; Wang, X. L.; Gu, C. D.; Tu, J. P.

    2014-01-01

    LiVO3 materials are synthesized by combustion method with oxalic acid as fuel. Owing to its relatively low crystallization and small particle size, the LiVO3 calcined at 450 °C for 2 h displays optimal electrochemical performances, delivering a high discharge capacity of 298.4 mAh g-1 and 262.5 mAh g-1 between 1.0 and 3.5 V at a current density of 50 mA g-1 and 500 mA g-1 respectively, and exhibiting good cyclic stability. In this work, the chemical diffusion coefficient of Li+ (DLi+) in the LiVO3 electrode is determined by electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT). The value calculated by EIS is in the range of 10-9-10-8 cm2 s-1, while it calculated by GITT is 10-9.5-10-8 cm2 s-1.

  10. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    SciTech Connect

    Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Cho, Kwon-Koo; Ahn, Jou-Hyeon

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{sup 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.

  11. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  12. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries.

    PubMed

    Häupler, Bernhard; Burges, René; Friebe, Christian; Janoschka, Tobias; Schmidt, Daniel; Wild, Andreas; Schubert, Ulrich S

    2014-08-01

    The first polymer bearing exTTF units intended for the use in electrical charge storage is presented. The polymer undergoes a redox reaction involving two electrons at -0.20 V vs Fc/Fc(+) and is applied as active cathode material in a Li-organic battery. The received coin cells feature a theoretical capacity of 132 mAh g(-1) , a cell potential of 3.5 V, and a lifetime exceeding more than 250 cycles.

  13. Mechanics of soft active materials

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    Soft active materials, mostly elastomers and polymeric gels, are being developed to mimic a salient feature of life: movement in response to stimuli. For example, when an electric voltage is applied across a layer of a dielectric elastomer, the layer reduces in thickness and expands in area, giving a strain greater than 100%. As another example, in response to a small change of pH or temperature, a hydrogel may absorb a large amount of water and increase its volume over 100 times. The mechanics involved in these processes is important, interesting, and not well understood. This thesis studies large deformations and instabilities in dielectric elastomers and polymeric gels. The thesis first presents a nonlinear field theory for deformable dielectrics. The theory uses measurable quantities to define field variables. The definitions lead to decoupled field equations, and electromechanical coupling enters the theory through material laws. We use the theory to study electromechanical instability and coexistent states in dielectric elastomers. A computational method is also developed to analyze inhomogeneous deformations in complicated structures of dielectric elastomers. The second part of the thesis discusses large deformation and mass transportation in polymeric gels. A gel can undergo large deformation of two modes: local rearrangement and long-range migration. We assume that the local rearrangement is instantaneous, and model the long-range migration by assuming that the solvent molecules diffuse inside the gel. We further study inhomogeneous and anisotropic deformations and instabilities in gels constrained by rigid materials.

  14. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  15. Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials

    NASA Astrophysics Data System (ADS)

    Xiao, Liang; Guo, Yonglin; Qu, Deyu; Deng, Bohua; Liu, Hanxing; Tang, Daoping

    2013-03-01

    Monodispersed and uniform cubic LiMn2O4 with side length of 5.0 μm denoted as CB and spherical LiMn2O4 with different diameters (2.0, 3.5, 8.0 μm) denoted as SS, MS, BS respectively are prepared through a controllable precipitation of precursors MnCO3 and a followed melt-impregnation process. Studies show that the electrochemical performance of LiMn2O4 samples with spherical morphology are better than those of the cubic one. Moreover, the spherical LiMn2O4 (MS) with middle size (3.5 μm in diameter) has the best electrochemical performance among three spherical samples instead of the smallest spherical LiMn2O4. The determined apparent lithium ion diffusion coefficients of prepared samples decrease in the order of MS > SS > BS > CB and their values are in the range of 10-9.5-10-11.5 cm2 s-1 and 10-8.0-10-10.5 cm2 s-1 from PITT and CITT respectively. This trend matched well with the electrochemical performances of the four cathode materials. This observation can be addressed to the fact that the middle size spherical particles balance the contradictory of diffusion length in solid phase and particle agglomeration, which lead to perfect contacts with the conductive additive, considerable apparent Li-ion diffusion rate and the best performance of MS LiMn2O4.

  16. Synthesis and electrochemical performance of LiV3O8/polythiophene composite as cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Guo, Haipeng; Liu, Li; Shu, Hongbo; Yang, Xiukang; Yang, Zhenhua; Zhou, Meng; Tan, Jinli; Yan, Zichao; Hu, Hai; Wang, Xianyou

    2014-02-01

    LiV3O8/polythiophene (LiV3O8/PTh) composite has been chemically synthesized via an in-situ oxidative polymerization method. The structure and morphology of the samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). LiV3O8/PTh composite shows a single phase in the XRD pattern, but the existence of PTh has been confirmed by FTIR spectra. HRTEM images show that an uniform PTh layer with a thickness of 3-5 nm covered on the surface of LiV3O8. Electrochemical performance of samples has been characterized by the charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopic studies (EIS) and galvanostatic intermittent titration technique (GITT). The LiV3O8/PTh composite exhibits much better electrochemical performance than bare LiV3O8. The initial discharge capacities of 15 wt.% LiV3O8/PTh composite are 213.3 and 200.3 mAh g-1 with almost no capacity retention after 50 cycles at current densities of 300 and 900 mA g-1, respectively. PTh could enhance electronic conductivity, decrease the charge transfer resistance, increase the lithium diffusion coefficient, and thus improve cycling performance of LiV3O8. All these results demonstrate that the LiV3O8/PTh composite has a promising application as cathode material for lithium ion batteries.

  17. Interconnected Co0.85Se nanosheets as cathode materials for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yuan, Yuliang; Wang, Weicheng; Tang, Haichao; Ye, Zhizhen; Lu, Jianguo

    2017-02-01

    We develop a facile one-step hydrothermal method to directly grow interconnected Co0.85Se nanosheets on nickel foam as electrode for supercapacitors. The Co0.85Se electrodes exhibit a high specific capacitance (1528 F g-1 at 1 A g-1 and 715 F g-1 at 20 A g-1), excellent cycling stability (92% retention after 5000 cycles) and good conductivity. Moreover, an asymmetric supercapacitor (ASC) is fabricated using Co0.85Se nanosheets as the positive electrode and active carbon (AC) as the negative electrode. The ASC also exhibits excellent electrochemical performance with high energy density (∼45 Wh kg-1), high power density (16 kW kg-1) and remarkable cycling stability (∼10.9% loss after 5000 cycles). Furthermore, two ASCs connected in series are capable of lighting a red LED at least for 5 min after being charged for only 15 s to 3.2 V. This work demonstrates that the interconnected Co0.85Se nanosheets with three-dimensional porous structures are promising electrodes for high-performance supercapacitors with large energy density.

  18. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  19. Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries.

    PubMed

    Tan, Rui; Yang, Jinlong; Hu, Jiangtao; Wang, Kai; Zhao, Yan; Pan, Feng

    2016-01-18

    We report the formation of core-shell nano-FeS2@N-doped graphene as a novel cathode material and its mechanism for use in rechargeable Li-ion batteries. A benefit of the amount of FeS2 nano-crystals as the core for Li-ion storage with high capacity and using coated N-doped graphene as the shell is that FeS2@N-graphene exhibits a remarkable specific energy (950 W h kg(-1) at 0.15 kW g(-1)) and higher specific power (543 W h kg(-1) at 2.79 kW g(-1)) than commercial rechargeable LIB cathodes, as well as stable cycling performance (∼600 W h kg(-1) at 0.75 kW g(-1) after 400 cycles).

  20. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOEpatents

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  1. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials.

    PubMed

    Walter, Marc; Zünd, Tanja; Kovalenko, Maksym V

    2015-05-28

    In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g(-1) and average energy density of 1237 Wh kg(-1) for 100 cycles, twice higher than for commonly used LiCoO2 cathodes. Then we demonstrate, for the first time, that FeS2 NCs can serve as highly reversible sodium-ion anode material with long cycling life. As sodium-ion anode material, FeS2 NCs provide capacities above 500 mA h g(-1) for 400 cycles at a current rate of 1000 mA g(-1). In all our tests and control experiments, the performance of chemically synthesized nanoscale FeS2 clearly surpasses bulk FeS2 as well as large number of other nanostructured metal sulfides.

  2. Synchrotron radiation-based 61Ni Mössbauer spectroscopic study of Li(Ni1/3Mn1/3Co1/3)O2 cathode materials of lithium ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Segi, Takashi; Masuda, Ryo; Kobayashi, Yasuhiro; Tsubota, Takayuki; Yoda, Yoshitaka; Seto, Makoto

    2016-12-01

    Layered rocksalt type oxides, such as Li(Ni1/3Mn1/3Co1/3)O2, are widely used as the cathode active materials of lithium-ion rechargeable batteries. Because the nickel ions are associated with the role of the charge compensation at discharge and charge, the 61Ni Mössbauer measurements at 6 K using synchrotron radiation were performed to reveal the role of Ni. The Ni ions of the active materials play two roles for the redox process between the charge and discharge states of lithium-ion batteries. Half of the total Ni ions change to the low-spin Ni3+ with Jahn-Teller distortion from the Ni2+ ions of the discharge state. The remainder exhibit low-spin state divalent Ni ions.

  3. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  4. Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.

    2016-05-01

    The electrode material Li2MnFeSiO4 was successfully synthesized by standard sol-gel method and further modified with multiwalled carbon nano tube (MWCNT) to achieve better electrochemical properties. Our strategy helps us to improve the performance and storage capacity as compared with the bared material. This novel composite structure constructs an efficient cation (Li+) and electron channel which significantly enhance the Li+ ion diffusion coefficient and reduced charge transfer resistance. Hence leads to high conductivity and specific capacity. Characterization technique like Field emission scanning electron microscopy (FESEM) has been used to confirm its morphology, structure and particle size which comes out to be of the order of ˜20 to 30 nm. Lesser particle size reveals better electrochemical properties. Electrical conductivity (˜10-5 Scm-1) of MWCNT doped oxide cathode materials was recorded using ac impedance spectroscopy technique which reflects tenfold increment when compared with pure oxide cathode materials. Cyclic voltametery analysis has been done to calculate specific capacity and potential window of materials with and without CNTs. The results obtained from different techniques are well correlated and suitable for energy storage applications.

  5. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.

    PubMed

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S

    2014-01-21

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.

  6. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na(2+δ)Fe(2-δ/2)(SO4)3.

    PubMed

    Wong, L L; Chen, H M; Adams, S

    2015-04-14

    Bond-valence site energy modelling, classical molecular dynamics and DFT simulations were employed to clarify Na(+) ion migration in monoclinic Na2+δFe2-δ/2(SO4)3, the recently reported first representative of a new promising class of alluaudite-type high voltage cathode materials for sodium-ion batteries. Empirical potential parameters derived from our softBV bond valence parameter set reproduce experimental unit-cell parameters. Migration energy barrier calculations based on both these empirical and on ab initio approaches consistently show a strongly anisotropic and fairly fast Na(+) ion mobility along partially occupied Na(3) channels in the c-direction. Nominally fully occupied Na(1) sites are attached to these paths with a moderate activation energy as sources of mobile ions. At elevated temperatures separate parallel Na(2) channels contribute to the ionic conductivity. As such one-dimensional pathways are highly vulnerable to blocking by structural defects, the experimentally observed favourable rate performance can only be understood as a consequence of cross-linking of the channels to a more robust higher-dimensional migration pathway network. Our static and dynamic bond valence pathway models for representative local structure models reveal that this cross-linking is achieved by the iron deficiency of the compound: iron vacancies act as low-lying interstitial sites that can be reached from both types of channels with moderate activation energies. Structural relaxations around the vacancies however reduce the sodium mobility along the channels. An analogous dual effect of blocking migration along the channels and promoting perpendicular migration would result from Na(+)/Fe(2+) antisite defects. Hence, further new alluaudite type transition metal sulphates can only be expected to yield a high rate performance, if their synthesis ensures the presence of a comparable transition metal sub-stoichiometry and/or a suitably tailored concentration of sodium

  7. Influence of synthesis conditions on electrochemical properties of high-voltage Li 1.02Ni 0.5Mn 1.5O 4 spinel cathode material

    NASA Astrophysics Data System (ADS)

    Hwang, B. J.; Wu, Y. W.; Venkateswarlu, M.; Cheng, M. Y.; Santhanam, R.

    Li 1.02Ni 0.5Mn 1.5O 4 spinel cathode materials were successfully synthesized by a citric acid-assisted sol-gel method. The structure and morphology of the materials have been examined by X-ray diffraction and scanning electron microscopy, respectively. Electrochemical properties of the materials were investigated using cyclic voltammetry and galvanostatic charge/discharge measurements at two different temperatures (25 and 55 °C) using lithium anode. The initial capacity and capacity retention are highly dependent on the particle size, particle size distribution, crystallinity and purity of the materials. The Li 1.02Ni 0.5Mn 1.5O 4 materials synthesized both at 800 and 850 °C have shown best electrochemical performance in terms of capacity and capacity retention between 3.5 and 4.9 V with a LiPF 6 based electrolyte.

  8. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Serov, Alexey; Narvaez Villarrubia, Claudia W; Stariha, Sarah; Babanova, Sofia; Artyushkova, Kateryna; Schuler, Andrew J; Atanassov, Plamen

    2015-11-13

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in "clean" conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167 ± 6 μW cm(-2) and remained stable over 16 days, while SCMFC with Pt decreased to 113 ± 4 μW cm(-2) by day 13, achieving similar values of an activated carbon based cathode. The presence of S(2-) and showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater.

  9. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Serov, Alexey; Villarrubia, Claudia W. Narvaez; Stariha, Sarah; Babanova, Sofia; Artyushkova, Kateryna; Schuler, Andrew J.; Atanassov, Plamen

    2015-11-01

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in “clean” conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167 ± 6 μW cm-2 and remained stable over 16 days, while SCMFC with Pt decreased to 113 ± 4 μW cm-2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2- and showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater.

  10. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    YongMan Choi; Meilin Liu

    2006-09-30

    This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a

  11. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy

    DOE PAGES

    Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; ...

    2014-11-24

    Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygenmore » release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3¯m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less

  12. SrCo 1- yTi yO 3- δ as potential cathode materials for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shen, Yu; Wang, Fang; Ma, Xin; He, Tianmin

    The perovskites SrCo 1- yTi yO 3- δ (SCT y, y = 0.00-0.20) are synthesized and assessed as potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) based on the La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM) electrolyte. SCT y composites with y ≥ 0.05 adopt a cubic perovskite structure with thermal stability between 30 °C and 1000 °C in air. Substitution of Ti significantly enhances the electrical conductivity of the SCT y composites relative to the undoped SrCoO 3- δ. The highest electrical conductivity of the sample with y = 0.05 varied from 430 S cm -1 to 160 S cm -1 between 300 °C to 800 °C in air. The area-specific resistances of the SCT y cathodes on the LSGM electrolyte gradually increase from 0.084 Ω cm 2 at y = 0.05 to 0.091 Ω cm 2 at y = 0.20 with increasing Ti content at 750 °C. Single-cells that used SCT y cathodes with y = 0.05, 0.10, 0.15, and 0.20 on a 300 μm-thick LSGM electrolyte achieve peak power densities of 793, 608, 525, and 425 mW cm -2 at 800 °C, respectively. These novel SCT y cubic perovskites demonstrate considerable potential for application in IT-SOFC cathodes.

  13. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  14. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  15. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    SciTech Connect

    Chen, Yu; Ding, Dong; Wei, Tao; Liu, Meilin

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  16. Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries.

    PubMed

    Liu, Qiannan; Hu, Zhe; Chen, Mingzhe; Gu, Qinfen; Dou, Yuhai; Sun, Ziqi; Chou, Shulei; Dou, Shi Xue

    2017-02-01

    The tunnel-structured Na0.44MnO2 is considered as a promising cathode material for sodium-ion batteries because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na0.44MnO2 have been first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode materials for Na-ion batteries. The microstructure and composition of prepared Na0.44MnO2 is highly related to the sintering temperature. This structure with suitable size increases the contact area between the material and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific capacity of 72.8 mA h g(-1) and capacity retention of 99.6% after 2000 cycles at a high current density of 1000 mA g(-1). The as-designed multiangular Na0.44MnO2 provides new insight into the development of tunnel-type electrode materials and their application in rechargeable sodium-ion batteries.

  17. Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang

    2017-03-14

    Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g(-1) after 200 cycles at a current density of 50 mA g(-1). More surprisingly, when conducted at a high current density of 1 A g(-1), this cathode delivers a high reversible capacity of 146 mAh g(-1) after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.

  18. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell.

    PubMed

    Ishii, Shun'ichi; Watanabe, Kazuya; Yabuki, Soichi; Logan, Bruce E; Sekiguchi, Yuji

    2008-12-01

    An electricity-generating bacterium, Geobacter sulfurreducens PCA, was inoculated into a single-chamber, air-cathode microbial fuel cell (MFC) in order to determine the maximum electron transfer rate from bacteria to the anode. To create anodic reaction-limiting conditions, where electron transfer from bacteria to the anode is the rate-limiting step, anodes with electrogenic biofilms were reduced in size and tests were conducted using anodes of six different sizes. The smallest anode (7 cm(2), or 1.5 times larger than the cathode) achieved an anodic reaction-limiting condition as a result of a limited mass of bacteria on the electrode. Under these conditions, the limiting current density reached a maximum of 1,530 mA/m(2), and power density reached a maximum of 461 mW/m(2). Per-biomass efficiency of the electron transfer rate was constant at 32 fmol cell(-1) day(-1) (178 micromol g of protein(-1) min(-1)), a rate comparable to that with solid iron as the electron acceptor but lower than rates achieved with fumarate or soluble iron. In comparison, an enriched electricity-generating consortium reached 374 micromol g of protein(-1) min(-1) under the same conditions, suggesting that the consortium had a much greater capacity for electrode reduction. These results demonstrate that per-biomass electrode reduction rates (calculated by current density and biomass density on the anode) can be used to help make better comparisons of electrogenic activity in MFCs.

  19. Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Yi, Ting-Feng; Chen, Bin; Zhu, Yan-Rong; Li, Xiao-Ya; Zhu, Rong-Sun

    2014-02-01

    The Mo-doped LiNi0.5Mn1.5O4 cathodes are successfully synthesized by citric acid-assisted sol-gel method. The result demonstrates that the Mo-doped LiMn1.4Ni0.55Mo0.05O4 cathodes present the improved electrochemical performance over pristine LiNi0.5Mn1.5O4. At the 2 C rate after 80 cycles, the discharge capacities are 68.5 mAh g-1 for the pristine LiNi0.5Mn1.5O4 material (53.9% of the capacity at 0.1 C), 107.4 mAh g-1 for the LiMn1.425Ni0.5Mo0.05O4 material (82.1% at 0.1 C), and 122.7 mAh g-1 for the LiMn1.4Ni0.55Mo0.05O4 material (90.5% at 0.1 C). Mo-doping is favorable for reducing the electrode polarization, suggesting that Mo-doped LiNi0.5Mn1.5O4 electrodes have faster lithium insertion/extraction kinetics during cycling. Mo-doped LiNi0.5Mn1.5O4 electrodes show lower charge-transfer resistance and higher lithium diffusion coefficients. In addition, LiMn1.4Ni0.55Mo0.05O4 cathode exhibits the smallest particle size, the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, indicating that it has a high reversibility and good rate capability.

  20. A graphene loading heterogeneous hydrated forms iron based fluoride nanocomposite as novel and high-capacity cathode material for lithium/sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Shen, Yongqiang; Wang, Xianyou; Hu, Hai; Jiang, Miaoling; Yang, Xiukang; Shu, Hongbo

    2015-06-01

    A graphene loading heterogeneous hydrated forms iron based fluoride (abbreviated as FeF3·xH2O/G) nanocomposite is successfully designed and synthesized for the first time by a sol-gel method. It found that the FeF3·xH2O nanoparticles distribute randomly on the surface of the graphene, stacking together to form a nanocomposite with high specific surface and abundant mesporous structure. The FeF3·xH2O was consisted of FeF3·3H2O and FeF2.5·0.5H2O with pyrochlore phase structure and FeF3·0.33H2O with hexagonal-tungsten-bronze-type structure (HTB). The FeF3·xH2O/G was used as cathode materials of rechargeable lithium/sodium batteries, respectively. It has been found that it can deliver a large reversible capacity exceeding 200 mAh g-1 and excellent cyclic performance with a residual capacity of 183 mAh g-1 after 100 cycles at 0.2C and 149 mAh g-1 after 200 cycles at 1C, especially, an outstanding rate performance exceeding 130 mAh g-1 at 5C in the voltage range of 1.5-4.5 V for Li-ion batteries. Moreover, when FeF3·xH2O/G is used as cathode material of Na-ion batteries, it exhibits also a high reversible capacity of 101 mAh g-1 after 30 cycles in the voltage range of 1.0-4.0 V at 0.1C. Therefore, FeF3·xH2O/G will a promising cathode material for high-performance lithium/sodium ion batteries.

  1. FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions.

    PubMed

    Tian, Jingqi; Liu, Qian; Liang, Yanhui; Xing, Zhicai; Asiri, Abdullah M; Sun, Xuping

    2014-12-10

    In this Letter, we demonstrate the direct growth of FeP nanoparticles film on carbon cloth (FeP/CC) through low-temperature phosphidation of its Fe3O4/CC precursor. Remarkably, when used as an integrated 3D hydrogen evolution cathode, this FeP/CC electrode exhibits ultrahigh catalytic activity comparable to commercial Pt/C and good stability in acidic media. This electrode also performs well in neutral solutions. This work offers us the most cost-effective and active 3D cathode toward electrochemical water splitting for large-scale hydrogen fuel production.

  2. A facile approach to derive binder protective film on high voltage spinel cathode materials against high temperature degradation

    NASA Astrophysics Data System (ADS)

    Chou, Wei-Yu; Jin, Yi-Chun; Duh, Jenq-Gong; Lu, Cheng-Zhang; Liao, Shih-Chieh

    2015-11-01

    The electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode combined with different binders at elevated temperature is firstly investigated. The water soluble binder, such as sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), is compared with the polyvinylidene difluoride (PVdF) binder used in non-aqueous process. The aqueous process can meet the need of Li-ion battery industry due to environmental-friendly and cost effectiveness by replacing toxic organic solvent, such as N-methyl-pyrrolidone (NMP). In this study, a significantly improved high temperature cycling performance is successfully obtained as compared to the traditional PVdF binder. The aqueous binder can serve as a protective film which inhibits the serious Ni and Mn dissolution especially at elevated temperature. Our result demonstrates a facile approach to solve the problem of capacity fading for high voltage spinel cathodes.

  3. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries.

    PubMed

    Hameed, A Shahul; Reddy, M V; Nagarathinam, M; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B V R; Vittal, Jagadese J

    2015-11-23

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  4. Synthesis and electrochemical characterizations of La doped nano-size LiCo0.2Ni0.8O2 cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Arumugam, D.; Paruthimal Kalaignan, G.; Vediappan, K.; Lee, C. W.

    2010-07-01

    The LiLaxCo0.20-xNi0.80O2, where x = 0.00, 0.01, 0.03, 0.05 and 0.10 cathode materials for rechargeable lithium ion batteries were synthesized by simple sol-gel technique using aqueous solutions of metal nitrates and polyvinyl alcohol. The gel precursors were dried in vacuum oven for 12 h at 120 °C. After drying, the gel precursors were ground and heated at 800 °C. The structural characterization was carried out by X-ray powder diffraction. The sample exhibited a well-defined hexagonal layered structure. Surface morphology and particle size of the synthesized materials was determined by scanning electron microscope and transmittance electron microscope and it was found that the cathode materials consisted of highly-ordered single crystalline particles with layered structure. Electrochemical properties were characterized by the assembled test cells using galvanostatic charge/discharge studies which were carried out at a current rate 0.1 C at potential range of 2.75 to 4.5 V. Among them, lanthanum doped LiLa0.03Co0.17Ni0.80O2 has improved the structural stability, high reversible capacity and excellent electrochemical performance of rechargeable lithium batteries.

  5. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    PubMed Central

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-01-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity. PMID:26593096

  6. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  7. Advertising Content in Physical Activity Print Materials.

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.

    2002-01-01

    Evaluated the advertising content contained in physical activity print materials. Analysis of print materials obtained from 80 sources (e.g., physicians' offices and fitness events) indicated that most materials contained some form of advertising. Materials coming from commercial product vendors generally contained more advertising than materials…

  8. Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries

    SciTech Connect

    Song, Zhiping; Xu, Terrence; Gordin, Mikhail; Jiang, Yingbing; Bae, In-Tae; Xiao, Qiangfeng; Zhan, Hui; Liu, Jun; Wang, Donghai

    2012-05-09

    Electroactive polymers are a new generation of 'green' cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in-situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging - the composite can deliver more than 100 mAh/g within just a few seconds.

  9. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials

    NASA Astrophysics Data System (ADS)

    Walter, Marc; Zünd, Tanja; Kovalenko, Maksym V.

    2015-05-01

    In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100 cycles, twice higher than for commonly used LiCoO2 cathodes. Then we demonstrate, for the first time, that FeS2 NCs can serve as highly reversible sodium-ion anode material with long cycling life. As sodium-ion anode material, FeS2 NCs provide capacities above 500 mA h g-1 for 400 cycles at a current rate of 1000 mA g-1. In all our tests and control experiments, the performance of chemically synthesized nanoscale FeS2 clearly surpasses bulk FeS2 as well as large number of other nanostructured metal sulfides.In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100

  10. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability.

    PubMed

    Lan, Huachun; He, Wenjing; Wang, Aimin; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui; Huang, C P

    2016-11-15

    An activated carbon fiber (ACF) cathode was fabricated and used to treat glyphosate containing wastewater by the Electro-Fenton (EF) process. The results showed that glyphosate was rapidly and efficiently degraded and the BOD5/COD ratio was increased to >0.3 implying the feasibility of subsequent treatment of the treated wastewater by biological methods. The results of ion chromatography and HPLC measurements indicated that glyphosate was completely decomposed. Effective OH generation and rapid recycling/recovery of the Fe(2+) ions at the cathode were responsible primarily for the high performance of the ACF-EF process. Factors such as inlet oxygen gas flow rate, Fe(2+) dosage, initial glyphosate concentration, applied current intensity, and solution pH that may affect the efficiency of the ACF-EF process were further studied and the optimum operation condition was established. Results of SEM/EDX, BET and XPS analysis showed the deposition of highly dispersed fine Fe2O3 particles on the ACF surface during the EF reaction. The possibility of using the Fe2O3-ACF as iron source in the EF process was assessed. Results showed that the Fe2O3-ACF electrode was effective in degrading glyphosate in the EF process. The deposition of Fe2O3 particles on the ACF electrode had no adverse effect on the reusability of the ACF cathode.

  11. Insight into the Atomic Structure of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material in the First Cycle

    DOE PAGES

    Huang, Xuejie; Yu, Xiqian; Lin, Mingxiang; ...

    2014-12-22

    Application of high-voltage spinel LiNi0.5Mn1.5O4 cathode material is the closest and the most realistic approach to meeting the midterm goal of lithium-ion batteries for electric vehicles (EVs) and plug-in hybrid electric vehicles (HEVs). However, this application has been hampered by long-standing issues, such as capacity degradation and poor first-cycle Coulombic efficiency of LiNi0.5Mn1.5O4 cathode material. Although it is well-known that the structure of LiNi0.5Mn1.5O4 into which Li ions are reversibly intercalated plays a critical role in the above issues, performance degradation related to structural changes, particularly in the first cycle, are not fully understood. Here, we report detailed investigations ofmore » local atomic-level and average structure of LiNi0.5Mn1.5O4 during first cycle (3.5–4.9 V) at room temperature. We observed two types of local atomic-level migration of transition metals (TM) ions in the cathode of a well-prepared LiNi0.5Mn1.5O4//Li half-cell during first charge via an aberration-corrected scanning transmission electron microscopy (STEM). Surface regions (~2 nm) of the cycled LiNi0.5Mn1.5O4 particles show migration of TM ions into tetrahedral Li sites to form a Mn3O4-like structure. However, subsurface regions of the cycled particles exhibit migration of TM ions into empty octahedral sites to form a rocksalt-like structure. The migration of these TM ions are closely related to dissolution of Ni/Mn ions and building-up of charge transfer impedance, which contribute significantly to the capacity degradation and the poor first-cycle Coulombic efficiency of spinel LiNi0.5Mn1.5O4 cathode material. Accordingly, we provide suggestions of effective stabilization of LiNi0.5Mn1.5O4 structure to obtain better electrochemical performance.« less

  12. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries

    PubMed Central

    Tang, Xiao; Jan, S. Savut; Qian, Yanyan; Xia, Hui; Ni, Jiangfeng; Savilov, Serguei V.; Aldoshin, Serguei M.

    2015-01-01

    LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 space group. The morphological characterization by scanning electron microscopy and transmission electron microscopy reveals that the LiNi0.5Mn1.5O4 nanorods of 100–200 nm in diameter are well dispersed and wrapped in the graphene nanosheets for the composite. Benefiting from the highly conductive matrix provided by graphene nanosheets and one-dimensional nanostructure of the ordered spinel, the composite electrode exhibits superior rate capability and cycling stability. As a result, the LiNi0.5Mn1.5O4-graphene composite electrode delivers reversible capacities of 127.6 and 80.8 mAh g−1 at 0.1 and 10 C, respectively, and shows 94% capacity retention after 200 cycles at 1 C, greatly outperforming the bare LiNi0.5Mn1.5O4 nanorod cathode. The outstanding performance of the LiNi0.5Mn1.5O4-graphene composite makes it promising as cathode material for developing high energy and high power lithium-ion batteries. PMID:26148558

  13. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.

    PubMed

    Kim, Yongseon

    2012-05-01

    Li(Ni(0.8)Co(0.1)Mn(0.1))O(2) (NCM811) was synthesized using alkali chlorides as a flux and the performance as a cathode material for lithium ion batteries was examined. Primary particles of the powder were segregated and grown separately in the presence of liquid state fluxes, which induced each particle to be composed of one primary particle with well-developed facet planes, not the shape of agglomerates as appears with commercial NCMs. The new NCM showed far less gas emission during high temperature storage at charged states, and higher volumetric capacity thanks to its high bulk density. The material is expected to provide optimal performances for pouch type lithium ion batteries, which require high volumetric capacity and are vulnerable to deformation caused by gas generation from the electrode materials.

  14. Organic active materials for batteries

    SciTech Connect

    Abouimrane, Ali; Weng, Wei; Amine, Khalil

    2016-08-16

    A rechargeable battery includes a compound having at least two active sites, R.sup.1 and R.sup.2; wherein the at least two active sites are interconnected by one or more conjugated moieties; each active site is coordinated to one or more metal ions M.sup.a+ or each active site is configured to coordinate to one or more metal ions; and "a" is 1, 2, or 3.

  15. Molten salt-directed synthesis method for LiMn2O4 nanorods as a cathode material for a lithium-ion battery with superior cyclability

    NASA Astrophysics Data System (ADS)

    Kebede, Mesfin A.; Ozoemena, Kenneth I.

    2017-02-01

    A molten salt synthesis technique has been used to prepare nanorods of Mn2O3 and single-crystal LiMn2O4 nanorods cathode material with superior capacity retention. The molten salt-directed synthesis involved the use of NaCl as the eutectic melt. The as-synthesized LiMn2O4 nanorods cathode material showed superior electrochemical performance compared to the LiMn2O4 sample obtained via the solid state method. The as-synthesized LiMn2O4 nanorods maintained more than 95% of the initial discharge capacity of 107 mA h g‑1 over 100 cycles at a rate of 0.1 C, whereas the LiMn2O4 sample synthesized using the solid state reaction method maintained 88% of the initial discharge capacity of 98 mA h g‑1 over 100 cycles at a rate of 0.1 C. Compared to the literature, the molten salt-directed method for the preparation of high-performance LiMn2O4 is simpler and less expensive, with greater potential for industrial scale-up.

  16. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  17. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  18. Determination of elemental constituents in different matrix materials and flow injection studies by the electrolyte cathode glow discharge technique with a new design

    SciTech Connect

    Shekhar, R.; Karunasagar, D.; Ranjit, M.; Arunachalam, J.

    2009-10-15

    An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstrated good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL{sup -1}. At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 {mu} L of 200 ng mL{sup -1} mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury.

  19. Temperature-dependent oxygen behavior of LixNi0.5Mn1.5O4 cathode material for lithium battery

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Woo; Kim, Su Jae; Jeong, Myung Yung; Lee, Seongsu; Rim, Young Hoon; Yang, Yong Suk

    2016-11-01

    We have investigated the temperature-dependent oxygen behavior in the lithium battery cathode LixNi0.5Mn1.5O4 (LNMO) materials in the temperature range 30-1000 °C. As the temperature increases, oxygen release occurs and the change of crystal structures from the face centered cubic spinel at 30 °C to other phases follows. The amount of released oxygen and the changed crystalline phases are dependent on Li content and temperature. These phenomena are reversible against temperature in air, but not in vacuum and argon gas environments. This study illustrates the important role of temperature and atmospheric environments in synthesizing the LNMO battery materials.

  20. In Situ X-ray Diffraction and Absorption Studies of the Li_xMn_2O4 Cathode Materials by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Yang, X. Q.; Mukerjee, S.; McBreen, J.; Daroux, M. L.; Xing, X. K.

    1998-03-01

    The structural and electronic states of the Li_xMn_2O4 cathode materials obtained from different commercial sources were studied in situ during charge-discharge cycle using synchrotron radiation. In x-ray diffraction studies, two or three cubic crystal phases with different lattice constants were observed during charge-discharge between 3V and 4.6V vs lithium metal anode. The number of cubic phases depends on the source of the material and the electrochemical history (the first or second cycle) of the cell. X-ray absorption spectroscopy was used to study the electronic states of the Mn cations during charge-discharge cycles. The relationships between the structural properties of Li_xMn_2O4 and battery performance will be discussed.

  1. Li mobility in the battery cathode material Lix[Mn1.96Li0.04]O4 studied by muon-spin relaxation

    NASA Astrophysics Data System (ADS)

    Kaiser, C. T.; Verhoeven, V. W. J.; Gubbens, P. C. M.; Mulder, F. M.; de Schepper, I.; Yaouanc, A.; Dalmas de Réotier, P.; Cottrell, S. P.; Kelder, E. M.; Schoonman, J.

    2000-10-01

    The battery cathode materials Lix[Mn1.96Li0.04]O4 with x=1 and 0.2 were studied by the zero-field muon-spin-relaxation technique. Both materials have a magnetic transition below TM~=25 K. At high temperature, above T=230 K, a large decrease of the width of the static field distribution at the muon site is found for Li[Mn1.96Li0.04]O4, providing proof of the onset of mobility of Li+ ions in the microsecond time range. On the other hand, in Li0.2[Mn1.96Li0.04]O4 the onset of mobility of Li+ ions occurs only for T>300 K, i.e., just above room temperature.

  2. Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyue; Wang, Tao; Bi, Yujing; Liu, Meng; Yang, Wenchao; Peng, Zhe; Wang, Deyu

    2017-02-01

    LiMnPO4 has attracted massive interests due to its appropriate redox potential and the success of its iron comparative in the lithium ion batteries. The bulk substitution has been widely used to address the poor electrochemical activity of LiMnPO4, which is much lower than that of LiFePO4. In this work, we compare the performance of the core-shell structure and the homogeneous substitution with the same Mn/Fe molar ratio of LiMn0.8Fe0.2PO4. The core-shell phosphate material after carbon coating is composed of a core part of quasi-single LiMnPO4 phase, and a 3-4 nm shell layer of quasi-single LiFePO4-phase, separated by the phase boundary with 1-2 nm thickness. It is interesting to reveal that the core-shell samples exhibit capacities of 156.4, 144.5, 128.2 mAh g-1 under 0.1C, 1C and 5C respectively, which are 5-10% higher than that of the homogenous substituted LiMn0.8Fe0.2PO4 at the corresponding rates, while both of these samples present excellent cyclic stability, still retaining ∼95% of the initial capacities after 1000 cycles under 1C discharging rate. Our results demonstrate that the main reason for LiMnPO4's poor electrochemical activity should be emphasized on the surface polarization, whereas the tardiness on bulk transportation is not as serious as it was presumed.

  3. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2014-04-01

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  4. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  5. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  6. Structural and Electrochemical Investigation of Li(Ni0.4Co0.2-yAlyMn0.4)O2 Cathode Material

    SciTech Connect

    Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James. E.; Deb, Aniruddha

    2010-02-02

    Li(Ni{sub 0.4}Co{sub 0.2-y}Al{sub y}Mn{sub 0.4})O{sub 2} with y=0.05 was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. The effect of the substitution was studied by in-situ X-ray absorption spectroscopy (XAS), utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range (1.0-4.7 V). XAS measurements were performed at different states-of-charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized towards Co{sup 4+} and Mn was found to be electrochemically inactive and remains as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

  7. Structural and electrochemical Investigation of Li(Ni0.4Co0.2-yAlyMn0.4)O2 Cathode Material

    SciTech Connect

    Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

    2010-06-14

    Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

  8. Boron Substituted Na3V2(P1 −xBxO4)3 Cathode Materials with Enhanced Performance for Sodium‐Ion Batteries

    PubMed Central

    Hu, Pu; Wang, Xiaofang; Wang, Tianshi; Chen, Lanli; Ma, Jun

    2016-01-01

    The development of excellent performance of Na‐ion batteries remains great challenge owing to the poor stability and sluggish kinetics of cathode materials. Herein, B substituted Na3V2P3 –xBxO12 (0 ≤ x ≤ 1) as stable cathode materials for Na‐ion battery is presented. A combined experimental and theoretical investigations on Na3V2P3 –xBxO12 (0 ≤ x ≤ 1) are undertaken to reveal the evolution of crystal and electronic structures and Na storage properties associated with various concentration of B. X‐ray diffraction results indicate that the crystal structure of Na3V2P3 –xBxO12 (0 ≤ x ≤ 1/3) consisted of rhombohedral Na3V2(PO4)3 with tiny shrinkage of crystal lattice. X‐ray absorption spectra and the calculated crystal structures all suggest that the detailed local structural distortion of substituted materials originates from the slight reduction of V–O distances. Na3V2P3‐1/6B1/6O12 significantly enhances the structural stability and electrochemical performance, giving remarkable enhanced capacity of 100 and 70 mAh g−1 when the C‐rate increases to 5 C and 10 C. Spin‐polarized density functional theory (DFT) calculation reveals that, as compared with the pristine Na3V2(PO4)3, the superior electrochemical performance of the substituted materials can be attributed to the emergence of new boundary states near the band gap, lower Na+ diffusion energy barriers, and higher structure stability. PMID:27981002

  9. Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the Microscopy of Carbon Materials Working Group of the ICCP

    USGS Publications Warehouse

    Predeanu, G.; Panaitescu, C.; Bălănescu, M.; Bieg, G.; Borrego, A.G.; Diez, M. A.; Hackley, Paul C.; Kwiecińska, B.; Marques, M.; Mastalerz, Maria; Misz-Kennan, M.; Pusz, S.; Suarez-Ruiz, I.; Rodrigues, S.; Singh, A. K.; Varma, A. K.; Zdravkov, A.; Zivotić, D.

    2015-01-01

    This paper describes the evaluation of petrographic textures representing the structural organization of the organic matter derived from coal and petroleum and their interaction phenomena in the making of steel electrodes, anodes and cathode blocks.This work represents the results of the Microscopy of Carbon Materials Working Group in Commission III of the International Committee for Coal and Organic Petrology between the years 2009 and 2013. The round robin exercises were run on photomicrograph samples. For textural characterization of carbon materials the existing ASTM classification system for metallurgical coke was applied.These round robin exercises involved 15 active participants from 12 laboratories who were asked to assess the coal and petroleum based carbons and to identify the morphological differences, as optical texture (isotropic/anisotropic), optical type (punctiform, mosaic, fibre, ribbon, domain), and size. Four sets of digital black and white microphotographs comprising 151 photos containing 372 fields of different types of organic matter were examined. Based on the unique ability of carbon to form a wide range of textures, the results showed an increased number of carbon occurrences which have crucial role in the chosen industrial applications.The statistical method used to evaluate the results was based on the “raw agreement indices”. It gave a new and original view on the analysts' opinion by not only counting the correct answers, but also all of the knowledge and experience of the participants. Comparative analyses of the average values of the level of overall agreement performed by each analyst in the exercises during 2009–2013 showed a great homogeneity in the results, the mean value being 90.36%, with a minimum value of 83% and a maximum value of 95%.

  10. Investigating the reversibility of structural modifications of LixNiyMnzCo1-y-zO₂ cathode materials during initial charge/discharge, at multiple length scales

    SciTech Connect

    Hwang, Sooyeon; Bak, Seong -Min; Kim, Seung Min; Chung, Kyung Yoon; Chang, Wonyoung

    2015-08-11

    In this work, we investigate the structural modifications occurring at the bulk, subsurface, and surface scales of LixNiyMnzCo1-y-zO₂ (NMC; y, z = 0.8, 0.1 and 0.4, 0.3, respectively) cathode materials during the initial charge/discharge. Various analytical tools, such as X-ray diffraction, selected-area electron diffraction, electron energy-loss spectroscopy, and high-resolution electron microscopy, are used to examine the structural properties of the NMC cathode materials at the three different scales. Cut-off voltages of 4.3 and 4.8 V are applied during the electrochemical tests as the normal and extreme conditions, respectively. The high-Ni-content NMC cathode materials exhibit unusual behaviors, which is deviate from the general redox reactions during the charge or discharge. The transition metal (TM) ions in the high-Ni-content NMC cathode materials, which are mostly Ni ions, are reduced at 4.8 V, even though TMs are usually oxidized to maintain charge neutrality upon the removal of Li. It was found that any changes in the crystallographic and electronic structures are mostly reversible down to the sub-surface scale, despite the unexpected reduction of Ni ions. However, after the discharge, traces of the phase transitions remain at the edges of the NMC cathode materials at the scale of a few nanometers (i.e., surface scale). This study demonstrates that the structural modifications in NMC cathode materials are induced by charge as well as discharge at multiple length scales. These changes are nearly reversible after the first cycle, except at the edges of the samples, which should be avoided because these highly localized changes can initiate battery degradation.

  11. Engineering hybrid nanostructures of active materials: Applications as electrode materials in lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Huang, Huan

    Aiming to significantly improve the electrochemical properties of electroactive materials for lithium ion batteries, three novel hybrid nanostructures were developed in this thesis. These include nanostructure A: V2O 5 coated on polymer electrolyte-grafted carbon black, nanostructure B: electrode materials incorporated into an electronically conductive carbon web, and nanostructure C: electrode materials dispersed in a conductive porous carbon matrix. Nanocomposites possessing nanostructure A are fast electronic and ionic transport materials. The improved kinetic properties are due to the incorporated carbon core and the grafted polymer electrolyte in the unique structure. The V2O5 xerogel coated polymer electrolyte-grafted carbon blacks, or V2O5/C-PEG, can reach a capacity as high as 320 mAh/g, and exhibit outstanding rate sustainability (e.g. 190 mAh/g at 14C). This class of nanostructured composites is promising for high power/current applications. Nanostructure B was extremely successful when applied to very poorly conductive active materials, such as LiFePO4 and Li3V 2(PO4)3. In this nanostructure, the web-like carbon framework not only supplies a facile electron transport path, but also provides excellent electronic contact between carbon and the insulating active materials. At room temperature, the LiFePO4/C nanocomposite successfully reaches almost full capacity, along with greatly improved rate sustainability and excellent cycling stability. At elevated temperatures (e.g. 40°C and 60°C), the full capacity is readily accessible over a wide rate range, even at a very fast rate of 2C or 5C. The Li3V2(PO4) 3/C nanocomposite can extract all three lithium in the formula at a rate of 1C, resulting in a high capacity of 200 mAh/g. Therefore, through designing hybrid nanostructures with nanostructure B, we can make insulating active materials into good cathode materials. Nanostructure C was employed for Sn-based anode materials, in order to improve their cycling

  12. Cathode interface studies of polymer light emitting devices

    NASA Astrophysics Data System (ADS)

    Swiontek, Stephen; Tzolov, Marian

    2010-03-01

    Efficient injection of charge carriers is a key factor for successful operation of any electronic device and especially of devices with non-crystalline or wide band gap active material. Our study concentrates on the cathode interface of light emitting devices with a conjugated polymer as light emitter. We apply two principally different methods for the cathode deposition, physical and chemical, in order to fundamentally understand if in addition to the commonly accepted notion for the matching of the work functions also material modification takes place. The completed devices are studies by steady-state electrical measurements, impedance spectroscopy, current and emission lifetime measurements, and electroluminescence spectroscopy. The morphology of the cathodes is studied by Scanning Electron Microscopy and the formation of additional phases by Energy Dispersive X-ray Spectroscopy. The results help to define ways for more cost efficient fabrication of light emitting devices with applications in displays, electronic newspapers, room illumination, etc.

  13. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells

    NASA Astrophysics Data System (ADS)

    Liu, Pan; Han, Jia-Jun; Jiang, Li-Feng; Li, Zhao-Yu; Cheng, Jin-Ning

    2017-04-01

    The aniline was polymerized onto functionalized multi-walled carbon nanotubes in order to obtain a cathode material with core-shell structures for lithium batteries. The structure and morphology of the samples were investigated by Fourier transform infrared spectroscopy analysis, scanning electron microscope, transmission electron microscope and X-ray diffraction. The electrochemical properties of the composite were characterized by the cyclic voltammetry, the charge/discharge property, coulombic efficiency, and ac impedance spectroscopy in detail. At a constant current density of 0.2 C, the first specific discharge capacity of the reduced and oxidized PANI/WMCNTs were 181.8 mAh/g and 135.1 mAh/g separately, and the capacity retention rates were corresponding to 76.75% and 86.04% for 100 cycles with 99% coulombic efficiency. It was confirmed that the CNTs obviously enhanced the conductivity and electrochemical performance of polyaniline, and compared with the pure PANI, the reduced composite possessed a quite good performance for the cathode of lithium batteries.

  14. High-performance spinel-rich Li1.5MnTiO4+δ ultralong nanofibers as cathode materials for Li-ion batteries

    PubMed Central

    Hung Vu, Ngoc; Arunkumar, Paulraj; Bin Im, Won

    2017-01-01

    Recently, composite materials based on Li-Mn-Ti-O system were developed to target low cost and environmentally benign cathodes for Li-ion batteries. The spinel-layered Li1.5MnTiO4+δ bulk particles showed excellent cycle stability but poor rate performance. To address this drawback, ultralong nanofibers of a Li1.5MnTiO4+δ spinel-layered heterostructure were synthesized by electrospinning. Uniform nanofibers with diameters of about 80 nm were formed of tiny octahedral particles wrapped together into 30 μm long fibers. The Li1.5MnTiO4+δ nanofibers exhibited an improved rate capability compared to both Li1.5MnTiO4+δ nanoparticles and bulk particles. The uniform one-dimensional nanostructure of the composite cathode exhibited enhanced capacities of 235 and 170 mAh g−1 at C/5 and 1 C rates, respectively. Its unique structure provided a large effective contact area for Li+ diffusion, and low charge transfer resistance. Moreover, the layered phase contributed to its capacity in over 3 V region, which increased specific energy (726 Wh kg−1) compared to the bulk particles (534 Wh kg−1). PMID:28361945

  15. Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Hui; Bai, Ying; Wu, Feng; Li, Yu; Wu, Chuan

    2015-01-01

    Budding willow branches shaped Na3V2(PO4)3/C nanofibers were successfully synthesized by a simple electrospinning technique with Poly(vinyl pyrrilidone) (PVP). The Na3V2(PO4)3/C nanoparticles that anchored on the nanofibers surface seemed like the willow buds; the inner core of the nanofibers, which composed Na3V2(PO4)3, looked like willow twig and the uniform carbon layer was same with willow bark. Such special morphology played a vital role in improving cycle stability and rate capability of the electrode due to the conductive network built up by nanofibers. The Na3V2(PO4)3/C nanofibers cathode exhibited an initial specific capacity of 106.8 mAh g-1 at a current density of 0.2C, still stabling at 107.2 mAh g-1 after 125 cycles with excellent cycle stability. Moreover, a capacity retention of 95.7% was obtained when Na3V2(PO4)3/C nanofibers cycled stepwise from 0.2 to 2C. Good electrochemical performance should be ascribed to both the special morphology and preferential growth of the (113) plane. The simple synthesis technique and good electrochemical performance suggests that this material with the special shape of budding willow branches is a promising cathode for sodium ion batteries.

  16. Synthesis and discharge performances of NiCl2 by surface modification of carbon coating as cathode material of thermal battery

    NASA Astrophysics Data System (ADS)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi

    2017-04-01

    The high solubility in molten salt and low conductivity of NiCl2, compared with traditional FeS2 and CoS2, have become the restrictions for its extensive application in cathode materials of thermal batteries. In this study, carbon coated NiCl2 cathode is successfully fabricated by the carbonization of stearic acid. The high specific energy of 641 Wh kg-1 at current densities of 0.5 A cm-2 are observed for the carbon coated NiCl2 thermal batteries, which is higher than the pure NiCl2 with 475 Wh kg-1. The high specific energies and high-current discharge ability are attribute to the graphite and amorphous carbon layers on the surface of NiCl2 crystalline, which were detected by TEM after carbonization. The graphite layers can improve the conductivity of NiCl2. Meanwhile the coated carbon structure could reduce the solubility of NiCl2 in molten salt.

  17. High-performance spinel-rich Li1.5MnTiO4+δ ultralong nanofibers as cathode materials for Li-ion batteries.

    PubMed

    Hung Vu, Ngoc; Arunkumar, Paulraj; Bin Im, Won

    2017-03-31

    Recently, composite materials based on Li-Mn-Ti-O system were developed to target low cost and environmentally benign cathodes for Li-ion batteries. The spinel-layered Li1.5MnTiO4+δ bulk particles showed excellent cycle stability but poor rate performance. To address this drawback, ultralong nanofibers of a Li1.5MnTiO4+δ spinel-layered heterostructure were synthesized by electrospinning. Uniform nanofibers with diameters of about 80 nm were formed of tiny octahedral particles wrapped together into 30 μm long fibers. The Li1.5MnTiO4+δ nanofibers exhibited an improved rate capability compared to both Li1.5MnTiO4+δ nanoparticles and bulk particles. The uniform one-dimensional nanostructure of the composite cathode exhibited enhanced capacities of 235 and 170 mAh g(-1) at C/5 and 1 C rates, respectively. Its unique structure provided a large effective contact area for Li(+) diffusion, and low charge transfer resistance. Moreover, the layered phase contributed to its capacity in over 3 V region, which increased specific energy (726 Wh kg(-1)) compared to the bulk particles (534 Wh kg(-1)).

  18. Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ren, Qian; Brett, Dan J. L.; He, Guanjie; Wang, Rongfang; Key, Julian; Ji, Shan

    2017-03-01

    Tremella-like NiO@Co3O4@MnO2 particles of core-double-shelled structure were synthesized by a three-step hydrothermal route and thermal treatment. The hierarchical layered porous structure of the particles has a BET surface area of 179.2 m2 g-1. Galvanostatic cycling in 6.0 M KOH aqueous solution produced capacitance over an ideal cathode potential cycling range. At a high current density of 2 A g-1, NiO@Co3O4@MnO2 has a high specific capacitance of 792.5 F g-1 with > 90% capacity retention over 1000 cycles, and a high rate capability of 68.9% of its initial capacitance was also maintained over a 0.2-4 A g-1 current density increase. We conclude that NiO@Co3O4@MnO2 offers a promising high rate, high specific capacitance cathode material for alkaline supercapacitors, which owes both to its porous architecture and its synergistic mixed oxide core-shell-shell composition.

  19. Oxygen evolution from olivine M n1 -xMxP O4 (M =Fe ,Ni,Al,Mg) delithiated cathode materials

    NASA Astrophysics Data System (ADS)

    Snydacker, David H.; Wolverton, C.

    2017-01-01

    Olivine LiMnP O4 is a promising cathode material for Li-ion batteries. One drawback of this material is the propensity of its delithiated phase, MnP O4 , to evolve oxygen gas above approximately 200 °C. During thermal runaway of cells, this oxygen gas can burn the electrolyte and other cell components and thereby jeopardize safety. Partial substitution of Mn with M =Fe , Ni, Al, or Mg has been used to improve the lithium intercalation kinetics of L ixMnP O4 ; however, the effect of these substitutions on oxygen evolution is not fully documented. In this paper, we calculate phase diagrams and oxygen evolution diagrams for these M n1 -xMxP O4 delithiated cathode materials. To generate the phase diagrams, we use subregular solid-solution models and fit the energetic parameters of these models to density functional theory calculations of special quasirandom structures. The resulting thermodynamic models describe the effect of mixing on the initial temperature of oxygen evolution and on the cumulative amount of oxygen evolution at elevated temperatures. We find that addition of Fe increases the initial temperature and decreases the cumulative amount of oxygen evolution. M n0.5F e0.5P O4 exhibits an initial temperature 50 °C higher than MnP O4 and releases 70% less oxygen gas at 300 °C. Al is insoluble in MnP O4 , so addition of Al has no affect on the initial temperature. However, Al addition does slightly decrease the amount of oxygen evolution due to an inactive AlP O4 component. Mg and Ni both decrease the initial temperature of oxygen evolution, and therefore may worsen the safety of MnP O4 .

  20. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    NASA Astrophysics Data System (ADS)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  1. Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials.

    PubMed

    Kong, Fanying; Wang, Aijie; Ren, Hong-Yu

    2014-08-01

    This study developed and optimized a modular biocathode materials design in bioelectrochemical system (BES) using composite metal and carbon-based materials. The 4-chlorophenol (4-CP) dechlorination could be improved with such composite materials. Results showed that stainless steel basket (SSB) filled with graphite granules (GG) and carbon brush (CB) (SSB/GG/CB) was optimum for dechlorination, followed by SSB/CB and SSB/GG, with rate constant k of 0.0418 ± 0.0002, 0.0374 ± 0.0004, and 0.0239 ± 0.0002 h(-1), respectively. Electrochemical impedance spectroscopy (EIS) demonstrated that the composite materials with metal can benefit the electron transfer and decrease the charge transfer resistance to be 80.4 Ω in BES-SSB/GG/CB, much lower than that in BES-SSB (1674.3 Ω), BES-GG (387.3 Ω), and BES-CB (193.8 Ω). This modular cathode design would be scalable with successive modules for BES scale-up, and may offer useful information to guide the selection and design of BES materials towards dechlorination improvement in wastewater treatment.

  2. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yi, Ting-Feng; Mei, Jie; Zhu, Yan-Rong

    2016-06-01

    Spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most promising high voltage cathode materials for future application due to its advantages of large reversible capacity, high thermal stability, low cost, environmental friendliness, and high energy density. LNMO can provide 20% and 30% higher energy density than traditional cathode materials LiCoO2 and LiFePO4, respectively. Unfortunately, LNMO-based batteries with LiPF6-based carbonate electrolytes always suffer from severe capacity deterioration and poor thermostability because of the oxidization of organic carbonate solvents and decomposition of LiPF6, especially at elevated temperatures and water-containing environment. Hence, it is necessary to systematically and comprehensively summarize the progress in understanding and modifying LNMO cathode from various aspects. In this review, the structure, transport properties and different reported possible fading mechanisms of LNMO cathode are first discussed detailedly. And then, the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of LNMO-based batteries, including synthesis, control of special morphologies, element doping and surface coating etc., especially at elevated temperatures. Finally, an insight into the future research and further development of LNMO cathode is discussed.

  3. DARHT 2 kA Cathode Development

    SciTech Connect

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We

  4. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.

    PubMed

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi

    2015-11-01

    Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC.

  5. Preparation and Electrochemical Properties of Coral-like Li2FeSiO4/C Cathode Material by Two-Step Precipitation Method

    NASA Astrophysics Data System (ADS)

    Yan, Yinglin; Ren, Bing; Xu, Yunhua; Wang, Juan; Yang, Rong; Zhong, Lisheng; Zhao, Nana; Wu, Hong

    2016-10-01

    Lithium iron silicate (Li2FeSiO4) cathode materials have been synthesized by a soft chemical method combined with spray drying, being both simple and economical. Super P, as a new kind of nanoscale carbon black, was added in the synthesis process. The phase and microstructure of the samples were characterized by x-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy. The results show that the obtained Li2FeSiO4 possessed coral-like morphology with size range from 250 nm to 450 nm. Super P was decorated on the surface of the Li2FeSiO4 particles. Furthermore, the electrochemical properties of the products were tested, indicating that the as-obtained Li2FeSiO4/C composite presented high specific discharge capacities and stable cycling performance, which can be attributed to the coral-like morphology and Super P coating.

  6. A fundamental study on carbon composites of FeF3.0.33H2O as open-framework cathode materials for calcium-ion batteries

    NASA Astrophysics Data System (ADS)

    Murata, Yoshiaki; Minami, Ryoji; Takada, Shoki; Aoyanagi, Kengo; Tojo, Tomohiro; Inada, Ryoji; Sakurai, Yoji

    2017-01-01

    Carbon composites of open-framework iron fluoride (FeF3.0.33H2O/C) was investigated as a new cathode material for calcium ion batteries for the first time. FeF3.0.33H2O/C delivers a relatively large capacity of ca. 110mAhg-1. Its reversible capacity was greatly improved over non-composite FeF3.0.33H2O. During the first discharge and discharge-charge, insertion/extraction of Ca2+ into/from FeF3.0.33H2O/C were confirmed by an ex-situ X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. From the ex-situ analysis results, it was confirmed that Ca2+ was inserted and extracted with redox of Fe.

  7. A novel tunnel Na(0.61)Ti(0.48)Mn(0.52)O₂ cathode material for sodium-ion batteries.

    PubMed

    Guo, Shaohua; Yu, Haijun; Liu, Dequan; Tian, Wei; Liu, Xizheng; Hanada, Nobuko; Ishida, Masayoshi; Zhou, Haoshen

    2014-07-28

    A novel tunnel Na(0.61)Ti(0.48)Mn(0.52)O2 material is explored as a cathode for sodium-ion batteries for the first time. It can deliver a reversible discharge capacity of 86 mA h g(-1) with an average voltage of 2.9 V at 0.2 C rate in a sodium half cell, exhibiting good rate capability and capacity retention at a cut-off voltage of 1.5-4 V. These results indicate that tunnel Na(0.61)Ti(0.48)Mn(0.52)O2 has a great potential application in large scale energy storage.

  8. The preparation and graphene surface coating NaTi2(PO4)3 as cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Na; Wang, Yanping; Rao, Richuan; Dong, Xiongzi; Zhang, Xianwen; Zhu, Sane

    2017-03-01

    The graphene coated NaTi2(PO4)3 has been fabricated via a simple sol-gel process followed by calcination. The NaTi2(PO4)3/graphene (NTP/G) composite is used directly as cathode electrode material for lithium-ion battery and the electrochemical properties of the composite in this system is firstly studied in detail. In the charge-discharge process, two Li+ can occupy octahedral M (2) site and be reversibly intercalated into the 3D framework of NTP through the ion conduction channel where almost all of Na+ are immobilized to sustain the framework. At 5C rate, the capacity retention of the NTP/G composite after 800 cycles is still up to 82.7%. The superior electrochemical properties of NTP/G is ascribed to its stable 3-D framework and the enhanced electronic conduction resulting from the graphene sheets surface modification.

  9. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-04-30

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts

  10. Effects of Pr3+-deficiency on structure and properties of PrBaCo2O5+δ cathode material-A comparison with Ba2+-deficiency case

    NASA Astrophysics Data System (ADS)

    Jiang, Xuening; Shi, Yuchao; Zhou, Wenlong; Li, Xiangnan; Su, Zhixian; Pang, Shengli; Jiang, Lei

    2014-12-01

    Double-layered perovskite oxides of Pr1-yBaCo2O5+δ (P1-yBCO) with A-site Pr3+-deficiency contents of y = 0.00-0.10 have been studied with respect to phase structures, oxygen content, high-temperature chemical stabilities as well as electrical and electrochemical properties as cathode materials of intermediate-temperature solid oxide fuel cells (IT-SOFCs). The Pr3+-deficiency content in P1-yBCO is limited by ∼8 mol%, and the Pr3+-deficiency hardly changes lattice parameters of P1-yBCO. Content of oxygen vacancies increases while that of Co4+ decreases with the higher Pr3+-deficiency content. P1-yBCO is chemically stable with the Gd0.1Ce0.9O1.95 (GDC) electrolyte at 1100 °C and below in air. Introduction of Pr3+-deficiency decreases electrical conductivities and significantly improves electrochemical performance of P1-yBCO. Among the studied oxides, P0.95BCO with 5 mol% Pr3+-deficiency shows the best electrochemical performance with low ASR values of 0.113 Ω cm2 at 600 °C, 0.054 Ω cm2 at 650 °C and 0.028 Ω cm2 at 700 °C respectively, demonstrating it a promising cathode material of IT-SOFCs. The results of P1-yBCO have also been compared with those of Ba2+-deficient PrBa1-xCo2O5+δ (PB1-xCO, x = 0.00-0.10) oxides and major differences have been found in lattice parameters, oxygen content, chemical defects, electrical conductivities and ASR results. Factors contributing to these differences have been discussed.

  11. C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Guohui; Wu, Quanping; Zhao, Jun; Ma, Qianqian; Wang, Chengyang

    2014-02-01

    C/LiFePO4/multi-walled carbon nanotubes composite is prepared by a hybrid of hydrothermal progress that involves an in-situ multi-walled carbon nanotubes embedding approach and a facile electro-polymerization polyaniline process. The designed material on nanosize with about 100-200 nm in length contains tridimensional networks and uniform-thickness carbon layer, which remarkably enhance its electronic conductivity. The synthesized LiFePO4 composite offers a discharge capacity of 169.8 mAh g-1 at the C/2 rate and high capacity retention at the 5C rate. Meanwhile, the well-crystallized material composed of many densely aggregated nanoparticles and interconnected nanochannels presents a high tap density leading to excellent volumetric Li storage properties at high current rates (>135 mAh cm-3 at 20C), and stable charge/discharge cycle ability (>95% capacity retention after 200 charge/discharge cycles). As such, the prepared material with controllable size and structure yields an enhanced electrochemical performance in terms of charming rate capability, cycling life and capacity retention as a cathode in lithium-ion batteries, this non-organic facile synthesize avenue can be promising to prepare high-power electrode materials.

  12. Characterization of SrCo0.7Fe0.2Nb0.1O3-δ cathode materials for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lü, Shiquan; Yu, Bo; Meng, Xiangwei; Zhao, Xiaoyu; Ji, Yuan; Fu, Chengwei; Zhang, Yongjun; Yang, Lili; Fan, Hougang; Yang, Jinghai

    2015-01-01

    A new cubic perovskite oxide, SrCo0.7Fe0.2Nb0.1O3-δ (SCFN), is investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results show that there are no serious reactions between SCFN and Sm0.2Ce0.8O1.9 (SDC) except a slight peak shift. XPS analysis shows that the transition-metal cations in the SCFN exist in two different valence states, i.e., [Sr2+][Co3+/Co4+]0.7[Fe3+/Fe4+]0.2[Nb4+/Nb5+]0.1O3-δ. The electrical conductivity of the SCFN sample reaches a maximum 304 S cm-1 at 350 °C in air. In order to optimize thermal expansion coefficients (TECs) and electrochemical performance of the SCFN cathode, we fabricate SCFN-xSDC (x = 0, 20, 30, 40, 50, 60, wt%) composite cathodes. The thermal expansion behavior shows that the TECs value of SCFN cathode decreases greatly with SDC addition. The SDC addition reduces the polarization resistance, and the lowest polarization resistance 0.0255 Ω cm2 is achieved at 800 °C for SCFN-50SDC composite cathode. For SCFN-xSDC (x = 0, 40, 50, 60) composites, the maximum power densities of single-cells with SCFN-xSDC cathodes on 300 μm thick SDC electrolyte achieve 417, 557, 630 and 517 mW cm-2 at 800 °C, respectively. These results indicate that SCFN-50SDC composite is a potential cathode material for application in IT-SOFCs.

  13. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode.

    PubMed

    Gong, Yuexiang; Li, Jiuyi; Zhang, Yanyu; Zhang, Meng; Tian, Xiujun; Wang, Aimin

    2016-03-05

    Solutions of 500 mL 200 mg L(-1) fluoroquinolone antibiotic levofloxacin (LEVO) have been degraded by anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) processes using an activated carbon fiber (ACF) felt cathode from the point view of not only LEVO disappearance and mineralization, but also biodegradability enhancement. The LEVO decay by EF process followed a pseudo-first-order reaction with an apparent rate constant of 2.37×10(-2)min(-1), which is much higher than that of AO or AO-H2O2 processes. The LEVO mineralization also evidences the order EF>AO-H2O2>AO. The biodegradability (BOD5/COD) increased from 0 initially to 0.24, 0.09, and 0.03 for EF, AO-H2O2 and AO processes after 360 min treatment, respectively. Effects of several parameters such as current density, initial pH and Fe(2+) concentration on the EF degradation have also been examined. Three carboxylic acids including oxalic, formic and acetic acid were detected, as well as the released inorganic ions NH4(+), NO3(-) and F(-). At last, an ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to identify about eight aromatic intermediates formed in 60 min of EF treatment, and a plausible mineralization pathway for LEVO by EF treatment was proposed.

  14. Synthesis of Li2FeP2O7/Carbon nanocomposite as cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nagano, Hiroaki; Taniguchi, Izumi

    2015-12-01

    A Li2FeP2O7/Carbon (C) nanocomposite was successfully synthesized via a combination of spray pyrolysis and wet ball milling followed by annealing from a precursor solution; in which LiNO3, H3PO4 and Fe(NO3)3·9H2O were stoichiometrically dissolved into distilled water. Ascorbic acid was added to the precursor solution as a reduction agent. The peaks of the Li2FeP2O7/C nanocomposite obtained by X-ray diffraction analysis were indexed to the monoclinic structure with the space group P21/c. The Li2FeP2O7/C nanocomposite cathode delivered a first discharge capacity of 100 mAh g-1 at 0.05 C, which corresponded to 91% of its theoretical capacity. After various higher discharge rates from 0.05 to 2 C in the cycle performance test, a discharge capacity of 93 mAh g-1 was achieved at 0.05 C, which showed an excellent capacity retention (93%) after 29 cycles.

  15. Effect of titanium addition as nickel oxide formation inhibitor in nickel-rich cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Nurpeissova, Arailym; Choi, Moon Ho; Kim, Jik-Soo; Myung, Seung-Taek; Kim, Sung-Soo; Sun, Yang-Kook

    2015-12-01

    Among high capacity cathodes, LiNi0.8Co0.15Al0.05O2 has a high capacity and stable electrochemical performance, although it suffers from degradation upon cycling and aging as a result of the formation of inactive NiO on the surface edges. In this study, the role of Ti, which partially replaces Ni in the transition metal layer that is in particular intended to surface region not in bulk of LiNi0.8Co0.15Al0.05O2, is investigated on the electrochemical performance and interfacial phenomena using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, and X-ray diffraction analyses before and after electrochemical cycling. As a result, formation of NiO inactive phase is inhibited for the Ti-doped LiNi0.8Co0.15Al0.05O2, so that the electrode could deliver higher capacity upon cycling test. Further electrochemical impedance analysis is performed to understand the interfacial behavior of Ti-doped LiNi0.8Co0.15Al0.05O2 (LiNi0.80Co0.15Al0.02Ti0.03O2).

  16. Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries.

    PubMed

    Shi, Ye; Zhou, Xingyi; Zhang, Jun; Bruck, Andrea M; Bond, Andrew C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S; Yu, Guihua

    2017-03-08

    Controlling architecture of electrode composites is of particular importance to optimize both electronic and ionic conduction within the entire electrode and improve the dispersion of active particles, thus achieving the best energy delivery from a battery. Electrodes based on conventional binder systems that consist of carbon additives and nonconductive binder polymers suffer from aggregation of particles and poor physical connections, leading to decreased effective electronic and ionic conductivities. Here we developed a three-dimensional (3D) nanostructured hybrid inorganic-gel framework electrode by in situ polymerization of conductive polymer gel onto commercial lithium iron phosphate particles. This framework electrode exhibits greatly improved rate and cyclic performance because the highly conductive and hierarchically porous network of the hybrid gel framework promotes both electronic and ionic transport. In addition, both inorganic and organic components are uniformly distributed within the electrode because the polymer coating prevents active particles from aggregation, enabling full access to each particle. The robust framework further provides mechanical strength to support active electrode materials and improves the long-term electrochemical stability. The multifunctional conductive gel framework can be generalized for other high-capacity inorganic electrode materials to enable high-performance lithium ion batteries.

  17. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    SciTech Connect

    Dyartanti, Endah Retno; Jumari, Arif Nur, Adrian; Purwanto, Agus

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  18. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.

    PubMed

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2017-01-16

    Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted.

  19. Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials

    PubMed Central

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D.

    2016-01-01

    Abstract Research on redox‐flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of “green”, safe, and cost‐efficient energy storage, research has shifted from metal‐based materials to organic active materials in recent years. This Review presents an overview of various flow‐battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox‐active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. PMID:28070964

  20. Characterization and modeling of compliant active materials

    NASA Astrophysics Data System (ADS)

    Marra, S. P.; Ramesh, K. T.; Douglas, A. S.

    2003-09-01

    Active materials respond mechanically to changes in environmental conditions. One example of a compliant active material is a polymer gel. Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles". While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of compliant active materials. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of these kinds of materials. The mechanical properties of compliant active materials are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation state. A biaxial testing system has been developed which can measure stresses and deformations of polymer gel films in a variety of liquid environments. This testing system is used to determine the form and parameters of the free-energy function for a specific active polymer gel, poly(vinyl alcohol)-poly(acrylic acid) gel.

  1. Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries.

    PubMed

    Chen, Tao; Cheng, Baorui; Zhu, Guoyin; Chen, Renpeng; Hu, Yi; Ma, Lianbo; Lv, Hongling; Wang, Yanrong; Liang, Jia; Tie, Zuoxiu; Jin, Zhong; Liu, Jie

    2017-01-11

    Despite high theoretical energy density, the practical deployment of lithium-sulfur (Li-S) batteries is still not implemented because of the severe capacity decay caused by polysulfide shuttling and the poor rate capability induced by low electrical conductivity of sulfur. Herein, we report a novel sulfur host material based on "sea urchin"-like cobalt nanoparticle embedded and nitrogen-doped carbon nanotube/nanopolyhedra (Co-NCNT/NP) superstructures for Li-S batteries. The hierarchical micromesopores in Co-NCNT/NP can allow efficient impregnation of sulfur and block diffusion of soluble polysulfides by physical confinement, and the incorporation of embedded Co nanoparticles and nitrogen doping (∼4.6 at. %) can synergistically improve the adsorption of polysulfides, as evidenced by beaker cell tests. Moreover, the conductive networks of Co-NCNT/NP interconnected by nitrogen-doped carbon nanotubes (NCNTs) can facilitate electron transport and electrolyte infiltration. Therefore, the specific capacity, rate capability, and cycle stability of Li-S batteries are significantly enhanced. As a result, the Co-NCNT/NP based cathode (loaded with 80 wt % sulfur) delivers a high discharge capacity of 1240 mAh g(-1) after 100 cycles at 0.1 C (based on the weight of sulfur), high rate capacity (755 mAh g(-1) at 2.0 C), and ultralong cycling life (a very low capacity decay of 0.026% per cycle over 1500 cycles at 1.0 C). Remarkably, the composite cathode with high areal sulfur loading of 3.2 mg cm(-2) shows high rate capacities and stable cycling performance over 200 cycles.

  2. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  3. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells.

    PubMed

    Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao

    2015-01-01

    A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity.

  4. Investigation of structural and electrochemical properties of LaSrCo1-xSbxO4 (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Junkai; Zhou, Jun; Fan, Weiwei; Wang, Wendong; Wu, Kai; Cheng, Yonghong

    2017-03-01

    The structural and electrochemical properties of the layered perovskite oxides LaSrCo1-xSbxO4 (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo1-xSbxO4 to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo0.95Sb0.05O4 may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (Rp) values is observed from the Sb-doped sample with respect to the undoped samples. For example, Rp of LaSrCo0.95Sb0.05O4 on LSGM was observed to be 0.16 Ω cm2 at 800 °C in air. The main rate-limiting step for LaSrCo0.95Sb0.05O4 cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo1-xSbxO4 based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs.

  5. A High‐Voltage and High‐Capacity Li1+xNi0.5Mn1.5O4 Cathode Material: From Synthesis to Full Lithium‐Ion Cells

    PubMed Central

    Mancini, Marilena; Gabrielli, Giulio; Kinyanjui, Michael; Kaiser, Ute; Wohlfahrt‐Mehrens, Margret

    2016-01-01

    Abstract We report Co‐free, Li‐rich Li1+xNi0.5Mn1.5O4 (0cathode materials for Li‐ion cells. Their tailored morphology allows high density and facile processability for electrode development. In the potential range 2.4–4.9 V, the cathode material of composition Li1.5Ni0.5Mn1.5O4 shows excellent performance in terms of capacity and cycling stability in half‐cells. In addition, for the first time, we demonstrate the application of the high‐voltage and high‐capacity cathode in full Li‐ion cells with graphite anodes with very high cycling stability. The electrochemical performance and low cost of the cathode material, together with the feasibility of a chemical method to obtain Li‐rich Li1+xNi0.5Mn1.5O4 (0

  6. Determination of lithium and transition metals in Li1 Ni1/3 Co1/3 Mn1/3 O2 (NCM) cathode material for lithium-ion batteries by capillary electrophoresis.

    PubMed

    Vortmann-Westhoven, Britta; Lürenbaum, Constantin; Winter, Martin; Nowak, Sascha

    2017-02-01

    In this work, we present a novel electrophoretic method that was developed for the determination of lithium and transition metals in LiNi1/3 Co1/3 Mn1/3 O2 cathode material after microwave digestion. The cations in the digested LiNi1/3 Co1/3 Mn1/3 O2 material were separated by CE and the element content was determined by UV/Vis detection. To characterize the precision of the measurements, the RSDs and concentrations were calculated and compared to those obtained with ICP-optical emission spectrometry (ICP-OES). Furthermore, a certified reference material (BCR 176R-fly ash) was investigated for all techniques. For active material components, the LOD and LOQ were determined. The LODs and LOQs for the metals determined by CE were as follows: lithium (LOD/LOQ): 17.41/62.70 μg/L, cobalt (LOD/LOQ): 348.4/1283 μg/L, manganese (LOD/LOQ): 540.2/2095 μg/L, and nickel (LOD/LOQ): 838.0/2982 μg/L. Recovery rates for lithium were in the range of 95-103%. It could be proven that with the new technique, the results for the determination of the lithium content of active material were comparable with those obtained by ICP-OES and ion chromatography. Furthermore, the recovery rates of the transition metals were determined to be between 96 and 110% by CE and ICP-OES.

  7. Assessments of the Effect of Increasingly Severe Cathodic Pretreatments on the Electrochemical Activity of Polycrystalline Boron-Doped Diamond Electrodes.

    PubMed

    Brocenschi, Ricardo F; Hammer, Peter; Deslouis, Claude; Rocha-Filho, Romeu C

    2016-05-17

    The electrochemical response of many redox species on boron-doped diamond (BDD) electrodes can be strongly dependent on the type of chemical termination on their surface, hydrogen (HT-BDD) or oxygen (OT-BDD). For instance, on an HT-BDD electrode the [Fe(CN)6](3-/4-) redox system presents a reversible voltammetric behavior, whereas the oxidation overpotential of ascorbic acid (AA) is significantly decreased. Moreover, the electrochemical activity of BDD electrodes can be significantly affected by electrochemical pretreatments, with cathodic pretreatments (CPTs) leading to redox behaviors associated with HT-BDD. Here we report on the effect of increasingly severe CPTs on the electrochemical activity of a highly doped BDD electrode, assessed with the [Fe(CN)6](3-/4-) and AA redox probes, and on the atomic bonding structure on the BDD surface, assessed by XPS. The hydrogenation level of the BDD surface was increased by CPTs, leading to decreases of the total relative level of oxidation of the BDD surface of up to 36%. Contrary to what is commonly assumed, we show that BDD surfaces do not need to be highly hydrogenated to ensure that a reversible voltammetric behavior is obtained for Fe(CN)6](3-/4-); after a CPT, this was attained even when the total relative level of oxidation on the BDD surface was about 15%. At the same time, the overpotential for AA oxidation was confirmed as being very sensitive to the level of oxidation of the BDD surface, a behavior that might allow the use of AA as a secondary indicator of the relative atomic bonding structure on the BDD surface.

  8. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.

    PubMed

    Li, Lingjun; Xu, Ming; Yao, Qi; Chen, Zhaoyong; Song, Liubin; Zhang, Zhian; Gao, Chunhui; Wang, Peng; Yu, Ziyang; Lai, Yanqing

    2016-11-16

    Nickel-rich layered oxide cathode materials for advanced lithium-ion batteries have received much attention recently because of their high specific capacities and significant reduction of cost. However, these cathodes are facing a fundamental challenge of loss in performance as a result of surface lithium residue, side reactions with the electrolyte and structure rearrangement upon long-term cycling. Herein, by capturing the lithium residue on the surface of LiNi0.8Co0.1Mn0.1O2 (NCM) cathode material as Li source, we propose a hybrid coating strategy incorporating lithium ions conductor LixAlO2 with superconductor LixTi2O4 to overcome those obstinate issues. By taking full advantage of this unique hybrid nanomembrane coating architecture, both the lithium ion diffusion ability and electronic conductivity of LiNi0.8Co0.1Mn0.1O2 cathode material are improved, resulting in remarkably enhanced electrochemical performances during high voltage operation, including good cycle performance, high reversible capacity, and excellent rate capability. A high initial discharge capacity of 227 mAh g(-1) at 4.4 V cutoff voltage with Coulombic efficiency of 87.3%, and reversible capacity of 200 mAh g(-1) with 98% capacity retention after 100 cycles at a current density of 0.5 C can be attained. The improved electrochemical performance can be attributed to the synergetic contribution from the removal of lithium residues and the unique hybrid nanomembrane coating architecture. Most importantly, this surface modification technique could save some cost, simplify the technical procedure, and show great potential to optimize battery performance, apply in a large scale and extend to all nickel-rich cathode material.

  9. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  10. Activated carbon briquettes from biomass materials.

    PubMed

    Amaya, Alejandro; Medero, Natalia; Tancredi, Néstor; Silva, Hugo; Deiana, Cristina

    2007-05-01

    Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.

  11. Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material

    PubMed Central

    Zhang, Yuanjian; Schnepp, Zoë; Cao, Junyu; Ouyang, Shuxin; Li, Ying; Ye, Jinhua; Liu, Songqin

    2013-01-01

    Photoelectrochemical (PEC) conversion of solar light into chemical fuels is one of the most promising solutions to the challenge of sustainable energy. Graphitic carbon (IV) nitride polymer (g-CN) is an interesting sustainable photocathode material due to low-cost, visible-light sensitivity, and chemical stability up to 500°C in air. However, grain boundary effects and limited active sites greatly hamper g-CN activity. Here, we demonstrate biopolymer-activation of g-CN through simultaneous soft-templating of a sponge-like structure and incorporation of active carbon-dopant sites. This facile approach results in an almost 300% increase in the cathodic PEC activity of g-CN under simulated solar-irradiation. PMID:23831846

  12. On the room temperature synthesis of monoclinic Li 3FeF 6: A new cathode material for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Gonzalo, E.; Kuhn, A.; García-Alvarado, F.

    The α-polymorph of Li 3FeF 6 has been obtained at room temperature by a precipitation reaction from aqueous solution. This easy procedure that does not require any further annealing at high temperature yields a white powder with particles sizes ranging from 250 to 400 nm. After proper processing by mechanical milling, particle sizes clearly below 100 nm are achieved and this fluoride reacts reversibly with lithium at an average voltage of 3.1 V, which is expected for the Fe 3+/Fe 2+ redox couple. After 12 h of ball milling observed average particle size is ca. 50 nm and a reversible capacity of 100 mA h g -1 is obtained. This corresponds to 70% of the theoretical capacity expected for the one electron reduction of Fe 3+. The mentioned capacity is fairly kept upon cycling making the new material useful as the positive electrode in lithium batteries. This is the very first time that a material for cathode application in lithium batteries is prepared at room temperature and from aqueous solution, a procedure which is easily scalable and hence of high industrial interest.

  13. Synthesis and characterization of Li 3V (2 - 2 x/3)Mg x(PO 4) 3/C cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, J. S.; Yang, L.; Liu, K. Y.; Tang, Y. F.

    Li 3V (2 - 2 x/3)Mg x(PO 4) 3/C (x = 0, 0.15, 0.30, 0.45) composites have been synthesized by the sol-gel assisted solid state method, using adipic acid C 6H 10O 4 (hexanedioic acid) as carbon source. The particle size of the composites is ∼1 μm. During the pyrolysis process, Li 3V (2 - 2 x/3)Mg x(PO 4) 3/C network structure is formed. The effect of Mg 2+ doped on the electrochemical properties of Li 3V 2(PO 4) 3/C positive materials has been studied. Li 3V 1.8Mg 0.30(PO 4) 3/C as the cathode materials of Li-ion batteries, the retention rate of discharge capacity is 91.4% (1 C) after 100 cycles. Compared with Li 3V 2(PO 4) 3/C, Li 3V (2 - 2 x/3)Mg x(PO 4) 3/C composites have shown enhanced capacity and retention rate capability. The long-term cycles and ex situ XRD tests disclose that Li 3V 1.8Mg 0.30(PO 4) 3 exhibits higher structural stability than the undoped system.

  14. Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Zhu, Guobin; Zhang, Li; Qu, Qunting; Shen, Ming; Zheng, Honghe

    2015-01-01

    A spinel lithium nickel manganese oxide (LiNi0.5Mn1.5O4) cathode material is synthesized with a modified oxalate co-prec