Science.gov

Sample records for active cellular processes

  1. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  2. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  3. Learning about Cellular Respiration: An Active Approach Illustrating the Process of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Johnson, Margaret (Peg)

    1998-01-01

    Details the active-learning approach to teaching cellular respiration in an introductory, one-semester course for nonmajors. Focuses on a laboratory exercise designed to answer the question of what happens to food when eaten. Contains 19 references. (DDR)

  4. Cellular Array Processing Simulation

    NASA Astrophysics Data System (ADS)

    Lee, Harry C.; Preston, Earl W.

    1981-11-01

    The Cellular Array Processing Simulation (CAPS) system is a high-level image language that runs on a multiprocessor configuration. CAPS is interpretively decoded on a conventional minicomputer with all image operation instructions executed on an array processor. The synergistic environment that exists between the minicomputer and the array processor gives CAPS its high-speed throughput, while maintaining a convenient conversational user language. CAPS was designed to be both modular and table driven so that it can be easily maintained and modified. CAPS uses the image convolution operator as one of its primitives and performs this cellular operation by decomposing it into parallel image steps that are scheduled to be executed on the array processor. Among its features is the ability to observe the imagery in real time as a user's algorithm is executed. This feature reduces the need for image storage space, since it is feasible to retain only original images and produce resultant images when needed. CAPS also contains a language processor that permits users to develop re-entrant image processing subroutines or algorithms.

  5. The p44/wdr77-dependent cellular proliferation process during lung development is re-activated in lung cancer

    PubMed Central

    Gu, Zhongping; Zhang, Fahao; Wang, Zhi-Qiang; Ma, Wencai; Davis, Richard E.; Wang, Zhengxin

    2014-01-01

    During lung development, cells proliferate for a defined length of time before they begin to differentiate. Factors that control this proliferative process and how this growth process is related to lung cancer are currently unknown. Here, we found that the WD40-containing protein (p44/wdr77) was expressed in growing epithelial cells at the early stages of lung development. In contrast, p44/wdr77 expression was diminished in fully differentiated epithelial cells in the adult lung. Loss of p44/wdr77 gene expression led to cell growth arrest and differentiation. Re-expression of p44/wdr77 caused terminally differentiated cells to re-enter the cell cycle. Our findings suggest that p44/wdr77 is essential and sufficient for proliferation of lung epithelial cells. P44/Wdr77 was re-expressed in lung cancer, and silencing p44/wdr77 expression strongly inhibited growth of lung adenocarcinoma cells in tissue culture and abolished growth of lung adenocarcinoma tumor xenografts in mice. The growth arrest induced by loss of p44/wdr77 expression was partially through the p21-Rb signaling. Our results suggest that p44/wdr77 controls cellular proliferation during lung development and this growth process is re-activated during lung tumorigenesis. PMID:22665061

  6. Glycosylation regulates prestin cellular activity.

    PubMed

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  7. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  8. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  9. [Cellular bases of neurodegenerative processes].

    PubMed

    Nieoullon, A

    1998-01-01

    Neurodegenerative processes are generally characterized by the long-lasting course of neuronal death and the selectivity of the neuronal population or brain structure involved in the lesion. This is the case for Alzheimer's, Parkinson's or Huntington's diseases, or amyotrophic lateral sclerosis (ALS). The reasons for such a specificity are largely unknown as are generally the mechanisms of the diseases. One common feature of these diseases, however, is that the neuronal death is thought to involve apoptosis, at least partly. Interestingly, apoptosis in the brain would involve specific gene products similar to that identified in the nematode c. elegans, partly corresponding in mammals to ICE-related compounds and Bcl2 protein. The involvement of calcium as well as of oxydative stress mechanisms in such neuronal death is to be fully proved but putative modulation by external signals (such as those provided through trophic factors or even neurotransmitters) represents an interesting way to validate the current hypothesis of neuronal death in neurodegenerative diseases in humans.

  10. The in vivo effect of melatonin on cellular activation processes in human blood during strenuous physical exercise.

    PubMed

    Johe, Paul D; Østerud, Bjarne

    2005-10-01

    Melatonin has been reported to have anti- as well as pro-inflammatory properties. Because physical stress is associated with the activation of blood cells, the present study examines melatonin's role in exercise-induced cell activation processes. Eight healthy volunteers (aged 20-62 yr, mean = 31), exercised on an 'Ergometric' bike for 30 min at 80% of their calculated maximum pulse rate. Blood samples were taken just before melatonin administration, directly after exercise, and 2 hr after exercise completion. Cytokine and eicosanoid parameters were measured in plasma from blood stimulated with lipopolysaccharide (LPS) for 2 hr whereas tissue factor (TF) activity was measured in isolated monocytes. Melatonin significantly decreased LPS-induced TF activity by 48% (P < 0.01) directly after exercise, and a 44% reduction was seen 2 hr later (P < 0.02). Furthermore, melatonin significantly reduced the lymphocyte count rise produced directly after exercising by more than 30% (P < 0.01). A trend was also seen for melatonin suppressing the increase of WBC by around 10% and to strengthen the platelet increase by about 8% after physical stress. Melatonin also significantly lowered RBC and hemoglobin counts by 5 and 3-4% during exercise (P < 0.005 and <0.02 respectively). Two hours after exercise, melatonin tended to lower leukotriene B4 levels by 30%. Interleukin-8 and tumor necrosis factor-alpha levels tended to be lower in individuals who had taken melatonin following hard physical activity and a larger sample size may show significance. Thromboxane B2 production seemed unaffected by melatonin during exercise. In conclusion, in vivo intake of melatonin appears to suppress LPS-induced activation of monocytes in whole blood reactions associated with physical exercise and facilitates the down-regulation of inflammatory mediators.

  11. Molecular processes in cellular arsenic metabolism

    SciTech Connect

    Thomas, David J.

    2007-08-01

    Elucidating molecular processes that underlie accumulation, metabolism and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptual model that incorporates available information on molecular processes involved in the influx, metabolism, binding and efflux of arsenicals in cells. This conceptual model is initially conceived as a non-quantitative representation of critical molecular processes that can be used as a framework for experimental design and prediction. However, with refinement and incorporation of additional data, the conceptual model can be expressed in mathematical terms and should be useful for quantitative estimates of the kinetic and dynamic behavior of iAs and its methylated metabolites in cells. Development of a quantitative model will be facilitated by the availability of tools and techniques to manipulate molecular processes underlying transport of arsenicals across cell membranes or expression and activity of enzymes involved in methylation of arsenicals. This model of cellular metabolism might be integrated into more complex pharmacokinetic models for systemic metabolism of iAs and its methylated metabolites. It may also be useful in development of biologically based dose-response models describing the toxic and carcinogenic actions of arsenicals.

  12. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  13. Approaches to Biosimulation of Cellular Processes

    PubMed Central

    Westerhoff, H. V.

    2006-01-01

    Modelling and simulation are at the heart of the rapidly developing field of systems biology. This paper reviews various types of models, simulation methods, and theoretical approaches that are presently being used in the quantitative description of cellular processes. We first describe how molecular interaction networks can be represented by means of stoichiometric, topological and kinetic models. We briefly discuss the formulation of kinetic models using mesoscopic (stochastic) or macroscopic (continuous) approaches, and we go on to describe how detailed models of molecular interaction networks (silicon cells) can be constructed on the basis of experimentally determined kinetic parameters for cellular processes. We show how theory can help in analyzing models by applying control analysis to a recently published silicon cell model. Finally, we review some of the theoretical approaches available to analyse kinetic models and experimental data, respectively. PMID:19669467

  14. Modeling cellular processes in 3D.

    PubMed

    Mogilner, Alex; Odde, David

    2011-12-01

    Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.

  15. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.

  16. Magnetic fields, radicals and cellular activity.

    PubMed

    Montoya, Ryan D

    2017-01-01

    Some effects of low-intensity magnetic fields on the concentration of radicals and their influence on cellular functions are reviewed. These fields have been implicated as a potential modulator of radical recombination rates. Experimental evidence has revealed a tight coupling between cellular function and radical pair chemistry from signaling pathways to damaging oxidative processes. The effects of externally applied magnetic fields on biological systems have been extensively studied, and the observed effects lack sufficient mechanistic understanding. Radical pair chemistry offers a reasonable explanation for some of the molecular effects of low-intensity magnetic fields, and changes in radical concentrations have been observed to modulate specific cellular functions. Applied external magnetic fields have been shown to induce observable cellular changes such as both inhibiting and accelerating cell growth. These and other mechanisms, such as cell membrane potential modulation, are of great interest in cancer research due to the variations between healthy and deleterious cells. Radical concentrations demonstrate similar variations and are indicative of a possible causal relationship. Radicals, therefore, present a possible mechanism for the modulation of cellular functions such as growth or regression by means of applied external magnetic fields.

  17. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    PubMed

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-02

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  18. Conventional and novel processing methods for cellular ceramics.

    PubMed

    Colombo, Paolo

    2006-01-15

    Cellular ceramics are a class of highly porous materials that covers a wide range of structures, such as foams, honeycombs, interconnected rods, interconnected fibres, interconnected hollow spheres. Recently, there has been a surge of activity in this field, because these innovative materials have started to be used as components in special and advanced engineering applications. These include filtering liquids and particles in gas streams, porous burners, biomedical devices, lightweight load-bearing structures, etc. Improvements in conventional processing methods and the development of innovative fabrication approaches are required because of the increasing specific demands on properties and morphology (cell size, size distribution and interconnection) for these materials, which strictly depend on the application considered. This paper will cover the main fabrication methods for cellular ceramics, focusing primarily on foams, offering some insight into novel fabrication processes and recent developments.

  19. Complement-mediated regulation of metabolism and basic cellular processes

    PubMed Central

    Hess, Christoph; Kemper, Claudia

    2016-01-01

    Complement is well appreciated as critical arm of innate immunity. It is required for the removal of invading pathogens and functions by direct pathogen destruction and through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental processes of the cell, such as survival, proliferation, and autophagy. Novel identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism, and the potential implications in infection and other disease settings. PMID:27533012

  20. Bioimage informatics for understanding spatiotemporal dynamics of cellular processes.

    PubMed

    Yang, Ge

    2013-01-01

    The inner environment of the cell is highly dynamic and heterogeneous yet exquisitely organized. Successful completion of cellular processes within this environment depends on the right molecules or molecular complexes to function at the right place at the right time. Understanding spatiotemporal behaviors of cellular processes is therefore essential to understanding their molecular mechanisms at the systems level. These behaviors are usually visualized and recorded using imaging techniques. However, to infer from them systems-level molecular mechanisms, computational analysis and understanding of recorded image data is crucial, not only for acquiring quantitative behavior measurements but also for comprehending complex interactions among the molecules or molecular complexes involved. The technology of computational analysis and understanding of biological images is often referred to simply as bioimage informatics. This article introduces fundamentals of bioimage informatics for understanding spatiotemporal dynamics of cellular processes and reviews recent advances on this topic. Basic bioimage informatics concepts and techniques for characterizing spatiotemporal cell dynamics are introduced first. Studies on specific cellular processes such as cell migration and signal transduction are then used as examples to analyze and summarize recent advances, with the focus on transforming quantitative measurements of spatiotemporal cellular behaviors into knowledge of underlying molecular mechanisms. Despite the advances made, substantial technological challenges remain, especially in representation of spatiotemporal cellular behaviors and inference of systems-level molecular mechanisms. These challenges are briefly discussed. Overall, understanding spatiotemporal cell dynamics will provide critical insights into how specific cellular processes as well as the entire inner cellular environment are dynamically organized and regulated.

  1. MOLECULAR PROCESSES IN CELLULAR ARSENIC METABOLISM

    EPA Science Inventory

    Elucidating molecular processes that underlie accumulation, metabolism, and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptu...

  2. Mechanical and cellular processes driving cervical myelopathy

    PubMed Central

    Dolan, Roisin T; Butler, Joseph S; O’Byrne, John M; Poynton, Ashley R

    2016-01-01

    Cervical myelopathy is a well-described clinical syndrome that may evolve from a combination of etiological mechanisms. It is traditionally classified by cervical spinal cord and/or nerve root compression which varies in severity and number of levels involved. The vast array of clinical manifestations of cervical myelopathy cannot fully be explained by the simple concept that a narrowed spinal canal causes compression of the cord, local tissue ischemia, injury and neurological impairment. Despite advances in surgical technology and treatment innovations, there are limited neuro-protective treatments for cervical myelopathy, which reflects an incomplete understanding of the pathophysiological processes involved in this disease. The aim of this review is to provide a comprehensive overview of the key pathophysiological processes at play in the development of cervical myelopathy. PMID:26807352

  3. Cellular reprogramming through mitogen-activated protein kinases

    PubMed Central

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression—including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes. PMID:26579181

  4. Stable cellular senescence is associated with persistent DDR activation.

    PubMed

    Fumagalli, Marzia; Rossiello, Francesca; Mondello, Chiara; d'Adda di Fagagna, Fabrizio

    2014-01-01

    The DNA damage response (DDR) is activated upon DNA damage generation to promote DNA repair and inhibit cell cycle progression in the presence of a lesion. Cellular senescence is a permanent cell cycle arrest characterized by persistent DDR activation. However, some reports suggest that DDR activation is a feature only of early cellular senescence that is then lost with time. This challenges the hypothesis that cellular senescence is caused by persistent DDR activation. To address this issue, we studied DDR activation dynamics in senescent cells. Here we show that normal human fibroblasts retain DDR markers months after replicative senescence establishment. Consistently, human fibroblasts from healthy aged donors display markers of DDR activation even three years in culture after entry into replicative cellular senescence. However, by extending our analyses to different human cell strains, we also observed an apparent DDR loss with time following entry into cellular senescence. This though correlates with the inability of these cell strains to survive in culture upon replicative or irradiation-induced cellular senescence. We propose a model to reconcile these results. Cell strains not suffering the prolonged in vitro culture stress retain robust DDR activation that persists for years, indicating that under physiological conditions persistent DDR is causally involved in senescence establishment and maintenance. However, cell strains unable to maintain cell viability in vitro, due to their inability to cope with prolonged cell culture-associated stress, show an only-apparent reduction in DDR foci which is in fact due to selective loss of the most damaged cells.

  5. A synthetic biology approach to understanding cellular information processing

    PubMed Central

    Riccione, Katherine A; Smith, Robert P; Lee, Anna J; You, Lingchong

    2012-01-01

    The survival of cells and organisms requires proper responses to environmental signals. These responses are governed by cellular networks, which serve to process diverse environmental cues. Biological networks often contain recurring network topologies called ‘motifs’. It has been recognized that the study of such motifs allows one to predict the response of a biological network, and thus cellular behavior. However, studying a single motif in complete isolation of all other network motifs in a natural setting is difficult. Synthetic biology has emerged as a powerful approach to understanding the dynamic properties of network motifs. In addition to testing existing theoretical predictions, construction and analysis of synthetic gene circuits has led to the discovery of novel motif dynamics such as how the combination of simple motifs can lead to autonomous dynamics or how noise in transcription and translation can affect the dynamics of a motif. Here, we review developments in synthetic biology as they pertain to increasing our understanding of cellular information processing. We highlight several types of dynamic behaviors that diverse motifs can generate, including the control of input/output responses, the generation of autonomous spatial and temporal dynamics, as well as the influence of noise in motif dynamics and cellular behavior. PMID:23411668

  6. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  7. Sleep Loss Activates Cellular Inflammatory Signaling

    PubMed Central

    Irwin, Michael R.; Wang, Minge; Ribeiro, Denise; Cho, Hyong Jin; Olmstead, Richard; Breen, Elizabeth Crabb; Martinez-Maza, Otoniel; Cole, Steve

    2008-01-01

    Background Accumulating evidence suggests that sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. This study was undertaken to test the effects of sleep loss on activation of nuclear factor (NF) -κB, a transcription factor that serves a critical role in the inflammatory signaling cascade. Methods In 14 healthy adults (7 females; 7 males), peripheral blood mononuclear cell NF-κB was repeatedly assessed, along with enumeration of lymphocyte subpopulations, in the morning after baseline sleep, partial sleep deprivation (awake from 23:00 h to 03:00 h), and recovery sleep. Results In the morning after a night of sleep loss, mononuclear cell NF-κB activation was significantly greater compared with morning levels following uninterrupted baseline or recovery sleep, in which the response was found in females but not in males. Conclusions These results identify NF-κB activation as a molecular pathway by which sleep disturbance may influence leukocyte inflammatory gene expression and the risk of inflammation-related disease. PMID:18561896

  8. Influence of marihuana on cellular structures and biochemical activities.

    PubMed

    Tahir, S K; Zimmerman, A M

    1991-11-01

    Cannabinoids are known to affect a number of cellular systems and functions, but the basis for their action is unclear. In this paper we review the current evidence describing cannabinoid effects on various levels of cellular structure and activity and we present our current studies on the influence of delta-9-tetrahydrocannabinol, cannabidiol and cannabinol on one cellular system, the cytoskeleton. The organization of two cytoskeletal structures, microtubules and microfilaments, were examined and the mRNA levels of tubulin and actin, the major protein components of microtubules and microfilaments, respectively, were analysed.

  9. Modeling earthquake activity using a memristor-based cellular grid

    NASA Astrophysics Data System (ADS)

    Vourkas, Ioannis; Sirakoulis, Georgios Ch.

    2013-04-01

    Earthquakes are absolutely among the most devastating natural phenomena because of their immediate and long-term severe consequences. Earthquake activity modeling, especially in areas known to experience frequent large earthquakes, could lead to improvements in infrastructure development that will prevent possible loss of lives and property damage. An earthquake process is inherently a nonlinear complex system and lately scientists have become interested in finding possible analogues of earthquake dynamics. The majority of the models developed so far were based on a mass-spring model of either one or two dimensions. An early approach towards the reordering and the improvement of existing models presenting the capacitor-inductor (LC) analogue, where the LC circuit resembles a mass-spring system and simulates earthquake activity, was also published recently. Electromagnetic oscillation occurs when energy is transferred between the capacitor and the inductor. This energy transformation is similar to the mechanical oscillation that takes place in the mass-spring system. A few years ago memristor-based oscillators were used as learning circuits exposed to a train of voltage pulses that mimic environment changes. The mathematical foundation of the memristor (memory resistor), as the fourth fundamental passive element, has been expounded by Leon Chua and later extended to a more broad class of memristors, known as memristive devices and systems. This class of two-terminal passive circuit elements with memory performs both information processing and storing of computational data on the same physical platform. Importantly, the states of these devices adjust to input signals and provide analog capabilities unavailable in standard circuit elements, resulting in adaptive circuitry and providing analog parallel computation. In this work, a memristor-based cellular grid is used to model earthquake activity. An LC contour along with a memristor is used to model seismic activity

  10. Cellular Neural Network for Real Time Image Processing

    SciTech Connect

    Vagliasindi, G.; Arena, P.; Fortuna, L.; Mazzitelli, G.; Murari, A.

    2008-03-12

    Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information for plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET)

  11. Cellular Neural Network for Real Time Image Processing

    NASA Astrophysics Data System (ADS)

    Vagliasindi, G.; Arena, P.; Fortuna, L.; Mazzitelli, G.; Murari, A.

    2008-03-01

    Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information for plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET).

  12. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes

    PubMed Central

    2004-01-01

    14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810

  13. Experimental design for dynamics identification of cellular processes.

    PubMed

    Dinh, Vu; Rundell, Ann E; Buzzard, Gregery T

    2014-03-01

    We address the problem of using nonlinear models to design experiments to characterize the dynamics of cellular processes by using the approach of the Maximally Informative Next Experiment (MINE), which was introduced in W. Dong et al. (PLoS ONE 3(8):e3105, 2008) and independently in M.M. Donahue et al. (IET Syst. Biol. 4:249-262, 2010). In this approach, existing data is used to define a probability distribution on the parameters; the next measurement point is the one that yields the largest model output variance with this distribution. Building upon this approach, we introduce the Expected Dynamics Estimator (EDE), which is the expected value using this distribution of the output as a function of time. We prove the consistency of this estimator (uniform convergence to true dynamics) even when the chosen experiments cluster in a finite set of points. We extend this proof of consistency to various practical assumptions on noisy data and moderate levels of model mismatch. Through the derivation and proof, we develop a relaxed version of MINE that is more computationally tractable and robust than the original formulation. The results are illustrated with numerical examples on two nonlinear ordinary differential equation models of biomolecular and cellular processes.

  14. Pathway swapping: Toward modular engineering of essential cellular processes

    PubMed Central

    Kuijpers, Niels G. A.; Solis-Escalante, Daniel; Luttik, Marijke A. H.; Bisschops, Markus M. M.; Boonekamp, Francine J.; van den Broek, Marcel; Pronk, Jack T.; Daran, Jean-Marc

    2016-01-01

    Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of “pathway swapping,” using yeast glycolysis as the experimental model. Construction of a “single-locus glycolysis” Saccharomyces cerevisiae platform enabled quick and easy replacement of this yeast’s entire complement of 26 glycolytic isoenzymes by any alternative, functional glycolytic pathway configuration. The potential of this approach was demonstrated by the construction and characterization of S. cerevisiae strains whose growth depended on two nonnative glycolytic pathways: a complete glycolysis from the related yeast Saccharomyces kudriavzevii and a mosaic glycolysis consisting of yeast and human enzymes. This work demonstrates the feasibility and potential of modular, combinatorial approaches to engineering and analysis of core cellular processes. PMID:27956602

  15. Cellular homeostasis in fungi: impact on the aging process.

    PubMed

    Scheckhuber, Christian Q; Hamann, Andrea; Brust, Diana; Osiewacz, Heinz D

    2012-01-01

    Cellular quality control pathways are needed for maintaining the biological function of organisms. If these pathways become compromised, the results are usually highly detrimental. Functional impairments of cell components can lead to diseases and in extreme cases to organismal death. Dysfunction of cells can be induced by a number of toxic by-products that are formed during metabolic activity, like reactive oxygen and nitrogen species, for example. A key source of reactive oxygen species (ROS) are the organelles of oxidative phosphorylation, mitochondria. Therefore mitochondrial function is also directly affected by ROS, especially if there is a compromised ROS-scavenging capacity. Biological systems therefore depend on several lines of defence to counteract the toxic effects of ROS and other damaging agents. The first level is active at the molecular level and consists of various proteases that bind and degrade abnormally modified and / or aggregated mitochondrial proteins. The second level is concerned with maintaining the quality of whole mitochondria. Among the pathways of this level are mitochondrial dynamics and autophagy (mitophagy). Mitochondrial dynamics describes the time-dependent fusion and fission of mitochondria. It is argued that this kind of organellar dynamics has the power to restore the function of impaired organelles by content mixing with intact organelles. If the first and second lines of defence against damage fail and mitochondria become damaged too severely, there is the option to remove affected cells before they can elicit more damage to their surrounding environment by apoptosis. This form of programmed cell death is strictly regulated by a complex network of interacting components and can be divided into mitochondria-dependent and mitochondria-independent modes of action. In this review we give an overview on various biological quality control systems in fungi (yeasts and filamentous fungi) with an emphasis on autophagy (mitophagy) and

  16. Detection of recombinant and cellular MALT1 paracaspase activity.

    PubMed

    Nagel, Daniel; Krappmann, Daniel

    2015-01-01

    MALT1 (mucosa-associated lymphoid tissue protein 1) is a key regulator of antigen-induced NF-κB activation in the adaptive immune response. Activation of proteolytic activity of the MALT1 paracaspase was shown to boost the immune response. Additionally, MALT1 proteolytic activity is essential for the survival of MALT1-dependent lymphoma, such as the activated B-cell type (ABC) of diffuse large B-cell lymphoma (DLBCL) or MALT lymphoma. The functional impact of MALT1 paracaspase on T-cell activation and lymphomagenesis suggests that MALT1 is a promising therapeutic target for the treatment of autoimmune diseases and distinct lymphoma entities. To evaluate the requirement of MALT1 in further detail, direct measurement of its activity status is of great importance. We have established a fluorogenic cleavage assay which can be used to measure activity of recombinant and cellular MALT1. Here we describe the basis of the cleavage assay and include a detailed protocol for recombinant production of MALT1 and also the cellular immunoprecipitation of endogenous MALT1 to determine its proteolytic activity.

  17. Emergence of tissue mechanics from cellular processes: shaping a fly wing

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphael; Popovic, Marko; Nandi, Amitabha; Brandl, Holger; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    Nowadays, biologistsare able to image biological tissueswith up to 10,000 cells in vivowhere the behavior of each individual cell can be followed in detail.However, how precisely large-scale tissue deformation and stresses emerge from cellular behavior remains elusive. Here, we study this question in the developing wing of the fruit fly. To this end, we first establish a geometrical framework that exactly decomposes tissue deformation into contributions by different kinds of cellular processes. These processes comprise cell shape changes, cell neighbor exchanges, cell divisions, and cell extrusions. As the key idea, we introduce a tiling of the cellular network into triangles. This approach also reveals that tissue deformation can also be created by correlated cellular motion. Based on quantifications using these concepts, we developed a novel continuum mechanical model for the fly wing. In particular, our model includes active anisotropic stresses and a delay in the response of cell rearrangements to material stresses. A different approach to study the emergence of tissue mechanics from cellular behavior are cell-based models. We characterize the properties of a cell-based model for 3D tissues that is a hybrid between single particle models and the so-called vertex models.

  18. Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers.

    PubMed

    Fujitani, Naoki; Furukawa, Jun-ichi; Araki, Kayo; Fujioka, Tsuyoshi; Takegawa, Yasuhiro; Piao, Jinhua; Nishioka, Taiki; Tamura, Tomohiro; Nikaido, Toshio; Ito, Makoto; Nakamura, Yukio; Shinohara, Yasuro

    2013-02-05

    Although many of the frequently used pluripotency biomarkers are glycoconjugates, a glycoconjugate-based exploration of novel cellular biomarkers has proven difficult due to technical difficulties. This study reports a unique approach for the systematic overview of all major classes of oligosaccharides in the cellular glycome. The proposed method enabled mass spectrometry-based structurally intensive analyses, both qualitatively and quantitatively, of cellular N- and O-linked glycans derived from glycoproteins, glycosaminoglycans, and glycosphingolipids, as well as free oligosaccharides of human embryonic stem cells (hESCs), induced pluripotent stem cells (hiPSCs), and various human cells derived from normal and carcinoma cells. Cellular total glycomes were found to be highly cell specific, demonstrating their utility as unique cellular descriptors. Structures of glycans of all classes specifically observed in hESCs and hiPSCs tended to be immature in general, suggesting the presence of stem cell-specific glycosylation spectra. The current analysis revealed the high similarity of the total cellular glycome between hESCs and hiPSCs, although it was suggested that hESCs are more homogeneous than hiPSCs from a glycomic standpoint. Notably, this study enabled a priori identification of known pluripotency biomarkers such as SSEA-3, -4, and -5 and Tra-1-60/81, as well as a panel of glycans specifically expressed by hESCs and hiPSCs.

  19. Optical Tools to Investigate Cellular Activity in the Intestinal Wall

    PubMed Central

    Boesmans, Werend; Hao, Marlene M; Berghe, Pieter Vanden

    2015-01-01

    Live imaging has become an essential tool to investigate the coordinated activity and output of cellular networks. Within the last decade, 2 Nobel prizes have been awarded to recognize innovations in the field of imaging: one for the discovery, use, and optimization of the green fluorescent protein (2008) and the second for the development of super-resolved fluorescence microscopy (2014). New advances in both optogenetics and microscopy now enable researchers to record and manipulate activity from specific populations of cells with better contrast and resolution, at higher speeds, and deeper into live tissues. In this review, we will discuss some of the recent developments in microscope technology and in the synthesis of fluorescent probes, both synthetic and genetically encoded. We focus on how live imaging of cellular physiology has progressed our understanding of the control of gastrointestinal motility, and we discuss the hurdles to overcome in order to apply the novel tools in the field of neurogastroenterology and motility. PMID:26130630

  20. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  1. Cellular automaton model for evacuation process with obstacles

    NASA Astrophysics Data System (ADS)

    Varas, A.; Cornejo, M. D.; Mainemer, D.; Toledo, B.; Rogan, J.; Muñoz, V.; Valdivia, J. A.

    2007-08-01

    A bidimensional cellular automaton model is used to simulate the process of evacuation of pedestrians in a room with fixed obstacles. A floor field is defined so that moving to a cell with lower floor field means approaching an exit door. The model becomes non-deterministic by introducing a “panic” parameter, given by a probability of not moving, and by a random choice to resolve conflicts in the update of pedestrian positions. Two types of exit doors are considered: single (where only one person can pass) and double (two persons can pass simultaneously). For a double door, the longest evacuation time turns out to occur for a very traditional location of the door. The optimum door position is determined. Replacing the double door by two single doors does not improve evacuation times noticeably. On the other hand, for a room without obstacles, a simple scaling law is proposed to model the dependence of evacuation time with the number of persons and exit width. This model fails when obstacles are present, as their presence introduces local bottlenecks whose effect outweighs the benefits of increasing door width beyond a certain threshold.

  2. Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties.

    PubMed

    Bender, Cecilia; Graziano, Sara; Zimmermann, Benno F

    2015-01-01

    The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries.

  3. Liposome-Mediated Cellular Delivery of Active gp91phox

    PubMed Central

    Marques, Bruno; Liguori, Lavinia; Paclet, Marie-Hélène; Villegas-Mendéz, Ana; Rothe, Romy; Morel, Françoise; Lenormand, Jean-Luc

    2007-01-01

    Background Gp91phox is a transmembrane protein and the catalytic core of the NADPH oxidase complex of neutrophils. Lack of this protein causes chronic granulomatous disease (CGD), a rare genetic disorder characterized by severe and recurrent infections due to the incapacity of phagocytes to kill microorganisms. Methodology Here we optimize a prokaryotic cell-free expression system to produce integral mammalian membrane proteins. Conclusions Using this system, we over-express truncated forms of the gp91phox protein under soluble form in the presence of detergents or lipids resulting in active proteins with a “native-like” conformation. All the proteins exhibit diaphorase activity in the presence of cytosolic factors (p67phox, p47phox, p40phox and Rac) and arachidonic acid. We also produce proteoliposomes containing gp91phox protein and demonstrate that these proteins exhibit activities similar to their cellular counterpart. The proteoliposomes induce rapid cellular delivery and relocation of recombinant gp91phox proteins to the plasma membrane. Our data support the concept of cell-free expression technology for producing recombinant proteoliposomes and their use for functional and structural studies or protein therapy by complementing deficient cells in gp91phox protein. PMID:17848987

  4. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    PubMed

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers.

  5. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes.

    PubMed

    Bastida, F; Selevsek, N; Torres, I F; Hernández, T; García, C

    2015-10-27

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  6. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    PubMed Central

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-01-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures. PMID:26503516

  7. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    NASA Astrophysics Data System (ADS)

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-10-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  8. Modulation of hyaluronan synthase activity in cellular membrane fractions.

    PubMed

    Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolini, Barbara; Moretto, Paola; De Luca, Giancarlo; Hascall, Vincent C; Passi, Alberto

    2009-10-30

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.

  9. Activation of cellular immune response in acute pancreatitis.

    PubMed Central

    Mora, A; Pérez-Mateo, M; Viedma, J A; Carballo, F; Sánchez-Payá, J; Liras, G

    1997-01-01

    BACKGROUND: Inflammatory mediators have recently been implicated as potential markers of severity in acute pancreatitis. AIMS: To determine the value of neopterin and polymorphonuclear (PMN) elastase as markers of activation of cellular immunity and as early predictors of disease severity. PATIENTS: Fifty two non-consecutive patients classified according to their clinical outcome into mild (n = 26) and severe pancreatitis (n = 26). METHODS: Neopterin in serum and the PMN elastase/A1PI complex in plasma were measured during the first three days of hospital stay. RESULTS: Within three days after the onset of acute pancreatitis, PMN elastase was significantly higher in the severe pancreatitis group. Patients with severe disease also showed significantly higher values of neopterin on days 1 and 2 but not on day 3 compared with patients with mild disease. There was a significant correlation between PMN elastase and neopterin values on days 1 and 2. PMN elastase on day 1 predicted disease severity with a sensitivity of 76.7% and a specificity of 91.6%. Neopterin did not surpass PMN elastase in the probability of predicting disease severity. CONCLUSIONS: These data show that activation of cellular immunity is implicated in the pathogenesis of acute pancreatitis and may be a main contributory factor to disease severity. Neopterin was not superior to PMN elastase in the prediction of severity. PMID:9245935

  10. Sleep loss activates cellular markers of inflammation: sex differences.

    PubMed

    Irwin, Michael R; Carrillo, Carmen; Olmstead, Richard

    2010-01-01

    Sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. Given sex differences in the prevalence of inflammatory disorders with stronger associations in females, this study was undertaken to test the effects of sleep loss on cellular mechanisms that contribute to proinflammatory cytokine activity. In 26 healthy adults (11 females; 15 males), monocyte intracellular proinflammatory cytokine production was repeatedly assessed at 08:00, 12:00, 16:00, 20:00, and 23:00h during a baseline period and after partial sleep deprivation (awake from 23:00 to 3.00h). In the morning after a night of sleep loss, monocyte production of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) differentially changed between the two sexes. Whereas both females and males showed a marked increase in the lipopolysaccharide (LPS) - stimulated production of IL-6 and TNF-alpha in the morning immediately after PSD, production of these cytokines during the early- and late evening was increased in the females as compared to decreases in the males. Sleep loss induces a functional alteration of monocyte proinflammatory cytokine responses with females showing greater cellular immune activation as compared to changes in males. These results have implications for understanding the role of sleep disturbance in the differential risk profile for inflammatory disorders between the sexes.

  11. Sleep Loss Activates Cellular Markers of Inflammation: Sex Differences

    PubMed Central

    Irwin, Michael R.; Carrillo, Carmen; Olmstead, Richard

    2009-01-01

    Sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. Given sex differences in the prevalence of inflammatory disorders with stronger associations in females, this study was undertaken to test the effects of sleep loss on cellular mechanisms that contribute to proinflammatory cytokine activity. In 26 healthy adults (11 females; 15 males), monocyte intracellular proinflammatory cytokine production was repeatedly assessed at 08:00, 12:00, 16:00, 20:00, and 23:00 h during a baseline period and after partial sleep deprivation (awake from 11 PM to 3 AM). In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor- α differentially changed between the two sexes. Whereas both females and males showed a marked increase in the lipopolysaccharide (LPS) - stimulated production of IL-6 and TNF-α in the morning immediately after PSD, production of these cytokines during the early- and late evening was increased in the females as compared to decreases in the males. Sleep loss induces a functional alteration of monocyte proinflammatory cytokine responses with females showing greater cellular immune activation as compared to changes in males. These results have implications for understanding the role of sleep disturbance in the differential risk profile for inflammatory disorders between the sexes. PMID:19520155

  12. Activity and cellular localization of amylases of rabbit cecal bacteria.

    PubMed

    Sirotek, K; Marounek, M; Suchorská, O

    2006-01-01

    Five 11-week-old rabbits, fed a commercial granulated feed, were slaughtered and cecal starch-degrading bacteria enumerated; total concentration of cultivable bacteria utilizing starch averaged 5.5 x 10(10) CFU/g. The activity and cellular localization of amylases was determined in 9 bacteria identified as Actinomyces israeli (strains AA2 and AD4), Bacteroides spp. (strain AA3), Dichelobacter nodosus (strain AA4), Mitsuokella multiacidus (strain AA6), Eubacterium spp. (strains AA7 and AB2), Clostridium spp. (strains AD1 and AA5). Four strains (AA3, AA4, AA5, AD4) produced extracellular amylases with an activity of 26-35 micromol of reducing sugars per h per mg of protein; in five strains (AA2, AA6, AA7, AB2, AD1) amylases were membrane-bound with an activity of 14-18 micromol of reducing sugars per h per mg of protein. All strains exhibited a low intracellular amylolytic activity. The pH optimum of amylases was 6.8-7.0. In strains producing extracellular amylases a substantial loss of viscosity was observed during incubations of cultivation supernatant with starch, similar to viscosity reduction in starch solutions treated with alpha-amylase; this indicates an endo-type (random cleavage) of extracellular amylase reaction in the bacteria under study. No strain possessed glucoamylase activity.

  13. Theoretical aspects of cellular decision-making and information-processing.

    PubMed

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2012-01-01

    Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.

  14. A smart fluorescence nanoprobe for the detection of cellular alkaline phosphatase activity and early osteogenic differentiation.

    PubMed

    Cao, Feng-Yi; Fan, Jin-Xuan; Long, Yue; Zeng, Xuan; Zhang, Xian-Zheng

    2016-07-01

    In the past decades, biomaterials were designed to induce stem cell toward osteogenic differentiation. However, conventional methods for evaluation osteogenic differentiation all required a process of cell fixation or lysis, which induce waste of a large number of cells. In this study, a fluorescence nanoprobe was synthesized by combining phosphorylated fluoresceinamine isomer I (FLA) on the surface of mesoporous silica-coated superparamagnetic iron oxide (Fe3O4@mSiO2) nanoparticles. In the presence of alkaline phosphatase (ALP), the phosphorylated FLA on the nanoprobe would be hydrolyzed, resulting in a fluorescence recovery of FLA. During early osteogenic differentiation, a high-level expression of cellular ALP was induced, which accelerated the hydrolysis of phosphorylated FLA, resulting in an enhancement of cellular fluorescence intensity. This fluorescence nanoprobe provides us a rapid and non-toxic method for the detection of cellular ALP activity and early osteogenic differentiation.

  15. Cellular defense processes regulated by pathogen-elicited receptor signaling

    NASA Astrophysics Data System (ADS)

    Wu, Rongcong; Goldsipe, Arthur; Schauer, David B.; Lauffenburger, Douglas A.

    2011-06-01

    Vertebrates are constantly threatened by the invasion of microorganisms and have evolved systems of immunity to eliminate infectious pathogens in the body. Initial sensing of microbial agents is mediated by the recognition of pathogens by means of molecular structures expressed uniquely by microbes of a given type. So-called 'Toll-like receptors' are expressed on host epithelial barrier cells play an essential role in the host defense against microbial pathogens by inducing cell responses (e.g., proliferation, death, cytokine secretion) via activation of intracellular signaling networks. As these networks, comprising multiple interconnecting dynamic pathways, represent highly complex multi-variate "information processing" systems, the signaling activities particularly critical for governing the host cell responses are poorly understood and not easily ascertained by a priori theoretical notions. We have developed over the past half-decade a "data-driven" computational modeling approach, on a 'cue-signal-response' combined experiment/computation paradigm, to elucidate key multi-variate signaling relationships governing the cell responses. In an example presented here, we study how a canonical set of six kinase pathways combine to effect microbial agent-induced apoptotic death of a macrophage cell line. One modeling technique, partial least-squares regression, yielded the following key insights: {a} signal combinations most strongly correlated to apoptotic death are orthogonal to those most strongly correlated with release of inflammatory cytokines; {b} the ratio of two key pathway activities is the most powerful predictor of microbe-induced macrophage apoptotic death; {c} the most influential time-window of this signaling activity ratio is surprisingly fast: less than one hour after microbe stimulation.

  16. A theoretical study on cellular antioxidant activity of selected flavonoids

    NASA Astrophysics Data System (ADS)

    Rong, Yuzhi; Wang, Zhengwu; Wu, Jinhong; Zhao, Bo

    The antioxidant capacities of the selected flavonoids quercetin, luteolin and taxifolin have been investigated at density functional level of theory with the aim of verifying the cellular antioxidant activity (CAA) values representative of experimental findings. The selected flavonoids were believed to act through the H-atom transfer mechanism. Their potentiality of hydrogen abstraction was evaluated by computing the Osbnd H bond dissociation enthalpy (BDE) in gas-phase and in dimethylsulfoxide solution. Results indicate that the order of antioxidant efficacies calculated in this work is in agreement with that reported by experimental results of CAA. Time-dependent density functional theory (TDDFT) calculations were also performed both in gas-phase and in dimethylsulfoxide to reproduce the electronic UV-vis spectra of the selected flavonoids.

  17. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    PubMed Central

    Ivanova, Ekaterina A.; Orekhov, Alexander N.

    2016-01-01

    Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient's bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization. PMID:26885534

  18. Embryo as an active granular fluid: stress-coordinated cellular constriction chains

    NASA Astrophysics Data System (ADS)

    Holcomb, Michael; Gao, Guo-Jie; Thomas, Jeffrey; Blawzdziewicz, Jerzy

    2016-11-01

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity.

  19. Vanderbilt University Study Creates New Roadmap for Cellular Activity - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Scientists studying cellular processes have long sought to measure redox modifications because they provide one of the normal layers of cell control. But redox disruption or oxidative stress at the cellular level can also create a pathway to diseases like

  20. REGgamma modulates p53 activity by regulating its cellular localization.

    PubMed

    Liu, Jian; Yu, Guowu; Zhao, Yanyan; Zhao, Dengpan; Wang, Ying; Wang, Lu; Liu, Jiang; Li, Lei; Zeng, Yu; Dang, Yongyan; Wang, Chuangui; Gao, Guang; Long, Weiwen; Lonard, David M; Qiao, Shanlou; Tsai, Ming-Jer; Zhang, Bianhong; Luo, Honglin; Li, Xiaotao

    2010-12-01

    The proteasome activator REGγ mediates a shortcut for the destruction of intact mammalian proteins. The biological roles of REGγ and the underlying mechanisms are not fully understood. Here we provide evidence that REGγ regulates cellular distribution of p53 by facilitating its multiple monoubiquitylation and subsequent nuclear export and degradation. We also show that inhibition of p53 tetramerization by REGγ might further enhance cytoplasmic relocation of p53 and reduce active p53 in the nucleus. Furthermore, multiple monoubiquitylation of p53 enhances its physical interaction with HDM2 and probably facilitates subsequent polyubiquitylation of p53, suggesting that monoubiquitylation can act as a signal for p53 degradation. Depletion of REGγ sensitizes cells to stress-induced apoptosis, validating its crucial role in the control of apoptosis, probably through regulation of p53 function. Using a mouse xenograft model, we show that REGγ knockdown results in a significant reduction of tumor growth, suggesting an important role for REGγ in tumor development. Our study therefore demonstrates that REGγ-mediated inactivation of p53 is one of the mechanisms involved in cancer progression.

  1. Synthesis of marmycin A and investigation into its cellular activity

    NASA Astrophysics Data System (ADS)

    Cañeque, Tatiana; Gomes, Filipe; Mai, Trang Thi; Maestri, Giovanni; Malacria, Max; Rodriguez, Raphaël

    2015-09-01

    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.

  2. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis

    PubMed Central

    Ahn, Woong Shick; Kim, Ko-Woon; Bae, Su Mi; Yoon, Joo Hee; Lee, Joon Mo; Namkoong, Sung Eun; Kim, Jin Hong; Kim, Chong Kook; Lee, Young Joo; Kim, Yong-Wan

    2003-01-01

    This study utilized both cDNA microarray and two-dimensional protein gel electrophoresis technology to investigate the multiple interactions of genes and proteins involved in uterine leiomyoma pathophysiology. Also, the gene ontology analysis was used to systematically characterize the global expression profiles at cellular process levels. We profiled differentially expressed transcriptome and proteome in six-paired leiomyoma and normal myometrium. Screening up to 17 000 genes identified 21 upregulated and 50 downregulated genes. The gene-expression profiles were classified into mutually dependent 420 functional sets, resulting in 611 cellular processes according to the gene ontology. Also, protein analysis using two-dimensional gel electrophoresis identified 33 proteins (17 upregulated and 16 downregulated) of more than 500 total spots, which was classified into 302 cellular processes. Of these functional profilings, downregulations of transcriptomes and proteoms were shown in cell adhesion, cell motility, organogenesis, enzyme regulator, structural molecule activity and response to external stimulus functional activities that are supposed to play important roles in pathophysiology. In contrast, the upregulation was only shown in nucleic acid-binding activity. Taken together, potentially significant pathogenetic cellular processes were identified and showed that the downregulated functional profiling has a significant impact on the discovery of pathogenic pathway in leiomyoma. Also, the gene ontology analysis can overcome the complexity of expression profiles of cDNA microarray and two-dimensional protein analysis via its cellular process-level approach. Therefore, a valuable prognostic candidate gene with relevance to disease-specific pathogenesis can be found at cellular process levels. PMID:14748746

  3. Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments.

    PubMed Central

    Kaplan, A H; Swanstrom, R

    1991-01-01

    The structural proteins of the retroviral capsid are translated as a polyprotein (the Gag precursor) that is cleaved by a virally encoded protease. Processing of the human immunodeficiency virus type 1 Gag precursor Pr55 was analyzed through a combination of pulse-chase labeling, cell fractionation, and immunoprecipitation. We observed a membrane-associated processing pathway for the Gag precursor that gives rise to virions. In addition, we found that a significant amount of processing occurs in the cytoplasm of infected cells resulting in the intracellular accumulation of appropriately processed viral proteins. This observation suggests the viral protease is active in the cytoplasmic compartment of the cell. Processing of the Gag protein was blocked in both compartments by the addition of a viral protease inhibitor. A comparison of the amount of cytoplasmic processing seen in lytically infected cells with that seen in chronically infected cells showed that cytoplasmic processing was associated with the lytic infection. These observations raise the possibility that activation of the human immunodeficiency virus type 1 protease in the cytoplasm of lytically infected cells might result in the cleavage of cellular proteins and thus contribute to cytotoxicity. Images PMID:2034693

  4. Mobile Phone Service Process Hiccups at Cellular Inc.

    ERIC Educational Resources Information Center

    Edgington, Theresa M.

    2010-01-01

    This teaching case documents an actual case of process execution and failure. The case is useful in MIS introductory courses seeking to demonstrate the interdependencies within a business process, and the concept of cascading failure at the process level. This case demonstrates benefits and potential problems with information technology systems,…

  5. Embryo as an active granular fluid: stress-coordinated cellular constriction chains

    NASA Astrophysics Data System (ADS)

    Gao, Guo-Jie Jason; Holcomb, Michael C.; Thomas, Jeffrey H.; Blawzdziewicz, Jerzy

    2016-10-01

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. However, systematic methods of studying how mechanical stress and feedback help to harmonize cellular activities within a tissue have yet to be developed. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity. Our particle-based AGF model will be useful in analyzing mechanical feedback effects in a wide variety of morphogenesis and organogenesis phenomena.

  6. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  7. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms.

    PubMed

    Baldwin, Kenneth M; Haddad, Fadia

    2002-11-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  8. Nanoporous noninvasive cellular electrical activity-based analysis devices.

    PubMed

    Prasad, Shalini; Quijano, Jorge

    2007-03-01

    In recent years, rapid advancements have been made in the biomedical applications of microtechnology and nanotechnology. While the focus of such technologies have been primarily on in vitro analytical and diagnostic tools, more recently in vivo therapeutic and sensing applications have gained attention. The long-term integration of cells with inorganic materials provides the basis for novel sensing platforms. The work presented here focuses on the ability to maintain cells long-term in nanoporous silicon-based microenvironments. This article describes the creation of nanoporous, biocompatible, alumina membranes as a platform for incorporation into a cell-based device targeted for in situ recording of cellular electrical activity variations due to the changes associated with the surrounding microenvironments. Studies described herein focus on the interaction of nanoporous alumina substrates embedded in silicon patterned with cells of interest. The fidelity of such a system is demonstrated in terms of viability, proliferation, and functionality. The capability of such microfabricated nanoporous membranes, as in vitro for cell-based assays for sensing and drug delivery applications, is also demonstrated. It has potential in vivo application for therapeutic immunoisolation.

  9. Active medulloblastoma enhancers reveal subgroup-specific cellular origins.

    PubMed

    Lin, Charles Y; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C; Ju, Bensheng; Orr, Brent A; Zeid, Rhamy; Polaski, Donald R; Segura-Wang, Maia; Waszak, Sebastian M; Jones, David T W; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V; Millen, Kathleen J; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O; Pfister, Stefan M; Bradner, James E; Northcott, Paul A

    2016-02-04

    Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.

  10. Active medulloblastoma enhancers reveal subgroup-specific cellular origins

    PubMed Central

    Lin, Charles Y.; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J.; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C.; Ju, Bensheng; Orr, Brent A.; Zeid, Rhamy; Polaski, Donald R.; Segura-Wang, Maia; Waszak, Sebastian M.; Jones, David T.W.; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V.; Millen, Kathleen J.; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O.; Pfister, Stefan M.; Bradner, James E.; Northcott, Paul A.

    2016-01-01

    Summary Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Using H3K27ac and BRD4 ChIP-Seq, coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-Seq, that are responsible for subgroup divergence and implicate candidate cells-of-origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins. PMID:26814967

  11. Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process

    NASA Astrophysics Data System (ADS)

    Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi

    2009-11-01

    Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.

  12. Active braze process

    SciTech Connect

    Levine, I.L.; Pike, R.A.

    1990-11-02

    Active metal bonding using Cusil (silver-copper) braze alloys is a well established method used at GE Neutron Devices (GEND) for bonding metal to metal, metal to ceramics, and ceramics to ceramics. However, there are many instances in which using a silver alloy for bonding is undesirable (e.g., in vacuum tube envelopes, or where sequential braze steps at different temperatures are required to complete an assembly). The Material and Processes Laboratory at GEND has discovered a new method of active brazing with non-silver alloys which has proved especially successful in ceramic-to-ceramic joints. This method has the added advantage of eliminating several steps which are required in conventional bonding techniques. 2 figs., 10 tabs.

  13. Process maturity progress at Motorola Cellular Systems Division

    NASA Technical Reports Server (NTRS)

    Borgstahl, Ron; Criscione, Mark; Dobson, Kim; Willey, Allan

    1994-01-01

    We believe that the key success elements are related to our recognition that Software Process Improvement (SPI) can and should be organized, planned, managed, and measured as if it were a project to develop a new process, analogous to a software product. We believe that our process improvements have come as the result of these key elements: use of a rigorous, detailed requirements set (Capability Maturity Model, CMM); use of a robust, yet flexible architecture (IEEE 1074); use of a SPI project, resourced and managed like other work, to produce the specifications and implement them; and development of both internal and external goals, with metrics to support them.

  14. Processing Characteristics and Properties of the Cellular Products Made by Using Special Foaming Agents

    NASA Astrophysics Data System (ADS)

    Garbacz, Tomasz; Dulebova, Ludmila

    2012-12-01

    The paper describes the manufacturing process of extruded products by the cellular extrusion method, and presents specifications of the blowing agents used in the extrusion process as well as process conditions. The process of cellular extrusion of thermoplastic materials is aimed at obtaining cellular shapes and coats with reduced density, presenting no hollows on the surface of extruder product and displaying minimal contraction under concurrent maintenance of properties similar to properties of products extruded by means of the conventional method. In order to obtain cellular structure, the properties of extruded product are modified by applying suitable plastic or inserting auxiliary agents.

  15. Studying cellular processes and detecting disease with protein microarrays

    SciTech Connect

    Zangar, Richard C.; Varnum, Susan M.; Bollinger, Nikki

    2005-10-31

    Protein microarrays are a rapidly developing analytic tool with diverse applications in biomedical research. These applications include profiling of disease markers or autoimmune responses, understanding molecular pathways, protein modifications and protein activities. One factor that is driving this expanding usage is the wide variety of experimental formats that protein microarrays can take. In this review, we provide a short, conceptual overview of the different approaches for protein microarray. We then examine some of the most significant applications of these microarrays to date, with an emphasis on how global protein analyses can be used to facilitate biomedical research.

  16. Spontaneous Motion in Hierarchically Assembled Active Cellular Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2013-03-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently far-from-equilibrium processes are an inspiration for the development of soft materials with highly sought after biomimetic properties such as autonomous motility and self-healing. I will describe our exploration of such a class of biologically inspired soft active materials. Starting from extensile bundles comprised of microtubules and kinesin, we hierarchically assemble active analogs of polymeric gels, liquid crystals and emulsions. At high enough concentration, microtubule bundles form an active gel network capable of generating internally driven chaotic flows that enhance transport and fluid mixing. When confined to emulsion droplets, these 3D networks buckle onto the water-oil interface forming a dense thin film of bundles exhibiting cascades of collective buckling, fracture, and self-healing driven by internally generated stresses from the kinesin clusters. When compressed against surfaces, this active nematic cortex exerts traction stresses that propel the locomotion of the droplet. Taken together, these observations exemplify how assemblies of animate microscopic objects exhibit collective biomimetic properties that are fundamentally distinct from those found in materials assembled from inanimate building blocks. These assemblies, in turn, enable the generation of a new class of materials that exhibit macroscale flow phenomena emerging from nanoscale components.

  17. Imaging large-scale cellular activity in spinal cord of freely behaving mice

    PubMed Central

    Sekiguchi, Kohei J.; Shekhtmeyster, Pavel; Merten, Katharina; Arena, Alexander; Cook, Daniela; Hoffman, Elizabeth; Ngo, Alexander; Nimmerjahn, Axel

    2016-01-01

    Sensory information from mechanoreceptors and nociceptors in the skin plays key roles in adaptive and protective motor behaviours. To date, very little is known about how this information is encoded by spinal cord cell types and their activity patterns, particularly under freely behaving conditions. To enable stable measurement of neuronal and glial cell activity in behaving mice, we have developed fluorescence imaging approaches based on two- and miniaturized one-photon microscopy. We show that distinct cutaneous stimuli activate overlapping ensembles of dorsal horn neurons, and that stimulus type and intensity is encoded at the single-cell level. In contrast, astrocytes show large-scale coordinated calcium responses to intense but not weak sensory inputs. Sensory-evoked activity is potently suppressed by anaesthesia. By revealing the cellular and computational logic of spinal cord networks under behaving conditions, our approach holds promise for better understanding of healthy and aberrant spinal cord processes. PMID:27121084

  18. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes

    PubMed Central

    Ross, Mark D.; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process. PMID:26697131

  19. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  20. Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories

    PubMed Central

    Cai, Denise J.; Sano, Yoshitake; Lee, Yong-Seok; Zhou, Yu; Bekal, Pallavi; Deisseroth, Karl; Silva, Alcino J.

    2016-01-01

    Recent findings suggest that memory allocation to specific neurons (i.e., neuronal allocation) in the amygdala is not random, but rather the transcription factor cAMP-response element binding protein (CREB) modulates this process, perhaps by regulating the transcription of channels that control neuronal excitability. Here, optogenetic studies in the mouse lateral amygdala (LA) were used to demonstrate that CREB and neuronal excitability regulate which neurons encode an emotional memory. To test the role of CREB in memory allocation, we overexpressed CREB in the lateral amygdala to recruit the encoding of an auditory-fear conditioning (AFC) memory to a subset of neurons. Then, post-training activation of these neurons with Channelrhodopsin-2 was sufficient to trigger recall of the memory for AFC, suggesting that CREB regulates memory allocation. To test the role of neuronal excitability in memory allocation, we used a step function opsin (SFO) to transiently increase neuronal excitability in a subset of LA neurons during AFC. Post-training activation of these neurons with Volvox Channelrhodopsin-1 was able to trigger recall of that memory. Importantly, our studies show that activation of the SFO did not affect AFC by either increasing anxiety or by strengthening the unconditioned stimulus. Our findings strongly support the hypothesis that CREB regulates memory allocation by modulating neuronal excitability. PMID:27579481

  1. Cellular Localization of Dieldrin and Structure–Activity Relationship of Dieldrin Analogues in Dopaminergic Cells

    PubMed Central

    Allen, Erin M. G.; Florang, Virginia R.; Davenport, Laurie L.; Jinsmaa, Yunden; Doorn, Jonathan A.

    2015-01-01

    The incidence of Parkinson’s disease (PD) correlates with environmental exposure to pesticides, such as the organochlorine insecticide, dieldrin. Previous studies found an increased concentration of the pesticide in the striatal region of the brains of PD patients and also that dieldrin adversely affects cellular processes associated with PD. These processes include mitochondrial function and reactive oxygen species production. However, the mechanism and specific cellular targets responsible for dieldrin-mediated cellular dysfunction and the structural components of dieldrin contributing to its toxicity (toxicophore) have not been fully defined. In order to identify the toxicophore of dieldrin, a structure–activity approach was used, with the toxicity profiles of numerous analogues of dieldrin (including aldrin, endrin, and cis-aldrin diol) assessed in PC6-3 cells. The MTT and lactate dehydrogenase (LDH) assays were used to monitor cell viability and membrane permeability after treatment with each compound. Cellular assays monitoring ROS production and extracellular dopamine metabolite levels were also used. Structure and stereochemistry for dieldrin were found to be very important for toxicity and other end points measured. Small changes in structure for dieldrin (e.g., comparison to the stereoisomer endrin) yielded significant differences in toxicity. Interestingly, the cis-diol metabolite of dieldrin was found to be significantly more toxic than the parent compound. Disruption of dopamine catabolism yielded elevated levels of the neurotoxin, 3,4-dihydroxyphenylacetaldehyde, for many organochlorines. Comparisons of the toxicity profiles for each dieldrin analogue indicated a structure-specific effect important for elucidating the mechanisms of dieldrin neurotoxicity. PMID:23763672

  2. Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer.

    PubMed

    Pathak, Chandramani; Jaiswal, Yogesh K; Vinayak, Manjula

    2008-04-01

    Constant generation of Reactive oxygen species (ROS) during normal cellular metabolism of an organism is generally balanced by similar rate of consumption by antioxidants. Imbalance between ROS production and antioxidant defense results in increased level of ROS causing oxidative stress which leads to promotion of malignancy. Queuine is a hyper modified base analogue of guanine, found at first anti-codon position of Q- family of tRNAs. These tRNAs are completely modified with respect to queuosine in terminally differentiated somatic cells, however hypomodification of Q-tRNAs is close association with cell proliferation. Q-tRNA modification is essential for normal development, differentiation and cellular functions. Queuine is a nutrient factor to eukaryotes. It is found to promote cellular antioxidant defense system and inhibit tumorigenesis. The activities of antioxidant enzymes like catalase, SOD, glutathione peroxidase and glutathione reductase are found to be low in Dalton's lymphoma ascites transplanted (DLAT) mouse liver compared to normal. However, exogenous administration of queuine to DLAT mouse improves the activities of antioxidant enzymes. The results suggest that queuine promotes antioxidant defense system by increasing antioxidant enzyme activities and in turn inhibits oxidative stress and tumorigenesis.

  3. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  4. Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair.

    PubMed

    German, Peter; Szaniszlo, Peter; Hajas, Gyorgy; Radak, Zsolt; Bacsi, Attila; Hazra, Tapas K; Hegde, Muralidhar L; Ba, Xueqing; Boldogh, Istvan

    2013-10-01

    Accumulation of 8-oxo-7,8-dihydroguanine (8-oxoG) in the DNA results in genetic instability and mutagenesis, and is believed to contribute to carcinogenesis, aging processes and various aging-related diseases. 8-OxoG is removed from the DNA via DNA base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase-1 (OGG1). Our recent studies have shown that OGG1 binds its repair product 8-oxoG base with high affinity at a site independent from its DNA lesion-recognizing catalytic site and the OGG1•8-oxoG complex physically interacts with canonical Ras family members. Furthermore, exogenously added 8-oxoG base enters the cells and activates Ras GTPases; however, a link has not yet been established between cell signaling and DNA BER, which is the endogenous source of the 8-oxoG base. In this study, we utilized KG-1 cells expressing a temperature-sensitive mutant OGG1, siRNA ablation of gene expression, and a variety of molecular biological assays to define a link between OGG1-BER and cellular signaling. The results show that due to activation of OGG1-BER, 8-oxoG base is released from the genome in sufficient quantities for activation of Ras GTPase and resulting in phosphorylation of the downstream Ras targets Raf1, MEK1,2 and ERK1,2. These results demonstrate a previously unrecognized mechanism for cellular responses to OGG1-initiated DNA BER.

  5. Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

    PubMed

    Lu, Ping; Haagsma, Anna C; Pham, Hoang; Maaskant, Janneke J; Mol, Selena; Lill, Holger; Bald, Dirk

    2011-11-01

    Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.

  6. Dial 9-1-1 for p53: Mechanisms of p53 Activation by Cellular Stress

    PubMed Central

    Ljungman, Mats

    2000-01-01

    Abstract The tumor suppressor protein, p53, is part of the cell's emergency team that is called upon following cellular insult. How do cells sense DNA damage and other cellular stresses and what signal transduction pathways are used to alert p53? How is the resulting nuclear accumulation of p53 accomplished and what determines the outcome of p53 induction? Many posttranslational modifications of p53, such as phosphorylation, dephosphorylation, acetylation and ribosylation, have been shown to occur following cellular stress. Some of these modifications may activate the p53 protein, interfere with MDM2 binding and/or dictate cellular localization of p53. This review will focus on recent findings about how the p53 response may be activated following cellular stress. PMID:10935507

  7. Phosphorylation Hypothesis: A Fourth Sink of ATP for Cellular Information Processing?

    NASA Astrophysics Data System (ADS)

    Qian, Hong

    2015-03-01

    Adenosine triphosphate (ATP) molecule is used in living cells as a universal ``energy currency.'' The Gibbs free energy liberated from hydrolysis reaction of ATP to ADP + Pi is used for (a) biosynthesis, (b) ionic and neutral molecular pumping, and (c) mechanical movement. They are known collectively as the three major energy sinks at the cellular level. Using biochemical activities of various enzymes, a cell carries out information processing, known as signal transduction. Essentially all signal transduction reactions also require ATP (or GTP) hydrolysis. In the past, such energy dissipative reactions are considered as ``futile.'' However, it is clear that the free energy derived from a futile cycle is used to correct errors in biomolecular recognition, improve robustness in cell development, overcome Boltzmann's equilibrium law of probability, and drive Maxwell's demons (one notes that Gibbs' chemical potential is a thermodynamic force without mechanical interpretation). The free energy involved in processing information will be explained in terms of stochastic entropy production -- the central concept in irreversible and nonequilibrium steady-state (NESS) thermodynamics.

  8. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    SciTech Connect

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  9. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.

    PubMed

    Hatahet, T; Morille, M; Hommoss, A; Dorandeu, C; Müller, R H; Bégu, S

    2016-05-01

    Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quercetin nanocrystals were produced implementing smartCrystals® technology. This process combines bead milling and subsequent high-pressure homogenization at relatively low pressure (300bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. The physicochemical properties (morphology, size and charge), saturation solubility, dissolution velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quercetin smartCrystals® were studied and compared to crude quercetin powder. Quercetin smartCrystals® showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high concentration (50μg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-tolerated formulations.

  10. Dependence of cellular activity at protein adsorbed biointerfaces with nano- to microscale dimensionality.

    PubMed

    Nune, C; Misra, R D K; Somani, M C; Karjalainen, L P

    2014-06-01

    Protein adsorption is one of the first-few events that occur when a biomedical device comes in contact with the physiological system. The adsorption process is subsequently followed by communication with cells and formation of tissue. Given the strong interest in nanostructured surfaces, we describe here the impact of grain structure from nanograined (NG) regime to coarse-grained (CG) regime on the self-assembly of proteins (bovine serum albumin) and consequent functional response of osteoblasts. The objective is accomplished using the innovative concept of "phase reversion" that enables a wide range of grain size (from NG to CG regime) to be obtained using an identical set of parameters, besides additional attributes of high strength/weight ratio and wear resistance. Depending on the grain structure a consistent and significant change in the adsorption characteristics of protein was observed at biointerface, such that the cell density was statistically different. The high surface coverage and leaf-like conformation of adsorbed protein on NG surface as compared to bare branch-like structure with low surface coverage on the CG surface, was beneficial in favorably modulating cellular activity (osteoblast functions: cell attachment, proliferation, actin, vinculin, and fibronectin expression). This is the first report that elucidates the impact of grain structure from NG to CG regime on cellular activity.

  11. Cellular Active N-Hydroxyurea FEN1 Inhibitors Block Substrate Entry to the Active Site

    PubMed Central

    Exell, Jack C.; Thompson, Mark J.; Finger, L. David; Shaw, Steven J.; Debreczeni, Judit; Ward, Thomas A.; McWhirter, Claire; Siöberg, Catrine L. B.; Martinez Molina, Daniel; Mark Abbott, W.; Jones, Clifford D.; Nissink, J. Willem M.; Durant, Stephen T.; Grasby, Jane A.

    2016-01-01

    The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the first crystal structure of inhibitor-bound hFEN1 and show a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein–substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the unpairing of substrate DNA necessary for reaction. Other compounds were more competitive with substrate. Cellular thermal shift data showed engagement of both inhibitor types with hFEN1 in cells with activation of the DNA damage response evident upon treatment. However, cellular EC50s were significantly higher than in vitro inhibition constants and the implications of this for exploitation of hFEN1 as a drug target are discussed. PMID:27526030

  12. Technology Learning Activities: Columbus Sailed the Ocean Blue, the Cellular Connection, Emergency Shelter.

    ERIC Educational Resources Information Center

    Etchison, Cindy; Deal, Walter F., III

    1992-01-01

    Presents learning activities such as planning and building a sailboat, manufacturing cellular phone cases, and designing and building emergency shelters. Includes the context, the challenge, resources used, objectives, materials needed, and an evaluation. (JOW)

  13. Using Primary Literature in an Undergraduate Assignment: Demonstrating Connections among Cellular Processes

    ERIC Educational Resources Information Center

    Yeong, Foong May

    2015-01-01

    Learning basic cell biology in an essential module can be daunting to second-year undergraduates, given the depth of information that is provided in major molecular and cell biology textbooks. Moreover, lectures on cellular pathways are organised into sections, such that at the end of lectures, students might not see how various processes are…

  14. Melt-processed polymeric cellular dosage forms for immediate drug release.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2015-12-28

    The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.

  15. EphB4 cellular kinase activity assayed using an enzymatic protein interaction system.

    PubMed

    Wehrman, Tom; Nguyen, Mimi; Feng, Wei; Bader, Benjamin

    2013-05-01

    Receptor tyrosine kinases (RTKs) are important players in various cellular processes, including proliferation, migration, metabolism, and neuronal development. EphB4 RTK is essential for the development of a functional arterial-venous network in embryonic and adult neoangiogenesis. To develop novel inhibitors of EphB4 that might have applications in severe diseases like cancer and retinopathies, assays need to be in place that resemble, in a most physiological fashion, the activation and downstream function of the kinase. In addition, such assays need to be amenable to high-throughput screening to serve efficiently the modern drug discovery processes in the pharmaceutical industry. The authors have developed an enzyme fragment complementation assay that measures the interaction of a downstream docking protein to the activated and phosphorylated full-length EphB4 kinase in cells. The assay is specific, robust, and amenable to miniaturization and high-throughput screening. It covers most steps in the activation process of EphB4, including ligand binding, autophosphorylation, and docking of a downstream interactor. This assay format can be transferred to other RTKs and adds an important cell-based kinase assay option to researchers in the field.

  16. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  17. Cellular Links between Neuronal Activity and Energy Homeostasis

    PubMed Central

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply. PMID:22470340

  18. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells.

    PubMed

    Circu, Magdalena L; Maloney, Ronald E; Aw, Tak Yee

    2017-02-25

    Previously we have shown that the redox cycler menadione (MQ) induced cellular pyridine nucleotide redox imbalance that was linked to a decrease in aerobic glycolysis and perturbation of the mitochondrial respiratory activity due to the redox cycling of the compound; these processes were potentiated by low glucose. In this study, we investigated how colonic epithelial cells maintained pyridine nucleotide (NAD(+)/NADH and NADP(+)/NADPH) redox homeostasis upon acute metabolic variation and exposure to the redox cycling diquat (DQ). Our results show that DQ challenge disrupted cellular NADH/NAD(+) redox status and enhanced cellular NADPH generation. Notably, DQ-induced NADH decrease was associated with enhanced lactate production, a process that was potentiated by glucose availability, but not by the mitochondrial substrates, succinate or malate/glutamate. In addition, DQ increased glucose 6-phoshate dehydrogenase (G6PDH) activity consistent with glucose diversion towards pentose phosphate pathway. As a consequence, steady-state NADPH levels were maintained during MQ challenge at normal glucose. In contrast and despite increased G6PDH and malic enzyme (ME) activities, DQ induced cellular NADPH-to-NADP(+) shift at low glucose, a situation that was reversed by mitochondrial substrates. Collectively, these results are consistent with increased aerobic glycolysis by DQ and specific metabolic changes leading to enhanced NADPH generation upon oxidative challenge.

  19. Evaluation of Cellular Antioxidant and Antiproliferative Activities of Five Main Phyllanthus Emblica L. Cultivars in China.

    PubMed

    Li, Y; Sun, H Y; Yu, X Y; Liu, D; Wan, H X

    2015-01-01

    The cell-based antioxidant activity assay as more biological relevant assay was considered to be more accurate to predict antioxidant activity in vivo than chemical activity assays. In the present study, the five main Phyllanthus emblica L. cultivars in China were subjected for cellular antioxidant activity based on HepG2 cells as well as antiproliferative activity. Total phenolics, total flavonoids and oxygen radical absorbance capacity were also measured. The results showed that Qingyougan, Binggan and Boligan (832±100, 774±52 and 704±28 μmol of quercetin equivalents/100 g) had higher cellular antioxidant activity than Tianyougan and Yougan (553±50 and 457±24 μmol of quercetin equivalents/100 g) in phosphate buffered saline wash protocol whereas, Boligan (3735±217 μmol of quercetin equivalents/100 g) had the highest cellular antioxidant activity and Tianyougan (2025±171 μmol of quercetin equivalents/100 g) had the lowest cellular antioxidant activity in no phosphate buffered saline wash protocol. The highest and lowest antiproliferative activities were observed in Binggan and Tianyougan (median effective dose: 6.95±0.11 and 14.03±0.10 mg/ml), respectively. The significant correlation was only observed between total flavonoids and cellular antioxidant activity from no phosphate buffered saline wash protocol (R(2) =0.908, P<0.05), and total flavonoids and antiproliferative activity (R(2) =0.887, P<0.05), suggesting the major contribution of flavonoids to the bioactivities of emblica. Overall, the data obtained revealed that different Phyllanthus emblica L. cultivars had strong cellular antioxidant and antiproliferative activities, thus should be recommended to increase consumption for health.

  20. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression.

    PubMed

    Lazo, Pedro A

    2017-05-01

    The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.

  1. Molecular and cellular processes underlying the hallmarks of head and neck cancer.

    PubMed

    Bernstein, Jonathan M; Bernstein, Clare R; West, Catharine M L; Homer, Jarrod J

    2013-09-01

    The hallmarks of cancer were updated by Hanahan and Weinberg in 2011. Here we discuss the updated hallmarks in relation to what is known of the molecular and cellular processes underlying the development of head and neck squamous cell carcinoma (HNSCC). Several mechanisms are described, and recent surveys of HNSCC suggest a limited number of mutations, from which more mechanisms may emerge. There are also epigenetic changes to the control of normal processes. More than one mechanism underlies each hallmark. Processes essential to the development of HNSCC need not be essential to the proliferation of the fully developed tumour. Attention is paid to the emerging hallmarks, deregulation of cellular energy metabolism and evasion of immune destruction, and enabling characteristics, genome instability and mutation and tumour-promoting inflammation. HNSCC may adapt to hypoxia, suppress HLA expression, and express Toll-like receptors to facilitate inflammation, which support the proliferation of the tumour.

  2. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts.

  3. Chemical, enzymatic and cellular antioxidant activity studies of Agaricus blazei Murrill.

    PubMed

    Hakime-Silva, Ricardo A; Vellosa, José C R; Khalil, Najeh M; Khalil, Omar A K; Brunetti, Iguatemy L; Oliveira, Olga M M F

    2013-09-01

    Mushrooms possess nutritional and medicinal properties that have long been used for human health preservation and that have been considered by researchers as possible sources of free radical scavengers. In this work, the antioxidant properties of water extracts from Agaricus blazei Murill, produced by maceration and decoction, are demonstrated in vitro. Resistance to oxidation is demonstrated through three mechanisms: i) inhibition of enzymatic oxidative process, with 100% inhibition of HRP (horseradish peroxidase) and MPO (myeloperoxidase); ii) inhibition of cellular oxidative stress, with 80% inhibition of the oxidative burst of polymorphonuclear neutrophils (PMNs); and iii) direct action over reactive species, with 62% and 87% suppression of HOCl and superoxide anion radical (O2• -), respectively. From the data, it was concluded that the aqueous extract of A. blazei has significant antioxidant activity, indicating its possible application for nutraceutical and medicinal purposes.

  4. The journey of antiphospholipid antibodies from cellular activation to antiphospholipid syndrome.

    PubMed

    Willis, Rohan; Gonzalez, E B; Brasier, A R

    2015-03-01

    Pathogenic antiphospholipid antibodies (aPL) are the driving factors of recurrent pregnancy loss and thrombosis that characterize antiphospholipid syndrome (APS). Current evidence indicates that aPL induce a procoagulant phenotype in the vasculature and abnormal cellular proliferation and differentiation in placental tissues to cause the typical clinical features; however, the molecular mechanisms underlying these processes remain incompletely understood. Inflammation serves as a necessary link between the observed procoagulant phenotype and actual thrombus development and is an important mediator of the placental injury in APS patients. However, the underlying mechanisms for these events have also not been fully elucidated. In this review, we will outline the available data that give us our current understanding of the pathophysiology of APS, especially as it relates to the development of thromboembolic and obstetric pathological phenomena in these patients. We will also describe the intracellular signaling pathways activated by aPL in various cellular subtypes and outline the current evidence linking these pathways to clinical phenotypes. Finally, we will discuss the implications of distinct molecular patterns defining clinical phenotypes of APS patients.

  5. Antioxidant activity of puha (Sonchus oleraceus L.) as assessed by the cellular antioxidant activity (CAA) assay.

    PubMed

    McDowell, Arlene; Thompson, Scott; Stark, Mirjam; Ou, Zong-Quan; Gould, Kevin S

    2011-12-01

    There is considerable interest in antioxidant dietary components that can be protective against degenerative diseases in humans. Puha (Sonchus oleraceus L.) is a rich source of polyphenols, and exhibits strong antioxidant activity as measured by the 2,2-diphenylpicrylhydrazyl (DPPH) assay. However, the potential of puha to protect against degenerative diseases requires that low molecular weight antioxidants (LMWA) are absorbed by, and active in, human cells. The cellular antioxidant activity (CAA) assay was used to investigate the antioxidant activity of puha leaf extracts. Preparation methods of freezing and freeze-drying reduced the total polyphenolic content compared with fresh puha, but did not affect the LMWA potential as determined by the DPPH assay. The IC(50) values were 0.012 ± 0.003 mg/mL and 0.010 ± 0.005 mg/mL for freeze-dried and fresh puha leaves, respectively. Using the CAA assay, it was shown that LMWAs from foliar extracts of puha were effectively absorbed into HepG2 cells, and exerted antioxidant activity at levels comparable to those of extracts from blueberry fruits, the much-touted antioxidant superfood. Methylene blue staining of HepG2 cells indicated that puha extracts were not cytotoxic at concentrations below 100 mg DW/mL. The data indicate the potential of puha as a nutraceutical supplement for human health.

  6. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts.

    PubMed

    Hsu, Shan-Hui; Tseng, Hsiang-Jung; Hung, Huey-Shan; Wang, Ming-Chien; Hung, Chiung-Hui; Li, Pei-Ru; Lin, Jiang-Jen

    2009-11-01

    Nanometer-scale silicate platelet (NSP) materials were previously developed by increasing the interlayer space and exfoliation of layered silicate clays such as montmorillonite and synthetic fluorinated mica by the process of polyamine exfoliation. In this study, the antibacterial activity and cytotoxicity of these nanometer-scale silicate clays were evaluated. The derivatives of NSP (NSP-S) which were modified by C18-fatty amine salts via ionic exchange association exhibited the highest antibacterial activity in the aqueous state among all clays. The high antibacterial activity, however, was accompanied by elevated cytotoxicity. The variations of cell surface markers (CD29 and CD44) and type I collagen expression of fibroblasts treated with the clays were measured to clarify the mechanism of the silicate-induced cytotoxicity. The signal transduction pathway involved the downregulation of extracellular-signal-regulated kinase (ERK), which appeared to participate in silicate-induced cytotoxicity. This study helped to understand the antibacterial potential of NSP and the interaction of natural and modified clays with cellular activities.

  7. The Sarcomeric M-Region: A Molecular Command Center for Diverse Cellular Processes

    PubMed Central

    Hu, Li-Yen R.; Ackermann, Maegen A.; Kontrogianni-Konstantopoulos, Aikaterini

    2015-01-01

    The sarcomeric M-region anchors thick filaments and withstands the mechanical stress of contractions by deformation, thus enabling distribution of physiological forces along the length of thick filaments. While the role of the M-region in supporting myofibrillar structure and contractility is well established, its role in mediating additional cellular processes has only recently started to emerge. As such, M-region is the hub of key protein players contributing to cytoskeletal remodeling, signal transduction, mechanosensing, metabolism, and proteasomal degradation. Mutations in genes encoding M-region related proteins lead to development of severe and lethal cardiac and skeletal myopathies affecting mankind. Herein, we describe the main cellular processes taking place at the M-region, other than thick filament assembly, and discuss human myopathies associated with mutant or truncated M-region proteins. PMID:25961035

  8. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  9. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    PubMed

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.

  10. Cellular uptake and anticancer activity of carboxylated gallium corroles

    PubMed Central

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit

    2016-01-01

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  11. Expression of transferrin receptors on mitogen-stimulated human peripheral blood lymphocytes: relation to cellular activation and related metabolic events.

    PubMed Central

    Galbraith, R M; Galbraith, G M

    1981-01-01

    Mitogen-activated normal human peripheral blood lymphocytes bind transferrin to specific membrane receptors. In this study, lymphocytes stimulated with phytohaemagglutinin for 0-66 hr were examined to determine the relation of this phenomenon to cellular activation and related metabolic events. Transferrin receptors were first detected at 20-24 hr. This event was consistently preceded by RNA and protein turnover which commenced during the first 6 hr of culture, whereas initiation of DNA synthesis was detected concurrently with the appearance of receptors or slightly later (24-30 hr). Exposure of cells to inhibitors of RNA and protein synthesis early during culture (at 0 or 24 hr) prevented the expression of transferrin receptors, but also caused generalized metabolic failure, and abrogated cellular activation. In contrast, later addition of these agents at 48 hr did not interfere significantly with the process of activation, but did suppress the terminal increase in receptor-bearing cells observed during the final 18 hr in control cultures lacking inhibitor. After deliberate thermal stripping of receptors from activated cells, the reappearance of membrance binding sites which normally occurred within 30 min, was also blocked by cycloheximide, puromycin and actinomycin D. However, similar inhibition of DNA which was induced by hydroxyurea had much less effect upon both the initial appearance of receptors and their reappearance after ligand-induced depletion. These results demonstrate that the appearance of transferrin receptors upon human lymphocytes is dependent upon cellular activation and requires synthesis of protein and RNA. PMID:6172372

  12. Dihydroartemisinin Exerts Its Anticancer Activity through Depleting Cellular Iron via Transferrin Receptor-1

    PubMed Central

    Ba, Qian; Zhou, Naiyuan; Duan, Juan; Chen, Tao; Hao, Miao; Yang, Xinying; Li, Junyang; Yin, Jun; Chu, Ruiai; Wang, Hui

    2012-01-01

    Artemisinin and its main active metabolite dihydroartemisinin, clinically used antimalarial agents with low host toxicity, have recently shown potent anticancer activities in a variety of human cancer models. Although iron mediated oxidative damage is involved, the mechanisms underlying these activities remain unclear. In the current study, we found that dihydroartemisinin caused cellular iron depletion in time- and concentration-dependent manners. It decreased iron uptake and disturbed iron homeostasis in cancer cells, which were independent of oxidative damage. Moreover, dihydroartemisinin reduced the level of transferrin receptor-1 associated with cell membrane. The regulation of dihydroartemisinin to transferrin receptor-1 could be reversed by nystatin, a cholesterol-sequestering agent but not the inhibitor of clathrin-dependent endocytosis. Dihydroartemisinin also induced transferrin receptor-1 palmitoylation and colocalization with caveolin-1, suggesting a lipid rafts mediated internalization pathway was involved in the process. Also, nystatin reversed the influences of dihydroartemisinin on cell cycle and apoptosis related genes and the siRNA induced downregulation of transferrin receptor-1 decreased the sensitivity to dihydroartemisinin efficiently in the cells. These results indicate that dihydroartemisinin can counteract cancer through regulating cell-surface transferrin receptor-1 in a non-classical endocytic pathway, which may be a new action mechanism of DHA independently of oxidative damage. PMID:22900042

  13. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  14. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time

    PubMed Central

    Grossi, Marco; Morgunova, Marina; Cheung, Shane; Scholz, Dimitri; Conroy, Emer; Terrile, Marta; Panarella, Angela; Simpson, Jeremy C.; Gallagher, William M.; O'Shea, Donal F.

    2016-01-01

    Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools. PMID:26927507

  15. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  16. Activation of Wnt Signaling by Chemically Induced Dimerization of LRP5 Disrupts Cellular Homeostasis

    PubMed Central

    Pond, Adam C.; Seethammagari, Mamatha; Chiou, Shin-Heng; Cho, Kyucheol; Carstens, Julienne L.; Decker, William K.; McCrea, Pierre D.; Ittmann, Michael M.; Rosen, Jeffrey M.; Spencer, David M.

    2012-01-01

    Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5. We show that iLRP5 oligomerization results in its localization to disheveled-containing punctate structures and sequestration of scaffold protein Axin, leading to robust β-catenin-mediated signaling. Moreover, we identify a novel LRP5 cytoplasmic domain critical for its intracellular localization and casein kinase 1-dependent β-catenin signaling. Finally, by utilizing iLRP5 as a Wnt signaling switch, we generated the Ubiquitous Activator of β-catenin (Ubi-Cat) transgenic mouse line. The Ubi-Cat line allows for nearly ubiquitous expression of iLRP5 under control of the H-2Kb promoter. Activation of iLRP5 in isolated prostate basal epithelial stem cells resulted in expansion of p63+ cells and development of hyperplasia in reconstituted murine prostate grafts. Independently, iLRP5 induction in adult prostate stroma enhanced prostate tissue regeneration. Moreover, induction of iLRP5 in male Ubi-Cat mice resulted in prostate tumor progression over several months from prostate hyperplasia to adenocarcinoma. We also investigated iLRP5 activation in Ubi-Cat-derived mammary cells, observing that prolonged activation results in mammary tumor formation. Thus, in two distinct experimental mouse models, activation of iLRP5 results in disruption of tissue homeostasis, demonstrating the utility of iLRP5 as a novel research tool for determining the outcome of Wnt activation in a precise spatially and temporally determined fashion. PMID:22303459

  17. Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization

    PubMed Central

    Smalheiser, Neil R.

    2008-01-01

    For many microRNAs, in many normal tissues and in cancer cells, the cellular levels of mature microRNAs are not simply determined by transcription of microRNA genes. This mini-review will discuss how microRNA biogenesis and function can be regulated by various nuclear and cytoplasmic processing events, including emerging evidence that microRNA pathway components can be selectively regulated by control of their subcellular localization and by modifications that occur during dynamic cellular signaling. Finally, I will briefly summarize studies of microRNAs in synaptic fractions of adult mouse forebrain, which may serve as a model for other cell types as well. PMID:18433727

  18. Label free detection of optogenetically stimulated cellular activity by low coherence interferometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Satpathy, Sarmishtha; Batabyal, Subrata; Dave, Digant P.; Mohanty, Samarendra K.

    2016-03-01

    Detecting cellular activity in sub-millisecond timescale and micrometer resolution without using invasive means has been a long standing goal in the study of cellular networks. Here, we have employed phase sensitive low coherence interferometry for detecting optogenetically stimulated activity of cells. Nanoscale changes in optical path length (due to change in refractive index and changes in cell thickness) occur when cells are activated, which we aim to detect by phase sensitive low coherence interferometry. A low coherence interferometry and patch-clamp electrophysiology systems were integrated with an inverted fluorescence microscope. Blue laser beam was coupled to the electrophysiology-interferometric detection system for optogenetic stimulation. The phase-sensitive measurements were carried out on Channelrhodopsin-2 sensitized cells (identified by YFP fluorescence) as well as control cells in reflection mode for different intensities and exposures of optogenetic stimulation beam. This method offers good temporal and spatial resolution without using exogenous labeling. Results of studies on all optical stimulation and detection of cellular activity will be presented. Interpretation of the optical activity signals will be discussed in context with changes in cell physiology during stimulation. We will also discuss the potential sources of various artifacts in optical/electrical detection of cellular activity during optical stimulation.

  19. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    PubMed

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes.

  20. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway.

    PubMed

    Lv, Xiaowen; Qiu, Min; Chen, Deyan; Zheng, Nan; Jin, Yu; Wu, Zhiwei

    2014-09-01

    Enterovirus 71 (EV71) is a member of genus Enterovirus in Picornaviridae family, which is one of the major causative agents for hand, foot and mouth disease (HFMD), and sometimes associated with severe central nervous system diseases in children. Currently there are no effective therapeutic medicines or vaccines for the disease. In this report, we found that apigenin and luteolin, two flavones that differ only in the number of hydroxyl groups could inhibit EV71-mediated cytopathogenic effect (CPE) and EV71 replication with low cytotoxicity. Both molecules also showed inhibitory effect on the viral polyprotein expression. They prevented EV71-induced cell apoptosis, intracellular reactive oxygen species (ROS) generation and cytokines up-regulation. Time-of-drug addition study demonstrated that apigenin and luteolin acted after viral entry. We examined the effect of apigenin and luteolin on 2A(pro) and 3C(pro) activity, two viral proteases responsible for viral polyprotein processing, and found that they showed less inhibitory activity on 2A(pro) or 3C(pro). Further studies demonstrated that apigenin, but not luteolin could interfere with viral IRES activity. Also, apigenin inhibited EV71-induced c-Jun N-terminal kinase (JNK) activation which is critical for viral replication, in contrast to luteolin that did not. This study demonstrated that apigenin may inhibit EV71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. It also provided evidence that one hydroxyl group difference in the B ring between apigenin and luteolin resulted in the distinct antiviral mechanisms. This study will provide the basis for better drug development and further identification of potential drug targets.

  1. Cellular Telephones Measure Activity and Lifespace in Community-Dwelling Adults: Proof of Principle

    PubMed Central

    Schenk, Ana Katrin; Witbrodt, Bradley C.; Hoarty, Carrie A.; Carlson, Richard H.; Goulding, Evan H.; Potter, Jane F.; Bonasera, Stephen J.

    2011-01-01

    OBJECTIVES To describe a system that uses off-the-shelf sensor and telecommunication technologies to continuously measure individual lifespace and activity levels in a novel way. DESIGN Proof of concept involving three field trials of 30, 30, and 21 days. SETTING Omaha, Nebraska, metropolitan and surrounding rural region. PARTICIPANTS Three participants (48-year-old man, 33-year-old woman, and 27-year-old male), none with any functional limitations. MEASUREMENTS Cellular telephones were used to detect in-home position and in-community location and to measure physical activity. Within the home, cellular telephones and Bluetooth transmitters (beacons) were used to locate participants at room-level resolution. Outside the home, the same cellular telephones and global positioning system (GPS) technology were used to locate participants at a community-level resolution. Physical activity was simultaneously measured using the cellular telephone accelerometer. RESULTS This approach had face validity to measure activity and lifespace. More importantly, this system could measure the spatial and temporal organization of these metrics. For example, an individual’s lifespace was automatically calculated across multiple time intervals. Behavioral time budgets showing how people allocate time to specific regions within the home were also automatically generated. CONCLUSION Mobile monitoring shows much promise as an easily deployed system to quantify activity and lifespace, important indicators of function, in community-dwelling adults. PMID:21288235

  2. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities.

    PubMed

    Kagawa, S; Natsuizaka, M; Whelan, K A; Facompre, N; Naganuma, S; Ohashi, S; Kinugasa, H; Egloff, A M; Basu, D; Gimotty, P A; Klein-Szanto, A J; Bass, A J; Wong, K-K; Diehl, J A; Rustgi, A K; Nakagawa, H

    2015-04-30

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.

  3. Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity

    SciTech Connect

    Catania, Annunziata; Iavarone, Carlo; Carlomagno, Stella M.; Chiariello, Mario . E-mail: chiariel@unina.it

    2006-05-05

    Histone deacetylases (HDACs) are key regulatory enzymes involved in the control of gene expression and their inhibition by specific drugs has been widely correlated to cell cycle arrest, terminal differentiation, and apoptosis. Here, we investigated whether HDAC activity was required for PDGF-dependent signal transduction and cellular proliferation. Exposure of PDGF-stimulated NIH3T3 fibroblasts to the HDAC inhibitor trichostatin A (TSA) potently repressed the expression of a group of genes correlated to PDGF-dependent cellular growth and pro-survival activity. Moreover, we show that TSA interfered with STAT3-dependent transcriptional activity induced by PDGF. Still, neither phosphorylation nor nuclear translocation and DNA-binding in vitro and in vivo of STAT3 were affected by using TSA to interfere with PDGF stimulation. Finally, TSA treatment resulted in the suppression of PDGF-dependent cellular proliferation without affecting cellular survival of NIH3T3 cells. Our data indicate that inhibition of HDAC activity antagonizes the mitogenic effect of PDGF, suggesting that these drugs may specifically act on the expression of STAT-dependent, PDGF-responsive genes.

  4. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  5. The Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity

    PubMed Central

    Yu, Tian; Malugin, Alexander; Ghandehari, Hamidreza

    2011-01-01

    Understanding the toxicity of silica nanoparticles (SiO2) on the cellular level is crucial for rational design of these nanomaterials for biomedical applications. Herein, we explore the impacts of geometry, porosity and surface charge of SiO2 on cellular toxicity and hemolytic activity. Nonporous Stöber silica nanospheres (115 nm diameter), mesoporous silica nanospheres (120 nm diameter, aspect ratio 1), mesoporous silica nanorods with aspect ratio of 2, 4 and 8 (width by length 80 × 200 nm, 150 × 600 nm, 130 × 1000 nm) as well as their cationic counterparts were evaluated on macrophages, lung carcinoma cells, and human erythrocytes. It was shown that the toxicity of SiO2 is cell-type dependent and that surface charge and pore size govern cellular toxicity. Using inductively coupled plasma mass spectrometry, the cellular association of SiO2 was quantitated with the association amount increasing in the following order: mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified nonporous Stöber SiO2 < nonporous Stöber SiO2. Geometry did not seem to influence the extent of SiO2 association at early or extended time points. The level of cellular association of the nanoparticles was directly linked to the extent of plasma membrane damage, suggesting a biological cause-and-effect relationship. Hemolysis assay showed that the hemolytic activity was porosity- and geometry- dependent for bare SiO2 and surface charge-dependent for amine-modified SiO2. A good correlation between hemolytic activity and cellular association was found on a similar dosage basis. These results can provide useful guidelines for the rational design of SiO2 in nanomedicine. PMID:21630682

  6. Under lock and key: Spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes

    PubMed Central

    Burianek, Lauren E.; Soderling, Scott H.

    2013-01-01

    WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development. PMID:23291261

  7. Mycoplasma fermentans Inhibits the Activity of Cellular DNA Topoisomerase I by Activation of PARP1 and Alters the Efficacy of Its Anti-Cancer Inhibitor

    PubMed Central

    Afriat, Reuven; Horowitz, Shulamith; Priel, Esther

    2013-01-01

    To understand the effects of the interaction between Mycoplasma and cells on the host cellular function, it is important to elucidate the influences of infection of cells with Mycoplasma on nuclear enzymes such as DNA Topoisomerase type I (Topo I). Human Topo I participates in DNA transaction processes and is the target of anti-cancer drugs, the camptothecins (CPTs). Here we investigated the mechanism by which infection of human tumor cells with Mycoplasma fermentans affects the activity and expression of cellular Topo I, and the anti-cancer efficacy of CPT. Human cancer cells were infected or treated with live or sonicated M. fermentans and the activity and expression of Topo I was determined. M. fermentans significantly reduced (by 80%) Topo I activity in the infected/treated tumor cells without affecting the level of Topo I protein. We demonstrate that this reduction in enzyme activity resulted from ADP-ribosylation of the Topo I protein by Poly-ADP-ribose polymerase (PARP-1). In addition, pERK was activated as a result of the induction of the MAPK signal transduction pathway by M. fermentans. Since PARP-1 was shown to be activated by pERK, we concluded that M. fermentans modified the cellular Topo I activity by activation of PARP-I via the induction of the MAPK signal transduction pathway. Moreover, the infection of tumor cells with M. fermentans diminished the inhibitory effect of CPT. The results of this study suggest that modification of Topo I activity by M. fermentans may alter cellular gene expression and the response of tumor cells to Topo I inhibitors, influencing the anti-cancer capacity of Topo I antagonists. PMID:24013388

  8. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions.

    PubMed

    Song, Xueli; Xin, Xing; Huang, Wenpo

    2012-05-01

    The paper discusses exponential stability of distributed delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions. By relative nonlinear measure method, some novel criteria are obtained for the uniqueness and exponential stability of the equilibrium point. Our method abandons usual assumptions on global Lipschitz continuity, boundedness and monotonicity of activation functions. Our results are generalization and improvement of some existing ones. Finally, two examples and their simulations are presented to illustrate the correctness of our analysis.

  9. The inactive-active phase transition in the noisy additive (exclusive-or) probabilistic cellular automaton

    NASA Astrophysics Data System (ADS)

    Mendonça, J. Ricardo G.

    2016-07-01

    We investigate the inactive-active phase transition in an array of additive (exclusive-or) cellular automata (CA) under noise. The model is closely related with the Domany-Kinzel (DK) probabilistic cellular automaton (PCA), for which there are rigorous as well as numerical estimates on the transition probabilities. Here, we characterize the critical behavior of the noisy additive cellular automaton by mean field analysis and finite-size scaling and show that its phase transition belongs to the directed percolation universality class of critical behavior. As a by-product of our analysis, we argue that the critical behavior of the noisy elementary CA 90 and 102 (in Wolfram’s enumeration scheme) must be the same. We also perform an empirical investigation of the mean field equations to assess their quality and find that away from the critical point (but not necessarily very far away) the mean field approximations provide a reasonably good description of the dynamics of the PCA.

  10. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    SciTech Connect

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki . E-mail: yk-kim@korea.ac.kr

    2007-05-18

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway.

  11. Universal leukoreduction of cellular and plasma components: process control and performance of the leukoreduction process.

    PubMed

    Masse, M

    2001-06-01

    Many countries in Europe and over the world are currently or will be concerned in the near future, by the implementation of universal leukoreduction (ULR) for red blood cells (RBC), platelets (PT) and now also for plasma. Recommended by several advisory committees, this decision to implement ULR must be considered as a recognition of the benefit of early leukocyte removal, and also as a precautionary measure to increase blood safety. The leukodepletion technology for RBC, PT and plasma has become increasingly more elaborated and integrated in the collection or in the component preparation process. To reach this aim and to assure that the end-products meet local specifications (1 or 5 x 10(6) residual leukocytes), a process control and validation program for leukoreduction has been described in the specific guidelines. Tested on a wide scale by a group of centers, flow cytometry is emerging as reference method for residual leukocyte enumeration. Validation protocols (linearity, precision, accuracy) have been defined in numerous national or international studies (PSL and BEST Working Party). The sensitivity of the method is greatly improved by concentration of the sample, with a detection limit equivalent to 10 cells/mL for RBC or PT, and 0.5 cells/mL for plasma. Furthermore, monitoring of the performance of the leukoreduction process includes a quality control program based on a general statistical model with a parametric or non parametric approach, sampling plan, ongoing control, process capability assessment, confidence limit, detection of failure, and estimation of the non conforming units rate.

  12. Histone H3.3 and its proteolytically processed form drive a cellular senescence program

    PubMed Central

    Duarte, Luis F.; Young, Andrew R. J.; Wang, Zichen; Wu, Hsan-Au; Panda, Taniya; Kou, Yan; Kapoor, Avnish; Hasson, Dan; Mills, Nicholas R.; Ma’ayan, Avi; Narita, Masashi; Bernstein, Emily

    2014-01-01

    The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Using models of oncogene-induced and replicative senescence, here we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first twenty-one amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence. PMID:25394905

  13. Linking Cellular and Mechanical Processes in Articular Cartilage Lesion Formation: A Mathematical Model

    PubMed Central

    Kapitanov, Georgi I.; Wang, Xiayi; Ayati, Bruce P.; Brouillette, Marc J.; Martin, James A.

    2016-01-01

    Post-traumatic osteoarthritis affects almost 20% of the adult US population. An injurious impact applies a significant amount of physical stress on articular cartilage and can initiate a cascade of biochemical reactions that can lead to the development of osteoarthritis. In our effort to understand the underlying biochemical mechanisms of this debilitating disease, we have constructed a multiscale mathematical model of the process with three components: cellular, chemical, and mechanical. The cellular component describes the different chondrocyte states according to the chemicals these cells release. The chemical component models the change in concentrations of those chemicals. The mechanical component contains a simulation of a blunt impact applied onto a cartilage explant and the resulting strains that initiate the biochemical processes. The scales are modeled through a system of partial-differential equations and solved numerically. The results of the model qualitatively capture the results of laboratory experiments of drop-tower impacts on cartilage explants. The model creates a framework for incorporating explicit mechanics, simulated by finite element analysis, into a theoretical biology framework. The effort is a step toward a complete virtual platform for modeling the development of post-traumatic osteoarthritis, which will be used to inform biomedical researchers on possible non-invasive strategies for mitigating the disease. PMID:27843894

  14. Evidence of parasexual activity in "asexual amoebae" Cochliopodium spp. (Amoebozoa): extensive cellular and nuclear fusion.

    PubMed

    Tekle, Yonas I; Anderson, O Roger; Lecky, Ariel F

    2014-09-01

    The majority of microbial eukaryotes have long been considered asexual, though new evidence indicates sex, or sexual-like (parasexual) behaviors that deviate from the usual union of two gametes, among other variant aspects. Over a dozen amoebozoans are implicated to have sexual stages. However, the exact mechanism by which sex occurs in these lineages remains elusive. This is mainly due to the diverse quality and cryptic nature of their life cycle. In this study we present evidence of some previously unreported aspects of the life cycle of an amoeba, Cochliopodium, that undergoes unusual intraspecific interactions using light microscopy and immunocytochemistry. Similar to other amoebozoans, Cochliopodium, is considered asexual with no published reports of sex or parasexuality. We also investigated environmental conditions that govern the observed intraspecific interactions. Both light microscopic and immunocytochemistry evidence demonstrates Cochliopodium undergoes cellular fusion (plasmogamy) and nuclear fusion (karyogamy). Large plasmodia eventually undergo karyogamy and contain large fused, polyploid, nuclei. These are observed to fragment, subsequently, by karyotomy (nuclear fission) and cytoplasmic fission to yield uninucleated amoebae. This process could lead to a non-meiotic, parasexual exchange of chromosomes in Cochliopodium. These findings strongly suggest that Cochliopodium is involved in parasexual activity and should no longer be considered strictly asexual.

  15. Simulation of abrasive water jet cutting process: Part 2. Cellular automata approach

    NASA Astrophysics Data System (ADS)

    Orbanic, Henri; Junkar, Mihael

    2004-11-01

    A new two-dimensional cellular automata (CA) model for the simulation of the abrasive water jet (AWJ) cutting process is presented. The CA calculates the shape of the cutting front, which can be used as an estimation of the surface quality. The cutting front is formed based on material removal rules and AWJ propagation rules. The material removal rule calculates when a particular part of the material will be removed with regard to the energy of AWJ. The AWJ propagation rule calculates the distribution of AWJ energy through CA by using a weighted average. The modelling with CA also provides a visual narrative of the moving of the cutting front, which is hard to observe in real process. The algorithm is fast and has been successfully tested in comparison to cutting fronts obtained with cutting experiments of aluminium alloy.

  16. A Memristive Multilayer Cellular Neural Network With Applications to Image Processing.

    PubMed

    Hu, Xiaofang; Feng, Gang; Duan, Shukai; Liu, Lu

    2016-05-13

    The memristor has been extensively studied in electrical engineering and biological sciences as a means to compactly implement the synaptic function in neural networks. The cellular neural network (CNN) is one of the most implementable artificial neural network models and capable of massively parallel analog processing. In this paper, a novel memristive multilayer CNN (Mm-CNN) model is presented along with its performance analysis and applications. In this new CNN design, the memristor crossbar circuit acts as the synapse, which realizes one signed synaptic weight with a pair of memristors and performs the synaptic weighting compactly and linearly. Moreover, the complex weighted summation is executed in an efficient way with a proper design of Mm-CNN cell circuits. The proposed Mm-CNN has several merits, such as compactness, nonvolatility, versatility, and programmability of synaptic weights. Its performance in several image processing applications is illustrated through simulations.

  17. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review).

    PubMed

    Zhang, Sisen; Wu, Lihua

    2015-11-01

    Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), a gene exclusively expressed in the brain during embryonic stages but not in brains of adult mice, is an important cytoskeletal protein and regarded as a 'router/hub' in cellular signal transduction processes connecting external stimulation signals with downstream target proteins that can directly promote tumor metastasis. Numerous studies showed that NEDD9 has an essential role in cell proliferation, apoptosis, adhesion, migration and invasion. The roles of NEDD9, including the underlying mechanisms of its regulation of cell migration, its distinctive functions in various tumor stages and its association with other diseases, are required to be elucidated at large. Future studies of NEDD9 may provide a more profound understanding of the development of tumor invasiveness and NEDD9 may serve as a potential novel target for tumor therapy. The present review examined the significant roles of NEDD9 in the abovementioned processes.

  18. Signal processing for molecular and cellular biological physics: an emerging field

    PubMed Central

    Little, Max A.; Jones, Nick S.

    2013-01-01

    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  19. Conflict game in evacuation process: A study combining Cellular Automata model

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoping; Cheng, Yuan

    2011-03-01

    The game-theoretic approach is an essential tool in the research of conflicts of human behaviors. The aim of this study is to research crowd dynamic conflicts during evacuation processes. By combining a conflict game with a Cellular Automata model, the following factors such as rationality, herding effect and conflict cost are taken into the research on frequency of each strategy of evacuees, and evacuation time. Results from Monte Carlo simulations show that (i) in an emergency condition, rationality leads to “vying” behaviors and inhibited “polite” behavior; (ii) high herding causes a crowd of high rationality (especially in normal circumstances) to become more “vying” in behavior; (iii) the high-rationality crowd is shown to spend more evacuation time than a low-rationality crowd in emergency situations. This study provides a new perspective to understand conflicts in evacuation processes as well as the rationality of evacuees.

  20. AMP-activated protein kinase regulates L-arginine mediated cellular responses

    PubMed Central

    2013-01-01

    Background Our prior study revealed the loss in short-term L-Arginine (ARG) therapeutic efficacy after continuous exposure; resulting in tolerance development, mediated by endothelial nitric oxide synthase (eNOS) down-regulation, secondary to oxidative stress and induced glucose accumulation. However, the potential factor regulating ARG cellular response is presently unknown. Method Human umbilical vein endothelial cells were incubated with 100 μM ARG for 2 h in buffer (short-term or acute), or for 7 days in culture medium and challenged for 2 h in buffer (continuous or chronic), in the presence or absence of other agents. eNOS activity was determined by analyzing cellular nitrite/nitrate (NO2–/NO3–), and AMP-activated protein kinase (AMPK) activity was assayed using SAMS peptide. 13C6 glucose was added to medium to measure glucose uptake during cellular treatments, which were determined by LC-MS/MS. Cellular glucose was identified by o-toluidine method. Superoxide (O2•–) was identified by EPR-spin-trap, and peroxynitrite (ONOO–) was measured by flow-cytometer using aminophenyl fluorescein dye. Results Short-term incubation of cells with 100 μM ARG in the presence or absence of 30 μM L-NG-Nitroarginine methyl ester (L-NAME) or 30 μM AMPK inhibitor (compound C, CMP-C) increased cellular oxidative stress and overall glucose accumulation with no variation in glucose transporter-1 (GLUT-1), or AMPK activity from control. The increase in total NO2–/NO3– after 2 h 100 μM ARG exposure, was suppressed in cells co-incubated with 30 μM CMP-C or L-NAME. Long-term exposure of ARG with or without CMP-C or L-NAME suppressed NO2–/NO3–, glucose uptake, GLUT-1, AMPK expression and activity below control, and increased overall cellular glucose, O2•– and ONOO–. Gluconeogenesis inhibition with 30 μM 5-Chloro-2-N-2,5-dichlorobenzenesulfonamido-benzoxazole (CDB) during ARG exposure for 2 h maintained overall cellular glucose to control, but increased

  1. Active Inference: A Process Theory.

    PubMed

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; Pezzulo, Giovanni

    2017-01-01

    This article describes a process theory based on active inference and belief propagation. Starting from the premise that all neuronal processing (and action selection) can be explained by maximizing Bayesian model evidence-or minimizing variational free energy-we ask whether neuronal responses can be described as a gradient descent on variational free energy. Using a standard (Markov decision process) generative model, we derive the neuronal dynamics implicit in this description and reproduce a remarkable range of well-characterized neuronal phenomena. These include repetition suppression, mismatch negativity, violation responses, place-cell activity, phase precession, theta sequences, theta-gamma coupling, evidence accumulation, race-to-bound dynamics, and transfer of dopamine responses. Furthermore, the (approximately Bayes' optimal) behavior prescribed by these dynamics has a degree of face validity, providing a formal explanation for reward seeking, context learning, and epistemic foraging. Technically, the fact that a gradient descent appears to be a valid description of neuronal activity means that variational free energy is a Lyapunov function for neuronal dynamics, which therefore conform to Hamilton's principle of least action.

  2. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    PubMed Central

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-01-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential

  3. Fatigue failure of osteocyte cellular processes: implications for the repair of bone.

    PubMed

    Dooley, C; Cafferky, D; Lee, T C; Taylor, D

    2014-01-25

    The physical effects of fatigue failure caused by cyclic strain are important and for most materials well understood. However, nothing is known about this mode of failure in living cells. We developed a novel method that allowed us to apply controlled levels of cyclic displacement to networks of osteocytes in bone. We showed that under cyclic loading, fatigue failure takes place in the dendritic processes of osteocytes at cyclic strain levels as low as one tenth of the strain needed for instantaneous rupture. The number of cycles to failure was inversely correlated with the strain level. Further experiments demonstrated that these failures were not artefacts of our methods of sample preparation and testing, and that fatigue failure of cell processes also occurs in vivo. This work is significant as it is the first time it has been possible to conduct fatigue testing on cellular material of any kind. Many types of cells experience repetitive loading which may cause failure or damage requiring repair. It is clinically important to determine how cyclic strain affects cells and how they respond in order to gain a deeper understanding of the physiological processes stimulated in this manner. The more we understand about the natural repair process in bone the more targeted the intervention methods may become if disruption of the repair process occurred. Our results will help to understand how the osteocyte cell network is disrupted in the vicinity of matrix damage, a crucial step in bone remodelling.

  4. A Cellular Automata Based Model for Simulating Surface Hydrological Processes in Catchments

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Baumgartl, Thomas; Huang, Longbin; Weatherley, Dion

    2014-05-01

    The Runoff Model Based on Cellular Automata (RunCA) has been developed to simulate the surface hydrological processes at the catchment scale by integrating basic cellular automata (CA) rules with fundamental measureable hydraulic properties. In this model, a two-dimensional lattice composed of a series of rectangular cells was employed to cover the study area. Runoff production within each cell was simulated by determining its water depth based on the rainfall, interception, infiltration and the balance between inflows and outflows. Particularly different infiltration equations were incorporated to make the model applicable for both single rainfall event (short term simulation) and multiple rainfall events (long term simulation). The distribution of water flow among cells was determined by applying CA transition rules based on the improved minimization-of-difference algorithm and the calculated spatially and temporally varied flow velocities according to the Manning's equation. RunCA was tested and validated at two catchments (Pine Glen Basin and Snow Shoe Basin, USA) with data taken from literature. The predicted hydrographs agreed well with the measured results. Simulated flow maps also demonstrated the model capability in capturing both the spatial and temporal variations in the runoff process. Model sensitivity analysis results showed that the simulated hydrographs were mostly influenced by the input parameters that represent the final steady infiltration rate, as well as the model settings of time step and cell size. Compared to some conventional distributed hydrologic models that calculate the runoff routing process by solving complex continuity equations, this model integrates a novel method and is expected to be more computationally efficient as it is based on simple CA transition rules when determining the flow distribution.

  5. NMDA-R inhibition affects cellular process formation in Tilapia melanocytes; a model for pigmented adrenergic neurons in process formation and retraction.

    PubMed

    Ogundele, Olalekan Michael; Okunnuga, Adetokunbo Adedotun; Fabiyi, Temitope Deborah; Olajide, Olayemi Joseph; Akinrinade, Ibukun Dorcas; Adeniyi, Philip Adeyemi; Ojo, Abiodun Ayodele

    2014-06-01

    elongation of secondary cellular processes (highly branched) from primary major processes (Less branched); co-incubation of glutamate and ketamine induced short and highly branched process formation. Cyanide toxicity induced degeneration and reduction of cell size while co-treatment of cyanide and ketamine gave changes similar to that observed in glutamate-ketamine co-incubation. NMDA-R is present in the melanocytes. Activation of the receptor reduced elongation process, while inhibition of the receptor facilitated cell process elongation and branching. This confirms that like pigmented adrenergic cells of the nervous system, this cell contains NMDA-R and this receptor also regulates cell process elongation. The study also showed that inhibition of NMDA-R in melanocytes gave opposite outcomes to the role of the receptor in developing neurons; a function that is protective in adult neurons.

  6. Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa.

    PubMed

    Moradali, M Fata; Ghods, Shirin; Rehm, Bernd H A

    2017-03-03

    The exopolysaccharide, alginate, produced by the opportunistic human pathogen Pseudomonas aeruginosa represents a survival advantage by contributing to formation of characteristic biofilms during infection. Membrane anchored proteins Alg8 (catalytic subunit) and Alg44 (co-polymerase) constitute the alginate polymerase which is being activated by the second messenger molecule c-di-GMP, but the mechanism of activation remains elusive. To shed light on the c-di-GMP mediated activation of alginate polymerization in vivo, an in silico structural model of Alg8 fused to the c-di-GMP binding PilZ domain informed by the structure of cellulose synthase, BcsA, was developed. This structural model was probed by site-specific mutagenesis and different cellular levels of c-di-GMP. Results suggested that c-di-GMP-mediated activation of alginate polymerization involves amino acids residing at two loops including H323 (loop A), T457 and E460 (loop B) surrounding the catalytic site in the predicted model. Activity of respective Alg8 variants suggested that c-di-GMP-mediated control of substrate access to the catalytic site of Alg8 is dissimilar to the known activation mechanism of BcsA. Alg8 variants responded differently to various c-di-GMP levels while MucR imparted c-di-GMP for activation of alginate polymerase. Furthermore, we showed that Alg44 co-polymerase constituted a stable dimer, with its periplasmic domains required for protein localization, alginate polymerization and modification. Superfolder GFP fusions of Alg8 and Alg44 showed a non-uniform, punctuate and patchy arrangement of both proteins surrounding the cell. Overall, this study provides insights into the c-di-GMP mediated activation of alginate polymerization while assigning functional roles to Alg8 and Alg44 including their subcellular localization and distribution.IMPORTANCE The exopolysaccharide, alginate, is an important biofilm component of the opportunistic human pathogen P. aeruginosa and the principle

  7. LED-activated pheophorbide a induces cellular destruction of colon cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, C. S.; Leung, A. W. N.; Liu, L.; Xia, X. S.

    2010-07-01

    Pheophorbide a (Pa) from Chinese herbal medicine Scutellaria Barbata and Silkworm Excreta shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that LED-activated Pa induced the cellular destruction of colon cancer HT-29 cells. The results showed that Pa resulted in a drug-dose dependent photocytotoxicity in the HT-29 cells, meaning the photocytotoxicity of Pa depends on the drug concentration (0 - 2 μM). We further investigated the apoptosis of the HT-29 cells 18 hours after photosensitization of Pa using a confocal laser scanning microscopy with Hoechst 33258 staining. These data demonstrated that LED-activated Pa could significantly induce the cellular destruction of the HT-29 cells.

  8. Light-activated hypericin induces cellular destruction of nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Xu, C. S.; Leung, A. W. N.

    2010-01-01

    Hypericin from Hypericum perforatum plants shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that light-activated hypericin induced the cellular destruction of nasopharyngeal carcinoma cells. The result showed that hypericin resulted in a drug- and light-dose dependent cytotoxicity in the CNE-2 cells, meaning the photocytotoxicity of hypericin depends on both of the drug concentration (0 - 2.5 μM) and light-doses (1 - 8 J/cm2). We further investigated the apoptosis of the CNE-2 cells 8 hours after photosensitization of hypericin using fluorescence microscopy with Hoechst 33258 staining. Flow cytometry with annexin V-FITC and PI staining was used to analyze early and late apoptosis. These data demonstrated that light-activated hypericin could significantly lead to the cellular destruction of the CNE-2 cells and induce early apoptosis as a prominent mode of cell death.

  9. Dynamic Simulation of 1D Cellular Automata in the Active aTAM.

    PubMed

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2015-07-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location.

  10. Dynamic Simulation of 1D Cellular Automata in the Active aTAM

    PubMed Central

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2016-01-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location. PMID:27789918

  11. Preliminary cellular-automata forecast of permit activity from 1998 to 2010, Idaho and Western Montana

    USGS Publications Warehouse

    Raines, G.L.; Zientek, M.L.; Causey, J.D.; Boleneus, D.E.

    2002-01-01

    For public land management in Idaho and western Montana, the U.S. Forest Service (USFS) has requested that the U.S. Geological Survey (USGS) predict where mineral-related activity will occur in the next decade. Cellular automata provide an approach to simulation of this human activity. Cellular automata (CA) are defined by an array of cells, which evolve by a simple transition rule, the automaton. Based on exploration trends, we assume that future exploration will focus in areas of past exploration. Spatial-temporal information about mineral-related activity, that is permits issued by USFS and Bureau of Land Management (BLM) in the last decade, and spatial information about undiscovered resources, provide a basis to calibrate a CA. The CA implemented is a modified annealed voting rule that simulates mineral-related activity with spatial and temporal resolution of 1 mi2 and 1 year based on activity from 1989 to 1998. For this CA, the state of the economy and exploration technology is assumed constant for the next decade. The calibrated CA reproduces the 1989-1998-permit activity with an agreement of 94%, which increases to 98% within one year. Analysis of the confusion matrix and kappa correlation statistics indicates that the CA underestimates high activity and overestimates low activity. Spatially, the major differences between the actual and calculated activity are that the calculated activity occurs in a slightly larger number of small patches and is slightly more uneven than the actual activity. Using the calibrated CA in a Monte Carlo simulation projecting from 1998 to 2010, an estimate of the probability of mineral activity shows high levels of activity in Boise, Caribou, Elmore, Lincoln, and western Valley counties in Idaho and Beaverhead, Madison, and Stillwater counties in Montana, and generally low activity elsewhere. ?? 2002 International Association for Mathematical Geology.

  12. Morbilliviruses Use Signaling Lymphocyte Activation Molecules (CD150) as Cellular Receptors

    PubMed Central

    Tatsuo, Hironobu; Ono, Nobuyuki; Yanagi, Yusuke

    2001-01-01

    Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderstepoort vaccine strain and two B95a (marmoset B cell line)-isolated strains of canine distemper virus caused extensive cytopathic effects in normally resistant CHO (Chinese hamster ovary) cells after expression of canine SLAM. The Ako vaccine strain of rinderpest virus produced strong cytopathic effects in bovine SLAM-expressing CHO cells. The data on entry with vesicular stomatitis virus pseudotypes bearing measles, canine distemper, or rinderpest virus envelope proteins were consistent with development of cytopathic effects in SLAM-expressing CHO cell clones after infection with the respective viruses, confirming that SLAM acts at the virus entry step (as a cellular receptor). Furthermore, most measles, canine distemper, and rinderpest virus strains examined could any use of the human, canine, and bovine SLAMs to infect cells. Our findings suggest that the use of SLAM as a cellular receptor may be a property common to most, if not all, morbilliviruses and explain the lymphotropism and immunosuppressive nature of morbilliviruses. PMID:11390585

  13. Cellular Localization and Processing of Primary Transcripts of Exonic MicroRNAs

    PubMed Central

    Slezak-Prochazka, Izabella; Kluiver, Joost; de Jong, Debora; Kortman, Gertrud; Halsema, Nancy; Poppema, Sibrand; Kroesen, Bart-Jan; van den Berg, Anke

    2013-01-01

    Processing of miRNAs occurs simultaneous with the transcription and splicing of their primary transcripts. For the small subset of exonic miRNAs it is unclear if the unspliced and/or spliced transcripts are used for miRNA biogenesis. We assessed endogenous levels and cellular location of primary transcripts of three exonic miRNAs. The ratio between unspliced and spliced transcripts varied markedly, i.e. >1 for BIC, <1 for pri-miR-146a and variable for pri-miR-22. Endogenous unspliced transcripts were located almost exclusively in the nucleus and thus available for miRNA processing for all three miRNAs. Endogenous spliced pri-miRNA transcripts were present both in the nucleus and in the cytoplasm and thus only partly available for miRNA processing. Overexpression of constructs containing the 5’ upstream exonic or intronic sequence flanking pre-miR-155 resulted in strongly enhanced miR-155 levels, indicating that the flanking sequence does not affect processing efficiency. Exogenously overexpressed full-length spliced BIC transcripts were present both in the nucleus and in the cytoplasm, were bound by the Microprocessor complex and resulted in enhanced miR-155 levels. We conclude that both unspliced and spliced transcripts of exonic miRNAs can be used for pre-miRNA cleavage. Splicing and cytoplasmic transport of spliced transcripts may present a mechanism to regulate levels of exonic microRNAs. PMID:24073292

  14. [Distribution of carbon isotopes ((13)C/(12)C) in cells and temporal organization of cellular processes].

    PubMed

    Ivlev, A A

    1991-01-01

    Recent studies on fractionation of carbon isotopes in biological systems are reviewed. It follows that direct experimental proofs have been obtained that 1) basic fractionation of carbon isotopes in the cell is related to isotope effect in pyruvate decarboxylation; 2) fractionation of carbon isotopes in the above reaction in vivo proceeds with exhausting substrate pool. The latter provides natural relationship between metabolites isotope distribution and sequence of their synthesis in the cell cycle, or with the temporal organization of cellular metabolism. The non-steady and periodic pattern of pyruvate decarboxylation due to the exhausting substrate pool well agrees with the existing notions on reciprocal oscillations in the cell glycolytic chain. Experimental data are presented corroborating indirectly the existence of oscillations in bacterial cells. Earlier proposed model of the mechanism of carbon isotope fractionation based on the above principles can be used for analysing changes in isotopic characteristics of the organisms and interpreting their relations with metabolic processes.

  15. Hierarchical random cellular neural networks for system-level brain-like signal processing.

    PubMed

    Kozma, Robert; Puljic, Marko

    2013-09-01

    Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms.

  16. SARS-CoV nucleocapsid protein interacts with cellular pyruvate kinase protein and inhibits its activity.

    PubMed

    Wei, Wei-Yen; Li, Hui-Chun; Chen, Chiung-Yao; Yang, Chee-Hing; Lee, Shen-Kao; Wang, Chia-Wen; Ma, Hsin-Chieh; Juang, Yue-Li; Lo, Shih-Yen

    2012-04-01

    The pathogenesis of SARS-CoV remains largely unknown. To study the function of the SARS-CoV nucleocapsid protein, we have conducted a yeast two-hybrid screening experiment to identify cellular proteins that may interact with the SARS-CoV nucleocapsid protein. Pyruvate kinase (liver) was found to interact with SARS-CoV nucleocapsid protein in this experiment. The binding domains of these two proteins were also determined using the yeast two-hybrid system. The physical interaction between the SARS-CoV nucleocapsid and cellular pyruvate kinase (liver) proteins was further confirmed by GST pull-down assay, co-immunoprecipitation assay and confocal microscopy. Cellular pyruvate kinase activity in hepatoma cells was repressed by SARS-CoV nucleocapsid protein in either transiently transfected or stably transfected cells. PK deficiency in red blood cells is known to result in human hereditary non-spherocytic hemolytic anemia. It is reasonable to assume that an inhibition of PKL activity due to interaction with SARS-CoV N protein is likely to cause the death of the hepatocytes, which results in the elevation of serum alanine aminotransferase and liver dysfunction noted in most SARS patients. Thus, our results suggest that SARS-CoV could reduce pyruvate kinase activity via its nucleocapsid protein, and this may in turn cause disease.

  17. Examining the connectivity between different cellular processes in the Barrett tissue microenvironment.

    PubMed

    Phelan, J J; Feighery, R; Eldin, O S; Meachair, S Ó; Cannon, A; Byrne, R; MacCarthy, F; O'Toole, D; Reynolds, J V; O'Sullivan, J

    2016-02-28

    In Barrett associated tumorigenesis, oxidative phosphorylation and glycolysis are reprogrammed early in the disease sequence and act mutually to promote disease progression. However, the link between energy metabolism and its connection with other central cellular processes within the Barrett microenvironment is unknown. The aim of this study was to examine the relationship between metabolism (ATP5B/GAPDH), hypoxia (HIF1α), inflammation (IL1β/SERPINA3), p53 and obesity status using in-vivo and ex-vivo models of Barrett oesophagus. At the protein level, ATP5B (r = 0.71, P < 0.0001) and p53 (r = 0.455, P = 0.015) were found to be strongly associated with hypoxia. In addition, levels of ATP5B (r = 0.53, P = 0.0031) and GAPDH (r = -0.39, P = 0.0357) were positively associated with p53 expression. Moreover, we demonstrate that ATP5B (r = 0.8, P < 0.0001) and GAPDH (r = 0.43, P = 0.022) were positively associated with IL1β expression. Interestingly, obesity was negatively associated with oxidative phosphorylation (r = -0.6016, P = 0.0177) but positively associated with glycolysis (r = 0.743, P = 0.0015). Comparable correlations were exhibited in the ex-vivo explant tissue between metabolism, p53, hypoxia, inflammation and angiogenesis (P < 0.05). We have shown that metabolism is closely linked with many cellular processes in the Barrett tissue microenvironment.

  18. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity.

    PubMed

    Li, Ruibin; Wang, Xiang; Ji, Zhaoxia; Sun, Bingbing; Zhang, Haiyuan; Chang, Chong Hyun; Lin, Sijie; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Li, Zongxi; Hwang, Angela A; Song, Tze-Bin; Xu, Run; Yang, Yang; Zink, Jeffrey I; Nel, André E; Xia, Tian

    2013-03-26

    Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These

  19. Differentiation of cellular processes involved in the induction and maintenance of stimulated neutrophil adherence.

    PubMed

    English, D; Gabig, T G

    1986-05-01

    Neutrophil adherence stimulated by phorbol myristate acetate (PMA) was investigated by quantitating the attachment of 51Cr-labeled neutrophils to plastic surfaces and to the endothelium of umbilical veins mounted in compartmentalized Lucite chambers. PMA-induced adherence could be functionally separated into an induction phase requiring cellular metabolism and a Mg++ dependent maintenance phase that was independent of cellular metabolism. Thus, metabolic inhibitors (N-ethylmaleimide, 2-deoxyglucose) blocked adherence when added to neutrophils prior to PMA, but did not cause detachment of cells adhering as a consequence of prior exposure to PMA. PMA failed to induce adherence of neutrophils incubated at low (0.4 degree C) temperature, but temperature reduction, even for prolonged periods, did not cause detachment of adherent cells. Thus, the attractive forces that mediate stimulated adherence persist independently of any sustained metabolic response to the inducing stimulus. However, removal of Mg++ from the media above adherent cells resulted in immediate detachment, indicating that the cation was required for the persistent expression or maintenance of the attractive forces involved. The extent of stimulated adherence correlated well with the extent of degranulation when rates were varied by limiting the incubation time or stimulus concentration. This correlation was not absolute; in the absence of Mg++, PMA induced degranulation normally but failed to enhance adherence. To explain these findings, we investigated the possibility that PMA-stimulated adherence was maintained by Mg++-dependent cellular adherence molecules released during exocytosis. Supernatants of stimulated neutrophils were devoid of adherence-promoting activity, and only weak activity was recovered in supernatants of mechanically disrupted neutrophils. PMA effectively stimulated the tight adherence of degranulated neutrophil cytoplasts to plastic surfaces and did so in the absence of stimulated

  20. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  1. The Interaction of the Gammaherpesvirus 68 orf73 Protein with Cellular BET Proteins Affects the Activation of Cell Cycle Promoters▿

    PubMed Central

    Ottinger, Matthias; Pliquet, Daniel; Christalla, Thomas; Frank, Ronald; Stewart, James P.; Schulz, Thomas F.

    2009-01-01

    Infection of mice with murine gammaherpesvirus 68 (MHV-68) provides a valuable animal model for gamma-2 herpesvirus (rhadinovirus) infection and pathogenesis. The MHV-68 orf73 protein has been shown to be required for the establishment of viral latency in vivo. This study describes a novel transcriptional activation function of the MHV-68 orf73 protein and identifies the cellular bromodomain containing BET proteins Brd2/RING3, Brd3/ORFX, and BRD4 as interaction partners for the MHV-68 orf73 protein. BET protein members are known to interact with acetylated histones, and Brd2 and Brd4 have been implicated in fundamental cellular processes, including cell cycle regulation and transcriptional regulation. Using MHV-68 orf73 peptide array assays, we identified Brd2 and Brd4 interaction sites in the orf73 protein. Mutation of one binding site led to a loss of the interaction with Brd2/4 but not the retinoblastoma protein Rb, to impaired chromatin association, and to a decreased ability to activate the BET-responsive cyclin D1, D2, and E promoters. The results therefore pinpoint the binding site for Brd2/4 in a rhadinoviral orf73 protein and suggest that the recruitment of a member of the BET protein family allows the MHV-68 orf73 protein to activate the promoters of G1/S cyclins. These findings point to parallels between the transcriptional activator functions of rhadinoviral orf73 proteins and papillomavirus E2 proteins. PMID:19244327

  2. Hyaluronan and dextran modified tubes resist cellular activation with blood contact.

    PubMed

    Eckmann, David M; Tsai, Irene Y; Tomczyk, Nancy; Weisel, John W; Composto, Russell J

    2013-08-01

    This study was undertaken to evaluate the effects of thin film hyaluronic acid and dextran surface coatings to blunt cellular activation in a laboratory model of extracorporeal blood circulation. The inner lumen surface of polyurethane (PU) and poly(vinyl) chloride (PVC) tubing was grafted with hyaluronic acid and dextran. Surfaces were characterized for the presence of the grafted layer using ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Persistence of the surface layer was maintained for up to 5 days of continuous exposure to shear flow using a Chandler loop apparatus. The Chandler loop method was used to study human whole blood activation activity. Whole blood aggregometry and flow cytometry measures of CD18, CD62L, CD62P, Annexin V and myeloperoxidase performed on blood samples exposed to the tubing for up to three hours were complemented by scanning electron microscopy (SEM) analysis of adherent cells and state of activation. In these studies commercial hospital products and uncoated PVC and PU tubes were used as controls. We found that hyaluranized PU and PVC conferred the greatest resistance to blood activation and that dextranization of the PU and PU tubing also provided significant diminution of the bioresponses measured. Based on our findings, we suggest that surface coating with hyaluronic acid or dextran acts as a potent shield from blood cellular activation during forms of extracorporeal circulation.

  3. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models

    PubMed Central

    Seervi, M; Joseph, J; Sobhan, P K; Bhavya, B C; Santhoshkumar, T R

    2011-01-01

    Mitochondrial cytochrome c (cyt. c) release and caspase activation are often impaired in tumors with Bcl-2 overexpression or Bax and Bak-defective status. Direct triggering of cell death downstream of Bax and Bak is an attractive strategy to kill such cancers. Small molecule compounds capable of direct caspase activation appear to be the best mode for killing such tumors. However, there is no precise model to screen such compounds. The currently employed cell-free systems possess the inherent drawback of lacking cellular contents and organelles that operate in integrating cell death signaling. We have developed highly refined cell-based approaches to validate direct caspase activation in cancer cells. Using this approach, we show that PAC-1 (first procaspase-activating compound), the first direct activator of procaspases identified in a cell-free system, in fact requires mitochondrial cyt. c release for triggering caspase activation similar to other antitumor agents. It can induce significant caspase activation and cell death in the absence of Bax and Bak, and in cells overexpressing Bcl-2 and Bcl-xL. This study for the first time defines precise criteria for the validation of direct caspase-activating compounds using specialized cellular models that is expected to accelerate the discovery of potential direct caspase activators. PMID:21900958

  4. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides

    SciTech Connect

    Brodie, A.E.; Reed, D.J. )

    1990-01-01

    The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.

  5. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models

    PubMed Central

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q.

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  6. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions

    PubMed Central

    Heistermann, Michael; Higham, James P.

    2015-01-01

    Studying immunity and immune function in ecology and evolution requires field studies, but there has been a dearth of non-invasive markers of immune activation available for studying large wild mammals. Recently, we analytically and biologically validated the measurement of urinary neopterin (NEO), a biomarker of cellular immune activation, in captive macaques. However, applying this to free-ranging settings is complicated by issues involving sample collection, processing, storage, and transport. Here, we collected urine samples from captive macaques and undertook experiments simulating common field issues. We tested the effects on urinary NEO sample measurements following: dirt and faecal contamination; storage at room temperature; differences in processing and long-term storage methods (freezing, lyophilising, blotting onto filter paper); and freeze-thaw cycles. Our results show that concentrations of urinary NEO are highly stable – they are not affected by soil or faecal contamination, can be collected on filter paper and stored for many months frozen or lyophilised with minimal effect, and are resistant to multiple 24 hr freeze-thaws. With the addition of a biocidal preservative, concentrations are even stable at room temperature for long periods. Urinary NEO is remarkably resilient, and is highly suitable for non-invasive field studies of cellular immune responses in wild large mammals. PMID:26549509

  7. Invariant Measures and Convergence Properties for Cellular Automaton 184 and Related Processes

    NASA Astrophysics Data System (ADS)

    Belitsky, Vladimir; Ferrari, Pablo A.

    2005-02-01

    Our results concern long time limit properties of a deterministic dynamics that is common for a wide class of processes that have been studied so far during at least last two decades. The most widely known process from this class is a cellular automaton that acquired number 184 in the classification of S. Wolfram. This CA 184 is being intensively used to model vehicular traffic. However, our results are mainly derived with help of another process that offers a helpful insight into the studied dynamics, it is a so-called Ballistic Annihilation Model (abbreviated by BA). BA is a model for chemical reaction A+B → inert. In BA, A and B-type particles move in opposite directions with velocities 1 and -1, respectively, and annihilate upon collisions. Certain results concerning BA and CA 184 are also formulated in terms of another process known as a Model of Surface Growth (SG, for short); the surface shape in this process behaves as the integrated profile of particle distribution in CA 184. Our results are as follows. First, we characterize the invariant measures of the dynamics in interest. The bulk of our effort is devoted to the characterization of those of them that are not translation invariant; we call them phase separating invariant measures. In the case of BA, such measures are concentrated on the configurations consisting of two converging infinite blocks of (not necessarily adjacent) particles. In the case of CA 184, a phase separating measure describes the transition from free traffic phase to jammed phase. We also analyze domains of attraction of invariant measures and rates of convergence to them. This analysis then allows us to express the long time limit of particle current in CA 184 as a function of certain characteristics of its initial distribution, when it is translation invariant. This expression has been used in a companion paper (V. Belitsky, J. Krug, E. J. Neves and G. Schütz, A cellular automaton model for two-lane traffic, J. Stat. phys.103

  8. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.).

    PubMed

    Wang, Huailing; Guo, Xinbo; Hu, Xiaodan; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-02-15

    Numerous reports have demonstrated that the consumption of fruits and vegetables is beneficial for the human health. Blueberries, in particular, are rich in phytochemicals including free and bound forming. Phytochemical profiles of 14 varieties of blueberry were compared in this study. 12 compounds were analyzed and had significant changes in blueberry fruits. Total antioxidant activities in different blueberry varieties varied about 2.6times by oxygen radical absorbance capacity (ORAC) assay, and 2times by peroxyl radical scavenging capacity (PSC) assay. The cellular antioxidant activities (CAA) in different varieties varied about 3.9times without phosphate buffer saline (PBS) wash, and 4.7times with PBS wash by CAA assay. Blueberry extracts had potent antiproliferative activities against HepG2 human liver cancer cells, indicating the potential protective benefits associated with their use as functional foods. The anti-proliferative activity was observed to be dose-dependent in blueberry extracts.

  9. Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers.

    PubMed

    Doostmohammadi, Amin; Thampi, Sumesh P; Saw, Thuan B; Lim, Chwee T; Ladoux, Benoit; Yeomans, Julia M

    2015-10-07

    We introduce the notion of cell division-induced activity and show that the cell division generates extensile forces and drives dynamical patterns in cell assemblies. Extending the hydrodynamic models of lyotropic active nematics we describe turbulent-like velocity fields that are generated by the cell division in a confluent monolayer of cells. We show that the experimentally measured flow field of dividing Madin-Darby Canine Kidney (MDCK) cells is reproduced by our modeling approach. Division-induced activity acts together with intrinsic activity of the cells in extensile and contractile cell assemblies to change the flow and director patterns and the density of topological defects. Finally we model the evolution of the boundary of a cellular colony and compare the fingering instabilities induced by cell division to experimental observations on the expansion of MDCK cell cultures.

  10. Photomodulation of cellular and subcellular activities by He-Ne laser

    NASA Astrophysics Data System (ADS)

    Moro, Loredana; Greco, Margherita; Marra, Ersilia; Passarella, Salvatore

    2003-12-01

    In hepatocytes, proliferation of tetraploid and binuclear cells and an increase in cytosolic and mitochondrial protein synthesis are caused by He-Ne laser irradiation. To gain some insight into the mechanism of photomodulation of cellular and subcellular activities in isolated hepatocytes, intracellular mediators of cell photostimulation were investigated in intact cells and isolated mitochondria. Irradiation of isolated hepatocytes and isolated rat liver mitochondria was carried out with He-Ne laser (wavelength: 632.8 nm; fluence: 0.24 J cm-2; fluence rate: 12 mW cm-2). Changes in cytosolic [(Ca2+)c] and mitochondrial [(Ca2+)m] calcium concentration, and in mitochondrial (Δψm) and plasma (Δψc) membrane potential were, monitored using either colorimetric or fluorescent probes. C-fos expression was studied by Northern and immunoblotting analysis. As a result of irradiation, an increase in (Ca2+)c and a calcium-dependent increase in Δψc were found. The increase in (Ca2+)c, in turn, caused an increase in c-fos expression. Finally, an increase in (Ca2+)m, probably owing to the increase in Δψm, was found. Increase in (Ca2+)c, leading to activation of gene expression, and a general activation of mitochondrial metabolism, could play a major role in the mechanism of photostimulation of cellular activities by He-Ne laser.

  11. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements.

    PubMed

    Wolfe, Kelly L; Liu, Rui Hai

    2007-10-31

    A cellular antioxidant activity (CAA) assay for quantifying the antioxidant activity of phytochemicals, food extracts, and dietary supplements has been developed. Dichlorofluorescin is a probe that is trapped within cells and is easily oxidized to fluorescent dichlorofluorescein (DCF). The method measures the ability of compounds to prevent the formation of DCF by 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP)-generated peroxyl radicals in human hepatocarcinoma HepG2 cells. The decrease in cellular fluorescence when compared to the control cells indicates the antioxidant capacity of the compounds. The antioxidant activities of selected phytochemicals and fruit extracts were evaluated using the CAA assay, and the results were expressed in micromoles of quercetin equivalents per 100 micromol of phytochemical or micromoles of quercetin equivalents per 100 g of fresh fruit. Quercetin had the highest CAA value, followed by kaempferol, epigallocatechin gallate (EGCG), myricetin, and luteolin among the pure compounds tested. Among the selected fruits tested, blueberry had the highest CAA value, followed by cranberry > apple = red grape > green grape. The CAA assay is a more biologically relevant method than the popular chemistry antioxidant activity assays because it accounts for some aspects of uptake, metabolism, and location of antioxidant compounds within cells.

  12. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment.

    PubMed

    Osipovich, Anna B; White-Grindley, Erica K; Hicks, Geoffrey G; Roshon, Michael J; Shaffer, Christian; Moore, Jason H; Ruley, H Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.

  13. Activation of cryptic 3′ splice sites within introns of cellular genes following gene entrapment

    PubMed Central

    Osipovich, Anna B.; White-Grindley, Erica K.; Hicks, Geoffrey G.; Roshon, Michael J.; Shaffer, Christian; Moore, Jason H.; Ruley, H. Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3′-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3′ splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3′ splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3′ splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3′ splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3′ splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3′ splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3′ processing and polyadenylation of cellular transcripts. PMID:15155860

  14. Parallel Activation in Bilingual Phonological Processing

    ERIC Educational Resources Information Center

    Lee, Su-Yeon

    2011-01-01

    In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…

  15. Activated α2 -Macroglobulin Induces Mesenchymal Cellular Migration Of Raw264.7 Cells Through Low-Density Lipoprotein Receptor-Related Protein 1.

    PubMed

    Ferrer, Darío G; Dato, Virginia Actis; Fincati, Javier R Jaldín; Lorenc, Valeria E; Sánchez, María C; Chiabrando, Gustavo A

    2016-12-24

    Distinct modes of cell migration contribute to diverse types of cell movements. The mesenchymal mode is characterized by a multistep cycle of membrane protrusion, the formation of focal adhesion, and the stabilization at the leading edge associated with the degradation of extracellular matrix (ECM) components and with regulated extracellular proteolysis. Both α2 -Macroglobulin (α2 M) and its receptor, low density lipoprotein receptor-related protein 1 (LRP1), play important roles in inflammatory processes, by controlling the extracellular activity of several proteases. The binding of the active form of α2 M (α2 M*) to LRP1 can also activate different signaling pathways in macrophages, thus inducing extracellular matrix metalloproteinase-9 (MMP-9) activation and cellular proliferation. In the present study, we investigated whether the α2 M*/LRP1 interaction induces cellular migration of the macrophage-derived cell line, Raw264.7. By using the wound-scratch migration assay and confocal microscopy, we demonstrate that α2 M* induces LRP1-mediated mesenchymal cellular migration. This migration exhibits the production of enlarged cellular protrusions, MT1-MMP distribution to these leading edge protrusions, actin polymerization, focal adhesion formation, and increased intracellular LRP1/β1-integrin colocalization. Moreover, the presence of calphostin-C blocked the α2 M*-stimulated cellular protrusions, suggesting that the PKC activation is involved in the cellular motility of Raw264.7 cells. These findings could constitute a therapeutic target for inflammatory processes with deleterious consequences for human health, such as rheumatoid arthritis, atherosclerosis and cancer. J. Cell. Biochem. 9999: 1-9, 2017. © 2016 Wiley Periodicals, Inc.

  16. Sipuleucel-T (Provenge): active cellular immunotherapy for advanced prostate cancer.

    PubMed

    McKarney, I

    2007-09-01

    (1) Sipuleucel-T (Provenge) is an active cellular immunotherapy (therapeutic vaccine) that is designed to stimulate the patient's T-cells to recognize and attack prostate cancer cells that express prostatic acid phosphatase (PAP) antigen. (2) Sipuleucel-T demonstrated a survival benefit in men with advanced androgen-independent prostate cancer (AIPC), although this preliminary finding requires confirmation in larger trials. (3) Mild to moderate myalgia, chills, fever, and tremor are the most commonly reported adverse events for patients receiving sipuleucel-T. These events generally resolve quickly. (4) More studies are needed to evaluate sipuleucel-T in the earlier stages of prostate cancer and in combination with conventional therapies.

  17. Chemical and cellular antioxidant activity of phytochemicals purified from olive mill waste waters.

    PubMed

    Angelino, Donato; Gennari, Lorenzo; Blasa, Manuela; Selvaggini, Roberto; Urbani, Stefania; Esposto, Sonia; Servili, Maurizio; Ninfali, Paolino

    2011-03-09

    The isolation and identification of a phytocomplex from olive mill waste waters (OMWW) was achieved. The isolated phytocomplex is made up of the following three phenolic compounds: hydroxytyrosol (3,4-DHPEA), tyrosol (p-HPEA) and the dialdehydic form of decarboxymethyl elenolic acid, linked with (3,4-dihydroxyphenyl)ethanol (3,4-DHPEA-EDA). The purification of this phytocomplex was reached by partial dehydration of the OMWW, followed by liquid-liquid extraction with ethyl acetate and middle pressure liquid chromatography (MPLC) on a Sephadex LH-20 column. The phytocomplex accounted for 6% of the total phenolic content of the OMWW. The phytocomplex and individual compounds were tested for antioxidant capacity by the oxygen radical absorbance capacity (ORAC) method. The ORAC phytocomplex produced 10,000 ORAC units/g dry weight, whereas the cellular antioxidant activity, measured by the cellular antioxidant activity in red blood cell (CAA-RBC) method, demonstrated that the phytocomplex and all of the components are able to permeate the cell membrane thus exhibiting antioxidant activity inside the red blood cells. Our phytocomplex could be employed in the formulation of fortified foods and nutraceuticals, with the goal to obtain substantial health protective effects due to the suitable combination of the component molecules.

  18. Focused Metabolite Profiling for Dissecting Cellular and Molecular Processes of Living Organisms in Space Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Regulatory control in biological systems is exerted at all levels within the central dogma of biology. Metabolites are the end products of all cellular regulatory processes and reflect the ultimate outcome of potential changes suggested by genomics and proteomics caused by an environmental stimulus or genetic modification. Following on the heels of genomics, transcriptomics, and proteomics, metabolomics has become an inevitable part of complete-system biology because none of the lower "-omics" alone provide direct information about how changes in mRNA or protein are coupled to changes in biological function. The challenges are much greater than those encountered in genomics because of the greater number of metabolites and the greater diversity of their chemical structures and properties. To meet these challenges, much developmental work is needed, including (1) methodologies for unbiased extraction of metabolites and subsequent quantification, (2) algorithms for systematic identification of metabolites, (3) expertise and competency in handling a large amount of information (data set), and (4) integration of metabolomics with other "omics" and data mining (implication of the information). This article reviews the project accomplishments.

  19. Hardware Implementation of a Desktop Supercomputer for High Performance Image Processing. Color Image Processing Using Cellular Neural Networks

    DTIC Science & Technology

    1994-11-01

    This report addresses the functional behavior of Cellular Neural Networks (CNN). The impact of variable convergence times on the proper operation of...The report discusses the new fault model, presents the algorithmic procedures and shows simulated testing results. Cellular neural Networks , Testing.

  20. How the Venus flytrap actively snaps: hydrodynamic measurements at the cellular level

    NASA Astrophysics Data System (ADS)

    Colombani, Mathieu; Forterre, Yoel; GEP Team

    2012-11-01

    Although they lack muscle, plants have evolved a remarkable range of mechanisms to create rapid motion, from the rapid folding of sensitive plants to seed dispersal. Of these spectacular examples that have long fascinated scientists, the carnivorous plant Venus flytrap, whose leaves snap together in a fraction of second to capture insects, has long been a paradigm for study. Recently, we have shown that this motion involves a snap-buckling instability due to the shell-like geometry of the leaves of the trap. However, the origin of the movement that allows the plant to cross the instability threshold and actively bend remains largely unknown. In this study, we investigate this active motion using a micro-fluidic pressure probe that gives direct hydraulic and mechanical measurements at the cellular level (osmotic pressure, cell membrane permeability, cell wall elasticity). Our results challenge the role of osmotically-driven water flows usually put forward to explain Venus flytrap's active closure.

  1. Cellular antioxidant activity of feijoada whole meal coupled with an in vitro digestion.

    PubMed

    Faller, Ana Luisa Kremer; Fialho, Eliane; Liu, Rui Hai

    2012-05-16

    Consumption of plant food rich meals, such as feijoada, a traditional meal in Brazil, is associated with the reduction of chronic disease. The objectives of this study were to determine phytochemical content and antioxidant activity by chemical and cellular antioxidant assays (CAA) of feijoada with or without in vitro digestion. Feijoada showed no difference in phenolics and flavonoids after digestion. Bound and residue contributions to total phenolics were 20.9% and 32.2%, respectively, suggesting that phenolics reach the colon after intake. Flavonoids in residue and bound fractions represented 50% of total flavonoids. Antioxidant activity of feijoada without digestion was higher than that with digestion; however, it showed lower antiproliferative activity and CAA. Feijoada with in vitro digestion also yielded phenolics with higher CAA. Analyses of whole meals should be used to evaluate phytochemicals present in food mixtures consumed, especially with digestion models coupled with CAA resulting in information similar to those in physiological conditions.

  2. Effect of Cellular Location of Human Carboxylesterase 2 on CPT-11 Hydrolysis and Anticancer Activity

    PubMed Central

    Hsieh, Yuan-Ting; Lin, Hsuan-Pei; Chen, Bing-Mae; Huang, Ping-Ting; Roffler, Steve R.

    2015-01-01

    CPT-11 is an anticancer prodrug that is clinically used for the treatment of metastatic colorectal cancer. Hydrolysis of CPT-11 by human carboxylesterase 2 (CE2) generates SN-38, a topoisomerase I inhibitor that is the active anti-tumor agent. Expression of CE2 in cancer cells is under investigation for the tumor-localized activation of CPT-11. CE2 is normally expressed in the endoplasmic reticulum of cells but can be engineered to direct expression of active enzyme on the plasma membrane or as a secreted form. Although previous studies have investigated different locations of CE2 expression in cancer cells, it remains unclear if CE2 cellular location affects CPT-11 anticancer activity. In the present study, we directly compared the influence of CE2 cellular location on substrate hydrolysis and CPT-11 cytotoxicity. We linked expression of CE2 and enhanced green fluorescence protein (eGFP) via a foot-and-mouth disease virus 2A (F2A) peptide to facilitate fluorescence-activated cell sorting to achieve similar expression levels of ER-located, secreted or membrane-anchored CE2. Soluble CE2 was detected in the medium of cells that expressed secreted and membrane-anchored CE2, but not in cells that expressed ER-retained CE2. Cancer cells that expressed all three forms of CE2 were more sensitive to CPT-11 as compared to unmodified cancer cells, but the membrane-anchored and ER-retained forms of CE2 were consistently more effective than secreted CE2. We conclude that expression of CE2 in the ER or on the membrane of cancer cells is suitable for enhancing CPT-11 anticancer activity. PMID:26509550

  3. Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing.

    PubMed

    Nemenman, Ilya; Faeder, James R; Hlavacek, William S; Jiang, Yi; Wall, Michael E; Zilman, Anton

    2011-10-01

    This special issue consists of 11 original papers that elaborate on work presented at the Fourth Annual q-bio Conference on Cellular Information Processing, which was held on the campus of St John's College in Santa Fe, New Mexico, USA, 11-14 August 2010. Now in its fourth year, the q-bio conference has changed considerably over time. It is now well established and a major event in systems biology. The 2010 conference saw attendees from all continents (except Antarctica!) sharing novel results and participating in lively discussions at both the oral and poster sessions. The conference was oversubscribed and grew to 27 contributed talks, 16 poster spotlights and 137 contributed posters. We deliberately decreased the number of invited speakers to 21 to leave more space for contributed presentations, and the attendee feedback confirmed that the choice was a success. Although the q-bio conference has grown and matured, it has remained true to the original goal of being an intimate and dynamic event that brings together modeling, theory and quantitative experimentation for the study of cell regulation and information processing. Funded in part by a grant from NIGMS and by DOE funds through the Los Alamos National Laboratory Directed Research and Development program, the conference has continued to exhibit youth and vigor by attracting (and partially supporting) over 100 undergraduate, graduate and postdoctoral researchers. The associated q-bio summer school, which precedes the conference each year, further emphasizes the development of junior scientists and makes q-bio a singular event in its impact on the future of quantitative biology. In addition to an increased international presence, the conference has notably diversified its demographic representation within the USA, including increased participation from the southeastern corner of the country. One big change in the conference this year is our new publication partner, Physical Biology. Although we are very

  4. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.

    PubMed

    Adomako-Bonsu, Amma G; Chan, Sue Lf; Pratten, Margaret; Fry, Jeffrey R

    2017-04-01

    Persistent accumulation of reactive oxygen species causes cellular oxidative stress which contributes strongly towards the induction and progression of various diseases. Therapeutic focus has therefore shifted towards the use of antioxidants, with recent interest in those of plant origin. In the current study, rosmarinic acid (RA) and its key metabolites were evaluated in non-cellular and cellular antioxidant assays, using quercetin (Q) as a positive control. The non-cellular assay was performed as scavenging of DPPH radical, whilst the cellular assay was performed as protection from an oxidant stress. Radical-scavenging activity of RA and two of its primary metabolites, CA and DHPLA, were comparable to that of Q, whilst FA was of lower potency and m-CoA was inactive. In the cellular assay, RA and CA were markedly less potent than Q, with DHPLA, FA and m-CoA being inactive, this being true in short-term (5-h) or long-term (20-h) exposure conditions. However, antioxidant potency of Q and methyl rosmarinate, a non-ionisable ester of RA, was similar in the non-cellular and short-term cellular assays. It is proposed that marked ionisation of organic acids such as RA and its metabolites at physiological pH greatly limits their intracellular accumulation, and so attenuates intrinsic antioxidant ability demonstrated in the non-cellular assay. This study demonstrates some of the factors that prevent well-known phytochemicals from progressing further along the drug discovery chain.

  5. Theoretical aspects and modelling of cellular decision making, cell killing and information-processing in photodynamic therapy of cancer

    PubMed Central

    2013-01-01

    Background The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. Methods Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. Results Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. Conclusions

  6. QUANTITATIVE IN VITRO MEASUREMENT OF CELLULAR PROCESSES CRITICAL TO THE DEVELOPMENT OF NEURAL CONNECTIVITY USING HCA.

    EPA Science Inventory

    New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...

  7. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    PubMed Central

    2010-01-01

    Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimer's disease (AD), and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4) and plasmalogen sufficient (HEK293) cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing ethanolamine plasmalogen (PlsEtn) present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1) levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells. PMID:20546600

  8. The influence of active components of Eleutherococcus senticosus on cellular defence and physical fitness in man.

    PubMed

    Szołomicki, J; Samochowiec, L; Wójcicki, J; Droździk, M; Szołomicki, S

    2000-02-01

    The influence of active components of Eleutherococcus senticosus, contained in Taiga Wurzel preparation, were studied on cellular defence and physical fitness in man. 50 healthy volunteers of both sexes were selected, and basic clinical examination and laboratory tests were performed in all subjects. All were randomly subdivided into two study groups: group A with 35 subjects receiving Taiga Wurzel and group B with 15 subjects receiving Echinacea. 20 healthy males were randomly selected from both groups and underwent an ergospirometric study. The preparations were administered for 30 days as follows: Taiga Wurzel 25 drops three times daily, Echinacea 40 drops three times daily. After 1 month blood was drawn for control tests. Changes in the following blood parameters were observed in comparison to initial values in group A: total and LDL cholesterol, triglycerides and glucose. No alterations were seen in group B. The ergospirometric test revealed a higher oxygen plateau in group A (Taiga Wurzel). On the basis of the present study the following conclusions were drawn: active components in Eleutherococcus senticosus contained in Taiga Wurzel preparation affect cellular defence and physical fitness, as well as lipid metabolism.

  9. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  10. Sleep Deprivation and Divergent Toll-like Receptor-4 Activation of Cellular Inflammation in Aging

    PubMed Central

    Carroll, Judith E.; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C.; Yokomizo, Megumi; Seeman, Teresa E.; Irwin, Michael R.

    2015-01-01

    Objectives: Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Design, Setting, and Participants: Community-dwelling adults (n = 70) who were categorized as younger (25–39 y old, n = 21) and older (60–84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00–07:00), and recovery. Measurement and Results: Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Conclusion: Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. Citation: Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman TE, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging. SLEEP

  11. The cellular transcription factor SP1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter.

    PubMed Central

    Pereira, D J; Muzyczka, N

    1997-01-01

    Control of adeno-associated virus (AAV) transcription from the three AAV promoters (p5, p19, and p40) requires the adenovirus E1a protein and the AAV nonstructural (Rep) proteins. The Rep proteins have been shown to repress the AAV p5 promoter yet facilitate activation of the p19 and p40 promoters during a productive infection. To elucidate the mechanism of promoter regulation by the AAV Rep proteins, the cellular factors involved in mediating Rep activation of the p19 promoter were characterized. A series of protein-DNA binding experiments using extracts derived from uninfected HeLa cells was performed to identify cellular factors that bind to the p19 promoter. Electrophoretic mobility shift assays, DNase I protection analyses, and UV cross-linking experiments demonstrated specific interactions with the cellular factor SP1 (or an SP1-like protein) at positions -50 and -130 relative to the start of p19 transcription. Additionally, an unknown cellular protein (cellular AAV activating protein [cAAP]) with an approximate molecular mass of 34 kDa was found to interact with a CArG-like element at position -140. Mutational analysis of the p19 promoter suggested that the SP1 site at -50 and the cAAP site at -140 were necessary to mediate Rep activation of p19. Antibody precipitation experiments demonstrated that Rep-SP1 protein complexes can exist in vivo. Although Rep was demonstrated to interact with p19 DNA directly, the affinity of Rep binding was much lower than that seen for the Rep binding elements within the terminal repeat and the p5 promoter. Furthermore, the interaction of purified Rep68 with the p19 promoter in vitro was negligible unless purified SP1 was also added to the reaction. Thus, the ability of Rep to transactivate the p19 promoter is likely to involve SP1-Rep protein contacts that facilitate Rep interaction with p19 DNA. PMID:9032303

  12. Blood biochemical and cellular changes during decompression and simulated extravehicular activity

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.; Waligora, J. M.; Johnson, P. C. Jr

    1990-01-01

    Blood biochemical and cellular parameters were measured in human subjects before and after exposure to a decompression schedule involving 6 h of oxygen prebreathing. The exposure was designed to simulate extravehicular activity for 6 h (subjects performed exercise while exposed to 29.6 kPa). There were no significant differences between blood samples from subjects who were susceptible (n = 11) versus those who were resistant (n = 27) to formation of venous gas emboli. Although several statistically significant (P less than 0.05) changes in blood parameters were observed following the exposure (increases in white blood cell count, prothrombin time, and total bilirubin, and decreases in triglycerides, very-low-density lipoprotein cholesterol, and blood urea nitrogen), the changes were small in magnitude and blood factor levels remained within normal clinical ranges. Thus, the decompression schedule used in this study is not likely to result in blood changes that would pose a threat to astronauts during extravehicular activity.

  13. Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits.

    PubMed

    Neufer, P Darrell; Bamman, Marcas M; Muoio, Deborah M; Bouchard, Claude; Cooper, Dan M; Goodpaster, Bret H; Booth, Frank W; Kohrt, Wendy M; Gerszten, Robert E; Mattson, Mark P; Hepple, Russell T; Kraus, William E; Reid, Michael B; Bodine, Sue C; Jakicic, John M; Fleg, Jerome L; Williams, John P; Joseph, Lyndon; Evans, Mary; Maruvada, Padma; Rodgers, Mary; Roary, Mary; Boyce, Amanda T; Drugan, Jonelle K; Koenig, James I; Ingraham, Richard H; Krotoski, Danuta; Garcia-Cazarin, Mary; McGowan, Joan A; Laughlin, Maren R

    2015-07-07

    The beneficial effects of physical activity (PA) are well documented, yet the mechanisms by which PA prevents disease and improves health outcomes are poorly understood. To identify major gaps in knowledge and potential strategies for catalyzing progress in the field, the NIH convened a workshop in late October 2014 entitled "Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits." Presentations and discussions emphasized the challenges imposed by the integrative and intermittent nature of PA, the tremendous discovery potential of applying "-omics" technologies to understand interorgan crosstalk and biological networking systems during PA, and the need to establish an infrastructure of clinical trial sites with sufficient expertise to incorporate mechanistic outcome measures into adequately sized human PA trials. Identification of the mechanisms that underlie the link between PA and improved health holds extraordinary promise for discovery of novel therapeutic targets and development of personalized exercise medicine.

  14. [Stimulating effect of cellular RNA on the in vitro polymerizing activity of influenza virus ribonucleoprotein].

    PubMed

    Tentsov, Iu Iu; Bukrinskaia, A G

    1981-01-01

    The stimulating effect of RNAs isolated from noninfected and influenza virus-infected chick fibroblasts on the polymerase activity of influenza virus intracellular ribonucleoprotein (RNP) was studied in vitro. The infected cells were shown to contain two classes of RNAs which stimulated well the polymerase activity of influenza virus RNP. One class seemed to be represented by a heterogenous cellular 10-20 S mRNA since it contained poly (A)-sequences and was present in noninfected cells. The other RNA class was induced during the infection and differed in number of properties from the RNA isolated from noninfected cells. This class RNA was smaller (4-10 S) and appeared not to contain poly(A)-sequences. Treatment of both noninfected and infected cells with actinomycin D resulted in inhibition of synthesis of both classes of RNA-primers.

  15. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes

    PubMed Central

    Anta, B; Pérez-Rodríguez, A; Castro, J; García- Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  16. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-07-28

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment.

  17. Cellular aging and cancer

    PubMed Central

    Hornsby, Peter J.

    2010-01-01

    Aging is manifest in a variety of changes over time, including changes at the cellular level. Cellular aging acts primarily as a tumor suppressor mechanism, but also may enhance cancer development under certain circumstances. One important process of cellular aging is oncogene-induced senescence, which acts as an important anti-cancer mechanism. Cellular senescence resulting from damage caused by activated oncogenes prevents the growth or potentially neoplastic cells. Moreover, cells that have entered senescence appear to be targets for elimination by the innnate immune system. In another aspect of cellular aging, the absence of telomerase activity in normal tissues results in such cells lacking a telomere maintenance mechanism. One consequence is that in aging there is an increase in cells with shortened telomeres. In the presence of active oncogenes that cause expansion of a neoplastic clone, shortening of telomeres leading to telomere dysfunction prevents the indefinite expansion of the clone because the cells enter crisis. Crisis results from fusions and other defects caused by dysfunctional telomeres and is a terminal state of the neoplastic clone. In this way the absence of telomerase in human cells, while one cause of cellular aging, also acts as an anti-cancer mechanism. PMID:20705476

  18. Insight into the impact of dietary saturated fat on tissue-specific cellular processes underlying obesity-related diseases.

    PubMed

    Enos, Reilly T; Velázquez, Kandy T; Murphy, E Angela

    2014-06-01

    This study investigated the influence of three high-fat diets (HFDs), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, 24%) but identical in total fat (40%), for a 16-week period in mice on a variety of tissue-specific cellular processes believed to be at the root of obesity-related diseases. Specifically, we examined ectopic lipid accumulation, oxidative capacity [peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA and protein; mtDNA; Cox IV and cytochrome C protein; citrate synthase activity; and gene expression of fission 1, mitofusin (Mfn) 1 and Mfn2], oxidative stress (4-hydroxy-2-nonenal), endoplasmic reticulum (ER) stress (binding immunoglobulin protein, activating transcription factor 6-p50, p-eukaryotic initiation factor 2 alpha and x-box binding protein 1 spliced protein), inflammatory [p-c-Jun N-terminal kinase (JNK), p-nuclear factor kappa-B, p-p38 mitogen-activated protein kinase) and insulin signaling (p-Akt), and inflammation [tumor necrosis factor-alpha, monocyte chemotactic protein-1, interleukin-6, F4/80, toll-like receptor (TLR)2 and TLR4 gene expression] in various tissues, including the adipose tissue, liver, skeletal muscle and heart. In general, adipose and hepatic tissues were the only tissues which displayed evidence of dysfunction. All HFDs down-regulated adipose, cardiac and hepatic PGC-1α mRNA and hepatic citrate synthase activity, and induced adipose tissue oxidative stress, whereas only the 6%-SF and 12%-SF diet produced hepatic steatosis. However, compared to the 6%-SF and 24%-SF diets, consumption of the 12%-SF diet resulted in the greatest degree of dysregulation (hepatic ER and oxidative stress, JNK activation, increased F4/80 gene expression and down-regulation of adipose tissue Akt signaling). These findings suggest that the saturated fatty acid composition of an HFD can greatly influence the processes responsible for obesity-related diseases - nonalcoholic fatty

  19. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    PubMed Central

    Simón-Vázquez, Rosana; Lozano-Fernández, Tamara; Dávila-Grana, Angela; González-Fernández, Africa

    2016-01-01

    Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. PMID:27695324

  20. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity

    NASA Astrophysics Data System (ADS)

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G.; Achilefu, Samuel

    2013-04-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  1. Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence

    PubMed Central

    Giampieri, Enrico; De Cecco, Marco; Remondini, Daniel; Sedivy, John; Castellani, Gastone

    2015-01-01

    The amount of cellular proteins is a crucial parameter that is known to vary between cells as a function of the replicative passages, and can be important during physiological aging. The process of protein degradation is known to be performed by a series of enzymatic reactions, ranging from an initial step of protein ubiquitination to their final fragmentation by the proteasome. In this paper we propose a stochastic dynamical model of nuclear proteins concentration resulting from a balance between a constant production of proteins and their degradation by a cooperative enzymatic reaction. The predictions of this model are compared with experimental data obtained by fluorescence measurements of the amount of nuclear proteins in murine tail fibroblast (MTF) undergoing cellular senescence. Our model provides a three-parameter stationary distribution that is in good agreement with the experimental data even during the transition to the senescent state, where the nuclear protein concentration changes abruptly. The estimation of three parameters (cooperativity, saturation threshold, and maximal velocity of the reaction), and their evolution during replicative passages shows that only the maximal velocity varies significantly. Based on our modeling we speculate the reduction of functionality of the protein degradation mechanism as a possible competitive inhibition of the proteasome. PMID:26115222

  2. Special issue: redox active natural products and their interaction with cellular signalling pathways.

    PubMed

    Jacob, Claus

    2014-11-26

    During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, "natural" cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature's treasure chest of "green gold". Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-)organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic "sensor/effector" anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s) of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for "intracellular diagnostics". In the case of redox active compounds, especially of Reactive Sulfur Species (RSS), such techniques have

  3. Activating adaptive cellular mechanisms of resistance following sublethal cytotoxic chemotherapy: implications for diagnostic microdosing.

    PubMed

    Wurz, Gregory T; DeGregorio, Michael W

    2015-04-01

    As Phase 0 studies have proven to be reasonably predictive of therapeutic dose pharmacokinetics, the application of microdosing has expanded into metabolism, drug-drug interactions and now diagnostics. One potentially serious issue with this application of microdosing that has not been previously discussed is the possibility of activating cellular mechanisms of drug resistance. Here, we provide an overview of Phase 0 microdosing and drug resistance, with an emphasis on cisplatin resistance, followed by a discussion of the potential for inducing acquired resistance to platinum-based or other types of chemotherapy in cancer patients participating in Phase 0 diagnostic microdosing studies. A number of alternative approaches to diagnostic microdosing, such as the human tumor cloning assay and the use of peripheral blood mononuclear cells as a surrogate for measuring DNA adducts, are discussed that would avoid exposing cancer patients to low doses of first-line chemotherapy and the possible risk of triggering cellular mechanisms of acquired resistance. Until it has been established that diagnostic microdosing in cancer patients poses no risk of acquired drug resistance, such studies should be approached with caution.

  4. Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture.

    PubMed

    Harak, Christian; Meyrath, Max; Romero-Brey, Inés; Schenk, Christian; Gondeau, Claire; Schult, Philipp; Esser-Nobis, Katharina; Saeed, Mohsan; Neddermann, Petra; Schnitzler, Paul; Gotthardt, Daniel; Perez-Del-Pulgar, Sofia; Neumann-Haefelin, Christoph; Thimme, Robert; Meuleman, Philip; Vondran, Florian W R; Francesco, Raffaele De; Rice, Charles M; Bartenschlager, Ralf; Lohmann, Volker

    2016-12-19

    With a single exception, all isolates of hepatitis C virus (HCV) require adaptive mutations to replicate efficiently in cell culture. Here, we show that a major class of adaptive mutations regulates the activity of a cellular lipid kinase, phosphatidylinositol 4-kinase IIIα (PI4KA). HCV needs to stimulate PI4KA to create a permissive phosphatidylinositol 4-phosphate-enriched membrane microenvironment in the liver and in primary human hepatocytes (PHHs). In contrast, in Huh7 hepatoma cells, the virus must acquire loss-of-function mutations that prevent PI4KA overactivation. This adaptive mechanism is necessitated by increased PI4KA levels in Huh7 cells compared with PHHs, and is conserved across HCV genotypes. PI4KA-specific inhibitors promote replication of unadapted viral isolates and allow efficient replication of patient-derived virus in cell culture. In summary, this study has uncovered a long-sought mechanism of HCV cell-culture adaptation and demonstrates how a virus can adapt to changes in a cellular environment associated with tumorigenesis.

  5. Endothelin-1 activation of ETB receptors leads to a reduced cellular proliferative rate and an increased cellular footprint

    SciTech Connect

    Wilson, Jamie L.; Taylor, Linda; Polgar, Peter

    2012-06-10

    Endothelin-1 (ET-1) is a vasoactive peptide which signals through two G-protein coupled receptors, endothelin receptor A (ETA) and B (ETB). We determined that ET-1 activation of its ETB receptor in stably cDNA transfected CHO cells leads to a 55% reduction in cell number by end-point cell counting and a 35% decrease in cell growth by a real-time cell-substrate impedance-based assay after 24 h of cell growth. When CHO ETB cells were synchronized in the late G1 cell cycle phase, ET-1 delayed their S phase progression compared to control by 30% as determined by [{sup 3}H]-thymidine incorporation. On the other hand, no such delay was observed during late G2/M to G1 transit when cells were treated with ET-1 after release from mitotic arrest. Using the cell-substrate impedance-based assay, we observed that ET-1 induces opposing morphological changes in CHO ETA and CHO ETB cells with ETB causing an increase in the cell footprint and ETA a decrease. Likewise, in pulmonary artery smooth muscle cells, which express both ETA and ETB receptors, ET-1 induces an ETA-dependent contraction and an ETB dependent dilation. These results are shedding light on a possible beneficial role for ETB in diseases involving ET-1 dysfunction such as pulmonary hypertension. -- Highlights: Black-Right-Pointing-Pointer ET- hinders cell proliferation in CHO cells transfected with ETB. Black-Right-Pointing-Pointer ET-1 also decreases the rate of DNA synthesis in CHO ETB cells. Black-Right-Pointing-Pointer JNK and PI3K appear to be involved in this reduction of DNA synthesis. Black-Right-Pointing-Pointer ETB activation in CHO ETB cells and hSMCs leads to dilatory morphological changes. Black-Right-Pointing-Pointer In CHO ETA and hSMCs, ETA activation leads to constrictive morphological changes.

  6. Characteristics of Middle School Students Learning Actions in Outdoor Mathematical Activities with the Cellular Phone

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Baya'a, Nimer

    2012-01-01

    Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…

  7. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to 'internal photons' inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350-700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.

  8. A conformational change within the WAVE2 complex regulates its degradation following cellular activation

    PubMed Central

    Joseph, Noah; Biber, Guy; Fried, Sophia; Reicher, Barak; Levy, Omer; Sabag, Batel; Noy, Elad; Barda-Saad, Mira

    2017-01-01

    WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation. PMID:28332566

  9. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    SciTech Connect

    Herr, Michael J.; Longhurst, Celia M.; Baker, Benjamin; Homayouni, Ramin; Speich, Henry E.; Kotha, Jayaprakash; Jennings, Lisa K.

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  10. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed Central

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation. PMID:26950936

  11. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    PubMed Central

    Shi, Xiaohong; Botting, Catherine H.; Li, Ping; Niglas, Mark; Brennan, Benjamin; Shirran, Sally L.; Szemiel, Agnieszka M.; Elliott, Richard M.

    2016-01-01

    The M genome segment of Bunyamwera virus (BUNV)—the prototype of both the Bunyaviridae family and the Orthobunyavirus genus—encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SPNSm and NSm domain V as SPGc. Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SPGc) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17–312 or nearby residues; NSm, 332–477; and Gc, 478–1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies. PMID:27439867

  12. Sleep Loss Activates Cellular Inflammation and Signal Transducer and Activator of Transcription (STAT) Family Proteins in Humans

    PubMed Central

    Irwin, Michael R.; Witarama, Tuff; Caudill, Marissa; Olmstead, Richard; Breen, Elizabeth Crabb

    2014-01-01

    Sleep disturbance and short sleep duration are associated with inflammation and related disorders including cardiovascular disease, arthritis, diabetes mellitus, and certain cancers. This study was undertaken to test the effects of experimental sleep loss on spontaneous cellular inflammation and activation of signal transducer and activator of transcription (STAT) family proteins, which together promote an inflammatory microenvironment. In 24 healthy adults (16 females; 8 males), spontaneous production of IL-6 and TNF in monocytes and spontaneous intranuclear expression of activated STAT1, STAT3, and STAT5 in peripheral blood mononuclear cells (PBMC), monocyte-, and lymphocyte populations were measured in the morning after uninterrupted baseline sleep, partial sleep deprivation (PSD, sleep period from 3 a.m. to 7 a.m.), and recovery sleep. Relative to baseline, spontaneous monocytic expression of IL-6 and TNF-α was significantly greater after PSD (P<0.02) and after recovery sleep (P<0.01). Relative to baseline, spontaneous monocytic expression of activated STAT 1 and STAT 5 was significantly greater after recovery sleep (P<0.007P<0.02, respectively) but not STAT 3 (P=0.09). No changes in STAT1, STAT3, or STAT5 were found in lymphocyte populations. Sleep loss induces activation of spontaneous cellular innate immunity and of STAT family proteins, which together map the dynamics of sleep loss on the molecular signaling pathways that regulate inflammatory and other immune responses. Treatments that target short sleep duration have the potential to constrain inflammation and reduce the risk for inflammatory disorders and some cancers in humans. PMID:25451613

  13. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function.

    PubMed

    Indo, Hiroko P; Hawkins, Clare L; Nakanishi, Ikuo; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Suenaga, Shigeaki; Davies, Michael J; St Clair, Daret K; Ozawa, Toshihiko; Majima, Hideyuki J

    2017-02-08

    Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.

  14. Cellular prion protein in the bovine mammary gland is selectively expressed in active lactocytes.

    PubMed

    Didier, Andrea; Dietrich, Richard; Steffl, Martin; Gareis, Manfred; Groschup, Martin H; Müller-Hellwig, Simone; Märtlbauer, Erwin; Amselgruber, Werner M

    2006-11-01

    The cellular prion protein (PrP(c)) is a highly conserved glycoprotein with a still enigmatic physiological function. It is mainly expressed in the central nervous system but accumulating data suggest that PrP(c) is also found in a broad spectrum of non-neuronal tissue. Here we investigated the cell-type-related PrP(c) expression in the bovine mammary gland by using immunohistochemistry (IHC), ELISA, Western blot, and real-time RT-PCR. Specific immunostaining of serial sections revealed that PrP(c) is selectively localized in mammary gland epithelial cells. Particularly strong expression was found at the basolateral surface of those cells showing active secretion. Results obtained by RT-PCR and ELISA complemented IHC findings. No correlation was found between the level of PrP(c) expression and other parameters such as age of the animals under study or stage of lactation.

  15. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  16. Conversion of psychological stress into cellular stress response: roles of the sigma-1 receptor in the process.

    PubMed

    Hayashi, Teruo

    2015-04-01

    Psychiatrists empirically recognize that excessive or chronic psychological stress can result in long-lasting impairments of brain functions that partly involve neuronal cell damage. Recent studies begin to elucidate the molecular pathways activated/inhibited by psychological stress. Activation of the hypothalamic-pituitary-adrenal axis under psychological stress causes inflammatory oxidative stresses in the brain, in part due to elevation of cytokines. Psychological stress or neuropathological conditions (e.g., accumulation of β-amyloids) trigger 'cellular stress responses', which promote upregulation of molecular chaperones to protect macromolecules from degradation. The unfolded protein response, the endoplasmic reticulum (ER)-specific cellular stress response, has been recently implicated in the pathophysiology of neuropsychiatric disorders and the pharmacology of certain clinically used drugs. The sigma-1 receptor is an ER protein whose ligands are shown to exert antidepressant-like and neuroprotective actions. Recent studies found that the sigma-1 receptor is a novel ligand-operated ER chaperone that regulates bioenergetics, free radical generation, oxidative stress, unfolded protein response and cytokine signaling. The sigma-1 receptor also regulates morphogenesis of neuronal cells, such as neurite outgrowth, synaptogenesis, and myelination, which can be perturbed by cellular stress. The sigma-1 receptor may thus contribute to a cellular defense system that protects nervous systems against chronic psychological stress. Findings from sigma receptor research imply that not only cell surface monoamine effectors but also intracellular molecules, especially those at the ER, may provide novel therapeutic targets for future drug developments.

  17. Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus.

    PubMed

    Chen, Hsuen-Chin; Lai, Show-Yun; Sung, Jui-Min; Lee, Shu-Hwae; Lin, Yu-Chin; Wang, Wei-Kung; Chen, Yee-Chun; Kao, Chuan-Liang; King, Chwan-Chuen; Wu-Hsieh, Betty A

    2004-07-01

    Activation and expansion of dengue virus-specific T cells and abnormal liver functions in dengue patients have been documented. However, it remains to be determined whether T cells are involved in the pathogenic mechanism of dengue virus infection. In this study, immunocompetent C57BL/6 mice were employed to study dengue virus-induced T cell activation. Mice were inoculated with 10(8) PFU dengue virus serotype 2 strain 16681 by the intravenous route. Dengue viral core RNA was detected by RT-PCR in mouse serum, liver, spleen, and brain at different time points after infection. Splenic T cells were activated as evidenced by their expression of CD69 and O-glycosylated CD43 at as early as day 3 after infection. Splenic T cell expression of O-glycosylated CD43 and IFN-gamma production coordinately peaked at day 5. Coincided with the peak of splenic T cell activation was hepatic lymphocyte infiltration and elevation of liver enzymes. Flow cytometric analysis revealed the infiltrating CD8(+) T cell to CD4(+) T cell ratio was 5/3. After a second inoculation of dengue virus, hepatic T cell infiltration and liver enzyme levels increased sharply. The infiltrating hepatic CD8(+) T cell to CD4(+) T cell ratio increased to 5.8/1. A strong correlation was found between T cell activation and hepatic cellular infiltration in immunocompetent mice infected with dengue virus. The kinetics of liver enzyme elevation also correlated with that of T cell activation. These data suggest a relationship between T cell infiltration and elevation of liver enzymes.

  18. Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells.

    PubMed

    Ji, Lili; Shen, Kaikai; Jiang, Ping; Morahan, Grant; Wang, Zhengtao

    2011-08-01

    Andrographolide (ANDRO), isolated from the traditional herbal medicine Andrographis paniculata, is reported to have the potential therapeutic effects for hepatocellular carcinoma (HCC) in our previous reports. Here, we investigated the mechanism of ANDRO-mediated apoptotic cell death, focusing on the involvement of cellular reduced glutathione (GSH) homeostasis and c-Jun NH(2) -Terminal kinase (JNK). Buthionine sulfoximine (BSO), an inhibitor of cellular GSH biosynthesis, significantly augmented ANDRO-induced cytotoxicity in hepatoma Hep3B and HepG2 cells. BSO depleted cellular GSH, and augmented ANDRO-induced apoptosis, inhibition of colony formation and JNK activation in Hep3B cells. All these effects could be reversed by GSH monoethyl ester (GSH.EE), whose deacetylation replenishes cellular GSH. BSO also augmented ANDRO-induced activation of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinase-4 (MKK4) and c-Jun, which are all up-stream or down-stream signals of JNK. Further results showed that JNK inhibitor SP600125 and 420116 both reversed ANDRO-induced cytotoxicity, and SP600125 also decreased ANDRO-increased intracellular GSH and GCL activity. Finally, we showed that in nude mice bearing xenografted Hep3B tumors, BSO improved the inhibition of tumor growth by ANDRO. Taken together, our results suggest that there is a crosstalk between JNK activation and cellular GSH homeostasis, and ANDRO targets this to induce cytotoxicity in hepatoma cells.

  19. Evidence of cellular immune activation in children with opsoclonus-myoclonus: cerebrospinal fluid neopterin.

    PubMed

    Pranzatelli, Michael R; Hyland, Keith; Tate, Elizabeth D; Arnold, Lauren A; Allison, Tyler J; Soori, Gamini S

    2004-12-01

    To evaluate cellular immune activation in opsoclonus-myoclonus syndrome, we measured the inflammatory marker neopterin in the cerebrospinal fluid of 16 children with opsoclonus-myoclonus and neuroblastoma, 24 children with opsoclonus-myoclonus but no tumor, and 19 age-matched controls. The mean concentration in opsoclonus-myoclonus was 2.3-fold higher than in controls (P = .008). Neopterin was greatly elevated in four of the most neurologically severe cases, up to 8.3-fold above the highest control level. Thirteen of the 40 children with opsoclonus-myoclonus but no controls had a neopterin concentration >2 SD above the control mean (P = .005). In this high neopterin subgroup, neurologic severity was significantly greater and the duration of neurologic symptoms was less. In 16 children re-examined on immunotherapy, including adrenocorticotropic hormone (ACTH) combination therapy, treatment was associated with a significant reduction in both neopterin and neurologic severity. Neopterin did not differ significantly between the tumor and non-tumor opsoclonus-myoclonus etiologies. No abnormalities of tetrahydrobiopterin were found. Although cerebrospinal fluid neopterin lacked the sensitivity to be a biomarker of disease activity in opsoclonus-myoclonus, elevated concentrations do support a role for T-cell activation and cell-mediated immunity in its pathophysiology.

  20. Antibody-dependent cellular cytotoxicity toward neuroblastoma enhanced by activated invariant natural killer T cells.

    PubMed

    Mise, Naoko; Takami, Mariko; Suzuki, Akane; Kamata, Toshiko; Harada, Kazuaki; Hishiki, Tomoro; Saito, Takeshi; Terui, Keita; Mitsunaga, Tetsuya; Nakata, Mitsuyuki; Ikeuchi, Takayuki; Nakayama, Toshinori; Yoshida, Hideo; Motohashi, Shinichiro

    2016-03-01

    Anti-ganglioside GD2 antibodies mainly work through antibody-dependent cellular cytotoxicity (ADCC) and have demonstrated clinical benefit for children with neuroblastoma. However, high-risk neuroblastoma still has a high recurrence rate. For further improvement in patient outcomes, ways to maximize the cytotoxic effects of anti-GD2 therapies with minimal toxicity are required. Activated invariant natural killer T (iNKT) cells enhance both innate and type I acquired anti-tumor immunity by producing several kinds of cytokines. In this report, we investigated the feasibility of combination therapy using iNKT cells and an anti-GD2 antibody. Although some of the expanded iNKT cells expressed natural killer (NK) cell markers, including FcγR, iNKT cells were not directly associated with ADCC. When co-cultured with activated iNKT cells, granzyme A, granzyme B and interferon gamma (IFNγ) production from NK cells were upregulated, and the cytotoxicity of NK cells treated with anti-GD2 antibodies was increased. Not only cytokines produced by activated iNKT cells, but also NK-NKT cell contact or NK cell-dendritic cell contact contributed to the increase in NK cell cytotoxicity and further IFNγ production by iNKT cells and NK cells. In conclusion, iNKT cell-based immunotherapy could be an appropriate candidate for anti-GD2 antibody therapy for neuroblastoma.

  1. A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes

    NASA Astrophysics Data System (ADS)

    Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.

    2012-01-01

    Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.

  2. The heat-shock factor is not activated in mammalian cells exposed to cellular phone frequency microwaves.

    PubMed

    Laszlo, Andrei; Moros, Eduardo G; Davidson, Teri; Bradbury, Matt; Straube, William; Roti Roti, Joseph

    2005-08-01

    There has been considerable interest in the biological effects of exposure to radiofrequency electromagnetic radiation, given the explosive growth of cellular telephone use, with the possible induction of malignancy being a significant concern. Thus the determination of whether nonthermal effects of radiofrequency electromagnetic radiation contribute to the process leading to malignancy is an important task. One proposed pathway to malignancy involves the induction of the stress response by exposures to cell phone frequency microwaves. The first step in the induction of the stress response is the activation of the DNA-binding activity of the specific transcription factor involved in this response, the heat-shock factor (HSF). The DNA-binding activity of HSF in hamster, mouse and human cells was determined after acute and continuous exposures to frequency domain multiple access (FDMA)- or code domain multiple access (CDMA)-modulated microwaves at low (0.6 W/kg) or high (approximately 5 W/kg) SARs at frequencies used for mobile communication. The DNA-binding activity of HSF was monitored using a gel shift assay; the calibration of this assay indicated that an increase of approximately 10% in the activation of the DNA-binding activity of HSF after a 1 degrees C increase in temperature could be detected. We failed to detect any increase in the DNA-binding ability of HSF in cultured mammalian cells as a consequence of any exposure tested, within the sensitivity of our assay. Our results do not support the notion that the stress response is activated as a consequence of exposure to microwaves of frequencies associated with mobile communication devices.

  3. A Multiplexed NMR-Reporter Approach to Measure Cellular Kinase and Phosphatase Activities in Real-Time.

    PubMed

    Thongwichian, Rossukon; Kosten, Jonas; Benary, Uwe; Rose, Honor May; Stuiver, Marchel; Theillet, Francois-Xavier; Dose, Alexander; Koch, Birgit; Yokoyama, Hideki; Schwarzer, Dirk; Wolf, Jana; Selenko, Philipp

    2015-05-27

    Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.

  4. Using Cultured Mammalian Neurons to Study Cellular Processes and Neurodegeneration: A Suite of Undergraduate Lab Exercises

    PubMed Central

    Catlin, Rachel; Taylor, Abigail; Ditchek, Lisa; Burnett, Samantha; Khan, Showkhin; Todd, Olivia; Adams, Marguerite; Touhey, Eva; Wynkoop, Andrew; Ryan, James

    2016-01-01

    Cell culture is a powerful tool for exploring cellular function. Culturing primary neurons has revealed how neurons communicate in learning and memory (Kandel, 2006) and provided insights into the mechanisms of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease (Alberio et al., 2012; Trinchese, et al., 2004). Here we describe a series of four modular laboratory exercises to integrate this neuroscience technique in undergraduate teaching laboratories. First, we describe the modular approach. Then we provide educators with simple techniques for culturing rat primary neurons, performing immunohistochemistry to label cellular components, and illustrating neurodegeneration caused by reactive oxygen species. We describe teaching exercises that culminate in student-generated research projects. Finally, we describe potential barriers students may face when integrating modern cell culture experiments into teaching laboratories. PMID:27385922

  5. Efficient process development for bulk silicon etching using cellular automata simulation techniques

    NASA Astrophysics Data System (ADS)

    Marchetti, James; He, Yie; Than, Olaf; Akkaraju, Sandeep

    1998-09-01

    This paper describes cellular automata simulation techniques used to predict the anisotropic etching of single-crystal silicon. In particular, this paper will focus on the application of wet etching of silicon wafers using typical anisotropic etchants such as KOH, TMAH, and EDP. Achieving a desired final 3D geometry of etch silicon wafers often is difficult without requiring a number of fabrication design iterations. The result is wasted time and resources. AnisE, a tool to simulate anisotropic etching of silicon wafers using cellular automata simulation, was developed in order to efficiently prototype and manufacture MEMS devices. AnisE has been shown to effectively decrease device development time and costs by up to 50% and 60%, respectively.

  6. AIE-Active Tetraphenylethylene Cross-Linked N-Isopropylacrylamide Polymer: A Long-Term Fluorescent Cellular Tracker.

    PubMed

    Ma, Hengchang; Qi, Chunxuan; Cheng, Chao; Yang, Zengming; Cao, Haiying; Yang, Zhiwang; Tong, Jinhui; Yao, Xiaoqiang; Lei, Ziqiang

    2016-04-06

    There is a great demand to understand cell transplantation, migration, division, fusion, and lysis. Correspondingly, illuminant object-labeled bioprobes have been employed as long-term cellular tracers, which could provide valuable insights into detecting these biological processes. In this work, we designed and synthesized a fluorescent polymer, which was comprised of hydrophilic N-isopropylacrylamide polymers as matrix and a hydrophobic tetraphenylethene (TPE) unit as AIE-active cross-linkers (DDBV). It was found that when the feed molar ratio of N-isopropylacrylamides to cross-linkers was 22:1, the produced polymers demonstrated the desirable LCST at 37.5 °C. And also, the temperature sensitivity of polymers could induce phase transfer within a narrow window (32-38 °C). Meanwhile, phase transfer was able to lead the florescent response. And thus, we concluded that two responses occur when one stimulus is input. Therefore, the new cross-linker of DDBV rendered a new performance from PNIPAm and a new chance to create new materials. Moreover, the resulted polymers demonstrated very good biocompatibility with living A549 human lung adenocarcinoma cells and L929 mouse fibroblast cells, respectively. Both of these cells retained very active viabilities in the concentration range of 7.8-125 μL/mg of polymers. Notably, P[(NIPAm)22-(DDBV)1] (P6) could be readily internalized by living cells with a noninvasive manner. The cellular staining by the fluorescent polymer is so indelible that it enables cell tracing for at least 10 passages.

  7. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes

    PubMed Central

    Roze, Ludmila V.; Chanda, Anindya; Linz, John E.

    2010-01-01

    Great progress has been made in understanding the regulation of expression of genes involved in secondary metabolism. Less is known about the mechanisms that govern the spatial distribution of the enzymes, cofactors, and substrates that mediate catalysis of secondary metabolites within the cell. Filamentous fungi in the genus Aspergillus synthesize an array of secondary metabolites and provide useful systems to analyze the mechanisms that mediate the temporal and spatial regulation of secondary metabolism in eukaryotes. For example, aflatoxin biosynthesis in A. parasiticus has been studied intensively because this mycotoxin is highly toxic, mutagenic, and carcinogenic in humans and animals. Using aflatoxin synthesis to illustrate key concepts, this review focuses on the mechanisms by which sub-cellular compartmentalization and intra-cellular molecular traffic contribute to the initiation and completion of secondary metabolism within the cell. We discuss the recent discovery of aflatoxisomes, specialized trafficking vesicles that participate in the compartmentalization of aflatoxin synthesis and export of the toxin to the cell exterior; this work provides a new and clearer understanding of how cells integrate secondary metabolism into basic cellular metabolism via the intracellular trafficking machinery. PMID:20519149

  8. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.

    PubMed

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P

    2014-03-01

    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide.

  9. Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17

    PubMed Central

    Caccuri, Francesca; Iaria, Maria Luisa; Campilongo, Federica; Varney, Kristen; Rossi, Alessandro; Mitola, Stefania; Schiarea, Silvia; Bugatti, Antonella; Mazzuca, Pietro; Giagulli, Cinzia; Fiorentini, Simona; Lu, Wuyuan; Salmona, Mario; Caruso, Arnaldo

    2016-01-01

    The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment. PMID:27905556

  10. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    PubMed Central

    Massignan, Tania; Cimini, Sara; Stincardini, Claudia; Cerovic, Milica; Vanni, Ilaria; Elezgarai, Saioa R.; Moreno, Jorge; Stravalaci, Matteo; Negro, Alessandro; Sangiovanni, Valeria; Restelli, Elena; Riccardi, Geraldina; Gobbi, Marco; Castilla, Joaquín; Borsello, Tiziana; Nonno, Romolo; Biasini, Emiliano

    2016-01-01

    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity. PMID:26976106

  11. Synergistic anti-Parkinsonism activity of high doses of B vitamins in a chronic cellular model.

    PubMed

    Jia, Haiqun; Liu, Zhongbo; Li, Xin; Feng, Zhihui; Hao, Jiejie; Li, Xuesen; Shen, Weili; Zhang, Hongyu; Liu, Jiankang

    2010-04-01

    We propose that elevation of mitochondrial enzyme cofactors may prevent or ameliorate neurodegenerative diseases by improving mitochondrial function. In the present study, we investigated the effects of high doses of B vitamins, the precursors of mitochondrial enzyme cofactors, on mitochondrial dysfunction, oxidative stress, and Parkinsonism in a 4-week long rotenone treatment-induced cellular model of Parkinson's disease (PD). Pretreatment with B vitamins (also 4 weeks) prevented rotenone-induced: (1) mitochondrial dysfunction, including reduced mitochondrial membrane potential and activities of complex I; (2) oxidative stress, including increase in reactive oxygen species, oxidative DNA damage and protein oxidation, and (3) Parkinsonism parameters, including accumulation of alpha-synuclein and poly-ubiquitin. The optimum doses were found around 2.5- and 5-fold of that in normal MEM medium. The 4-week pretreatment was chosen based on time-dependent experiments that pretreatments longer than 2 weeks resulted in a decrease in oxidants, an increase in oxygen consumption, and up-regulation of complex I activity and PGC-1alpha expression. Individual B vitamins at the same doses did not show a similar effect suggesting that these B vitamins work synergistically. These results suggest that administration of high doses of B vitamins sufficient to elevate mitochondrial enzyme cofactors may be effective in preventing PD by reducing oxidative stress and improving mitochondrial function.

  12. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    SciTech Connect

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-05-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  13. Scanning electron microscopic description of cellular activity and mineral changes in feline odontoclastic resorptive lesions.

    PubMed

    Gauthier, O; Boudigues, S; Pilet, P; Aguado, E; Heymann, D; Daculsi, G

    2001-12-01

    The cellular activity and changes in mineral composition of dental tissues involved in feline odontoclastic resorptive lesions were investigated. Teeth with at least 1 lesion (n = 10) were extracted from 10 different cats that were presented primarily for chronic gingivostomatitis and/or severe periodontal disease. Scanning electron microscopic methods were used to determine the presence of resorptive cells in 8 teeth while 2 teeth were evaluated for pathologic changes in dental mineral composition. Observations were complicated by the presence of organic wear on the dental surfaces, however resorptive cells could be clearly identified in feline odontoclastic resorptive lesions. Resorptive cells had morphologic features indicative of "osteoclast-like" cells or odontoclasts. Resorptive cell activity created a resorption area of darker dentin continuous with physiologic dentin. The darker dentin area seemed poorly mineralized and showed a significantly lower calcium/phosphorous ratio compared with adjacent physiologic denting in 1 tooth. A significantly higher level of magnesium combined with available carbonate ions may have increased the solubility in areas of darker dentin.

  14. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A.S.; Wallace, W.T.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure

  15. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway

    NASA Astrophysics Data System (ADS)

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases.

  16. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    NASA Astrophysics Data System (ADS)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  17. In vivo approach to the cellular mechanisms for sensory processing in sleep and wakefulness.

    PubMed

    Velluti, Ricardo A; Pedemonte, Marisa

    2002-12-01

    1. The present review analyzes sensory processing during sleep and wakefulness from a single neuronal viewpoint. Our premises are that processing changes throughout the sleep-wakefulness cycle may be at least partially evidenced in single neurons by (a) changes in the phase locking of the response to the hippocampal theta rhythm, (b) changes in the discharge rate and firing pattern of the response to sound, and (c) changes in the effects of the neurotransmitters involved in the afferent and efferent pathways. 2. The first part of our report is based on the hypothesis that the encoding of sensory information needs a timer in order to be processed and stored, and that the hippocampal theta rhythm could contribute to the temporal organization. We have demonstrated that the guinea pig's auditory and visual neuronal discharge exhibits a temporal relationship (phase locking) to the hippocampal theta waves during wakefulness and sleep phases. 3. The concept that the neural network organization during sleep versus wakefulness is different and can be modulated by sensory signals and vice versa, and that the sensory input may be influenced by the CNS state, i.e., asleep or awake, is introduced. During sleep the evoked firing of auditory units increases, decreases, or remains similar to that observed during quiet wakefulness. However, there has been no auditory unit yet that stops firing as the guinea pig enters sleep. Approximately half of the cortical neurons studied did not change firing rate when passing into sleep while others increased or decreased. Thus, the system is continuously aware of the environment. We postulate that those neurons that changed their evoked firing during sleep are also related to still unknown sleep processes. 4. Excitatory amino acid neurotransmitters participate in the synaptic transmission of the afferent and efferent pathways in the auditory system. In the inferior colliculus, however, the effects of glutamate's mediating the response to

  18. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis

  19. Energetics of active transport processes.

    PubMed

    Essig, A; Caplan, S R

    1968-12-01

    Discussions of active transport usually assume stoichiometry between the rate of transport J(+) and the metabolic rate J(r). However, the observation of a linear relationship between J(+) and J(r) does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J(+) and J(r) linear functions of the electrochemical potential difference, -X(+), and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Deltapsi)(I=0) and the natural limits, level flow (J(+))(X+=0), and static head X(0) (+) = (X(+))(J+=0). With high degrees of coupling -X(0) (+)/F approaches the electromotive force E(Na) (Ussing); -X(0) (+)/F cannot be identified with ((RT/F) ln f)(X+=0), where f is the flux ratio. The efficiency eta = -J(+)X(+)/J(r)A is of significance only when appreciable energy is being converted from one form to another. When either J(+) or -X(+) is small eta is low; the significant parameters are then the efficacies epsilon(J+) = J(+)/J(r)A and epsilon(X+) = -X(+)/J(r)A, respectively maximal at level flow and static head. Leak increases both J(+) and epsilon(J+) for isotonic saline reabsorption, but diminishes -X(0) (+) and epsilon(Xfemale symbol). Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows.

  20. An Overview of Chemical Processes That Damage Cellular DNA: Spontaneous Hydrolysis, Alkylation, and Reactions with Radicals

    PubMed Central

    Gates, Kent S.

    2009-01-01

    The sequence of heterocyclic bases on the interior of the DNA double helix constitutes the genetic code that drives the operation of all living organisms. With this said, it is not surprising that chemical modification of cellular DNA can have profound biological consequences. Therefore, the organic chemistry of DNA damage is fundamentally important to diverse fields including medicinal chemistry, toxicology, and biotechnology. This review is designed to provide a brief overview of the common types of chemical reactions that lead to DNA damage under physiological conditions. PMID:19757819

  1. Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes

    PubMed Central

    Bhatia-Kissova, Ingrid; Valachovic, Martin; Klobucnikova, Vlasta; Zeiselova, Lucia; Griac, Peter; Nosek, Jozef

    2016-01-01

    Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments. PMID:27711131

  2. Abnormalities in the cellular phase of blood fibrinolytic activity in systemic lupus erythematosus and in venous thromboembolism

    SciTech Connect

    Moroz, L.A.; MacLean, L.D.; Langleben, D.

    1986-09-15

    Fibrinolytic activities of whole blood and plasma were determined by /sup 125/I-fibrin radiometric assay in 16 normal subjects, and in 11 patients with systemic lupus erythematosus (SLE), 14 with progressive systemic sclerosis (PSS), 23 with venous thromboembolic disease, and 20 patients awaiting elective surgery. Mean whole blood and plasma activities for patients with PSS, and for those awaiting elective surgery, were similar to normal values, as was the mean plasma activity in patients with SLE. However, mean whole blood activity in SLE was significantly decreased compared with normals (p less than 0.05), with mean plasma activity accounting for 44% of mean whole blood activity (compared with 17% in normal subjects), representing a 67% decrease in mean calculated cellular phase activity in SLE, when compared with normals. Since the numbers of cells (neutrophils, monocytes) possibly involved in cellular activity were not decreased, the findings suggest a functional defect in fibrinolytic activity of one or more blood cell types in SLE. An additional finding was the participation of the cellular phase as well as the well-known plasma phase of blood in the fibrinolytic response to thromboembolism.

  3. Molecular and Cellular Mechanisms of Antitumor Immune Response Activation by Dendritic Cells

    PubMed Central

    Markov, O. V.; Mironova, N. L.; Vlasov, V. V.; Zenkova, M. A.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in the initiation and regulation of the antitumor immune response. Already , DC-based antitumor vaccines have been thoroughly explored both in animal tumor models and in clinical trials. DC-based vaccines are commonly produced from DC progenitors isolated from peripheral blood or bone marrow by culturing in the presence of cytokines, followed by loading the DCs with tumor-specific antigens, such as DNA, RNA, viral vectors, or a tumor cell lysate. However, the efficacy of DC-based vaccines remains low. Undoubtedly, a deeper understanding of the molecular mechanisms by which DCs function would allow us to enhance the antitumor efficacy of DC-based vaccines in clinical applications. This review describes the origin and major subsets of mouse and human DCs, as well as the differences between them. The cellular mechanisms of presentation and cross-presentation of exogenous antigens by DCs to T cells are described. We discuss intracellular antigen processing in DCs, cross-dressing, and the acquisition of the antigen cross-presentation function. A particular section in the review describes the mechanisms of tumor escape from immune surveillance through the suppression of DCs functions. PMID:27795841

  4. Extrachromosomal HPV-16 LCR transcriptional activation by HDACi opposed by cellular differentiation and DNA integration.

    PubMed

    Bojilova, Ekaterina Dimitrova; Weyn, Christine; Antoine, Marie-Hélène; Fontaine, Véronique

    2016-11-15

    Histone deacetylase inhibitors (HDACi) have been shown to render HPV-carrying cells susceptible to intrinsic and extrinsic apoptotic signals. As such, these epigenetic drugs have entered clinical trials in the effort to treat cervical cancer. Here, we studied the effect of common HDACi, with an emphasis on Trichostatin A (TSA), on the transcriptional activity of the HPV-16 Long Control Region (LCR) in order to better understand the impact of these agents in the context of the HPV life cycle and infection. HDACi strongly induced transcription of the firefly luciferase reporter gene under the control of the HPV-16 LCR in a variety of cell lines. In the HaCaT keratinocyte cell line undergoing differentiation induced by TSA, we observed a reduction in LCR-controlled transcription. Three major AP-1 binding sites in the HPV-16 LCR are involved in the regulation by TSA. However, whatever the status of differentiation of the HaCaT cells, TSA induced integration of extra-chromosomal transfected DNA into the cellular genome. Although these data suggest caution using HDACi in the treatment of HR HPV infection, further in vivo studies are necessary to better assess the risk.

  5. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    SciTech Connect

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. )

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  6. TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS

    SciTech Connect

    López Fuentes, Marcelo; Klimchuk, James A.

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of –2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  7. Two-dimensional Cellular Automaton Model for the Evolution of Active Region Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    López Fuentes, Marcelo; Klimchuk, James A.

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  8. Phenolic contents and cellular antioxidant activity of Chinese hawthorn "Crataegus pinnatifida".

    PubMed

    Wen, Lingrong; Guo, Xingbo; Liu, Rui Hai; You, Lijun; Abbasi, Arshad Mehmood; Fu, Xiong

    2015-11-01

    It is evident from various epidemiological studies that consumption of fruits and vegetables is essential to maintain health and in the disease prevention. Present study was designed to examine phenolic contents and antioxidant properties of three varieties of Crataegus pinnatifida (Chinese hawthorn). Shanlihong variety exhibited elevated levels of total phenolics and flavonoid contents, including free and bond phenolics. Procyanidin B2 was most abundant phenolic compound in all samples, followed by epicatechin, chlorogenic acid, hyperoside, and isoquercitrin. The free ORAC values, and free hydro-PSC values were 398.3-555.8 μmol TE/g DW, and 299.1-370.9 μmol VCE/g DW, respectively. Moreover, the free cellular antioxidant activity (CAA) values were 678-1200 μmol of QE/100 g DW in the no PBS wash protocol, and 345.9-532.9 μmol of QE/100 g DW in the PBS wash protocol. C. pinnatifida fruit could be valuable to promote consumer health.

  9. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves.

    PubMed

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE)/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE)/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R(2) = 0.96). The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL). According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant.

  10. Extrachromosomal HPV-16 LCR transcriptional activation by HDACi opposed by cellular differentiation and DNA integration

    PubMed Central

    Bojilova, Ekaterina Dimitrova; Weyn, Christine; Antoine, Marie-Hélène; Fontaine, Véronique

    2016-01-01

    Histone deacetylase inhibitors (HDACi) have been shown to render HPV-carrying cells susceptible to intrinsic and extrinsic apoptotic signals. As such, these epigenetic drugs have entered clinical trials in the effort to treat cervical cancer. Here, we studied the effect of common HDACi, with an emphasis on Trichostatin A (TSA), on the transcriptional activity of the HPV-16 Long Control Region (LCR) in order to better understand the impact of these agents in the context of the HPV life cycle and infection. HDACi strongly induced transcription of the firefly luciferase reporter gene under the control of the HPV-16 LCR in a variety of cell lines. In the HaCaT keratinocyte cell line undergoing differentiation induced by TSA, we observed a reduction in LCR-controlled transcription. Three major AP-1 binding sites in the HPV-16 LCR are involved in the regulation by TSA. However, whatever the status of differentiation of the HaCaT cells, TSA induced integration of extra-chromosomal transfected DNA into the cellular genome. Although these data suggest caution using HDACi in the treatment of HR HPV infection, further in vivo studies are necessary to better assess the risk. PMID:27705914

  11. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves

    PubMed Central

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE)/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE)/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R2 = 0.96). The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL). According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant. PMID:20976084

  12. Activation of human natural killer cells by the soluble form of cellular prion protein.

    PubMed

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP(C)) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP(C) in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP(C) protein on human natural killer (NK) cells. Recombinant soluble PrP(C) protein was generated by fusion of human PrP(C) with the Fc portion of human IgG1 (PrP(C)-Fc). PrP(C)-Fc binds to the surface of human NK cells, particularly to CD56(dim) NK cells. PrP(C)-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP(C)-Fc facilitated the IL-15-induced proliferation of NK cells. PrP(C)-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP(C)-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP(C)-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  13. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    PubMed Central

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  14. Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase

    PubMed Central

    Nuriel, Tal; Cheung, Cynthia; Summers, Barbara; Lamon, Brian D.; Gross, Steven S.; Hajjar, David P.

    2013-01-01

    Protein 3-nitrotyrosine (3-NT) formation is frequently regarded as a simple biomarker of disease, an irreversible posttranslational modification that can disrupt protein structure and function. Nevertheless, evidence that protein 3-NT modifications may be site selective and reversible, thus allowing for physiological regulation of protein activity, has begun to emerge. We have previously reported that cyclooxygenase (COX)-1 undergoes heme-dependent nitration of Tyr385, an internal and catalytically essential residue. In the present study, we demonstrate that nitrated COX-1 undergoes a rapid reversal of nitration by substrate-selective and biologically regulated denitrase activity. Using nitrated COX-1 as a substrate, denitrase activity was validated and quantified by analytic HPLC with electrochemical detection and determined to be constitutively active in murine and human endothelial cells, macrophages, and a variety of tissue samples. Smooth muscle cells, however, contained little denitrase activity. Further characterizing this denitrase activity, we found that it was inhibited by free 3-NT and may be enhanced by endogenous nitric oxide and exogenously administered carbon monoxide. Finally, we describe a purification protocol that results in significant enrichment of a discrete denitrase-containing fraction, which maintains activity throughout the purification process. These findings reveal that nitrated COX-1 is a substrate for a denitrase in cells and tissues, implying that the reciprocal processes of nitration and denitration may modulate bioactive lipid synthesis in the setting of inflammation. In addition, our data reveal that denitration is a controlled process that may have broad importance for regulating cell signaling events in nitric oxide-generating systems during oxidative/nitrosative stress. PMID:23792683

  15. Activation of human natural killer cells by the soluble form of cellular prion protein

    SciTech Connect

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  16. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  17. Receptor binding and cellular uptake studies of macrophage migration inhibitory factor (MIF): use of biologically active labeled MIF derivatives.

    PubMed

    Kleemann, Robert; Grell, Matthias; Mischke, Ralf; Zimmermann, Gudrun; Bernhagen, Jürgen

    2002-03-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine for which a receptor has not been identified. That MIF has intracellular functions has been suggested by its enzymatic activity and constitutive expression profile. The discovery of functional MIF-c-Jun activation domain binding protein 1 (JAB1) binding has confirmed this notion and indicated that nonreceptor-based signaling mechanisms are important for MIF function. Here, we have generated and tested several biologically active labeled MIF derivatives to further define target protein binding by MIF and its cellular uptake characteristics. (35)S-MIF, biotinylated MIF, and fluoresceinated MIF were demonstrated to exhibit full biologic activity. Neither by applying a standard iodinated MIF preparation nor by using the biologically active (35)S-MIF derivative in receptor-binding studies were we able to measure any receptor-binding activity on numerous cells, confirming that uptake of MIF into target cells and MIF signaling can occur by receptor-independent pathways. When MIF derivatives were applied in cellular uptake studies, MIF was found to be endocytosed into both immune and nonimmune cells and targeted to the cytosol and lysosomes. The entry of MIF was temperature and energy dependent and was inhibited by monodansylcadaverine but not by ouabain. Endocytosed biotin-MIF bound JAB1 not only in macrophages, as shown previously, but also in nonimmune cells. A tagged MIF construct, MIF-enhanced green fluorescent protein (EGFP), was shown to be a valuable tool, as EGFP constructs of critical MIF cysteine mutants exhibited identical cellular localization properties to those of wild-type MIF (wtMIF). Our results indicate that MIF membrane receptors are not widely expressed, if at all, and suggest that the cellular uptake of MIF occurs by nonreceptor-mediated endocytosis rather than penetration. All the derivatives investigated, except for iodinated MIF, represent valuable tools for further MIF target

  18. Electoral surveys’ influence on the voting processes: a cellular automata model

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Oliveira Neto, N. M.; Martins, M. L.

    2002-12-01

    Nowadays, in societies threatened by atomization, selfishness, short-term thinking, and alienation from political life, there is a renewed debate about classical questions concerning the quality of democratic decision making. In this work a cellular automata model for the dynamics of free elections, based on the social impact theory is proposed. By using computer simulations, power-law distributions for the size of electoral clusters and decision time have been obtained. The major role of broadcasted electoral surveys in guiding opinion formation and stabilizing the “status quo” was demonstrated. Furthermore, it was shown that in societies where these surveys are manipulated within the universally accepted statistical error bars, even a majoritary opposition could be hindered from reaching power through the electoral path.

  19. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  20. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Vinh, Nguyen X; Viswanathan, Ganesh A; Chetty, Madhu; Wangikar, Pramod P

    2015-01-01

    Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell's metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production.

  1. Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation.

    PubMed

    Stellavato, Antonietta; Corsuto, Luisana; D'Agostino, Antonella; La Gatta, Annalisa; Diana, Paola; Bernini, Patrizia; De Rosa, Mario; Schiraldi, Chiara

    2016-01-01

    Hyaluronic Acid (HA)-based dermal formulations have rapidly gained a large consensus in aesthetic medicine and dermatology. HA, highly expressed in the Extracellular Matrix (ECM), acts as an activator of biological cascades, stimulating cell migration and proliferation, and operating as a regulator of the skin immune surveillance, through specific interactions with its receptors. HA may be used in topical formulations, as dermal inducer, for wound healing. Moreover, intradermal HA formulations (injectable HA) provide an attractive tool to counteract skin aging (e.g., facial wrinkles, dryness, and loss of elasticity) and restore normal dermal functions, through simple and minimally invasive procedures. Biological activity of a commercially available hyaluronic acid, Profhilo®, based on NAHYCO™ technology, was compared to H-HA or L-HA alone. The formation of hybrid cooperative complexes was confirmed by the sudden drop in η0 values in the rheological measurements. Besides, hybrid cooperative complexes proved stable to hyaluronidase (BTH) digestion. Using in vitro assays, based on keratinocytes, fibroblasts cells and on the Phenion® Full Thickness Skin Model 3D, hybrid cooperative complexes were compared to H-HA, widely used in biorevitalization procedures, and to L-HA, recently proposed as the most active fraction modulating the inflammatory response. Quantitative real-time PCR analyses were accomplished for the transcript quantification of collagens and elastin. Finally immunofluorescence staining permitted to evaluate the complete biosynthesis of all the molecules investigated. An increase in the expression levels of type I and type III collagen in fibroblasts and type IV and VII collagen in keratinocytes were found with the hybrid cooperative complexes, compared to untreated cells (CTR) and to the H-HA and L-HA treatments. The increase in elastin expression found in both cellular model and in the Phenion® Full Thickness Skin Model 3D also at longer time (up

  2. Hyaluronan Hybrid Cooperative Complexes as a Novel Frontier for Cellular Bioprocesses Re-Activation

    PubMed Central

    Stellavato, Antonietta; Corsuto, Luisana; D’Agostino, Antonella; La Gatta, Annalisa; Diana, Paola; Bernini, Patrizia; De Rosa, Mario

    2016-01-01

    Hyaluronic Acid (HA)-based dermal formulations have rapidly gained a large consensus in aesthetic medicine and dermatology. HA, highly expressed in the Extracellular Matrix (ECM), acts as an activator of biological cascades, stimulating cell migration and proliferation, and operating as a regulator of the skin immune surveillance, through specific interactions with its receptors. HA may be used in topical formulations, as dermal inducer, for wound healing. Moreover, intradermal HA formulations (injectable HA) provide an attractive tool to counteract skin aging (e.g., facial wrinkles, dryness, and loss of elasticity) and restore normal dermal functions, through simple and minimally invasive procedures. Biological activity of a commercially available hyaluronic acid, Profhilo®, based on NAHYCO™ technology, was compared to H-HA or L-HA alone. The formation of hybrid cooperative complexes was confirmed by the sudden drop in η0 values in the rheological measurements. Besides, hybrid cooperative complexes proved stable to hyaluronidase (BTH) digestion. Using in vitro assays, based on keratinocytes, fibroblasts cells and on the Phenion® Full Thickness Skin Model 3D, hybrid cooperative complexes were compared to H-HA, widely used in biorevitalization procedures, and to L-HA, recently proposed as the most active fraction modulating the inflammatory response. Quantitative real-time PCR analyses were accomplished for the transcript quantification of collagens and elastin. Finally immunofluorescence staining permitted to evaluate the complete biosynthesis of all the molecules investigated. An increase in the expression levels of type I and type III collagen in fibroblasts and type IV and VII collagen in keratinocytes were found with the hybrid cooperative complexes, compared to untreated cells (CTR) and to the H-HA and L-HA treatments. The increase in elastin expression found in both cellular model and in the Phenion® Full Thickness Skin Model 3D also at longer time (up

  3. Cellular differentiation in the process of generation of the eukaryotic cell

    NASA Astrophysics Data System (ADS)

    Nakamura, Hakobu; Hase, Atsushi

    1990-11-01

    Primitive atmosphere of the earth did not contain oxygen gas (O2) when the proto-cells were generated successfully as the resut of chemical evolution and then evolved. Therefore, they first had acquired anaerobic energy metabolism, fermentation. The cellular metabolisms have often been formed by reorganizing to combine or recombinate between pre-existing metabolisms and newly born bioreactions. Photosynthetic metabolism in eukaryotic chloroplast consists of an electron-transfer photosystem and a fermentative reductive pentose phosphate cycle. On the other hand, O2-respiration of eukaryotic mitochondrion is made of Embden-Meyerhof (EM) pathway and tricarboxylic acid cycle, which originate from a connection of fermentative metabolisms, and an electron-transfer respiratory chain, which has been derived from the photosystem. These metabolisms already are completed in some evolved prokaryotes, for example the cyanobacteriumChlorogloea fritschii and aerobic photosynthetic bacteriaRhodospirillum rubrum andErythrobacter sp. Therefore, it can be reasonably presumed that the eukaryotic chloroplast and mitochondrion have once been formed as the result of metabolic (and genetic) differentiations in most evolved cyanobacterium. Symbiotic theory has explained the origin of eukaryotic cell as that in which the mitochondrion and chloroplast have been derived from endosymbionts of aerobic bacterium and cyanobacterium, respectively, and has mentioned as one of the most potent supportive evidences that amino acid sequences of the photosynthetic and O2 -respiratory enzymes show similarities to corresponding prokaryotic enzymes. However, as will be shown in this discussion, many examples have shown currently that prokaryotic sequences of informative molecules are conserved well not only in those of the mitochondrial and chloroplast molecules but also in the nuclear molecules. In fact, the similarities in sequence of informative molecules are preserved well among the organisms not only

  4. Quantitative Proteomics and Immunohistochemistry Reveal Insights into Cellular and Molecular Processes in the Infarct Border Zone One Month after Myocardial Infarction.

    PubMed

    Yang, Libang; Gregorich, Zachery R; Cai, Wenxuan; Zhang, Patrick; Young, Bernice; Gu, Yiwen; Zhang, Jianyi; Ge, Ying

    2017-04-07

    Postinfarction remodeling and expansion of the peri-infarct border zone (BZ) directly correlate with mortality following myocardial infarction (MI); however, the cellular and molecular mechanisms underlying remodeling processes in the BZ remain unclear. Herein, we utilized a label-free quantitative proteomics approach in combination with immunohistochemical analyses to gain a better understanding of processes contributing to postinfarction remodeling of the peri-infarct BZ in a swine model of MI with reperfusion. Our analysis uncovered a significant down-regulation of proteins involved in energy metabolism, indicating impaired myocardial energetics and possibly mitochondrial dysfunction, in the peri-scar BZ. An increase in endothelial and vascular smooth muscles cells, as well as up-regulation of proteins implicated in vascular endothelial growth factor (VEGF) signaling and marked changes in the expression of extracellular matrix and subendothelial basement membrane proteins, is indicative of active angiogenesis in the infarct BZ. A pronounced increase in macrophages in the peri-infarct BZ was also observed, and proteomic analysis uncovered evidence of persistent inflammation in this tissue. Additional evidence suggested an increase in cellular proliferation that, concomitant with increased nestin expression, indicates potential turnover of endogenous stem cells in the BZ. A marked up-regulation of pro-apoptotic proteins, as well as the down-regulation of proteins important for adaptation to mechanical, metabolic, and oxidative stress, likely contributes to increased apoptosis in the peri-infarct BZ. The cellular processes and molecular pathways identified herein may have clinical utility for therapeutic intervention aimed at limiting remodeling and expansion of the BZ myocardium and preventing the development of heart failure post-MI.

  5. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  6. Cellular and molecular processes of regeneration, with special emphasis on fish fins.

    PubMed

    Nakatani, Yuki; Kawakami, Atsushi; Kudo, Akira

    2007-02-01

    The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.

  7. TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics

    PubMed Central

    Etournay, Raphaël; Merkel, Matthias; Popović, Marko; Brandl, Holger; Dye, Natalie A; Aigouy, Benoît; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    2016-01-01

    Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins. DOI: http://dx.doi.org/10.7554/eLife.14334.001 PMID:27228153

  8. Energetics of cellular repair processes in a respiratory-deficient mutant of yeast. [UV

    SciTech Connect

    Jain, V.K.; Gupta, I.; Lata, K.

    1982-12-01

    Repair of potentially lethal damage induced by cytoxic agents like UV irradiation (254 nm), psorelen-plus-UVA (365 mn), and methyl methanesulfonate has been studied in the presence of a glucose analog, 2-deoxy-D-glucose, in yeast cells. Simultaneously, effects of 2-deoxy-D-glucose were also investigated on parameters of energy metabolism like glucose utilization, rate of ATP production, and ATP content of cells. The following results were obtained. (i) 2-Deoxy-D-glucose is able to inhibit repair of potentially lethal damage induced by all the cytotoxic agents tested. The 2-deoxy-D-glucose-induced inhibition of repair depends upon the type of lesion and the pattern of cellular energy metabolism, the inhibition being greater in respiratory-deficient mutants than in the wild type. (ii) A continuous energy flow is necessary for repair of potentially lethal damage in yeast cells. Energy may be supplied by the glycolytic and/or the respiratory pathway; respiratory metabolism is not essential for this purpose. (iii) The magnitude of repair correlates with the rate of ATP production in a sigmoid manner.

  9. The first cellular bioenergetic process: primitive generation of a proton-motive force.

    PubMed

    Koch, A L; Schmidt, T M

    1991-10-01

    It is proposed that the energy-transducing system of the first cellular organism and its precursor was fueled by the oxidation of hydrogen sulfide and ferric sulfide to iron pyrites and two [H+] on the outside surface of a vesicle (the cell membrane), with the concomitant reduction of CO or CO2 on the interior. The resulting proton gradient across the cell membrane provides a proton-motive force, so that a variety of kinds of work can be done. It is envisioned as providing a selective advantage for cells capable of harvesting this potential. The proposed reactants for these reactions are consistent with the predicted composition of the Earth's early environment. Modern-day homologs of the ancestral components of the energy-transducing system are thought to be membrane-associated ferredoxins for the extracellular redox reaction, carbon monoxide dehydrogenase for the carbon fixation reaction, and ATPase for the harvesting of the proton gradient. With a source of consumable energy, the cell could drive chemical reactions and transport events in such a way as to be exploited by Darwinian evolution.

  10. Processing and properties of multiscale cellular thermoplastic fiber reinforced composite (CellFRC)

    NASA Astrophysics Data System (ADS)

    Sorrentino, L.; Cafiero, L.; D'Auria, M.; Iannace, S.

    2015-12-01

    High performance fiber reinforced polymer composites are made by embedding high strength/modulus fibers in a polymeric matrix. They are a class of materials that owe its success to the impressive specific mechanical properties with respect to metals. In many weight-sensitive applications, where high mechanical properties and low mass are required, properties per unit of mass are more important than absolute properties and further weight reduction is desirable. A route to reach this goal could be the controlled induction of porosity into the polymeric matrix, while still ensuring load transfer to the reinforcing fibers and fiber protection from the environment. Cellular lightweight fiber reinforced composites (CellFRC) were prepared embedding gas bubbles of controlled size within a high performance thermoplastic matrix reinforced with continuous fibers. Pores were induced after the composite was first saturated with CO2 and then foamed by using an in situ foaming/shaping technology based on compression moulding with adjustable mould cavities. The presence of micro- or submicro-sized cells in the new CellFRC reduced the apparent density of the structure and led to significant improvements of its impact properties. Both structural and functional performances were further improved through the use of a platelet-like nanofiller (Expanded Graphite) dispersed into the matrix.

  11. Autoinducer AI-2 is involved in regulating a variety of cellular processes in Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LuxS/AI-2 mediated cell signaling is a known strategy that modulates a variety of bacterial processes in prokaryotes. Salmonella Typhimurium is known to possess LuxS/AI-2 mediated cell signaling. Until now, the Lsr- ABC transporter system (LuxS- regulated) is the only known process controlled by t...

  12. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    PubMed Central

    Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.

    2016-01-01

    ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387

  13. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases

    PubMed Central

    Palmieri, Michela; Pal, Rituraj; Nelvagal, Hemanth R.; Lotfi, Parisa; Stinnett, Gary R.; Seymour, Michelle L.; Chaudhury, Arindam; Bajaj, Lakshya; Bondar, Vitaliy V.; Bremner, Laura; Saleem, Usama; Tse, Dennis Y.; Sanagasetti, Deepthi; Wu, Samuel M.; Neilson, Joel R.; Pereira, Fred A.; Pautler, Robia G.; Rodney, George G.; Cooper, Jonathan D.; Sardiello, Marco

    2017-01-01

    Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases. PMID:28165011

  14. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue.

    PubMed

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M

    2015-12-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity.

  15. Cellular Interaction and Toxicity Depends on Physiochemical Properties and Surface Modification of Redox Active Nanomaterials

    PubMed Central

    Dowding, Janet M.; Das, Soumen; Kumar, Amit; Dosani, Talib; McCormack, Rameech; Gupta, Ankur; Sayle, Thi X. T.; Sayle, Dean C.; von Kalm, Laurence; Seal, Sudipta; Self, William T.

    2013-01-01

    The study of the chemical and biological properties of CeO2 NPs (CNPs) has expanded recently due to its therapeutic potential, and the methods used to synthesize these materials are diverse. Moreover, conflicting reports exists regarding the toxicity of CNP. To help resolve these discrepancies, we must first determine whether CeO2 NPs made by different methods are similar or different in their physiochemical and catalytic properties. In this paper, we have synthesized several forms of CNPs using identical precursors through a wet chemical process but using different oxidizer/reducer H2O2 (CNP1), NH4OH (CNP2) or hexamethylenetetramine (HMT-CNP1). Physiochemical properties of these CeO2 NPs were extensively studied and found to be different depending on the preparation methods. Unlike CNP1 and CNP2, HMT-CNP1 were readily taken into endothelial cells and their aggregation can be visualized using light microscopy. Exposure to HMT-CNP1 also reduced cell viability (MTT) at a 10-fold lower concentration than CNP1 or CNP2. Surprisingly, exposure to HMT-CNP1 led to substantial decreases in the ATP levels. Mechanistic studies revealed that HMT-CNP1 exhibited substantial ATPase (phosphatase) activity. Though CNP2 also exhibits ATPase activity, CNP1 lacked ATPase activity. The difference in catalytic (ATPase) activity of different CeO2 NPs preparation may be due to differences in their morphology and oxygen extraction energy. These results suggest the combination of increased uptake and ATPase activity of HMT-CNP1 may underlie the biomechanism of the toxicity of this preparation of CNPs, and may suggest ATPase activity should be considered when synthesizing CNPs for use in biomedical applications. PMID:23668322

  16. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials.

    PubMed

    Dowding, Janet M; Das, Soumen; Kumar, Amit; Dosani, Talib; McCormack, Rameech; Gupta, Ankur; Sayle, Thi X T; Sayle, Dean C; von Kalm, Laurence; Seal, Sudipta; Self, William T

    2013-06-25

    The study of the chemical and biological properties of CeO2 nanoparticles (CNPs) has expanded recently due to its therapeutic potential, and the methods used to synthesize these materials are diverse. Moreover, conflicting reports exist regarding the toxicity of CNPs. To help resolve these discrepancies, we must first determine whether CNPs made by different methods are similar or different in their physicochemical and catalytic properties. In this paper, we have synthesized several forms of CNPs using identical precursors through a wet chemical process but using different oxidizer/reducer; H2O2 (CNP1), NH4OH (CNP2), or hexamethylenetetramine (HMT-CNP1). Physicochemical properties of these CNPs were extensively studied and found to be different depending on the preparation methods. Unlike CNP1 and CNP2, HMT-CNP1 was readily taken into endothelial cells and the aggregation can be visualized using light microscopy. Exposure to HMT-CNP1 also reduced cell viability at a 10-fold lower concentration than CNP1 or CNP2. Surprisingly, exposure to HMT-CNP1 led to substantial decreases in ATP levels. Mechanistic studies revealed that HMT-CNP1 exhibited substantial ATPase (phosphatase) activity. Though CNP2 also exhibits ATPase activity, CNP1 lacked ATPase activity. The difference in catalytic (ATPase) activity of different CNPs preparation may be due to differences in their morphology and oxygen extraction energy. These results suggest that the combination of increased uptake and ATPase activity of HMT-CNP1 may underlie the biomechanism of the toxicity of this preparation of CNPs and may suggest that ATPase activity should be considered when synthesizing CNPs for use in biomedical applications.

  17. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Yang, Qiaoyu; Xiao, Lehui

    2014-08-01

    Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs

  18. Control of ADAM17 activity by regulation of its cellular localisation

    PubMed Central

    Lorenzen, Inken; Lokau, Juliane; Korpys, Yvonne; Oldefest, Mirja; Flynn, Charlotte M.; Künzel, Ulrike; Garbers, Christoph; Freeman, Matthew; Grötzinger, Joachim; Düsterhöft, Stefan

    2016-01-01

    An important, irreversible step in many signalling pathways is the shedding of membrane-anchored proteins. A Disintegrin And Metalloproteinase (ADAM) 17 is one of the major sheddases involved in a variety of physiological and pathophysiological processes including regeneration, differentiation, and cancer progression. This central role in signalling implies that ADAM17 activity has to be tightly regulated, including at the level of localisation. Most mature ADAM17 is localised intracellularly, with only a small amount at the cell surface. We found that ADAM17 is constitutively internalised by clathrin-coated pits and that physiological stimulators such as GPCR ligands induce ADAM17-mediated shedding, but do not alter the cell-surface abundance of the protease. In contrast, the PKC-activating phorbol ester PMA, often used as a strong inducer of ADAM17, causes not only proteolysis by ADAM17 but also a rapid increase of the mature protease at the cell surface. This is followed by internalisation and subsequent degradation of the protease. Eventually, this leads to a substantial downregulation of mature ADAM17. Our results therefore imply that physiological activation of ADAM17 does not rely on its relocalisation, but that PMA-induced PKC activity drastically dysregulates the localisation of ADAM17. PMID:27731361

  19. Reengineering transfusion and cellular therapy processes hospitalwide: ensuring the safe utilization of blood products.

    PubMed

    Brooks, Jay P

    2005-10-01

    Efforts to make blood transfusion as safe as possible have focused on making the blood in the bag as disease-free as possible. The results have been dramatic, and the costs have been correspondingly high. Although blood services will have to continue to deal with emerging pathogens, efforts to reduce the transfusion of infectious agents presently posing a risk will require high incremental costs and result in only improvements of a small magnitude. The other aspect of safe blood transfusion, the actual transfusion process performed primarily in hospitals, has been accorded considerably less interest. We should turn our attention to enhancing overall blood safety by focusing on improving the process of blood transfusion. Errors involving patient, specimen, and blood product identification put transfused patients at risk, increasing the mortality risk for some. Solutions that could improve the transfusion process are discussed as a focus of this article.

  20. Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Azidin, A.; Taib, Z. A. M.; Harun, W. S. W.; Che Ghani, S. A.; Faisae, M. F.; Omar, M. A.; Ramli, H.

    2015-12-01

    Orthodontic implants have been a major focus through mechanical and biological performance in advance to fabricate shape of complex anatomical. Designing the part with a complex mechanism is one of the challenging process and addition to achieve the balance and desired mechanical performance brought to the right manufacture technique to fabricate. Metal additive manufacturing (MAM) is brought forward to the newest fabrication technology in this field. In this study, selective laser melting (SLM) process was utilized on a medical grade cobalt-chrome molybdenum (CoCrMo) alloy. The work has focused on mechanical properties of the CoCrMo open cellular structures samples with 60%, 70%, and 80% designed volume porosity that could potentially emulate the properties of human bone. It was observed that hardness values decreased as the soaking time increases except for bottom face. For compression test, 60% designed volume porosity demonstrated highest ultimate compressive strength compared to 70% and 80%.

  1. A Differential Genome-Wide Transcriptome Analysis: Impact of Cellular Copper on Complex Biological Processes like Aging and Development

    PubMed Central

    Servos, Jörg; Hamann, Andrea; Grimm, Carolin; Osiewacz, Heinz D.

    2012-01-01

    The regulation of cellular copper homeostasis is crucial in biology. Impairments lead to severe dysfunctions and are known to affect aging and development. Previously, a loss-of-function mutation in the gene encoding the copper-sensing and copper-regulated transcription factor GRISEA of the filamentous fungus Podospora anserina was reported to lead to cellular copper depletion and a pleiotropic phenotype with hypopigmentation of the mycelium and the ascospores, affected fertility and increased lifespan by approximately 60% when compared to the wild type. This phenotype is linked to a switch from a copper-dependent standard to an alternative respiration leading to both a reduced generation of reactive oxygen species (ROS) and of adenosine triphosphate (ATP). We performed a genome-wide comparative transcriptome analysis of a wild-type strain and the copper-depleted grisea mutant. We unambiguously assigned 9,700 sequences of the transcriptome in both strains to the more than 10,600 predicted and annotated open reading frames of the P. anserina genome indicating 90% coverage of the transcriptome. 4,752 of the transcripts differed significantly in abundance with 1,156 transcripts differing at least 3-fold. Selected genes were investigated by qRT-PCR analyses. Apart from this general characterization we analyzed the data with special emphasis on molecular pathways related to the grisea mutation taking advantage of the available complete genomic sequence of P. anserina. This analysis verified but also corrected conclusions from earlier data obtained by single gene analysis, identified new candidates of factors as part of the cellular copper homeostasis system including target genes of transcription factor GRISEA, and provides a rich reference source of quantitative data for further in detail investigations. Overall, the present study demonstrates the importance of systems biology approaches also in cases were mutations in single genes are analyzed to explain the

  2. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells.

    PubMed

    Akçakaya, Handan; Tok, Sabiha; Dal, Fulya; Cinar, Suzan Adin; Nurten, Rustem

    2017-03-01

    Oxidizing agents (e.g., H2 O2 ) cause structural and functional disruptions of molecules by affecting lipids, proteins, and nucleic acids. As a result, cellular mechanisms related to disrupted macro molecules are affected and cell death is induced. Oxidative damage can be prevented at a certain point by antioxidants or the damage can be reversed. In this work, we studied the cellular response against oxidative stress induced by H2 O2 and antioxidant-oxidant (β-carotene-H2 O2 ) interactions in terms of time, concentration, and treatment method (pre-, co-, and post) in K562 cells. We showed that co- or post-treatment with β-carotene did not protect cells from the damage of oxidative stress furthermore co- and post-β-carotene-treated oxidative stress induced cells showed similar results with only H2 O2 treated cells. However, β-carotene pre-treatment prevented oxidative damage induced by H2 O2 at concentrations lower than 1,000 μM compared with only H2 O2 -treated and co- and post-β-carotene-treated oxidative stress-induced cells in terms of studied cellular parameters (mitochondrial membrane potential [Δψm ], cell cycle and apoptosis). Prevention effect of β-carotene pre-treatment was lost at concentrations higher than 1,000 μM H2 O2 (2-10 mM). These findings suggest that β-carotene pre-treatment alters the effects of oxidative damage induced by H2 O2 and cell death processes in K562 cells.

  3. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.

    PubMed

    de Groot, Marco J L; Daran-Lapujade, Pascale; van Breukelen, Bas; Knijnenburg, Theo A; de Hulster, Erik A F; Reinders, Marcel J T; Pronk, Jack T; Heck, Albert J R; Slijper, Monique

    2007-11-01

    Saccharomyces cerevisiae is unique among yeasts in its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. Therefore, the proteomic response of S. cerevisiae to anaerobiosis was investigated using metabolic stable-isotope labelling in aerobic and anaerobic glucose-limited chemostat cultures, followed by relative quantification of protein expression. Using independent replicate cultures and stringent statistical filtering, a robust dataset of 474 quantified proteins was generated, of which 249 showed differential expression levels. While some of these changes were consistent with previous transcriptome studies, many of the responses of S. cerevisiae to oxygen availability were, to our knowledge, previously unreported. Comparison of transcriptomes and proteomes from identical cultivations yielded strong evidence for post-transcriptional regulation of key cellular processes, including glycolysis, amino-acyl-tRNA synthesis, purine nucleotide synthesis and amino acid biosynthesis. The use of chemostat cultures provided well-controlled and reproducible culture conditions, which are essential for generating robust datasets at different cellular information levels. Integration of transcriptome and proteome data led to new insights into the physiology of anaerobically growing yeast that would not have been apparent from differential analyses at either the mRNA or protein level alone, thus illustrating the power of multi-level studies in yeast systems biology.

  4. Ancient cellular structures and modern humans: change of survival strategies before prolonged low solar activity period

    NASA Astrophysics Data System (ADS)

    Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana

    The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).

  5. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases.

    PubMed Central

    Seidah, N G; Benjannet, S; Pareek, S; Savaria, D; Hamelin, J; Goulet, B; Laliberte, J; Lazure, C; Chrétien, M; Murphy, R A

    1996-01-01

    In order to define the enzymes responsible for the maturation of the precursor of nerve growth factor (proNGF), its biosynthesis and intracellular processing by the pro-protein convertases furin, PC1, PC2, PACE4, PC5 and the PC5 isoform PC5/6-B were analysed using the vaccinia virus expression system in cells containing a regulated and/or a constitutive secretory pathway. Results demonstrate that in both cell types furin, and to a lesser extent PACE4 and PC5/6-B, are the best candidate proNGF convertases. Furthermore, two processed NGF forms of 16.5 and 13.5 kDa were evident in constitutively secreting cell lines such as LoVo and BSC40 cells, whereas only the 13.5 kDa form was observed in AtT20 cells, which contain secretory granules. Both forms display the same N-terminal sequence as mature NGF, and were also produced following site-directed mutagenesis of the C-terminal Arg-Arg sequence of NGF into Ala-Ala, suggesting that the difference between them is not at the C-terminus. Co-expression of proNGF with furin and either chromogranin B or secretogranin II (but not chromogranin A) in BSC40 cells eliminated the 16.5 kDa form. Data also show that N-glycosylation of the pro-segment of proNGF and trimming of the oligosaccharide chains are necessary for the exit of this precursor from the endoplasmic reticulum and its eventual processing and secretion. Sulphate labelling experiments demonstrated that proNGF is processed into mature NGF following the arrival of the precursor in the trans-Golgi network. This comparative study shows that the three candidate mammalian subtilisin/kexin-like convertases identified process proNGF into NGF and that the nature of the final processed products is dependent on the intracellular environment. PMID:8615794

  6. Precise quantification of cellular uptake of cell-penetrating peptides using fluorescence-activated cell sorting and fluorescence correlation spectroscopy.

    PubMed

    Rezgui, Rachid; Blumer, Katy; Yeoh-Tan, Gilbert; Trexler, Adam J; Magzoub, Mazin

    2016-07-01

    Cell-penetrating peptides (CPPs) have emerged as a potentially powerful tool for drug delivery due to their ability to efficiently transport a whole host of biologically active cargoes into cells. Although concerted efforts have shed some light on the cellular internalization pathways of CPPs, quantification of CPP uptake has proved problematic. Here we describe an experimental approach that combines two powerful biophysical techniques, fluorescence-activated cell sorting (FACS) and fluorescence correlation spectroscopy (FCS), to directly, accurately and precisely measure the cellular uptake of fluorescently-labeled molecules. This rapid and technically simple approach is highly versatile and can readily be applied to characterize all major CPP properties that normally require multiple assays, including amount taken up by cells (in moles/cell), uptake efficiency, internalization pathways, intracellular distribution, intracellular degradation and toxicity threshold. The FACS-FCS approach provides a means for quantifying any intracellular biochemical entity, whether expressed in the cell or introduced exogenously and transported across the plasma membrane.

  7. Enhancing the cellular anti-proliferation activity of pyridazinones as c-met inhibitors using docking analysis.

    PubMed

    Xing, Weiqiang; Ai, Jing; Jin, Shiyu; Shi, Zhangxing; Peng, Xia; Wang, Lang; Ji, Yinchun; Lu, Dong; Liu, Yang; Geng, Meiyu; Hu, Youhong

    2015-05-05

    A series of 2, 6-disubstituted pyridazinone derivatives were evaluated and optimized for their c-Met inhibitory activity in enzyme and cellular assay. An analysis of the SAR results arising from computer modeling analysis of members of the library led to the proposal that in order to obtain optimal inhibitory activity in cellular systems the lipophilic/hydrophilic properties of individual structural fragments in the inhibitors need to match those of corresponding binding pockets in the enzyme. Guided by this proposal, the quinoline-pyridazinone 8a, containing hydrophobic 6-indolyl pyridazinone and quinoline moieties along with a hydrophilic morpholine terminal group, was designed and synthesized. The results of studies with this substance showed that it is a selective c-Met inhibitor with both a high enzyme inhibition IC50 value of 4.2 nM and a high EBC-1 cell proliferation inhibition IC50 value of 17 nM.

  8. Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide.

    PubMed

    Edwards, Amanda L; Wachter, Franziska; Lammert, Margaret; Huhn, Annissa J; Luccarelli, James; Bird, Gregory H; Walensky, Loren D

    2015-09-18

    Hydrocarbon stapling has been applied to restore and stabilize the α-helical structure of bioactive peptides for biochemical, structural, cellular, and in vivo studies. The peptide sequence, in addition to the composition and location of the installed staple, can dramatically influence the properties of stapled peptides. As a result, constructs that appear similar can have distinct functions and utilities. Here, we perform a side-by-side comparison of stapled peptides modeled after the pro-apoptotic BIM BH3 helix to highlight these principles. We confirm that replacing a salt-bridge with an i, i + 4 hydrocarbon staple does not impair target binding affinity and instead can yield a biologically and pharmacologically enhanced α-helical peptide ligand. Importantly, we demonstrate by electron microscopy that the pro-apoptotic activity of a stapled BIM BH3 helix correlates with its capacity to achieve cellular uptake without membrane disruption and accumulate at the organellar site of mechanistic activity.

  9. Adaptive Cellular Interactions in the Immune System: The Tunable Activation Threshold and the Significance of Subthreshold Responses

    NASA Astrophysics Data System (ADS)

    Grossman, Zvi; Paul, William E.

    1992-11-01

    A major challenge for immunologists is to explain how the immune system adjusts its responses to the microenvironmental context in which antigens are recognized. We propose that lymphocytes achieve this by tuning and updating their responsiveness to recurrent signals. In particular, cellular anergy in vivo is a dynamic state in which the threshold for a stereotypic mode of activation has been elevated. Anergy is associated with other forms of cellular activity, not paralysis. Cells engaged in such subthreshold interactions mediate functions such as maintenance of immunological memory and control of infections. In such interactions, patterns of signals are recognized and classified and evoke selective responses. The robust mechanism proposed for segregation of suprathreshold and subthreshold immune responses allows lymphocytes to use recognition of self-antigens in executing physiological functions. Autoreactivity is allowed where it is dissociated from uncontrolled aggression.

  10. Fully automated cellular-resolution vertebrate screening platform with parallel animal processing

    PubMed Central

    Chang, Tsung-Yao; Pardo-Martin, Carlos; Allalou, Amin; Wählby, Carolina; Yanik, Mehmet Fatih

    2012-01-01

    The zebrafish larva is an optically-transparent vertebrate model with complex organs that is widely used to study genetics, developmental biology, and to model various human diseases. In this article, we present a set of novel technologies that significantly increase the throughput and capabilities of previously described vertebrate automated screening technology (VAST). We developed a robust multi-thread system that can simultaneously process multiple animals. System throughput is limited only by the image acquisition speed rather than by the fluidic or mechanical processes. We developed image recognition algorithms that fully automate manipulation of animals, including orienting and positioning regions of interest within the microscope’s field of view. We also identified the optimal capillary materials for high-resolution, distortion-free, low-background imaging of zebrafish larvae. PMID:22159032

  11. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10.

    PubMed

    Prox, Johannes; Willenbrock, Michael; Weber, Silvio; Lehmann, Tobias; Schmidt-Arras, Dirk; Schwanbeck, Ralf; Saftig, Paul; Schwake, Michael

    2012-09-01

    A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10-TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.

  12. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity of Chlamydomonas in Response to Temperature and Nutrients

    PubMed Central

    Hessen, Dag O.; Hafslund, Ola T.; Andersen, Tom; Broch, Catharina; Shala, Nita K.; Wojewodzic, Marcin W.

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes. PMID:28167934

  13. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity of Chlamydomonas in Response to Temperature and Nutrients.

    PubMed

    Hessen, Dag O; Hafslund, Ola T; Andersen, Tom; Broch, Catharina; Shala, Nita K; Wojewodzic, Marcin W

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes.

  14. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  15. Pre-adsorption of protein on electrochemically grooved nanostructured stainless steel implant and relationship to cellular activity.

    PubMed

    Nune, K C; Misra, R D K

    2014-07-01

    The successful integration of a biomedical device is governed by the surface properties of the material and also depends on the interaction with the physiological fluid involving adsorption of proteins on the surface. Pre-adsorbed proteins act as pilots for cell adhesion and subsequently govern cellular activity. In this regard, nanograined materials are excellent vehicles to obtain an unambiguous understanding of protein adsorption, which regulate cell adhesion and cellular activity. Toward this end, we have used the concept of phase reversion-induced nanograined structure to understand grain structure-induced self-assembly of a model protein, bovine serum albumin. Furthermore, in the context of bio-mechanical interlocking between implant and bone, and osseointegration of the implant, grain boundaries were electrochemically grooved and studied for osteoblast functions. Experiments indicated that the significant differences in cell attachment, proliferation, and expression level of prominent proteins (actin, vinculin, and fibronectin) is related to synergistic effects of grain structure, pre-adsorbed protein, and grooving of grain boundaries such that the osteoblasts functions and cellular activity is promoted on the nanostructured surface in relation to the coarse-grained counterpart.

  16. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  17. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  18. Activation of the transcription factor c-Jun in acute cellular and antibody-mediated rejection after kidney transplantation.

    PubMed

    Kobayashi, Akimitsu; Takahashi, Takamune; Horita, Shigeru; Yamamoto, Izumi; Yamamoto, Hiroyasu; Teraoka, Satoshi; Tanabe, Kazunari; Hosoya, Tatsuo; Yamaguchi, Yutaka

    2010-12-01

    c-Jun is a transcription factor that belongs to the activator protein-1 family of proteins. In human kidney disease, c-Jun is activated in glomerular and tubular cells and plays a major role in renal pathophysiology. However, the contribution of this pathway to renal allograft rejection has not been determined. We investigated whether c-Jun is activated in acute allograft rejection. c-Jun activation was assessed with immunohistochemistry using phospho-specific c-Jun antibodies in control human renal tissue and renal tissue from patients with acute cellular rejection, acute antibody-mediated rejection, and no rejection in the month after transplantation. In patients with acute cellular rejection, c-Jun activation was observed primarily in infiltrated T cells associated with tubulitis, interstitial cell infiltration, and endarteritis. The number of infiltrated phosphorylated c-Jun-positive cells in the tubules and interstitium was correlated with the Banff classification "t" and "i" scores. In patients with acute antibody-mediated rejection, c-Jun activation was observed in injured endothelial cells as well as in infiltrated cells, including macrophages, in the glomerular and peritubular capillaries. Furthermore, the serum creatinine levels and changes in serum creatinine from the previous year were significantly correlated with the total tubulointerstitial phosphorylated c-Jun-positive score (representing the number of positive nuclei in the tubules, interstitium, and peritubular capillaries). In conclusion, c-Jun was activated in acute antibody-mediated rejection and acute cellular rejection and was associated with reduced graft function. These findings suggest that c-Jun plays a key role in pathological events and may represent a novel therapeutic target in acute renal allograft rejection.

  19. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  20. Morphology of filamentous fungi: linking cellular biology to process engineering using Aspergillus niger.

    PubMed

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R; Nörtemann, Bernd

    2010-01-01

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  1. Marine phytoplankton CO2 records since the Miocene - magnitudes of change inplied by cellular process models

    NASA Astrophysics Data System (ADS)

    Stoll, H. M.; Mejia, L. M.; Abrevaya, L.; Hernandez-Sanchez, M. T.; Bolton, C. T.; Mendez-Vicente, A.

    2015-12-01

    CO2 proxy records from the Mio-Pliocene rely heavily on data from the carbon isotopic fractionation of marine phytoplankton during photosynthesis (ep). However, fractionation is also sensitive to cell size, growth rate, and the degree of active C concentration at the site of photosynthesis. The ACTI-CO cell model provides one venue for exploring the implications of these multiple factors for the CO2 value consistent with a given ep determination. Using our recent alkenone ep record from the last 14 Ma, we explore in ACTI-CO mechanisms for using constraints of coccolith size for cell geometry, and coccolith calcification and isotopic fractionation coccoliths to constrain changes in carbon acquisition and the consequences for CO2 estimates. In addition, we present a new ep reconstruction for the past 13 Ma from the Equatorial Pacific based on diatom-bound organic matter . The isolation of pennate diatoms assures a similar cell geometry for the entire period, so that unlike the alkenone record, ep is not sensitive to temporal changes in cell size. The similar trends in CO2 from the size-corrected alkenone ep record and the diatom record suggest that there is a common global CO2 trend, and that size correction of the alkenone record reliably accounts for cell geometry effects. We employ the ACTI-CO model to evaluate the potential influence of changes in active carbon uptake on the magnitude of CO2 decrease since the Miocene.

  2. Flavones induce immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity: a structure-activity relationship study.

    PubMed

    Kilani-Jaziri, Soumaya; Mustapha, Nadia; Mokdad-Bzeouich, Imen; El Gueder, Dorra; Ghedira, Kamel; Ghedira-Chekir, Leila

    2016-05-01

    Flavonoids impart a variety of biological activities, including anti-oxidant, anti-inflammatory, and anti-genotoxic effects. This study investigated the effects of flavone luteolin and apigenin on immune cell functions, including proliferation, natural killer (NK) cell activity, and cytotoxic T lymphocyte (CTL) activity of isolated murine splenocytes. We report for the first time that flavones enhance lymphocyte proliferation at 10 μM. Luteolin and apigenin significantly promote lipopolysaccharide (LPS)-stimulated splenocyte proliferation and enhance humoral immune responses. Luteolin induces a weak cell proliferation of lectin-stimulated splenic T cells, when compared to apigenin. In addition, both flavones significantly enhance NK cell and CTL activities. Furthermore, our study demonstrated that both flavones could inhibit lysosomal enzyme activity, suggesting a potential anti-inflammatory effect. The anti-inflammatory activity was concomitant with the cellular anti-oxidant effect detected in macrophages, red blood cells, and splenocytes. We conclude from this study that flavones exhibited an immunomodulatory effect which could be ascribed, in part, to its cytoprotective capacity via its anti-oxidant activity.

  3. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes

    PubMed Central

    Killackey, Samuel A.; Sorbara, Matthew T.; Girardin, Stephen E.

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general. PMID:27066460

  4. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes.

    PubMed

    Killackey, Samuel A; Sorbara, Matthew T; Girardin, Stephen E

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.

  5. A cellular automata model for social-learning processes in a classroom context

    NASA Astrophysics Data System (ADS)

    Bordogna, C. M.; Albano, E. V.

    2002-02-01

    A model for teaching-learning processes that take place in the classroom is proposed and simulated numerically. Recent ideas taken from the fields of sociology, educational psychology, statistical physics and computational science are key ingredients of the model. Results of simulations are consistent with well-established empirical results obtained in classrooms by means of different evaluation tools. It is shown that students engaged in collaborative groupwork reach higher achievements than those attending traditional lectures only. However, in many cases, this difference is subtle and consequently very difficult to be detected using tests. The influence of the number of students forming the collaborative groups on the average knowledge achieved is also studied and discussed.

  6. Chemical synthesis of D-ribo-phytosphingosine-1-phosphate, a potential modulator of cellular processes.

    PubMed

    Li, S; Wilson, W K; Schroepfer, G J

    1999-01-01

    d-erythro -Sphingosine-1-phosphate (2), an intermediate in sphingosine metabolism, shows a diversity of biological activities. Comparable roles might be anticipated for d-ribo -phytosphingosine-1-phosphate (1). We describe an efficient three-step chemical synthesis of 1 from d-ribo -phytosphingosine. Our approach is based on standard phosphoramidite methodology and on the finding of Boumendjel and Miller ( J. Lipid Res. 1994. 35: 2305-2311) that sphingosine can be monophosphorylated at the 1-hydroxyl without protection of the 3-hydroxyl. However, we were unable to duplicate their reported synthesis of 2 without important modifications in reagents and reaction conditions. Under the reported conditions for preparing 2, we obtained a cyclic carbamate (14), which we have isolated and identified. The structures of 1 and the cyclic carbamate 14 were elucidated by a combination of mass spectrometry and 1D and 2D nuclear magnetic resonance spectroscopy.

  7. Fractionation, enzyme inhibitory and cellular antioxidant activity of bioactives from purple sweet potato (Ipomoea batatas).

    PubMed

    Esatbeyoglu, Tuba; Rodríguez-Werner, Miriam; Schlösser, Anke; Winterhalter, Peter; Rimbach, Gerald

    2017-04-15

    Sweet potato (Ipomoea batatas L.) is mainly cultivated in Asia. The deep purple color of purple sweet potato (PSP) is due to the high content of acylated anthocyanins. In the present study, PSP-derived polyphenols were identified using HPLC-PDA and HPLC-ESI-MS(n) analyses. After concentration of the polyphenols from PSP, preparative separation into two fractions, designated anthocyanins (AF) and copigments (CF), was carried out using adsorptive membrane chromatography. In enzyme inhibitory assays, all PSP samples inhibited the enzymes α-amylase, α-glucosidase and xanthine oxidase. Additionally, the cell signaling cellular antioxidant properties of the PSP extracts were investigated in cultured cells. PSP induced the transcription factor Nrf2, which regulates the expression of genes encoding heme oxygenase 1 (Hmox1), glutamate-cysteine ligase catalytic subunit (Gclc) and paraoxonase 1 (PON1). Furthermore, PSP enhanced cellular glutathione concentrations and decreased lipid peroxidation in cultured hepatocytes. Overall, these results suggest that PSP extracts exhibit enzyme inhibitory and cellular antioxidant properties, especially PSP CF.

  8. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  9. Cellular Uptakes, Biostabilities and Anti-miR-210 Activities of Chiral Arginine-PNAs in Leukaemic K562 Cells

    PubMed Central

    Manicardi, Alex; Fabbri, Enrica; Tedeschi, Tullia; Sforza, Stefano; Bianchi, Nicoletta; Brognara, Eleonora; Gambari, Roberto; Marchelli, Rosangela; Corradini, Roberto

    2012-01-01

    A series of 18-mer peptide nucleic acids (PNAs) targeted against micro-RNA miR-210 was synthesised and tested in a cellular system. Unmodified PNAs, R8-conjugated PNAs and modified PNAs containing eight arginine residues on the backbone, either as C2-modified (R) or C5-modified (S) monomers, all with the same sequence, were compared. Two different models were used for the modified PNAs: one with alternated chiral and achiral monomers and one with a stretch of chiral monomers at the N terminus. The melting temperatures of these derivatives were found to be extremely high and 5 m urea was used to assess differences between the different structures. FACS analysis and qRT-PCR on K562 chronic myelogenous leukaemic cells indicated that arginine-conjugated and backbone-modified PNAs display good cellular uptake, with best performances for the C2-modified series. Resistance to enzymatic degradation was found to be higher for the backbone-modified PNAs, thus enhancing the advantage of using these derivatives rather than conjugated PNAs in the cells in serum, and this effect is magnified in the presence of peptidases such as trypsin. Inhibition of miR-210 activity led to changes in the erythroid differentiation pathway, which were more evident in mithramycin-treated cells. Interestingly, the anti-miR activities differed with use of different PNAs, thus suggesting a role of the substituents not only in the cellular uptake, but also in the mechanism of miR recognition and inactivation. This is the first report relating to the use of backbone-modified PNAs as anti-miR agents. The results clearly indicate that backbone-modified PNAs are good candidates for the development of very efficient drugs based on anti-miR activity, due to their enhanced bioavailabilities, and that overall anti-miR performance is a combination of cellular uptake and RNA binding. PMID:22639449

  10. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    PubMed Central

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2017-01-01

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this comorbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. PMID:25998388

  11. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis.

    PubMed

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M; Dhawan, Subhash

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards.

  12. Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes

    PubMed Central

    Hoke, Stephen MT; Guzzo, Julie; Andrews, Brenda; Brandl, Christopher J

    2008-01-01

    Background Tra1 is an essential 437-kDa component of the Saccharomyces cerevisiae SAGA/SLIK and NuA4 histone acetyltransferase complexes. It is a member of a group of key signaling molecules that share a carboxyl-terminal domain related to phosphatidylinositol-3-kinase but unlike many family members, it lacks kinase activity. To identify genetic interactions for TRA1 and provide insight into its function we have performed a systematic genetic array analysis (SGA) on tra1SRR3413, an allele that is defective in transcriptional regulation. Results The SGA analysis revealed 114 synthetic slow growth/lethal (SSL) interactions for tra1SRR3413. The interacting genes are involved in a range of cellular processes including gene expression, mitochondrial function, and membrane sorting/protein trafficking. In addition many of the genes have roles in the cellular response to stress. A hierarchal cluster analysis revealed that the pattern of SSL interactions for tra1SRR3413 most closely resembles deletions of a group of regulatory GTPases required for membrane sorting/protein trafficking. Consistent with a role for Tra1 in cellular stress, the tra1SRR3413 strain was sensitive to rapamycin. In addition, calcofluor white sensitivity of the strain was enhanced by the protein kinase inhibitor staurosporine, a phenotype shared with the Ada components of the SAGA/SLIK complex. Through analysis of a GFP-Tra1 fusion we show that Tra1 is principally localized to the nucleus. Conclusion We have demonstrated a genetic association of Tra1 with nuclear, mitochondrial and membrane processes. The identity of the SSL genes also connects Tra1 with cellular stress, a result confirmed by the sensitivity of the tra1SRR3413 strain to a variety of stress conditions. Based upon the nuclear localization of GFP-Tra1 and the finding that deletion of the Ada components of the SAGA complex result in similar phenotypes as tra1SRR3413, we suggest that the effects of tra1SRR3413 are mediated, at least in

  13. Increased cellular activity in rat insular cortex after water and salt ingestion induced by fluid depletion.

    PubMed

    Pastuskovas, Cinthia V; Cassell, Martin D; Johnson, Alan Kim; Thunhorst, Robert L

    2003-04-01

    Insular cortex (IC) receives inputs from multiple sensory systems, including taste, and from receptors that monitor body electrolyte and fluid balance and blood pressure. This work analyzed metabolic activity of IC cells after water and sodium ingestion induced by sodium depletion. Rats were injected with the diuretic furosemide (10 mg/kg body wt), followed 5 min later by injections of the angiotensin-converting enzyme inhibitor captopril (5 mg/kg body wt). After 90 min, some rats received water and 0.3 M NaCl to drink for 2 h while others did not. A third group had access to water and saline but was not depleted of fluids. All rats were killed for processing of brain tissue for Fos-immunoreactivity (Fos-ir). Nondepleted animals had weak-to-moderate levels of Fos-ir within subregions of IC. Fluid-depleted rats without fluid access had significantly increased Fos-ir in all areas of IC. Levels of Fos-ir were highest in fluid-depleted rats that drank water and sodium. Fos-ir levels were highest in anterior regions of IC and lowest in posterior regions of IC. These results implicate visceral, taste, and/or postingestional factors in the increased metabolic activity of cells in IC.

  14. Oxidative stress affects FET proteins localization and alternative pre-mRNA processing in cellular models of ALS.

    PubMed

    Svetoni, Francesca; Caporossi, Daniela; Paronetto, Maria Paola

    2014-10-01

    FUS/TLS, EWS and TAF15 are members of the FET family of DNA and RNA binding proteins, involved in multiple steps of DNA and RNA processing and implicated in the regulation of gene expression and cell-signaling. All members of the FET family contribute to human pathologies, as they are involved in sarcoma translocations and neurodegenerative diseases. Mutations in FUS/TLS, in EWSR1 and in TAF15 genescause Amyotrophic Lateral Sclerosis (ALS), a fatal human neurodegenerative disease that affects primarily motor neurons and is characterized by the progressive loss of motor neurons and degradation of the neuromuscular junctions.ALS-associated FET mutations cause FET protein relocalization into cytoplasmic aggregates, thus impairing their normal function. Protein aggregation has been suggested as a co-opting factor during the disease pathogenesis. Cytoplasmic mislocalization of FET proteins contributes to the formation of cytoplasmic aggregates that may alter RNA processing and initiate motor neuron degeneration. Interestingly, oxidative stress, which is implicated in the pathogenesis of ALS, triggers the accumulation of mutant FUS in cytoplasmic stress granules where it binds and sequester wild-type FUS.In order to evaluate the role of FET proteins in ALS and their involvement in the response to oxidative stress, we have developed cellular models of ALS expressing ALS-related FET mutants in neuroblastoma cell lines. Upon treatment with sodium arsenite, cells were analysed by immunofluorescence to monitor the localization of wild-type and mutated FET proteins. Furthermore, we have characterized signal transduction pathways and cell survival upon oxidative stress in our cellular models of ALS. Interestingly, we found that EWS mutant proteins display a different localization from FUS mutants and neither wild-type nor mutated EWS protein translocate into stress granules upon oxidative stress treatment. Collectively, our data provide a new link between the oxidative stress

  15. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    NASA Astrophysics Data System (ADS)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  16. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton

    NASA Astrophysics Data System (ADS)

    Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui

    2009-05-01

    This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.

  17. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    SciTech Connect

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. ); Barrett, J.C.; Wiseman, R.W. ); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  18. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    SciTech Connect

    Lee, Jun Han; Kim, Sung-Hak; Pascua, Philippe Noriel Q.; Song, Min-Suk; Baek, Yun Hee; Jin, Xun; Choi, Joong-Kook; Kim, Chul-Joong; Kim, Hyunggee; Choi, Young Ki

    2010-02-05

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  19. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    PubMed Central

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited. PMID:28074895

  20. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    NASA Astrophysics Data System (ADS)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  1. The Cellular TAR RNA Binding Protein, TRBP, Promotes HIV-1 Replication Primarily by Inhibiting the Activation of Double-Stranded RNA-Dependent Kinase PKR▿

    PubMed Central

    Sanghvi, Viraj R.; Steel, Laura F.

    2011-01-01

    The TAR RNA binding protein, TRBP, is a cellular double-stranded RNA (dsRNA) binding protein that can promote the replication of HIV-1 through interactions with the viral TAR element as well as with cellular proteins that affect the efficiency of translation of viral transcripts. The structured TAR element, present on all viral transcripts, can impede efficient translation either by sterically blocking access of translation initiation factors to the 5′-cap or by activating the dsRNA-dependent kinase, PKR. Several mechanisms by which TRBP can facilitate translation of viral transcripts have been proposed, including the binding and unwinding of TAR and the suppression of PKR activation. Further, TRBP has been identified as a cofactor of Dicer in the processing of microRNAs (miRNAs), and sequestration of TRBP by TAR in infected cells has been proposed as a viral countermeasure to potential host cell RNA interference-based antiviral activities. Here, we have addressed the relative importance of these various roles for TRBP in HIV-1 replication. Using Jurkat T cells, primary human CD4+ T cells, and additional cultured cell lines, we show that depletion of TRBP has no effect on viral replication when PKR activation is otherwise blocked. Moreover, the presence of TAR-containing mRNAs does not affect the efficacy of cellular miRNA silencing pathways. These results establish that TRBP, when expressed at physiological levels, promotes HIV-1 replication mainly by suppressing the PKR-mediated antiviral response, while its contribution to HIV-1 replication through PKR-independent pathways is minimal. PMID:21937648

  2. Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide.

    PubMed

    Hatahet, T; Morille, M; Shamseddin, A; Aubert-Pouëssel, A; Devoisselle, J M; Bégu, S

    2017-02-25

    Quercetin is a plant flavonoid with strong antioxidant and antiinflammatory properties interesting for skin protection. However, its poor water solubility limits its penetration and so its efficiency on skin. For this purpose, quercetin lipid nanocapsules were formulated implementing phase inversion technique wherein several modifications were introduced to enhance quercetin loading. Quercetin lipid nanocapsules were formulated with two particle size range, (50nm and 20nm) allowing a drug loading of 18.6 and 32mM respectively. The successful encapsulation of quercetin within lipid nanocapsules increased its apparent water solubility by more than 5000 fold (from 0.5μg/ml to about 5mg/ml). The physicochemical properties of these formulations such as surface charge, stability and morphology were characterized. Lipid nanocapsules had spherical shape and were stable for 28days at 25°C. Quercetin release from lipid nanocapsules was studied and revealed a prolonged release kinetics during 24h. Using DPPH assay, we demonstrated that the formulation process of lipid nanocapsules did not modify the antioxidant activity of quercetin in vitro (92.3%). With the goal of a future dermal application, quercetin lipid nanocapsules were applied to THP-1 monocytes and proved the cellular safety of the formulation up to 2μg/ml of quercetin. Finally, formulated quercetin was as efficient as the crude form in the protection of THP-1 cells from oxidative stress by exogenous hydrogen peroxide. With its lipophilic nature and occlusive effect on skin, lipid nanocapsules present a promising strategy to deliver quercetin to skin tissue and can be of value for other poorly water soluble drug candidates.

  3. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    SciTech Connect

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  4. Mutant IDH1 Expression Drives TERT Promoter Reactivation as Part of the Cellular Transformation Process.

    PubMed

    Ohba, Shigeo; Mukherjee, Joydeep; Johannessen, Tor-Christian; Mancini, Andrew; Chow, Tracy T; Wood, Matthew; Jones, Lindsey; Mazor, Tali; Marshall, Roxanne E; Viswanath, Pavithra; Walsh, Kyle M; Perry, Arie; Bell, Robert J A; Phillips, Joanna J; Costello, Joseph F; Ronen, Sabrina M; Pieper, Russell O

    2016-11-15

    Mutations in the isocitrate dehydrogenase gene IDH1 are common in low-grade glioma, where they result in the production of 2-hydroxyglutarate (2HG), disrupted patterns of histone methylation, and gliomagenesis. IDH1 mutations also cosegregate with mutations in the ATRX gene and the TERT promoter, suggesting that IDH mutation may drive the creation or selection of telomere-stabilizing events as part of immortalization/transformation process. To determine whether and how this may occur, we investigated the phenotype of pRb-/p53-deficient human astrocytes engineered with IDH1 wild-type (WT) or R132H-mutant (IDH1(mut)) genes as they progressed through their lifespan. IDH1(mut) expression promoted 2HG production and altered histone methylation within 20 population doublings (PD) but had no effect on telomerase expression or telomere length. Accordingly, cells expressing either IDH1(WT) or IDH1(mut) entered a telomere-induced crisis at PD 70. In contrast, only IDH1(mut) cells emerged from crisis, grew indefinitely in culture, and formed colonies in soft agar and tumors in vivo Clonal populations of postcrisis IDH1(mut) cells displayed shared genetic alterations, but no mutations in ATRX or the TERT promoter were detected. Instead, these cells reactivated telomerase and stabilized their telomeres in association with increased histone lysine methylation (H3K4me3) and c-Myc/Max binding at the TERT promoter. Overall, these results show that although IDH1(mut) does not create or select for ATRX or TERT promoter mutations, it can indirectly reactivate TERT, and in doing so contribute to astrocytic immortalization and transformation. Cancer Res; 76(22); 6680-9. ©2016 AACR.

  5. Speech perception as an active cognitive process.

    PubMed

    Heald, Shannon L M; Nusbaum, Howard C

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy.

  6. Cellular imaging at 1.5 T: detecting cells in neuroinflammation using active labeling with superparamagnetic iron oxide.

    PubMed

    Oweida, Ayman J; Dunn, Elizabeth A; Foster, Paula J

    2004-04-01

    The ability to visualize cell infiltration in experimental auto-immune encephalomyelitis (EAE), a well-known animal model for multiple sclerosis in humans, was investigated using a clinical 1.5-T magnetic resonance imaging (MRI) scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA) imaging sequence and a superparamagnetic iron oxide (SPIO) contrast agent. An "active labeling" approach was used with SPIO administered intravenously during inflammation in EAE. Our results show that small, discrete regions of signal void corresponding to iron accumulation in EAE brain can be detected using FIESTA at 1.5 T. This work provides early evidence that cellular abnormalities that are the basis of diseases can be probed using cellular MRI and supports our earlier work which indicates that tracking of iron-labeled cells will be possible using clinical MR scanners.

  7. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  8. Thermal stress and cellular signaling processes in hemocytes of native (Mytilus californianus) and invasive (M. galloprovincialis) mussels: cell cycle regulation and DNA repair.

    PubMed

    Yao, Cui-Luan; Somero, George N

    2013-06-01

    In a previous study using hemocytes from native and invasive congeners of Mytilus (Mytilus californianus and Mytilus galloprovincialis, respectively) we showed that DNA damage and cell signaling transduction processes related to the cellular stress response and apoptosis were induced by acute temperature stress. The present study extends this work by examining effects of acute heat- and cold stress on total hemocyte counts (THCs) and expression of key regulatory molecules involved in responding to stress: tumor suppressor factor (p53), cell cycle arrest activator (p21), and a DNA base excision repair enzyme (apurinic/apyrimidinic endonuclease (APE)). Hyperthermia (28 °C, 32 °C) led to significant decreases of THCs in both species. The extent of decrease in THC was temperature-, time-, and species-dependent; lower THC values were found in M. californianus, the more cold-adapted species. Western blot analyses of hemocyte extracts with antibodies specific for p53 protein, several site-specific phosphorylation states of p53, p21 protein, and APE indicated that heat- and cold (2 °C) stress induced a time-dependent activation of stress-related proteins in response to DNA damage; these stress-induced changes could govern cell cycle arrest or DNA damage repair. Our results show that the downstream regulatory response to temperature-induced cell damage may play an important role in deciding cellular fate following heat- and cold stress. Compared to M. californianus, the more warm-adapted M. galloprovincialis appears to have a higher temperature tolerance due to a lesser reduction in THC, faster signaling activation and transduction, and stronger DNA repair ability following heat stress.

  9. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  10. The Fungal Quorum-Sensing Molecule Farnesol Activates Innate Immune Cells but Suppresses Cellular Adaptive Immunity

    PubMed Central

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin

    2015-01-01

    ABSTRACT Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. PMID:25784697

  11. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers

    NASA Astrophysics Data System (ADS)

    Lin, Jiang-Jen; Lin, Wen-Chun; Dong, Rui-Xuan; Hsu, Shan-hui

    2012-02-01

    Silver nanoparticles (AgNPs) are known for their excellent antibacterial activities. The possible toxicity, however, is a major concern for their applications. Three types of AgNPs were prepared in this study by chemical processes. Each was stabilized by a polymer surfactant, which was expected to reduce the exposure of cells to AgNPs and therefore their cytotoxicity. The polymer stabilizers included poly(oxyethylene)-segmented imide (POEM), poly(styrene-co-maleic anhydride)-grafting poly(oxyalkylene) (SMA) and poly(vinyl alcohol) (PVA). The cytotoxicity of these chemically produced AgNPs to mouse skin fibroblasts (L929), human hepatocarcinoma cells (HepG2), and mouse monocyte macrophages (J774A1) was compared to that of physically produced AgNPs and gold nanoparticles (AuNPs) as well as the standard reference material RM8011 AuNPs. Results showed that SMA-AgNPs were the least cytotoxic among all materials, but cytotoxicity was still observed at higher silver concentrations (>30 ppm). Macrophages demonstrated the inflammatory response with cell size increase and viability decrease upon exposure to 10 ppm of the chemically produced AgNPs. SMA-AgNPs did not induce hemolysis at a silver concentration below 1.5 ppm. Regarding the antibacterial activity, POEM-AgNPs and SMA-AgNPs at 1 ppm silver content showed 99.9% and 99.3% growth inhibition against E. coli, while PVA-AgNPs at the same silver concentration displayed 79.1% inhibition. Overall, SMA-AgNPs demonstrated better safety in vitro and greater antibacterial effects than POEM-AgNPs and PVA-AgNPs. This study suggested that polymer stabilizers may play an important role in determining the toxicity of AgNPs.

  12. Transgenic mouse model for imaging of ATF4 translational activation-related cellular stress responses in vivo

    PubMed Central

    Iwawaki, Takao; Akai, Ryoko; Toyoshima, Takae; Takeda, Naoki; Ishikawa, Tomo-o; Yamamura, Ken-ichi

    2017-01-01

    Activating transcription factor 4 (ATF4) is a translationally activated protein that plays a role in cellular adaptation to several stresses. Because these stresses are associated with various diseases, the translational control of ATF4 needs to be evaluated from the physiological and pathological points of view. We have developed a transgenic mouse model to monitor the translational activation of ATF4 in response to cellular stress. By using this mouse model, we were able to detect nutrient starvation response, antivirus response, endoplasmic reticulum (ER) stress response, and oxidative stress in vitro and ex vivo, as well as in vivo. The reporter system introduced into our mouse model was also shown to work in a stress intensity-dependent manner and a stress duration-dependent manner. The mouse model is therefore a useful tool for imaging ATF4 translational activation at various levels, from cell cultures to whole bodies, and it has a range of useful applications in investigations on the physiological and pathological roles of ATF4-related stress and in the development of clinical drugs for treating ATF4-associated diseases. PMID:28387317

  13. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels.

    PubMed

    Hawley, Simon A; Ford, Rebecca J; Smith, Brennan K; Gowans, Graeme J; Mancini, Sarah J; Pitt, Ryan D; Day, Emily A; Salt, Ian P; Steinberg, Gregory R; Hardie, D Grahame

    2016-09-01

    Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors.

  14. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2012-10-01

    The aims of this work were to compare health promoting effects of commonly consumed food legumes in terms of cancer cell proliferation inhibitory effects and cellular antioxidant activities (CAA). The CAA was evaluated by fluorescence microplate reader based on in vitro animal cell cultivation. Antiproliferative properties were assayed by MTT method using in vitro cell culture system. Phytochemicals (including total phenolic, procyanidin, saponin and phytic acid) and chemical antioxidant activities (including DPPH free radical scavenging activity, oxygen radical absorbing capacity, peroxyl radical scavenging capacity (PRSC)) were also determined for comparison purposes. The results showed that different types of legumes possessed considerable variations in their phytochemicals, as well as chemical and cellular antioxidant activities. Adzuki bean exhibited the strongest antiproliferative properties in a dose-dependent manner against all digestive system cancer cell lines (CAL27, AGS, HepG2, SW480 and Caco-2), ovary cancer cell SK-OV-3 and breast cancer cell MCF-7 among all legumes tested. Black soybean exhibited the highest saponin, phytic acid content, PRSC values, and the strongest CAA values. These results indicate that commonly consumed food legumes may serve as an excellent dietary source of natural antioxidants for health promotion and cancer prevention.

  15. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    SciTech Connect

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  16. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  17. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    SciTech Connect

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.; Katzenellenbogen, Rachel A.

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  18. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  19. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    PubMed

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake.

  20. Proteolytic Processing Regulates Placental Growth Factor Activities*

    PubMed Central

    Hoffmann, Daniel C.; Willenborg, Sebastian; Koch, Manuel; Zwolanek, Daniela; Müller, Stefan; Becker, Ann-Kathrin A.; Metzger, Stephanie; Ehrbar, Martin; Kurschat, Peter; Hellmich, Martin; Hubbell, Jeffrey A.; Eming, Sabine A.

    2013-01-01

    Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth. PMID:23645683

  1. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  2. Fractionating soluble microbial products in the activated sludge process.

    PubMed

    Ni, Bing-Jie; Zeng, Raymond J; Fang, Fang; Xie, Wen-Ming; Sheng, Guo-Ping; Yu, Han-Qing

    2010-04-01

    Soluble microbial products (SMP) are the pool of organic compounds originating from microbial growth and decay, and are usually the major component of the soluble organic matters in effluents from biological treatment processes. In this work, SMP in activated sludge were characterized, fractionized, and quantified using integrated chemical analysis and mathematical approach. The utilization-associated products (UAP) in SMP, produced in the substrate-utilization process, were found to be carbonaceous compounds with a molecular weight (MW) lower than 290 kDa which were quantified separately from biomass-associated products (BAP). The BAP were mainly cellular macromolecules with an MW in a range of 290-5000 kDa, and for the first time were further classified into the growth-associated BAP (GBAP) with an MW of 1000 kDa, which were produced in the microbial growth phase, and the endogeny-associated BAP (EBAP) with an MW of 4500 kDa, which were generated in the endogenous phase. Experimental and modeling results reveal that the UAP could be utilized by the activated sludge and that the BAP would accumulate in the system. The GBAP and EBAP had different formation rates from the hydrolysis of extracellular polymeric substances and distinct biodegradation kinetics. This study provides better understanding of SMP formation mechanisms and becomes useful for subsequent effluent treatment.

  3. The Cellular Processing Capacity Limits the Amounts of Chimeric U7 snRNA Available for Antisense Delivery.

    PubMed

    Eckenfelder, Agathe; Tordo, Julie; Babbs, Arran; Davies, Kay E; Goyenvalle, Aurélie; Danos, Olivier

    2012-06-26

    Many genetic diseases are induced by mutations disturbing the maturation of pre-mRNAs, often affecting splicing. Antisense oligoribonucleotides (AONs) have been used to modulate splicing thereby circumventing the deleterious effects of mutations. Stable delivery of antisense sequences is achieved by linking them to small nuclear RNA (snRNAs) delivered by viral vectors, as illustrated by studies where therapeutic exon skipping was obtained in animal models of Duchenne muscular dystrophy (DMD). Yet, clinical translation of these approaches is limited by the amounts of vector to be administered. In this respect, maximizing the amount of snRNA antisense shuttle delivered by the vector is essential. Here, we have used a muscle- and heart-specific enhancer (MHCK) to drive the expression of U7 snRNA shuttles carrying antisense sequences against the human or murine DMD pre-mRNAs. Although antisense delivery and subsequent exon skipping were improved both in tissue culture and in vivo, we observed the formation of additional U7 snRNA by-products following gene transfer. These included aberrantly 3' processed as well as unprocessed species that may arise because of the saturation of the cellular processing capacity. Future efforts to increase the amounts of functional U7 shuttles delivered into a cell will have to take this limitation into account.

  4. The Cellular Processing Capacity Limits the Amounts of Chimeric U7 snRNA Available for Antisense Delivery

    PubMed Central

    Eckenfelder, Agathe; Tordo, Julie; Babbs, Arran; Davies, Kay E; Goyenvalle, Aurélie; Danos, Olivier

    2012-01-01

    Many genetic diseases are induced by mutations disturbing the maturation of pre-mRNAs, often affecting splicing. Antisense oligoribonucleotides (AONs) have been used to modulate splicing thereby circumventing the deleterious effects of mutations. Stable delivery of antisense sequences is achieved by linking them to small nuclear RNA (snRNAs) delivered by viral vectors, as illustrated by studies where therapeutic exon skipping was obtained in animal models of Duchenne muscular dystrophy (DMD). Yet, clinical translation of these approaches is limited by the amounts of vector to be administered. In this respect, maximizing the amount of snRNA antisense shuttle delivered by the vector is essential. Here, we have used a muscle- and heart-specific enhancer (MHCK) to drive the expression of U7 snRNA shuttles carrying antisense sequences against the human or murine DMD pre-mRNAs. Although antisense delivery and subsequent exon skipping were improved both in tissue culture and in vivo, we observed the formation of additional U7 snRNA by-products following gene transfer. These included aberrantly 3′ processed as well as unprocessed species that may arise because of the saturation of the cellular processing capacity. Future efforts to increase the amounts of functional U7 shuttles delivered into a cell will have to take this limitation into account. PMID:23344083

  5. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  6. Cellular immune activation in children with acute dengue virus infections is modulated by apoptosis.

    PubMed

    Myint, Khin S; Endy, Timothy P; Mongkolsirichaikul, Duangrat; Manomuth, Choompun; Kalayanarooj, Siripen; Vaughn, David W; Nisalak, Ananda; Green, Sharone; Rothman, Alan L; Ennis, Francis A; Libraty, Daniel H

    2006-09-01

    Apoptosis is an important modulator of cellular immune responses during systemic viral infections. Peripheral-blood mononuclear cell (PBMC) apoptosis and plasma soluble levels of CD95, a mediator of apoptosis, were determined in sequential samples from children participating in a prospective study of dengue virus (DV) infections. During the period of defervescence, levels of PBMC apoptosis were higher in children developing dengue hemorrhagic fever (DHF), the most severe form of illness, than in those with dengue fever (DF) and other, nondengue, febrile illnesses. CD8(+) T lymphocytes made up approximately half of the peak circulating apoptotic PBMCs in DHF and DF. Maximum plasma levels of soluble CD95 were also higher in children with DHF than in those with DF. The level of PBMC apoptosis correlated with dengue disease severity. Apoptosis appears to be involved in modulation of the innate and adaptive immune responses to DV infection and is likely involved in the evolution of immune responses in other viral hemorrhagic fevers.

  7. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism

    PubMed Central

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N. Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  8. PLAGL2 translocation and SP-C promoter activity-A cellular response of lung cells to hypoxia

    SciTech Connect

    Guo, Yuhong; Yang, Meng-Chun; Weissler, Jonathan C.; Yang, Yih-Sheng . E-mail: Yih-Sheng.Yang@UTSouthwestern.edu

    2007-08-31

    Cobalt is a transition metal which can substitute for iron in the oxygen-sensitive protein and mimic hypoxia. Cobalt was known to be associated with the development of lung disease. In this study, when lung cells were exposed to hypoxia-induced by CoCl{sub 2} at a sub-lethal concentration (100 {mu}M), their thyroid transcription factor-1 (TTF-1) expression was greatly reduced. Under this condition, SP-B promoter activity was down-regulated, but SP-C promoter remained active. Therefore, we hypothesized that other factor(s) besides TTF-1 might contribute to the modulation of SP-C promoter in hypoxic lung cells. Pleomorphic adenoma gene like-2 (PLAGL2), a previously identified TTF-1-independent activator of the SP-C promoter, was not down-regulated, nor increased, within those cells. Its cellular location was redistributed from the cytoplasm to the nucleus. Chromatin immunoprecipitation (ChIP) and quantitative RT-PCR analyses demonstrated that nuclear PLAGL2 occupied and transactivated the endogenous SP-C promoter in lung cells. Thereby, through relocating and accumulating of PLAGL2 inside the nucleus, PLAGL2 interacted with its target genes for various cellular functions. These results further suggest that PLAGL2 is an oxidative stress responding regulator in lung cells.

  9. Modeling of an Active Tablet Coating Process.

    PubMed

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level.

  10. Active PZT fibers: a commercial production process

    NASA Astrophysics Data System (ADS)

    Strock, Harold B.; Pascucci, Marina R.; Parish, Mark V.; Bent, Aaron A.; Shrout, Thomas R.

    1999-07-01

    Lead Zirconate Titanate (PZT) active fibers, from 80 to 250 micrometers in diameter, are produced for the AFOSR/DARPA funded Active Fiber Composites Consortium (AFCC) Program and commercial customers. CeraNova has developed a proprietary ceramics-based technology to produce PZT mono-filaments of the required purity, composition, straightness, and piezoelectric properties for use in active fiber composite structures. CeraNova's process begins with the extrusion of continuous lengths of mono-filament precursor fiber from a plasticized mix of PZT-5A powder. The care that must be taken to avoid mix contamination is described using illustrations form problems experiences with extruder wear and metallic contamination. Corrective actions are described and example microstructures are shown. The consequences of inadequate lead control are also shown. Sintered mono- filament mechanical strength and piezoelectric properties data approach bulk values but the validity of such a benchmark is questioned based on variable correlation with composite performance measures. Comb-like ceramic preform structures are shown that are being developed to minimize process and handling costs while maintaining the required mono-filament straightness necessary for composite fabrication. Lastly, actuation performance data are presented for composite structures fabricated and tested by Continuum Control Corporation. Free strain actuation in excess of 2000 microstrain are observed.

  11. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation

    PubMed Central

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    2016-01-01

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF-κB)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF-κB-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF-κB activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents. PMID:27833761

  12. Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning.

    PubMed

    Kiskowski, Maria A; Alber, Mark S; Thomas, Gilberto L; Glazier, James A; Bronstein, Natalie B; Pu, Jiayu; Newman, Stuart A

    2004-07-15

    We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic patterning. This "agent-oriented" model represents cells by points on a lattice that obey rules motivated by experimental findings. The "cells" follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin), production and release of a diffusible growth factor ("activator," corresponding to TGF-beta) that stimulates production of the SAM, and another diffusible factor ("inhibitor") that suppresses the activity of the activator. We implemented the cellular automaton on a two-dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the applicability of this model to limb development in vivo and to other organ development.

  13. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation.

    PubMed

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    2016-01-01

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF-κB)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF-κB-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF-κB activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents.

  14. A Nucleolar Protein, Ribosomal RNA Processing 1 Homolog B (RRP1B), Enhances the Recruitment of Cellular mRNA in Influenza Virus Transcription

    PubMed Central

    Su, Wen-Chi; Hsu, Shih-Feng; Lee, Yi-Yuan; Jeng, King-Song

    2015-01-01

    ABSTRACT Influenza A virus (IAV) undergoes RNA transcription by a unique capped-mRNA-dependent transcription, which is carried out by the viral RNA-dependent RNA polymerase (RdRp), consisting of the viral PA, PB1, and PB2 proteins. However, how the viral RdRp utilizes cellular factors for virus transcription is not clear. Previously, we conducted a genome-wide pooled short hairpin RNA (shRNA) screen to identify host factors important for influenza A virus replication. Ribosomal RNA processing 1 homolog B (RRP1B) was identified as one of the candidates. RRP1B is a nucleolar protein involved in ribosomal biogenesis. Upon IAV infection, part of RRP1B was translocated from the nucleolus to the nucleoplasm, where viral RNA synthesis likely takes place. The depletion of RRP1B significantly reduced IAV mRNA transcription in a minireplicon assay and in virus-infected cells. Furthermore, we showed that RRP1B interacted with PB1 and PB2 of the RdRp and formed a coimmunoprecipitable complex with RdRp. The depletion of RRP1B reduced the amount of capped mRNA in the RdRp complex. Taken together, these findings indicate that RRP1B is a host factor essential for IAV transcription and provide a target for new antivirals. IMPORTANCE Influenza virus is an important human pathogen that causes significant morbidity and mortality and threatens the human population with epidemics and pandemics every year. Due to the high mutation rate of the virus, antiviral drugs targeting viral proteins might ultimately lose their effectiveness. An alternative strategy that explores the genetic stability of host factors indispensable for influenza virus replication would thus be desirable. Here, we characterized the rRNA processing 1 homolog B (RRP1B) protein as an important cellular factor for influenza A virus transcription. We showed that silencing RRP1B hampered viral RNA-dependent RNA polymerase (RdRp) activity, which is responsible for virus transcription and replication. Furthermore, we

  15. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    PubMed

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  16. Formin’ cellular structures

    PubMed Central

    Bogdan, Sven; Schultz, Jörg; Grosshans, Jörg

    2014-01-01

    Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation. PMID:24719676

  17. Quantifiable analysis of cellular pathway inhibition of a Nedd8-activating enzyme inhibitor, MLN4924, using AlphaScreen.

    PubMed

    Yan, Zhong-Hua; Burkhardt, Anne; Loke, Huay-Keng; Chen, Jesse; Xu, Qing; Brauer, Pam; Ma, Jingya; Lin, Yafang; Garcia, Khris; Dick, Lawrence R; Bembenek, Michael E

    2013-08-15

    Cellular effects of a Nedd8-activating enzyme (NAE) inhibitor, MLN4924, using the AlphaScreen format were explored. MLN4924 acts as a substrate-assisted inhibitor of NAE by forming a tight binding Nedd8-MLN4924 adduct. The inhibited enzyme can no longer transfer Nedd8 downstream to modify and activate the E3 cullin-RING ligases. This results in the stabilization of proteins regulated by the proteasome, leading to cell death. These studies monitored the endogenous cellular changes to NAE∼Nedd8 thioester, the formation of the Nedd8-MLN4924 adduct, and the reduction in the Cul1-Nedd8. Lysates derived from MLN4924-treated HCT116 cells showed that whereas the β-subunit of NAE remained constant, reductions of both NAE∼Nedd8 thioester and Cul1-Nedd8 levels occurred with a concomitant rise of the adduct. Moreover, the formation of the Nedd8-MLN4924 adduct was approximately stoichiometric with the concentration of NAEβ. Higher density 384-well cell-based assays illustrated the kinetics of enzyme inactivation across a wider range of MLN4924 concentrations, showing a rapid loss of NAE∼Nedd8 thioester and Cul1-Nedd8. The reduction of NAE∼Nedd8 thioester precedes the loss of Cul1-Nedd8 at twice the rate. Finally, these results clearly demonstrate the utility of the homogeneous assay for quantitative assessment of these endogenous cellular components in a 384-well plate in response to inhibition of NAE by MLN4924.

  18. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution.

    PubMed

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.

  19. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  20. The anticancer activity of the fungal metabolite terrecyclic acid A is associated with modulation of multiple cellular stress response pathways.

    PubMed

    Turbyville, Thomas J; Wijeratne, E M Kithsiri; Whitesell, Luke; Gunatilaka, A A Leslie

    2005-10-01

    Tumors are dependent on cellular stress responses, in particular the heat shock response, for survival in their hypoxic, acidotic, and nutrient-deprived microenvironments. Using cell-based reporter assays, we have identified terrecyclic acid A (TCA) from Aspergillus terreus, a fungus inhabiting the rhizosphere of Opuntia versicolor of the Sonoran desert, as a small-molecule inducer of the heat shock response that shows anticancer activity. Further characterization suggested that TCA also affects oxidative and inflammatory cellular stress response pathways. The presence of an alpha-methylene ketone moiety suggested that TCA may form adducts with sulfhydryl groups of proteins. Reaction with labile intracellular cysteines was supported by our finding that the glutathione precursor N-acetyl-cysteine protected tumor cells from the cytotoxic effects of TCA whereas the glutathione-depleting agent buthionine sulfoximine enhanced its activity. Related sesquiterpenes have been shown to increase levels of reactive oxygen species (ROS) and to inhibit nuclear factor kappaB (NF-kappaB) transcriptional activity. To assess whether TCA could have similar activities, we used a ROS-sensitive dye and flow cytometry to show that TCA does indeed increase ROS levels in 3LL cells. When tested in cells carrying NF-kappaB reporter constructs, TCA also exhibited concentration-dependent inhibition of cytokine-induced NF-kappaB transcriptional activity. These findings suggest that TCA modulates multiple stress pathways-the oxidative, heat shock, and inflammatory responses-in tumor cells that promote their survival. Small-molecule natural products such as TCA may serve as useful probes for understanding the relationships between these pathways, potentially providing leads for the design of novel and effective anticancer drugs.

  1. Flow-dependent myosin recruitment during Drosophila cellularization requires zygotic dunk activity

    PubMed Central

    Martin, Adam; Wieschaus, Eric

    2016-01-01

    Actomyosin contractility underlies force generation in morphogenesis ranging from cytokinesis to epithelial extension or invagination. In Drosophila, the cleavage of the syncytial blastoderm is initiated by an actomyosin network at the base of membrane furrows that invaginate from the surface of the embryo. It remains unclear how this network forms and how it affects tissue mechanics. Here, we show that during Drosophila cleavage, myosin recruitment to the cleavage furrows proceeds in temporally distinct phases of tension-driven cortical flow and direct recruitment, regulated by different zygotic genes. We identify the gene dunk, which we show is transiently transcribed when cellularization starts and functions to maintain cortical myosin during the flow phase. The subsequent direct myosin recruitment, however, is Dunk-independent but requires Slam. The Slam-dependent direct recruitment of myosin is sufficient to drive cleavage in the dunk mutant, and the subsequent development of the mutant is normal. In the dunk mutant, cortical myosin loss triggers misdirected flow and disrupts the hexagonal packing of the ingressing furrows. Computer simulation coupled with laser ablation suggests that Dunk-dependent maintenance of cortical myosin enables mechanical tension build-up, thereby providing a mechanism to guide myosin flow and define the hexagonal symmetry of the furrows. PMID:27226317

  2. High-speed addressable confocal microscopy for functional imaging of cellular activity.

    PubMed

    Bansal, Vivek; Patel, Saumil; Saggau, Peter

    2006-01-01

    Due to cellular complexity, studying fast signaling in neurons is often limited by: 1. the number of sites that can be simultaneously probed with conventional tools, such as patch pipettes, and 2. the recording speed of imaging tools, such as confocal or multiphoton microscopy. To overcome these spatiotemporal limitations, we develop an addressable confocal microscope that permits concurrent optical recordings from multiple user-selected sites of interest at high frame rates. Our system utilizes acousto-optic deflectors (AODs) for rapid positioning of a focused laser beam and a digital micromirror device (DMD) for addressable spatial filtering to achieve confocality. A registration algorithm synchronizes the AODs and DMD such that point illumination and point detection are always colocalized in conjugate image planes. The current system has an adjustable spatial resolution of approximately 0.5 to 1 microm. Furthermore, we show that recordings can be made at an aggregate frame rate of approximately 40 kHz. The system is capable of optical sectioning; this property is used to create 3-D reconstructions of fluorescently labeled test specimens and visualize neurons in brain slices. Additionally, we use the system to record intracellular calcium transients at several sites in hippocampal neurons using the fluorescent calcium indicator Oregon Green BAPTA-1.

  3. Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods

    PubMed Central

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  4. Pokeweed antiviral protein increases HIV-1 particle infectivity by activating the cellular mitogen activated protein kinase pathway.

    PubMed

    Mansouri, Sheila; Kutky, Meherzad; Hudak, Katalin A

    2012-01-01

    Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.

  5. Cellular Basis of Antiproliferative and Antitumor Activity of the Novel Camptothecin Derivative, Gimatecan, in Bladder Carcinoma Models1

    PubMed Central

    Ulivi, Paola; Zoli, Wainer; Fabbri, Francesco; Brigliadori, Giovanni; Ricotti, Luca; Tesei, Anna; Rosetti, Marco; De Cesare, Michelandrea; Beretta, Giovanni L; Corna, Elisabetta; Supino, Rosanna; Zunino, Franco

    2005-01-01

    Abstract To investigate the cellular/molecular basis of the activity of a novel lipophilic camptothecin, gimatecan (ST1481), against slowly proliferating cells, we performed a comparative study of topotecan and gimatecan in human bladder cancer models (HT1376 and MCR). Gimatecan was significantly more effective than topotecan in inhibiting the growth of HT1376 tumor, thus reflecting antiproliferative potency. In both HT1376 and MCR cells, gimatecan caused a persistent S-phase arrest, indicating an efficient DNA damage checkpoint. This response was consistent with a cytostatic effect, because no evidence of apoptosis was detected. In contrast to gimatecan, topotecan at equitoxic concentrations caused an early and persistent downregulation of topoisomerase I. Modulation of protein level could not be solely ascribed to the proteasome-mediated degradation of the enzyme because the proteasome inhibitor PS341 sensitized MCR but not HT1376 cells to camptothecins, suggesting alternative mechanisms of drug-induced topoisomerase I downregulation. Indeed, the two camptothecins caused a differential inhibition of topoisomerase I transcription, which is more marked in topotecan-treated cells. The HT1376 model was more sensitive to this immediate decrease of mRNA level. Our data document a marked antitumor activity of gimatecan against a bladder carcinoma model. A limited downregulation of topoisomerase I by gimatecan provides additional insights into the cellular basis of drug potency. PMID:15802020

  6. Cellular automata-based forecasting of the impact of accidental fire and toxic dispersion in process industries.

    PubMed

    Sarkar, Chinmoy; Abbasi, S A

    2006-09-01

    The strategies to prevent accidents from occurring in a process industry, or to minimize the harm if an accident does take place, always revolve around forecasting the likely accidents and their impacts. Based on the likely frequency and severity of the accidents, resources are committed towards preventing the accidents. Nearly all techniques of ranking hazardous units, be it the hazard and operability studies, fault tree analysis, hazard indice, etc.--qualitative as well as quantitative--depend essentially on the assessment of the likely frequency and the likely harm accidents in different units may cause. This fact makes it exceedingly important that the forecasting the accidents and their likely impact is done as accurately as possible. In the present study we introduce a new approach to accident forecasting based on the discrete modeling paradigm of cellular automata. In this treatment an accident is modeled as a self-evolving phenomena, the impact of which is strongly influenced by the size, nature, and position of the environmental components which lie in the vicinity of the accident site. The outward propagation of the mass, energy and momentum from the accident epicenter is modeled as a fast diffusion process occurring in discrete space-time coordinates. The quantum of energy and material that would flow into each discrete space element (cell) due to the accidental release is evaluated and the degree of vulnerability posed to the receptors if present in the cell is measured at the end of each time element. This approach is able to effectively take into account the modifications in the flux of energy and material which occur as a result of the heterogeneous environment prevailing between the accident epicenter and the receptor. Consequently, more realistic accident scenarios are generated than possible with the prevailing techniques. The efficacy of the approach has been illustrated with case studies.

  7. In vitro assessment of blood compatibility: residual and dynamic markers of cellular activation.

    PubMed

    Johnson, Greg; Curry, Benjamin; Cahalan, Linda; Prater, Roni; Beeler, Michael; Gartner, Mark; Biggerstaff, John; Cahalan, Patrick

    2013-05-01

    The blood compatibility of materials and surfaces used for medical device fabrication is a crucial factor in their function and effectiveness. Expansion of device use into more sensitive and longer term applications warrants increasingly detailed evaluations of blood compatibility that reach beyond the customary measures mandated by regulatory requirements. A panel of tests that assess both deposition on the surface and activation of circulating blood in contact with the surface has been developed. Specifically, the ability of a surface to modulate the biological response of blood is assessed by measuring: (1) dynamic thrombin generation; (2) surface-bound thrombin activity after exposure to blood; (3) activation of monocytes, polymorphonuclear leukocytes, lymphocytes, and platelets; (4) activation of complement; and (5) adherent monocytes, polymorphonuclear leukocytes, lymphocytes, and platelets on blood-contacting surfaces. The tests were used to evaluate surfaces modified with immobilized heparin (Ension's proprietary bioactive surface) and demonstrated that the modified surfaces reduced platelet activation, leukocyte activation, and complement activation in flowing human blood. Perfusion of the surfaces with human platelet-rich plasma showed that the immobilized heparin surfaces also reduce both dynamic thrombin levels in the circulating plasma and residual thrombin generated at the material surface.

  8. Mapping social behavior-induced brain activation at cellular resolution in the mouse.

    PubMed

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J; Rockland, Kathleen S; Seung, H Sebastian; Osten, Pavel

    2015-01-13

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here, we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate-early-gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP+ neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse.

  9. Inflammatory cells and cellular activation in the lower respiratory tract in Churg-Strauss syndrome

    PubMed Central

    Schnabel, A.; Csernok, E.; Braun, J.; Gross, W.

    1999-01-01

    BACKGROUND—To obtain insight into the mechanisms of tissue injury in lung disease due to Churg-Strauss syndrome (CSS), the bronchoalveolar lavage (BAL) cell profile and the levels in the BAL fluid of cell products released by activated eosinophils and neutrophils were assessed.
METHODS—Thirteen patients with active progressive CSS (n = 7) or CSS in partial remission (n = 6) underwent clinical staging and bronchoalveolar lavage. The levels of eosinophil cationic protein (ECP), myeloperoxidase (MPO), and peroxidase activity in the BAL fluid were determined and the results were compared with those of 19 patients with pulmonary active Wegener's granulomatosis (WG) and nine control subjects.
RESULTS—In patients with progressive CSS the BAL cell profile was dominated by eosinophils, neutrophil elevation being the exception. The eosinophilia was associated with high ECP levels (4.39 ng/ml and 0.40 ng/ml in the two CSS groups compared with unmeasurable values in the controls). Individual patients with highly active CSS also had raised MPO levels, comparable to the levels in the most active WG patients. Peroxidase activity in the BAL fluid was 1.26 U/ml and 0.10 U/ml in the two groups of patients with CSS and 0.20 U/ml in the controls. Pulmonary disease in patients with WG was characterised by an extensive increase in MPO (0.30ng/ml versus 0.13 ng/ml in the controls) together with high peroxidase activity in the BAL fluid (4.37 U/ml), but only a small increase in ECP levels was seen. No correlation was found between the ECP and MPO levels in patients with CSS which suggests that eosinophil and neutrophil activation vary independently of each other.
CONCLUSIONS—These findings suggest that, in addition to eosinophil activation, neutrophil activation is an important feature in some patients with highly active CSS. The balance of neutrophil and eosinophil involvement appears to be variable and this may be one explanation for the individually variable treatment

  10. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  11. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  12. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  13. Plastid Osmotic Stress Activates Cellular Stress Responses in Arabidopsis1[C][W][OPEN

    PubMed Central

    Wilson, Margaret E.; Basu, Meera R.; Bhaskara, Govinal Badiger; Verslues, Paul E.; Haswell, Elizabeth S.

    2014-01-01

    Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like2 (MSL2) and MSL3 contain leaf epidermal plastids under hypoosmotic stress, even during normal growth and development. Here, we use the msl2 msl3 mutant as a model to investigate the cellular response to constitutive plastid osmotic stress. Under unstressed conditions, msl2 msl3 seedlings exhibited several hallmarks of drought or environmental osmotic stress, including solute accumulation, elevated levels of the compatible osmolyte proline (Pro), and accumulation of the stress hormone abscisic acid (ABA). Furthermore, msl2 msl3 mutants expressed Pro and ABA metabolism genes in a pattern normally seen under drought or osmotic stress. Pro accumulation in the msl2 msl3 mutant was suppressed by conditions that reduce plastid osmotic stress or inhibition of ABA biosynthesis. Finally, treatment of unstressed msl2 msl3 plants with exogenous ABA elicited a much greater Pro accumulation response than in the wild type, similar to that observed in plants under drought or osmotic stress. These results suggest that osmotic imbalance across the plastid envelope can elicit a response similar to that elicited by osmotic imbalance across the plasma membrane and provide evidence for the integration of the osmotic state of an organelle into that of the cell in which it resides. PMID:24676856

  14. Effect of transglutaminase substrates and polyamines on the cellular sequestration and processing of follicle-stimulating hormone by rat Sertoli cells

    SciTech Connect

    Dias, J.A.

    1986-08-01

    Transglutaminase (TGase) substrates monodansyl cadaverine (MDC, monodansyl-1,5 diaminopentane) and methylamine (MA) and polyamines (PA) were tested for their effects on the cellular processing of radioiodinated human follicle-stimulating hormone (/sup 125/I-hFSH). Specifically bound /sup 125/I-hFSH that could be released from cells during 10-min incubation period with acidified (pH 3.9) Hanks balanced-salt solution was considered membrane-bound unsequestered hormone. The rate at which cells sequestered /sup 125/I-hFSH into cellular compartments resistant to acid dissociation depended on the length of time in which cells were incubated with hormone. Cells incubated with /sup 125/I-hFSH for 15, 60, and 120 min had half-lives of sequestration of 26, 55 and 67 min respectively. One hundred-micromolar MDC inhibited degradation of /sup 125/I-hFSH as measured by the presence of radioactivity in the medium that was soluble in trichloroacetic acid. The rate of sequestration was never slower than that of controls, indicating that MDC did not decrease the ability of Sertoli cells to sequester /sup 125/I-hFSH. Despite these two observations, radioactivity associated with cells (acid-resistant radioactivity) was lower in cells treated with MDC than in controls. No effect of MDC on specific binding of 125I-hFSH was observed. Similar results were observed with MA, albeit at higher levels (0.0025-0.0425 M), consistent with their relative potency to inhibit TGase activity. Polyamines, spermine, and putrescine also decreased cell-associated radioactivity despite decreasing degradation of hFSH. TGase substrates (MDC, MA, PA) prevented entry of sequestered 125I-hFSH into the degradative pathways of Sertoli cells. These data suggest that transglutamination may influence the fate of sequestered FSH in Sertoli cells but not the rate at which sequestration occurs.

  15. Generation of cellular immune responses to HCV NS5 protein through in vivo activation of dendritic cells

    PubMed Central

    Wintermeyer, P.; Gehring, S.; Eken, A.; Wands, J. R.

    2014-01-01

    SUMMARY Chronic hepatitis C (HCV) infection is a substantial medical problem that leads to progressive liver disease, cirrhosis, and hepatocellular carcinoma (HCC). The aim of this study was to achieve sustained cellular immune responses in vivo to a HCV nonstructural protein using dendritic cell (DC)-based immunization approach. We targeted the HCV NS5 protein to DCs in vivo by injecting microparticles loaded with this antigen. The DC population was expanded in BALB/C mice (H-2d) by hydrodynamic injection of a plasmid pUMVC3-hFLex expressing the secreted portion of the human Fms-like tyrosine kinase receptor-3 ligand (hFlt3). Mice were subsequently injected with microparticles coated with HCV NS5 protein via the tail vein. Cellular immune responses were determined with respect to secretion of INFγ and IL2 by CD4+ cells and cytotoxic T-lymphocyte (CTL) assays in vitro; inhibition of tumour cell growth was employed for the assessment of CD8+ generated activity in vivo. We found that Flt3L treatment expanded the DC population in the spleen to 43%, and such cells displayed a striking upregulation of CD86 as well as CD80 and CD40 co-stimulating molecules. Viral antigen-specific TH1 cytokine secretion by splenocytes was generated, and CTL activity against syngeneic NS5 expressing myeloma target cells was observed. In addition, these cells inhibited tumour growth indicating that NS5-specific robust CTL activity was operative in vivo. Thus, the capability of activating DCs in vivo using the methods described is valuable as a therapeutic vaccine strategy for chronic HCV infection. PMID:20002303

  16. Cellular Delivery and Photochemical Activation of Antisense Agents through a Nucleobase Caging Strategy

    PubMed Central

    Govan, Jeane M.; Uprety, Rajendra; Thomas, Meryl; Lusic, Hrvoje; Lively, Mark O.; Deiters, Alexander

    2013-01-01

    Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity. PMID:23915424

  17. Molecular and cellular effects of NEDD8-activating enzyme inhibition in myeloma.

    PubMed

    McMillin, Douglas W; Jacobs, Hannah M; Delmore, Jake E; Buon, Leutz; Hunter, Zachary R; Monrose, Val; Yu, Jie; Smith, Peter G; Richardson, Paul G; Anderson, Kenneth C; Treon, Steven P; Kung, Andrew L; Mitsiades, Constantine S

    2012-04-01

    The NEDD8-activating enzyme is upstream of the 20S proteasome in the ubiquitin/proteasome pathway and catalyzes the first step in the neddylation pathway. NEDD8 modification of cullins is required for ubiquitination of cullin-ring ligases that regulate degradation of a distinct subset of proteins. The more targeted impact of NEDD8-activating enzyme on protein degradation prompted us to study MLN4924, an investigational NEDD8-activating enzyme inhibitor, in preclinical multiple myeloma models. In vitro treatment with MLN4924 led to dose-dependent decrease of viability (EC(50) = 25-150 nmol/L) in a panel of human multiple myeloma cell lines. MLN4924 was similarly active against a bortezomib-resistant ANBL-6 subline and its bortezomib-sensitive parental cells. MLN4924 had submicromolar activity (EC(50) values <500 nmol/L) against primary CD138(+) multiple myeloma patient cells and exhibited at least additive effect when combined with dexamethasone, doxorubicin, and bortezomib against MM.1S cells. The bortezomib-induced compensatory upregulation of transcripts for ubiquitin/proteasome was not observed with MLN4924 treatment, suggesting distinct functional roles of NEDD8-activating enzyme versus 20S proteasome. MLN4924 was well tolerated at doses up to 60 mg/kg 2× daily and significantly reduced tumor burden in both a subcutaneous and an orthotopic mouse model of multiple myeloma. These studies provide the framework for the clinical investigation of MLN4924 in multiple myeloma.

  18. Functional Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions

    PubMed Central

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015

  19. A Cellular Biophysics Textbook

    NASA Astrophysics Data System (ADS)

    Wilder, Alan Joseph

    2011-12-01

    In the past two decades, great advances have been made in understanding of the biophysical mechanisms of the protein machines that carry out the fundamental processes of the cell. It is now known that all major eukaryotic cellular processes require a complicated assemblage of proteins acting via a series of concerted motions. In order to grasp current understanding of cellular mechanisms, the new generation of cell biologists needs to be trained in the general characteristics of these cellular properties and the methods with which to study them. This cellular biophysics textbook, to be used in conjunction with the cellular biophysics course (MCB143) at UC-Davis, provides a great tool in the instruction of the new generation of cellular biologists. It provides a hierarchical view of the cell, from atoms to protein machines and explains in depth the mechanisms of cytoskeletal force generators as an example of these principles.

  20. Disruption of the Membrane Nuclease Gene (MBOVPG45_0215) of Mycoplasma bovis Greatly Reduces Cellular Nuclease Activity

    PubMed Central

    Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.

    2015-01-01

    ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the

  1. Cellular Transformation of Mouse Embryo Fibroblasts in the Absence of Activator E2Fs

    PubMed Central

    Gupta, Tushar; Sáenz Robles, Maria Teresa

    2015-01-01

    ABSTRACT The E2F family of transcription factors, broadly divided into activator and repressor E2Fs, regulates cell cycle genes. Current models indicate that activator E2Fs are necessary for cell cycle progression and tumorigenesis and are also required to mediate transformation induced by DNA tumor viruses. E2Fs are negatively regulated by the retinoblastoma (RB) family of tumor suppressor proteins, and virus-encoded oncogenes disrupt the RB-E2F repressor complexes. This results in the release of activator E2Fs and induction of E2F-dependent genes. In agreement, expression of large tumor T antigens (TAg) encoded by polyomaviruses in mammalian cells results in increased transcriptional levels of E2F target genes. In addition, tumorigenesis induced by transgenic expression of simian virus 40 (SV40) TAg in choroid plexus or intestinal villi requires at least one activator E2F. In contrast, we show that SV40 TAg-induced transformation in mouse embryonic fibroblasts is independent of activator E2Fs. This work, coupled with recent studies showing that proliferation in stem and progenitor cells is independent of activator E2Fs, suggests the presence of parallel pathways governing cell proliferation and tumorigenesis. IMPORTANCE The RB-E2F pathway is altered in many cancers and is also targeted by DNA tumor viruses. Viral oncoprotein action on RBs results in the release of activator E2Fs and upregulation of E2F target genes; thus, activator E2Fs are considered essential for normal and tumorigenic cell proliferation. However, we have observed that SV40 large T antigen can induce cell proliferation and transformation in the absence of activator E2Fs. Our results also suggest that TAg action on pRBs regulates both E2F-dependent and -independent pathways that govern proliferation. Thus, specific cell proliferation pathways affected by RB alterations in cancer may be a factor in tumor behavior and response to therapy. PMID:25717106

  2. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  3. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  4. Cellular Activity of New Small Molecule Protein Arginine Deiminase 3 (PAD3) Inhibitors.

    PubMed

    Jamali, Haya; Khan, Hasan A; Tjin, Caroline C; Ellman, Jonathan A

    2016-09-08

    The protein arginine deiminases (PADs) catalyze the post-translational deimination of arginine side chains. Multiple PAD isozymes have been characterized, and abnormal PAD activity has been associated with several human disease states. PAD3 has been characterized as a modulator of cell growth via apoptosis inducing factor and has been implicated in the neurodegenerative response to spinal cord injury. Here, we describe the design, synthesis, and evaluation of conformationally constrained versions of the potent and selective PAD3 inhibitor 2. The cell activity of representative inhibitors in this series was also demonstrated for the first time by rescue of thapsigargin-induced cell death in PAD3-expressing HEK293T cells.

  5. The extracellular matrix microtopography drives critical changes in cellular motility and Rho A activity in colon cancer cells.

    PubMed

    Rapier, Rebecca; Huq, Jameela; Vishnubhotla, Ramana; Bulic, Marinka; Perrault, Cecile M; Metlushko, Vitali; Cho, Michael; Tay, Roger Tran Son; Glover, Sarah C

    2010-07-28

    We have shown that the microtopography (mT) underlying colon cancer changes as a tumor de-differentiates. We distinguish the well-differentiated mT based on the increasing number of "pits" and poorly differentiated mT on the basis of increasing number of "posts." We investigated Rho A as a mechanosensing protein using mT features derived from those observed in the ECM of colon cancer. We evaluated Rho A activity in less-tumorogenic (Caco-2 E) and more tumorigenic (SW620) colon cancer cell-lines on microfabricated pits and posts at 2.5 mum diameter and 200 nm depth/height. In Caco-2 E cells, we observed a decrease in Rho A activity as well as in the ratio of G/F actin on surfaces with either pits or posts but despite this low activity, knockdown of Rho A led to a significant decrease in confined motility suggesting that while Rho A activity is reduced on these surfaces it still plays an important role in controlling cellular response to barriers. In SW620 cells, we observed that Rho A activity was greatest in cells plated on a post microtopography which led to increased cell motility, and an increase in actin cytoskeletal turnover.

  6. Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes.

    PubMed

    Nedelcu, Aurora M; Marcu, Oana; Michod, Richard E

    2004-08-07

    Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell-cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage--the multicellular green alga Volvox carteri--sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex-inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS-induced DNA damage.

  7. Correlated activity supports efficient cortical processing

    PubMed Central

    Hung, Chou P.; Cui, Ding; Chen, Yueh-peng; Lin, Chia-pei; Levine, Matthew R.

    2015-01-01

    Visual recognition is a computational challenge that is thought to occur via efficient coding. An important concept is sparseness, a measure of coding efficiency. The prevailing view is that sparseness supports efficiency by minimizing redundancy and correlations in spiking populations. Yet, we recently reported that “choristers”, neurons that behave more similarly (have correlated stimulus preferences and spontaneous coincident spiking), carry more generalizable object information than uncorrelated neurons (“soloists”) in macaque inferior temporal (IT) cortex. The rarity of choristers (as low as 6% of IT neurons) indicates that they were likely missed in previous studies. Here, we report that correlation strength is distinct from sparseness (choristers are not simply broadly tuned neurons), that choristers are located in non-granular output layers, and that correlated activity predicts human visual search efficiency. These counterintuitive results suggest that a redundant correlational structure supports efficient processing and behavior. PMID:25610392

  8. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization

    PubMed Central

    Wang, Yan; Ozawa, Atsushi; Zaman, Shadia; Prasad, Nijaguna B.; Chandrasekharappa, Settara C.; Agarwal, Sunita K.; Marx, Stephen J.

    2010-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder associated mainly with tumors of multiple endocrine organs. Mutations in the MEN1 gene that encodes for the menin protein are the predominant cause for hereditary MEN1 syndrome. Though menin is a tumor suppressor, its molecular mechanism of action has not been defined. Here we report that menin interacts with AKT1 in vitro and in vivo. Menin downregulates the level of active AKT and its kinase activity. Through interaction with AKT1, menin suppresses both AKT1 induced proliferation and anti-apoptosis in non-endocrine and endocrine cells. Confocal microscopy analysis revealed that menin regulates AKT1 in part by reducing the translocation of AKT1 from the cytoplasm to the plasma membrane during growth factor stimulation. Our findings may be generalizable to other cancers, insofar as we found that loss of menin expression was also associated with AKT activation in a mouse model of pancreatic islet adenoma. Together, our results suggest menin as an important novel negative regulator of AKT kinase activity. PMID:21127195

  9. Cyclin A2 Mutagenesis Analysis: A New Insight into CDK Activation and Cellular Localization Requirements

    PubMed Central

    Bendris, Nawal; Lemmers, Bénédicte; Blanchard, Jean-Marie; Arsic, Nikola

    2011-01-01

    Cyclin A2 is essential at two critical points in the somatic cell cycle: during S phase, when it activates CDK2, and during the G2 to M transition when it activates CDK1. Based on the crystal structure of Cyclin A2 in association with CDKs, we generated a panel of mutants to characterize the specific amino acids required for partner binding, CDK activation and subcellular localization. We find that CDK1, CDK2, p21, p27 and p107 have overlapping but distinct requirements for association with this protein. Our data highlight the crucial importance of the N-terminal α helix, in conjunction with the α3 helix within the cyclin box, in activating CDK. Several Cyclin A2 mutants selectively bind to either CDK1 or CDK2. We demonstrate that association of Cyclin A2 to proteins such as CDK2 that was previously suggested as crucial is not a prerequisite for its nuclear localization, and we propose that the whole protein structure is involved. PMID:21829545

  10. Functionally Charged Polystyrene Particles Activate Immortalized Mouse Microglia (BV2): Cellular and Genomic Response

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2

  11. Surface and semantic processing of cellular transport representations by high school students with low and high prior knowledge

    NASA Astrophysics Data System (ADS)

    Cook, Michelle Patrick

    The purpose of this study was to examine the influence of prior knowledge of cell transport processes on how students viewed and interpreted visual representations related to that topic. The participants were high school students (n=65) enrolled in Advanced Placement biology. Prior knowledge was assessed using a modified version of the Diffusion and Osmosis Diagnostic Test (Odom & Barrow, 1995). Eye movements were measured to reveal how students distribute their visual attention as they perceive and interpret graphics; in addition, interviews and questionnaires were employed to provide more interpretive data sources. The first manuscript of the study investigates the relationship between prior knowledge and students' ability to perceive salient features and interpret graphic representations of cellular transport. The results from eye tracking data, interviews, and questionnaire responses were triangulated and revealed differences in how high and low prior knowledge students attended to and interpreted various features of the graphic representations. Without adequate domain knowledge, low prior knowledge students focused on surface features of the graphics to build an understanding of the concepts represented. High prior knowledge students, with more abundant and better organized domain knowledge, were more likely to attend to thematically relevant content in the graphics and construct deeper understandings. The second manuscript of the study examines the influence of prior knowledge on how students transitioned among the macroscopic and molecular representations of selected graphics. Eye tracking and sequential analysis results indicated that high prior knowledge students transitioned more frequently between the molecular representations, where as low prior knowledge students transitioned more frequently between the macroscopic representations. In addition, low prior knowledge students transitioned more frequently between macroscopic and molecular representations

  12. Proteasome-Mediated Processing of Def1, a Critical Step in the Cellular Response to Transcription Stress

    PubMed Central

    Wilson, Marcus D.; Harreman, Michelle; Taschner, Michael; Reid, James; Walker, Jane; Erdjument-Bromage, Hediye; Tempst, Paul; Svejstrup, Jesper Q.

    2013-01-01

    Summary DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a “mechanism of last resort” employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation of the clipped protein. Nuclear Def1 then binds RNAPII, utilizing a ubiquitin-binding domain to recruit the Elongin-Cullin E3 ligase complex via a ubiquitin-homology domain in the Ela1 protein. This facilitates polyubiquitylation of Rpb1, triggering its proteasome-mediated degradation. Together, these results outline the multistep mechanism of Rpb1 polyubiquitylation triggered by transcription stress and uncover the key role played by Def1 as a facilitator of Elongin-Cullin ubiquitin ligase function. PMID:23993092

  13. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow.

    PubMed

    Esch, Mandy B; Prot, Jean-Matthieu; Wang, Ying I; Miller, Paula; Llamas-Vidales, Jose Ricardo; Naughton, Brian A; Applegate, Dawn R; Shuler, Michael L

    2015-05-21

    We have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells). We tested the performance of the cell culture under fluidic flow for 14 days, finding that hepatocytes produced albumin and urea at elevated levels compared to static cultures. Hepatocytes also responded with induction of P450 (CYP1A1 and CYP3A4) enzyme activity when challenged with P450 inducers, although we did not find significant differences between static and fluidic cultures. Non-parenchymal cells were similarly responsive, producing interleukin 8 (IL-8) when challenged with 10 μM bacterial lipoprotein (LPS). To create the fluidic flow in an inexpensive manner, we used a rocking platform that tilts the cell culture devices at angles between ±12°, resulting in a periodically changing hydrostatic pressure drop between reservoirs and the accompanying periodically changing fluidic flow (average flow rate of 650 μL min(-1), and a maximum shear stress of 0.64 dyne cm(-2)). The increase in metabolic activity is consistent with the hypothesis that, similar to unidirectional fluidic flow, primary liver cell cultures increase their metabolic activity in response to fluidic flow periodically changes direction. Since fluidic flow that changes direction periodically drastically changes the behavior of other cells types that are shear sensitive, our findings support the theory that the increase in hepatic metabolic activity associated with fluidic flow is either activated by mechanisms other than shear sensing (for example increased opportunities for gas and metabolite exchange), or that it follows a shear sensing mechanism that does not depend on the direction of shear. Our mode of device operation allows us to evaluate drugs under fluidic cell culture conditions and at low device manufacturing and operation

  14. Real-time detection of cellular death receptor-4 activation by fluorescence resonance energy transfer.

    PubMed

    Dereli-Korkut, Zeynep; Gandhok, Harmeet; Zeng, Ling Ge; Waqas, Sidra; Jiang, Xuejun; Wang, Sihong

    2013-05-01

    Targeted therapy involving the activation of death receptors DR4 and/or DR5 by its ligand, TRAIL, can selectively induce apoptosis in certain tumor cells. In order to profile the dynamic activation or trimerization of TRAIL-DR4 in live cells in real-time, the development of an apoptosis reporter cell line is essential. Fluorescence resonance energy transfer (FRET) technology via a FRET pair, cyan fluorescence protein (CFP) and yellow fluorescence protein (YFP), was used in this study. DR4-CFP and DR4-YFP were stably expressed in human lung cancer PC9 cells. Flow cytometer sorting and limited dilution coupled with fluorescence microscopy were used to select a monoclonal reporter cell line with high and compatible expression levels of DR4-CFP and DR4-YFP. FRET experiments were conducted and FRET efficiencies were monitored according to the Siegel's YFP photobleaching FRET protocol. Upon TRAIL induction a significant increase in FRET efficiencies from 5% to 9% demonstrated the ability of the DR4-CFP/YFP reporter cell line in monitoring the dynamic activation of TRAIL pathways. 3D reconstructed confocal images of DR4-CFP/YFP reporter cells exhibited a colocalized expression of DR4-CFP and DR4-YFP mainly on cell membranes. FRET results obtained during this study complements the use of epi-fluorescence microscopy for FRET analysis. The real-time FRET analysis allows the dynamic profiling of the activation of TRAIL pathways by using the time-lapse fluorescence microscopy. Therefore, DR4-CFP/YFP PC9 reporter cells along with FRET technology can be used as a tool for anti-cancer drug screening to identify compounds that are capable of activating TRAIL pathways.

  15. CD40-activated B cells express full lymph node homing triad and induce T-cell chemotaxis: potential as cellular adjuvants.

    PubMed

    von Bergwelt-Baildon, Michael; Shimabukuro-Vornhagen, Alexander; Popov, Alexey; Klein-Gonzalez, Nela; Fiore, Francesca; Debey, Svenja; Draube, Andreas; Maecker, Britta; Menezes, Isaura; Nadler, Lee M; Schultze, Joachim L

    2006-04-01

    CD40-activated B cells (CD40-B cells) have previously been introduced as an alternative source of antigen-presenting cells for immunotherapy. CD40-B cells can prime naive and expand memory T cells, and they can be generated in large numbers from very small amounts of peripheral blood derived from healthy individuals or cancer patients alike. Administration of CD40-B cells as a cellular adjuvant would require these cells to migrate toward secondary lymphoid organs and attract T cells in situ, processes guided by specific chemokines and chemokine receptors. Here, we demonstrate that primary, human CD40-B cells express a pattern of adhesion molecules and chemokine receptors necessary for homing to secondary lymphoid organs and have the capacity to migrate to cognate ligands. Furthermore, we show that CD40-B cells express important T-cell attractants and induce strong T-cell chemotaxis. These findings further support the use of CD40-B cells as cellular adjuvant for cancer immunotherapy.

  16. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    PubMed Central

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the

  17. PREFACE: Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya; Faeder, James R.; Hlavacek, William S.; Jiang, Yi; Wall, Michael E.; Zilman, Anton

    2011-10-01

    Summary This special issue consists of 11 original papers that elaborate on work presented at the Fourth Annual q-bio Conference on Cellular Information Processing, which was held on the campus of St John's College in Santa Fe, New Mexico, USA, 11-14 August 2010. Now in its fourth year, the q-bio conference has changed considerably over time. It is now well established and a major event in systems biology. The 2010 conference saw attendees from all continents (except Antarctica!) sharing novel results and participating in lively discussions at both the oral and poster sessions. The conference was oversubscribed and grew to 27 contributed talks, 16 poster spotlights and 137 contributed posters. We deliberately decreased the number of invited speakers to 21 to leave more space for contributed presentations, and the attendee feedback confirmed that the choice was a success. Although the q-bio conference has grown and matured, it has remained true to the original goal of being an intimate and dynamic event that brings together modeling, theory and quantitative experimentation for the study of cell regulation and information processing. Funded in part by a grant from NIGMS and by DOE funds through the Los Alamos National Laboratory Directed Research and Development program, the conference has continued to exhibit youth and vigor by attracting (and partially supporting) over 100 undergraduate, graduate and postdoctoral researchers. The associated q-bio summer school, which precedes the conference each year, further emphasizes the development of junior scientists and makes q-bio a singular event in its impact on the future of quantitative biology. In addition to an increased international presence, the conference has notably diversified its demographic representation within the USA, including increased participation from the southeastern corner of the country. One big change in the conference this year is our new publication partner, Physical Biology. Although we are very

  18. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro.

    PubMed

    Wang, Shengjun; Yang, Xue; Lin, Youting; Qiu, Xiaoxue; Li, Hui; Zhao, Xiuhe; Cao, Lili; Liu, Xuewu; Pang, Yuejiu; Wang, Xuping; Chi, Zhaofu

    2013-10-16

    Intense poly(ADP-ribose) polymerase-1 (PARP-1) activation was implicated as a major cause of caspase-independent cell death in the hippocampal neuronal culture (HNC) model of acute acquired epilepsy (AE). The molecular mechanisms are quite complicated. The linkage among neuronal death, cellular nicotinamide adenine dinucleotide (NAD) levels, apoptosis-inducing factor (AIF) translocation, SIRT1 expression and activity were investigated here. The results showed that PARP-1 over-activation caused by Mg²⁺-free stimuli led to cellular NAD depletion which could block AIF translocation from mitochondria to nucleus and attenuate neuronal death. Also, SIRT1 deacetylase activity was reduced by Mg²⁺-free treatment, accompanied by elevated ratio of neuronal death, which could be rescued by NAD repletion. These data demonstrated that cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated epileptic neuronal death in the HNC model of acute AE.

  19. Transcriptional activation and repression by cellular DNA-binding protein C/EBP.

    PubMed Central

    Pei, D Q; Shih, C H

    1990-01-01

    A putative transcription factor, C/EBP, isolated from rat liver nuclei, has been shown to bind to at least two different sequence motifs: the CCAAT promoter domain and a core sequence [GTGG(T/A)(T/A)(T/A)G] common to many viral enhancers, including simian virus 40 and human hepatitis B virus. It has been proposed that C/EBP might function as a positive transcription factor by facilitating the communication between promoter and enhancer elements through its dual binding activities to DNA. Surprisingly, results from three different approaches suggest that C/EBP functions as a transcriptional repressor to hepatitis B virus and simian virus 40. Further investigation indicated that C/EBP can function as both a transcriptional activator and a repressor, depending on the reporter gene system. Images PMID:2157040

  20. Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates.

    PubMed

    Knapinska, Anna M; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C; Fields, Gregg B

    2015-05-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (∼5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND-biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND-peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to.

  1. Solid-Phase Synthesis, Characterization, and Cellular Activities of Collagen-Model Nanodiamond-Peptide Conjugates

    PubMed Central

    Knapinska, Anna M.; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N.; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C.; Fields, Gregg B.

    2015-01-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (~5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND–biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND–peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to. PMID:25753561

  2. PD98059 and U0126 activate AMP-activated protein kinase by increasing the cellular AMP:ATP ratio and not via inhibition of the MAP kinase pathway.

    PubMed

    Dokladda, Kanchana; Green, Kevin A; Pan, David A; Hardie, D Grahame

    2005-01-03

    The MAP kinase pathway inhibitor U0126 caused phosphorylation and activation of AMP-activated protein kinase (AMPK) and increased phosphorylation of its downstream target acetyl-CoA carboxylase, in HEK293 cells. This effect only occurred in cells expressing the upstream kinase, LKB1. Of two other widely used MAP kinase pathway inhibitors not closely related in structure to U0126, PD98059 also activated AMPK but PD184352 did not. U0126 and PD98059, but not PD184352, also increased the cellular ADP:ATP and AMP:ATP ratios, accounting for their ability to activate AMPK. These results suggest the need for caution in interpreting experiments conducted using U0126 and PD98059.

  3. A spatial model of cellular molecular trafficking including active transport along microtubules.

    PubMed

    Cangiani, A; Natalini, R

    2010-12-21

    We consider models of Ran-driven nuclear transport of molecules such as proteins in living cells. The mathematical model presented is the first to take into account for the active transport of molecules along the cytoplasmic microtubules. All parameters entering the models are thoroughly discussed. The model is tested by numerical simulations based on discontinuous Galerkin finite element methods. The numerical experiments are compared to the behavior observed experimentally.

  4. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades.

    PubMed

    Sancho, Veronica; Berna, Marc J; Thill, Michelle; Jensen, R T

    2011-12-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).

  5. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    PubMed Central

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  6. Molecular and cellular effects of NEDD8 activating enzyme (NAE) inhibition in myeloma

    PubMed Central

    McMillin, Douglas W.; Jacobs, Hannah M.; Delmore, Jake E.; Buon, Leutz; Hunter, Zachary R.; Monrose, Val; Yu, Jie; Smith, Peter G.; Richardson, Paul G.; Anderson, Kenneth C.; Treon, Steven P.; Kung, Andrew L.; Mitsiades, Constantine S.

    2013-01-01

    The NEDD8 activating enzyme (NAE) is upstream of the 20S proteasome in the ubiquitin/proteasome pathway and catalyzes the first step in the neddylation pathway. NEDD8 modification of cullins is required for ubiquitination of cullin-ring ligases (CRLs), which regulate degradation of a distinct subset of proteins. The more targeted impact of NAE on protein degradation prompted us to study MLN4924, an investigational NAE inhibitor, in preclinical multiple myeloma (MM) models. In vitro treatment with MLN4924 led to dose-dependent decrease of viability (EC50=25–150nM) in a panel of human MM cell lines. MLN4924 was similarly active against a bortezomib-resistant ANBL-6 subline and its bortezomib-sensitive parental cells. MLN4924 had sub-μM activity (EC50 values <500nM) against primary CD138+ MM patient cells and exhibited at least additive effect when combined with dexamethasone, doxorubicin and bortezomib against MM.1S cells. The bortezomib-induced compensatory up-regulation of transcripts for ubiquitin/proteasome was not observed with MLN4924 treatment, suggesting distinct functional roles of NAE vs 20S proteasome. MLN4924 was well tolerated at doses up to 60mg/kg 2x daily and significantly reduced tumor burden in both a subcutaneous and an orthotopic mouse model of MM. These studies provide the framework for the clinical investigation of MLN4924 in MM. PMID:22246439

  7. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells.

    PubMed

    Rhein, V; Baysang, G; Rao, S; Meier, F; Bonert, A; Müller-Spahn, F; Eckert, A

    2009-09-01

    Evidence suggests that amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Here we investigated the specific effects of Abeta on mitochondrial function under physiological conditions. Mitochondrial respiratory functions and energy metabolism were analyzed in control and in human wild-type amyloid precursor protein (APP) stably transfected human neuroblastoma cells (SH-SY5Y). Mitochondrial respiratory capacity of mitochondrial electron transport chain (ETC) in vital cells was measured with a high-resolution respirometry system (Oxygraph-2k). In addition, we determined the individual activities of mitochondrial complexes I-IV that compose ETC and ATP cellular levels. While the activities of complexes I and II did not change between cell types, complex IV activity was significantly reduced in APP cells. In contrast, activity of complex III was significantly enhanced in APP cells, as compensatory response in order to balance the defect of complex IV. However, this compensatory mechanism could not prevent the strong impairment of total respiration in vital APP cells. As a result, the respiratory control ratio (state3/state4) together with ATP production decreased in the APP cells in comparison with the control cells. Chronic exposure to soluble Abeta protein may result in an impairment of energy homeostasis due to a decreased respiratory capacity of mitochondrial electron transport chain which, in turn, may accelerate neurons demise.

  8. Anticancer (hexacarbonyldicobalt)propargyl aryl ethers: synthesis, antiproliferative activity, apoptosis induction, and effect on cellular oxidative stress.

    PubMed

    Schimler, Sydonie D; Hall, David J; Debbert, Stefan L

    2013-02-01

    While an increasing number of (hexacarbonyldicobalt)alkynes have been found to possess antiproliferative activity against a number of cancer cell lines, the role of the organometallic moiety in this bioactivity is not well understood. To gain a better understanding of cobalt's role in the medicinal chemistry of these compounds, several simplified analogs of a known organocobalt anticancer compound were synthesized and assessed for antiproliferative activity against MDA-MB-231 human breast cancer cells. These compounds, mostly (hexacarbonyldicobalt)propargyl aryl ethers, caused 45-93% growth inhibition of that cell line at 40μM in a 72h crystal violet staining assay. The most active analog was the organocobalt nitroaromatic ether 3a, with an IC(50) of 3.3±0.9μM. Flow cytometric assays on the same cell line demonstrated that 3a strongly induces apoptosis, arrests the cell cycle at the S phase, increases cellular oxidative stress levels, and induces permeability of the mitochondrial membrane. While the non-cobalt-containing precursor to 3a also caused an increase in mitochondrial membrane permeability, it did not produce an increase in oxidative stress levels, nor did it have apoptosis-inducing or antiproliferative effects. The induction of oxidative stress in the cell may be responsible for some of the antiproliferative activity of compound 3a against this cell line.

  9. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution.

  10. A Redundant Role of Human Thyroid Peroxidase Propeptide for Cellular, Enzymatic, and Immunological Activity

    PubMed Central

    Góra, Monika; Buckle, Ashley M.; Porebski, Benjamin T.; Kemp, E. Helen; Sutton, Brian J.; Czarnocka, Barbara; Banga, J. Paul

    2014-01-01

    Background: Thyroid peroxidase (TPO) is a dimeric membrane-bound enzyme of thyroid follicular cells, responsible for thyroid hormone biosynthesis. TPO is also a common target antigen in autoimmune thyroid disease (AITD). With two active sites, TPO is an unusual enzyme, and thus there is much interest in understanding its structure and role in AITD. Homology modeling has shown TPO to be composed of different structural modules, as well as a propeptide sequence. During the course of studies to obtain homogeneous preparations of recombinant TPO for structural studies, we investigated the role of the large propeptide sequence in TPO. Methods: An engineered recombinant human TPO preparation expressed in Chinese hamster ovary (CHO) cells lacking the propeptide (TPOΔpro; amino acid residues 21–108) was characterized and its properties compared to wild-type TPO. Plasma membrane localization was determined by cell surface protein biotinylation, and biochemical studies were performed to evaluate enzymatic activity and the effect of deglycosylation. Immunological investigations using autoantibodies from AITD patients and other epitope-specific antibodies that recognize conformational determinants on TPO were evaluated for binding to TPOΔpro by flow cytometry, immunocytochemistry, and capture enzyme-linked immunosorbent assay. Molecular modeling and dynamics simulation of TPOΔpro comprising a dimer of myeloperoxidase-like domains was performed in order to investigate the impact of propeptide removal and the role of glycosylation. Results: The TPOΔpro was expressed on the cell surface at comparable levels to wild-type TPO. The TPOΔpro was enzymatically active and recognized by patients' autoantibodies and a panel of epitope-specific antibodies, confirming structural integrity of the two major conformational determinants recognized by autoantibodies. Faithful intracellular trafficking and N-glycosylation of TPOΔpro was also maintained. Molecular modeling and dynamics

  11. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses

    PubMed Central

    Jungfleisch, Jennifer; Blasco-Moreno, Bernat; Díez, Juana

    2016-01-01

    Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus. PMID:28009841

  12. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

    PubMed

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity.

  13. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity

    SciTech Connect

    Boel, Gaby-Fleur . E-mail: boel@mail.dife.de; Jurrmann, Nadine; Brigelius-Flohe, Regina

    2005-06-24

    Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4{sup IRAK-1-K239S}). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24 kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4{sup IRAK-1-K239S} cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.

  14. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation.

    PubMed

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-12-14

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration.

  15. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  16. Ethanol alters cellular activation and CD14 partitioning in lipid rafts

    SciTech Connect

    Dai Qun; Zhang Jun; Pruett, Stephen B. . E-mail: spruet@lsuhsc.edu

    2005-06-24

    Alcohol consumption interferes with innate immunity. In vivo EtOH administration suppresses cytokine responses induced through Toll-like receptor 4 (TLR4) and inhibits TLR4 signaling. Actually, EtOH exhibits a generalized suppressive effect on signaling and cytokine responses induced by through most TLRs. However, the underlying mechanism remains unknown. RAW264.7 cells were treated with LPS or co-treated with EtOH or with lipid raft-disrupting drugs. TNF-{alpha} production, IRAK-1 activation, and CD14 partition were evaluated. EtOH or nystatin, a lipid raft-disrupting drug, suppressed LPS-induced production of TNF-{alpha}. The suppressive effect of EtOH on LPS-induced TNF-{alpha} production was additive with that of methyl-{beta}-cyclodextrin (MCD), another lipid raft-disrupting drug. EtOH interfered with IRAK-1 activation, an early TLR4 intracellular signaling event. Cell fractionation analyses show that acute EtOH altered LPS-related partition of CD14, a critical component of the LPS receptor complex. These results suggest a novel mechanism of EtOH action that involves interference with lipid raft clustering induced by LPS. This membrane action of EtOH might be one of the mechanisms by which EtOH acts as a generalized suppressor for TLR signaling.

  17. GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis.

    PubMed

    Prione, Lilian P; Olchanheski, Luiz R; Tullio, Leandro D; Santo, Bruno C E; Reche, Péricles M; Martins, Paula F; Carvalho, Giselle; Demiate, Ivo M; Pileggi, Sônia A V; Dourado, Manuella N; Prestes, Rosilene A; Sadowsky, Michael J; Azevedo, Ricardo A; Pileggi, Marcos

    2016-12-01

    Callisto(®), containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto(®)-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment.

  18. Structure–activity relationships of the human prothrombin kringle-2 peptide derivative NSA9: anti-proliferative activity and cellular internalization

    PubMed Central

    Hwang, Hyun Sook; Kim, Dong Won; Kim, Soung Soo

    2006-01-01

    The human prothrombin kringle-2 protein inhibits angiogenesis and LLC (Lewis lung carcinoma) growth and metastasis in mice. Additionally, the NSA9 peptide (NSAVQLVEN) derived from human prothrombin kringle-2 has been reported to inhibit the proliferation of BCE (bovine capillary endothelial) cells and CAM (chorioallantoic membrane) angiogenesis. In the present study, we examined the structure–activity relationships of the NSA9 peptide in inhibiting the proliferation of endothelial cells lines e.g. BCE and HUVE (human umbilical vein endothelial). N- or C-terminal truncated derivatives and reverse sequence analogues of NSA9 were prepared and their anti-proliferative activities were assessed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay. This cell proliferation assay demonstrated that both the N-terminal region and sequence orientation of NSA9 are important for inhibiting the proliferation of endothelial cells. In particular 2 C-terminal truncation derivatives of NSA9 [NSA7 (NSAVQLV) and NSA8 (NSAVQLVE)] inhibited cellular proliferation to a greater extent than did NSA9. The heptapeptide NSA7, was found to be more potent than NSA9 in inhibiting CAM angiogenesis, and tubular formation and migration of HUVE cells. In addition NSA9, NSA8 and NSA7 peptides exhibited considerable inhibitory effects on the proliferation of tumour cells such as B16F10 (murine melanoma), LLC and L929 (murine fibroblast). Also, cellular internalization studies demonstrated that NSA7 was internalized into both endothelial and tumour cells more easily than was NSA9. In conclusion, these results suggest that NSA7, residing within the full sequence of NSA9, contains the required sequence for anti-proliferative activity and cellular internalization. PMID:16390327

  19. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth.

    PubMed

    Subramanian, Deepa; Bunjobpol, Wilawan; Sabapathy, Kanaga

    2015-07-24

    Unlike p53, which is mutated at a high rate in human cancers, its homologue p73 is not mutated but is often overexpressed, suggesting a possible context-dependent role in growth promotion. Previously, we have shown that co-expression of TAp73 with the proto-oncogene c-Jun can augment cellular growth and potentiate transactivation of activator protein (AP)-1 target genes such as cyclin D1. Here, we provide further mechanistic insights into the cooperative activity between these two transcription factors. Our data show that TAp73-mediated AP-1 target gene transactivation relies on c-Jun dimerization and requires the canonical AP-1 sites on target gene promoters. Interestingly, only selected members of the Fos family of proteins such as c-Fos and Fra1 were found to cooperate with TAp73 in a c-Jun-dependent manner to transactivate AP-1 target promoters. Inducible expression of TAp73 led to the recruitment of these Fos family members to the AP-1 target promoters on which TAp73 was found to be bound near the AP-1 site. Consistent with the binding of TAp73 and AP-1 members on the target promoters in a c-Jun-dependent manner, TAp73 was observed to physically interact with c-Jun specifically at the chromatin via its carboxyl-terminal region. Furthermore, co-expression of c-Fos or Fra1 was able to cooperate with TAp73 in potentiating cellular growth, similarly to c-Jun. These data together suggest that TAp73 plays a vital role in activation of AP-1 target genes via direct binding to c-Jun at the target promoters, leading to enhanced loading of other AP-1 family members, thereby leading to cellular growth.

  20. Photochemopreventive effect of pomegranate fruit extract on UVA-mediated activation of cellular pathways in normal human epidermal keratinocytes.

    PubMed

    Syed, Deeba N; Malik, Arshi; Hadi, Naghma; Sarfaraz, Sami; Afaq, Farrukh; Mukhtar, Hasan

    2006-01-01

    UVA is the major portion (90-99%) of solar radiation reaching the surface of the earth and has been described to lead to formation of benign and malignant tumors. UVA-mediated cellular damage occurs primarily through the release of reactive oxygen species and is responsible for immunosuppression, photodermatoses, photoaging and photocarcinogenesis. Pomegranate fruit extract (PFE) possesses strong antioxidant and anti-inflammatory properties. Our recent studies have shown that PFE treatment of normal human epidermal keratinocytes (NHEK) inhibits UVB-mediated activation of MAPK and NF-kappaB pathways. Signal transducers and activators of transcription 3 (STAT3), Protein Kinase B/AKT and Map Kinases (MAPKs), which are activated by a variety of factors, modulate cell proliferation, apoptosis and other biological activities. The goal of this study was to determine whether PFE affords protection against UVA-mediated activation of STAT3, AKT and extracellular signal-regulated kinase (ERK1/2). Immunoblot analysis demonstrated that 4 J/cm2 of UVA exposure to NHEK led to an increase in phosphorylation of STAT3 at Tyr705, AKT at Ser473 and ERK1/2. Pretreatment of NHEK with PFE (60-100 microg/mL) for 24 h before exposure to UVA resulted in a dose-dependent inhibition of UVA-mediated phosphorylation of STAT3 at Tyr705, AKT at Ser473 and ERK1/2. mTOR, structurally related to PI3K, is involved in the regulation of p70S6K, which in turn phosphorylates the S6 protein of the 40S ribosomal subunit. We found that UVA radiation of NHEK resulted in the phosphorylation of mTOR at Thr2448 and p70S6K at Thr421/Ser424. PFE pretreatment resulted in a dose-dependent inhibition in the phosphorylation of mTOR at Thr2448 and p70S6K at Thr421/Ser424. Our data further demonstrate that PFE pretreatment of NHEK resulted in significant inhibition of UVA exposure-mediated increases in Ki-67 and PCNA. PFE pretreatment of NHEK was found to increase the cell-cycle arrest induced by UVA in the G1 phase of

  1. Structure-activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling.

    PubMed

    Nagamori, Shushi; Wiriyasermkul, Pattama; Okuda, Suguru; Kojima, Naoto; Hari, Yoshiyuki; Kiyonaka, Shigeki; Mori, Yasuo; Tominaga, Hideyuki; Ohgaki, Ryuichi; Kanai, Yoshikatsu

    2016-04-01

    Among amino acids, leucine is a potential signaling molecule to regulate cell growth and metabolism by activating mechanistic target of rapamycin complex 1 (mTORC1). To reveal the critical structures of leucine molecule to activate mTORC1, we examined the structure-activity relationships of leucine derivatives in HeLa S3 cells for cellular uptake and for the induction of phosphorylation of p70 ribosomal S6 kinase 1 (p70S6K), a downstream effector of mTORC1. The activation of mTORC1 by leucine and its derivatives was the consequence of two successive events: the cellular uptake by L-type amino acid transporter 1 (LAT1) responsible for leucine uptake in HeLa S3 cells and the activation of mTORC1 following the transport. The structural requirement for the recognition by LAT1 was to have carbonyl oxygen, alkoxy oxygen of carboxyl group, amino group and hydrophobic side chain. In contrast, the requirement for mTORC1 activation was more rigorous. It additionally required fixed distance between carbonyl oxygen and alkoxy oxygen of carboxyl group, and amino group positioned at α-carbon. L-Configuration in chirality and appropriate length of side chain with a terminal isopropyl group were also important. This confirmed that LAT1 itself is not a leucine sensor. Some specialized leucine sensing mechanism with rigorous requirement for agonistic structures should exist inside the cells because leucine derivatives not transported by LAT1 did not activate mTORC1. Because LAT1-mTOR axis is involved in the regulation of cell growth and cancer progression, the results from this study may provide a new insight into therapeutics targeting both LAT1 and leucine sensor.

  2. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism.

    PubMed

    Lussey-Lepoutre, Charlotte; Hollinshead, Kate E R; Ludwig, Christian; Menara, Mélanie; Morin, Aurélie; Castro-Vega, Luis-Jaime; Parker, Seth J; Janin, Maxime; Martinelli, Cosimo; Ottolenghi, Chris; Metallo, Christian; Gimenez-Roqueplo, Anne-Paule; Favier, Judith; Tennant, Daniel A

    2015-11-02

    The tricarboxylic acid (TCA) cycle is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair and proliferation. As such it thought to be essential for cell proliferation and tissue homeostasis. However, since the initial report of an inactivating mutation in the TCA cycle enzyme complex, succinate dehydrogenase (SDH) in paraganglioma (PGL), it has become clear that some cells and tissues are not only able to survive with a truncated TCA cycle, but that they are also able of supporting proliferative phenotype observed in tumours. Here, we show that loss of SDH activity leads to changes in the metabolism of non-essential amino acids. In particular, we demonstrate that pyruvate carboxylase is essential to re-supply the depleted pool of aspartate in SDH-deficient cells. Our results demonstrate that the loss of SDH reduces the metabolic plasticity of cells, suggesting vulnerabilities that can be targeted therapeutically.

  3. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    SciTech Connect

    Rao, K.V.; Peralta, W.D.; Greene, G.L.; Fox, C.F.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell free systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.

  4. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    PubMed

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  5. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    PubMed

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-08-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  6. Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation

    PubMed Central

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-01-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. PMID:22927829

  7. Probing Binding and Cellular Activity of Pyrrolidinone and Piperidinone Small Molecules Targeting the Urokinase Receptor

    PubMed Central

    Mani, Timmy; Liu, Degang; Zhou, Donghui; Li, Liwei; Knabe, William Eric; Wang, Fang; Oh, Kyungsoo; Meroueh, Samy O.

    2014-01-01

    The urokinase receptor (uPAR) is a cell-surface protein that is part of an intricate web of transient and tight protein interactions that promote cancer cell invasion and metastasis. Here we evaluate the binding and biological activity of a new class of pyrrolidinone (3) and piperidinone (4) compounds, along with derivatives of previously-identified pyrazole (1) and propylamine (2) compounds. Competition assays revealed that the compounds displaced a fluorescently-labeled peptide (AE147-FAM) with inhibition constant Ki ranging from 6 to 63 μM. Structure-based computational pharmacophore analysis followed by extensive explicit-solvent molecular dynamics simulations and free energy calculations suggested pyrazole-based 1a and piperidinone-based 4 adopt different binding modes, despite their similar two-dimensional structures. In cells, compounds 1b and 1f showed significant inhibition of breast MDA-MB-231 and pancreatic ductal adenocarcinoma (PDAC) cell proliferation, but 4b exhibited no cytotoxicity even at concentrations of 100 μM. 1f impaired MDA-MB-231 invasion, adhesion, and migration in a concentration-dependent manner, while 4b inhibited only invasion. 1f inhibited gelatinase (MMP-9) activity in a concentration-dependent manner, while 4b showed no effect suggesting different mechanisms for inhibition of cell invasion. Signaling studies further highlighted these differences, showing that pyrazole compounds completely inhibited ERK phosphorylation and impaired HIF1α and NF-κB signaling, while pyrrolidinone and piperidinone (3 and 4b) had no effect. Annexin V staining suggested that the effect of pyrazole-based 1f on proliferation was due to cell killing through an apoptotic mechanism. PMID:24115356

  8. Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates

    NASA Astrophysics Data System (ADS)

    Park, Soonhyang; Chibli, Hicham; Wong, Jody; Nadeau, Jay L.

    2011-05-01

    We investigate the antimicrobial activity and cytotoxicity to mammalian cells of conjugates of the peptide antibiotic polymyxin B (PMB) to Au nanoparticles and CdTe quantum dots. Au nanoparticles fully covered with PMB are identical in antimicrobial activity to the free drug alone, whereas partially-conjugated Au particles show decreased effectiveness in proportion to the concentration of Au. CdTe-PMB conjugates are more toxic to Escherichia coli than PMB alone, resulting in a flattening of the steep PMB dose-response curve. The effect is most pronounced at low concentrations of PMB, with a greater effect on the concentration required to reduce growth by half (IC50) than on the concentration needed to inhibit all growth (minimum inhibitory concentration, MIC). The Gram positive organism Staphylococcus aureus is resistant to both PMB and CdTe, showing minimal increased sensitivity when the two are conjugated. Measurement of reactive oxygen species (ROS) generation shows a significant reduction in photo-generated hydroxyl and superoxide radicals with CdTe-PMB as compared with bare CdTe. There is a corresponding reduction in toxicity of QD-PMB versus bare CdTe to mammalian cells, with nearly 100% survival in fibroblasts exposed to bactericidal concentrations of QD-PMB. The situation in bacteria is more complex: photoexcitation of the CdTe particles plays a small role in IC50 but has a significant effect on the MIC, suggesting that at least two different mechanisms are responsible for the antimicrobial action seen. These results show that it is possible to create antimicrobial agents using concentrations of CdTe quantum dots that do not harm mammalian cells.

  9. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures

    PubMed Central

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean

    2017-01-01

    Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574

  10. In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects.

    PubMed

    Boudard, Delphine; Forest, Valérie; Pourchez, Jérémie; Boumahdi, Najih; Tomatis, Maura; Fubini, Bice; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe

    2014-08-01

    Silicon carbide (SiC) an industrial-scale product manufactured through the Acheson process, is largely employed in various applications. Its toxicity has been poorly investigated. Our study aims at characterizing the physico-chemical features and the in vitro impact on biological activity of five manufactured SiC powders: two coarse powders (SiC C1/C2), two fine powders (SiC F1/F2) and a powder rich in iron impurities (SiC I). RAW 264.7 macrophages were exposed to the different SiC particles and the cellular responses were evaluated. Contrary to what happens with silica, no SiC cytotoxicity was observed but pro-oxidative and pro-inflammatory responses of variable intensity were evidenced. Oxidative stress (H₂O₂ production) appeared related to SiC particle size, while iron level regulated pro-inflammatory response (TNFα production). To investigate the impact of surface reactivity on the biological responses, coarse SiC C1 and fine SiC F1 powders were submitted to different thermal treatments (650-1400 °C) in order to alter the oxidation state of the particle surface. At 1400 °C a decrease in TNFα production and an increase in HO·, COO(·-) radicals production were observed in correlation with the formation of a surface layer of crystalline silica. Finally, a strong correlation was observed between surface oxidation state and in vitro toxicity.

  11. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes.

    PubMed

    Moustafa, Y M; Moustafa, R M; Belacy, A; Abou-El-Ela, S H; Ali, F M

    2001-11-01

    Radiofrequency fields of cellular phones may affect biological systems by increasing free radicals, which appear mainly to enhance lipid peroxidation, and by changing the antioxidase activities of human blood thus leading to oxidative stress. To test this, we have investigated the effect of acute exposure to radiofrequency fields of commercially available cellular phones on some parameters indicative of oxidative stress in 12 healthy adult male volunteers. Each volunteer put the phone in his pocket in standby position with the keypad facing the body. The parameters measured were lipid peroxide and the activities of superoxide dismutase (SOD), total glutathione peroxidase (GSH-Px) and catalase. The results obtained showed that the plasma level of lipid peroxide was significantly increased after 1, 2 and 4 h of exposure to radiofrequency fields of the cellular phone in standby position. Moreover, the activities of SOD and GSH-Px in human erythrocytes showed significant reduction while the activity of catalase in human erythrocytes did not decrease significantly. These results indicate that acute exposure to radiofrequency fields of commercially available cellular phones may modulate the oxidative stress of free radicals by enhancing lipid peroxidation and reducing the activation of SOD and GSH-Px, which are free radical scavengers. Therefore, these results support the interaction of radiofrequency fields of cellular phones with biological systems.

  12. Activation of cellular chemotactic responses to chemokines coupled with oxidation of plasma membrane proteins by lysyl oxidase.

    PubMed

    Lucero, Héctor A; Mäki, Joni M; Kagan, Herbert M

    2011-07-01

    Lysyl oxidase (LOX) is a potent chemokine inducing the migration of varied cell types. Here we demonstrate that inhibition of cellular LOX activity by preincubation of vascular smooth muscle cells (VSMC) with β-aminopropionitrile (BAPN), the irreversible inhibitor of LOX activity, resulted in the marked suppression of the chemotactic response and sensitivity of these cells toward LOX and toward PDGF-BB. Plasma membranes purified from VSMC not previously exposed to BAPN contained a group of oxidized plasma membrane proteins, including the PDGF receptor, PDGFR-β. The oxidation of this receptor and other membrane proteins was largely prevented in cells preincubated with BAPN. Addition of purified LOX to BAPN-free cells, which had been previously exposed to BAPN, restored the profile of oxidized proteins towards that of control cells. The high affinity and capacity for the binding of PDGF-BB by cells was significantly diminished when compared with cells in which oxidation by LOX was prevented by BAPN. The chemotactic responses of LOX knock-out mouse embryonic fibroblasts mirrored those obtained with VSMC treated with BAPN. These novel findings suggest that LOX activity is essential to generate optimal chemotactic sensitivity of cells to chemoattractants by oxidizing specific cell surface proteins, such as PDGFR-β.

  13. Influence of constriction, wall tension, smooth muscle activation and cellular deformation on rat resistance artery vasodilator reactivity.

    PubMed

    Colton, Ilsley; Mandalà, Maurizio; Morton, Jude; Davidge, Sandra T; Osol, George

    2012-01-01

    This study investigated how vasoconstriction (tone), wall tension, smooth muscle activation, and vascular wall deformation influence resistance artery vasodilator reactivity. Resistance arteries, from two different regional circulations (splanchnic, uterine) and from pregnant and non-pregnant rats, were cannulated and pressurized, or mounted on a wire myograph under isometric conditions prior to being exposed to both endothelium-dependent (acetylcholine, ACh) and -independent (sodium nitroprusside, SNP) vasodilator agonists. A consistent pattern of reduced vasodilator sensitivity was noted as a function of extent of preconstriction for both agonists noted in pressurized arteries. A similar pattern regarding activation was noted in wire-mounted arteries in response to SNP but not ACh. Wall tension proved to be a major determinant of vascular smooth muscle vasodilator reactivity and its normalization reversed this pattern, as more constricted vessels were more sensitive to ACh relaxation without any change in SNP sensitivity, suggesting that endothelial deformation secondary to vasoconstriction augments its vasodilator output. To our knowledge, this is the first study to dissect out the complex interplay between biophysical forces impinging on VSM (pressure, wall tension), the ambient level of tone (vasoconstriction, smooth muscle cell activation), and consequences of cellular (particularly endothelial) deformation secondary to constriction in determining resistance artery vasodilatory reactivity.

  14. Passive Noise Filtering by Cellular Compartmentalization.

    PubMed

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity.

  15. Antibotulinal activity of process cheese ingredients.

    PubMed

    Glass, Kathleen A; Johnson, Eric A

    2004-08-01

    Ingredients used in the manufacture of reduced-fat process cheese products were screened for their ability to inhibit growth of Clostridium botulinum serotypes A and B in media. Reinforced clostridial medium (RCM) supplemented with 0, 0.5, 1, 2, 3, 5, or 10% (wt/vol) of various ingredients, including a carbohydrate-based fat replacer, an enzyme-modified cheese (EMC) derived from a Blue cheese, sweet whey, modified whey protein, or whey protein concentrate, did not inhibit botulinal growth and toxin production when stored at 30 degrees C for 1 week. In contrast, RCM supplemented with 10% soy-based flavor enhancer, 10% Parmesan EMC, or 5 or 10% Cheddar EMC inhibited botulinal toxin production in media for at least 6 weeks of storage at 30 degrees C. Subsequent trials revealed that the antibotulinal effect varied significantly among 13 lots of EMC and that the antimicrobial effect was not correlated with the pH or water activity of the EMC.

  16. Cellular Accumulation, Localization, and Activity of a Synthetic Cyclopeptamine in Fungi

    PubMed Central

    Capobianco, John O.; Zakula, Dorothy; Frost, David J.; Goldman, Robert C.; Li, Leping; Klein, Larry L.; Lartey, Paul A.

    1998-01-01

    A novel synthetic cyclopeptamine, A172013, rapidly accumulated by passive diffusion into Candida albicans CCH442. Drug influx could not be totally facilitated by the membrane-bound target, β-(1,3)-glucan synthase, since accumulation was unsaturable at drug concentrations up to 10 μg/ml (about 1.6 × 10−7 molecules/cell), or 25× MIC. About 55 and 23% of the cell-incorporated drug was associated with the cell wall and protoplasts, respectively. Isolated microsomes contained 95% of the protoplast-associated drug, which was fully active against glucan synthesis in vitro. Drug (0.1 μg/ml) accumulation was rapid and complete after 5 min in several fungi tested, including a lipopeptide/cyclopeptamine-resistant strain of C. albicans (LP3-1). The compound penetrated to comparable levels in both yeast and hyphal forms of C. albicans, and accumulation in Aspergillus niger was 20% that in C. albicans. These data indicated that drug-cell interactions were driven by the amphiphilic nature of the compound and that the cell wall served as a major drug reservoir. PMID:9527791

  17. Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development.

    PubMed

    Gucci, Riccardo; Lodolini, Enrico M; Rapoport, Hava F

    2009-12-01

    complexity of the water-induced response of mesocarp and endocarp growth and cellular processes of olive fruits.

  18. Increased Expression and Cellular Localization of Spermine Oxidase in Ulcerative Colitis and Relationship to Disease Activity

    PubMed Central

    Hong, Shih-Kuang S.; Chaturvedi, Rupesh; Blanca Piazuelo, M.; Coburn, Lori A.; Williams, Christopher S.; Delgado, Alberto G.; Casero, Robert A.; Schwartz, David A.; Wilson, Keith T.

    2010-01-01

    Background Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. Methods Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by Taq-Man-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. Results There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. Conclusions SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress. PMID:20127992

  19. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression

    PubMed Central

    Heusinger, Elena; Kirchhoff, Frank

    2017-01-01

    The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle. PMID:28261165

  20. Genetic and cellular dissection of the activation of AM14 rheumatoid factor B cells in a mouse model of lupus

    PubMed Central

    Sang, Allison; Zheng, Ying Yi; Choi, Seung-Chul; Zeumer, Leilani; Morel, Laurence

    2015-01-01

    The RF-specific AM14 tg BCR has been used as a model to dissect the mechanisms of B cell tolerance to ICs containing nucleic acids. We have shown previously that AM14 RF B cells break tolerance in the TC mouse model of lupus through the dual engagement of the AM14 BCR and TLR9. In this study, we showed that neither the expression of Sle1 or Sle2 susceptibility loci alone was sufficient to activate AM14 RF B cells, suggesting that the production of antichromatin IgG2aa autoAg mediated by Sle1 and an intrinsically higher B cell activation mediated by Sle2 were required. We also showed that the B6 genetic background enhanced the selection of AM14 RF B cells to the MZB cell compartment regardless of the expression of the Sle loci and therefore, of their activation into AFCs. Furthermore, some AM14 RF B cells were selected into the B-1a compartment, where they did not differentiate into AFCs. Therefore, it is unlikely that the selection of AM14 RF B cells to the MZB or B-1a cell compartments in TC.AM14a mice is responsible for their breach of tolerance. Finally, we showed that the presence of expression of Sle1 in non-tg cells, most likely T cells, is necessary for the activation of AM14 RF B cells into AFCs. Overall, these results suggest a threshold model of activation of AM14 RF B cells on the B6 background with additive genetic and cellular contribution of multiple sources. PMID:25957308

  1. Cellular Location and Expression of Na+, K+-ATPase α Subunits Affect the Anti-Proliferative Activity of Oleandrin

    PubMed Central

    Yang, Peiying; Cartwright, Carrie; Efuet, Ekem; Hamilton, Stanley R.; Wistuba, Ignacio Ivan; Menter, David; Addington, Crandell; Shureiqi, Imad; Newman, Robert A.

    2015-01-01

    The purpose of this study was to investigate whether intracellular distribution of Na+, K+-ATPase α3 subunit, a receptor for cardiac glycosides including oleandrin, is differentially altered in cancer versus normal cells and whether this altered distribution can be therapeutically targeted to inhibit cancer cell survival. The cellular distribution of Na+, K+-ATPase α3 isoform was investigated in paired normal and cancerous mucosa biopsy samples from patients with lung and colorectal cancers by immunohistochemical staining. The effects of oleandrin on α3 subunit intracellular distribution, cell death, proliferation, and EKR phosphorylation were examined in differentiated and undifferentiated human colon cancer CaCO-2 cells. While Na+, K+-ATPase α3 isoform was predominantly located near the cytoplasmic membrane in normal human colon and lung epithelia, the expression of this subunit in their paired cancer epithelia was shifted to a peri-nuclear position in both a qualitative and quantitative manner. Similarly, distribution of α3 isoform was also shifted from a cytoplasmic membrane location in differentiated human colon cancer CaCO-2 cells to a peri-nuclear position in undifferentiated CaCO-2 cells. Intriguingly, oleandrin exerted threefold stronger anti-proliferative activity in undifferentiated CaCO-2 cells (IC50, 8.25 nM) than in differentiated CaCO-2 cells (IC50, >25 nM). Oleandrin (10 to 20 nM) caused an autophagic cell death and altered ERK phosphorylation in undifferentiated but not in differentiated CaCO-2 cells. These data demonstrate that the intracellular location of Na+, K+-ATPase α3 isoform is altered in human cancer versus normal cells. These changes in α3 cellular location and abundance may indicate a potential target of opportunity for cancer therapy. PMID:23073998

  2. Degassing Processes at Persistently Active Explosive Volcanoes

    NASA Astrophysics Data System (ADS)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with < 20 % error. Using the same protocol, I establish a record of the degassing patterns at Semeru volcano (Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range

  3. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  4. Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer's disease.

    PubMed

    Kong, Jingjing; Ren, Guiru; Jia, Ning; Wang, Yanfu; Zhang, Hua; Zhang, Wei; Chen, Bingkun; Cao, Yunpeng

    2013-01-01

    Nicorandil, an ATP-sensitive potassium (KATP) channel opener, is known to have protective effects on ischemic injury in heart and brain. One of the most important protective mechanisms is the anti-apoptotic effect on cardiomyocytes and neurons. This study explored the anti-apoptotic effect of nicorandil against neurotoxicity in SH-SY5Y cells overexpressing the Swedish mutant APP (APPsw) and the possible mechanisms involved. We used SH-SY5Y cells transiently transfected with APPsw as a cellular model of Alzheimer's disease. Cells were treated with nicorandil (0.1, 0.5, 1 mM) for 24 h with and without glibenclamide (10 μM), a KATP channel inhibitor. The cells were then collected for MTT, apoptosis assay, and Western blot. In addition, we also investigated the potential involvement of the PI3K/Akt pathway in nicorandil-mediated neuroprotection of APPsw cells. Our results showed that nicorandil dose-dependently increased cell viability and reduced the rate of apoptosis as measured by MTT assay and annexin V/PI staining. Western blot showed that nicorandil could upregulate Bcl-2 levels and downregulate Bax and caspase-3 expression. Further studies showed that nicorandil increased the levels of phospho-Akt and upregulated element-binding protein activity by PI3K activation. Applying a PI3K inhibitor, LY294002 blocked the protection. All these findings suggest that nicorandil might be a potential treatment option for Alzheimer's disease.

  5. A biochemical and cellular approach to explore the antiproliferative and prodifferentiative activity of Aloe arborescens leaf extract.

    PubMed

    Di Luccia, Blanda; Manzo, Nicola; Vivo, Maria; Galano, Eugenio; Amoresano, Angela; Crescenzi, Elvira; Pollice, Alessandra; Tudisco, Raffaella; Infascelli, Federico; Calabrò, Viola

    2013-12-01

    Aloe arborescens Miller, belonging to the Aloe genus (Liliaceae family), is one of the main varieties of Aloe used worldwide. Although less characterized than the commonest Aloe vera, Aloe arborescens is known to be richer in beneficial phytotherapeutic, anticancer, and radio-protective properties. It is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. However, very few studies have addressed the biological effects of Aloe at molecular level. The aim of the research is to provide evidences for the antiproliferative properties of Aloe arborescens crude leaf extract using an integrated proteomic and cellular biological approach. We analysed the composition of an Aloe arborescens leaf extract by gas chromatography-mass spectrometry analysis. We found it rich in Aloe-emodin, a hydroxylanthraquinone with known antitumoral activity and in several compounds with anti-oxidant properties. Accordingly, we show that the Aloe extract has antiproliferative effects on several human transformed cell lines and exhibits prodifferentiative effects on both primary and immortalized human keratinocyte. Proteomic analysis of whole cell extracts revealed the presence of proteins with a strong antiproliferative and antimicrobial activity specifically induced in human keratinocytes by Aloe treatment supporting its application as a therapeutical agent.

  6. Antrodia cinnamomea profoundly exalted the reversion of activated hepatic stellate cells by the alteration of cellular proteins.

    PubMed

    Chen, Yi-Ren; Chang, Kai-Ting; Tsai, May-Jywan; Lee, Chia-Hung; Huang, Kao-Jean; Cheng, Henrich; Ho, Yen-Peng; Chen, Jian-Chyi; Yang, Hsueh-Hui; Weng, Ching-Feng

    2014-07-01

    The direct modulation of Antrodia cinnamomea (AC) on the prominent role of liver fibrosis-hepatic stellate cells (HSCs) in situ remains unclear. Firstly, the administration of A. cinnamomea mycelial extract (ACME) could improve liver morphology and histological changes including collagen formation and GPT activity in the liver of thioacetamide (TAA)-injured rats. The morphology and fatty acid restore of TAA-induced HSCs (THSCs) returned to the non-chemical induced HSCs (NHSCs) type as measured by immunofluorescence and Oil Red O staining. PPARγ was upregulated associated with the lowering of α-SMA protein in NHSC-ACME. ACME inhibited the MMP-2 activity in NHSCs by gelatin Zymography. After LC-MS/MS, the cytoskeleton (tubulin, lamin A) and heat shock protein 8 in NHSC-ACME, and guanylate kinase, brain-specific kinase, SG-II and p55 proteins were downregulated in THSC-ACME. Whereas MHC class II, SMC6 protein, and phospholipase D were upregulated in NHSC-ACME. Furthermore, PKG-1 was downregulated in NHSC-ACME and upregulated in THSC-ACME. SG-II and p55 proteins were downregulated in NHSC-ACME and THSC-ACME by Western blotting. Taken together, the beneficial effect of A. cinnamomea on the induction of HSC cellular proteins is potentially applied as an alternative and complementary medicine for the prevention and amelioration of a liver injury.

  7. Identification of cellular genes induced in human cells after activation of the OAS/RNaseL pathway by vaccinia virus recombinants expressing these antiviral enzymes.

    PubMed

    Domingo-Gil, Elena; González, José Manuel; Esteban, Mariano

    2010-03-01

    Interferon (IFN) type I induces the expression of antiviral proteins such as 2',5'-oligoadenylate synthetases (OAS). The enzyme OAS is activated by dsRNA to produce 5'-phosphorylated, 2-5-linked oligoadenylates (2-5A) that activate RNaseL which, in turn, triggers RNA breakdown, leading to multiple biological functions. Although RNaseL is required for IFN antiviral function, there are many aspects of the molecular mechanisms that remain obscure. Here, we have used microarray analyses from human HeLa cells infected with vaccinia virus (VACV) recombinants expressing OAS-RNaseL enzymes (referred as 2-5A system) with the aim to identify host genes that are up- or down-regulated in the course of infection by the activation of this antiviral pathway. We found that activation of the 2-5A system from VACV recombinants produces a remarkable stimulation of transcription for genes that regulate many cellular processes, like those that promote cell growth arrest, GADD45B and KCTD11, apoptosis as CUL2, PDCD6, and TNFAIP8L2, IFN-stimulated genes as IFI6, and related to tumor suppression as PLA2G2A. The 2-5A system activation produces down-regulation of transcription of some genes that promote cell growth as RUNX2 and ESR2 and of genes in charge to maintain mitochondria homeostasis as MIPEP and COX5A. These results reveal new genes induced in response to the activation of the 2-5A system with roles in apoptosis, translational control, cell growth arrest, and tumor suppression.

  8. Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors.

    PubMed

    Fung, Chak-Hei; Cheung, Wing-Hoi; Pounder, Neill M; Harrison, Andrew; Leung, Kwok-Sui

    2014-07-01

    Low intensity pulsed ultrasound (LIPUS) was reported to accelerate the rate of fracture healing. When LIPUS is applied to fractures transcutaneously, bone tissues at different depths are exposed to different ultrasound fields. Measurement of LIPUS shows pressure variations in near field (nearby transducer); uniform profile was found beyond it (far field). Moreover, we have reported that the therapeutic effect of LIPUS is dependent on the axial distance of ultrasound beam in rat fracture model. However, the mechanisms of how different axial distances of LIPUS influence the mechanotransduction of bone cells are not understood. To understand the cellular mechanisms underlying far field LIPUS on enhanced fracture healing in rat model, the present study investigated the effect of ultrasound axial distances on (1) osteocyte, the mechanosensor, and (2) mechanotransduction between osteocyte and pre-osteoblast (bone-forming cell) through paracrine signaling. We hypothesized that far field LIPUS could enhance the osteogenic activities of osteoblasts via paracrine factors secreted from osteocytes. The objective of this study was to investigate the effect of axial distances of LIPUS on osteocytes and osteocyte-osteoblast mechanotransduction. In this study, LIPUS (plane; 2.2 cm in diameter, 1.5MHz sine wave, ISATA=30 mW/cm(2)) was applied to osteocytes (mechanosensor) at three axial distances: 0mm (near field), 60mm (mid-near field) and 130 mm (far field). The conditioned medium of osteocytes (OCM) collected from these three groups were used to culture pre-osteoblasts (effector cell). In this study, (1) the direct effect of ultrasound fields on the mechanosensitivity of osteocytes; and (2) the osteogenic effect of different OCM treatments on pre-osteoblasts were assessed. The immunostaining results indicated the ultrasound beam at far field resulted in more β-catenin nuclear translocation in osteocytes than all other groups. This indicated that osteocytes could detect the

  9. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway.

    PubMed

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-10-23

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%-5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.

  10. Epigenetic modifications of triterpenoid ursolic acid in activating Nrf2 and blocking cellular transformation of mouse epidermal cells.

    PubMed

    Kim, Hyuck; Ramirez, Christina N; Su, Zheng-Yuan; Kong, Ah-Ng Tony

    2016-07-01

    Ursolic acid (UA), a well-known natural triterpenoid found in abundance in blueberries, cranberries and apple peels, has been reported to possess many beneficial health effects. These effects include anticancer activity in various cancers, such as skin cancer. Skin cancer is the most common cancer in the world. Nuclear factor E2-related factor 2 (Nrf2) is a master regulator of antioxidative stress response with anticarcinogenic activity against UV- and chemical-induced tumor formation in the skin. Recent studies show that epigenetic modifications of Nrf2 play an important role in cancer prevention. However, the epigenetic impact of UA on Nrf2 signaling remains poorly understood in skin cancer. In this study, we investigated the epigenetic effects of UA on mouse epidermal JB6 P+ cells. UA inhibited cellular transformation by 12-O-tetradecanoylphorbol-13-acetate at a concentration at which the cytotoxicity was no more than 25%. Under this condition, UA induced the expression of the Nrf2-mediated detoxifying/antioxidant enzymes heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferase 1A1. DNA methylation analysis revealed that UA demethylated the first 15 CpG sites of the Nrf2 promoter region, which correlated with the reexpression of Nrf2. Furthermore, UA reduced the expression of epigenetic modifying enzymes, including the DNA methyltransferases DNMT1 and DNMT3a and the histone deacetylases (HDACs) HDAC1, HDAC2, HDAC3 and HDAC8 (Class I) and HDAC6 and HDAC7 (Class II), and HDAC activity. Taken together, these results suggest that the epigenetic effects of the triterpenoid UA could potentially contribute to its beneficial effects, including the prevention of skin cancer.

  11. Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations

    PubMed Central

    2010-01-01

    According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity. "One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity." Josiah Willard Gibbs (1839-1903) PMID:20534114

  12. Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity.

    PubMed

    García-Muñoz, Ricardo; López-Díaz-de-Cerio, Ascensión; Feliu, Jesus; Panizo, Angel; Giraldo, Pilar; Rodríguez-Calvillo, Mercedes; Grande, Carlos; Pena, Esther; Olave, Mayte; Panizo, Carlos; Inogés, Susana

    2016-04-01

    Follicular lymphoma (FL) is a disease of paradoxes-incurable but with a long natural history. We hypothesized that a combination of lymphokine-activated killer (LAK) cells and monoclonal antibodies might provide a robust synergistic treatment and tested this hypothesis in a phase II clinical trial (NCT01329354). In this trial, in addition to R-CHOP, we alternated the administration of only rituximab with rituximab and autologous LAK cells that were expanded ex vivo. Our objective was to determine the in vitro capability of LAK cells generated from FL patients to produce cytotoxicity against tumor cell lines and to determine rituximab- and obinutuzumab-induced cytotoxicity via antibody-dependent cellular cytotoxicity (ADCC) activity. We analyzed the LAK cell-induced cytotoxicity and rituximab (R)- and obinutuzumab (GA101)-induced ADCC activity. We show that LAK cells generated from FL patients induce cytotoxicity against tumor cell lines. R and GA101 enhance cytolysis through ADCC activity of LAK cells. Impaired LAK cell cytotoxicity and ADCC activity were detected in 50 % of patients. Percentage of NK cells in LAK infusions were correlated with the R- and GA101-induced ADCC. Our results indicate that the combination of R or GA101 and LAK cells should be an option as frontline maintenance therapy in patients with FL.

  13. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs.

    PubMed

    Kerrigan, Ann M; Brown, Gordon D

    2010-03-01

    Different dendritic cell (DC) subsets have distinct specialized functions contributed in part by their differential expression of pattern recognition receptors (PRRs). C-type lectin receptors (CLRs) are a group of PRRs expressed by DCs and other myeloid cells that can recognize endogenous ligands as well as a wide range of exogenous structures present on pathogens. Dual roles in homeostasis and immunity have been demonstrated for some members of this receptor family. Largely due to their endocytic ability and subset specific expression, DC-expressed CLRs have been the focus of significant antigen-targeting studies. A number of CLRs function on the basis of signaling via association with immunoreceptor tyrosine-based activation motif (ITAM)-containing adapter proteins. Others contain ITAM-related motifs or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails. Here we review CLRs that induce intracellular signaling via a single tyrosine-based ITAM-like motif and highlight their relevance in terms of DC function.

  14. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime