Resonator modes and mode dynamics for an external cavity-coupled laser array
NASA Astrophysics Data System (ADS)
Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda
2015-03-01
Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.
Theory of active mode locking of a semiconductor laser in an external cavity
NASA Technical Reports Server (NTRS)
Yeung, J. A.
1981-01-01
An analytical treatment is given for the active mode locking of a semiconductor laser in an external resonator. The width of the mode-locked pulses is obtained as a function of the laser and cavity parameters and the amount of frequency detuning. The effects of self-modulation and saturation are included in the treatment. The pulse output is compared with that obtained by a strong modulation of the laser diode with no external cavity.
High speed strain measurement of active mode locking FBG laser sensor using chirped FBG cavity
NASA Astrophysics Data System (ADS)
Kim, Gyeong Hun; Kim, Joon Young; Park, Chang Hyun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo
2017-04-01
We propose a high speed strain measurement method using an active mode locking (AML) fiber Bragg grating (FBG) laser sensor with a chirped FBG cavity. The mode-locked frequency of the AML laser depends on both the position and Bragg wavelength of the FBG. Thus, the mode-locked frequency of cascaded FBGs can be detected independently along the cavity length of cascaded FBGs. The strain across FBGs can be interrogated dynamically by monitoring the change in mode-locked frequency. In this respect, the chirped FBG critically improves the frequency sensitivity to Bragg wavelength shift as a function of increasing dispersion in the AML cavity. The strain measurement of the FBG sensor shows a highly linear response, with an R-squared value of 0.9997.
Synchronization of pulses from mode-locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, G.T.
A study of the synchronization of mode-locked lasers is presented. In particular, we investigate the timing of the laser output pulses with respect to the radio frequency (RF) signal driving the mode-locking elements in the laser cavity. Two types of mode-locked lasers are considered: a cw loss-modulated mode-locked argon ion laser; and a q-switched active-passive mode-locked Nd:YAG laser. We develop theoretical models for the treatment of laser pulse synchronization in both types of lasers. Experimental results are presented on a combined laser system that synchronizes pulses from both an argon ion and a Nd:YAG laser by using a common RFmore » signal to drive independent mode-lockers in both laser cavities. Shot to shot jitter as low as 18 ps (RMS) was measured between the output pulses from the two lasers. The theory of pulse synchronization for the cw loss-modulated mode-locked argon ion laser is based on the relationship between the timing of the mode-locked laser pulse (with respect to the peak of the RF signal) and the length of the laser cavity. Experiments on the argon laser include the measurement of the phase shift of the mode-locked pulse as a function of cavity length and intracavity intensity. The theory of synchronization of the active-passive mode-locked Nd:YAG laser is an extension of the pulse selection model of the active-passive laser. Experiments on the active-passive Nd:YAG laser include: measurement of the early noise fluctuations; measurement of the duration of the linear build-up stage (time between laser threshold and saturation of the absorber); measurement of jitter as a function of the mode-locker modulation depth; and measurement of the output pulse phase shift as a function of cavity length.« less
Quasi-distributed fiber sensor using active mode locking laser cavity with multiple FBG reflections
NASA Astrophysics Data System (ADS)
Park, Chang Hyun; Kim, Gyeong Hun; Kim, Chang-Seok; Lee, Hwi Don; Chung, Youngjoo
2017-04-01
We have demonstrated a quasi-distributed sensor using an active mode-locking (AML) laser with multiple fiber Bragg grating (FBG) reflections of the same center wavelength. We found that variations in the multiple cavity segment lengths between FBGs can be measured by simply sweeping the modulation frequency, because the modulation frequency of the AML laser is proportionally affected by cavity length.
Actively mode-locked fiber laser using a deformable micromirror.
Fabert, Marc; Kermène, Vincent; Desfarges-Berthelemot, Agnès; Blondy, Pierre; Crunteanu, Aurelian
2011-06-15
We present what we believe to be the first fiber laser system that is actively mode-locked by a deformable micromirror. The micromirror device is placed within the laser cavity and performs a dual function of modulator and end-cavity mirror. The mode-locked laser provides ~1-ns-long pulses with 20 nJ/pulse energy at 5 MHz repetition rates.
NASA Technical Reports Server (NTRS)
Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)
2010-01-01
A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO
NASA Astrophysics Data System (ADS)
Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2017-04-01
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia
2011-02-01
An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.
2015-07-16
SECURITY CLASSIFICATION OF: The InAs quantum dot (QD) grown on GaAs substrates represents a highly performance active region in the 1 - 1.3 µm...2015 Approved for Public Release; Distribution Unlimited Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface...ABSTRACT Final Report: Mode-locking of an InAs Quantum Dot Based Vertical External Cavity Surface Emitting Laser Using Atomic Layer Graphene Report
Whispering gallery mode lithium niobate microresonators for photonics applications
NASA Astrophysics Data System (ADS)
Maleki, Lute; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Matsko, Andrey B.
2003-07-01
We review various photonics applications of whispering gallery mode (WGM) dielectric resonators and focus on the capability of generating trains of short optical pulses using WGM lithium niobate cavities. We introduce schemes of optical frequency comb generators, actively mode-locked lasers, and coupled opto-electronic oscillators where WGM cavities are utilized for the light amplification and modulation.
Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis.
Anctil, G; McCarthy, N; Piché, M
2000-12-20
We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.
Sensitivity of a Three-Mirror Cavity to Thermal and Nonlinear Lensing: Gaussian-Beam Analysis
NASA Astrophysics Data System (ADS)
Anctil, Geneviève; McCarthy, Nathalie; Piché, Michel
2000-12-01
We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems ( C 0 ) or self-imaging systems ( B 0 ) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.
Generation of Ultrashort Pulses from Chromium - Forsterite Laser
NASA Astrophysics Data System (ADS)
Seas, Antonios
This thesis discusses the generation of ultrashort pulses from the chromium-doped forsterite laser, the various designs, construction and operation of forsterite laser systems capable of generating picosecond and femtosecond pulses in the near infrared. Various mode-locking techniques including synchronous optical pumping, active mode-locking, and self-mode-locking were successfully engineered and implemented. Active and synchronously pumped mode-locking using a three mirror, astigmatically compensated cavity design and a forsterite crystal with a figure of merit of 26 (FOM = alpha_{rm 1064nm} /alpha_{rm 1250nm }) generated pulses with FWHM of 49 and 260 ps, respectively. The tuning range of the mode-locked forsterite laser in both cases was determined to be in the order of 100 nm limited only by the dielectric coatings of the mirrors used in the cavity. The slope efficiency was measured to be 12.5% for synchronous pumping and 9.1% for active mode-locking. A four mirror astigmatically compensated cavity was found to be more appropriate for mode-locking. Active mode-locking using the four-mirror cavity generated pulses with FWHM of 31 ps. The pulsewidth was further reduced to 6 ps by using a forsterite crystal with a higher figure of merit (FOM = 39). Pulsewidth-bandwidth measurements indicated the presence of chirp in the output pulses. Numerical calculation of the phase characteristics of various optical materials indicated that a pair of prisms made of SF 14 optical glass can be used in the cavity in order to compensate for the chirp. The insertion of the prisms in the cavity resulted in a reduction of the pulsewidth from 6 ps down to 900 fs. Careful optimization of the laser cavity resulted in the generation of stable 90-fs pulses. Pulses as short as 60 fs were generated and self-mode-locked mode of operation using the Cr:forsterite laser was demonstrated for the first time. Pure self-mode-locking was next achieved generating 105-fs pulses tunable between 1230-1270 nm. Numerical calculations of the cubic phase characteristics of the prism pair used indicated that the pair of SF 14 prisms compensated for quadratic phase but introduced a large cubic phase term. Numerical evaluation of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was also observed in the stability of the self-mode-locked forsterite laser and in the ease of achieving mode-locking. Using the same experimental arrangement and a forsterite crystal with improved FOM the pulse width was reduced to 36 fs.
NASA Astrophysics Data System (ADS)
Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.
2009-10-01
Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana
2010-06-01
We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.
Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity
NASA Astrophysics Data System (ADS)
Sárkány, Lőrinc; Fortágh, József; Petrosyan, David
2018-03-01
We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.
NASA Astrophysics Data System (ADS)
Shi, Tiantian; Pan, Duo; Chang, Pengyuan; Shang, Haosen; Chen, Jingbiao
2018-04-01
Without exploiting any frequency selective elements, we have realized a highly integrated, single-mode, narrow-linewidth Nd:YAG 1064 nm laser, which is end-pumped by the 808.6 nm diode laser in an integrated invar cavity. It turns out that each 1064 nm laser achieves a most probable linewidth of 8.5 kHz by beating between two identical laser systems. The output power of the 1064 nm laser increases steadily as the 808.6 nm pump power is raised, which can be up to 350 mW. Moreover, the resonant wavelength of cavity grows continuously in a certain crystal temperature range. Such a 1064 nm laser will be frequency stabilized to an ultrastable cavity by using the Pound-Drever-Hall technique and used as the good cavity laser to lock the main cavity length of 1064/1470 nm good-bad cavity dual-wavelength active optical clock.
Operation of the 56 MHz superconducting RF cavity in RHIC during run 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.
2015-09-11
A 56 MHz superconducting RF cavity was designed and installed in the Relativistic Heavy Ion Collider (RHIC). It is the first superconducting quarter wave resonator (QWR) operating in a high-energy storage ring. We discuss herein the cavity operation with Au+Au collisions, and with asymmetrical Au+He3 collisions. The cavity is a storage cavity, meaning that it becomes active only at the energy of experiment, after the acceleration cycle is completed. With the cavity at 300 kV, an improvement in luminosity was detected from direct measurements, and the bunch length has been reduced. The uniqueness of the QWR demands an innovative designmore » of the higher order mode dampers with high-pass filters, and a distinctive fundamental mode damper that enables the cavity to be bypassed during the acceleration stage.« less
Gee, S; Ozharar, S; Plant, J J; Juodawlkis, P W; Delfyett, P J
2009-02-01
We report the generation of optical pulse trains with 380 as of residual timing jitter (1 Hz-1 MHz) from a mode-locked external-cavity semiconductor laser, through a combination of optimizing the intracavity dispersion and utilizing a high-power, low-noise InGaAsP quantum-well slab-coupled optical waveguide amplifier gain medium. This is, to our knowledge, the lowest residual timing jitter reported to date from an actively mode-locked laser.
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
Fiber cavities with integrated mode matching optics.
Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias
2017-07-17
In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.
Quantized mode of a leaky cavity
NASA Astrophysics Data System (ADS)
Dutra, S. M.; Nienhuis, G.
2000-12-01
We use Thomson's classical concept of mode of a leaky cavity to develop a quantum theory of cavity damping. This theory generalizes the conventional system-reservoir theory of high-Q cavity damping to arbitrary Q. The small system now consists of damped oscillators corresponding to the natural modes of the leaky cavity rather than undamped oscillators associated with the normal modes of a fictitious perfect cavity. The formalism unifies semiclassical Fox-Li modes and the normal modes traditionally used for quantization. It also lays the foundations for a full quantum description of excess noise. The connection with Siegman's semiclassical work is straightforward. In a wider context, this theory constitutes a radical departure from present models of dissipation in quantum mechanics: unlike conventional models, system and reservoir operators no longer commute with each other. This noncommutability is an unavoidable consequence of having to use natural cavity modes rather than normal modes of a fictitious perfect cavity.
Intertwined and vestigial order with ultracold atoms in multiple cavity modes
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Sarang; Shchadilova, Yulia E.; Demler, Eugene
2017-12-01
Atoms in transversely pumped optical cavities "self-organize" by forming a density wave and emitting superradiantly into the cavity mode(s). For a single-mode cavity, the properties of this self-organization transition are well characterized both theoretically and experimentally. Here, we explore the self-organization of a Bose-Einstein condensate in the presence of two cavity modes—a system that recently was realized experimentally [Léonard et al., Nature (London) 543, 87 (2017), 10.1038/nature21067]. We argue that this system can exhibit a "vestigially ordered" phase in which neither cavity mode exhibits superradiance but the cavity modes are mutually phase locked by the atoms. We argue that this vestigially ordered phase should generically be present in multimode cavity geometries.
Stability branching induced by collective atomic recoil in an optomechanical ring cavity
NASA Astrophysics Data System (ADS)
Ian, Hou
2017-02-01
In a ring cavity filled with an atomic condensate, self-bunching of atoms due to the cavity pump mode produce an inversion that re-emits into the cavity probe mode with an exponential gain, forming atomic recoil lasing. An optomechanical ring cavity is formed when one of the reflective mirrors is mounted on a mechanical vibrating beam. In this paper, we extend studies on the stability of linear optomechanical cavities to such ring cavities with two counter-propagating cavity modes, especially when the forward propagating pump mode is taken to its weak coupling limit. We find that when the atomic recoil is in action, stable states of the mechanical mode of the mirror converge into branch cuts, where the gain produced by the recoiling strikes balance with the multiple decay sources, such as cavity leakage in the optomechanical system. This balance is obtained when the propagation delay in the dispersive atomic medium matches in a periodic pattern to the frequencies and linewidths of the cavity mode and the collective bosonic mode of the atoms. We show an input-output hysteresis cycle between the atomic mode and the cavity mode to verify the multi-valuation of the stable states after branching at the weak coupling limit.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Cavitation in Poly(4-methyl-1-pentene) during Tensile Deformation.
Chen, Ran; Lu, Ying; Jiang, Zhiyong; Men, Yongfeng
2018-04-12
The poly(4-methyl-1-pentene) sample was used to investigate the cavitation-induced stress-whitening phenomenon during stretching at different temperatures via the ultrasmall-angle X-ray scattering technique. Two modes of cavitation were found that mode I cavitation activated around yield point followed by mode II cavitation generated in highly oriented state. The critical strain for initiating the mode II cavitation increases with the increase of the stretching temperature, whereas the critical stress grew steadily in the lower temperature regime (30-60 °C) and reached a plateau at 70 °C. The appearance of mode II cavitation at large strains was independent of the mode I cavitation. The mode I cavitation was attributed to the competitive process between the formation of cavities and shearing yield of lamellae, whereas the mode II cavitation was proven to be related to the failure of the whole highly oriented entangled amorphous network because of the breaking of interfibrillar load-bearing tie molecules. Size distribution of cavities has been successfully calculated using a model fitting procedure. The results showed that the quantity of cavities increased heavily while the size was kept nearly constant during the propagation of the mode II cavitation.
Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharyash, V F; Kashirsky, A V; Klementyev, V M
We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Qixiang, E-mail: zxqi1105@gmail.com; Yu, Sheng; Zhang, Tianzhong
2015-10-15
In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing themore » mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.« less
Mode selection and tuning of single-frequency short-cavity VECSELs
Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.; ...
2018-03-05
Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.
Lobach, Ivan A; Drobyshev, Roman V; Fotiadi, Andrei A; Podivilov, Evgeniy V; Kablukov, Sergey I; Babin, Sergey A
2017-10-15
Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50 MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.
Thermally stable surface-emitting tilted wave laser
NASA Astrophysics Data System (ADS)
Shchukin, V. A.; Ledentsov, N. N.; Kalosha, V. P.; Ledentsov, N.; Agustin, M.; Kropp, J. R.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu. M.; Payusov, A. S.; Gordeev, N. Yu; Kulagina, M. M.; Zhukov, A. E.
2018-02-01
Novel lasing modes in a vertical-cavity surface-emitting laser (VCSEL)-type structure based on an antiwaveguding cavity are studied. Such a VCSEL cavity has an effective refractive index in the cavity region lower than the average index of the distributed Bragg reflectors (DBRs). Such device in a stripe geometry does not support in-plane waveguiding mode, and all modes with a high Q-factor are exclusively VCSEL-like modes with similar near field profile in the vertical direction. A GaAlAs-based VCSEL structure studied contains a resonant cavity with multiple GaInAs quantum wells as an active region. The VCSEL structure is processed as an edge-emitting laser with cleaved facets and top contact representing a non-alloyed metal grid. Rectangular-shaped 400x400 µm pieces are cleaved with perpendicular facets. The contact grid region has a total width of 70 μm. 7 μm-wide metal stripes serve as non-alloyed metal contact and form periodic rectangular openings having a size of 10x40 μm. Surface emission through the windows on top of the chip is measured at temperatures from 90 to 380 K. Three different types of modes are observed. The longest wavelength mode (mode A) is a VCSEL-like mode at 854 nm emitting normal to the surface with a full width at half maximum (FWHM) of the far field 10°. Accordingly the lasing wavelength demonstrates a thermal shift of the wavelength of 0.06 nm/K. Mode B is at shorter wavelengths of 840 nm at room temperature, emitting light at two symmetric lobes at tilt angles 40° with respect to the normal to the surface in the directions parallel to the stripe. The emission wavelength of this mode shifts at a rate 0.22 nm/K according to the GaAs bandgap shift. The angle of mode B with respect to the normal reduces as the wavelength approaches the vertical cavity etalon wavelength and this mode finally merges with the VCSEL mode. Mode B hops between different lateral modes of the VCSEL forming a dense spectrum due to significant longitudinal cavity length, and the thermal shift of its wavelength is governed by the shift of the gain spectrum. The most interesting observation is Mode C, which shifts at a rate 0.06 nm/K and has a spectral width of 1 nm. Mode C matches the wavelength of the critical angle for total internal reflection for light impinging from semiconductor chip on semiconductor/air interface and propagates essentially as an in-plane mode. According to modeling data we conclude that the lasing mode represents a coupled state between the TM-polarized surface-trapped optical mode and the VCSEL cavity mode. The resulting mode has an extended near field zone and low propagation losses. The intensity of the mode drastically enhances once is appears at resonance with Mode B. A clear threshold is revealed in the L-I curves of all modes and there is a strong competition of the lasing mechanisms once the gain maximum is scanned over the related wavelength range by temperature change.
Frequency-independent radiation modes of interior sound radiation: An analytical study
NASA Astrophysics Data System (ADS)
Hesse, C.; Vivar Perez, J. M.; Sinapius, M.
2017-03-01
Global active control methods of sound radiation into acoustic cavities necessitate the formulation of the interior sound field in terms of the surrounding structural velocity. This paper proposes an efficient approach to do this by presenting an analytical method to describe the radiation modes of interior sound radiation. The method requires no knowledge of the structural modal properties, which are often difficult to obtain in control applications. The procedure is exemplified for two generic systems of fluid-structure interaction, namely a rectangular plate coupled to a cuboid cavity and a hollow cylinder with the fluid in its enclosed cavity. The radiation modes are described as a subset of the acoustic eigenvectors on the structural-acoustic interface. For the two studied systems, they are therefore independent of frequency.
Transient behavior of an actively mode-locked semiconductor laser diode
NASA Technical Reports Server (NTRS)
Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.
1982-01-01
Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.
Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation.
Lan, Yung-Chiang; Chang, Che-Jung; Lee, Peng-Hsiao
2009-01-01
We investigate cavity-modulated resonant tunneling through a silver film with periodic grooves on both surfaces. A strip cavity embedded in the film affects tunneling frequencies via a coupling mode and waveguide mode. In the coupling mode, both the resonant tunneling through the gap between the groove and the cavity and the cavity itself form an entire resonant structure. In the waveguide mode, however, the cavity functions as a surface-plasmon waveguide. Hence, tunneling frequencies are close to resonant absorption frequencies of the groove structure and are irrelevant to cavity properties.
Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes
NASA Astrophysics Data System (ADS)
Zhu, Yifu
1992-05-01
We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.
NASA Astrophysics Data System (ADS)
Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.
2018-05-01
This paper presents a theoretical study of active control of turbulent boundary layer (TBL) induced sound transmission through the cavity-backed double panels. The aerodynamic model used is based on the Corcos wall pressure distribution. The structural-acoustic model encompasses a source panel (skin panel), coupled through an acoustic cavity to the radiating panel (trim panel). The radiating panel is backed by a larger acoustic enclosure (the back cavity). A feedback control unit is located inside the acoustic cavity between the two panels. It consists of a control force actuator and a sensor mounted at the actuator footprint on the radiating panel. The control actuator can react off the source panel. It is driven by an amplified velocity signal measured by the sensor. A fully coupled analytical structural-acoustic model is developed to study the effects of the active control on the sound transmission into the back cavity. The stability and performance of the active control system are firstly studied on a reduced order model. In the reduced order model only two fundamental modes of the fully coupled system are assumed. Secondly, a full order model is considered with a number of modes large enough to yield accurate simulation results up to 1000 Hz. It is shown that convincing reductions of the TBL-induced vibrations of the radiating panel and the sound pressure inside the back cavity can be expected. The reductions are more pronounced for a certain class of systems, which is characterised by the fundamental natural frequency of the skin panel larger than the fundamental natural frequency of the trim panel.
NASA Astrophysics Data System (ADS)
Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok
2011-07-01
The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.
Parametric instability in the high power era of Advanced LIGO
NASA Astrophysics Data System (ADS)
Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration
2017-01-01
After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.
Microcavity morphology optimization
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Demchenko, Alena A.; Vyatchanin, Sergey P.; Matsko, Andrey B.; Maleki, Lute
2014-09-01
High spectral mode density of conventional optical cavities is detrimental to the generation of broad optical frequency combs and to other linear and nonlinear applications. In this work we optimize the morphology of high-Q whispering gallery (WG) and Fabry-Perot (FP) cavities and find a set of parameters that allows treating them, essentially, as single-mode structures, thus removing limitations associated with a high density of cavity mode spectra. We show that both single-mode WGs and single-mode FP cavities have similar physical properties, in spite of their different loss mechanisms. The morphology optimization does not lead to a reduction of quality factors of modes belonging to the basic family. We study the parameter space numerically and find the region where the highest possible Q factor of the cavity modes can be realized while just having a single bound state in the cavity. The value of the Q factor is comparable with that achieved in conventional cavities. The proposed cavity structures will be beneficial for generation of octave spanning coherent frequency combs and will prevent undesirable effects of parametric instability in laser gravitational wave detectors.
Fleyer, Michael; Horowitz, Moshe
2017-05-01
Homogeneously broadened delay-line oscillators such as lasers or optoelectronic oscillators (OEOs) can potentially oscillate in a large number of cavity modes that are supported by their amplifier bandwidth. In a continuous wave operating mode, the oscillating mode is selected between one or few cavity modes that experience the highest small-signal gain. In this manuscript, we show that the oscillation mode of a homogeneously broadened oscillator can be selected from a large number of modes in a frequency region that can be broader than the full width at half maximum of the effective cavity filter. The mode is selected by a short-time injection of an external signal into the oscillator. After the external signal is turned off, the oscillation is maintained in the selected mode even if this mode has a significantly lower small-signal gain than that of other cavity modes. The stability of the oscillation is obtained due to nonlinear saturation effect in the oscillator amplifier. We demonstrate, experimentally and theoretically, mode selection in a long cavity OEO. We could select any desired mode between 400 cavity modes while maintaining ultra-low phase noise in the selected mode and in the non-oscillating modes. No mode-hopping was observed during our maximum measurement duration of about 24 hours.
NASA Astrophysics Data System (ADS)
Qi, Zumin; Zhang, Jun; Xie, Yongjie; Zhang, Yi; Wang, Zehua; Zhou, Xiaofeng; Zhu, Jianhui; Zi, Yanyong; Zhong, Huihuang
2016-12-01
Asymmetric mode competitions are observed in the design of an X-band triaxial klystron amplifier with an asymmetric input cavity, and the generation mechanism of the asymmetric mode competition is analyzed in the paper. The results indicate that the asymmetric modes are excited in the buncher cavity. The asymmetric mode (coaxial TM612 mode) in the buncher cavity with the highest shunt impedance can start up first among the asymmetric modes with negative beam loading conductance. The coupling of the corresponding coaxial TE mode between the buncher and input cavity exacerbates the start oscillation of the asymmetric mode competition. The rationality of the analysis is demonstrated by cutting off the propagation of the corresponding coaxial TE modes between the buncher cavity and the input cavity, and the asymmetric mode competitions are thoroughly suppressed by specially designed reflectors and lossy material. In simulation, a microwave with a power of 1.28 GW and a frequency of 9.375 GHz is generated, and the extraction efficiency and the gain are 34.5% and 41.5 dB, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.
Here, we report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. Lastly, we compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.
Short cavity active mode locking fiber laser for optical sensing and imaging
NASA Astrophysics Data System (ADS)
Lee, Hwi Don; Han, Ga Hee; Jeong, Syung Won; Jeong, Myung Yung; Kim, Chang-Seok; Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong
2014-05-01
We demonstrate a highly linear wavenumber- swept active mode locking (AML) fiber laser for optical sensing and imaging without any wavenumber-space resampling process. In this all-electric AML wavenumber-swept mechanism, a conventional wavelength selection filter is eliminated and, instead, the suitable programmed electric modulation signal is directly applied to the gain medium. Various types of wavenumber (or wavelength) tunings can be implemented because of the filter-less cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power to obtain an in-vivo OCT image at the 100 kHz swept rate.
Coupled-cavity drift-tube linac
Billen, James H.
1996-01-01
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.
Coupled-cavity drift-tube linac
Billen, J.H.
1996-11-26
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.
Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity
NASA Astrophysics Data System (ADS)
Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.
2018-05-01
Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.
Multi-angle VECSEL cavities for dispersion control and multi-color operation
NASA Astrophysics Data System (ADS)
Baker, Caleb; Scheller, Maik; Laurain, Alexandre; Yang, Hwang-Jye; Ruiz Perez, Antje; Stolz, Wolfgang; Addamane, Sadhvikas J.; Balakrishnan, Ganesh; Jones, R. Jason; Moloney, Jerome V.
2017-02-01
We present a novel Vertical External Cavity Surface Emitting Laser (VECSEL) cavity design which makes use of multiple interactions with the gain region under different angles of incidence in a single round trip. This design allows for optimization of the net, round-trip Group Delay Dispersion (GDD) by shifting the GDD of the gain via cavity fold angle while still maintaining the high gain of resonant structures. The effectiveness of this scheme is demonstrated with femtosecond-regime pulses from a resonant structure and record pulse energies for the VECSEL gain medium. In addition, we show that the interference pattern of the intracavity mode within the active region, resulting from the double-angle multifold, is advantageous for operating the laser in CW on multiple wavelengths simultaneously. Power, noise, and mode competition characterization is presented.
Accuracy of a teleported trapped field state inside a single bimodal cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queiros, Iara P. de; Cardoso, W. B.; Souza, Simone
2007-09-15
We propose a simplified scheme to teleport a superposition of coherent states from one mode to another of the same bimodal lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity that can be achieved, demonstrating accurate teleportation if the mean photon number of each mode is at most 1.5. Our scheme applies as well for teleportation of coherent states from one mode of a cavity to another mode of a second cavity, when both cavities are embedded in a common reservoir.
Geometrically induced surface polaritons in planar nanostructured metallic cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davids, P. S.; Intravia, F; Dalvit, Diego A.
2014-01-14
We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer atmore » short separations.« less
Mitigation of wind tunnel wall interactions in subsonic cavity flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.
In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less
Mitigation of wind tunnel wall interactions in subsonic cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...
2015-03-06
In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less
Mode conversion in metal-insulator-metal waveguide with a shifted cavity
NASA Astrophysics Data System (ADS)
Wang, Yueke; Yan, Xin
2018-01-01
We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.
RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.
2017-11-01
In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.
Monochromatic radio frequency accelerating cavity
Giordano, S.
1984-02-09
A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.
Monochromatic radio frequency accelerating cavity
Giordano, Salvatore
1985-01-01
A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.
Integrated Cavity QED in a linear Ion Trap Chip for Enhanced Light Collection
NASA Astrophysics Data System (ADS)
Benito, Francisco; Jonathan, Sterk; Boyan, Tabakov; Haltli, Raymond; Tigges, Chris; Stick, Daniel; Balin, Matthew; Moehring, David
2012-06-01
Realizing a scalable trapped-ion quantum information processor may require integration of tools to manipulate qubits into trapping devices. We present efforts towards integrating a 1 mm optical cavity into a microfabricated surface ion trap to efficiently connect nodes in a quantum network. The cavity is formed by a concave mirror and a flat coated silicon mirror around a linear trap where ytterbium ions can be shuttled in and out of the cavity mode. By utilizing the Purcell effect to increase the rate of spontaneous emission into the cavity mode, we expect to collect up to 13% of the emitted photons. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
NASA Astrophysics Data System (ADS)
Houtman, H.; Meyer, J.
1985-06-01
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (≊1 GW) to evolve in the oscillator, and to allow simple synchronization to a (˜100 ns fixed delay) CO2 laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration as in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50-70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50-100 ps with ±5-ps stability. Relative timing between the main (CO2) and probe (ruby) pulses allows a measurement accuracy of ±50 ps to be attained.
Synchronizable Q-switched, mode-locked, and cavity-dumped ruby laser for plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houtman, H.; Meyer, J.
We report on the design and operation of an optimized version of a Q-switched, mode-locked, and cavity-dumped ruby-laser oscillator. The modulator window is much narrower than that assumed in conventional active mode-lock theory, and is shown to yield much shorter pulses than the latter in cases where the number of round trips is restricted. To allow a high-power pulse (roughly-equal1 GW) to evolve in the oscillator, and to allow simple synchronization to a (approx.100 ns fixed delay) CO/sub 2/ laser, a limit of 23 round trips was chosen, but similar limits may be imposed by lasers having short-gain duration asmore » in an excimer laser. Details are given on the single spark gap switching element and Pockels cells, with an analysis of their expected switching speeds, in order to establish the effectiveness of the modulator, as compared to conventional sinusoidally driven active mode lockers. Single pulses of 50--70 mJ are reliably cavity-dumped after only 100-ns delay (23 round trips) with pulse length adjustable from 50--100 ps with +- 5-ps stability. Relative timing between the main (CO/sub 2/) and probe (ruby) pulses allows a measurement accuracy of +- 50 ps to be attained.« less
Kim, Bo-Ram; Oh, Man-Hwan; Shin, Dong-Hoon
2017-05-31
This study was performed to compare the antibacterial activities of three cavity disinfectants [chlorhexidine (CHX), NaOCl, urushiol] and to evaluate their effect on the microtensile bond strength of Scotchbond Universal Adhesive (3M-ESPE, St. Paul, MN, USA) in class I cavities. In both experiments, class I cavities were prepared in dentin. After inoculation with Streptococcus mutans, the cavities of control group were rinsed and those of CHX, NaOCl and urushiol groups were treated with each disinfectant. Standardized amounts of dentin chips were collected and number of S. mutans was determined. Following the same cavity treatment, same adhesive was applied in etch-and-rinse mode. Then, microtensile bond strength was evaluated. The number of S. mutans was significantly reduced in the cavities treated with CHX, NaOCl, and urushiol compared with control group (p<0.05). However, there was a significant bond strength reduction in NaOCl group, which showed statistical difference compared to the other groups (p<0.05).
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1993-01-01
Major accomplishments under NASA grant NAG-1-1346 are summarized. (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed and several design parameters to be used for the construction of a femtosecond forsterite laser were revealed by simulation. (2) femtosecond pulses from a continuous wave mode-locked chromium doped forsterite laser were generated. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured. (3) Self-mode-locked operation of the Cr:forsterite laser was achieved. Synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking. The pulses generated had an FWHM of 105 fs and were tunable between 1230-1270 nm. (4) Numerical calculations indicated that the pair of SF 14 prisms used in the cavity compensated for quadratic phase but introduced a large cubic phase term. Further calculations of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same amount of quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was observed in the stability of the self mode-locked forsterite laser and in the ease of achieving mode locking. Using the same experimental arrangement and a new forsterite crystal with improved FOM the pulse width was reduced to 36 fs.
Atom detection and photon production in a scalable, open, optical microcavity.
Trupke, M; Goldwin, J; Darquié, B; Dutier, G; Eriksson, S; Ashmore, J; Hinds, E A
2007-08-10
A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.
NASA Astrophysics Data System (ADS)
Guo, Jing; Zhang, Baofu; Jiao, Zhongxing; He, Guangyuan; Wang, Biao
2018-05-01
A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.
Higher order mode couplers for normal conducting DORIS 5-cell cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewersteg, B.; Seesselberg, E.; Zolfaghari, A.
1985-10-01
The beam intensity of the DORIS e -e storage ring is limited to about 100 mA average circulation current as a result of instabilities driven by higher order rf cavity modes. Thus an investigation has been made of the higher order mode impedances of the DORIS rf accelerator cavities. These cavities are the same as the normally conducting inductively coupled 500 MHz 5-cell structures used in PETRA. The results of the investigation were applied for the construction of inductive and capacitive attenuation antennae corresponding to specific mode spectra and mode impedances. The antennae must fit into the existing 35 mmmore » pick up flanges of the cavities and in spite of these size and position limitations they must be efficient in reducing the shunt impedances of the dangerous modes.« less
Miura, R.; Imamura, S.; Ohta, R.; Ishii, A.; Liu, X.; Shimada, T.; Iwamoto, S.; Arakawa, Y.; Kato, Y. K.
2014-01-01
The unique emission properties of single-walled carbon nanotubes are attractive for achieving increased functionality in integrated photonics. In addition to being room-temperature telecom-band emitters that can be directly grown on silicon, they are ideal for coupling to nanoscale photonic structures. Here we report on high-efficiency coupling of individual air-suspended carbon nanotubes to silicon photonic crystal nanobeam cavities. Photoluminescence images of dielectric- and air-mode cavities reflect their distinctly different mode profiles and show that fields in the air are important for coupling. We find that the air-mode cavities couple more efficiently, and estimated spontaneous emission coupling factors reach a value as high as 0.85. Our results demonstrate advantages of ultralow mode-volumes in air-mode cavities for coupling to low-dimensional nanoscale emitters. PMID:25420679
Nanomechanical control of optical field and quality factor in photonic crystal structures
NASA Astrophysics Data System (ADS)
Cotrufo, Michele; Midolo, Leonardo; Zobenica, Žarko; Petruzzella, Maurangelo; van Otten, Frank W. M.; Fiore, Andrea
2018-03-01
Actively controlling the properties of localized optical modes is crucial for cavity quantum electrodynamics experiments. While several methods to tune the optical frequency have been demonstrated, the possibility of controlling the shape of the modes has scarcely been investigated. Yet an active manipulation of the mode pattern would allow direct control of the mode volume and the quality factor and therefore of the radiative processes. In this work, we propose and demonstrate a nano-optoelectromechanical device in which a mechanical displacement affects the spatial pattern of the electromagnetic field. The device is based on a double-membrane photonic crystal waveguide which, upon bending, creates a spatial modulation of the effective refractive index, resulting in an effective potential well or antiwell for the optical modes. The change in the field pattern drastically affects the optical losses: large modulations of the quality factors and dissipative coupling rates larger than 1 GHz/nm are predicted by calculations and confirmed by experiments. This concept opens new avenues in solid-state cavity quantum electrodynamics in which the field, instead of the frequency, is coupled to the mechanical motion.
Optical single photons on-demand teleported from microwave cavities
NASA Astrophysics Data System (ADS)
Barzanjeh, Sh; Vitali, D.; Tombesi, P.
2013-03-01
We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.
Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance
NASA Astrophysics Data System (ADS)
Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.
2017-10-01
Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
2015-03-16
A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.
Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity
NASA Astrophysics Data System (ADS)
Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo
2018-03-01
This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.
Thermal-noise-limited higher-order mode locking of a reference cavity
NASA Astrophysics Data System (ADS)
Zeng, X. Y.; Ye, Y. X.; Shi, X. H.; Wang, Z. Y.; Deng, K.; Zhang, J.; Lu, Z. H.
2018-04-01
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG02 mode of a 10-cm long all ULE cavity, and measure its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal noise limited performance of a fractional frequency instability of 4.9E-16. The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
NASA Astrophysics Data System (ADS)
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-01-01
Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.
Single-mode fiber laser based on core-cladding mode conversion.
Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N
2008-02-15
A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.
Simultaneous Bistability of a Qubit and Resonator in Circuit Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Mavrogordatos, Th. K.; Tancredi, G.; Elliott, M.; Peterer, M. J.; Patterson, A.; Rahamim, J.; Leek, P. J.; Ginossar, E.; Szymańska, M. H.
2017-01-01
We explore the joint activated dynamics exhibited by two quantum degrees of freedom: a cavity mode oscillator which is strongly coupled to a superconducting qubit in the strongly coherently driven dispersive regime. Dynamical simulations and complementary measurements show a range of parameters where both the cavity and the qubit exhibit sudden simultaneous switching between two metastable states. This manifests in ensemble averaged amplitudes of both the cavity and qubit exhibiting a partial coherent cancellation. Transmission measurements of driven microwave cavities coupled to transmon qubits show detailed features which agree with the theory in the regime of simultaneous switching.
Huang, Yulu; Wang, Haipeng; Wang, Shaoheng; ...
2016-12-09
Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes,more » four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Lastly, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.« less
Practical system for the generation of pulsed quantum frequency combs.
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto
2017-08-07
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm
NASA Astrophysics Data System (ADS)
Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.
2011-06-01
We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.
Strong coupling between 0D and 2D modes in optical open microcavities
NASA Astrophysics Data System (ADS)
Trichet, A. A. P.; Dolan, P. R.; Smith, J. M.
2018-02-01
We present a study of the coupling between confined modes and continuum states in an open microcavity system. The confined states are the optical modes of a plano-concave Fabry-Pérot cavity while the continuum states are the propagating modes in a surrounding planar cavity. The length tunability of the open cavity system allows to study the evolution of localised modes as they are progressively deconfined and coupled to the propagating modes. We observe an anti-crossing between the confined and propagating modes proving that mode-mixing takes place in between these two families of modes, and identify 0D-2D mixed modes which exhibit reduced loss compared with their highly localised counterparts. For practical design, we investigate the details of the microcavity shape that can be used to engineer the degree of mode-mixing. This study discusses for the first time experimentally and theoretically how light confinement arises in planar micromirrors and is of interest for the realisation of chip-based extended microphotonics using open cavities.
Mode suppression means for gyrotron cavities
Chodorow, Marvin; Symons, Robert S.
1983-08-09
In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.
Mode characteristics of nonplanar double-heterojunction and large-optical-cavity laser structures
NASA Technical Reports Server (NTRS)
Butler, J. K.; Botez, D.
1982-01-01
Mode behavior of nonplanar double-heterojunction (DH) and large-optical-cavity (LOC) lasers is investigated using the effective index method to model the lateral field distribution. The thickness variations of various layers for the devices discussed are correlated with the growth characteristics of liquid-phase epitaxy over topographical features (channels, mesas) etched into the substrate. The effective dielectric profiles of constricted double-heterojunction (CDH)-LOC lasers show a strong influence on transverse mode operation: the fundamental transverse mode (i.e., in the plane perpendicular to the junction) may be laterally index-guided, while the first (high)-order mode is laterally index-antiguided. The analytical model developed uses a smoothly varying hyperbolic cosine distribution to characterize lateral index variations. The waveguide model is applied to several lasers to illustrate conditions necessary to convert leaky modes to trapped ones via the active-region gain distribution. Theoretical radiation patterns are calculated using model parameters, and matched to an experimental far-field pattern.
Ivanenko, Alexey; Kobtsev, Sergey; Smirnov, Sergey; Kemmer, Anna
2016-03-21
Combined lengthening of the cavity of a passive mode-locked fibre master oscillator and implementation of a new concept of intra-cavity power management led to achievement of a record-high pulse energy directly at the output of the mode-locked fibre master oscillator (without any subsequent amplification) exceeding 12 µJ. Output powers at the level of > 12 µJ obtainable from a long-cavity mode-locked fibre master oscillator open new possibilities of application of all pulse types that can be generated in such oscillators.
Thermal-noise-limited higher-order mode locking of a reference cavity.
Zeng, X Y; Ye, Y X; Shi, X H; Wang, Z Y; Deng, K; Zhang, J; Lu, Z H
2018-04-15
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG 02 mode of a 10-cm long all ultra-low expansion (ULE) cavity and measuring its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal-noise-limited performance of a fractional frequency instability of 4.9×10 -16 . The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system
NASA Astrophysics Data System (ADS)
Liao, Chang-Geng; Chen, Rong-Xin; Xie, Hong; Lin, Xiu-Min
2018-04-01
We propose an effective approach for generating highly pure and strong cavity-mechanical entanglement (or optical-microwave entanglement) in a hybrid modulated three-mode optomechanical system. By applying two-tone driving to the cavity and modulating the coupling strength between two mechanical oscillators (or between a mechanical oscillator and a transmission line resonator), we obtain an effective Hamiltonian where an intermediate mechanical mode acting as an engineered reservoir cools the Bogoliubov modes of two target system modes via beam-splitter-like interactions. In this way, the two target modes are driven to two-mode squeezed states in the stationary limit. In particular, we discuss the effects of cavity-driving detuning on the entanglement and the purity. It is found that the cavity-driving detuning plays a critical role in the goal of acquiring highly pure and strongly entangled steady states.
Kundu, Iman; Dean, Paul; Valavanis, Alexander; Chen, Li; Li, Lianhe; Cunningham, John E; Linfield, Edmund H; Davies, A Giles
2017-01-09
We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Moreno Zarate, Pedro
2010-02-01
We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.
NASA Astrophysics Data System (ADS)
Li, Chun-Hao; Tsai, Ming-Jong
2009-06-01
A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.
Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xin; Qi, Yunliang; Wang, Zhi
Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of themore » combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.« less
Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing
2014-11-17
Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.
Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.
Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping
2017-02-08
Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQ m ∼ 2 × 10 12 Hz achieved here is larger than k B T base /h, which may enable the future realization of Rabi oscillations in the quantum regime.
Facing rim cavities fluctuation modes
NASA Astrophysics Data System (ADS)
Casalino, Damiano; Ribeiro, André F. P.; Fares, Ehab
2014-06-01
Cavity modes taking place in the rims of two opposite wheels are investigated through Lattice-Boltzmann CFD simulations. Based on previous observations carried out by the authors during the BANC-II/LAGOON landing gear aeroacoustic study, a resonance mode can take place in the volume between the wheels of a two-wheel landing gear, involving a coupling between shear-layer vortical fluctuations and acoustic modes resulting from the combination of round cavity modes and wheel-to-wheel transversal acoustic modes. As a result, side force fluctuations and tonal noise side radiation take place. A parametric study of the cavity mode properties is carried out in the present work by varying the distance between the wheels. Moreover, the effects due to the presence of the axle are investigated by removing the axle from the two-wheel assembly. The azimuthal properties of the modes are scrutinized by filtering the unsteady flow in narrow bands around the tonal frequencies and investigating the azimuthal structure of the filtered fluctuation modes. Estimation of the tone frequencies with an ad hoc proposed analytical formula confirms the observed modal properties of the filtered unsteady flow solutions. The present study constitutes a primary step in the description of facing rim cavity modes as a possible source of landing gear tonal noise.
Optical control of resonant light transmission for an atom-cavity system
NASA Astrophysics Data System (ADS)
Sharma, Arijit; Ray, Tridib; Sawant, Rahul V.; Sheikholeslami, G.; Rangwala, S. A.; Budker, D.
2015-04-01
We demonstrate the manipulation of transmitted light through an optical Fabry-Pérot cavity, built around a spectroscopy cell containing enriched rubidium vapor. Light resonant with the 87RbD2 (F =2 ,F =1 ) ↔F' manifold is controlled by the transverse intersection of the cavity mode by another resonant light beam. The cavity transmission can be suppressed or enhanced depending on the coupling of atomic states due to the intersecting beams. The extreme manifestation of the cavity-mode control is the precipitous destruction (negative logic switching) or buildup (positive logic switching) of the transmitted light intensity on intersection of the transverse control beam with the cavity mode. Both the steady-state and transient responses are experimentally investigated. The mechanism behind the change in cavity transmission is discussed in brief.
Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Chow, S.
1976-01-01
A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. Neutronic feasibility of dual mode operation and smaller reactor sizes than those previously investigated are shown to be possible. A heat transfer analysis of one such reactor shows that the dual-mode concept is applicable when power generation mode thermal power levels are within the same order of magnitude as direct thrust mode thermal power levels.
Generation of double giant pulses in actively Q-switched lasers
NASA Astrophysics Data System (ADS)
Korobeynikova, A. P.; Shaikin, I. A.; Shaykin, A. A.; Koryukin, I. V.; Khazanov, E. A.
2018-04-01
Generation of a second giant pulse in a longitudinal mode neighbouring to the longitudinal mode possessing minimal losses is theoretically and experimentally studied in actively Q-switched lasers. A mathematical model is suggested for explaining the giant pulse generation in a laser with multiple longitudinal modes. The model makes allowance for not only a standing, but also a running wave for each cavity mode. Results of numerical simulation and data of experiments with a Nd : YLF laser explain the effect of second giant pulse generation in a neighbouring longitudinal mode. After a giant pulse in the mode with minimal losses is generated, the threshold for the neighbouring longitudinal mode is still exceeded due to the effect of burning holes in the population inversion spatial distribution.
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
Possible repetitive pulse operation of diode-pumped alkali laser (DPAL)
NASA Astrophysics Data System (ADS)
Endo, Masamori
2017-01-01
A theoretical study has been conducted for investigating the possibility of a diode-pumped alkali laser (DPAL) operating in repetitive pulsed mode. A one-dimensional, time-dependent rate-equation simulation of a Cs DPAL was developed to calculate the dynamic behavior of the active medium when Q-switching or cavity dumping was applied. The simulation modeled our small-scale experimental apparatus. In the continuous-wave (CW) mode, the calculated output power was in good agreement with the experimental value. Q-switching was shown to be ineffective because of the short spontaneous lifetime of the active medium, on the order of 10 ns. On the other hand, cavity dumping was proven to be effective. In typical operational conditions, a 54 times increase in peak power with respect to the CW power was predicted.
Cavity cooling a single charged levitated nanosphere.
Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F
2015-03-27
Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.
Cavity Cooling a Single Charged Levitated Nanosphere
NASA Astrophysics Data System (ADS)
Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.
2015-03-01
Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.
2013-11-18
We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.
Multi-Mode Cavity Accelerator Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yong; Hirshfield, Jay Leonard
2016-11-10
This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less
NASA Astrophysics Data System (ADS)
Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid
2016-04-01
We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.
Cavity-mode selection in spontaneous emission from oriented molecules in a microparticle.
Arnold, S; Holler, S; Goddard, N L; Griffel, G
1997-10-01
We observe preferential cavity-mode selection in spontaneous emission by oriented molecules at the surface of a microparticle. Polarization-analyzed images of a levitated microdroplet containing surface active molecules reveal a well-defined system in terms of molecular position and orientation. The measured fluorescence spectrum is compared with that of a semiclassical emission-rate-enhancement model that treats the coupling between an excited state and Mie resonances as an oscillating dipole interacting with its self-scattered field. By comparing results obtained with this theory with the relative strengths of TE to TM modes measured in the emission spectrum, we show that one can elucidate the heterogeneity of a particle from this resonant structure and determine the orientation of the emission moments relative to the phase boundary.
Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells
Stelling, Christian; Singh, Chetan R.; Karg, Matthias; König, Tobias A. F.; Thelakkat, Mukundan; Retsch, Markus
2017-01-01
In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PC61BM and PTB7:PC71BM), the optical properties are correlated with the power conversion efficiency (PCE) of the solar cells. A cavity mode is identified at the absorption edge of the active layer material. The resonance wavelength of this cavity mode is hardly defined by the nanomesh periodicity but rather by the absorption of the photoactive layer. This constitutes a fundamental dilemma when using nanomeshes as ITO replacement. The highest plasmonic enhancement requires small periodicities. This is accompanied by an overall low transmittance and high parasitic absorption losses. Consequently, larger periodicities with a less efficient cavity mode, yet lower absorptive losses were found to yield the highest PCE. Nevertheless, ITO-free solar cells reaching ~77% PCE compared to ITO reference devices are fabricated. Concomitantly, the benefits and drawbacks of this transparent nanomesh electrode are identified, which is of high relevance for future ITO replacement strategies. PMID:28198406
Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.
Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M
2011-04-15
We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.
Electrodynamic characterisitcs measurements of higher order modes in S-band cavity
NASA Astrophysics Data System (ADS)
Donetsky, R.; Lalayan, M.; Sobenin, N. P.; Orlov, A.; Bulygin, A.
2017-12-01
The 800 MHz superconducting cavities with grooved beam pipes were suggested as one of the harmonic cavities design options for High Luminosity LHC project. Cavity simulations were carried out and scaled aluminium prototype having operational mode frequency of 2400 MHz was manufactured for testing the results of simulations. The experimental measurements of transverse shunt impedance with error estimation for higher order modes TM 110 and TE 111 for S-band elliptical cavity were done. The experiments using dielectric and metallic spherical beads and with ring probe were carried out. The Q-factor measurements for two-cell structure and array of two cells were carried out.
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics
Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...
2015-06-11
We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).
Mode structure of a quantum cascade laser
NASA Astrophysics Data System (ADS)
Bogdanov, A. A.; Suris, R. A.
2011-03-01
We analyze the mode structure of a quantum cascade laser (QCL) cavity considering the surface plasmon-polariton modes and familiar modes of hollow resonator jointly, within a single model. We present a comprehensive mode structure analysis of the laser cavity, varying its geometric parameters and free electron concentration inside cavity layers within a wide range. Our analysis covers, in particular, the cases of metal-insulator-metal and insulator-metal-insulator waveguides. We discuss the phenomenon of negative dispersion for eigenmodes in detail and explain the nature of this phenomenon. We specify a waveguide parameters domain in which negative dispersion exists. The mode structure of QCL cavity is considered in the case of the anisotropic electrical properties of the waveguide materials. We show that anisotropy of the waveguide core results in propagation of Langmuir modes that are degenerated in the case of the isotropic core. Comparative analysis of optical losses due to free carrier absorption is presented for different modes within the frequency range from terahertz to ultraviolet frequencies.
Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun
2011-12-01
We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.
NASA Technical Reports Server (NTRS)
Linden, K. J.
1985-01-01
Pb-salt diode lasers are being used as frequency-tunable infrared sources in high resolution spectroscopy and heterodyne detection applications. Recent advances in short cavity, stripe-geometry laser configurations have led to significant increases in maximum CW operating temperature, single mode operation, and increased single mode tuning range. This paper describes short cavity, stripe geometry lasers operating in the 5, 10, and 30-microns spectral regions, with single mode tuning ranges of over 6/cm.
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng; ...
2017-01-01
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
A NEW CONCEPT FOR HIGH POWER RF COUPLING BETWEEN WAVEGUIDES AND RESONANT RF CAVITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Wang, Haipeng
Microwave engineering of high average-power (hundreds of kilowatts) devices often involves a transition from a waveguide to a device, typically a resonant cavity. This is a basic operation, which finds use in various application areas of significance to science and industry. At relatively low frequencies, L-band and below, it is convenient, sometimes essential, to couple the power between the waveguide and the cavity through a coaxial antenna, forming a power coupler. Power flow to the cavity in the fundamental mode leads to a Fundamental Power Coupler (FPC). High-order mode power generated in the cavity by a particle beam leads tomore » a high-order mode power damper. Coupling a cryogenic device, such as a superconducting cavity to a room temperature power source (or damp) leads to additional constraints and challenges. We propose a new approach to this problem, wherein the coax line element is operated in a TE11 mode rather than the conventional TEM mode. We will show that this method leads to a significant increase in the power handling capability of the coupler as well as a few other advantages. As a result, we describe the mode converter from the waveguide to the TE11 coax line, outline the characteristics and performance limits of the coupler and provide a detailed worked out example in the challenging area of coupling to a superconducting accelerator cavity.« less
Experimental Demonstration on Air Cavity Mode of Violin Using Holed Sheets of Paper
ERIC Educational Resources Information Center
Matsutani, Akihiro
2018-01-01
The fundamental air cavity mode (A0) of a violin was investigated from the viewpoint of its dependence on the opening area and shape by using holed sheets of paper. The dependences of the frequency response of the A0 cavity mode on the shape, opening area, and orientation of the openings were observed. It was also demonstrated that the change of…
Adiabatic transfer of energy fluctuations between membranes inside an optical cavity
NASA Astrophysics Data System (ADS)
Garg, Devender; Chauhan, Anil K.; Biswas, Asoka
2017-08-01
A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.
Cavity BPM with Dipole-Mode-Selective Coupler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zenghai; Johnson, Ronald; Smith, Stephen R.
2006-06-21
In this paper, we present a novel position sensitive signal pickup scheme for a cavity BPM. The scheme utilizes the H-plane of the waveguide to couple magnetically to the side of the cavity, which results in a selective coupling to the dipole mode and a total rejection of the monopole mode. This scheme greatly simplifies the BPM geometry and relaxes machining tolerances. We will present detailed numerical studies on such a cavity BPM, analyze its resolution limit and tolerance requirements for a nanometer resolution. Finally present the measurement results of a X-band prototype.
Quantum iSWAP gate in optical cavities with a cyclic three-level system
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Qiao, Hao-xue; Lu, Hua
2018-04-01
In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level Δ -type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.
Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers
NASA Astrophysics Data System (ADS)
Cartar, William; Mørk, Jesper; Hughes, Stephen
2017-08-01
We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder on both the passive cavity and active lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N =7 , and a reduction in the nominal cavity mode volume for increasing amounts of disorder.
An improved equivalent circuit model of a four rod deflecting cavity
NASA Astrophysics Data System (ADS)
Apsimon, R.; Burt, G.
2017-03-01
In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RT/Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT/Q differs between the model and CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.
Surface-plasmon-polariton hybridized cavity modes in submicrometer slits in a thin Au film
NASA Astrophysics Data System (ADS)
Walther, R.; Fritz, S.; Müller, E.; Schneider, R.; Maniv, T.; Cohen, H.; Matyssek, C.; Busch, K.; Gerthsen, D.
2016-06-01
The excitation of cavity standing waves in double-slit structures in thin gold films, with slit lengths between 400 and 2560 nm, was probed with a strongly focused electron beam in a transmission electron microscope. The energies and wavelengths of cavity modes up to the 11 th mode order were measured with electron energy loss spectroscopy to derive the corresponding dispersion relation. For all orders, a significant redshift of mode energies accompanied by a wavelength elongation relative to the expected resonator energies and wavelengths is observed. The resultant dispersion relation is found to closely follow the well-known dispersion law of surface-plasmon polaritons (SPPs) propagating on a gold/air interface, thus providing direct evidence for the hybridized nature of the detected cavity modes with SPPs.
NASA Astrophysics Data System (ADS)
Marhauser, Frank
2017-06-01
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it can push the envelope towards quasi HOM-free operation suited for next generation storage and collider rings. Geometrical end-cell shape alterations for the five-cell cavity with already efficient mode damping are discussed as a possibility to further lower specific high impedance modes. The findings are eventually put into relation with demanding impedance instability thresholds in future collider rings.
Marhauser, Frank
2017-05-15
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to Higher Order Mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds.more » The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation Energy Recovery Linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it can push the envelope towards quasi HOM-free operation suited for next generation storage and collider rings. Geometrical end-cell shape alterations for the five-cell cavity with already efficient mode damping are discussed as a possibility to further lower specific high impedance modes. Lastly, the findings are eventually put into relation with demanding impedance instability thresholds in future collider rings.« less
NASA Astrophysics Data System (ADS)
Mehrzad, Hossein; Mohajerani, Ezeddin
2018-02-01
The present study aims to demonstrate how active hybrid nano-plasmonic modes become excited due to the coupling of localized plasmonic resonance and Fabry-Perot (FP) optical modes. The proposed structure includes an integration of a micro-cavity filled with liquid crystals with high anisotropy and a layer of gold nanoislands (NIs). The optical absorption of NI is controllably discretized to the narrow-width modes, called "hybrid modes (HM)," due to the interplay between FP and plasmonic modes. HM could demonstrate a strongly intensified and diminished absorption, compared to the absorption of the bare gold layer. Based on the active plasmonic experiments, the HM boosted the figure of merit related to activation capability up to 40 times and subsequently experienced impressive spectral shifts, leading to very wavelength-selective changes. The theoretical simulation of the HM is provided to suggest relevant insights into the experimental results.
High power infrared super-Gaussian beams: generation, propagation, and application
NASA Astrophysics Data System (ADS)
du Preez, Neil C.; Forbes, Andrew; Botha, Lourens R.
2008-10-01
In this paper we present the design of a CO2 laser resonator that produces as the stable transverse mode a super-Gaussian laser beam. The resonator makes use of an intra-cavity diffractive mirror and a flat output coupler, generating the desired intensity profile at the output coupler with a flat wavefront. We consider the modal build-up in such a resonator and show that such a resonator mode has the ability to extract more energy from the cavity that a standard cavity single mode beam (e.g., Gaussian mode cavity). We demonstrate the design experimentally on a high average power TEA CO2 laser for paint stripping applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, A.; Schmidt, O. G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, 09107 Chemnitz
2016-04-25
Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang
Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM{sub 0n} modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM{sub 0n}. NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersionmore » equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.« less
Oscillatory mode transition for supersonic open cavity flows
NASA Astrophysics Data System (ADS)
Kumar, Mayank; Vaidyanathan, Aravind
2018-02-01
The transition in the primary oscillatory mode in an open cavity has been experimentally investigated and the associated characteristics in a Mach 1.71 flow has been analyzed. The length-to-depth (L/D) ratios of the rectangular cavities are varied from 1.67 to 3.33. Unsteady pressure measurement and flow visualization are employed to understand the transitional flow physics. Flow visualization revealed the change in oscillation pattern from longitudinal mode to transverse mode and is also characterized by the presence of two bow shocks at the trailing edge instead of one. The transition is found to occur between L/D 1.67 and 2, marked by a change in the feedback mechanism, resulting in a shift from the vortex circulation driven transverse feedback mode to the oscillating shear layer driven longitudinal feedback mode. Cavities oscillating in the transition mode exhibit multiple tones of comparable strength. Correlation analysis indicated the shift in the feedback mechanism. Wavelet analysis revealed the temporal behaviour of tones during transition. Tone switching is observed in deeper cavities and is attributed to the occurrence of two bow shocks as evident from the temporo-spectral characteristics of transition that affects the shear layer modal shape.
Optical-bistability-enabled control of resonant light transmission for an atom-cavity system
NASA Astrophysics Data System (ADS)
Sawant, Rahul; Rangwala, S. A.
2016-02-01
The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.
A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui
The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding tomore » 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.« less
Novel High Cooperativity Photon-Magnon Cavity QED
NASA Astrophysics Data System (ADS)
Tobar, Michael; Bourhill, Jeremy; Kostylev, Nikita; G, Maxim; Creedon, Daniel
Novel microwave cavities are presented, which couple photons and magnons in YIG spheres in a super- and ultra-strong way at around 20 mK in temperature. Few/Single photon couplings (or normal mode splitting, 2g) of more than 6 GHz at microwave frequencies are obtained. Types of cavities include multiple post reentrant cavities, which co-couple photons at different frequencies with a coupling greater that the free spectral range, as well as spherical loaded dielectric cavity resonators. In such cavities we show that the bare dielectric properties can be obtained by polarizing all magnon modes to high energy using a 7 Tesla magnet. We also show that at zero-field, collective effects of the spins significantly perturb the photon modes. Other effects like time-reversal symmetry breaking are observed.
NASA Astrophysics Data System (ADS)
Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew
2017-02-01
Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.
Adapting TESLA technology for future cw light sources using HoBiCaT
NASA Astrophysics Data System (ADS)
Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J.
2010-07-01
The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw.
Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind
2014-07-28
We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.
Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings
NASA Astrophysics Data System (ADS)
Cui, Jin-Ming; Zhou, Kun; Zhao, Ming-Shu; Ai, Ming-Zhong; Hu, Chang-Kang; Li, Qiang; Liu, Bi-Heng; Peng, Jin-Lan; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can
2018-04-01
We demonstrate a type of microcavity with large tunable splitting of polarization modes. This polarization nondegenerate cavity consists of two ellipsoidal concave mirrors with controllable eccentricity by CO2 laser machining on fiber end facets. The experiment shows that the cavities can combine the advantages of high finesse above 104 and large tunable polarization mode splitting to the GHz range. As the splitting of the cavity can be finely controlled to match atom hyperfine levels or optomechanics phonons, it will blaze a way in experiments on cavity quantum electrodynamics and cavity optomechanics.
Modelling the excitation field of an optical resonator
NASA Astrophysics Data System (ADS)
Romanini, Daniele
2014-06-01
Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for "simple" astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.
Cavity mode-width spectroscopy with widely tunable ultra narrow laser.
Cygan, Agata; Lisak, Daniel; Morzyński, Piotr; Bober, Marcin; Zawada, Michał; Pazderski, Eugeniusz; Ciuryło, Roman
2013-12-02
We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O₂ line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.
Long wavelength vertical cavity surface emitting laser
Choquette, Kent D.; Klem, John F.
2005-08-16
Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.
Steady-state entanglement activation in optomechanical cavities
NASA Astrophysics Data System (ADS)
Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio
2014-02-01
Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.
Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering
Wang, M.; Gong, Q. H.; Ficek, Z.; He, Q. Y.
2015-01-01
A practical scheme for the demonstration of perfect one-sided device-independent quantum secret sharing is proposed. The scheme involves a three-mode optomechanical system in which a pair of independent cavity modes is driven by short laser pulses and interact with a movable mirror. We demonstrate that by tuning the laser frequency to the blue (anti-Stokes) sideband of the average frequency of the cavity modes, the modes become mutually coherent and then may collectively steer the mirror mode to a perfect Einstein-Podolsky-Rosen state. The scheme is shown to be experimentally feasible, it is robust against the frequency difference between the modes, mechanical thermal noise and damping, and coupling strengths of the cavity modes to the mirror. PMID:26212901
Transition of lasing modes in polymeric opal photonic crystal resonating cavity.
Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming
2016-06-10
We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81 μJ/pulse for single mode lasing emission and 2.25 μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.
Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect
NASA Astrophysics Data System (ADS)
Bernu, J.; Deléglise, S.; Sayrin, C.; Kuhr, S.; Dotsenko, I.; Brune, M.; Raimond, J. M.; Haroche, S.
2008-10-01
We have frozen the coherent evolution of a field in a cavity by repeated measurements of its photon number. We use circular Rydberg atoms dispersively coupled to the cavity mode for an absorption-free photon counting. These measurements inhibit the growth of a field injected in the cavity by a classical source. This manifestation of the quantum Zeno effect illustrates the backaction of the photon number determination onto the field phase. The residual growth of the field can be seen as a random walk of its amplitude in the two-dimensional phase space. This experiment sheds light onto the measurement process and opens perspectives for active quantum feedback.
Design and performance of an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Y.; Dai, J.; Wang, Q.
1996-12-31
Based on the nonlinear ABCD matrix and the renormalized q-parameter for Gaussian-beam propagation, self-focusing in conjunction with a spatial gain profile for self-mode locking in a ring-cavity Ti:sapphire laser is analyzed. In the experiment, an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser is demonstrated, and self-mode-locked operation is achieved in both bidirection and unidirection with pulse durations as short as 36 fs and 32 fs, respectively. The experimental observations are in good agreement with theoretical predictions.
Selection of lasing direction in single mode semiconductor square ring cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin-Woong; Kim, Kyoung-Youm; Moon, Hee-Jong
We propose and demonstrate a selection scheme of lasing direction by imposing a loss imbalance structure into the single mode square ring cavity. The control of the traveling direction is realized by introducing a taper-step section in one of the straight waveguides of the square ring cavity. It was shown by semi-analytic calculation that the taper-step section in the cavity provides effective loss imbalance between two travelling directions as the round trip repeats. Various kinds of square cavities were fabricated using InGaAsP/InGaAs multiple quantum well semiconductor materials in order to test the direction selectivity while maintaining the single mode. Wemore » also measured the pump power dependent lasing spectra to investigate the maintenance property of the lasing direction. The experimental results demonstrated that the proposed scheme is an efficient means for a unidirectional lasing in a single mode laser.« less
NASA Astrophysics Data System (ADS)
Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.
Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
Phase control of entanglement and quantum steering in a three-mode optomechanical system
NASA Astrophysics Data System (ADS)
Sun, F. X.; Mao, D.; Dai, Y. T.; Ficek, Z.; He, Q. Y.; Gong, Q. H.
2017-12-01
The theory of phase control of coherence, entanglement and quantum steering is developed for an optomechanical system composed of a single mode cavity containing a partially transmitting dielectric membrane and driven by short laser pulses. The membrane divides the cavity into two mutually coupled optomechanical cavities resulting in an effective three-mode closed loop system, two field modes of the two cavities and a mechanical mode representing the oscillating membrane. The closed loop in the coupling creates interfering channels which depend on the relative phase of the coupling strengths of the field modes to the mechanical mode. Populations and correlations of the output modes are calculated analytically and show several interesting phase dependent effects such as reversible population transfer from one field mode to the other, creation of collective modes, and induced coherence without induced emission. We find that these effects result from perfect mutual coherence between the field modes which is preserved even if one of the modes is not populated. The inseparability criterion for the output modes is also investigated and we find that entanglement may occur only between the field modes and the mechanical mode. We show that depending on the phase, the field modes can act on the mechanical mode collectively or individually resulting, respectively, in tripartite or bipartite entanglement. In addition, we examine the phase sensitivity of quantum steering of the mechanical mode by the field modes. Deterministic phase transfer of the steering from bipartite to collective is predicted and optimum steering corresponding to perfect EPR state can be achieved. These different types of quantum steering can be distinguished experimentally by measuring the coincidence rate between two detectors adjusted to collect photons of the output cavity modes. In particular, we find that the minima of the interference pattern of the coincidence rate signal the bipartite steering, while the maxima signal the collective steering.
Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities
Liberal, Iñigo; Engheta, Nader
2016-01-01
Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems. PMID:27819047
Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities.
Liberal, Iñigo; Engheta, Nader
2016-10-01
Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high quality factor photonic crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. We theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, we demonstrate that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology, etc.). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of the emission by, and the interaction between, QEs. These phenomena provide unprecedented degrees of freedom in controlling and trapping fields within optical cavities, as well as in the design of cavity opto- and acoustomechanical systems.
Barclay, Paul; Srinivasan, Kartik; Painter, Oskar
2005-02-07
A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7x10(4) are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 microW, corresponding to a dropped power of 100 microW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~ 0.5 ns is also estimated from power dependent loss and dispersion measurements.
Observation of enhanced spontaneous emission in dielectrically apertured microcavities
NASA Astrophysics Data System (ADS)
Graham, Luke Alan
The effects of enhanced spontaneous emission are important in determining the low threshold characteristics of oxide confined vertical cavity semiconductor lasers. This enhancement effect increases as Q/V, where Q = λ/Δλ for the cavity and V is the mode volume. In particular we investigate the effects of mode diameter on enhancement in microcavity structures with successively smaller dielectric apertures. These structures were fabricated by etching and back filling with SiO 2 and by lateral steam oxidation. For both cavities, InAlGaAs quantum dot emitters were used in the active region in order to avoid carrier diffusion and recombination at the side walls. Decay data was obtained at 10 K using time resolved photoluminescence of individual microcavities, and arrays. The detector used here is based on a silicon avalanche photodiode operated in ``Geiger'' mode. It provides a resolution of 350 ps and a quantum efficiency of ~1% at a wavelength of 1 μm. For the etched aperture structures we observed enhancement factors as high as 1.4 for the 1 μm diameter cavities with a maximum Q ~ 200. The enhancement is limited by the low Qs induced by etched side wall scattering. For 1 μm apertures fabricated by lateral steam oxidation, a Q of 450 is obtained with an enhancement factor of 2.3. In these devices we show that the enhancement is limited by distribution of quantum dots throughout the aperture region. Dots resonant with the cavity and located along the aperture edge decay more slowly than those in the center, leading to spatial hole burning effects in the decay data. Microcavities with aperture sizes ranging from 1-5 μm and Qs greater than 5000 are also demonstrated. We show 0th and 1 st order mode spacings as a function of aperture size and from this data calculate the transverse optical mode diameter as a function of aperture diameter. We find that the optical mode size becomes larger than the aperture size for diameters of ~2.5 μm and below and that this is correlated with a steep drop in Q for smaller apertures. We also find that the upper limit in cavity Q in these structures appears to come from losses induced by the MgF2/ZnSe e-beam deposited DBRs.
High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity
Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...
2017-09-04
A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less
Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, Robert R.
1992-01-01
Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.
Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems
2015-08-20
optomechanical crystal cavities connected by a dispersion-engineered phonon waveguide. Pulsed and continuous- wave measurements are first used to char- acterize...device layer of a silicon-on-insulator wafer (see App. A), and consists of several parts: an op- tomechanical cavity with co- localized optical and acous... localized cavity mode and the nearly- resonant phonon waveguide modes. The optical coupling waveg- uide is fabricated in the near-field of the nanobeam
Response of a store with tunable natural frequencies in compressible cavity flow
Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; ...
2016-05-20
Fluid–structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.58–1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of seven. The store vibrated in response to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance frequencies. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response to cavity tones was much more limited. Increased surface area associated with tail fins raised vibration levels. The store had interchangeable components to vary its natural frequencies bymore » about 10–300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching in the streamwise and wall-normal directions produced substantial increases in peak store vibrations, though the response of the store remained linear with dynamic pressure. Near mode-matched frequencies, changes in cavity tone frequencies of only 1% altered store peak vibrations by as much as a factor of two. In conclusion, mode matching in the spanwise direction did little to increase vibrations.« less
NASA Astrophysics Data System (ADS)
Miura, R.; Imamura, S.; Shimada, T.; Ohta, R.; Iwamoto, S.; Arakawa, Y.; Kato, Y. K.
2014-03-01
Because carbon nanotubes are room-temperature telecom-band emitters and can be grown on silicon substrates, they are ideal for coupling to silicon photonic cavities.[2,3 In particular, as-grown air-suspended carbon nanotubes show excellent optical properties, but cavity modes with large fields in the air are needed in order to achieve efficient coupling. Here we investigate individual air-suspended nanotubes coupled to photonic crystal nanobeam cavities. We utilize cavities that confine air-band modes which have large fields in the air. Dielectric mode cavities are also prepared for comparison. We fabricate the devices from silicon-on-insulator substrates by using electron beam lithography and dry etching to form the nanobeam structure. The buried oxide layer is removed by wet etching, and carbon nanotubes are grown onto the cavities by chemical vapor deposition. We perform photoluminescence imaging and excitation spectroscopy to find the positions of the nanotubes and identify their chiralities. For both types of devices, cavity modes with quality factors of ~3000 are observed within the nanotube emission peak. Work supported by SCOPE, KAKENHI, The Telecommunications Advancement Foundation, The Toyota Physical and Chemical Research Institute, Project for Developing Innovation Systems of MEXT, Japan and the Photon Frontier Network Program of MEXT, Japan.
Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn
2017-01-10
We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile gettingmore » significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.« less
The combination of high Q factor and chirality in twin cavities and microcavity chain
Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin
2014-01-01
Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities. PMID:25262881
Free Oscillations of a Fluid-filled Cavity in an Infinite Elastic Medium
NASA Astrophysics Data System (ADS)
Sakuraba, A.
2016-12-01
Volcanic low-frequency earthquakes and tremor have been widely recognized as a good indicator of hidden activities of volcanoes. It is likely that existence or movement of underground magma and geothermal fluids play a crucial role in their generation mechanisms, but there are still many unknowns. This presentation aims to give a fundamental contribution to understanding and interpreting volcanic low-frequency seismic events. The problem we consider is to compute eigen modes of free oscillations of a fluid-filled cavity surrounded by an infinite linearly elastic medium. A standard boundary element method is used to solve fluid and elastic motion around a cavity of arbitrary shape. Nonlinear advection term is neglected, but viscosity is generally considered in a fluid medium. Of a great importance is to find not only characteristic frequencies but attenuation properties of the oscillations, the latter being determined by both viscous dissipation in the fluid cavity and elastic wave radiation to infinity. One of the simplest cases may be resonance of a fluid-filled crack, which has been studied numerically (Chouet, JGR 1986; Yamamoto and Kawakatsu, GJI 2008) and analytically (Maeda and Kumagai, GRL 2013). In the present study, we generally consider a three-dimensional cavity with emphasis on treating the crack model and other simplest models such as spherical and cylindrical resonators as the extreme cases. In order to reduce computational costs, we assume symmetries about three orthogonal planes and calculate the eigen modes separately for each symmetry. The current status of this project is that the computational code has been checked through comparison to eigen modes of a spherical inviscid cavity (Sakuraba et al., EPS 2002), and another comparison to resonance of a fluid-filled crack is undertook.
Magneto-optical microcavity with Au plasmonic layer
NASA Astrophysics Data System (ADS)
Mikhailova, T. V.; Lyashko, S. D.; Tomilin, S. V.; Karavainikov, A. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Berzhansky, V. N.
2017-11-01
Optical and Faraday rotation spectra of magneto-optical microcavity coated with Au plasmonic layer of gradient thickness were investigated theoretically and experimentally. It was shown that the Tamm plasmon-polaritons mode forms near the long-wavelength edge of photonic band gap. The presence of Au coating of thickness of 90.4 nm increase the Faraday rotation at Tamm plasmon-polaritons and cavity resonances in 1.3 and 7 times, respectively. By transfer matrix method it were found that the incorporation of SiO2 buffer layer with a thickness in the range from 155 to 180 nm between microcavity and Au coating leads to the strong coupling between cavity mode and Tamm plasmon-polaritons. In this case, one or two resonances arise in the vicinity of the cavity mode depending on the thickness of plasmonic layer. The Faraday rotation for coupled mode in twice less than the value of rotation for single cavity mode.
Zheng, Chuantao; Wang, Yiding
2017-01-01
A Pound-Drever-Hall (PDH)-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 µm as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT) and proportional-integral-derivative (PID) feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 × 10–8 cm–1 was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line. PMID:29207470
Transverse single-mode edge-emitting lasers based on coupled waveguides.
Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V
2015-05-01
We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.
Longhi, S
2016-10-01
Parity-time (PT) symmetry is one of the most important accomplishments in optics over the past decade. Here the concept of PT mode-locking (ML) of a laser is introduced, in which active phase-locking of cavity axial modes is realized by asymmetric mode coupling in a complex time crystal. PT ML shows a transition from single- to double-pulse emission as the PT symmetry breaking point is crossed. The transition can show a turbulent behavior, depending on a dimensionless modulation parameter that plays the same role as the Reynolds number in hydrodynamic flows.
Polarized micro-cavity organic light-emitting devices.
Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk
2009-04-27
We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.
Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, David D.; Department of Physics, University of Alabama in Huntsville, Huntsville, Alabama 35899; Myneni, Krishna
2009-07-15
The pushing of the modes of a Fabry-Perot cavity by an intracavity rubidium cell is measured. The scale factor of the modes is increased by the anomalous dispersion and is inversely proportional to the sum of the effective group index and an additional cavity delay factor that arises from the variation of the Rb absorption over a free spectral range. This additional positive feedback further increases the effect of the anomalous dispersion and goes to zero at the lasing threshold. The mode width does not grow as fast as the scale factor as the intracavity absorption is increased resulting inmore » enhanced measurement sensitivities. For absorptions larger than the scale factor pole, the atom-cavity response is multivalued and mode splitting occurs.« less
Programmable controlled mode-locked fiber laser using a digital micromirror device.
Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie
2017-05-15
A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.
Cavity enhanced interference of orthogonal modes in a birefringent medium
NASA Astrophysics Data System (ADS)
Kolluru, Kiran; Saha, Sudipta; Gupta, S. Dutta
2018-03-01
Interference of orthogonal modes in a birefringent crystal mediated by a rotator is known to lead to interesting physical effects (Solli et al., 2003). In this paper we show that additional feedback offered by a Fabry-Perot cavity (containing the birefringent crystal and the rotator) can lead to a novel strong interaction regime. Usual signatures of the strong interaction regime like the normal mode splitting and avoided crossings, sensitive to the rotator orientation, are reported. A high finesse cavity is shown to offer an optical setup for measuring small angles. The results are based on direct calculations of the cavity transmissions along with an analysis of its dispersion relation.
NASA Astrophysics Data System (ADS)
Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.
2014-03-01
We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.
Acoustic trapping in bubble-bounded micro-cavities
NASA Astrophysics Data System (ADS)
O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.
2016-12-01
We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.
NASA Astrophysics Data System (ADS)
Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.
2016-09-01
Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.
Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals
NASA Astrophysics Data System (ADS)
Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias
2018-03-01
We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.
Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.
Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis
2014-02-01
We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.
Time-Gating Processes in Intra-Cavity Mode-Locking Devices Like Saturable Absorbers and Kerr Cells
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Roychoudhuri, Chandrasekhar
2010-01-01
Photons are non-interacting entities. Light beams do not interfere by themselves. Light beams constituting different laser modes (frequencies) are not capable of re-arranging their energies from extended time-domain to ultra-short time-domain by themselves without the aid of light-matter interactions with suitable intra-cavity devices. In this paper we will discuss the time-gating properties of intra-cavity "mode-locking" devices that actually help generate a regular train of high energy wave packets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Shibiao
2004-06-01
We propose a scheme for approximately and conditionally teleporting an unknown atomic state in cavity QED. Our scheme does not involve the Bell-state measurement and thus an additional atom is unnecessary. Only two atoms and one single-mode cavity are required. The scheme may be used to teleport the state of a cavity mode to another mode using a single atom. The idea may also be used to teleport the state of a trapped ion.
Modeling of ultrashort pulse generation in mode-locked VECSELs
NASA Astrophysics Data System (ADS)
Kilen, I.; Koch, S. W.; Hader, J.; Moloney, J. V.
2016-03-01
We present a study of various models for the mode-locked pulse dynamics in a vertical external-cavity surface emitting laser with a saturable absorber. The semiconductor Bloch equations are used to model microscopically the light-matter interaction and the carrier dynamics. Maxwell's equations describe the pulse propagation. Scattering contributions due to higher order correlation effects are approximated using effective rates that are found from a comparison to solving the microscopic scattering equations on the second Born-Markov level. It is shown that the simulations result in the same mode-locked final state whether the system is initialized with a test pulse close to the final mode-locked pulse or the full field build-up from statistical noise is considered. The influence of the cavity design is studied. The longest pulses are found for a standard V-cavity while a linear cavity and a V-cavity with an high reflectivity mirror in the middle are shown to produce similar, much shorter pulses.
Astley, Victoria; Reichel, Kimberly S; Jones, Jonathan; Mendis, Rajind; Mittleman, Daniel M
2012-09-10
We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.
NASA Astrophysics Data System (ADS)
Dupraz, K.; Cassou, K.; Martens, A.; Zomer, F.
2015-10-01
The ABCD matrix for parabolic reflectors is derived for any incident angles. It is used in numerical studies of four-mirror cavities composed of two flat and two parabolic mirrors. Constraints related to laser beam injection efficiency, optical stability, cavity-mode, beam-waist size and high stacking power are satisfied. A dedicated alignment procedure leading to stigmatic cavity-modes is employed to overcome issues related to the optical alignment of parabolic reflectors.
Quantum cascade laser combs: effects of modulation and dispersion.
Villares, Gustavo; Faist, Jérôme
2015-01-26
Frequency comb formation in quantum cascade lasers is studied theoretically using a Maxwell-Bloch formalism based on a modal decomposition, where dispersion is considered. In the mid-infrared, comb formation persists in the presence of weak cavity dispersion (500 fs2 mm-1) but disappears when much larger values are used (30'000 fs2 mm-1). Active modulation at the round-trip frequency is found to induce mode-locking in THz devices, where the upper state lifetime is in the tens of picoseconds. Our results show that mode-locking based on four-wave mixing in broadband gain, low dispersion cavities is the most promising way of achieving broadband quantum cascade laser frequency combs.
Piezoelectric actuator models for active sound and vibration control of cylinders
NASA Technical Reports Server (NTRS)
Lester, Harold C.; Lefebvre, Sylvie
1993-01-01
Analytical models for piezoelectric actuators, adapted from flat plate concepts, are developed for noise and vibration control applications associated with vibrating circular cylinders. The loadings applied to the cylinder by the piezoelectric actuators for the bending and in-plane force models are approximated by line moment and line force distributions, respectively, acting on the perimeter of the actuator patch area. Coupling between the cylinder and interior acoustic cavity is examined by studying the modal spectra, particularly for the low-order cylinder modes that couple efficiently with the cavity at low frequencies. Within the scope of this study, the in-plane force model produced a more favorable distribution of low-order modes, necessary for efficient interior noise control, than did the bending model.
Radio mode feedback: Does relativity matter?
NASA Astrophysics Data System (ADS)
Perucho, Manel; Martí, José-María; Quilis, Vicent; Borja-Lloret, Marina
2017-10-01
Radio mode feedback, associated with the propagation of powerful outflows in active galaxies, is a crucial ingredient in galaxy evolution. Extragalactic jets are well collimated and relativistic, both in terms of thermodynamics and kinematics. They generate strong shocks in the ambient medium, associated with observed hotspots, and carve cavities that are filled with the shocked jet flow. In this Letter, we compare the pressure evolution in the hotspot and the cavity generated by relativistic and classical jets. Our results show that the classical approach underestimates the cavity pressure by a factor ≥2 for a given shocked volume during the whole active phase. The tension between both approaches can only be alleviated by unrealistic jet flow densities or gigantic jet areas in the classical case. As a consequence, the efficiency of a relativistic jet heating the ambient is typically ∼20 per cent larger compared with a classical jet, and the heated volume is 2 to 10 times larger during the time evolution. This conflict translates into two substantially disparate manners, both spatially and temporal, of heating the ambient medium. These differences are expected to have relevant implications on the star formation rates of the host galaxies and their evolution.
Numerical solution of the exact cavity equations of motion for an unstable optical resonator.
Bowers, M S; Moody, S E
1990-09-20
We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.
An improved scan laser with a VO2 programmable mirror
NASA Astrophysics Data System (ADS)
Chivian, J. S.; Scott, M. W.; Case, W. E.; Krasutsky, N. J.
1985-04-01
A 10.6-microns scan laser has been constructed and operated with an off-axis cathode ray tube, high reflectance multilayer thin-film structures, and a tapered plasma discharge tube. Equations are given for the switching time of a high-reflectance spot on the VO2 and for the relation of scan laser output power to cavity geometry, cavity losses, and the gain of the active CO2 medium. A scan capability of 2100 easily resolvable directions was demonstrated, and sequential and randomly addressed spot rates of 100,000/sec were achieved. The equations relating output power and cavity mode size were experimentally verified using a nonscanned beam.
Vertical-cavity in-plane heterostructures: Physics and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk
2015-11-02
We show that in-plane (lateral) heterostructures realized in vertical cavities with high contrast grating reflectors can be used to significantly modify the anisotropic dispersion curvature, also interpreted as the photon effective mass. This design freedom enables exotic configurations of heterostructures and many interesting applications. The effects of the anisotropic photon effective mass on the mode confinement, mode spacing, and transverse modes are investigated. As a possible application, the method of boosting the speed of diode lasers by engineering the photon-photon resonance is discussed. Based on this platform, we propose a system of two laterally coupled cavities, which shows the breakingmore » of parity-time symmetry in vertical cavity structures.« less
Open nonradiative cavities as millimeter wave single-mode resonators
NASA Astrophysics Data System (ADS)
Annino, G.; Cassettari, M.; Martinelli, M.
2005-06-01
Open single-mode metallic cavities operating in nonradiative configurations are proposed and demonstrated. Starting from well-known dielectric resonators, possible nonradiative cavities have been established; their behavior on the fundamental TE011 mode has been predicted on the basis of general considerations. As a result, very efficient confinement properties are expected for a wide variety of open structures having rotational invariance. Test cavities realized having in mind practical millimeter wave constraints have been characterized at microwave frequencies. The obtained results confirm the expected high performances on widely open configurations. A possible excitation of the proposed resonators exploiting their nonradiative character is discussed, and the resulting overall ease of realization enlightened in view of millimeter wave employments.
Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F
2014-02-01
Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.
Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime
NASA Astrophysics Data System (ADS)
Moores, Bradley A.; Sletten, Lucas R.; Viennot, Jeremie J.; Lehnert, K. W.
2018-06-01
We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μ m long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.
Mass sensor based on split-nanobeam optomechanical oscillator
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Xiang, Yanjun; He, Qinghua; Li, Tao; Ma, Jingfang
2016-03-01
Mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. The optomechanical crystal cavity has strong interaction between optical mode and mechanical mode. Radiation pressure driven optomechanical crystal cavity are excellent candidates for mass detection due to their simplicity, sensitivity and all optical operation. In an optomechanical crystal cavity, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring the mechanical frequency change of the cavity structure. Here, a split-nanobeam optomechanical crystal cavity is proposed, the sensing resolution as small as 0.33ag (1ag=10-21kg) and the frequency shift is more than 30MHz. This is important and promising for achieve ultimate-precision mass sensing including proteins and other molecules.
Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling.
Shao, Guodong; Song, Yufeng; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan
2015-10-05
We report on the experimental observation of soliton-dark pulse pair formation in a birefringent cavity fiber laser. Temporal cavity solitons are formed in one polarization mode of the cavity. It is observed that associated with each of the cavity solitons a dark pulse is induced on the CW background of the orthogonal polarization mode. We show that the dark pulse formation is a result of the incoherent cross polarization coupling between the soliton and the CW beam and has a mechanism similar to that of the polarization domain formation observed in the fiber lasers.
NASA Astrophysics Data System (ADS)
Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki
2013-11-01
A large-area planar plasma source with a resonant cavity type launcher driven by a 915 MHz ultra-high frequency wave was developed. Theoretical analysis with the three-dimensional finite difference time-domain simulation was carried out to determine the optimized launcher structure by analyzing the resonant transverse magnetic mode in the resonant cavity. Numerical result expects that the resonant electric field distribution inside the cavity dominantly consists of the TM410 mode. The resonant cavity type launcher having 8 holes in an octagonal geometry was designed to fit the resonant transverse magnetic mode. Adjusting 8 hole positions of the launcher to the field pattern of the resonant TM410 mode, we found that the plasma density increased about 40%˜50% from 1.0˜1.1 × 1011 cm-3 to ˜1.5 × 1011 cm-3 at the same incident power of 2.5 kW, compared with the previous results with the launcher having 6 holes in the hexagonal geometry. It is also noted that the electron density changes almost linearly with the incident wave power without any mode jumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, David M.; Lidzey, David G.
We construct a microcavity in which the extended optical path length of the cavity (5.9 μm) permits a series of closely spaced optical modes to be supported. By placing a J-aggregated cyanine dye into the cavity, we reach the strong-coupling regime and evidence a simultaneous optical hybridization between the organic-exciton and a number of the confined cavity modes, forming an effective ladder of polariton branches. We explore the emission from such cavities and evidence a polariton-population on adjacent polariton branches around k{sub ∥} = 0.
Compact spectrometer for precision studies of multimode behavior in an extended-cavity diode laser
NASA Astrophysics Data System (ADS)
Roach, Timothy; Golemi, Josian; Krueger, Thomas
2016-05-01
We have built a compact, inexpensive, high-precision spectrometer and used it to investigate the tuning behavior of a grating stabilized extended-cavity diode laser (ECDL). A common ECDL design uses a laser chip with an uncoated (partially reflecting) front facet, and the laser output exhibits a complicated pattern of mode hops as the frequency is tuned, in some cases even showing chaotic dynamics. Our grating spectrometer (based on a design by White & Scholten) monitors a span of 4000 GHz (8 nm at 780 nm) with a linewidth of 3 GHz, which with line-splitting gives a precision of 0.02 GHz in determining the frequency of a laser mode. We have studied multimode operation of the ECDL, tracking two or three simultaneous chip cavity modes (spacing ~ 30 GHz) during tuning via current or piezo control of the external cavity. Simultaneous output on adjacent external cavity modes (spacing ~ 5 GHz) is monitored by measuring an increase in the spectral linewidth. Computer-control of the spectrometer (for line-fitting and averaging) and of the ECDL (electronic tuning) allows rapid collection of spectral data sets, which we will use to test mathematical simulation models of the non-linear laser cavity interactions.
A high-order mode extended interaction klystron at 0.34 THz
NASA Astrophysics Data System (ADS)
Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan
2017-02-01
We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.
NASA Astrophysics Data System (ADS)
Lewellen, John W.
2001-04-01
Traditional photocathode rf gun design is based around the use of TM0,1,0-mode cavities. This is typically done in the interest of obtaining the highest possible gradient per unit supplied rf power and for historical reasons. In a multicell, aperture-coupled photoinjector, however, the gun as a whole is produced from strongly coupled cavities oscillating in a π mode. This design requires very careful preparation and tuning, as the field balance and resonant frequencies are easily disturbed. Side-coupled designs are often avoided because of the dipole modes introduced into the cavity fields. This paper proposes the use of a single higher-order mode rf cavity in order to generate the desired on-axis fields. It is shown that the field experienced by a beam in a higher-order mode rf gun is initially very similar to traditional 1.5- or 2.5-cell π-mode gun fields, and projected performance in terms of beam quality is also comparable. The new design has the advantages of much greater ease of fabrication, immunity from coupled-cell effects, and simpler tuning procedures. Because of the gun geometry, the possibility also exists for improved temperature stabilization and cooling for high duty-cycle applications.
Dynamic entanglement transfer in a double-cavity optomechanical system
NASA Astrophysics Data System (ADS)
Huan, Tiantian; Zhou, Rigui; Ian, Hou
2015-08-01
We give a theoretical study of a double-cavity system in which a mechanical resonator beam is coupled to two cavity modes on both sides through radiation pressures. The indirect coupling between the cavities via the resonator sets up a correlation in the optomechanical entanglements between the two cavities with the common resonator. This correlation initiates an entanglement transfer from the intracavity photon-phonon entanglements to an intercavity photon-photon entanglement. Using numerical solutions, we show two distinct regimes of the optomechanical system, in which the indirect entanglement either builds up and eventually saturates or undergoes a death-and-revival cycle, after a time lapse for initiating the cooperative motion of the left and right cavity modes.
Theory of some laser noise effects.
NASA Technical Reports Server (NTRS)
Wang, Y. K.; Lamb, W. E., Jr.
1973-01-01
A simple version of the semiclassical theory is applied to the shot effect. Considerations of thermal noise reported by Lamb (1965) are extended to take into account amplitude fluctuations. The laser is considered to be a lossy cavity of the Fabry-Perot type in single-mode operation with a circular frequency driven by an inverted population of active atoms. The electric field is taken to be transverse to the cavity axis. The amplitude and phase are assumed to be slowly varying functions which satisfy two self-consistency equations.
Investigation of an Ultrafast Harmonic Resonant RF Kicker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yulu
An Energy Recovery Linac (ERL) based multi-turn electron Circulator Cooler Ring (CCR) is envisaged in the proposed Jefferson Lab Electron Ion Collider (JLEIC) to cool the ion bunches with high energy (55 MeV), high current (1.5 A), high repetition frequency (476.3 MHz), high quality magnetized electron bunches. A critical component in this scheme is a pair of ultrafast kickers for the exchange of electron bunches between the ERL and the CCR. The ultrafast kicker should operate with the rise and fall time in less than 2.1 ns, at the repetition rate of ~10s MHz, and should be able to runmore » continuously during the whole period of cooling. These -and-fall time being combined together, are well beyond the state-of-art of traditional pulsed power supplies and magnet kickers. To solve this technical challenge, an alternative method is to generate this high repetition rate, fast rise-and-fall time short pulse continuous waveform by summing several finite number of (co)sine waves at harmonic frequencies of the kicking repetition frequency, and these harmonic modes can be generated by the Quarter Wave Resonater (QWR) based multifrequency cavities. Assuming the recirculator factor is 10, 10 harmonic modes (from 47.63 MHz to 476.3 MHz) with proper amplitudes and phases, plus a DC offset are combined together, a continuous short pulse waveform with the rise-and-fall time in less than 2.1 ns, repetition rate of 47.63 MHz waveform can be generated. With the compact and matured technology of QWR cavities, the total cost of both hardware development and operation can be reduced to a modest level. Focuse on the technical scheme, three main topics will be discussed in this thesis: the synthetization of the kicking pulse, the design and optimization of the deflecting QWR multi-integer harmonic frequency resonator and the fabrication and bench measurements of a half scale copper prototype. In the kicking pulse synthetization part, we begin with the Fourier Series expansion of an ideal square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half-scale copper prototype cavity (resonant frequencies from 95.26 MHz to 857.34 MHz) was fabricated to validate the electromagnetic characteristics. With this half scale prototype, the tuning processes of multiple harmonic frequencies, unloaded quality factor measurements of each mode, and bead-pull measurements are performed. The bench measurement results matched well with the simulation results, which have validated our cavity design and construction methods. Finally, a simple mode combining experiment with five separate signal generators was performed on this prototype cavity and the desired fast rise/fall time (1.2 ns), high repetition rate (95.26 MHz) waveform was captured, which finally proved our design of this ultrafast harmonic kicker.« less
NASA Astrophysics Data System (ADS)
Petrescu-Prahova, I. B.; Lazanu, S.; Lepşa, M.; Mihailovici, P.
1988-11-01
An investigation was made of the emission from GaAlAs large-optical-cavity (LOC) laser heterostructures with an active layer more than 2 μm thick. The far-field radiation pattern, representing a superposition of the fundamental and several higher-order transverse modes, had a central maximum. The gain, mirror losses, near- and far-field patterns of each propagation mode, as well as mode competition were analyzed on the basis of a simple model. The far-field pattern of single modes was determined by selecting separate spectral intervals from the total emission spectrum of the laser.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Mansurova, Svetlana; Il'in, Yurij V.; Tarasov, Il'ya S.
2010-06-01
We discuss specifically elaborated approach for characterizing the train-average parameters of low-power picosecond optical pulses with the frequency chirp, arranged in high-repetition-frequency trains, in both time and frequency domains. This approach had been previously applied to rather important case of pulse generation when a single-mode semiconductor heterolaser operates in a multi-pulse regime of the active mode-locking with an external single-mode fiber cavity. In fact, the trains of optical dissipative solitary pulses, which appear under a double balance between mutually compensating actions of dispersion and nonlinearity as well as gain and optical losses, are under characterization. However, in the contrast with the previous studies, now we touch an opportunity of describing two chirped optical pulses together. The main reason of involving just a pair of pulses is caused by the simplest opportunity for simulating the properties of just a sequence of pulses rather then an isolated pulse. However, this step leads to a set of specific difficulty inherent generally in applying joint time-frequency distributions to groups of signals and consisting in manifestation of various false signals or artefacts. This is why the joint Chio-Williams time-frequency distribution and the technique of smoothing are under preliminary consideration here.
Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity
Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.
2017-01-01
Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light–matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light–matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities. PMID:28211455
Extremely Low-Frequency Waves Inside the Diamagnetic Cavity of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Madsen, B.; Wedlund, C. Simon; Eriksson, A.; Goetz, C.; Karlsson, T.; Gunell, H.; Spicher, A.; Henri, P.; Vallières, X.; Miloch, W. J.
2018-05-01
The European Space Agency/Rosetta mission to comet 67P/Churyumov-Gerasimenko has provided several hundred observations of the cometary diamagnetic cavity induced by the interaction between outgassed cometary particles, cometary ions, and the solar wind magnetic field. Here we present the first electric field measurements of four preperihelion and postperihelion cavity crossings on 28 May 2015 and 17 February 2016, using the dual-probe electric field mode of the Langmuir probe (LAP) instrument of the Rosetta Plasma Consortium. We find that on large scales, variations in the electric field fluctuations capture the cavity and boundary regions observed in the already well-studied magnetic field, suggesting the electric field mode of the LAP instrument as a reliable tool to image cavity crossings. In addition, the LAP electric field mode unravels for the first time extremely low-frequency waves within two cavities. These low-frequency electrostatic waves are likely triggered by lower-hybrid waves observed in the surrounding magnetized plasma.
Schatzl, Magdalena; Hackl, Florian; Glaser, Martin; Rauter, Patrick; Brehm, Moritz; Spindlberger, Lukas; Simbula, Angelica; Galli, Matteo; Fromherz, Thomas; Schäffler, Friedrich
2017-03-15
Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime.
2017-01-01
Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime. PMID:28345012
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
NASA Technical Reports Server (NTRS)
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
Two-mode back-action-evading measurements in cavity optomechanics
NASA Astrophysics Data System (ADS)
Woolley, M. J.; Clerk, A. A.
2013-06-01
We study theoretically a three-mode optomechanical system where two mechanical oscillators are coupled to a single cavity mode. By using two-tone (i.e., amplitude-modulated) driving of the cavity, it is possible to couple the cavity to a single collective quadrature of the mechanical oscillators. In such a way, a back-action-evading measurement of the collective mechanical quadrature is possible. We discuss how this can allow one to measure both quadratures of a mechanical force beyond the full quantum limit, paying close attention to the role of dissipation and experimental imperfections. We also describe how this scheme allows one to generate steady-state mechanical entanglement; namely, one can conditionally prepare an entangled, two-mode squeezed mechanical state. This entanglement can be verified directly from the measurement record by applying a generalized version of Duan's inequality; we also discuss how feedback can be used to produce unconditional entanglement.
Multiple period s-p hybridization in nano-strip embedded photonic crystal.
Han, Seunghoon; Lee, Il-Min; Kim, Hwi; Lee, Byoungho
2005-04-04
We report and analyze hybridization of s-state and p-state modes in photonic crystal one-dimensional defect cavity array. When embedding a nano-strip into a dielectric rod photonic crystal, an effective cavity array is made, where each cavity possesses two cavity modes: s-state and p-state. The two modes are laterally even versus the nano-strip direction, and interact with each other, producing defect bands, of which the group velocity becomes zero within the first Brillouin zone. We could model and describe the phenomena by using the tight-binding method, well agreeing with the plane-wave expansion method analysis. We note that the reported s- and p-state mode interaction corresponds to the hybridization of atomic orbital in solid-state physics. The concept of multiple period s-p hybridization and the proposed model can be useful for analyzing and developing novel photonic crystal waveguides and devices.
Suppression of extraneous thermal noise in cavity optomechanics.
Zhao, Yi; Wilson, Dalziel J; Ni, K-K; Kimble, H J
2012-02-13
Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-Pérot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.
Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.
Wang, Yongrui; Belyanin, Alexey
2015-02-23
We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.
Design and characterization of an integrated surface ion trap and micromirror optical cavity.
Van Rynbach, Andre; Schwartz, George; Spivey, Robert F; Joseph, James; Vrijsen, Geert; Kim, Jungsang
2017-08-10
We have fabricated and characterized laser-ablated micromirrors on fused silica substrates for constructing stable Fabry-Perot optical cavities. We highlight several design features which allow these cavities to have lengths in the 250-300 μm range and be integrated directly with surface ion traps. We present a method to calculate the optical mode shape and losses of these micromirror cavities as functions of cavity length and mirror shape, and confirm that our simulation model is in good agreement with experimental measurements of the intracavity optical mode at a test wavelength of 780 nm. We have designed and tested a mechanical setup for dampening vibrations and stabilizing the cavity length, and explore applications for these cavities as efficient single-photon sources when combined with trapped Yb171 + ions.
Cleaved-coupled nanowire lasers
Gao, Hanwei; Fu, Anthony; Andrews, Sean C.; Yang, Peidong
2013-01-01
The miniaturization of optoelectronic devices is essential for the continued success of photonic technologies. Nanowires have been identified as potential building blocks that mimic conventional photonic components such as interconnects, waveguides, and optical cavities at the nanoscale. Semiconductor nanowires with high optical gain offer promising solutions for lasers with small footprints and low power consumption. Although much effort has been directed toward controlling their size, shape, and composition, most nanowire lasers currently suffer from emitting at multiple frequencies simultaneously, arising from the longitudinal modes native to simple Fabry–Pérot cavities. Cleaved-coupled cavities, two Fabry–Pérot cavities that are axially coupled through an air gap, are a promising architecture to produce single-frequency emission. The miniaturization of this concept, however, imposes a restriction on the dimensions of the intercavity gaps because severe optical losses are incurred when the cross-sectional dimensions of cavities become comparable to the lasing wavelength. Here we theoretically investigate and experimentally demonstrate spectral manipulation of lasing modes by creating cleaved-coupled cavities in gallium nitride (GaN) nanowires. Lasing operation at a single UV wavelength at room temperature was achieved using nanoscale gaps to create the smallest cleaved-coupled cavities to date. Besides the reduced number of lasing modes, the cleaved-coupled nanowires also operate with a lower threshold gain than that of the individual component nanowires. Good agreement was found between the measured lasing spectra and the predicted spectral modes obtained by simulating optical coupling properties. This agreement between theory and experiment presents design principles to rationally control the lasing modes in cleaved-coupled nanowire lasers. PMID:23284173
Gain and losses in THz quantum cascade laser with metal-metal waveguide.
Martl, Michael; Darmo, Juraj; Deutsch, Christoph; Brandstetter, Martin; Andrews, Aaron Maxwell; Klang, Pavel; Strasser, Gottfried; Unterrainer, Karl
2011-01-17
Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory; Geng, Rongli; Palczewski, Ari
2011-07-01
We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM{sub 010} passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B{sub peak} = 173 mT, in 8{pi}/9 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities.
Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y
2014-02-10
Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46 MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400 kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.
Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.
Moores, Bradley A; Sletten, Lucas R; Viennot, Jeremie J; Lehnert, K W
2018-06-01
We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.
Cao, C.; Argonne National Lab.; Ford, D.; ...
2013-06-26
Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH 2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons.more » Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000°C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. Finally, the origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, C.; Argonne National Lab.; Ford, D.
Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH 2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons.more » Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000°C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. Finally, the origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.« less
Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system
NASA Astrophysics Data System (ADS)
He, Qiongyi; Ficek, Zbigniew
2014-02-01
We study multipartite entanglement, the generation of Einstein-Podolsky-Rosen (EPR) states, and quantum steering in a three-mode optomechanical system composed of an atomic ensemble located inside a single-mode cavity with a movable mirror. The cavity mode is driven by a short laser pulse, has a nonlinear parametric-type interaction with the mirror and a linear beam-splitter-type interaction with the atomic ensemble. There is no direct interaction of the mirror with the atomic ensemble. A threshold effect for the dynamics of the system is found, above which the system works as an amplifier and below which as an attenuator of the output fields. The threshold is determined by the ratio of the coupling strengths of the cavity mode to the mirror and to the atomic ensemble. It is shown that above the threshold, the system effectively behaves as a two-mode system in which a perfect bipartite EPR state can be generated, while it is impossible below the threshold. Furthermore, a fully inseparable tripartite entanglement and even further a genuine tripartite entanglement can be produced above and below the threshold. In addition, we consider quantum steering and examine the monogamy relations that quantify the amount of bipartite steering that can be shared between different modes. It is found that the mirror is more capable for steering of entanglement than the cavity mode. The two-way steering is found between the mirror and the atomic ensemble despite the fact that they are not directly coupled to each other, while it is impossible between the output of cavity mode and the ensemble which are directly coupled to each other.
NASA Astrophysics Data System (ADS)
Doty, Constance; Cerkoney, Daniel; Gramajo, Ashley; Campbell, Tyler; Reid, Candy; Morales, Manuel; Delfanazari, Kaveh; Yamamoto, Takashi; Tsujimoto, Manabu; Kashiwagi, Takanari; Watanabe, Chiharu; Minami, Hidetoshi; Kadowaki, Kazuo; Klemm, Richard
We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna exhibiting C3v point group symmetry, which restricts the number of TM(n,m) modes to | m - n | = 3 p , where the integer p > 0 for the modes odd and even about the three mirror planes, but p = 0 can also exist for the even modes. We calculate the wave functions and the power distribution forms from the uniform Josephson current source and from the excitation of one of these cavity modes, and fit data on an early equilateral triangular Bi2Sr2CaCu2O8+δ mesa, for which the C3v symmetry was apparently broken. Work supported in part by the UCF RAMP, JSPS Fellowship, CREST-JST, and WPI-MANA.
Mode control in a high-gain relativistic klystron amplifier
NASA Astrophysics Data System (ADS)
Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang
2010-05-01
Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.
NASA Astrophysics Data System (ADS)
Seyfferle, S.; Hargart, F.; Jetter, M.; Hu, E.; Michler, P.
2018-01-01
We report on the radiative interaction of two single quantum dots (QDs) each in a separate InP/GaInP-based microdisk cavity via resonant whispering gallery modes. The investigations are based on as-fabricated coupled disk modes. We apply optical spectroscopy involving a 4 f setup, as well as mode-selective real-space imaging and photoluminescence mapping to discern single QDs coupled to a resonant microdisk mode. Excitation of one disk of the double cavity structure and detecting photoluminescence from the other yields proof of single-photon emission of a QD excited by incoherent energy transfer from one disk to the other via a mode in the weak-coupling regime. Finally, we present evidence of photons emitted by a QD in one disk that are transferred to the other disk by a resonant mode and are subsequently resonantly scattered by another QD.
NASA Astrophysics Data System (ADS)
Krakowski, M.; Resneau, P.; Garcia, M.; Vinet, E.; Robert, Y.; Lecomte, M.; Parillaud, O.; Gerard, B.; Kundermann, S.; Torcheboeuf, N.; Boiko, D. L.
2018-02-01
We report on multi-section inverse bow-tie laser producing mode-locked pulses of 90 pJ energy and 6.5 ps width (895 fs after compression) at 1.3 GHz pulse repetition frequency (PRF) and consuming 2.9 W of electric power. The laser operates in an 80 mm long external cavity. By translation of the output coupling mirror, the PRF was continuously tuned over 37 MHz range without additional adjustments. Active stabilization with a phase lock loop actuating on the driving current has allowed us to reach the PRF relative stability at a 2·10-10 level on 10 s intervals, as required by the European Space Agency (ESA) for inter-satellite long distance measurements.
Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng
2017-03-09
We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.
Modeling of mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Shaulov, Gary
This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.
Enhanced photoelastic modulation in silica phononic crystal cavities
NASA Astrophysics Data System (ADS)
Kim, Ingi; Iwamoto, Satoshi; Arakawa, Yasuhiko
2018-04-01
The enhanced photoelastic modulation in quasi-one-dimensional (1D) phononic crystal (PnC) cavities made of fused silica is experimentally demonstrated. A confined acoustic wave in the cavity can induce a large birefringence through the photoelastic effect and enable larger optical modulation amplitude at the same acoustic power. We observe a phase retardation of ∼26 mrad of light passing through the cavity when the exciting acoustic frequency is tuned to the cavity mode resonance of ∼500 kHz at 2.5 V. In the present experiment, a 16-fold enhancement of retardation in the PnC cavity is demonstrated compared with that in a bar-shaped silica structure. Spatially resolved optical retardation measurement reveals that the large retardation is realized only around the cavity reflecting the localized nature of the acoustic cavity mode. The enhanced interactions between acoustic waves and light can be utilized to improve the performance of acousto-optic devices such as photoelastic modulators.
In, Sungjun; Park, Namkyoo
2018-04-01
The application of nanophotonic structures for organic solar cells (OSCs) is quite popular and successful, and has led to increased optical absorption, better spectral overlap with solar irradiances, and improved charge collection. Significant improvements in the power conversion efficiency (PCE) have also been reported, exceeding 11%. Nonetheless, with the given material properties of OSCs with low optical absorption, narrow spectrum, short transport length of carriers, and nonuniform photocarrier generations resulting from the nanophotonic structure, the PCE of single-junction OSCs has been stagnant over the past few years, at a barrier of 12%. Here, an ultrathin inverted OSC structure with the highest efficiency of ≈13.0%, while being made from widely used organic materials, is demonstrated. By introducing a smooth spatial corrugation to the vertical plasmonic cavity enclosing the active layer, in-plane propagation modes and hybridized Fabry-Perot cavity modes inside the corrugated cavity are derived to achieve an ultralow Q , uniform coverage of optical absorption, in addition to uniform photocarrier generation and transport. As the first demonstration of ultra-broadband absorption with the introduction of spatial corrugation to the ultrathin metal film electrode-cathode Fabry-Perot cavity, future applications of the same concept in other light-harvesting devices utilizing different materials and structures are expected.
Ultrasensitive, self-calibrated cavity ring-down spectrometer for quantitative trace gas analysis.
Chen, Bing; Sun, Yu R; Zhou, Ze-Yi; Chen, Jian; Liu, An-Wen; Hu, Shui-Ming
2014-11-10
A cavity ring-down spectrometer is built for trace gas detection using telecom distributed feedback (DFB) diode lasers. The longitudinal modes of the ring-down cavity are used as frequency markers without active-locking either the laser or the high-finesse cavity. A control scheme is applied to scan the DFB laser frequency, matching the cavity modes one by one in sequence and resulting in a correct index at each recorded spectral data point, which allows us to calibrate the spectrum with a relative frequency precision of 0.06 MHz. Besides the frequency precision of the spectrometer, a sensitivity (noise-equivalent absorption) of 4×10-11 cm-1 Hz-1/2 has also been demonstrated. A minimum detectable absorption coefficient of 5×10-12 cm-1 has been obtained by averaging about 100 spectra recorded in 2 h. The quantitative accuracy is tested by measuring the CO2 concentrations in N2 samples prepared by the gravimetric method, and the relative deviation is less than 0.3%. The trace detection capability is demonstrated by detecting CO2 of ppbv-level concentrations in a high-purity nitrogen gas sample. Simple structure, high sensitivity, and good accuracy make the instrument very suitable for quantitative trace gas analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Xijiang; Graduate School of Science and Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561; Kunii, Kazuki
2013-11-14
A large-area planar plasma source with a resonant cavity type launcher driven by a 915 MHz ultra-high frequency wave was developed. Theoretical analysis with the three-dimensional finite difference time-domain simulation was carried out to determine the optimized launcher structure by analyzing the resonant transverse magnetic mode in the resonant cavity. Numerical result expects that the resonant electric field distribution inside the cavity dominantly consists of the TM{sub 410} mode. The resonant cavity type launcher having 8 holes in an octagonal geometry was designed to fit the resonant transverse magnetic mode. Adjusting 8 hole positions of the launcher to the fieldmore » pattern of the resonant TM{sub 410} mode, we found that the plasma density increased about 40%∼50% from 1.0∼1.1 × 10{sup 11} cm{sup −3} to ∼1.5 × 10{sup 11} cm{sup −3} at the same incident power of 2.5 kW, compared with the previous results with the launcher having 6 holes in the hexagonal geometry. It is also noted that the electron density changes almost linearly with the incident wave power without any mode jumps.« less
A high resolution cavity BPM for the CLIC Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chritin, N.; Schmickler, H.; Soby, L.
2010-08-01
In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.
HOM identification by bead pulling in the Brookhaven ERL cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn H.; Calaga, R.; Jain, P.
2012-06-25
Several past measurements of the Brookhaven ERL at superconducting temperature produced a long list of higher order modes (HOMs). The Niobium 5-cell cavity is terminated with HOM ferrite dampers that successfully reduce the Q-factors to tolerable levels. However, a number of undamped resonances with Q {ge} 10{sup 6} were found at 4 K and their mode identification remained as a goal for this paper. The approach taken here consists in taking different S{sub 21} measurements on a copper cavity replica of the ERL which can be compared with the actual data and also with Microwave Studio computer simulations. Several differentmore » S{sub 21} transmission measurements are used, including those taken from the fundamental input coupler to the pick-up probe across the cavity, between probes in a single cell, and between beam-position monitor probes in the beam tubes. Mode identification is supported by bead pulling with a metallic needle or a dielectric sphere that are calibrated in the fundamental mode. This paper presents results for HOMs in the first two dipole bands with the prototypical 958 MHz trapped mode, the lowest beam tube resonances, and high-Q modes in the first quadrupole band and beyond.« less
NASA Astrophysics Data System (ADS)
Lee, Eunjoo; Kim, Byoung Yoon
2017-12-01
We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.
Waves and rays in plano-concave laser cavities: I. Geometric modes in the paraxial approximation
NASA Astrophysics Data System (ADS)
Barré, N.; Romanelli, M.; Lebental, M.; Brunel, M.
2017-05-01
Eigenmodes of laser cavities are studied theoretically and experimentally in two companion papers, with the aim of making connections between undulatory and geometric properties of light. In this first paper, we focus on macroscopic open-cavity lasers with localized gain. The model is based on the wave equation in the paraxial approximation; experiments are conducted with a simple diode-pumped Nd:YAG laser with a variable cavity length. After recalling fundamentals of laser beam optics, we consider plano-concave cavities with on-axis or off-axis pumping, with emphasis put on degenerate cavity lengths, where modes of different order resonate at the same frequency, and combine to form surprising transverse beam profiles. Degeneracy leads to the oscillation of so-called geometric modes whose properties can be understood, to a certain extent, also within a ray optics picture. We first provide a heuristic description of these modes, based on geometric reasoning, and then show more rigorously how to derive them analytically by building wave superpositions, within the framework of paraxial wave optics. The numerical methods, based on the Fox-Li approach, are described in detail. The experimental setup, including the imaging system, is also detailed and relatively simple to reproduce. The aim is to facilitate implementation of both the numerics and of the experiments, and to show that one can have access not only to the common higher-order modes but also to more exotic patterns.
NASA Astrophysics Data System (ADS)
Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir
2010-02-01
We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.
NASA Astrophysics Data System (ADS)
Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle
2018-01-01
We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.
Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers
NASA Astrophysics Data System (ADS)
Zameroski, Nathan D.; Wanke, Michael; Bossert, David
2013-03-01
The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
All-optical transistor based on Rydberg atom-assisted optomechanical system.
Liu, Yi-Mou; Tian, Xue-Dong; Wang, Jing; Fan, Chu-Hui; Gao, Feng; Bao, Qian-Qian
2018-04-30
We study the optical response of a double optomechanical cavity system assisted by two Rydberg atoms. The target atom is only coupled with one side cavity by a single cavity mode, and gate one is outside the cavities. It has been realized that a long-range manipulation of optical properties of a hybrid system, by controlling the Rydberg atom decoupled with the optomechanical cavity. Switching on the coupling between atoms and cavity mode, the original spatial inversion symmetry of the double cavity structure has been broken. Combining the controllable optical non-reciprocity with the coherent perfect absorption/transmission/synthesis effect (CPA/CPT/CPS reported by [ X.-B.Yan Opt. Express 22, 4886 (2014)], we put forward the theoretical schemes of an all-optical transistor which contains functions such as a controllable diode, rectifier, and amplifier by controlling a single gate photon.
Frequency-Agile Differential Cavity Ring-Down Spectroscopy
NASA Astrophysics Data System (ADS)
Reed, Zachary; Hodges, Joseph
2015-06-01
The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378-1387, 2010 3. G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, and D.A. Long Nature Photonics, 7, 532-534, 2013
Environmental stability of actively mode locked fibre lasers
NASA Astrophysics Data System (ADS)
Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John
2016-10-01
Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).
Ferrite HOM Absorber for the RHIC ERL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn,H.; Choi, E.M.; Hammons, L.
A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurementsmore » of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.« less
Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang
2017-12-01
At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.
Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states
NASA Astrophysics Data System (ADS)
Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.
2017-09-01
The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.
RX and Z Mode Growth Rates and Propagation at Cavity Boundaries
NASA Astrophysics Data System (ADS)
Mutel, R. L.; Christopher, I. W.; Menietti, J. D.; Gurnett, D. A.; Pickett, J. S.; Masson, A.; Fazakerley, A.; Lucek, E.
Recent Cluster WBD observations in the Earth's auroral acceleration region have detected trapped Z mode auroral kilometric radiation while the spacecraft were entering a deep density cavity. The Z mode has a clear cutoff at the local upper hybrid resonance frequency, while RX mode radiation is detected above the RX mode cutoff frequency. The small gap between the upper hybrid resonance and the RX mode cutoff frequencies is proportional to the local electron density as expected from cold plasma theory. The width of the observed gap provides a new sensitive measure of the ambient electron density. In addition, the relative intensities of RX and Z mode radiation provide a sensitive probe of the plasma β = Ω_pe /Ω_ce at the source since the growth rates, although identical in form, have different ranges of allowed resonant radii which depend on β. In particular, the RX mode growth is favored for low β, while the Z mode is favored at higher β. The observed mode intensities and β's appear to be consistent with this model, and favor generation of Z mode at the source over models in which Z mode is generated by mode-conversion at cavity boundaries. These are the first multi-point direct measurements of mode-specific AKR propagation in the auroral acceleration region of any planet.
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-03-01
The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.
NASA Astrophysics Data System (ADS)
Zhong, Chuyu; Zhang, Xing; Hofmann, Werner; Yu, Lijuan; Liu, Jianguo; Ning, Yongqiang; Wang, Lijun
2018-05-01
Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio
2016-07-01
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
Spanwise effects on instabilities of compressible flow over a long rectangular cavity
NASA Astrophysics Data System (ADS)
Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.
2017-12-01
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.
Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity
NASA Astrophysics Data System (ADS)
Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun
2018-05-01
Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.
InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate
NASA Astrophysics Data System (ADS)
Lo, Mu-Chieh; Guzmán, Robinson; Carpintero, Guillermo
2018-02-01
A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slipchenko, S. O., E-mail: serghpl@mail.ioffe.ru; Podoskin, A. A.; Pikhtin, N. A.
Threshold conditions for generation of a closed mode in the crystal of the Fabry-Perot semiconductor laser with a quantum-well active region are analyzed. It is found that main parameters affecting the closed mode lasing threshold for the chosen laser heterostructure are as follows: the optical loss in the passive region, the optical confinement factor of the closed mode in the gain region, and material gain detuning. The relations defining the threshold conditions for closed mode lasing in terms of optical and geometrical characteristics of the semiconductor laser are derived. It is shown that the threshold conditions can be satisfied atmore » a lower material gain in comparison with the Fabry-Perot cavity mode due to zero output loss for the closed mode.« less
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
Novel hybrid laser modes in composite VCSEL-DFB microcavities (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mischok, Andreas; Wagner, Tim; Sudzius, Markas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl
2017-02-01
Two of the most successful microcresonator concepts are the vertical cavity surface emitting laser (VCSEL), where light is confined between distributed Bragg reflectors (DBRs), and the distributed feedback (DFB) laser, where a periodic grating provides positive optical feedback to selected modes in an active waveguide (WG) layer. Our work concerns the combination of both into a composite device, facilitating coherent interaction between both regimes and giving rise to novel laser modes in the system. In a first realization, a full VCSEL stack with an organic active layer is evaporated on top of a diffraction grating with a large period (approximately 1 micron), leading to diffraction of waveguided modes into the surface emission of the device. Here, the coherent interaction between VCSEL and WG modes, as observed in an anticrossing of the dispersion lines, facilitates novel hybrid lasing modes with macroscopic in-plane coherence [1]. In further studies, we decrease the grating period of such devices to realise DFB conditions in a second-order Bragg grating which strongly couples photons via first-order light diffraction to the VCSEL. This efficient coupling can be compared to more classical cascade-coupled cavities and is successfully described by a coupled oscillator model [2]. When both resonators are non-degenerate, they are able to function as independent structures without substantial diffraction losses. The realization of such novel devices provides a promising platform for photonic circuits based on organic microlasers. [1] A. Mischok et al., Adv. Opt. Mater., early online, DOI: 10.1002/adom.201600282, (2016) [2] T. Wagner et al., Appl. Phys. Lett., accepted, in production, (2016)
Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS
NASA Astrophysics Data System (ADS)
Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo
2014-01-01
The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.
On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback
NASA Astrophysics Data System (ADS)
Guo, Fulai
2016-07-01
Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light (η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonic jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.
ON THE IMPORTANCE OF VERY LIGHT INTERNALLY SUBSONIC AGN JETS IN RADIO-MODE AGN FEEDBACK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Fulai, E-mail: fulai@shao.ac.cn
Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kiloparsec-scale interaction of AGN jets with the intracluster medium. Large-scale jet simulations often initiate light internally supersonic jets with density contrast 0.01 < η < 1. Here we argue for the first time for the importance of very light ( η < 0.01) internally subsonic jets. We investigated the shapes of young X-ray cavities produced in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally subsonic jets, while internally supersonicmore » jets inflate cylindrical, center-wide, or top-wide cavities. We found examples of real cavities with shapes analogous to those inflated in our simulations by internally subsonic and internally supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resulted from light jets spread along the jet direction, while those produced by very light jets are significantly elongated along the perpendicular direction. The northwestern ghost cavity in Perseus is pancake shaped, providing tentative evidence for the existence of very light jets. Our simulations show that very light internally subsonic jets decelerate faster and rise much slower in the intracluster medium than light internally supersonic jets, possibly depositing a larger fraction of jet energy to cluster cores and alleviating the problem of low coupling efficiencies found previously. The internal Mach number points to the jet’s energy content, and internally subsonic jets are energetically dominated by non-kinetic energy, such as thermal energy, cosmic rays, or magnetic fields.« less
Amplitude and polarization asymmetries in a ring laser
NASA Technical Reports Server (NTRS)
Campbell, L. L.; Buholz, N. E.
1971-01-01
Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.
Toward precise site-controlling of self-assembled Ge quantum dots on Si microdisks.
Wang, Shuguang; Zhang, Ningning; Chen, Peizong; Wang, Liming; Yang, Xinju; Jiang, Zuimin; Zhong, Zhenyang
2018-08-24
A feasible route is developed toward precise site-controlling of quantum dots (QDs) at the microdisk periphery, where most microdisk cavity modes are located. The preferential growth of self-assembled Ge QDs at the periphery of Si microdisks is discovered. Moreover, both the height and linear density of Ge QDs can be controlled by tuning the amount of deposited Ge and the microdisk size. The inherent mechanisms of these unique features are discussed, taking into account both the growth kinetics and thermodynamics. By growing Ge on the innovative Si microdisks with small protrusions at the disk periphery, the positioning of Ge QDs at the periphery can be exactly predetermined. Such a precise site-controlling of Ge QDs at the periphery enables the location of the QD right at the field antinodes of the cavity mode of the Si microdisk, thereby achieving spatial matching between QD and cavity mode. These results open a promising door to realize the semiconductor QD-microdisk systems with both spectral and spatial matching between QDs and microdisk cavity modes, which will be the promising candidates for exploring the fundamental features of cavity quantum electrodynamics and the innovative optoelectronic devices based on strong light-matter interaction.
NASA Astrophysics Data System (ADS)
Hadley, Mark Alfred
Some important problems to overcome in the design and fabrication of vertical-cavity surface-emitting laser diodes (VCSELs) are: narrow design tolerances, molecular beam epitaxy growth control and multiple transverse modes. This dissertation addresses each of these problems. First, optical, electrical and thermal design issues are discussed in detail. Second, a new growth method using the thermal emission from the substrate during growth is described which is used to accurately control the growth of multilayer structures. The third problem addressed is that of multiple transverse modes. For many applications it is desirable for a VCSEL to lase in the lowest-order transverse mode. In most structures, this only occurs at low powers. It is shown that an external cavity can be used to force a VCSEL to lase in a single transverse mode at all power levels. A new type of VCSEL, grown on a p-doped substrate in order to increase injection uniformity, is designed specifically for use in an external cavity. There are two types of external cavities used to control modes: a long external "macro-cavity" and a short external "micro-cavity." These external cavities have been used to obtain peak powers of over 100 mW while remaining in the fundamental mode under pulsed operation. Finally, a more general topic is researched. This topic, called fluidic self-assembly (FSA), is a new integration technique that can be used not only to integrate VCSELs on a separate substrate, but to integrate many different material systems and devices together on the same substrate. The basic concept of FSA is to make a large number of objects of a particular shape. On a separate substrate, holes that match the shape of the objects are also fabricated. By placing the substrate in an inert fluid containing the objects, and recirculating the fluid and the objects over the substrate, it is possible to fill the holes with correctly oriented objects. Results of a FSA study are reported in which 100% fill factors are obtained. Specifically, FSA was used to assemble two different sizes of silicon blocks into holes in a silicon substrate. Fabrication techniques as well as FSA results are included.
Superconducting multi-cell trapped mode deflecting cavity
Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander
2017-10-10
A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.
Kong, Weipeng; Sugita, Atsushi; Taira, Takunori
2012-07-01
We have demonstrated high-order Hermite-Gaussian (HG) mode generation based on 2D gain distribution control edge-pumped, composite all-ceramic Yb:YAG/YAG microchip lasers using a V-type cavity. Several hundred milliwatts to several watts HG(mn) modes are achieved. We also generated different kinds of vortex arrays directly from the oscillator with the same power level. In addition, a more than 7 W doughnut-shape mode can be generated in the same cavity.
Non-destructive splitter of twisted light based on modes splitting in a ring cavity.
Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can
2016-02-08
Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.
NASA Technical Reports Server (NTRS)
Wolff, Charles L.; Niemann, Hasso (Technical Monitor)
2002-01-01
Good evidence is assembled showing that the Suit's core arid surface vary on time scales from a month to a decade arid that a number of scales are similar. The most plausible source for numerous long time scales and periodicities is long-lived global oscillations. This suggests g-modes (oscillations restored mainly by buoyancy) because they particularly affect the core and base of the convective envelope, which then indirectly modulates the surface. Also, standing g-modes have rotational properties that match many observed periodicities. But the standard solar model (SSM) has a static core and excites few if any g-modes. making new interior structures worth exploring. The model outlined here assumes two well mixed shells near 0.18 and 0.68 R, (13 = solar radius) where sound speed data shows sharp deviations from the SSM. Mixing is sustained by flows driven by the oscillations. The shells form a cavity that excludes g-modes from their main damping region below 0.1 R, assisting their net excitation and increasing their oscillation periods by at least a factor of two and probably much more. In terms of the solar luminosity L, the modes transport up through the cavity a power approx. 0.004 L as a lower limit and 0.11 L as all upper limit. The modes dissipate energy in the outer shell and cool the inner shell, asymmetrically in each case, and this stimulates occasional convective events whose response time is typically 0.8 years longer near the inner shell. Such events cool the core and reduce neutrino flux while heating the envelope and increasing solar activity. This gives a physical basis for a well mixed Sun with low neutrino flux and basis for the observed anticorrelation and lag of neutrino behind surface activity.
Polarization mode control of long-wavelength VCSELs by intracavity patterning
Long, Christopher Michael; Mickovic, Zlatko; Dwir, Benjamin; ...
2016-04-26
Polarization mode control is enhanced in wafer-fused vertical-cavity surface-emitting lasers emitting at 1310 nm wavelength by etching two symmetrically arranged arcs above the gain structure within the laser cavity. The intracavity patterning introduces birefringence and dichroism, which discriminates between the two polarization states of the fundamental transverse modes. We find that the cavity modifications define the polarization angle at threshold with respect to the crystal axes, and increase the gain anisotropy and birefringence on average, leading to an increase in the polarization switching current. As a result, experimental measurements are explained using the spin-flip model of VCSEL polarization dynamics.
5-nJ Femtosecond Ti3+:sapphire laser pumped with a single 1 W green diode
NASA Astrophysics Data System (ADS)
Muti, Abdullah; Kocabas, Askin; Sennaroglu, Alphan
2018-05-01
We report a Kerr-lens mode-locked, extended-cavity femtosecond Ti3+:sapphire laser directly pumped at 520 nm with a 1 W AlInGaN green diode. To obtain energy scaling, the short x-cavity was extended with a q-preserving multi-pass cavity to reduce the pulse repetition rate to 5.78 MHz. With 880 mW of incident pump power, we obtained as high as 90 mW of continuous-wave output power from the short cavity by using a 3% output coupler. In the Kerr-lens mode-locked regime, the extended cavity produced nearly transform-limited 95 fs pulses at 776 nm. The resulting energy and peak power of the pulses were 5.1 nJ and 53 kW, respectively. To our knowledge, this represents the highest pulse energy directly obtained to date from a mode-locked, single-diode-pumped Ti3+:sapphire laser.
Yu, Yinan; Wang, Yicheng; Pratt, Jon R
2016-03-01
Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.
Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light
NASA Technical Reports Server (NTRS)
Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.
2012-01-01
We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping
Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem
NASA Technical Reports Server (NTRS)
Bynum, M. C., III
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N
2012-01-30
Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.
Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition
NASA Astrophysics Data System (ADS)
Choi, E. M.; Marchewka, C. D.; Mastovsky, I.; Sirigiri, J. R.; Shapiro, M. A.; Temkin, R. J.
2006-02-01
A new result from a 110GHz gyrotron at MIT is reported with an output power of 1.67MW and an efficiency of 42% when operated at 97kV and 41A for 3μs pulses in the TE22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110GHz gyrotron.
Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities
NASA Astrophysics Data System (ADS)
Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.
Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).
Single-mode operation of mushroom structure surface emitting lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.J.; Dziura, T.G.; Wang, S.C.
1991-01-01
Mushroom structure vertical cavity surface emitting lasers with a 0.6 {mu}m GaAs active layer sandwiched by two Al{sub 0.6{sup {minus}}}Ga{sub 0.4}As-Al{sub 0.08}Ga{sub 0.92}As multilayers as top and bottom mirrors exhibit 15 mA pulsed threshold current at 880 nm. Single longitudinal and single transverse mode operation was achieved on lasers with a 5 {mu}m diameter active region at current levels near 2 {times} I{sub th}. The light output above threshold current was linearly polarized with a polarization ratio of 25:1.
Acoustic one-way mode conversion and transmission by sonic crystal waveguides
NASA Astrophysics Data System (ADS)
Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping
2016-09-01
We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.
Vertical-Cavity Surface-Emitting 1.55-μm Lasers Fabricated by Fusion
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Karachinskii, L. Ya.; Novikov, I. I.; Gladyshev, A. G.; Blokhin, S. A.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; Turkiewicz, J. P.; Voropaev, K. O.; Ionov, A. S.; Agustin, M.; Ledentsov, N. N.; Egorov, A. Yu.
2018-01-01
The results of studies on fabrication of vertical-cavity surface-emitting 1.55-μm lasers by fusing AlGaAs/GaAs distributed-Bragg-reflector wafers and an active region based on thin In0.74Ga0.26 As quantum wells grown by molecular-beam epitaxy are presented. Lasers with a current aperture diameter of 8 μm exhibit continuous lasing with a threshold current below 1.5 mA, an output optical power of 6 mW, and an efficiency of approximately 22%. Single-mode lasing with a side-mode suppression ratio of 40-45 dB is observed in the entire operating current range. The effective modulation frequency of these lasers is as high as 9 GHz and is limited by the low parasitic cutoff frequency and self-heating.
Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, J. S.; Silva, L. F. da; Almeida, N. G. de
2011-03-15
We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.
Accuracy of a teleported squeezed coherent-state superposition trapped into a high-Q cavity
NASA Astrophysics Data System (ADS)
Sales, J. S.; da Silva, L. F.; de Almeida, N. G.
2011-03-01
We propose a scheme to teleport a superposition of squeezed coherent states from one mode of a lossy cavity to one mode of a second lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity demonstrating that accurate quantum teleportation can be achieved for some parameters of the squeezed coherent states superposition. The signature of successful quantum teleportation is present in the negative values of the Wigner function.
NASA Astrophysics Data System (ADS)
Marques, Carlos
A next generation Energy Recovery Linac (ERL) is under development in the Collider-Accelerator Department at Brookhaven National Laboratory (BNL). This ERL uses a superconducting radio frequency (SFR) cavity to produce an electric field gradient ideal to accelerate charged particles. As with many accelerators, higher-order modes (HOMs) can be induced by a beam of charged particles traversing the linear accelerator cavity. The excitation of these modes can result in problematic single and multi-bunch effects and also produce undesirable heat loads to the cryogenic system. Understanding HOM prevalence and structure inside the accelerator cavity is crucial for devising a procedure for extracting HOM power and promoting excellent beam quality. In this work, a method was created to identify and characterize HOMs using a perturbation technique on a copper (Cu) cavity prototype of the BNL3 linac and a double lambda/4 crab cavity. Both analyses and correlation between simulated and measured results are shown. A coaxial to dual-ridge waveguide HOM coupler was designed, constructed and implemented to extract power from HOMs simultaneously making an evanescent fundamental mode for the BNL3 cavity. A full description of the design is given along with a simulated analysis of its performance. Comparison between previous HOM coupler designs as well as correspondence between simulation and measurement is also given.
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.
2018-06-01
In this work, we demonstrate a linear cavity mode-locked erbium-doped fiber laser in C-band wavelength region. The passive mode-locking is achieved using a microfiber-based carbon nanotube saturable absorber. The carbon nanotube saturable absorber has low saturation fluence of 0.98 μJ/cm2. Together with the linear cavity architecture, the fiber laser starts to produce soliton pulses at low pump power of 22.6 mW. The proposed fiber laser generates fundamental soliton pulses with a center wavelength, pulse width, and repetition rate of 1557.1 nm, 820 fs, and 5.41 MHz, respectively. This mode-locked laser scheme presents a viable option in the development of low threshold ultrashort pulse system for deployment as a seed laser.
NASA Astrophysics Data System (ADS)
Yan, Li; Liao, Lei; Huang, Wei; Li, Lang-quan
2018-04-01
The analysis of nonlinear characteristics and control of mode transition process is the crucial issue to enhance the stability and reliability of the dual-mode scramjet engine. In the current study, the mode transition processes in both strut-based combustor and cavity-strut based combustor are numerically studied, and the influence of the cavity on the transition process is analyzed in detail. The simulations are conducted by means of the Reynolds averaged Navier-Stokes (RANS) equations coupled with the renormalization group (RNG) k-ε turbulence model and the single-step chemical reaction mechanism, and this numerical approach is proved to be valid by comparing the predicted results with the available experimental shadowgraphs in the open literature. During the mode transition process, an obvious nonlinear property is observed, namely the unevenly variations of pressure along the combustor. The hysteresis phenomenon is more obvious upstream of the flow field. For the cavity-strut configuration, the whole flow field is more inclined to the supersonic state during the transition process, and it is uneasy to convert to the ramjet mode. In the scram-to-ram transition process, the process would be more stable, and the hysteresis effect would be reduced in the ram-to-scram transition process.
Few-Photon Nonlinearity with an Atomic Ensemble in an Optical Cavity
NASA Astrophysics Data System (ADS)
Tanji, Haruka
2011-12-01
This thesis investigates the effect of the cavity vacuum field on the dispersive properties of an atomic ensemble in a strongly coupled high-finesse cavity. In particular, we demonstrate vacuum-induced transparency (VIT). The light absorption by the ensemble is suppressed by up to 40% in the presence of a cavity vacuum field. The sharp transparency peak is accompanied by the reduction in the group velocity of a light pulse, measured to be as low as 1800 m/s. This observation is a large step towards the realization of photon number-state filters, recently proposed by Nikoghosyan et al. Furthermore, we demonstrate few-photon optical nonlinearity, where the transparency is increased from 40% to 80% with ˜12 photons in the cavity mode. The result may be viewed as all-optical switching, where the transmission of photons in one mode may be controlled by 12 photons in another. These studies point to the possibility of nonlinear interaction between photons in different free-space modes, a scheme that circumvents cavity-coupling losses that plague cavity-based quantum information processing. Potential applications include advanced quantum devices such as photonic quantum gates, photon-number resolving detectors, and single-photon transistors. In the efforts leading up to these results, we investigate the collective enhancement of atomic coupling to a single mode of a low-finesse cavity. With the strong collective coupling, we obtain exquisite control of quantum states in the atom-photon coupled system. In this system, we demonstrate a heralded single-photon source with 84% conditional efficiency, a quantum bus for deterministic entanglement of two remote ensembles, and heralded polarization-state quantum memory with fidelity above 90%.
NASA Astrophysics Data System (ADS)
Villar, Paula I.; Soba, Alejandro
2017-07-01
We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.
Measurement of electrodynamics characteristics of higher order modes for harmonic cavity at 2400 MHz
NASA Astrophysics Data System (ADS)
Shashkov, Ya V.; Sobenin, N. P.; Gusarova, M. A.; Lalayan, M. V.; Bazyl, D. S.; Donetskiy, R. V.; Orlov, A. I.; Zobov, M. M.; Zavadtsev, A. A.
2016-09-01
In the frameworks of the High Luminosity Large Hadron Collider (HL-LHC) upgrade program an application of additional superconducting harmonic cavities operating at 800 MHz is currently under discussion. As a possible candidate, an assembly of two cavities with grooved beam pipes connected by a drift tube and housed in a common cryomodule, was proposed. In this article we discuss measurements of loaded Q-factors of higher order modes (HOM) performed on a scaled aluminium single cell cavity prototype with the fundamental frequency of 2400 MHz and on an array of two such cavities connected by a narrow beam pipe. The measurements were performed for the system with and without the matching load in the drift tube..
Feedback instability of the ionospheric resonant cavity
NASA Technical Reports Server (NTRS)
Lysak, Robert L.
1991-01-01
A model is developed that provides a theoretical basis for previous numerical results showing a feedback instability with frequencies characteristic of Alfven travel times within the region of the large increase of Alfven speed above the ionosphere. These results have been extended to arbitrary ionospheric conductivity by developing a numerical solution of the cavity dispersion relation that involves Bessel functions of complex order and argument. It is concluded that the large contrast between the magnetospheric and ionospheric Alfven speed leads to the formation of resonant cavity modes with frequencies ranging from 0.1 to 1 Hz. The presence of the cavity leads to a modification of the reflection characteristics of Alfven waves with frequencies that compare to the cavity's normal modes.
NASA Astrophysics Data System (ADS)
Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng
2018-01-01
We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.
Hybrid photonic-plasmonic crystal nanocavity sensors
NASA Astrophysics Data System (ADS)
Cheng, Pi-Ju; Chiang, Chih-Kai; Chou, Bo-Tsun; Huang, Zhen-Ting; Ku, Yun-Cheng; Kuo, Mao-Kuen; Hsu, Jin-Chen; Lin, Tzy-Rong
2018-02-01
We have investigated a hybrid photonic-plasmonic crystal nanocavity consisting of a silicon grating nanowire adjacent to a metal surface with a gain gap between them. The hybrid plasmonic cavity modes are highly confined in the gap due to the strong coupling of the photonic crystal cavity modes and the surface plasmonic gap modes. Using finite-element method (FEM), guided modes of the hybrid plasmonic waveguide (WG) were numerically determined at a wavelength of 1550 nm. The modal characteristics such as WG confinement factors and modal losses of the fundamental hybrid plasmonic modes were obtained as a function of groove depth at various gap heights. Furthermore, the band structure of the hybrid crystal modes corresponding to a wide band gap of 17.8 THz is revealed. To enclose the optical energy effectively, a single defect was introduced into the hybrid crystal. At a deep subwavelength defect length as small as 270 nm, the resonant mode exhibits a high quality factor of 567 and an ultrasmall mode volume of 1.9 × 10- 3 ( λ/ n eff)3 at the resonance wavelength of 1550 nm. Compared to conventional photonic crystal nanowire cavities in the absence of a metal surface, the factor Q/ V m is significantly enhanced by about 15 times. The designed hybrid photonic-plasmonic cavity sensors exhibit distinguished characteristics such as sensitivity of 443 nm/RIU and figure of merit of 129. The proposed nanocavities open new possibilities for various applications with strong light-matter interaction, such as biosensors and nanolasers.
Regularized quasinormal modes for plasmonic resonators and open cavities
NASA Astrophysics Data System (ADS)
Kamandar Dezfouli, Mohsen; Hughes, Stephen
2018-03-01
Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.
Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser
NASA Astrophysics Data System (ADS)
Wang, Li-qiang
2009-07-01
A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.
Active/passive mode-locked laser oscillator
Fountain, William D.; Johnson, Bertram C.
1977-01-01
A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.
Ring resonant cavities for spectroscopy
Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.
1999-06-15
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.
Ring resonant cavities for spectroscopy
Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun
1999-01-01
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).
Test of a virtual cylindrical acoustic resonator for determining the Boltzmann constant
NASA Astrophysics Data System (ADS)
Feng, X. J.; Lin, H.; Gillis, K. A.; Moldover, M. R.; Zhang, J. T.
2015-10-01
We report progress toward determining the Boltzmann constant kB using the concept of a virtual acoustic resonator, a hypothetical resonator that is mathematically equivalent to a cylindrical cavity with periodic boundary conditions. We derived the virtual resonator by combining the measured frequencies of the longitudinal acoustic modes of two argon-filled, cylindrical cavity resonators in such a way to minimize the effects of the cavities’ ends, including transducers and ducts attached to the ends. The cavities had lengths of 80 mm and 160 mm and were operated in their longitudinal (ℓ,0,0) modes. We explored virtual resonators that combine modes of the two resonators that have nearly the same frequencies. The virtual resonator formed from the (2,0,0) mode of the 80 mm resonator combined with the (4,0,0) mode of the 160 mm resonator yielded a value for kB that is, fractionally, only (0.2 ± 1.5) × 10-6 larger than the 2010 CODATA-recommended value of kB. (The estimated uncertainty is one standard uncertainty corresponding to a 68% confidence level.) The same virtual resonator yielded values of the pressure derivatives of the speed of sound c in argon, (∂c2/∂p)T and (∂c2/∂p2)T, that differed from literature values by 1% and 2%, respectively. By comparison, when each cavity was considered separately, the values of kB, (∂c2/∂p)T, and (∂c2/∂p2)T differed from literature values by up to 7 ppm, 10%, and 5%, respectively. However, combining the results from the (3,0,0) or (4,0,0) modes of shorter resonator with the results from the (6,0,0) or (8,0,0) modes of the longer resonator yielded incorrect values of kB that varied from run-to-run. We speculate that these puzzling results originated in an unmodeled coupling, either between the two cavities (that resonated at nearly identical resonance frequencies in the same pressure vessel) or between the cavities and modes of the pressure vessel.
Deterministic quantum state transfer between remote qubits in cavities
NASA Astrophysics Data System (ADS)
Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.
2017-12-01
Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.
2007-12-30
111111 (2006). 2. S.P. Ashili , V.N. Astratov, and E.C.H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres...chains of coupled spherical cavities,” Opt. Lett. 32, 409-411 (2007). 4. V.N. Astratov, and S.P. Ashili , “Percolation of light through whispering...Propagation via Whispering Gallery Modes in 3-D Networks of Coupled Spherical Cavities (Talk), V.N. Astratov, S.P. Ashili , and A.M. Kapitonov, in Frontiers in
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin
2012-12-17
A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.
Solvable multistate model of Landau-Zener transitions in cavity QED
Sinitsyn, Nikolai; Li, Fuxiang
2016-06-29
We consider the model of a single optical cavity mode interacting with two-level systems (spins) driven by a linearly time-dependent field. When this field passes through values at which spin energy level splittings become comparable to spin coupling to the optical mode, a cascade of Landau-Zener (LZ) transitions leads to co-flips of spins in exchange for photons of the cavity. We derive exact transition probabilities between different diabatic states induced by such a sweep of the field.
Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions
Englund, Dirk R.; Gan, Xuetao
2017-03-21
Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.
Cavity-Mediated Coherent Coupling between Distant Quantum Dots
NASA Astrophysics Data System (ADS)
Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded
2018-06-01
Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
Mode locking of a ring cavity semiconductor diode laser
NASA Astrophysics Data System (ADS)
Desbiens, Louis; Yesayan, Ararat; Piche, Michel
2000-12-01
We report new results on the generation and characterization of picosecond pulses from a self-mode-locked semiconductor diode laser. The active medium (InGaAs, 830-870 nm) is a semiconductor optical amplifier whose facets are cut at angle and AR coated. The amplifier is inserted in a three-minor ring cavity. Mode locking is purely passive; it takes place for specific alignment conditions. Trains of counterpropagating pulses are produced, with pulse duration varying from 1 .2 to 2 ps. The spectra of the counterpropagatmg pulses do not fully overlap; their central wavelengths differ by a few nm. The pulse repetition rate has been varied from 0.3 to 3 GHz. The pulses have been compressed to less than 500-fs duration with a grating pair. We discuss some of the potential physical mechanisms that could be involved in the dynamics of the mode-locked regime. Hysteresis in the LI curve has been observed. To characterize the pulses, we introduce the idea of a Pulse Quality Factor, where the pulse duration and spectral width are calculated from the second-order moments of the measured intensity autocorrelation and power spectral density.
Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation.
Wu, Zhichao; Liu, Deming; Fu, Songnian; Li, Lei; Tang, Ming; Zhao, Luming
2016-08-08
We report a passively mode-locked fiber laser by nonlinear polarization rotation (NPR), where both vector and scalar soliton can co-exist within the laser cavity. The mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is first demonstrated and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the operation regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the condition of very small birefringence.
Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.
Germann, Tim David; Hofmann, Werner; Nadtochiy, Alexey M; Schulze, Jan-Hindrik; Mutig, Alex; Strittmatter, André; Bimberg, Dieter
2012-02-27
Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturini, M.
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th powermore » of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.« less
Harmonic cavities and the transverse mode-coupling instability driven by a resistive wall
NASA Astrophysics Data System (ADS)
Venturini, M.
2018-02-01
The effect of rf harmonic cavities on the transverse mode-coupling instability (TMCI) is still not very well understood. We offer a fresh perspective on the problem by proposing a new numerical method for mode analysis and investigating a regime of potential interest to the new generation of light sources where resistive wall is the dominant source of transverse impedance. When the harmonic cavities are tuned for maximum flattening of the bunch profile we demonstrate that at vanishing chromaticities the transverse single-bunch motion is unstable at any current, with growth rate that in the relevant range scales as the 6th power of the current. With these assumptions and radiation damping included, we find that for machine parameters typical of 4th-generation light sources the presence of harmonic cavities could reduce the instability current threshold by more than a factor two.
High energy passively mode-locked erbium-doped fiber laser at tens of kHz repetition rate
NASA Astrophysics Data System (ADS)
Chen, Jiong; Jia, Dongfang; Wang, Changle; Wang, Junlong; Wang, Zhaoying; Yang, Tianxin
2011-12-01
We demonstrate an ultra-long cavity all-fiber Erbium-doped fiber laser that is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 4.046 km, which is achieved by incorporating a 4 km single mode fiber. The laser generates stable mode-locked pulses with a 50.90 kHz fundamental repetition rate. The maximum average power of output pulses is 2.73 mW, which corresponds to per-pulse energy of 53.63 nJ.
Dantsker, David; Samuni, Uri; Friedman, Joel M; Agmon, Noam
2005-06-01
Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in; Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology; Jain, P. K.
In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typicalmore » PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.« less
Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode.
Kim, Guk-Hyun; Lee, Yong-Hee; Shinya, Akihiko; Notomi, Masaya
2004-12-27
Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3Chi106 and a small modal volume of 1.18(lambda/n)3. Based on the symmetry, three representative types of coupling geometries (shoulder-couple, butt-couple and side-couple structures) are selected and tested. The coupling efficiency shows strong dependence on the transverse overlap of the cavity mode and the waveguide mode over the region of the waveguide. The shoulder-couple structure shows best coupling characteristics among three tested structures. For example, two shouldercouple waveguides and a hexapole cavity result in a high performance resonant-tunneling-filter with Q of 9.7Chi105 and transmittance of 0.48. In the side-couple structure, the coupling strength is much weaker than that of the shoulder-couple structure because of the poor spatial overlap between the mode profiles. In the direct-couple structure, the energy transfer from the cavity to the waveguide is prohibited because of the symmetry mismatch and no coupling is observed.
Quantization of Electromagnetic Fields in Cavities
NASA Technical Reports Server (NTRS)
Kakazu, Kiyotaka; Oshiro, Kazunori
1996-01-01
A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.
High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.
Fu, Xing; Kutz, J Nathan
2013-03-11
We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.
Temporal complexity in emission from Anderson localized lasers
NASA Astrophysics Data System (ADS)
Kumar, Randhir; Balasubrahmaniyam, M.; Alee, K. Shadak; Mujumdar, Sushil
2017-12-01
Anderson localization lasers exploit resonant cavities formed due to structural disorder. The inherent randomness in the structure of these cavities realizes a probability distribution in all cavity parameters such as quality factors, mode volumes, mode structures, and so on, implying resultant statistical fluctuations in the temporal behavior. Here we provide direct experimental measurements of temporal width distributions of Anderson localization lasing pulses in intrinsically and extrinsically disordered coupled-microresonator arrays. We first illustrate signature exponential decays in the spatial intensity distributions of the lasing modes that quantify their localized character, and then measure the temporal width distributions of the pulsed emission over several configurations. We observe a dependence of temporal widths on the disorder strength, wherein the widths show a single-peaked, left-skewed distribution in extrinsic disorder and a dual-peaked distribution in intrinsic disorder. We propose a model based on coupled rate equations for an emitter and an Anderson cavity with a random mode structure, which gives excellent quantitative and qualitative agreement with the experimental observations. The experimental and theoretical analyses bring to the fore the temporal complexity in Anderson-localization-based lasing systems.
A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal
NASA Astrophysics Data System (ADS)
Ren, Jie; Sun, XiaoHong; Wang, Shuai
2018-05-01
In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.
On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
Bitarafan, Mohammad H; DeCorby, Ray G
2017-07-31
For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.
Radiation patterns of multimode feed-horn-coupled bolometers for FAR-IR space applications
NASA Astrophysics Data System (ADS)
Kalinauskaite, Eimante; Murphy, J. Anthony; McAuley, Ian; Trappe, Neal A.; McCarthy, Darragh N.; Bracken, Colm P.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Créidhe; Wilson, Daniel; Peacocke, Tully; Maffei, Bruno; Lamarre, Jean-Michel; Ade, Peter A. R.; Savini, Giorgio
2017-02-01
A multimode horn differs from a single mode horn in that it has a larger sized waveguide feeding it. Multimode horns can therefore be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of the beam pattern characteristics. Although a cavity mounted bolometer can be modelled as a perfect black body radiator (using reciprocity in order to calculate beam patterns), nevertheless, this is an approximation. In this paper we present how this approach can be improved to actually include the cavity coupled bolometer, now modelled as a thin absorbing film. Generally, this is a big challenge for finite element software, in that the structures are typically electrically large. However, the radiation pattern of multimode horns can be more efficiently simulated using mode matching, typically with smooth-walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system. Another issue on the optical efficiency of the detectors is the presence of any free space gaps, through which power can escape. This is best dealt with treating the system as an absorber. Appropriate reflection and transmission matrices can be determined for the cavity using the natural eigenfields of the bolometer cavity system. We discuss how the approach can be applied to proposed terahertz systems, and also present results on how the approach was applied to improve beam pattern predictions on the sky for the multi-mode HFI 857GHz channel on Planck.
Jirauschek, Christian; Huber, Robert
2015-01-01
We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373
Lateral cavity photonic crystal surface emitting lasers with ultralow threshold and large power
NASA Astrophysics Data System (ADS)
Wang, Yufei; Qu, Hongwei; Zhou, Wenjun; Jiang, Bin; Zhang, Jianxin; Qi, Aiyi; Liu, Lei; Fu, Feiya; Zheng, Wanhua
2012-03-01
The Bragg diffraction condition of surface-emitting lasing action is analyzed and Γ2-1 mode is chosen for lasing. Two types of lateral cavity photonic crystal surface emitting lasers (LC-PCSELs) based on the PhC band edge mode lateral resonance and vertical emission to achieve electrically driven surface emitting laser without distributed Bragg reflectors in the long wavelength optical communication band are designed and fabricated. Deep etching techniques, which rely on the active layer being or not etched through, are adopted to realize the LC-PCSELs on the commercial AlGaInAs/InP multi-quantum-well (MQW) epitaxial wafer. 1553.8 nm with ultralow threshold of 667 A/cm2 and 1575 nm with large power of 1.8 mW surface emitting lasing actions are observed at room temperature, providing potential values for mass production with low cost of electrically driven PCSELs.
Millimeter-Wave Gyroklystron Amplifier Experiment Using a Relativistic Electron Beam
1990-03-08
Qint to 400 for the TE1 l1 mode, while assisting in suppressing other competing modes [7]. The length of these slots is three times the nominal cavity...frequency by tranverse compression by means of separate clamps. However, cavity deformation affects both the center frequency and the value 5 of Q...amplifier operation was limited by the excitation of parasitic oscillation of the competing TE1 12 mode, as predicted by theory [7]. Despite this
New spherical optical cavities with non-degenerated whispering gallery modes
NASA Astrophysics Data System (ADS)
Kumagai, Tsutaru; Palma, Giuseppe; Prudenzano, Francesco; Kishi, Tetsuo; Yano, Tetsuji
2017-02-01
New spherical resonators with internal defects are introduced to show anomalous whispering gallery modes (WGMs). The defect induces a symmetry breaking spherical cavity and splits the WGMs. A couple of defects, a hollow sphere (bubble), and a hollow ring, have been studied. The hollow sphere was fabricated and the splitting of WGM was observed. In this paper, this "non-degenerated WGMs (non-DWGMs) resonance" in a microsphere with hollow defect structure is reviewed based on our research. The resonance of WGMs in a sphere is identified by three integer parameters: the angular mode number, l, azimuthal mode number m, and radial mode number, n. The placement of the defect such as a hollow ring or single bubble is shown to break symmetry and resolve the degeneracy concerning m. This induces a variety of resonant wavelengths of the spherical cavity. A couple of simulations using the eigenmode and transient analyses propose how the placed defects affect the WGM resonance in the spherical cavity. For the sphere with a single bubble defect, the experimentally observed resonances in Nd-doped tellurite glass microsphere with a single bubble are clarified to be due to the splitting of resonance modes, i.e., the existence of "non-DWGMs" in the sphere. The defect bubble plays a role of opening the optically wide gate to introduce excitation light for Nd3+ pumping using non-DWGMs in the sphere efficiently.
Griffin, Benjamin G; Arbabi, Amir; Peun Tan, Meng; Kasten, Ansas M; Choquette, Kent D; Goddard, Lynford L
2013-06-01
Previously reported simulations have suggested that depositing thin layers of metal over the surface of a single-mode, etched air hole photonic crystal (PhC) vertical-cavity surface-emitting laser (VCSEL) could potentially improve the laser's side-mode suppression ratio by introducing additional losses to the higher-order modes. This work demonstrates the concept by presenting the results of a 30 nm thin film of Cr deposited on the surface of an implant-confined PhC VCSEL. Both experimental measurements and simulation results are in agreement showing that the single-mode operation is improved at the same injection current ratio relative to threshold.
Microwave-driven ultraviolet light sources
Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.
2002-01-29
A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.
Noise squeezing of fields that bichromatically excite atoms in a cavity.
Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun
2016-11-14
It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.
NASA Astrophysics Data System (ADS)
Asghar, Haroon; McInerney, John G.
2017-09-01
We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.
NASA Astrophysics Data System (ADS)
Dalafi, A.; Naderi, M. H.; Motazedifard, Ali
2018-04-01
We investigate theoretically a hybrid system consisting of a Bose-Einstein condensate (BEC) trapped inside a laser-driven membrane-in-the-middle optomechanical cavity assisted with squeezed vacuum injection whose moving membrane interacts both linearly and quadratically with the radiation pressure of the cavity. It is shown that such a hybrid system is very suitable for generating strong quadrature squeezing in the mechanical mode of the membrane and the Bogoliubov mode of the BEC in the unresolved sideband regime. More interestingly, by choosing a suitable sign for the quadratic optomechanical coupling (QOC), one can achieve a very high degree of squeezing in the mechanical mode and a strong entanglement between the mechanical and atomic modes without the necessity of using squeezed light injection. Furthermore, the QOC changes the effective oscillation frequencies of both the mechanical and the atomic modes and affects their relaxation times. It can also make the system switch from optical bistability to tristability.
Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode
NASA Technical Reports Server (NTRS)
Philipp-Rutz, E. M.
1975-01-01
Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.
Fast and slowly evolving vector solitons in mode-locked fibre lasers.
Sergeyev, Sergey V
2014-10-28
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity
Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun
2015-11-24
We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less
NASA Astrophysics Data System (ADS)
Machiya, H.; Uda, T.; Ishii, A.; Kato, Y. K.
2018-01-01
We demonstrate control over optical coupling between air-suspended carbon nanotubes and air-mode nanobeam cavities by spectral tuning. Taking advantage of the large dielectric screening effects caused by adsorbed molecules, laser heating is used to blueshift the nanotube photoluminescence. A significant increase in the cavity peak is observed when the nanotube emission is brought into resonance, and the spontaneous emission enhancement is estimated from the photoluminescence spectra. We find that the enhancement shows good correlation with the spectral overlap of the nanotube emission and the cavity peak. Our technique offers a convenient method for controlling the optical coupling of air-suspended nanotubes to photonic structures.
Scheme for quantum state manipulation in coupled cavities
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.
NASA Astrophysics Data System (ADS)
Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.
2003-08-01
The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang
2017-12-01
To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.
The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach
ERIC Educational Resources Information Center
Likar, A.; Razpet, N.
2009-01-01
The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…
Transverse Mode Dynamics and Ultrafast Modulation of Vertical-Cavity Surface-Emitting Lasers
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We show that multiple transverse mode dynamics of VCSELs (Vertical-Cavity Surface-Emitting Lasers) can be utilized to generate ultrafast intensity modulation at a frequency over 100 GHz, much higher than the relaxation oscillation frequency. Such multimode beating can be greatly enhanced by taking laser output from part of the output facet.
Environmentally stable all-PM all-fiber giant chirp oscillator.
Erkintalo, Miro; Aguergaray, Claude; Runge, Antoine; Broderick, Neil G R
2012-09-24
We report on an environmentally stable giant chirp oscillator operating at 1030 nm. Thanks to the use of a nonlinear amplifying loop mirror as the mode-locker, we are able to extract pulse energies in excess of 10 nJ from a robust all-PM cavity with no free-space elements. Extensive numerical simulations reveal that the output oscillator energy and duration can simply be up-scaled through the lengthening of the cavity with suitably positioned single-mode fiber. Experimentally, using different cavity lengths we have achieved environmentally stable mode-locking at 10, 3.7 and 1.7 MHz with corresponding pulse energies of 2.3, 10 and 16 nJ. In all cases external grating-pair compression below 400 fs has been demonstrated.
Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei
2012-06-18
We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.
Influence of the protonation state on the binding mode of methyl orange with cucurbiturils
NASA Astrophysics Data System (ADS)
He, Suhang; Sun, Xuzhuo; Zhang, Haibo
2016-03-01
Binding modes of methyl orange (MO) with cucurbiturils (CBs) have been investigated by Single Crystal X-ray Diffraction and NMR Spectroscopy. Detailed study of intermolecular interactions was supported by the Hirshfeld surface analysis. Protonation state of the anionic part of methyl orange has greatly influenced the binding mode of the complex. Stabilized by hydrogen bonding at the portal, hydrophobic and dispersion interactions in the cavity, the protonated methyl orange was deeply inserted into the cavity. On the contrary, the anionic methyl orange has been pushed towards the outside of the cavity by the electrostatic repulsion between the azo group and the portal oxygen. A ;water bridge; was found in MO@CB8 linking both host and guest via hydrogen bonds.
Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers.
Wang, Zhixin; Liang, Yong; Yin, Xuefan; Peng, Chao; Hu, Weiwei; Faist, Jérôme
2017-05-15
An analytical coupled-wave model is developed for surface-emitting photonic-crystal quantum cascade lasers (PhC-QCLs). This model provides an accurate and efficient analysis of full three-dimensional device structure with large-area cavity size. Various laser properties of interest including the band structure, mode frequency, cavity loss, mode intensity profile, and far field pattern (FFP), as well as their dependence on PhC structures and cavity size, are investigated. Comparison with numerical simulations confirms the accuracy and validity of our model. The calculated FFP and polarization profile well explain the previously reported experimental results. In particular, we reveal the possibility of switching the lasing modes and generating single-lobed FFP by properly tuning PhC structures.
Electron Plasmas Cooled by Cyclotron-Cavity Resonance
Povilus, A. P.; DeTal, N. D.; Evans, L. T.; ...
2016-10-21
We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of 10 or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.
Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C
2013-04-08
In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.
Design and test of SX-FEL cavity BPM
NASA Astrophysics Data System (ADS)
Yuan, Ren-Xian; Zhou, Wei-Min; Chen, Zhi-Chu; Yu, Lu-Yang; Wang, Bao-Pen; Leng, Yong-Bin
2013-11-01
This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM010 mode in the output signal. The isolation of TM010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.
2018-04-01
We demonstrate a passively mode-locked erbium-doped fiber laser in L-band wavelength region with low mode-locking threshold employing a 1425 nm pump wavelength. The mode-locking regime is generated by microfiber-based saturable absorber using carbon nanotube-polymer composite in a ring cavity. This carbon nanotube saturable absorber shows saturation intensity of 9 MW/cm2. In this work, mode-locking laser threshold is observed at 36.4 mW pump power. At the maximum pump power of 107.6 mW, we obtain pulse duration at full-width half-maximum point of 490 fs and time bandwidth product of 0.33, which corresponds to 3-dB spectral bandwidth of 5.8 nm. The pulse repetition rate remains constant throughout the experiment at 5.8 MHz due to fixed cavity length of 35.5 m. Average output power and pulse energy of 10.8 mW and 1.92 nJ are attained respectively through a 30% laser output extracted from the mode-locked cavity. This work highlights the feasibility of attaining a low threshold mode-locked laser source to be employed as seed laser in L-band wavelength region.
Discrete mode lasers for communications applications
NASA Astrophysics Data System (ADS)
Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.
2009-02-01
The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.
Liu, Ye; Wang, D N; Chen, W P
2016-12-02
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement
NASA Astrophysics Data System (ADS)
Liu, Ye; Wang, D. N.; Chen, W. P.
2016-12-01
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
NASA Astrophysics Data System (ADS)
Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.
2013-05-01
Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.
Wavelength references for interferometry in air
NASA Astrophysics Data System (ADS)
Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.; Hollberg, Leo
2005-12-01
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of ±2×10-8 (3σ), with the wavelength accuracy limited to ±4×10-8 by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than Δ ν/ν˜3×10-9, limited by temperature correction residuals.
Mode-locking of a terahertz laser by direct phase synchronization.
Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J
2012-09-10
A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.
Tunable mode and line selection by injection in a TEA CO2 laser
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Flamant, P. H.; Kavaya, M. J.; Kuiper, E. N.
1984-01-01
Tunable mode selection by injection in pulsed CO2 lasers is examined, and both analytical and numerical models are used to compute the required injection power for a variety of experimental cases. These are treated in two categories: mode selection at a desired frequency displacement from the center frequency of a transition line in a dispersive cavity and mode (and line) selection at the center frequency of a selected transition line in a nondispersive cavity. The results point out the potential flexibility of pulsed injection in providing wavelength tunable high-energy single-frequency pulses.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Wavelength references for interferometry in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.
2005-12-20
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of {+-}2x10-8(3{sigma}), with the wavelength accuracy limited to {+-}4x10-8by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than {delta} {nu}/{nu}{approx}3x10-9, limited by temperature correction residuals.
Wavelength references for interferometry in air.
Fox, Richard W; Washburn, Brian R; Newbury, Nathan R; Hollberg, Leo
2005-12-20
Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of +/- 2 x 10(-8) (3sigma), with the wavelength accuracy limited to +/- 4 x 10(-8) by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than deltav/v approximately 3 x 10(-9), limited by temperature correction residuals.
Mode coupling in hybrid square-rectangular lasers for single mode operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De
Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practicalmore » applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.« less
Mode-locking observation of a CO2 laser by intracavity plasma injection
NASA Astrophysics Data System (ADS)
John, P. K.; Dembinski, M.
1980-06-01
A TEA CO2 laser was simultaneously Q-switched and mode-locked when an underdense plasma was injected into the cavity. The plasma was produced in an electromagnetic shock tube. Plasma density and temperature were N sub e of approximately 10 to the 17th/cu cm and T sub e of approximately 2 eV, respectively. Phase perturbation of the cavity due to the time dependent plasma refractive index could account for the observed mode-locking.
Acoustic waves in gases with strong pressure gradients
NASA Technical Reports Server (NTRS)
Zorumski, William E.
1989-01-01
The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.
Spectral and Radiometric Calibration Using Tunable Lasers
NASA Technical Reports Server (NTRS)
McCorkel, Joel (Inventor)
2017-01-01
A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.
NASA Astrophysics Data System (ADS)
Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.
2018-01-01
The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.
Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Smagley, Vladimir Anatolievich
Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.
Control of Cavity Resonance Using Oscillatory Blowing
NASA Technical Reports Server (NTRS)
Scarfe, Alison Lamp; Chokani, Ndaona
2000-01-01
The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.
NASA Astrophysics Data System (ADS)
Ebraert, Evert; Van Erps, Jürgen; Beri, Stefano; Watté, Jan; Thienpont, Hugo
2014-10-01
To boost the deployment of fiber-to-the-home networks in order to meet the ever-increasing demand for bandwidth, there is a strong need for single-mode fiber (SMF) connectors which combine low insertion loss with field installability. Shifting from ferrule-based to ferruleless connectors can reduce average insertion losses appreciably and minimize modal noise interference. We propose a ferruleless connector and adaptor in which physical contact between two inline fibers is ensured by at least one fiber being in a buckled state. To this end, we design a buckling cavity in which the SMF can buckle in a controlled way to ensure good optical performance as well as mechanical stability. This design is based on both mechanical and optical considerations. Finite element analysis suggests that mechanically a minimal buckling cavity length of 17 mm is required, while the height of the cavity should be chosen such that the buckled SMF is not mechanically confined to ensure buckling in a first-order mode. The optical bending loss in the buckled SMF is calculated using a fully vectorial mode solver, showing that a minimal buckling cavity length of 20 mm is necessary to keep the excess optical loss from bending below 0.1 dB. Both our optical and mechanical simulation results are experimentally verified.
Fabrication et caracterisation de cavites organiques a modes de galerie
NASA Astrophysics Data System (ADS)
Amrane, Tassadit
The aim of this master project is to combine the high quality factor of whispering gallery optical microcavities with the high photoluminescence efficiency of conjugated polymers. These polymer-cavity composite systems have a great potential for studying the interaction of light and matter in the strong coupling regime. In particular, this system would offer a great opportunity to create a Bose-Einstein condensate of polaritons, the quasi-particles made from a strong interaction between excitons and photons. Organic semiconductors, with their large delocalized excitons, coupled to good whispering gallery cavities with high quality factors and small volumes are an ideal system for this purpose. Two approaches toward this end were explored: in the first approach a pre-existing dielectric whispering gallery cavity was coated with a thin film of conjugated polymer, while in the second one the whispering gallery cavity was fabricated directly with the organic semi-conductor. For testing the first approach, a silica microsphere was dip-coated with copolymer, and the interaction between the whispering gallery modes in the microcavity and the copolymer was studied using photoluminescence spectroscopy. The well-defined resonances obtained at the emission wavelength of the organic material confirm the effective coupling between the photoluminescence and the modes of the cavity. In the second approach, we developed a process to fabricate microdisk cavities with the copolymer. The difficulty in this approach lies in the sensitivity of the organic semiconductor to the microfabrication process. It is critical to avoid dissolving or otherwise altering it during the photolithographic steps. For this purpose a protective polymer, parylene-C, is deposited on the top of the copolymer. This protective polymer was chosen to be transparent at the absorption and emission wavelengths of the copolymer and inert in the solvents used during the different steps of microfabrication. The development of this fabrication process allowed us to obtain a whispering gallery cavity with a quality factor of 5x104. These promising results suggest future uses of this cavity to explore the interactions between the polymer and the cavity modes. The adequate setup for the detection of edge-emitted photoluminescence in copolymer microdisks is in progress and will be available for the future characterisation of organic whispering gallery cavities. The development of this polymer-based whispering gallery cavities is the first step along the way toward demonstrating a polariton Bose-Einstein condensate.
NASA Astrophysics Data System (ADS)
Peng, Junsong; Zhan, Li; Gu, Zhaochang; Qian, Kai; Luo, Shouyu; Shen, Qishun
2012-03-01
We have experimentally demonstrated the direct generation of 128-fs pulses in an all-anomalous-dispersion all-fiber mode-locked laser. The laser is free of dispersion compensation in the cavity based on standard single mode fiber (SMF). The time-bandwidth product is 0.536. The laser is achieved by using two mode-lockers, one is nonlinear polarization rotation (NPR), and the other is nonlinear amplifying loop mirror. The coexistence of dual mode-locking mechanisms can decrease the cavity length to 12-m, and also results in producing high-quality pulses with a Gaussian shape both on the pulse profile and spectrum, but without Kelly sidebands.
Amplitude Noise Reduction of Ion Lasers with Optical Feedback
NASA Technical Reports Server (NTRS)
Herring, Gregory C.
2011-01-01
A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierściński, K., E-mail: kamil.pierscinski@ite.waw.pl; Pierścińska, D.; Pluska, M.
2015-10-07
Room temperature, single mode, pulsed emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser fabricated by focused ion beam processing is demonstrated and analyzed. The single mode emission is centered at 1059.4 cm{sup −1} (9.44 μm). A side mode suppression ratio of 43 dB was achieved. The laser exhibits a peak output power of 15 mW per facet at room temperature. The stable, single mode emission is observed within temperature tuning range, exhibiting shift at rate of 0.59 nm/K.
POWER RECYCLING OF BURST-MODE LASER PULSES FOR LASER PARTICLE INTERACTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun
A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/ -ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the tem-poral structure of the particle beam. To mitigate the laser power challenge, it is important to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has a very small duty factor and low repetition rate and it is impossible to gen-erate an effective control signal. This work reports on themore » development of a doubly-resonant optical cavity scheme and its locking techniques that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates.« less
Rate equation analysis and non-Hermiticity in coupled semiconductor laser arrays
NASA Astrophysics Data System (ADS)
Gao, Zihe; Johnson, Matthew T.; Choquette, Kent D.
2018-05-01
Optically coupled semiconductor laser arrays are described by coupled rate equations. The coupled mode equations and carrier densities are included in the analysis, which inherently incorporate the carrier-induced nonlinearities including gain saturation and amplitude-phase coupling. We solve the steady-state coupled rate equations and consider the cavity frequency detuning and the individual laser pump rates as the experimentally controlled variables. We show that the carrier-induced nonlinearities play a critical role in the mode control, and we identify gain contrast induced by cavity frequency detuning as a unique mechanism for mode control. Photon-mediated energy transfer between cavities is also discussed. Parity-time symmetry and exceptional points in this system are studied. Unbroken parity-time symmetry can be achieved by judiciously combining cavity detuning and unequal pump rates, while broken symmetry lies on the boundary of the optical locking region. Exceptional points are identified at the intersection between broken symmetry and unbroken parity-time symmetry.
Cavity polariton in a quasilattice of qubits and its selective radiation
NASA Astrophysics Data System (ADS)
Ian, Hou; Liu, Yu-xi
2014-04-01
In a circuit quantum eletrodynamic system, a chain of N qubits inhomogeneously coupled to a cavity field forms a mesoscopic quasilattice, which is characterized by its degree of deformation from a normal lattice. This deformation is a function of the relative spacing, that is the ratio of the qubit spacing to the cavity wavelength. A polariton mode arises in the quasilattice as the dressed mode of the lattice excitation by the cavity photon. We show that the transition probability of the polariton mode is either enhanced or decreased compared to that of a single qubit by the deformation, giving a selective spontaneous radiation spectrum. Further, unlike a microscopic lattice with large-N limit and nearly zero relative spacing, the polariton in the quasilattice has uneven decay rate over the relative spacing. We show that this unevenness coincides with the cooperative emission effect expected from the superradiance model, where alternative excitations in the qubits of the lattice result in maximum decay.
Qubit-loss-free fusion of atomic W states via photonic detection
NASA Astrophysics Data System (ADS)
Ding, Cheng-Yun; Kong, Fan-Zhen; Yang, Qing; Yang, Ming; Cao, Zhuo-Liang
2018-06-01
In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic |W_{n+m}> and |W_{n+m+q}> states can be generated, respectively, from a |Wn> and a |Wm>; and from a |Wn>, a |Wm> and a |Wq>, by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abudureyimu, Reheman; Huang, Chunning; Liu, Yun
We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.
Teleporting a state inside a single bimodal high-Q cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pires, Geisa; Baseia, B.; Avelar, A.T.
2005-06-15
We discuss a simplified scheme to teleport a state from one mode to another of the same bimodal cavity, with these two modes having distinct frequencies and orthogonal polarizations. The scheme employs two two-level (Rydberg) atoms plus classical fields (Ramsey zones) and selective atomic state detectors. The result has potential use for the manipulation of quantum information processing.
NASA Astrophysics Data System (ADS)
Nasr, Mamdouh H.; Othman, Mohamed A. K.; Eshrah, Islam A.; Abuelfadl, Tamer M.
2017-04-01
New developments in the eigenmode projection technique (EPT) are introduced in solving problems of electromagnetic resonance in closed cavities as well as scattering from discontinuities in guided-wave structures. The EPT invokes the eigenmodes of a canonical predefined cavity in the solution procedure and uses the expansion of these eigenmodes to solve Maxwell's equations, in conjunction with a convenient choice of port boundary conditions. For closed cavities, a new spurious-mode separation method is developed, showing robust and efficient spurious-mode separation. This has been tested using more complex and practical examples demonstrating the powerful use of the presented approach. For waveguide scattering problems, convergence studies are being performed showing stable solutions for a relatively small number of expansion modes, and the proposed method has advantages over conventional solvers in analyzing electromagnetic problems with inhomogeneous materials. These convergence studies also lead to an efficient rule-of-thumb for the number of modes to be used in the simulation. The ability to handle closed and open structures is presented in a unified framework that highlights the generality of the EPT which could be used to analyze and design a variety of microwave components.
Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Sobenin, N. P.; Petrushina, I. I.; Zobov, M. M.
2014-12-01
At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.
TM triple-mode microwave filter
NASA Astrophysics Data System (ADS)
Lai, S.-L.; Lin, W.-G.
1990-12-01
A novel realization of triple-mode six-pole microwave filters that use only TM modes is presented. The application involves TM triple degeneracies in cylindrical cavities using triple-mode elliptic function filter synthesis. Experimental results are reported.
Design of hybrid laser structures with QD-RSOA and silicon photonic mirrors
NASA Astrophysics Data System (ADS)
Gioannini, Mariangela; Benedetti, Alessio; Bardella, Paolo; Bovington, Jock; Traverso, Matt; Siriani, Dominic; Gothoskar, Prakash
2018-02-01
We compare the design of three different single mode laser structures consisting in a Reflective Semiconductor Optical Amplifier coupled to a silicon photonic external cavity mirror. The three designs differ for the mirror structure and are compared in terms of SOA power consumption and side mode suppression ratio (SMSR). Assuming then a Quantum Dot active material, we simulate the best laser design using a numerical model that includes the peculiar physical characteristics of the QD gain medium. The simulated QD laser CW characteristics are shown and discussed.
Acoustic cavity technology for high performance injectors
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
Dunkelberger, A. D.; Spann, B. T.; Fears, K. P.; Simpkins, B. S.; Owrutsky, J. C.
2016-01-01
Coupling vibrational transitions to resonant optical modes creates vibrational polaritons shifted from the uncoupled molecular resonances and provides a convenient way to modify the energetics of molecular vibrations. This approach is a viable method to explore controlling chemical reactivity. In this work, we report pump–probe infrared spectroscopy of the cavity-coupled C–O stretching band of W(CO)6 and the direct measurement of the lifetime of a vibration-cavity polariton. The upper polariton relaxes 10 times more quickly than the uncoupled vibrational mode. Tuning the polariton energy changes the polariton transient spectra and relaxation times. We also observe quantum beats, so-called vacuum Rabi oscillations, between the upper and lower vibration-cavity polaritons. In addition to establishing that coupling to an optical cavity modifies the energy-transfer dynamics of the coupled molecules, this work points out the possibility of systematic and predictive modification of the excited-state kinetics of vibration-cavity polariton systems. PMID:27874010
NASA Astrophysics Data System (ADS)
Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming
2017-12-01
We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.
Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED
NASA Astrophysics Data System (ADS)
Vaidya, Varun D.; Guo, Yudan; Kroeze, Ronen M.; Ballantine, Kyle E.; Kollár, Alicia J.; Keeling, Jonathan; Lev, Benjamin L.
2018-01-01
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
NASA Astrophysics Data System (ADS)
Li, Jiahua; Qu, Ye; Yu, Rong; Wu, Ying
2018-02-01
We explore theoretically the generation and all-optical control of optical frequency combs (OFCs) in photon transmission based on a combination of single-atom-cavity quantum electrodynamics (CQED) and electromagnetically induced transparency (EIT). Here an external control field is used to form the cavity dark mode of the CQED system. When the strengths of the applied EIT control field are appropriately tuned, enhanced comb generation can be achieved. We discuss the properties of the dark mode and clearly show that the formation of the dark mode enables the efficient generation of OFCs. In our approach, the comb spacing is determined by the beating frequency between the driving pump and seed lasers. Our demonstrated theory may pave the way towards all-optical coherent control of OFCs using a CQED architecture.
High-pulse-energy mode-locked picosecond oscillator
NASA Astrophysics Data System (ADS)
Chao, Yang; Chen, Meng; Li, Gang
2014-02-01
We report on a high-pulse-energy solid-state picosecond Nd:YVO4 oscillator with cavity-dumping. The laser is end-pumped by an 808 nm laser diode and passively mode-locked with a semiconductor saturable absorption mirror (SESAM). In pure cw-mode-locking, this laser produced 2.5 W of average power at a pulse repetition rate of 40 MHz and pulse duration around 12 ps. A cavity dumping technique using an intra-cavity BBO electro-optic crystal to which bidirectional voltage was applied was adopted, effectively improving the cavity-dumping rate. Tunable high repetition rate from 100 kHz to 1 MHz was achieved. With electro-optic cavity dumper working at 1 MHz repetition rate, we achieved average power 594 mW. The laser includes a 5 mm long, a-cut, 0.5% doped Nd:YVO4 crystal with a 5-degree angle at one end face. Laser radiation is coupled out from the crystal end face with a 5-degree angle, without requiring insertion of a thin-film polarizer (TFP), thus simplifying the laser structure. This picosecond laser system has the advantages of compact structure and high stability, providing a good oscillator for regenerative amplifiers.
Lasers with intra-cavity phase elements
NASA Astrophysics Data System (ADS)
Gulses, A. Alkan; Kurtz, Russell; Islas, Gabriel; Anisimov, Igor
2018-02-01
Conventional laser resonators yield multimodal output, especially at high powers and short cavity lengths. Since highorder modes exhibit large divergence, it is desirable to suppress them to improve laser quality. Traditionally, such modal discriminations can be achieved by simple apertures that provide absorptive loss for large diameter modes, while allowing the lower orders, such as the fundamental Gaussian, to pass through. However, modal discrimination may not be sufficient for short-cavity lasers, resulting in multimodal operation as well as power loss and overheating in the absorptive part of the aperture. In research to improve laser mode control with minimal energy loss, systematic experiments have been executed using phase-only elements. These were composed of an intra-cavity step function and a diffractive out-coupler made of a computer-generated hologram. The platform was a 15-cm long solid-state laser that employs a neodymium-doped yttrium orthovanadate crystal rod, producing 1064 nm multimodal laser output. The intra-cavity phase elements (PEs) were shown to be highly effective in obtaining beams with reduced M-squared values and increased output powers, yielding improved values of radiance. The utilization of more sophisticated diffractive elements is promising for more difficult laser systems.
Vector dissipative solitons in graphene mode locked fiber lasers
NASA Astrophysics Data System (ADS)
Zhang, Han; Tang, Dingyuan; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping
2010-09-01
Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked nonlinear Schrödinger equation (NLSE) solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2-dimentional (2D) atomic layer.
Telecom-band degenerate-frequency photon pair generation in silicon microring cavities.
Guo, Yuan; Zhang, Wei; Dong, Shuai; Huang, Yidong; Peng, Jiangde
2014-04-15
In this Letter, telecom-band degenerate-frequency photon pairs are generated in a specific mode of a silicon microring cavity by the nondegenerate spontaneous four-wave mixing (SFWM) process, under two continuous-wave pumps at resonance wavelength of two different cavity modes. The ratio of coincidence to accidental coincidence is up to 100 under a time bin width of 5 ns, showing their characteristics of quantum correlation. Their quantum interference in balanced and unbalanced Mach-Zehnder interferometers is investigated theoretically and experimentally, and the results show potential in quantum metrology and quantum information.
NASA Astrophysics Data System (ADS)
Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan
2014-01-01
This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum statistics of phonons in such an unconventional regime.
Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.
Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A
2015-08-28
We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.
Parasitic Cavities Losses in SPEAR-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sands, Matt
2016-12-19
In PEP the large number of particles in a bunch, together with the small bunch length, may cause grievous energy loss from the beam to parasitic modes in the accelerating cavities. I have recently tried to estimate the parasitic cavity in PEP, based on a paper of Keil and I have obtained the result that the loss to parasitic modes will be about 10 MeV per particle per revolution for a bunch length of about 10 cm. In this note, I bring together some of the considerations that might bear on an experimental investigation of the loss using SPEAR-2.
Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity
NASA Astrophysics Data System (ADS)
Zhang, Jinqiannan; Chai, Hongyu; Yu, Zhongyuan; Cheng, Xiang; Ye, Han; Liu, Yumin
2017-09-01
A compact design of all-optical diode with mode conversion function based on a two-dimensional photonic crystal waveguide and an L1 or L3 cavity is theoretically investigated. The proposed photonic crystal structures comprise a triangular arrangement of air holes embedded in a silicon substrate. Asymmetric light propagation is achieved via the spatial mode match/mismatch in the coupling region. The simulations show that at each cavity's resonance frequency, the transmission efficiency of the structure with the L1 and L3 cavities reach 79% and 73%, while the corresponding unidirectionalities are 46 and 37 dB, respectively. The functional frequency can be controlled by simply adjusting the radii of specific air holes in the L1 and L3 cavities. The proposed structure can be used as a frequency filter, a beam splitter and has potential applications in all-optical integrated circuits.
Piezoelectric tunable microwave superconducting cavity
NASA Astrophysics Data System (ADS)
Carvalho, N. C.; Fan, Y.; Tobar, M. E.
2016-09-01
In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.
Fleyer, Michael; Sherman, Alexander; Horowitz, Moshe; Namer, Moshe
2016-05-01
We experimentally demonstrate a wideband-frequency tunable optoelectronic oscillator (OEO) based on injection locking of the OEO to a tunable electronic oscillator. The OEO cavity does not contain a narrowband filter and its frequency can be tuned over a broad bandwidth of 1 GHz. The injection locking is based on minimizing the injected power by adjusting the frequency of one of the OEO cavity modes to be approximately equal to the frequency of the injected signal. The phase noise that is obtained in the injection-locked OEO is similar to that obtained in a long-cavity self-sustained OEO. Although the cavity length of the OEO was long, the spurious modes were suppressed due to the injection locking without the need to use a narrowband filter. The spurious level was significantly below that obtained in a self-sustained OEO after inserting a narrowband electronic filter with a Q-factor of 720 into the cavity.
Mølmer-Sørensen entangling gate for cavity QED systems
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Nevado, Pedro; Keller, Matthias
2017-10-01
The Mølmer-Sørensen gate is a state-of-the-art entangling gate in ion trap quantum computing where the gate fidelity can exceed 99%. Here we propose an analogous implementation in the setting of cavity QED. The cavity photon mode acts as the bosonic degree of freedom in the gate in contrast to that played by the phonon mode in ion traps. This is made possible by utilising cavity assisted Raman transitions interconnecting the logical qubit states embedded in a four-level energy structure, making the ‘anti-Jaynes-Cummings’ term available under the rotating-wave approximation. We identify practical sources of infidelity and discuss their effects on the gate performance. Our proposal not only demonstrates an alternative entangling gate scheme but also sheds new light on the relationship between ion traps and cavity QED, in the sense that many techniques developed in the former are transferable to the latter through our framework.
Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond
NASA Astrophysics Data System (ADS)
Johnson, S.; Dolan, P. R.; Grange, T.; Trichet, A. A. P.; Hornecker, G.; Chen, Y. C.; Weng, L.; Hughes, G. M.; Watt, A. A. R.; Auffèves, A.; Smith, J. M.
2015-12-01
We demonstrate the tunable enhancement of the zero phonon line of a single nitrogen-vacancy colour centre in diamond at cryogenic temperature. An open cavity fabricated using focused ion beam milling provides mode volumes as small as 1.24 μm3 (4.7 {λ }3) and quality factor Q≃ 3000. In situ tuning of the cavity resonance is achieved with piezoelectric actuators. At optimal coupling to a TEM00 cavity mode, the signal from individual zero phonon line transitions is enhanced by a factor of 6.25 and the overall emission rate of the NV- centre is increased by 40% compared with that measured from the same centre in the absence of cavity field confinement. This result represents a step forward in the realisation of efficient spin-photon interfaces and scalable quantum computing using optically addressable solid state spin qubits.
Intrinsic cavity QED and emergent quasinormal modes for a single photon
NASA Astrophysics Data System (ADS)
Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2009-06-01
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information
Bitarafan, Mohammad H.; DeCorby, Ray G.
2017-01-01
For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics. PMID:28758967
High-Q silica zipper cavity for optical radiation pressure driven MOMS switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tetsumoto, Tomohiro; Tanabe, Takasumi, E-mail: takasumi@elec.keio.ac.jp
2014-07-15
We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 4.0 × 10{sup 4} and an effective mode volume V{sub mode} of 0.67λ{sup 3} when the gap between two cavities is 34 nm. The mechanical Q (Q{sub m}) is determined by thermo-elastic damping and is 2.0 × 10{sup 6} in a vacuum at room temperature. The opto-mechanical coupling rate g{sub OM} is as high as 100 GHz/nm, which allowsmore » us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Michael; McNamara, Brian R.; Perimeter Institute for Theoretical Physics, Waterloo
In this study, we present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ~50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 × 10 9 M ⊙), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M ⊙ yr –1. We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 M ⊙ yrmore » –1) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2 – 7 × 10 45 erg s –1. We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from "quasar-mode" to "radio-mode," and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ~100 kpc, with extended "ghost" cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ~200 kpc (0.15R 500), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments.« less
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-01-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617
Encoding quantum information in a stabilized manifold of a superconducting cavity
NASA Astrophysics Data System (ADS)
Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.
Design of micro-second pulsed laser mode for ophthalmological CW self-raman laser
NASA Astrophysics Data System (ADS)
Mota, Alessandro D.; Rossi, Giuliano; Ortega, Tiago A.; Costal, Glauco Z.; Fontes, Yuri C.; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.; Paiva, Maria S. V.
2011-02-01
This work presents the mechanisms adopted for the design of micro-second pulsed laser mode for a CW Self-Raman laser cavity in 586nm and 4W output power. The new technique for retina disease treatment discharges laser pulses on the retina tissue, in laser sequences of 200 μs pulse duration at each 2ms. This operation mode requires the laser to discharge fast electric pulses, making the system control velocity of the electronic system cavity vital. The control procedures to keep the laser output power stable and the laser head behavior in micro-second pulse mode are presented.
Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei
2018-03-01
In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.
2015-07-16
0.02(λ/ n )3 modal volumes while preserving optical cavity Q up to5×106 [Fig. 4(f)-(i)]. The mechanical mode is modeled to have fundamental resonance Qm...addition, a 30.64-MHz resonance is observed and identified as one of the wineglass modes (circumferential number n = 4, “square” mode [40]) with a measured...main challenge is that mechanical resonators operating at high frequencies are extremely stiff, having spring constant on the order of 107 N /m. This
Intracavity vortex beam generation
NASA Astrophysics Data System (ADS)
Naidoo, Darryl; Aït-Ameur, Kamel; Forbes, Andrew
2011-10-01
In this paper we explore vortex beams and in particular the generation of single LG0l modes and superpositions thereof. Vortex beams carry orbital angular momentum (OAM) and this intrinsic property makes them prevalent in transferring this OAM to matter and to be used in quantum information processing. We explore an extra-cavity and intra-cavity approach in LG0l mode generation respectively. The outputs of a Porro-prism resonator are represented by "petals" and we show that through a full modal decomposition, the "petal" fields are a superposition of two LG0l modes.
Dynamics of interacting Dicke model in a coupled-cavity array
NASA Astrophysics Data System (ADS)
Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro
2014-09-01
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.
Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S
2015-07-01
An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui; School of Physics, University of Chinese Academy of Sciences, Beijing 100049; Yin, Mojuan
2015-10-12
In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be appliedmore » over a broad spectral band to build narrow linewidth lasers for various applications.« less
NASA Astrophysics Data System (ADS)
Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.
2017-05-01
The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.
Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities.
Zhu, X; Cassidy, D T
1996-08-20
A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.
Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes
NASA Astrophysics Data System (ADS)
McAllister, Ben T.; Flower, Graeme; Tobar, Lucas E.; Tobar, Michael E.
2018-01-01
We present frequency-tuning mechanisms for dielectric resonators, which undergo "supermode" interactions as they tune. The tunable schemes are based on dielectric materials strategically placed inside traditional cylindrical resonant cavities, necessarily operating in transverse-magnetic modes for use in axion haloscopes. The first technique is based on multiple dielectric disks with radii smaller than that of the cavity. The second scheme relies on hollow dielectric cylinders similar to a Bragg resonator, but with a different location and dimension. Specifically, we engineer a significant increase in form factor for the TM030 mode utilizing a variation of a distributed Bragg reflector resonator. Additionally, we demonstrate an application of traditional distributed Bragg reflectors in TM modes which may be applied to a haloscope. Theoretical and experimental results are presented showing an increase in Q factor and tunability due to the supermode effect. The TM030 ring-resonator mode offers a between 1 and 2-order-of-magnitude improvement in axion sensitivity over current conventional cavity systems and will be employed in the forthcoming ORGAN experiment.
NASA Astrophysics Data System (ADS)
Chen, Ching-Hsu; Lu, Ming-Lun; Tai, Po-Tse
2015-08-01
We determine the average path length ls of amplified spontaneous emission (ASE) by comparing the numerical slope of a straight line with the experimental slope in the graph of the square of relaxation oscillation frequency versus normalized pump ratio. The simple method is applied in an end-pumped Nd:YVO4 laser with the 1/3 mode-degeneracy cavity having the transverse mode spacing equal to 1/3 of the longitudinal mode spacing. We find that ls is larger at the degeneracy than that far from the degeneracy. This result indicates the existence of stronger ASE at the degeneracy, which is confirmed below the threshold. This is because many spontaneous emission photons can undergo amplification not only before escaping from the gain medium but also after leaving the gain medium, owing to cavity reflection. Our method can be applied in the situations where the Auger upconversion effect is absent, weak, or well-known.
Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konoplev, Ivan V.; Metodiev, K.; Lancaster, A. J.
High average current, transportable energy recovery linacs (ERLs) can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU) instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently beenmore » proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like) model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Finally, numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.« less
Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac
Konoplev, Ivan V.; Metodiev, K.; Lancaster, A. J.; ...
2017-10-10
High average current, transportable energy recovery linacs (ERLs) can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU) instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently beenmore » proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like) model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Finally, numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdú-Andrés, S.; et al.
Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describesmore » a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.« less
[The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].
Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun
2005-12-01
Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.
A novel nano-sensor based on optomechanical crystal cavity
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Ma, Jingfang
2017-10-01
Optical devices based on new sensing principle are widely used in biochemical and medical area. Nowadays, mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. It is interesting to note that for nanoscience and nanotechnology applications there is a strong demand for very sensitive mass sensors, being the target a sensor for single molecule detection. The desired mass resolution for very few or even single molecule detection, has to be below the femtogram range. Considering the strong interaction between high co-localized optical mode and mechanical mode in optomechanical crystal (OMC) cavities, we investigate OMC splitnanobeam cavities in silicon operating near at the 1550nm to achieve high optomechanical coupling rate and ultra-small motion mass. Theoretical investigations of the optical and mechanical characteristic for the proposed cavity are carried out. By adjusting the structural parameters, the cavity's effective motion mass below 10fg and mechanical frequency exceed 10GHz. The transmission spectrum of the cavity is sensitive to the sample which located on the center of the cavity. We conducted the fabrication and the characterization of this cavity sensor on the silicon-on-insulator (SOI) chip. By using vertical coupling between the tapered fiber and the SOI chip, we measured the transmission spectrum of the cavity, and verify this cavity is promising for ultimate precision mass sensing and detection.
Tian, Feng; Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Takiguchi, Masato; Notomi, Masaya
2016-11-28
Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 μm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 μm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable platform for optomechanical control of integrated lasers, cavity quantum electrodynamics, and spontaneous emission. Furthermore, this device may open the door on the study of interactions between photons, phonons, and excitons in the quantum regime.
NASA Astrophysics Data System (ADS)
Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.
2018-01-01
We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.
Diagnostics Upgrades for Investigations of HOM Effects in TESLA-type SCRF Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.
We describe the upgrades to diagnostic capabilities on the Fermilab Accelerator Science and Technology (FAST) electron linear accelerator that will allow investigations of the effects of high-order modes (HOMs) in SCRF cavities on macropulse-average beam quality. We examine the dipole modes in the first pass-band generally observed in the 1.6-1.9 GHz regime for TESLA-type SCRF cavities due to uniform transverse beam offsets of the electron beam. Such cavities are the basis of the accelerators such as the European XFEL and the proposed MaRIE XFEL facility. Preliminary HOM detector data, prototype BPM test data, and first framing camera OTR data withmore » ~20- micron spatial resolution at 250 pC per bunch will be presented.« less
NASA Astrophysics Data System (ADS)
Wein, Stephen; Lauk, Nikolai; Ghobadi, Roohollah; Simon, Christoph
2018-05-01
Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-state emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Pérot hybrid cavity is an excellent candidate system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, F. J.; Boogert, S. T.; Farabolini, W.
2015-11-19
The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less
NASA Astrophysics Data System (ADS)
Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.
2015-11-01
The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.
Input impedance of a probe-fed circular microstrip antenna with thick substrate
NASA Technical Reports Server (NTRS)
Davidovitz, M.; Lo, Y. T.
1986-01-01
A method of computing the input impedance for the probe fed circular microstrip antenna with thick dielectric substrate is presented. Utilizing the framework of the cavity model, the fields under the microstrip patch are expanded in a set of modes satisfying the boundary conditions on the eccentrically located probe, as well as on the cavity magnetic wall. A mode-matching technique is used to solve for the electric field at the junction between the cavity and the coaxial feed cable. The reflection coefficient of the transverse electromagnetic (TEM) mode incident in the coaxial cable is determined, from which the input impedance of the antenna is computed. Measured data are presented to verify the theoretical calculations. Results of the computation of various losses for the circular printed antenna as a function of substrate thickness are also included.
Single steady frequency and narrow-linewidth external-cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng
2003-11-01
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.
NASA Astrophysics Data System (ADS)
Pandian, S.; Desikan, S. L. N.; Niranjan, Sahoo
2018-01-01
Experiments were carried out on a shallow open cavity (L/D = 5) at a supersonic Mach number (M = 1.8) to understand its transient starting characteristics, wave propagation (inside and outside the cavity) during one vortex shedding cycle, and acoustic emission. Starting characteristics and wave propagation were visualized through time resolved schlieren images, while acoustic emissions were captured through unsteady pressure measurements. Results showed a complex shock system during the starting process which includes characteristics of the bifurcated shock system, shock train, flow separation, and shock wave boundary layer interaction. In one vortex shedding cycle, vortex convection from cavity leading edge to cavity trailing edge was observed. Flow features outside the cavity demonstrated the formation and downstream movement of a λ-shock due to the interaction of shock from the cavity leading edge and shock due to vortex and generation of waves on account of shear layer impingement at the cavity trailing edge. On the other hand, interesting wave structures and its propagation were monitored inside the cavity. In one vortex shedding cycle, two waves such as a reflected compression wave from a cavity leading edge in the previous vortex shedding cycle and a compression wave due to the reflection of Mach wave at the cavity trailing edge corner in the current vortex shedding cycle were visualized. The acoustic emission from the cavity indicated that the 2nd to 4th modes/tones are dominant, whereas the 1st mode contains broadband spectrum. In the present studies, the cavity feedback mechanism was demonstrated through a derived parameter coherence coefficient.
A Resonator for Low-Threshold Frequency Conversion
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2004-01-01
A proposed toroidal or disklike dielectric optical resonator (dielectric optical cavity) would be made of an optically nonlinear material and would be optimized for use in parametric frequency conversion by imposition of a spatially periodic permanent electric polarization. The poling (see figure) would suppress dispersions caused by both the material and the geometry of the optical cavity, thereby effecting quasi-matching of the phases of high-resonance-quality (high-Q) whispering-gallery electromagnetic modes. The quasi-phase-matching of the modes would serve to maximize the interactions among them. Such a resonator might be a prototype of a family of compact, efficient nonlinear devices for operation over a broad range of optical wavelengths. A little background information is prerequisite to a meaningful description of this proposal: (1) Described in several prior NASA Tech Briefs articles, the whispering-gallery modes in a component of spheroidal, disklike, or toroidal shape are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. (2) For the sake of completeness, it must be stated that even though optical resonators of the type considered here are solid dielectric objects and light is confined within them by total internal reflection at dielectric interfaces without need for mirrors, such components are sometimes traditionally called cavities because their effects upon the light propagating within them are similar to those of true cavities bounded by mirrors. (3) For a given set of electromagnetic modes interacting with each other in an optically nonlinear material (e.g., modes associated with the frequencies involved in a frequency-conversion scheme), the threshold power for oscillation depends on the mode volumes and the mode-overlap integral. (4) Whispering-gallery modes are attractive in nonlinear optics because they maximize the effects of nonlinearities by occupying small volumes and affording high Q values
Quantum dash based single section mode locked lasers for photonic integrated circuits.
Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois
2014-05-05
We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.
Investigations of a Coherently Driven Semiconductor Optical Cavity QED System
2008-09-30
A. Fiber taper waveguide coupling Two of the primary difficulties in performing resonant optical measurements on the microcavity-QD system are ef...with the predomi- nantly radially polarized cavity mode. As a result, we esti- mate that spatial misalignment is the primary cause for the reduced...Mode splitting circles and peak reflection value diamonds as a fuction of Pd and ncav. Theoretical predic- tions are shown as dashed lines
Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.
Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2016-05-19
Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.
Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio
2018-01-23
Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.
Peculiarities of spike multimode generation of a superradiant distributed feedback laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharovskaya, E R; Ginzburg, N S; Sergeev, A S
2011-08-31
Using one-dimensional semiclassical Maxwell - Bloch equations with account for the coherent polarisation dynamics, we have studied spike generation regimes of a superradiant distributed feedback laser in the case of inhomogeneous broadening of the spectral line of an active medium. By analysing the dynamic spectra of inversion of the active medium and laser radiation, we have revealed the relationship of individual spikes of radiation and their modulation with specific parts in the spectral line of the active medium and mode beatings. It has been shown that the broadening and shift of the lasing spectrum with respect to the initial electromagneticmore » Bragg-cavity modes is accompanied by a strong spectral gradient of inversion that is typical of the superradiant regimes. (control of radiation parameters)« less
Gudur, Madhu Sudhan Reddy; Kumon, Ronald E; Zhou, Yun; Deng, Cheri X
2012-08-01
The goal of this study was to examine the ability of high-frame-rate, high-resolution imaging to monitor tissue necrosis and gas-body activities formed during high-intensity focused ultrasound (HIFU) application. Ex vivo porcine cardiac tissue specimens (n = 24) were treated with HIFU exposure (4.33 MHz, 77 to 130 Hz pulse repetition frequency (PRF), 25 to 50% duty cycle, 0.2 to 1 s, 2600 W/cm(2)). RF data from B-mode ultrasound imaging were obtained before, during, and after HIFU exposure at a frame rate ranging from 77 to 130 Hz using an ultrasound imaging system with a center frequency of 55 MHz. The time history of changes in the integrated backscatter (IBS), calibrated spectral parameters, and echo-decorrelation parameters of the RF data were assessed for lesion identification by comparison against gross sections. Temporal maximum IBS with +12 dB threshold achieved the best identification with a receiver-operating characteristic (ROC) curve area of 0.96. Frame-to-frame echo decorrelation identified and tracked transient gas-body activities. Macroscopic (millimeter-sized) cavities formed when the estimated initial expansion rate of gas bodies (rate of expansion in lateral-to-beam direction) crossed 0.8 mm/s. Together, these assessments provide a method for monitoring spatiotemporal evolution of lesion and gas-body activity and for predicting macroscopic cavity formation.
NASA Astrophysics Data System (ADS)
Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.
2017-08-01
Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.
Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer
Lundt, Nils; Klembt, Sebastian; Cherotchenko, Evgeniia; Betzold, Simon; Iff, Oliver; Nalitov, Anton V.; Klaas, Martin; Dietrich, Christof P.; Kavokin, Alexey V.; Höfling, Sven; Schneider, Christian
2016-01-01
Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe2, hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy–momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons. PMID:27796288
Continuous-wave EPR at 275 GHz: Application to high-spin Fe 3+ systems
NASA Astrophysics Data System (ADS)
Mathies, G.; Blok, H.; Disselhorst, J. A. J. M.; Gast, P.; van der Meer, H.; Miedema, D. M.; Almeida, R. M.; Moura, J. J. G.; Hagen, W. R.; Groenen, E. J. J.
2011-05-01
The 275 GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275 GHz continuous-wave spectra of a 1 mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10 mM frozen solutions of the protein rubredoxin, which contains Fe 3+ in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5 GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.
High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators
Abbaslou, Siamak; Gatdula, Robert; Lu, Ming; ...
2016-06-20
Here, we demonstrate accurate control of mode symmetry in suspended dual-nanobeam resonators on a silicon-on-insulator chip. Each nanobeam consists of a Fabry-Perot nanocavity bounded by tapered 1-D photonic crystals. Even and odd cavity-modes are formed due to lateral evanescent coupling between the two nanobeams. The odd cavity-mode can be excited by mode-symmetry-transforming Mach-Zehnder couplers. Modal contrasts over 27 dB are measured in fabricated structures. The influence of the optical field in the middle air slot on the background transmission and quality factors is discussed. The observed peak wavelength separations of the modes at various nanobeam spacings are in good agreementmore » with simulation results. These nanobeam resonators are potentially useful in applications, such as ultrafast all-optical modulation, filtering, and switching.« less
TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod
NASA Astrophysics Data System (ADS)
Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel
2016-05-01
A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.
Purification and switching protocols for dissipatively stabilized entangled qubit states
NASA Astrophysics Data System (ADS)
Hein, Sven M.; Aron, Camille; Türeci, Hakan E.
2016-06-01
Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.
NASA Astrophysics Data System (ADS)
Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong
2018-04-01
We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.
NASA Astrophysics Data System (ADS)
Santiago-Hernández, H.; Bracamontes-Rodríguez, Y. E.; Beltrán-Pérez, G.; Armas-Rivera, I.; Rodríguez-Morales, L. A.; Pottiez, O.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Hernández-Arriaga, M. V.; Kuzin, E. A.
2018-02-01
We report the dynamics of multi-pulse in a ring cavity passively mode-locked fiber laser with a strict control of the polarization state. We study the relation between the polarization state of the pulses propagating in the cavity and the regimes of generation. We have found that small ellipticities, the laser generates one bunch of pulses in the cavity, while at higher ellipticities the laser generates multiple bunches. At constant ellipticity we rotated the polarization azimuth and observed a regime transition from the generation of a bunch of solitons to that of noise-like pulses (NLP).
Calic, M; Jarlov, C; Gallo, P; Dwir, B; Rudra, A; Kapon, E
2017-06-22
A system of two site-controlled semiconductor quantum dots (QDs) is deterministically integrated with a photonic crystal membrane nano-cavity. The two QDs are identified via their reproducible emission spectral features, and their coupling to the fundamental cavity mode is established by emission co-polarization and cavity feeding features. A theoretical model accounting for phonon interaction and pure dephasing reproduces the observed results and permits extraction of the light-matter coupling constant for this system. The demonstrated approach offers a platform for scaling up the integration of QD systems and nano-photonic elements for integrated quantum photonics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Meng-Zheng; School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000; Ye, Liu, E-mail: yeliu@ahu.edu.cn
An efficient scheme is proposed to implement phase-covariant quantum cloning by using a superconducting transmon qubit coupled to a microwave cavity resonator in the strong dispersive limit of circuit quantum electrodynamics (QED). By solving the master equation numerically, we plot the Wigner function and Poisson distribution of the cavity mode after each operation in the cloning transformation sequence according to two logic circuits proposed. The visualizations of the quasi-probability distribution in phase-space for the cavity mode and the occupation probability distribution in the Fock basis enable us to penetrate the evolution process of cavity mode during the phase-covariant cloning (PCC)more » transformation. With the help of numerical simulation method, we find out that the present cloning machine is not the isotropic model because its output fidelity depends on the polar angle and the azimuthal angle of the initial input state on the Bloch sphere. The fidelity for the actual output clone of the present scheme is slightly smaller than one in the theoretical case. The simulation results are consistent with the theoretical ones. This further corroborates our scheme based on circuit QED can implement efficiently PCC transformation.« less
NASA Astrophysics Data System (ADS)
Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf
2018-05-01
Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.K. Sekutowicz, P. Kneisel
This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, themore » cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.« less
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.
Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo
2013-11-15
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics
NASA Astrophysics Data System (ADS)
Osada, A.; Gloppe, A.; Hisatomi, R.; Noguchi, A.; Yamazaki, R.; Nomura, M.; Nakamura, Y.; Usami, K.
2018-03-01
A ferromagnetic sphere can support optical vortices in the form of whispering gallery modes and magnetic quasivortices in the form of magnetostatic modes with nontrivial spin textures. These vortices can be characterized by their orbital angular momenta. We experimentally investigate Brillouin scattering of photons in the whispering gallery modes by magnons in the magnetostatic modes, zeroing in on the exchange of the orbital angular momenta between the optical vortices and magnetic quasivortices. We find that the conservation of the orbital angular momentum results in different nonreciprocal behavior in the Brillouin light scattering. New avenues for chiral optics and optospintronics can be opened up by taking the orbital angular momenta as a new degree of freedom for cavity optomagnonics.
Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S
2010-12-06
An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab
2012-02-15
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less
NASA Astrophysics Data System (ADS)
Long, D. A.; Truong, G.-W.; van Zee, R. D.; Plusquellic, D. F.; Hodges, J. T.
2014-03-01
We present ultrasensitive measurements of molecular absorption using frequency-agile rapid scanning, cavity ring-down spectroscopy with an external-cavity diode laser. A microwave source that drives an electro-optic phase modulator with a bandwidth of 20 GHz generates pairs of sidebands on the probe laser. The optical cavity provides for high sensitivity and filters the carrier and all but a single, selected sideband. Absorption spectra were acquired by stepping the tunable sideband from mode-to-mode of the ring-down cavity at a rate that was limited only by the cavity decay time. This approach allows for scanning rates of 8 kHz per cavity resonance, a minimum detectable absorption coefficient of 1.7 × 10-11 cm-1 after only 20 ms of averaging, and a noise-equivalent absorption coefficient of 1.7 × 10-12 cm-1 Hz-1/2. By comparison with cavity-enhanced laser absorption spectrometers reported in the literature, the present system is, to the best of our knowledge, among the most sensitive and has by far the highest spectrum scanning rate.
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S
2012-02-01
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.
InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band
NASA Astrophysics Data System (ADS)
Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi
2016-11-01
InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.
NASA Technical Reports Server (NTRS)
Roskam, J.; Vandam, C. P. G.
1978-01-01
A prediction method is reported for noise reduction through a cavity-backed panel. The analysis takes into account only cavity modes in one direction. The results of this analysis were to find the effect of acoustic stiffness of a backing cavity on the panel behavior. The resulting changes in the noise reduction through the panel are significant.
Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.
Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang
2013-07-29
A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.
The introduction of spurious models in a hole-coupled Fabry-Perot open resonator
NASA Technical Reports Server (NTRS)
Cook, Jerry D.; Long, Kenwyn J.; Heinen, Vernon O.; Stankiewicz, Norbert
1992-01-01
A hemispherical open resonator has previously been used to make relative comparisons of the surface resistivity of metallic thin-film samples in the submillimeter wavelength region. This resonator is fed from a far-infrared laser via a small coupling hole in the center of the concave spherical mirror. The experimental arrangement, while desirable as a coupling geometry for monitoring weak emissions from the cavity, can lead to the introduction of spurious modes into the cavity. Sources of these modes are identified, and a simple alteration of the experimental apparatus to eliminate such modes is suggested.
NASA Astrophysics Data System (ADS)
Ryou, Albert
Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 kHz. Harnessing the massive processing power of a state-of-the-art FPGA, we present a novel, low-latency digital architecture for loop-shaping, with applications in atomic physics and beyond.
Nonlinear Wave Chaos and the Random Coupling Model
NASA Astrophysics Data System (ADS)
Zhou, Min; Ott, Edward; Antonsen, Thomas M.; Anlage, Steven
The Random Coupling Model (RCM) has been shown to successfully predict the statistical properties of linear wave chaotic cavities in the highly over-moded regime. It is of interest to extend the RCM to strongly nonlinear systems. To introduce nonlinearity, an active nonlinear circuit is connected to two ports of the wave chaotic 1/4-bowtie cavity. The active nonlinear circuit consists of a frequency multiplier, an amplifier and several passive filters. It acts to double the input frequency in the range from 3.5 GHz to 5 GHz, and operates for microwaves going in only one direction. Measurements are taken between two additional ports of the cavity and we measure the statistics of the second harmonic voltage over an ensemble of realizations of the scattering system. We developed an RCM-based model of this system as two chaotic cavities coupled by means of a nonlinear transfer function. The harmonics received at the output are predicted to be the product of three statistical quantities that describe the three elements correspondingly. Statistical results from simulation, RCM-based modeling, and direct experimental measurements will be compared. ONR under Grant No. N000141512134, AFOSR under COE Grant FA9550-15-1-0171,0 and the Maryland Center for Nanophysics and Advanced Materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, T., E-mail: tklein@ifp.uni-bremen.de; Klembt, S.; Institut Néel, Université Grenoble Alpes and CNRS, B.P. 166, 38042 Grenoble
2015-03-21
ZnSe-based electron-beam pumped vertical-cavity surface-emitting lasers for the green (λ = 530 nm) and blue (λ = 462 nm) spectral region have been realized. Structures with and without epitaxial bottom distributed Bragg reflector have been fabricated and characterized. The samples consist of an active region containing 20 quantum wells with a cavity length varying between an optical thickness of 10 λ to 20 λ. The active material is ZnCdSSe in case of the green devices and ZnSe for the blue ones. Room temperature single mode lasing for structures with and without epitaxial bottom mirror with a maximum output power up to 5.9 W (green) and 3.3 W (blue)more » is achieved, respectively.« less
Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumond, R. C.; Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, Vienna; Souza, L. A. M.
We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with themore » transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.« less
Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission
NASA Astrophysics Data System (ADS)
Lee, Y.-J.; Talghader, J. J.
2018-01-01
For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.
Cheng, Huihui; Wang, Wenlong; Zhou, Yi; Qiao, Tian; Lin, Wei; Xu, Shanhui; Yang, Zhongmin
2017-10-30
A passively mode-locked Yb 3+ -doped fiber laser with a fundamental repetition rate of 5 GHz and wavelength tunable performance is demonstrated. A piece of heavily Yb 3+ -doped phosphate fiber with a high net gain coefficient of 5.7 dB/cm, in conjunction with a fiber mirror by directly coating the SiO 2 /Ta 2 O 5 dielectric films on a fiber ferrule is exploited for shortening the laser cavity to 2 cm. The mode-locked oscillator has a peak wavelength of 1058.7 nm, pulse duration of 2.6 ps, and the repetition rate signal has a high signal-to-noise ratio of 90 dB. Moreover, the wavelength of the oscillator is found to be continuously tuned from 1056.7 to 1060.9 nm by increasing the temperature of the laser cavity. Simultaneously, the repetition rate correspondingly decreases from 4.945874 to 4.945496 GHz. Furthermore, the long-term stability of the mode-locked operation in the ultrashort laser cavity is realized by exploiting temperature controls. This is, to the best of our knowledge, the highest fundamental pulse repetition rate for 1-μm mode-locked fiber lasers.
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
Higher-order vector beams produced by photonic-crystal lasers.
Iwahashi, Seita; Kurosaka, Yoshitaka; Sakai, Kyosuke; Kitamura, Kyoko; Takayama, Naoki; Noda, Susumu
2011-06-20
We have successfully generated vector beams with higher-order polarization states using photonic-crystal lasers. We have analyzed and designed lattice structures that provide cavity modes with different symmetries. Fabricated devices based on these lattice structures produced doughnut-shaped vector beams, with symmetries corresponding to the cavity modes. Our study enables the systematic analysis of vector beams, which we expect will lead to applications such as high-resolution microscopy, laser processing, and optical trapping.
An integrated parity-time symmetric wavelength-tunable single-mode microring laser
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2017-01-01
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784
An integrated parity-time symmetric wavelength-tunable single-mode microring laser.
Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping
2017-05-12
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.
Tunable electromagnetically induced transparency in integrated silicon photonics circuit.
Li, Ang; Bogaerts, Wim
2017-12-11
We comprehensively simulate and experimentally demonstrate a novel approach to generate tunable electromagnetically induced transparency (EIT) in a fully integrated silicon photonics circuit. It can also generate tunable fast and slow light. The circuit is a single ring resonator with two integrated tunable reflectors inside, which form an embedded Fabry-Perot (FP) cavity inside the ring cavity. The mode of the FP cavity can be controlled by tuning the reflections using integrated thermo-optic tuners. Under correct tuning conditions, the interaction of the FP mode and the ring resonance mode will generate a Fano resonance and an EIT response. The extinction ratio and bandwidth of the EIT can be tuned by controlling the reflectors. Measured group delay proves that both fast light and slow light can be generated under different tuning conditions. A maximum group delay of 1100 ps is observed because of EIT. Pulse advance around 1200 ps is also demonstrated.
Dispersion engineering of mode-locked fibre lasers
NASA Astrophysics Data System (ADS)
Woodward, R. I.
2018-03-01
Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.
Signatures of the A2 term in ultrastrongly coupled oscillators
NASA Astrophysics Data System (ADS)
Tufarelli, Tommaso; McEnery, K. R.; Maier, S. A.; Kim, M. S.
2015-06-01
We study a bosonic matter excitation coupled to a single-mode cavity field via electric dipole. Counter-rotating and A2 terms are included in the interaction model, A being the vector potential of the cavity field. In the ultrastrong coupling regime the vacuum of the bare modes is no longer the ground state of the Hamiltonian and contains a nonzero population of polaritons, the true normal modes of the system. If the parameters of the model satisfy the Thomas-Reiche-Kuhn sum rule, we find that the two polaritons are always equally populated. We show how this prediction could be tested in a quenching experiment, by rapidly switching on the coupling and analyzing the radiation emitted by the cavity. A refinement of the model based on a microscopic minimal coupling Hamiltonian is also provided, and its consequences on our results are characterized analytically.
Remote entanglement stabilization for modular quantum computing
NASA Astrophysics Data System (ADS)
Didier, Nicolas; Shankar, S.; Mirrahimi, M.
Quantum information processing in a modular architecture requires to distribute and stabilize entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two qubits that are coupled to distant cavities. The cavities coupling is mediated and controlled via a three-wave mixing device that generates either a delocalized mode or a two-mode squeezed state between the remote cavities depending on the pump frequency. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. We show that these reservoir-engineering based protocols stabilize entanglement in presence of qubit-cavity asymmetries and losses. Most spectacularly, even a weakly-squeezed state can stabilize a maximally entangled Bell state of two distant qubits through entanglement accumulation. This research was supported by the Agence Nationale de la Recherche under Grant ANR-14-CE26-0018, by Inria's DPEI under the TAQUILLA associated team and by ARO under Grant No. W911NF-14-1-0011.
Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haipeng; Cheng, Guangfeng; Clemens, William
2015-09-01
After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.
Modeling the interaction of a heavily beam loaded SRF cavity with its low-level RF feedback loops
NASA Astrophysics Data System (ADS)
Liu, Zong-Kai; Wang, Chaoen; Chang, Lung-Hai; Yeh, Meng-Shu; Chang, Fu-Yu; Chang, Mei-Hsia; Chang, Shian-Wen; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Lo, Chih-Hung; Yu, Tsung-Chi
2018-06-01
A superconducting radio frequency (SRF) cavity provides superior stability to power high intensity light sources and can suppress coupled-bunch instabilities due to its smaller impedance for higher order modes. Because of these features, SRF cavities are commonly used for modern light sources, such as the TLS, CLS, DLS, SSRF, PLS-II, TPS, and NSLS-II, with an aggressive approach to operate the light sources at high beam currents. However, operating a SRF cavity at high beam currents may result with unacceptable stability problems of the low level RF (LLRF) system, due to drifts of the cavity resonant frequency caused by unexpected perturbations from the environment. As the feedback loop gets out of control, the cavity voltage may start to oscillate with a current-dependent characteristic frequency. Such situations can cause beam abort due to the activation of the interlock protection system, i.e. false alarm of quench detection. This malfunction of the light source reduces the reliability of SRF operation. Understanding this unstable mechanism to prevent its appearance becomes a primary task in the pursuit of highly reliable SRF operation. In this paper, a Pedersen model, including the response of the LLRF system, was used to simulate the beam-cavity interaction of a SRF cavity under heavy beam loading. Causes for the onset of instability at high beam current will be discussed as well as remedies to assure the design of a stable LLRF system.
Cavity optomechanical coupling assisted by an atomic gas
NASA Astrophysics Data System (ADS)
Ian, H.; Gong, Z. R.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco
2008-07-01
We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a oscillating mirror at one end. We show that the cavity field “dresses” these atoms, producing two types of polaritons, effectively enhancing the radiation pressure of the cavity field upon the oscillating mirror, as well as establishing an additional squeezing mode of the oscillating mirror. This squeezing produces an adiabatic entanglement, which is absent in usual vacuum cavities, between the oscillating mirror and the rest of the system. We analyze the entanglement and quantify it using the Loschmidt echo and fidelity.
Spectral Engineering of Slow Light, Cavity Line Narrowing, and Pulse Compression
NASA Astrophysics Data System (ADS)
Sabooni, Mahmood; Li, Qian; Rippe, Lars; Mohan, R. Krishna; Kröll, Stefan
2013-11-01
More than 4 orders of magnitude of cavity-linewidth narrowing in a rare-earth-ion-doped crystal cavity, emanating from strong intracavity dispersion caused by off-resonant interaction with dopant ions, is demonstrated. The dispersion profiles are engineered using optical pumping techniques creating significant semipermanent but reprogrammable changes of the rare-earth absorption profiles. Several cavity modes are shown within the spectral transmission window. Several possible applications of this phenomenon are discussed.
Vertical Oscillation of a Coronal Cavity Triggered by an EUV Wave
NASA Astrophysics Data System (ADS)
Zhang, Q. M.; Ji, H. S.
2018-06-01
In this paper, we report our multiwavelength observations of the vertical oscillation of a coronal cavity on 2011 March 16. The elliptical cavity with an underlying horn-like quiescent prominence was observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The width and height of the cavity are 150″ and 240″, and the centroid of cavity is 128″ above the solar surface. At ∼17:50 UT, a C3.8 two-ribbon flare took place in active region 11169 close to the solar western limb. Meanwhile, a partial halo coronal mass ejection erupted and propagated at a linear speed of ∼682 km s‑1. Associated with the eruption, a coronal extreme-ultraviolet (EUV) wave was generated and propagated in the northeast direction at a speed of ∼120 km s‑1. Once the EUV wave arrived at the cavity from the top, it pushed the large-scale overlying magnetic field lines downward before bouncing back. At the same time, the cavity started to oscillate coherently in the vertical direction and lasted for ∼2 cycles before disappearing. The amplitude, period, and damping time are 2.4–3.5 Mm, 29–37 minutes, and 26–78 minutes, respectively. The vertical oscillation of the cavity is explained by a global standing MHD wave of fast kink mode. To estimate the magnetic field strength of the cavity, we use two independent methods of prominence seismology. It is found that the magnetic field strength is only a few Gauss and less than 10 G.
NASA Astrophysics Data System (ADS)
Kobtsev, Sergey; Ivanenko, Alexey; Smirnov, Sergey; Kokhanovsky, Alexey
2018-02-01
The present work proposes and studies approaches for development of new modified non-linear amplifying loop mirror (NALM) allowing flexible and dynamic control of their non-linear properties within a relatively broad range of radiation powers. Using two independently pumped active media in the loop reflector constitutes one of the most promising approaches to development of better NALM with nonlinear properties controllable independently of the intra-cavity radiation power. This work reports on experimental and theoretical studies of the proposed redesigned NALM allowing both a higher level of energy parameters of output generated by mode-locked fibre oscillators and new possibilities of switching among different mode-locked regimes.
Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R
2017-08-09
Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.
Infrared nano-sensor based on doubly splited optomechanical cavity
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Xiang, Yanjun; Ma, Liehua; Li, Tao; Ma, Jingfang
2017-10-01
Optomechanical crystal (OMC) cavities are simultaneous have photonic and phononic bandgaps. The strong interaction between high co-localized optical mode and mechanical mode are excellent candidates for precision measurements due to their simplicity, sensitivity and all optical operation. Here, we investigate OMC nanobeam cavities in silicon operating at the near-infrared wavelengths to achieve high optomechanical coupling rate and ultra-small motion mass. Numerical simulation results show that the optical Q-factor reached to 1.2×105 , which possesses an optical mode resonating at the wavelength of 1181 nm and the extremely localized mechanical mode vibrating at 9.2GHz. Moreover, a novel type of doubly splited nanocavity tailored to sensitively measure torques and mass. In the nanomechanical resonator central hollow area suspended low-mass elements (<100fg) are sensitive to environmental stimulate. By changing the split width, an ultra-small effective motion mass of only 4fg with a mechanical frequency as high as 11.9GHz can be achieved, while the coupling rate up to 1.58MHz. Potential applications on these devices include sensing mass, acceleration, displacement, and magnetic probing the quantum properties of nanoscale systems.
Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate.
Zhai, Tianrui; Wang, Yonglu; Chen, Li; Zhang, Xinping
2015-08-07
Tunable multi-wavelength polymer lasers based on two-dimensional distributed feedback structures are fabricated on a transparent flexible substrate using interference ablation. A scalene triangular lattice structure was designed to support stable tri-wavelength lasing emission and was achieved through multiple exposure processes. Three wavelengths were controlled by three periods of the compound cavity. Mode competition among different cavity modes was observed by changing the pump fluence. Both a redshift and blueshift of the laser wavelength could be achieved by bending the soft substrate. These results not only provide insight into the physical mechanisms behind co-cavity polymer lasers but also introduce new laser sources and laser designs for white light lasers.
NASA Technical Reports Server (NTRS)
Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan
2012-01-01
Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.
Coherent coupling of molecular resonators with a microcavity mode
NASA Astrophysics Data System (ADS)
Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T. W.
2015-01-01
The optical hybridization of the electronic states in strongly coupled molecule-cavity systems have revealed unique properties, such as lasing, room temperature polariton condensation and the modification of excited electronic landscapes involved in molecular isomerization. Here we show that molecular vibrational modes of the electronic ground state can also be coherently coupled with a microcavity mode at room temperature, given the low vibrational thermal occupation factors associated with molecular vibrations, and the collective coupling of a large ensemble of molecules immersed within the cavity-mode volume. This enables the enhancement of the collective Rabi-exchange rate with respect to the single-oscillator coupling strength. The possibility of inducing large shifts in the vibrational frequency of selected molecular bonds should have immediate consequences for chemistry.
Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.
Cai, M; Vahala, K
2000-02-15
We report that greater than 99.8% optical power transfer to whispering-gallery modes was achieved in fused-silica microspheres by use of a dual-tapered-fiber coupling method. The intrinsic cavity loss and the taper-to-sphere coupling coefficient are inferred from the experimental data. It is shown that the low intrinsic cavity loss and the symmetrical dual-coupling structure are crucial for obtaining the high coupling efficiency.
Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering
NASA Astrophysics Data System (ADS)
Rochette, Martin; Sun, Kai; Hernández-Cordero, Juan; Chen, Lawrence R.
2008-06-01
We experimentally demonstrate the operation of a laser based on self-phase modulation followed by offset spectral filtering. This laser has three operation modes: a continuous-wave mode, a self-pulsating mode where the laser self ignites and produces pulses, and a pulse-buffering mode where no new pulse is formed from spontaneous emission noise but only pulses already propagating or pulses injected in the laser cavity can be sustained. In the self-pulsating and pulse-buffering modes, the laser is multi-wavelength and continuously tunable over the entire gain band of the amplifiers. The output pulse width is quasi transform-limited with respect to the spectral-width of the filters used in the cavity. Overall, this device provides a simple alternative to pulsed laser source and also represents a promising approach for signal buffering.
NASA Astrophysics Data System (ADS)
Dashkevich, V. I.; Orlovich, V. A.
2017-03-01
The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Shuisong; Robinson, Howard; Marsing, Gregory C.
2004-11-01
1. Introduction Enzymes in the non-mevalonate pathway for isoprenoid synthesis have gained recent attention because of their potential value as targets for antibiotic drug development. 2C-methyl-D-erythritol-2,4 cyclophosphate (MECDP) synthase is the fifth enzyme in the seven enzyme non-mevalonate pathway for synthesis of isopentenyl diphosphate. Four groups have published structures of MECDP synthase at resolutions varying from 1.6Å to 2.8Å, either in the presence or absence of substrate from Escherichia coli (Richard et al., 2002; Kemp et al., 2002; Steinbacher et al., 2002) or from Thermus thermophilus (Kishida et al., 2003). Among these structures, the protein always exists as a homotrimermore » either with a crystallographic or a non-crystallographic three-fold symmetry axis and an active site formed in a cleft between adjacent monomers. While the overall shape of the proteins is highly similar among these structures, each of the four reported structures contain different combinations of metal ions in the active site including a Zn2+ ion only (Steinbacher et al., 2002), a Mn2+ ion only (Richard et al., 2002), Zn2+ and Mn2+ ions (Kemp et al., 2002) or two Mg2+ ions (Kishida et al., 2003). Furthermore, two of the structures are reported to contain a hydrophobic channel along the three-fold symmetry axis that is capped by a cluster of three arginine side chains (one from each monomer) at one end of the cavity and a cluster of three glutamic acid side chains (one from each monomer) at the other side of the cavity. In a 1.8Å resolution structure, Kemp et al. (2002) reported a sulfate ion coordinated to the arginine cap and solvent trapped in a hydrophobic cavity. In a lower 2.8Å resolution structure, Richard et al. (2002) concluded that geranyl diphosphate, GPP, was most likely trapped by the arginine cap and hydrophobic cavity (Richard et al., 2002), however, the low resolution of the data together with the presence of the crystallographic symmetry axis prohibited a definitive analysis of the identity and mode of binding of the bound molecule. Kishida et al. (2003) reported that no cavity existed in a 1.6Å structure of the SO3437 homolog from Thermus thermophilus, presumably due to tighter packing of the protein from the thermophilic organism. Steinbacher et al. (2002) make no description of a hydrophobic cavity in a lower resolution (2.5-3.2Å) of the Escherichia coli protein. Here, we report a high-resolution (1.6Å) structure of MECDP synthase from Shewanella oneidensis in the absence of substrate in the active site. We provide unambiguous data that confirms the presence of Zn2+ in one of the metal binding sites and observe what appears to be farnesyl diphosphate (FPP) bound in the hydrophobic cavity along the non-crystallographic three-fold symmetry axis of the homotrimer. The high-resolution structure clarifies the mode of binding of the pyrophosphate of FPP in the arginine cluster that caps the hydrophobic cavity.« less
An actively Q-switched fiber laser with cylindrical vector beam generation
NASA Astrophysics Data System (ADS)
Zhang, Jiaojiao; Zhang, Zuxing; Cai, Yu; Wan, Hongdan; Wang, Zhiqiang; Zhang, Lin
2018-03-01
We demonstrate an actively Q-switched fiber laser with cylindrical vector beam (CVB) emission using a few-mode fiber Bragg grating as the mode selection component and an acousto-optic modulator to achieve Q-switching. To the best of our knowledge, this is the first such demonstration. Using a linear cavity configuration, an actively Q-switched CVB with a pulse width of about 64 ns, a pulse energy of 4.25 µJ and a repetition rate of 20 kHz has been obtained. Moreover, by tuning the polarization controllers radially and azimuthally, polarized Q-switched beams can be excited separately with a polarization purity of >94.5%. This compact Q-switched fiber laser with ns CVB pulse output could find potential applications in the field of material processing, nonlinear optics and so on.
NASA Astrophysics Data System (ADS)
Burton, Matthew C.
Bulk niobium (Nb) superconducting radio frequency (SRF) cavities are currently the preferred method for acceleration of charged particles at accelerating facilities around the world. However, bulk Nb cavities have poor thermal conductance, impose material and design restrictions on other components of a particle accelerator, have low reproducibility and are approaching the fundamental material-dependent accelerating field limit of approximately 50MV/m. Since the SRF phenomena occurs at surfaces within a shallow depth of ˜1 microm, a proposed solution to this problem has been to utilize thin film technology to deposit superconducting thin films on the interior of cavities to engineer the active SRF surface in order to achieve cavities with enhanced properties and performance. Two proposed thin film applications for SRF cavities are: 1) Nb thin films coated on bulk cavities made of suitable castable metals (such as copper or aluminum) and 2) multilayer films designed to increase the accelerating gradient and performance of SRF cavities. While Nb thin films on copper (Cu) cavities have been attempted in the past using DC magnetron sputtering (DCMS), such cavities have never performed at the bulk Nb level. However, new energetic condensation techniques for film deposition, such as High Power Impulse Magnetron Sputtering (HiPIMS), offer the opportunity to create suitably thick Nb films with improved density, microstructure and adhesion compared to traditional DCMS. Clearly use of such novel technique requires fundamental studies to assess surface evolution and growth modes during deposition and resulting microstructure and surface morphology and the correlation with RF superconducting properties. Here we present detailed structure-property correlative research studies done on Nb/Cu thin films and NbN- and NbTiN-based multilayers made using HiPIMS and DCMS, respectively.
Cylindrical acoustic levitator/concentrator
Kaduchak, Gregory; Sinha, Dipen N.
2002-01-01
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.
Suppression of Higher Order Modes in an Array of Cavities Using Waveguides
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Sobenin, N. P.; Bazyl, D. S.; Kaminskiy, V. I.; Mitrofanov, A. A.; Zobov, M. M.
An application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussionin the framework of the High Luminosity LHC upgrade program [1,2]. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between "warm" and "cold" parts of the collider vacuum chamber. Unfortunately, it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. We describe the results obtained for arrays of 2, 4 and 8 cavitiesin this paper.
Status of the Short-Pulse X-ray Project at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nassiri, A; Berenc, T G; Borland, M
2012-07-01
The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linearmore » Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.« less
Redesign of the End Group in the 3.9 GHz LCLS-II Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunin, Andrei; Gonin, Ivan; Khabiboulline, Timergali
Development and production of Linac Coherent Light Source II (LCLS-II) is underway. The central part of LCLS-II is a continuous wave superconducting RF (CW SCRF) electron linac. The 3.9 GHz third harmonic cavity similar to the XFEL design will be used in LCLS-II for linearizing the longitudinal beam profile*. The initial design of the 3.9 GHz cavity developed for XFEL project has a large, 40 mm, beam pipe aperture for better higher-order mode (HOM) damping. It is resulted in dipole HOMs with frequencies nearby the operating mode, which causes difficulties with HOM coupler notch filter tuning. The CW linac operationmore » requires an extra caution in the design of the HOM coupler in order to prevent its possible overheating. In this paper we present the modified 3.9 GHz cavity End Group for meeting the LCLS-II requirements« less
NASA Astrophysics Data System (ADS)
Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond
2016-11-01
We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.
Two-fluid model of a Bose-Einstein condensate in the cavity optomechanical regime
NASA Astrophysics Data System (ADS)
Goldbaum, Dan; Zhang, Keye; Meystre, Pierre
2010-03-01
We analyze an atomic Bose-Einstein condensate trapped in a high-Q optical cavity driven by a feeble optical field. The dynamics of the resulting collective density excitation of the condensate are formally analogous to the central model system of cavity optomechanics: a radiation pressure driven mechanical oscillator [Brennecke et al., Science 322, 235 (2008)]. However, although BEC-based optomechanical systems have several desirable properties, one must also take into account the effect of atom-atom interactions. We treat these interactions via a two-fluid model that retains the intuitive appeal of the non-interacting two-mode description. We find that the Bogoliubov excitation spectrum of this system comprises a gapped upper branch and a lower branch that can include an unstable excitation mode. [4pt] D. S. Goldbaum, K. Zhang and P. Meystre, Two-fluid model of a Bose-Einstein condensate in the cavity optomechanical regime, arXiv:0911.3234.
Triggered generation of single guided photons from a single atom in a nanofiber cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Kien, Fam; Hakuta, K.
2011-04-15
We study the deterministic generation of single guided-mode photons from an atom in the vicinity of a nanofiber with two fiber-Bragg-grating (FBG) mirrors. The technique is based on a cavity-enhanced Raman scattering process involving an adiabatic passage. We take into account the scattering of the pump field from the fiber, the multilevel structure of the atom, and the surface-induced van der Waals potential in describing the photon generation process. We find that, due to the confinement of the cavity field in the transverse plane of the fiber and in the space between the FBG mirrors, the probability of the generationmore » of a single guided-mode photon can be close to unity even when the finesse of the nanofiber cavity is moderate. We show the possibilities of saturation and power broadening in the behavior of the number of photons emitted into the nanofiber.« less
Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D
NASA Astrophysics Data System (ADS)
Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.
2009-01-01
A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.
Self-homodyne measurement of a dynamic Mollow triplet in the solid state
NASA Astrophysics Data System (ADS)
Fischer, Kevin A.; Müller, Kai; Rundquist, Armand; Sarmiento, Tomas; Piggott, Alexander Y.; Kelaita, Yousif; Dory, Constantin; Lagoudakis, Konstantinos G.; Vučković, Jelena
2016-03-01
The study of the light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, making them attractive candidates for devices including modulators and sources in high-throughput communications. However, these systems possess large photon out-coupling rates that obscure any quantum behaviour at large excitation powers. Here, we have used a self-homodyning interferometric technique that fully employs the complex mode structure of our nanofabricated cavity to observe a quantum phenomenon known as the dynamic Mollow triplet. We expect this interference to facilitate the development of arbitrary on-chip quantum state generators, thereby strongly influencing quantum lithography, metrology and imaging.
New waveguide-type HOM damper for ALS storage ring cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwiatkowski, Slawomir; Baptiste, Kenneth; Julian, James
2004-06-28
The ALS storage ring 500 MHz RF system uses two re-entrant accelerating cavities powered by a single 320kW PHILLIPS YK1305 klystron. During several years of initial operation, the RF cavities were not equipped with effective passive HOM damper systems. Longitudinal beam stability was achieved through cavity temperature control and the longitudinal feedback system (LFB), which was often operating at the edge of its capabilities. As a result, longitudinal beam stability was a significant operations issue at the ALS. During two consecutive shutdown periods (April 2002 and 2003) we installed E-type HOM dampers on the main and third harmonic cavities. Thesemore » devices dramatically decreased the Q-values of the longitudinal anti-symmetric HOM modes. The next step is to damp the rest of the longitudinal HOM modes in the main cavities below the synchrotron radiation damping level. This will hopefully eliminate the need for the LFB and set the stage for a possible increase in beam current. The ''waveguide'' type of HOM damper was the only option that didn't significantly compromise the vacuum performance of the RF cavity. The design process and the results of the low level measurements of the new waveguide dampers are presented in this paper.« less
Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities
Xu, Chen; Tantawi, Sami
2016-02-25
This paper explores a hybrid mode rf structure that served as a superconducting radio-frequency coupler. This application achieves a reflection S (1,1) varying from 0 to -30 db and delivers cw power at 7 KW. The coupler has good thermal isolation between the 2 and 300 K sections due to vacuum separation. Only one single hybrid mode can propagate through each section, and no higher order mode is coupled. The analytical and numerical analysis for this coupler is given and the design is optimized. As a result, the coupling mechanism to the cavity is also discussed.
Littrow-type external-cavity blue laser for holographic data storage.
Tanaka, Tomiji; Takahashi, Kazuo; Sako, Kageyasu; Kasegawa, Ryo; Toishi, Mitsuru; Watanabe, Kenjiro; Samuels, David; Takeya, Motonobu
2007-06-10
An external-cavity laser with a wavelength of 405 nm and an output of 80 mW has been developed for holographic data storage. The laser has three states: the first is a perfect single mode, whose coherent length is 14 m; the second is a three-mode state with a coherent length of 3 mm; and the third is a six-mode state with a coherent length of 0.3 mm. The first and second states are available for angular-multiplexing recording; all states are available for coaxial multiplexing recording. Due to its short wavelength, the recording density is higher than that of a 532 nm laser.
Damping of quasiparticles in a Bose-Einstein condensate coupled to an optical cavity
NASA Astrophysics Data System (ADS)
Kónya, G.; Szirmai, G.; Domokos, P.
2014-07-01
We present a general theory for calculating the damping rate of elementary density-wave excitations in a Bose-Einstein condensate strongly coupled to a single radiation field mode of an optical cavity. Thereby we give a detailed derivation of the huge resonant enhancement in the Beliaev damping of a density-wave mode, predicted recently by Kónya et al. [Phys. Rev. A 89, 051601(R) (2014), 10.1103/PhysRevA.89.051601]. The given density-wave mode constitutes the polaritonlike soft mode of the self-organization phase transition. The resonant enhancement takes place, in both the normal and the ordered phases, outside the critical region. We show that the large damping rate is accompanied by a significant frequency shift of this polariton mode. Going beyond the Born-Markov approximation and determining the poles of the retarded Green's function of the polariton, we reveal a strong coupling between the polariton and a collective mode in the phonon bath formed by the other density-wave modes.
Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure
NASA Astrophysics Data System (ADS)
Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.
2006-03-01
Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.
Goldstone and Higgs modes of photons inside a cavity
NASA Astrophysics Data System (ADS)
Yi-Xiang, Yu; Ye, Jinwu; Liu, Wu-Ming
2013-12-01
Goldstone and Higgs modes have been detected in various condensed matter, cold atom and particle physics experiments. Here, we demonstrate that the two modes can also be observed in optical systems with only a few (artificial) atoms inside a cavity. We establish this connection by studying the U(1)/Z2 Dicke model where N qubits (atoms) coupled to a single photon mode. We determine the Goldstone and Higgs modes inside the super-radiant phase and their corresponding spectral weights by performing both 1/J = 2/N expansion and exact diagonalization (ED) study at a finite N. We find nearly perfect agreements between the results achieved by the two approaches when N gets down even to N = 2. The quantum finite size effects at a few qubits make the two modes quite robust against an effectively small counterrotating wave term. We present a few schemes to reduce the critical coupling strength, so the two modes can be observed in several current available experimental systems by just conventional optical measurements.
Tunable-cavity QED with phase qubits
NASA Astrophysics Data System (ADS)
Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.
A novel, highly efficient cavity backshort design for far-infrared TES detectors
NASA Astrophysics Data System (ADS)
Bracken, C.; de Lange, G.; Audley, M. D.; Trappe, N.; Murphy, J. A.; Gradziel, M.; Vreeling, W.-J.; Watson, D.
2018-03-01
In this paper we present a new cavity backshort design for TES (transition edge sensor) detectors which will provide increased coupling of the incoming astronomical signal to the detectors. The increased coupling results from the improved geometry of the cavities, where the geometry is a consequence of the proposed chemical etching manufacturing technique. Using a number of modelling techniques, predicted results of the performance of the cavities for frequencies of 4.3-10 THz are presented and compared to more standard cavity designs. Excellent optical efficiency is demonstrated, with improved response flatness across the band. In order to verify the simulated results, a scaled model cavity was built for testing at the lower W-band frequencies (75-100 GHz) with a VNA system. Further testing of the scale model at THz frequencies was carried out using a globar and bolometer via an FTS measurement set-up. The experimental results are presented, and compared to the simulations. Although there is relatively poor comparison between simulation and measurement at some frequencies, the discrepancies are explained by means of higher-mode excitation in the measured cavity which are not accounted for in the single-mode simulations. To verify this assumption, a better behaved cylindrical cavity is simulated and measured, where excellent agreement is demonstrated in those results. It can be concluded that both the simulations and the supporting measurements give confidence that this novel cavity design will indeed provide much-improved optical coupling for TES detectors in the far-infrared/THz band.
Zhang, K.; Feng, X.J.; Gillis, K.; Moldover, M.; Zhang, J.T.; Lin, H.; Qu, J.F.; Duan, Y.N.
2016-01-01
Relative primary acoustic gas thermometry determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for acoustic gas thermometry at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 K < T < 797 K. The fractional uncertainty of the measured acoustic frequencies increased from 2×10−6 at 295 K to 5×10−6 at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10−6 for T < 600 K to 57×10−6 at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106
Rahman, Rezwanur; Taylor, P C; Scales, John A
2013-08-01
Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006); R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982); T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)]. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10(-5)) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm(-1)) down to 104 GHz (3.12 cm(-1)).
Lasing by driven atoms-cavity system in collective strong coupling regime.
Sawant, Rahul; Rangwala, S A
2017-09-12
The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.; ...
2018-01-29
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
Asymptotic modal analysis and statistical energy analysis
NASA Technical Reports Server (NTRS)
Dowell, Earl H.
1988-01-01
Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.
Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less
Compact optical switch based on 2D photonic crystal and magneto-optical cavity.
Dmitriev, Victor; Kawakatsu, Marcelo N; Portela, Gianni
2013-04-01
A compact optical switch based on a 2D photonic crystal (PhC) and a magneto-optical cavity is suggested and analyzed. The cavity is coupled to two parallel and misaligned PC waveguides and operates with dipole mode. When the cavity is nonmagnetized, the dipole mode excited by a signal in the input waveguide has a node in the output waveguide. Therefore, the input signal is reflected from the cavity. This corresponds to the state off of the switch. Normal to the plane of the PhC magnetization by a dc magnetic field produces a rotation of the dipole pattern in the cavity providing equal amplitudes of the electromagnetic fields in the input and the output waveguides. This corresponds to the state on with high transmission of the input signal. Numerical calculations show that at the 1.55 μm wavelength the device has the insertion loss -0.42 dB in the on state, the isolation -19 dB in the off state and the switch off and on ratio P(on)/P(off) about 72. The frequency band at the level of -15 dB of the resonance curve in off state is about 160 GHz.