Science.gov

Sample records for active cellular processes

  1. Cellular phosphatases facilitate combinatorial processing of receptor-activated signals

    PubMed Central

    Kumar, Dhiraj; Dua, Raina; Srikanth, Ravichandran; Jayaswal, Shilpi; Siddiqui, Zaved; Rao, Kanury VS

    2008-01-01

    Background Although reciprocal regulation of protein phosphorylation represents a key aspect of signal transduction, a larger perspective on how these various interactions integrate to contribute towards signal processing is presently unclear. For example, a key unanswered question is that of how phosphatase-mediated regulation of phosphorylation at the individual nodes of the signaling network translates into modulation of the net signal output and, thereby, the cellular phenotypic response. Results To address the above question we, in the present study, examined the dynamics of signaling from the B cell antigen receptor (BCR) under conditions where individual cellular phosphatases were selectively depleted by siRNA. Results from such experiments revealed a highly enmeshed structure for the signaling network where each signaling node was linked to multiple phosphatases on the one hand, and each phosphatase to several nodes on the other. This resulted in a configuration where individual signaling intermediates could be influenced by a spectrum of regulatory phosphatases, but with the composition of the spectrum differing from one intermediate to another. Consequently, each node differentially experienced perturbations in phosphatase activity, yielding a unique fingerprint of nodal signals characteristic to that perturbation. This heterogeneity in nodal experiences, to a given perturbation, led to combinatorial manipulation of the corresponding signaling axes for the downstream transcription factors. Conclusion Our cumulative results reveal that it is the tight integration of phosphatases into the signaling network that provides the plasticity by which perturbation-specific information can be transmitted in the form of a multivariate output to the downstream transcription factor network. This output in turn specifies a context-defined response, when translated into the resulting gene expression profile. PMID:18798986

  2. Active Cellular Mechanics and Information Processing in the Living Cell

    NASA Astrophysics Data System (ADS)

    Rao, M.

    2014-07-01

    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  3. Cellular Stress Responses and Monitored Cellular Activities.

    PubMed

    Sawa, Teiji; Naito, Yoshifumi; Kato, Hideya; Amaya, Fumimasa

    2016-08-01

    To survive, organisms require mechanisms that enable them to sense changes in the outside environment, introduce necessary responses, and resist unfavorable distortion. Consequently, through evolutionary adaptation, cells have become equipped with the apparatus required to monitor their fundamental intracellular processes and the mechanisms needed to try to offset malfunction without receiving any direct signals from the outside environment. It has been shown recently that eukaryotic cells are equipped with a special mechanism that monitors their fundamental cellular functions and that some pathogenic proteobacteria can override this monitoring mechanism to cause harm. The monitored cellular activities involved in the stressed intracellular response have been researched extensively in Caenorhabditis elegans, where discovery of an association between key mitochondrial activities and innate immune responses was named "cellular associated detoxification and defenses (cSADD)." This cellular surveillance pathway (cSADD) oversees core cellular activities such as mitochondrial respiration and protein transport into mitochondria, detects xenobiotics and invading pathogens, and activates the endocrine pathways controlling behavior, detoxification, and immunity. The cSADD pathway is probably associated with cellular responses to stress in human inflammatory diseases. In the critical care field, the pathogenesis of lethal inflammatory syndromes (e.g., respiratory distress syndromes and sepsis) involves the disturbance of mitochondrial respiration leading to cell death. Up-to-date knowledge about monitored cellular activities and cSADD, especially focusing on mitochondrial involvement, can probably help fill a knowledge gap regarding the pathogenesis of lethal inflammatory syndromes in the critical care field. PMID:26954943

  4. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  5. Learning about Cellular Respiration: An Active Approach Illustrating the Process of Scientific Inquiry.

    ERIC Educational Resources Information Center

    Johnson, Margaret (Peg)

    1998-01-01

    Details the active-learning approach to teaching cellular respiration in an introductory, one-semester course for nonmajors. Focuses on a laboratory exercise designed to answer the question of what happens to food when eaten. Contains 19 references. (DDR)

  6. Active Cellular Nematics

    NASA Astrophysics Data System (ADS)

    Duclos, Guillaume; Erlenkaemper, Christoph; Garcia, Simon; Yevick, Hannah; Joanny, Jean-François; Silberzan, Pascal; Biology inspired physics at mesoscales Team; Physical approach of biological problems Team

    We study the emergence of a nematic order in a two-dimensional tissue of apolar elongated fibroblast cells. Initially, these cells are very motile and the monolayer is characterized by giant density fluctuations, a signature of far-from-equilibrium systems. As the cell density increases because of proliferation, the cells align with each other forming large perfectly oriented domains while the cellular movements slow down and eventually freeze. Therefore topological defects characteristic of nematic phases remain trapped at long times, preventing the development of infinite domains. By analogy with classical non-active nematics, we have investigated the role of boundaries and we have shown that cells confined in stripes of width smaller than typically 500 µm are perfectly aligned in the stripe direction. Experiments performed in cross-shaped patterns show that both the number of cells and the degree of alignment impact the final orientation. Reference: Duclos G., Garcia S., Yevick H.G. and Silberzan P., ''Perfect nematic order in confined monolayers of spindle-shaped cells'', Soft Matter, 10, 14, 2014

  7. Efficiency of cellular information processing

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Hartich, David; Seifert, Udo

    2014-10-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the Escherichia coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium in an environment that changes at a very slow time-scale is quite inefficient, dissipating much more than it learns. Using the concept of a coarse-grained learning rate, we show for the model with adaptation that while the activity learns about the external signal the option of changing the methylation level increases the concentration range for which the learning rate is substantial.

  8. Cellular and molecular mechanisms activating the cell death processes by chalcones: Critical structural effects.

    PubMed

    Champelovier, Pierre; Chauchet, Xavier; Hazane-Puch, Florence; Vergnaud, Sabrina; Garrel, Catherine; Laporte, François; Boutonnat, Jean; Boumendjel, Ahcène

    2013-12-01

    Chalcones are naturally occurring compounds with diverse pharmacological activities. Chalcones derive from the common structure: 1,3-diphenylpropenone. The present study aims to better understand the mechanistic pathways triggering chalcones anticancer effects and providing evidences that minor structural difference could lead to important difference in mechanistic effect. We selected two recently investigated chalcones (A and B) and investigated them on glioblastoma cell lines. It was found that chalcone A induced an apoptotic process (type I PCD), via the activation of caspase-3, -8 and -9. Chalcone A also increased CDK1/cyclin B ratios and decreased the mitochondrial transmembrane potential (ΔΨm). Chalcone B induced an autophagic cell death process (type II PCD), ROS-related but independent of both caspases and protein synthesis. Both chalcones increased Bax/Bcl2 ratios and decreased Ki67 and CD71 antigen expressions. The present investigation reveals that despite the close structure of chalcones A and B, significant differences in mechanism of effect were found. PMID:24134853

  9. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting.

    PubMed

    Nune, Krishna C; Misra, R Devesh K; Gaytan, Sara M; Murr, Lawrence E

    2015-05-01

    The cellular activity, biological response, and consequent integration of scaffold-cell construct in the physiological system are governed by the ability of cells to adhere, proliferate, and biomineralize. In this regard, we combine cellular biology and materials science and engineering to fundamentally elucidate the interplay between cellular activity and interconnected three-dimensional foamed architecture obtained by a novel process of electron beam melting and computational tools. Furthermore, the organization of key proteins, notably, actin, vinclulin, and fibronectin, involved in cellular activity and biological functions and relationship with the structure was explored. The interconnected foamed structure with ligaments was favorable to cellular activity that includes cell attachment, proliferation, and differentiation. The primary rationale for favorable modulation of cellular functions is that the foamed structure provided a channel for migration and communication between cells leading to highly mineralized extracellular matrix (ECM) by the differentiating osteoblasts. The filopodial interaction amongst cells on the ligaments was a governing factor in the secretion of ECM, with consequent influence on maturation and mineralization. PMID:25111154

  10. Cellular Mechanisms Controlling Caspase Activation and Function

    PubMed Central

    Parrish, Amanda B.; Freel, Christopher D.; Kornbluth, Sally

    2013-01-01

    Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death. PMID:23732469

  11. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  12. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  13. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells. PMID:27406324

  14. Dynamics of active cellular response under stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  15. Approaches to Biosimulation of Cellular Processes

    PubMed Central

    Westerhoff, H. V.

    2006-01-01

    Modelling and simulation are at the heart of the rapidly developing field of systems biology. This paper reviews various types of models, simulation methods, and theoretical approaches that are presently being used in the quantitative description of cellular processes. We first describe how molecular interaction networks can be represented by means of stoichiometric, topological and kinetic models. We briefly discuss the formulation of kinetic models using mesoscopic (stochastic) or macroscopic (continuous) approaches, and we go on to describe how detailed models of molecular interaction networks (silicon cells) can be constructed on the basis of experimentally determined kinetic parameters for cellular processes. We show how theory can help in analyzing models by applying control analysis to a recently published silicon cell model. Finally, we review some of the theoretical approaches available to analyse kinetic models and experimental data, respectively. PMID:19669467

  16. Total Cellular RNA Modulates Protein Activity.

    PubMed

    Majumder, Subhabrata; DeMott, Christopher M; Reverdatto, Sergey; Burz, David S; Shekhtman, Alexander

    2016-08-16

    RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases β-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states. PMID:27456029

  17. Disassembly activity of actin-depolymerizing factor (ADF) is associated with distinct cellular processes in apicomplexan parasites

    PubMed Central

    Haase, Silvia; Zimmermann, Dennis; Olshina, Maya A.; Wilkinson, Mark; Fisher, Fabio; Tan, Yan Hong; Stewart, Rebecca J.; Tonkin, Christopher J.; Wong, Wilson; Kovar, David R.; Baum, Jake

    2015-01-01

    Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin. PMID:26157165

  18. Disassembly activity of actin-depolymerizing factor (ADF) is associated with distinct cellular processes in apicomplexan parasites.

    PubMed

    Haase, Silvia; Zimmermann, Dennis; Olshina, Maya A; Wilkinson, Mark; Fisher, Fabio; Tan, Yan Hong; Stewart, Rebecca J; Tonkin, Christopher J; Wong, Wilson; Kovar, David R; Baum, Jake

    2015-09-01

    Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin. PMID:26157165

  19. [Cellular model of blood coagulation process].

    PubMed

    Bijak, Michał; Rzeźnicka, Paulina; Saluk, Joanna; Nowak, Paweł

    2015-07-01

    Blood coagulation is a process which main objective is the prevention of blood loss when the integrity of the blood vessel is damaged. Over the years, have been presented a number of concepts characterizing the mechanism of thrombus formation. Since the 60s of last century was current cascade model of the coagulation wherein forming of the fibrin clot is determined by two pathways called extrinsic and intrinsic pathways. In the nineties of the last century Monroe and Hoffman presented his concept of blood coagulation process which complement the currently valid model of cells participation especially of blood platelets which aim is to provide a negatively charged phospholipid surface and thereby allow the coagulation enzymatic complexes formation. Developed conception they called cellular model of coagulation. The aim of this work was to present in details of this blood coagulation, including descriptions of its various phases. PMID:26277170

  20. Modeling Cellular Processes in 3-D

    PubMed Central

    Mogilner, Alex; Odde, David

    2011-01-01

    Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197

  1. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. PMID:27533012

  2. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    PubMed

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-01

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  3. Modeling the topological organization of cellular processes.

    PubMed

    Giavitto, Jean-Louis; Michel, Olivier

    2003-07-01

    The cell as a dynamical system presents the characteristics of having a dynamical structure. That is, the exact phase space of the system cannot be fixed before the evolution and integrative cell models must state the evolution of the structure jointly with the evolution of the cell state. This kind of dynamical systems is very challenging to model and simulate. New programming concepts must be developed to ease their modeling and simulation. In this context, the goal of the MGS project is to develop an experimental programming language dedicated to the simulation of this kind of systems. MGS proposes a unified view on several computational mechanisms (CHAM, Lindenmayer systems, Paun systems, cellular automata) enabling the specification of spatially localized computations on heterogeneous entities. The evolution of a dynamical structure is handled through the concept of transformation which relies on the topological organization of the system components. An example based on the modeling of spatially distributed biochemical networks is used to illustrate how these notions can be used to model the spatial and temporal organization of intracellular processes. PMID:12915272

  4. Small-Molecule Inhibitors of SETD8 with Cellular Activity

    PubMed Central

    2015-01-01

    SETD8/SET8/Pr-SET7/KMT5A is the sole protein lysine methyltransferase (PKMT) known to monomethylate lysine 20 of histone H4 in vivo. SETD8’s methyltransferase activity has been implicated in many essential cellular processes including DNA replication, DNA damage response, transcription modulation, and cell cycle regulation. Developing SETD8 inhibitors with cellular activity is a key step toward elucidating the diverse roles of SETD8 via convenient pharmacological perturbation. From the hits of a prior high throughput screen (HTS), SPS8I1–3 (NSC663284, BVT948, and ryuvidine) were validated as potent SETD8 inhibitors. These compounds contain different structural motifs and inhibit SETD8 via distinct modes. More importantly, these compounds show cellular activity by suppressing the H4K20me1 mark of SETD8 and recapitulate characteristic S/G2/M-phase cell cycle defects as observed for RNAi-mediated SETD8 knockdown. The commonality of SPS8I1–3 against SETD8, together with their distinct structures and mechanisms for SETD8 inhibition, argues for the collective application of these compounds as SETD8 inhibitors. PMID:25137013

  5. MOLECULAR PROCESSES IN CELLULAR ARSENIC METABOLISM

    EPA Science Inventory

    Elucidating molecular processes that underlie accumulation, metabolism, and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptu...

  6. Mechanical and cellular processes driving cervical myelopathy

    PubMed Central

    Dolan, Roisin T; Butler, Joseph S; O’Byrne, John M; Poynton, Ashley R

    2016-01-01

    Cervical myelopathy is a well-described clinical syndrome that may evolve from a combination of etiological mechanisms. It is traditionally classified by cervical spinal cord and/or nerve root compression which varies in severity and number of levels involved. The vast array of clinical manifestations of cervical myelopathy cannot fully be explained by the simple concept that a narrowed spinal canal causes compression of the cord, local tissue ischemia, injury and neurological impairment. Despite advances in surgical technology and treatment innovations, there are limited neuro-protective treatments for cervical myelopathy, which reflects an incomplete understanding of the pathophysiological processes involved in this disease. The aim of this review is to provide a comprehensive overview of the key pathophysiological processes at play in the development of cervical myelopathy. PMID:26807352

  7. Cellular reprogramming through mitogen-activated protein kinases

    PubMed Central

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression—including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes. PMID:26579181

  8. Infrared ATR: a probe for cellular activation

    NASA Astrophysics Data System (ADS)

    Timlin, Jerilyn A.; Martin, Laura E.; Alam, M. Kathleen; Haaland, David M.; Garrison, Kristen; Lyons, C. Richard; Hjelle, Brian

    2002-02-01

    We employ infrared spectroscopy (IR) with attenuated total reflectance (ATR) as a sampling technique to monitor live and dried RAW cells (a murine macrophage cell line) during activation with g-interferon and lipopolysaccharide. By comparing the spectra of activated cells at various time points to the spectra of healthy control cells, we identify spectral bands associated with nucleic acids that are markers for the cell activation process. These spectral changes are slight and can be complicated with the normal metabolic changes that occur within cells. We will discuss the use of data pretreatment strategies to accurately correct for the contribution of the buffer to the live cell spectra. We find the standard background correction method inadequate for concentrated solutions of cells. Data presented shows the severe effect incorrect background subtraction has on the cell spectra. We report a more accurate correction for phosphate buffer spectral contribution using an interactive subtraction of the buffer spectrum. We will show classification of dried control and activated macrophage cell spectra using partial-least squares analysis with multiplicative scatter correction.

  9. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  10. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    PubMed Central

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018

  11. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  12. A synthetic biology approach to understanding cellular information processing

    PubMed Central

    Riccione, Katherine A; Smith, Robert P; Lee, Anna J; You, Lingchong

    2012-01-01

    The survival of cells and organisms requires proper responses to environmental signals. These responses are governed by cellular networks, which serve to process diverse environmental cues. Biological networks often contain recurring network topologies called ‘motifs’. It has been recognized that the study of such motifs allows one to predict the response of a biological network, and thus cellular behavior. However, studying a single motif in complete isolation of all other network motifs in a natural setting is difficult. Synthetic biology has emerged as a powerful approach to understanding the dynamic properties of network motifs. In addition to testing existing theoretical predictions, construction and analysis of synthetic gene circuits has led to the discovery of novel motif dynamics such as how the combination of simple motifs can lead to autonomous dynamics or how noise in transcription and translation can affect the dynamics of a motif. Here, we review developments in synthetic biology as they pertain to increasing our understanding of cellular information processing. We highlight several types of dynamic behaviors that diverse motifs can generate, including the control of input/output responses, the generation of autonomous spatial and temporal dynamics, as well as the influence of noise in motif dynamics and cellular behavior. PMID:23411668

  13. Sleep Loss Activates Cellular Inflammatory Signaling

    PubMed Central

    Irwin, Michael R.; Wang, Minge; Ribeiro, Denise; Cho, Hyong Jin; Olmstead, Richard; Breen, Elizabeth Crabb; Martinez-Maza, Otoniel; Cole, Steve

    2008-01-01

    Background Accumulating evidence suggests that sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. This study was undertaken to test the effects of sleep loss on activation of nuclear factor (NF) -κB, a transcription factor that serves a critical role in the inflammatory signaling cascade. Methods In 14 healthy adults (7 females; 7 males), peripheral blood mononuclear cell NF-κB was repeatedly assessed, along with enumeration of lymphocyte subpopulations, in the morning after baseline sleep, partial sleep deprivation (awake from 23:00 h to 03:00 h), and recovery sleep. Results In the morning after a night of sleep loss, mononuclear cell NF-κB activation was significantly greater compared with morning levels following uninterrupted baseline or recovery sleep, in which the response was found in females but not in males. Conclusions These results identify NF-κB activation as a molecular pathway by which sleep disturbance may influence leukocyte inflammatory gene expression and the risk of inflammation-related disease. PMID:18561896

  14. Activation of the NLRP3 inflammasome by cellular labile iron.

    PubMed

    Nakamura, Kyohei; Kawakami, Toru; Yamamoto, Naoki; Tomizawa, Miyu; Fujiwara, Tohru; Ishii, Tomonori; Harigae, Hideo; Ogasawara, Kouetsu

    2016-02-01

    Cellular labile iron, which contains chelatable redox-active Fe(2+), has been implicated in iron-mediated cellular toxicity leading to multiple organ dysfunction. Iron homeostasis is controlled by monocytes/macrophages through their iron recycling and storage capacities. Furthermore, iron sequestration by monocytes/macrophages is regulated by pro-inflammatory cytokines including interleukin-1, highlighting the importance of these cells in the crosstalk between inflammation and iron homeostasis. However, a role for cellular labile iron in monocyte/macrophage-mediated inflammatory responses has not been defined. Here we describe how cellular labile iron activates the NLRP3 inflammasome in human monocytes. Stimulation of lipopolysaccharide-primed peripheral blood mononuclear cells with ferric ammonium citrate increases the level of cellular Fe(2+) levels in monocytes and induces production of interleukin-1β in a dose-dependent manner. This ferric ammonium citrate-induced interleukin-1β production is dependent on caspase-1 and is significantly inhibited by an Fe(2+)-specific chelator. Ferric ammonium citrate consistently induced interleukin-1β secretion in THP1 cells, but not in NLRP3-deficient THP1 cells, indicating a requirement for the NLRP3 inflammasome. Additionally, activation of the inflammasome is mediated by potassium efflux, reactive oxygen species-mediated mitochondrial dysfunction, and lysosomal membrane permeabilization. Thus, these results suggest that monocytes/macrophages not only sequestrate iron during inflammation, but also mediate inflammation in response to cellular labile iron, which provides novel insights into the role of iron in chronic inflammation. PMID:26577567

  15. Depression of liver microsomal glucose 6-phosphatase activity in carbon tetrachloride-poisoned rats. Potential synergistic effects of lipid peroxidation and of covalent binding of haloalkane-derived free radicals to cellular components in the process.

    PubMed

    González Padrón, A; de Toranzo, E G; Castro, J A

    1996-01-01

    Depression of liver microsomal glucose-6-phosphatase (G6Pase) activity is a relevant feature of CCl4 poisoning. In vitro studies from several laboratories led to the hypothesis that a CCl4 promoted lipid peroxidation (LP) process is responsible for that effect. In vivo studies from our laboratory with potent antioxidants in dosage regimes inhibiting LP, however, were in contrast with that hypothesis. In this work we studied the potential preventive effects of Pyrazole (Pyr), alpha-tocopherol (alpha T), and 3-amino-1,2,4-triazole (AT) against CCl4-induced depression of G6Pase activity. Pyr decreases the intensity of the covalent binding (CB) of CCl4 reactive metabolites to cellular components but does not inhibit LP in vitro or in vivo. alpha T inhibits LP in vitro and in vivo and AT inhibits both CB and LP. Our present studies give evidence that AT but neither Pyr nor alpha T are able to prevent the CCl4-induced depression of G6Pase activity. Results are compatible with the hypothesis that the cooperation of both factors is critical to explain the observed effects, and suggest that under in vitro experimental conditions used by others the relevance of LP might be artifactually promoted. PMID:8791095

  16. Autophagic activity dictates the cellular response to oncogenic RAS

    PubMed Central

    Wang, Yihua; Wang, Xiao Dan; Lapi, Eleonora; Sullivan, Alexandra; Jia, Wei; He, You-Wen; Ratnayaka, Indrika; Zhong, Shan; Goldin, Robert D.; Goemans, Christoph G.; Tolkovsky, Aviva M.; Lu, Xin

    2012-01-01

    RAS is frequently mutated in human cancers and has opposing effects on autophagy and tumorigenesis. Identifying determinants of the cellular responses to RAS is therefore vital in cancer research. Here, we show that autophagic activity dictates the cellular response to oncogenic RAS. N-terminal Apoptosis-stimulating of p53 protein 2 (ASPP2) mediates RAS-induced senescence and inhibits autophagy. Oncogenic RAS-expressing ASPP2(Δ3/Δ3) mouse embryonic fibroblasts that escape senescence express a high level of ATG5/ATG12. Consistent with the notion that autophagy levels control the cellular response to oncogenic RAS, overexpressing ATG5, but not autophagy-deficient ATG5 mutant K130R, bypasses RAS-induced senescence, whereas ATG5 or ATG3 deficiency predisposes to it. Mechanistically, ASPP2 inhibits RAS-induced autophagy by competing with ATG16 to bind ATG5/ATG12 and preventing ATG16/ATG5/ATG12 formation. Hence, ASPP2 modulates oncogenic RAS-induced autophagic activity to dictate the cellular response to RAS: to proliferate or senesce. PMID:22847423

  17. Nanostructures of Designed Geometry and Functionality Enable Regulation of Cellular Signaling Processes

    PubMed Central

    Li, Jie-Ren; Shi, Lifang; Deng, Zhao; Lo, Su Hao; Liu, Gang-yu

    2014-01-01

    Extracellular matrices (ECM) triggered cellular signaling processes often begin with the clustering of the cellular receptors such as integrin and FcεRI. The sizes of these initial protein complexes or clusters are tens to 100 nm in dimension; therefore, engineered nanostructures could provide effective mimics of ECM for investigation and control of the initial and downstream specific signaling process. This current topic discusses recent advances in nanotechnology in the context of design and production of matching chemical functionality and geometry for control of specific cellular signaling processes. Two investigations are reported to demonstrate this concept: (a) how the presentation of antigen at nanometer scale would influence the aggregation of FcεRI, which would impact the formation of activation complexes, leading to rearrangement of actin in cytoskeleton and degranulation or activation of mast cells; (b) how the engineered nanostructure could guide the initial integrin clustering, which would impact the formation of focal adhesion and downstream cell signaling cascades, leading to polarization, migration and morphological changes. Complimentary to engineered ECMs using synthetic ligands or peptides, or topographic control at micrometer scale, nanostructures of designed geometry and chemical functionality provide new and effective biochemical cues for regulation of cellular signaling processes and downstream behaviors. PMID:22783801

  18. WASTE ACTIVATED SLUDGE PROCESSING

    EPA Science Inventory

    A study was made at pilot scale of a variety of processes for dewatering and stabilization of waste activated sludge from a pure oxygen activated sludge system. Processes evaluated included gravity thickening, dissolved air flotation thickening, basket centrifugation, scroll cent...

  19. Optical Tools to Investigate Cellular Activity in the Intestinal Wall

    PubMed Central

    Boesmans, Werend; Hao, Marlene M; Berghe, Pieter Vanden

    2015-01-01

    Live imaging has become an essential tool to investigate the coordinated activity and output of cellular networks. Within the last decade, 2 Nobel prizes have been awarded to recognize innovations in the field of imaging: one for the discovery, use, and optimization of the green fluorescent protein (2008) and the second for the development of super-resolved fluorescence microscopy (2014). New advances in both optogenetics and microscopy now enable researchers to record and manipulate activity from specific populations of cells with better contrast and resolution, at higher speeds, and deeper into live tissues. In this review, we will discuss some of the recent developments in microscope technology and in the synthesis of fluorescent probes, both synthetic and genetically encoded. We focus on how live imaging of cellular physiology has progressed our understanding of the control of gastrointestinal motility, and we discuss the hurdles to overcome in order to apply the novel tools in the field of neurogastroenterology and motility. PMID:26130630

  20. Emergence of tissue mechanics from cellular processes: shaping a fly wing

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphael; Popovic, Marko; Nandi, Amitabha; Brandl, Holger; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    Nowadays, biologistsare able to image biological tissueswith up to 10,000 cells in vivowhere the behavior of each individual cell can be followed in detail.However, how precisely large-scale tissue deformation and stresses emerge from cellular behavior remains elusive. Here, we study this question in the developing wing of the fruit fly. To this end, we first establish a geometrical framework that exactly decomposes tissue deformation into contributions by different kinds of cellular processes. These processes comprise cell shape changes, cell neighbor exchanges, cell divisions, and cell extrusions. As the key idea, we introduce a tiling of the cellular network into triangles. This approach also reveals that tissue deformation can also be created by correlated cellular motion. Based on quantifications using these concepts, we developed a novel continuum mechanical model for the fly wing. In particular, our model includes active anisotropic stresses and a delay in the response of cell rearrangements to material stresses. A different approach to study the emergence of tissue mechanics from cellular behavior are cell-based models. We characterize the properties of a cell-based model for 3D tissues that is a hybrid between single particle models and the so-called vertex models.

  1. p63 deficiency activates a program of cellular senescence and leads to accelerated aging

    PubMed Central

    Keyes, William M.; Wu, Ying; Vogel, Hannes; Guo, Xuecui; Lowe, Scott W.; Mills, Alea A.

    2005-01-01

    The p53 tumor suppressor plays a key role in organismal aging. A cellular mechanism postulated to drive the aging process is cellular senescence, mediated in part by p53. Although senescent cells accumulate in elderly individuals, most studies have relied on correlating in vitro senescence assays with in vivo phenotypes of aging. Here, using two different mouse models in which the p53-related protein p63 is compromised, we demonstrate that cellular senescence and organismal aging are intimately linked and that these processes are mediated by p63 loss. We found that p63+/- mice have a shortened life span and display features of accelerated aging. Both germline and somatically induced p63 deficiency activates widespread cellular senescence with enhanced expression of senescent markers SA-β-gal, PML, and p16INK4a. Using an inducible tissue-specific p63 conditional model, we further show that p63 deficiency induces cellular senescence and causes accelerated aging phenotypes in the adult. Our results thus suggest a causative link between cellular senescence and aging in vivo, and demonstrate that p63 deficiency accelerates this process. PMID:16107615

  2. Cellular processing and destinies of artificial DNA nanostructures.

    PubMed

    Lee, Di Sheng; Qian, Hang; Tay, Chor Yong; Leong, David Tai

    2016-08-01

    Since many bionanotechnologies are targeted at cells, understanding how and where their interactions occur and the subsequent results of these interactions is important. Changing the intrinsic properties of DNA nanostructures and linking them with interactions presents a holistic and powerful strategy for understanding dual nanostructure-biological systems. With the recent advances in DNA nanotechnology, DNA nanostructures present a great opportunity to understand the often convoluted mass of information pertaining to nanoparticle-biological interactions due to the more precise control over their chemistry, sizes, and shapes. Coupling just some of these designs with an understanding of biological processes is both a challenge and a source of opportunities. Despite continuous advances in the field of DNA nanotechnology, the intracellular fate of DNA nanostructures has remained unclear and controversial. Because understanding its cellular processing and destiny is a necessary prelude to any rational design of exciting and innovative bionanotechnology, in this review, we will discuss and provide a comprehensive picture relevant to the intracellular processing and the fate of various DNA nanostructures which have been remained elusive for some time. We will also link the unique capabilities of DNA to some novel ideas for developing next-generation bionanotechnologies. PMID:27119124

  3. Dynamical theory of active cellular response to external stress.

    PubMed

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response. PMID:18851081

  4. Dynamical theory of active cellular response to external stress

    NASA Astrophysics Data System (ADS)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  5. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  6. Study of Stevia rebaudiana Bertoni antioxidant activities and cellular properties.

    PubMed

    Bender, Cecilia; Graziano, Sara; Zimmermann, Benno F

    2015-01-01

    The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries. PMID:26008718

  7. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone.

    PubMed

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B; Banerji, Asoke; Nair, Bipin G

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2' ,7' -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. PMID:27448766

  8. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    PubMed

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. PMID:26097169

  9. Liposome-Mediated Cellular Delivery of Active gp91phox

    PubMed Central

    Marques, Bruno; Liguori, Lavinia; Paclet, Marie-Hélène; Villegas-Mendéz, Ana; Rothe, Romy; Morel, Françoise; Lenormand, Jean-Luc

    2007-01-01

    Background Gp91phox is a transmembrane protein and the catalytic core of the NADPH oxidase complex of neutrophils. Lack of this protein causes chronic granulomatous disease (CGD), a rare genetic disorder characterized by severe and recurrent infections due to the incapacity of phagocytes to kill microorganisms. Methodology Here we optimize a prokaryotic cell-free expression system to produce integral mammalian membrane proteins. Conclusions Using this system, we over-express truncated forms of the gp91phox protein under soluble form in the presence of detergents or lipids resulting in active proteins with a “native-like” conformation. All the proteins exhibit diaphorase activity in the presence of cytosolic factors (p67phox, p47phox, p40phox and Rac) and arachidonic acid. We also produce proteoliposomes containing gp91phox protein and demonstrate that these proteins exhibit activities similar to their cellular counterpart. The proteoliposomes induce rapid cellular delivery and relocation of recombinant gp91phox proteins to the plasma membrane. Our data support the concept of cell-free expression technology for producing recombinant proteoliposomes and their use for functional and structural studies or protein therapy by complementing deficient cells in gp91phox protein. PMID:17848987

  10. Sleep Loss Activates Cellular Markers of Inflammation: Sex Differences

    PubMed Central

    Irwin, Michael R.; Carrillo, Carmen; Olmstead, Richard

    2009-01-01

    Sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. Given sex differences in the prevalence of inflammatory disorders with stronger associations in females, this study was undertaken to test the effects of sleep loss on cellular mechanisms that contribute to proinflammatory cytokine activity. In 26 healthy adults (11 females; 15 males), monocyte intracellular proinflammatory cytokine production was repeatedly assessed at 08:00, 12:00, 16:00, 20:00, and 23:00 h during a baseline period and after partial sleep deprivation (awake from 11 PM to 3 AM). In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor- α differentially changed between the two sexes. Whereas both females and males showed a marked increase in the lipopolysaccharide (LPS) - stimulated production of IL-6 and TNF-α in the morning immediately after PSD, production of these cytokines during the early- and late evening was increased in the females as compared to decreases in the males. Sleep loss induces a functional alteration of monocyte proinflammatory cytokine responses with females showing greater cellular immune activation as compared to changes in males. These results have implications for understanding the role of sleep disturbance in the differential risk profile for inflammatory disorders between the sexes. PMID:19520155

  11. Activation of cellular immune response in acute pancreatitis.

    PubMed Central

    Mora, A; Pérez-Mateo, M; Viedma, J A; Carballo, F; Sánchez-Payá, J; Liras, G

    1997-01-01

    BACKGROUND: Inflammatory mediators have recently been implicated as potential markers of severity in acute pancreatitis. AIMS: To determine the value of neopterin and polymorphonuclear (PMN) elastase as markers of activation of cellular immunity and as early predictors of disease severity. PATIENTS: Fifty two non-consecutive patients classified according to their clinical outcome into mild (n = 26) and severe pancreatitis (n = 26). METHODS: Neopterin in serum and the PMN elastase/A1PI complex in plasma were measured during the first three days of hospital stay. RESULTS: Within three days after the onset of acute pancreatitis, PMN elastase was significantly higher in the severe pancreatitis group. Patients with severe disease also showed significantly higher values of neopterin on days 1 and 2 but not on day 3 compared with patients with mild disease. There was a significant correlation between PMN elastase and neopterin values on days 1 and 2. PMN elastase on day 1 predicted disease severity with a sensitivity of 76.7% and a specificity of 91.6%. Neopterin did not surpass PMN elastase in the probability of predicting disease severity. CONCLUSIONS: These data show that activation of cellular immunity is implicated in the pathogenesis of acute pancreatitis and may be a main contributory factor to disease severity. Neopterin was not superior to PMN elastase in the prediction of severity. PMID:9245935

  12. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    PubMed Central

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-01-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures. PMID:26503516

  13. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    NASA Astrophysics Data System (ADS)

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-10-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  14. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes.

    PubMed

    Bastida, F; Selevsek, N; Torres, I F; Hernández, T; García, C

    2015-01-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures. PMID:26503516

  15. A smart fluorescence nanoprobe for the detection of cellular alkaline phosphatase activity and early osteogenic differentiation.

    PubMed

    Cao, Feng-Yi; Fan, Jin-Xuan; Long, Yue; Zeng, Xuan; Zhang, Xian-Zheng

    2016-07-01

    In the past decades, biomaterials were designed to induce stem cell toward osteogenic differentiation. However, conventional methods for evaluation osteogenic differentiation all required a process of cell fixation or lysis, which induce waste of a large number of cells. In this study, a fluorescence nanoprobe was synthesized by combining phosphorylated fluoresceinamine isomer I (FLA) on the surface of mesoporous silica-coated superparamagnetic iron oxide (Fe3O4@mSiO2) nanoparticles. In the presence of alkaline phosphatase (ALP), the phosphorylated FLA on the nanoprobe would be hydrolyzed, resulting in a fluorescence recovery of FLA. During early osteogenic differentiation, a high-level expression of cellular ALP was induced, which accelerated the hydrolysis of phosphorylated FLA, resulting in an enhancement of cellular fluorescence intensity. This fluorescence nanoprobe provides us a rapid and non-toxic method for the detection of cellular ALP activity and early osteogenic differentiation. PMID:26961462

  16. A theoretical study on cellular antioxidant activity of selected flavonoids

    NASA Astrophysics Data System (ADS)

    Rong, Yuzhi; Wang, Zhengwu; Wu, Jinhong; Zhao, Bo

    The antioxidant capacities of the selected flavonoids quercetin, luteolin and taxifolin have been investigated at density functional level of theory with the aim of verifying the cellular antioxidant activity (CAA) values representative of experimental findings. The selected flavonoids were believed to act through the H-atom transfer mechanism. Their potentiality of hydrogen abstraction was evaluated by computing the Osbnd H bond dissociation enthalpy (BDE) in gas-phase and in dimethylsulfoxide solution. Results indicate that the order of antioxidant efficacies calculated in this work is in agreement with that reported by experimental results of CAA. Time-dependent density functional theory (TDDFT) calculations were also performed both in gas-phase and in dimethylsulfoxide to reproduce the electronic UV-vis spectra of the selected flavonoids.

  17. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    PubMed Central

    Ivanova, Ekaterina A.; Orekhov, Alexander N.

    2016-01-01

    Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient's bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization. PMID:26885534

  18. Vanderbilt University Study Creates New Roadmap for Cellular Activity - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Scientists studying cellular processes have long sought to measure redox modifications because they provide one of the normal layers of cell control. But redox disruption or oxidative stress at the cellular level can also create a pathway to diseases like

  19. Cellular defense processes regulated by pathogen-elicited receptor signaling

    NASA Astrophysics Data System (ADS)

    Wu, Rongcong; Goldsipe, Arthur; Schauer, David B.; Lauffenburger, Douglas A.

    2011-06-01

    Vertebrates are constantly threatened by the invasion of microorganisms and have evolved systems of immunity to eliminate infectious pathogens in the body. Initial sensing of microbial agents is mediated by the recognition of pathogens by means of molecular structures expressed uniquely by microbes of a given type. So-called 'Toll-like receptors' are expressed on host epithelial barrier cells play an essential role in the host defense against microbial pathogens by inducing cell responses (e.g., proliferation, death, cytokine secretion) via activation of intracellular signaling networks. As these networks, comprising multiple interconnecting dynamic pathways, represent highly complex multi-variate "information processing" systems, the signaling activities particularly critical for governing the host cell responses are poorly understood and not easily ascertained by a priori theoretical notions. We have developed over the past half-decade a "data-driven" computational modeling approach, on a 'cue-signal-response' combined experiment/computation paradigm, to elucidate key multi-variate signaling relationships governing the cell responses. In an example presented here, we study how a canonical set of six kinase pathways combine to effect microbial agent-induced apoptotic death of a macrophage cell line. One modeling technique, partial least-squares regression, yielded the following key insights: {a} signal combinations most strongly correlated to apoptotic death are orthogonal to those most strongly correlated with release of inflammatory cytokines; {b} the ratio of two key pathway activities is the most powerful predictor of microbe-induced macrophage apoptotic death; {c} the most influential time-window of this signaling activity ratio is surprisingly fast: less than one hour after microbe stimulation.

  20. Synthesis of marmycin A and investigation into its cellular activity

    NASA Astrophysics Data System (ADS)

    Cañeque, Tatiana; Gomes, Filipe; Mai, Trang Thi; Maestri, Giovanni; Malacria, Max; Rodriguez, Raphaël

    2015-09-01

    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.

  1. Embryo as an active granular fluid: stress-coordinated cellular constriction chains.

    PubMed

    Jason Gao, Guo-Jie; Holcomb, Michael C; Thomas, Jeffrey H; Blawzdziewicz, Jerzy

    2016-10-19

    Mechanical stress plays an intricate role in gene expression in individual cells and sculpting of developing tissues. However, systematic methods of studying how mechanical stress and feedback help to harmonize cellular activities within a tissue have yet to be developed. Motivated by our observation of the cellular constriction chains (CCCs) during the initial phase of ventral furrow formation in the Drosophila melanogaster embryo, we propose an active granular fluid (AGF) model that provides valuable insights into cellular coordination in the apical constriction process. In our model, cells are treated as circular particles connected by a predefined force network, and they undergo a random constriction process in which the particle constriction probability P is a function of the stress exerted on the particle by its neighbors. We find that when P favors tensile stress, constricted particles tend to form chain-like structures. In contrast, constricted particles tend to form compact clusters when P favors compression. A remarkable similarity of constricted-particle chains and CCCs observed in vivo provides indirect evidence that tensile-stress feedback coordinates the apical constriction activity. Our particle-based AGF model will be useful in analyzing mechanical feedback effects in a wide variety of morphogenesis and organogenesis phenomena. PMID:27545101

  2. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  3. Cellular scanning strategy for selective laser melting: Generating reliable, optimized scanning paths and processing parameters

    NASA Astrophysics Data System (ADS)

    Mohanty, Sankhya; Hattel, Jesper H.

    2015-03-01

    Selective laser melting is yet to become a standardized industrial manufacturing technique. The process continues to suffer from defects such as distortions, residual stresses, localized deformations and warpage caused primarily due to the localized heating, rapid cooling and high temperature gradients that occur during the process. While process monitoring and control of selective laser melting is an active area of research, establishing the reliability and robustness of the process still remains a challenge. In this paper, a methodology for generating reliable, optimized scanning paths and process parameters for selective laser melting of a standard sample is introduced. The processing of the sample is simulated by sequentially coupling a calibrated 3D pseudo-analytical thermal model with a 3D finite element mechanical model. The optimized processing parameters are subjected to a Monte Carlo method based uncertainty and reliability analysis. The reliability of the scanning paths are established using cumulative probability distribution functions for process output criteria such as sample density, thermal homogeneity, etc. A customized genetic algorithm is used along with the simulation model to generate optimized cellular scanning strategies and processing parameters, with an objective of reducing thermal asymmetries and mechanical deformations. The optimized scanning strategies are used for selective laser melting of the standard samples, and experimental and numerical results are compared.

  4. Mobile Phone Service Process Hiccups at Cellular Inc.

    ERIC Educational Resources Information Center

    Edgington, Theresa M.

    2010-01-01

    This teaching case documents an actual case of process execution and failure. The case is useful in MIS introductory courses seeking to demonstrate the interdependencies within a business process, and the concept of cascading failure at the process level. This case demonstrates benefits and potential problems with information technology systems,…

  5. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pathogenic fungi are becoming resistant to currently available drugs. Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. The aim of this study was to identify benzaldehydes that...

  6. Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process

    NASA Astrophysics Data System (ADS)

    Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi

    2009-11-01

    Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.

  7. Process maturity progress at Motorola Cellular Systems Division

    NASA Technical Reports Server (NTRS)

    Borgstahl, Ron; Criscione, Mark; Dobson, Kim; Willey, Allan

    1994-01-01

    We believe that the key success elements are related to our recognition that Software Process Improvement (SPI) can and should be organized, planned, managed, and measured as if it were a project to develop a new process, analogous to a software product. We believe that our process improvements have come as the result of these key elements: use of a rigorous, detailed requirements set (Capability Maturity Model, CMM); use of a robust, yet flexible architecture (IEEE 1074); use of a SPI project, resourced and managed like other work, to produce the specifications and implement them; and development of both internal and external goals, with metrics to support them.

  8. Spontaneous Motion in Hierarchically Assembled Active Cellular Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2013-03-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently far-from-equilibrium processes are an inspiration for the development of soft materials with highly sought after biomimetic properties such as autonomous motility and self-healing. I will describe our exploration of such a class of biologically inspired soft active materials. Starting from extensile bundles comprised of microtubules and kinesin, we hierarchically assemble active analogs of polymeric gels, liquid crystals and emulsions. At high enough concentration, microtubule bundles form an active gel network capable of generating internally driven chaotic flows that enhance transport and fluid mixing. When confined to emulsion droplets, these 3D networks buckle onto the water-oil interface forming a dense thin film of bundles exhibiting cascades of collective buckling, fracture, and self-healing driven by internally generated stresses from the kinesin clusters. When compressed against surfaces, this active nematic cortex exerts traction stresses that propel the locomotion of the droplet. Taken together, these observations exemplify how assemblies of animate microscopic objects exhibit collective biomimetic properties that are fundamentally distinct from those found in materials assembled from inanimate building blocks. These assemblies, in turn, enable the generation of a new class of materials that exhibit macroscale flow phenomena emerging from nanoscale components.

  9. Imaging large-scale cellular activity in spinal cord of freely behaving mice.

    PubMed

    Sekiguchi, Kohei J; Shekhtmeyster, Pavel; Merten, Katharina; Arena, Alexander; Cook, Daniela; Hoffman, Elizabeth; Ngo, Alexander; Nimmerjahn, Axel

    2016-01-01

    Sensory information from mechanoreceptors and nociceptors in the skin plays key roles in adaptive and protective motor behaviours. To date, very little is known about how this information is encoded by spinal cord cell types and their activity patterns, particularly under freely behaving conditions. To enable stable measurement of neuronal and glial cell activity in behaving mice, we have developed fluorescence imaging approaches based on two- and miniaturized one-photon microscopy. We show that distinct cutaneous stimuli activate overlapping ensembles of dorsal horn neurons, and that stimulus type and intensity is encoded at the single-cell level. In contrast, astrocytes show large-scale coordinated calcium responses to intense but not weak sensory inputs. Sensory-evoked activity is potently suppressed by anaesthesia. By revealing the cellular and computational logic of spinal cord networks under behaving conditions, our approach holds promise for better understanding of healthy and aberrant spinal cord processes. PMID:27121084

  10. Imaging large-scale cellular activity in spinal cord of freely behaving mice

    PubMed Central

    Sekiguchi, Kohei J.; Shekhtmeyster, Pavel; Merten, Katharina; Arena, Alexander; Cook, Daniela; Hoffman, Elizabeth; Ngo, Alexander; Nimmerjahn, Axel

    2016-01-01

    Sensory information from mechanoreceptors and nociceptors in the skin plays key roles in adaptive and protective motor behaviours. To date, very little is known about how this information is encoded by spinal cord cell types and their activity patterns, particularly under freely behaving conditions. To enable stable measurement of neuronal and glial cell activity in behaving mice, we have developed fluorescence imaging approaches based on two- and miniaturized one-photon microscopy. We show that distinct cutaneous stimuli activate overlapping ensembles of dorsal horn neurons, and that stimulus type and intensity is encoded at the single-cell level. In contrast, astrocytes show large-scale coordinated calcium responses to intense but not weak sensory inputs. Sensory-evoked activity is potently suppressed by anaesthesia. By revealing the cellular and computational logic of spinal cord networks under behaving conditions, our approach holds promise for better understanding of healthy and aberrant spinal cord processes. PMID:27121084

  11. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation.

    PubMed

    Helfer, Christine M; Yan, Junpeng; You, Jianxin

    2014-08-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription activation, is important for E2's transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP) analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2's interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+), a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV) life cycle. PMID:25140737

  12. Studying cellular processes and detecting disease with protein microarrays

    SciTech Connect

    Zangar, Richard C.; Varnum, Susan M.; Bollinger, Nikki

    2005-10-31

    Protein microarrays are a rapidly developing analytic tool with diverse applications in biomedical research. These applications include profiling of disease markers or autoimmune responses, understanding molecular pathways, protein modifications and protein activities. One factor that is driving this expanding usage is the wide variety of experimental formats that protein microarrays can take. In this review, we provide a short, conceptual overview of the different approaches for protein microarray. We then examine some of the most significant applications of these microarrays to date, with an emphasis on how global protein analyses can be used to facilitate biomedical research.

  13. Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories.

    PubMed

    Rogerson, Thomas; Jayaprakash, Balaji; Cai, Denise J; Sano, Yoshitake; Lee, Yong-Seok; Zhou, Yu; Bekal, Pallavi; Deisseroth, Karl; Silva, Alcino J

    2016-01-01

    Recent findings suggest that memory allocation to specific neurons (i.e., neuronal allocation) in the amygdala is not random, but rather the transcription factor cAMP-response element binding protein (CREB) modulates this process, perhaps by regulating the transcription of channels that control neuronal excitability. Here, optogenetic studies in the mouse lateral amygdala (LA) were used to demonstrate that CREB and neuronal excitability regulate which neurons encode an emotional memory. To test the role of CREB in memory allocation, we overexpressed CREB in the lateral amygdala to recruit the encoding of an auditory-fear conditioning (AFC) memory to a subset of neurons. Then, post-training activation of these neurons with Channelrhodopsin-2 was sufficient to trigger recall of the memory for AFC, suggesting that CREB regulates memory allocation. To test the role of neuronal excitability in memory allocation, we used a step function opsin (SFO) to transiently increase neuronal excitability in a subset of LA neurons during AFC. Post-training activation of these neurons with Volvox Channelrhodopsin-1 was able to trigger recall of that memory. Importantly, our studies show that activation of the SFO did not affect AFC by either increasing anxiety or by strengthening the unconditioned stimulus. Our findings strongly support the hypothesis that CREB regulates memory allocation by modulating neuronal excitability. PMID:27579481

  14. Cellular Localization of Dieldrin and Structure–Activity Relationship of Dieldrin Analogues in Dopaminergic Cells

    PubMed Central

    Allen, Erin M. G.; Florang, Virginia R.; Davenport, Laurie L.; Jinsmaa, Yunden; Doorn, Jonathan A.

    2015-01-01

    The incidence of Parkinson’s disease (PD) correlates with environmental exposure to pesticides, such as the organochlorine insecticide, dieldrin. Previous studies found an increased concentration of the pesticide in the striatal region of the brains of PD patients and also that dieldrin adversely affects cellular processes associated with PD. These processes include mitochondrial function and reactive oxygen species production. However, the mechanism and specific cellular targets responsible for dieldrin-mediated cellular dysfunction and the structural components of dieldrin contributing to its toxicity (toxicophore) have not been fully defined. In order to identify the toxicophore of dieldrin, a structure–activity approach was used, with the toxicity profiles of numerous analogues of dieldrin (including aldrin, endrin, and cis-aldrin diol) assessed in PC6-3 cells. The MTT and lactate dehydrogenase (LDH) assays were used to monitor cell viability and membrane permeability after treatment with each compound. Cellular assays monitoring ROS production and extracellular dopamine metabolite levels were also used. Structure and stereochemistry for dieldrin were found to be very important for toxicity and other end points measured. Small changes in structure for dieldrin (e.g., comparison to the stereoisomer endrin) yielded significant differences in toxicity. Interestingly, the cis-diol metabolite of dieldrin was found to be significantly more toxic than the parent compound. Disruption of dopamine catabolism yielded elevated levels of the neurotoxin, 3,4-dihydroxyphenylacetaldehyde, for many organochlorines. Comparisons of the toxicity profiles for each dieldrin analogue indicated a structure-specific effect important for elucidating the mechanisms of dieldrin neurotoxicity. PMID:23763672

  15. γ-Glutamyl Transpeptidase in Transgenic Tobacco Plants. Cellular Localization, Processing, and Biochemical Properties1

    PubMed Central

    Storozhenko, Sergei; Belles-Boix, Enric; Babiychuk, Elena; Hérouart, Didier; Davey, Mark W.; Slooten, Luit; Van Montagu, Marc; Inzé, Dirk; Kushnir, Sergei

    2002-01-01

    γ-Glutamyl transpeptidase (γ-GT) is a ubiquitous enzyme that catalyzes the first step of glutathione (GSH) degradation in the γ-glutamyl cycle in mammals. A cDNA encoding an Arabidopsis homolog for γ-GT was overexpressed in tobacco (Nicotiana tabacum) plants. A high level of the membrane-bound γ-GT activity was localized outside the cell in transgenic plants. The overproduced enzyme was characterized by a high affinity to GSH and was cleaved post-translationally in two unequal subunits. Thus, Arabidopsis γ-GT is similar to the mammalian enzymes in enzymatic properties, post-translational processing, and cellular localization, suggesting analogous biological functions as a key enzyme in the catabolism of GSH. PMID:11891265

  16. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  17. Reduction in Fecundity and Shifts in Cellular Processes by a Native Virus on an Invasive Insect

    PubMed Central

    Cassone, Bryan J.; Michel, Andrew P.; Stewart, Lucy R.; Bansal, Raman; Mian, M.A. Rouf; Redinbaugh, Margaret G.

    2014-01-01

    Pathogens and their vectors have coevolutionary histories that are intricately intertwined with their ecologies, environments, and genetic interactions. The soybean aphid, Aphis glycines, is native to East Asia but has quickly become one of the most important aphid pests in soybean-growing regions of North America. In this study, we used bioassays to examine the effects of feeding on soybean infected with a virus it vectors (Soybean mosaic virus [SMV]) and a virus it does not vector (Bean pod mottle virus [BPMV]) have on A. glycines survival and fecundity. The genetic underpinnings of the observed changes in fitness phenotype were explored using RNA-Seq. Aphids fed on SMV-infected soybean had transcriptome and fitness profiles that were similar to that of aphids fed on healthy control plants. Strikingly, a significant reduction in fecundity was seen in aphids fed on BPMV-infected soybean, concurrent with a large and persistent downregulation of A. glycines transcripts involved in regular cellular activities. Although molecular signatures suggested a small regulatory RNA pathway defense response was repressed in aphids feeding on infected plants, BPMV did not appear to be replicating in the vector. These results suggest that incompatibilities with BPMV or the effects of BPMV infection on soybean caused A. glycines to allot available energy resources to survival rather than reproduction and other core cellular processes. Ultimately, the detrimental impacts to A. glycines may reflect the short tritrophic evolutionary histories between the insect, plant, and virus. PMID:24682151

  18. Cellular activity of bioactive nanograined/ultrafine-grained materials.

    PubMed

    Misra, R D K; Thein-Han, W W; Mali, S A; Somani, M C; Karjalainen, L P

    2010-07-01

    Our recent electron microscopy study on biomimetic nanostructured coatings on nanograined/ultrafine-grained (NG/UFG) substrates [Mater Sci Eng C 2009;29:2417-27] indicated that electrocrystallized nanohydroxyapatite (nHA) on phase-reversion-induced NG/UFG substrates exhibited a vein-type interconnected and fibrillar structure that closely mimicked the hierarchical structure of bone. The fibrillar structure on NG/UFG substrate is expected to be more favorable for cellular response than a planar surface. In contrast, hydroxyapatite (HA) coating on coarse-grained (CG) substrate more closely resembled a film rather than a fibrillar structure. Inspired by the differences in the structure of HA coating, we describe here the cell-substrate interactions of pre-osteoblasts (MC 3T3-E1) on bioactive NG/UFG and CG austenitic stainless steel substrates. NG/UFG austenitic stainless steel was obtained by a novel controlled phase-reversion annealing of cold-deformed austenite. This example provides an illustration of how a combination of cellular and molecular biology, materials science and engineering can advance our understanding of cell-substrate interactions. Interestingly, the cellular response of nanohydroxyapatite (nHA)-coated NG/UFG substrate demonstrated superior cytocompatibility, improved initial cell attachment, higher viability and proliferation, and well-spread morphology in relation to HA-coated CG substrate and their respective uncoated (bare) counterparts as implied by fluorescence and electron microscopy and MTT assay. Similar conclusions were derived from an immunofluorescence study that involved examination of the expression levels of vinculin focal adhesion contacts associated with dense actin stress fibers and fibronectin, protein analysis through protein bands in SDS-PAGE, and quantitative total protein assay. The enhancement of cellular response followed the sequence: nHA-coated NG/UFG>nHA-coated CG>NG/UFG>CG substrates. The outcomes of the study are

  19. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  20. Vascular Ageing and Exercise: Focus on Cellular Reparative Processes

    PubMed Central

    Ross, Mark D.; Malone, Eva; Florida-James, Geraint

    2016-01-01

    Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process. PMID:26697131

  1. p21-Activated Kinase 1 Plays a Critical Role in Cellular Activation by Nef

    PubMed Central

    Fackler, Oliver T.; Lu, Xiaobin; Frost, Jeffrey A.; Geyer, Matthias; Jiang, Bing; Luo, Wen; Abo, Arie; Alberts, Arthur S.; Peterlin, B. Matija

    2000-01-01

    The activation of Nef-associated kinase (NAK) by Nef from human and simian immunodeficiency viruses is critical for efficient viral replication and pathogenesis. This induction occurs via the guanine nucleotide exchange factor Vav and the small GTPases Rac1 and Cdc42. In this study, we identified NAK as p21-activated kinase 1 (PAK1). PAK1 bound to Nef in vitro and in vivo. Moreover, the induction of cytoskeletal rearrangements such as the formation of trichopodia, the activation of Jun N-terminal kinase, and the increase of viral production were blocked by an inhibitory peptide that targets the kinase activity of PAK1 (PAK1 83-149). These results identify NAK as PAK1 and emphasize the central role its kinase activity plays in cytoskeletal rearrangements and cellular signaling by Nef. PMID:10713183

  2. Cellular activation in limbic brain systems during social play behaviour in rats

    PubMed Central

    van Kerkhof, Linda W.M.; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J.M.J.

    2013-01-01

    Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-fos as a marker. After a session of social play behaviour, pronounced increases in c-fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organised in this network, as indicated by play-specific correlations in c-fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organised neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats. PMID:23670540

  3. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities.

    PubMed

    Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru

    2013-08-01

    Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. PMID:23746784

  4. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    PubMed Central

    2011-01-01

    Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective

  5. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    PubMed

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  6. Pomegranate Extracts and Cancer Prevention: Molecular and Cellular Activities

    PubMed Central

    Syed, Deeba N.; Chamcheu, Jean-Christopher; Adhami, Vaqar M.; Mukhtar, Hasan

    2014-01-01

    There is increased appreciation by the scientific community that dietary phytochemicals can be potential weapons in the fight against cancer. Emerging data has provided new insights into the molecular and cellular framework needed to establish novel mechanism-based strategies for cancer prevention by selective bioactive food components. The unique chemical composition of the pomegranate fruit, rich in antioxidant tannins and flavonoids has drawn the attention of many investigators. Polyphenol rich fractions derived from the pomegranate fruit have been studied for their potential chemopreventive and/or cancer therapeutic effects in several animal models. Although data from in vitro and in vivo studies look convincing, well designed clinical trials in humans are needed to ascertain whether pomegranate can become part of our armamentarium against cancer. This review summarizes the available literature on the effects of pomegranate against various cancers. PMID:23094914

  7. Cellular and circuit models of increased resting-state network gamma activity in schizophrenia.

    PubMed

    White, R S; Siegel, S J

    2016-05-01

    Schizophrenia (SCZ) is a disorder characterized by positive symptoms (hallucinations, delusions), negative symptoms (blunted affect, alogia, reduced sociability, and anhedonia), as well as persistent cognitive deficits (memory, concentration, and learning). While the biology underlying subjective experiences is difficult to study, abnormalities in electroencephalographic (EEG) measures offer a means to dissect potential circuit and cellular changes in brain function. EEG is indispensable for studying cerebral information processing due to the introduction of techniques for the decomposition of event-related activity into its frequency components. Specifically, brain activity in the gamma frequency range (30-80Hz) is thought to underlie cognitive function and may be used as an endophenotype to aid in diagnosis and treatment of SCZ. In this review we address evidence indicating that there is increased resting-state gamma power in SCZ. We address how modeling this aspect of the illness in animals may help treatment development as well as providing insights into the etiology of SCZ. PMID:26577758

  8. ENHANCING FUNGICIDAL ACTIVITY OF FLUDIOXONIL BY DISRUPTING CELLULAR GLUTATHIONE HOMEOSTASIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungicidal activity of fludioxonil, a phenylpyrrole fungicide, is elevated by co-application with the aspirin/salicylic acid metabolite, 2,5-dihydroxybenzoic acid (2,5-DHBA). Fludioxonil fungicidal activity is potentiated through the mitogen-activated protein kinase (MAPK) pathway regulating osmotic...

  9. Technology Learning Activities: Columbus Sailed the Ocean Blue, the Cellular Connection, Emergency Shelter.

    ERIC Educational Resources Information Center

    Etchison, Cindy; Deal, Walter F., III

    1992-01-01

    Presents learning activities such as planning and building a sailboat, manufacturing cellular phone cases, and designing and building emergency shelters. Includes the context, the challenge, resources used, objectives, materials needed, and an evaluation. (JOW)

  10. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling.

    PubMed

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-25

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol. PMID:27545348

  11. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.

    PubMed

    Hatahet, T; Morille, M; Hommoss, A; Dorandeu, C; Müller, R H; Bégu, S

    2016-05-01

    Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quercetin nanocrystals were produced implementing smartCrystals® technology. This process combines bead milling and subsequent high-pressure homogenization at relatively low pressure (300bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. The physicochemical properties (morphology, size and charge), saturation solubility, dissolution velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quercetin smartCrystals® were studied and compared to crude quercetin powder. Quercetin smartCrystals® showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high concentration (50μg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-tolerated formulations. PMID:26948977

  12. Cellular growth defects triggered by an overload of protein localization processes

    PubMed Central

    Kintaka, Reiko; Makanae, Koji; Moriya, Hisao

    2016-01-01

    High-level expression of a protein localized to an intracellular compartment is expected to cause cellular defects because it overloads localization processes. However, overloads of localization processes have never been studied systematically. Here, we show that the expression levels of green fluorescent proteins (GFPs) with localization signals were limited to the same degree as a toxic misfolded GFP in budding yeast cells, and that their high-level expression caused cellular defects associated with localization processes. We further show that limitation of the exportin Crm1 determined the expression limit of GFP with a nuclear export signal. Although misfolding of GFP with a vesicle-mediated transport signal triggered endoplasmic reticulum stress, it was not the primary determinant of its expression limit. The precursor of GFP with a mitochondrial targeting signal caused a cellular defect. Finally, we estimated the residual capacities of localization processes. High-level expression of a localized protein thus causes cellular defects by overloading the capacities of localization processes. PMID:27538565

  13. Cellular growth defects triggered by an overload of protein localization processes.

    PubMed

    Kintaka, Reiko; Makanae, Koji; Moriya, Hisao

    2016-01-01

    High-level expression of a protein localized to an intracellular compartment is expected to cause cellular defects because it overloads localization processes. However, overloads of localization processes have never been studied systematically. Here, we show that the expression levels of green fluorescent proteins (GFPs) with localization signals were limited to the same degree as a toxic misfolded GFP in budding yeast cells, and that their high-level expression caused cellular defects associated with localization processes. We further show that limitation of the exportin Crm1 determined the expression limit of GFP with a nuclear export signal. Although misfolding of GFP with a vesicle-mediated transport signal triggered endoplasmic reticulum stress, it was not the primary determinant of its expression limit. The precursor of GFP with a mitochondrial targeting signal caused a cellular defect. Finally, we estimated the residual capacities of localization processes. High-level expression of a localized protein thus causes cellular defects by overloading the capacities of localization processes. PMID:27538565

  14. Phosphorylation Hypothesis: A Fourth Sink of ATP for Cellular Information Processing?

    NASA Astrophysics Data System (ADS)

    Qian, Hong

    2015-03-01

    Adenosine triphosphate (ATP) molecule is used in living cells as a universal ``energy currency.'' The Gibbs free energy liberated from hydrolysis reaction of ATP to ADP + Pi is used for (a) biosynthesis, (b) ionic and neutral molecular pumping, and (c) mechanical movement. They are known collectively as the three major energy sinks at the cellular level. Using biochemical activities of various enzymes, a cell carries out information processing, known as signal transduction. Essentially all signal transduction reactions also require ATP (or GTP) hydrolysis. In the past, such energy dissipative reactions are considered as ``futile.'' However, it is clear that the free energy derived from a futile cycle is used to correct errors in biomolecular recognition, improve robustness in cell development, overcome Boltzmann's equilibrium law of probability, and drive Maxwell's demons (one notes that Gibbs' chemical potential is a thermodynamic force without mechanical interpretation). The free energy involved in processing information will be explained in terms of stochastic entropy production -- the central concept in irreversible and nonequilibrium steady-state (NESS) thermodynamics.

  15. Melt-processed polymeric cellular dosage forms for immediate drug release.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2015-12-28

    The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step. PMID:26519856

  16. Using Primary Literature in an Undergraduate Assignment: Demonstrating Connections among Cellular Processes

    ERIC Educational Resources Information Center

    Yeong, Foong May

    2015-01-01

    Learning basic cell biology in an essential module can be daunting to second-year undergraduates, given the depth of information that is provided in major molecular and cell biology textbooks. Moreover, lectures on cellular pathways are organised into sections, such that at the end of lectures, students might not see how various processes are…

  17. Cellular Links between Neuronal Activity and Energy Homeostasis

    PubMed Central

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply. PMID:22470340

  18. Evaluation of Cellular Antioxidant and Antiproliferative Activities of Five Main Phyllanthus Emblica L. Cultivars in China

    PubMed Central

    Li, Y.; Sun, H. Y.; Yu, X. Y.; Liu, D.; Wan, H. X.

    2015-01-01

    The cell-based antioxidant activity assay as more biological relevant assay was considered to be more accurate to predict antioxidant activity in vivo than chemical activity assays. In the present study, the five main Phyllanthus emblica L. cultivars in China were subjected for cellular antioxidant activity based on HepG2 cells as well as antiproliferative activity. Total phenolics, total flavonoids and oxygen radical absorbance capacity were also measured. The results showed that Qingyougan, Binggan and Boligan (832±100, 774±52 and 704±28 μmol of quercetin equivalents/100 g) had higher cellular antioxidant activity than Tianyougan and Yougan (553±50 and 457±24 μmol of quercetin equivalents/100 g) in phosphate buffered saline wash protocol whereas, Boligan (3735±217 μmol of quercetin equivalents/100 g) had the highest cellular antioxidant activity and Tianyougan (2025±171 μmol of quercetin equivalents/100 g) had the lowest cellular antioxidant activity in no phosphate buffered saline wash protocol. The highest and lowest antiproliferative activities were observed in Binggan and Tianyougan (median effective dose: 6.95±0.11 and 14.03±0.10 mg/ml), respectively. The significant correlation was only observed between total flavonoids and cellular antioxidant activity from no phosphate buffered saline wash protocol (R2 =0.908, P<0.05), and total flavonoids and antiproliferative activity (R2 =0.887, P<0.05), suggesting the major contribution of flavonoids to the bioactivities of emblica. Overall, the data obtained revealed that different Phyllanthus emblica L. cultivars had strong cellular antioxidant and antiproliferative activities, thus should be recommended to increase consumption for health. PMID:26180272

  19. A Fluorescent Reporter of AMPK activity and Cellular Energy Stress

    PubMed Central

    Tsou, Peiling; Zheng, Bin; Hsu, Chia-Hsien; Sasaki, Atsuo T; Cantley, Lewis C.

    2011-01-01

    SUMMARY AMP-activated protein kinase (AMPK) is activated when the AMP/ATP ratio in cells is elevated due to energy stress. Here we describe a biosensor, AMPKAR, which exhibits enhanced fluorescence resonance energy transfer (FRET) in response to phosphorylation by AMPK, allowing spatio-temporal monitoring of AMPK activity in single cells. We show that this reporter responds to a variety of stimuli that are known to induce energy stress and that the response is dependent on AMPK α1 & α2 and on the upstream kinase, LKB1. Interestingly we found that AMPK activation is confined to the cytosol in response to energy stress but can be observed in both the cytosol and nucleus in response to calcium elevation. Finally, using this probe with U2OS cells in a microfluidics device, we observed a very high cell-to-cell variability in the amplitude and time course of AMPK activation and recovery in response to pulses of glucose deprivation. PMID:21459332

  20. GIT1 Phosphorylation on Serine 46 by PKD3 Regulates Paxillin Trafficking and Cellular Protrusive Activity*

    PubMed Central

    Huck, Bettina; Kemkemer, Ralf; Franz-Wachtel, Mirita; Macek, Boris; Hausser, Angelika; Olayioye, Monilola A.

    2012-01-01

    The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated. PMID:22893698

  1. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. PMID:26652403

  2. Characterization of a Trypanosoma cruzi acetyltransferase: cellular location, activity and structure.

    PubMed

    Ochaya, Stephen; Respuela, Patricia; Simonsson, Maria; Saraswathi, Abhiman; Branche, Carole; Lee, Jennifer; Búa, Jacqueline; Nilsson, Daniel; Aslund, Lena; Bontempi, Esteban J; Andersson, Björn

    2007-04-01

    Trypanosomatids are widespread parasites that cause three major tropical diseases. In trypanosomatids, as in most other organisms, acetylation is a common protein modification that is important in multiple, diverse processes. This paper describes a new member of the Trypanosoma cruzi acetyltransferase family. The gene is single copy and orthologs are also present in the other two sequenced trypanosomatids, Trypanosoma brucei and Leishmania major. This protein (TcAT-1) has the essential motifs present in members of the GCN5-related acetyltransferase (GNAT) family, as well as an additional motif also found in some enzymes from plant and animal species. The protein is evolutionarily more closely related to this group of enzymes than to histone acetyltransferases. The native protein has a cytosolic cellular location and is present in all three life-cycle stages of the parasite. The recombinant protein was shown to have autoacetylation enzymatic activity. PMID:17270289

  3. Prebiotic activation processes.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Orgel, L. E.

    1973-01-01

    Questions regarding the combination of amino acids and ribonucleotides to polypeptides and polynucleotides are investigated. Each of the reactions considered occurs in the solid state in plausible prebiotic conditions. Together they provide the basis for a unified scheme of amino acid and nucleotide activation. Urea, imidazole and Mg(++) are essential catalytic components of the reaction mixtures. However, these compounds could probably be replaced by other organic molecules.

  4. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  5. Global analysis of bacterial transcription factors to predict cellular target processes.

    PubMed

    Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer

    2004-03-01

    Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs. PMID:15049306

  6. Processing and modeling of cellular solids for light-weight structures

    SciTech Connect

    Nieh, T.G.

    1997-12-01

    Cellular solids (also known as porous solids) comprise a special class of materials. Such materials are common in nature; wood, cork, sponge and coral are examples. Recently man has also made his own cellular solids. For example, many honeycomb-like materials, made up of parallel, prismatic cells, are used for lightweight aerospace structural components. Polymeric foams have been used in everything from disposable coffee cups, packaging materials, to the crash padding of an aircraft cockpit. Advanced techniques now exist for foaming not only polymers, but metals and ceramics as well. These newer foams are increasingly used for catalysts (chemical), preforms for metal-matrix composites, thermal insulators and thermal shock resistant materials (thermal), acoustic dampers (acoustic), cushions, vibration reducers, and systems for absorbing the kinetic energy from impacts (mechanical). Their uses exploit the special combination of properties offered by cellular solids, properties which, ultimately, derive from their cellular structure. The objective of this proposed research is to develop processing techniques to produce metallic foams with controlled cellular structures and to understand and model the mechanical behavior of this special class of materials.

  7. RRM2 induces NF-{kappa}B-dependent MMP-9 activation and enhances cellular invasiveness

    SciTech Connect

    Duxbury, Mark S.; Whang, Edward E. . E-mail: ewhang1@partners.org

    2007-03-02

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-{kappa}B (NF-{kappa}B) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-{kappa}B-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-{kappa}B activity. NF-{kappa}B is a key mediator of the invasive phenotypic changes induced by RRM2 overexpression.

  8. Extrasynaptic Glutamate Receptor Activation as Cellular Bases for Dynamic Range Compression in Pyramidal Neurons

    PubMed Central

    Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.

    2012-01-01

    Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP

  9. Pharmacological Investigations of the Cellular Transduction Pathways Used by Cholecystokinin to Activate Nodose Neurons

    PubMed Central

    Zhao, Huan; Kinch, Dallas C.; Simasko, Steven M.

    2011-01-01

    Cholecystokinin (CCK) directly activates vagal afferent neurons resulting in coordinated gastrointestinal functions and satiation. In vitro, the effects of CCK on dissociated vagal afferent neurons are mediated via activation of the vanilloid family of transient receptor potential (TRPV) cation channels leading to membrane depolarization and an increase in cytosolic calcium. However, the cellular transduction pathway(s) involved in this process between CCK receptors and channel opening have not been identified. To address this question, we monitored CCK-induced cytosolic calcium responses in dissociated nodose neurons from rat in the presence or absence of reagents that interact with various intracellular signaling pathways. We found that the phospholipase C (PLC) inhibitor U-73122 significantly attenuated CCK-induced responses, whereas the inactive analog U-73433 had no effect. Responses to CCK were also cross-desensitized by a brief pretreatment with m-3M3FBS, a PLC stimulator. Together these observations strongly support the participation of PLC in the effects of CCK on vagal afferent neurons. In contrast, pharmacological antagonism of phospholipase A2, protein kinase A, and phosphatidylinositol 3-kinase revealed that they are not critical in the CCK-induced calcium response in nodose neurons. Further investigations of the cellular pathways downstream of PLC showed that neither protein kinase C (PKC) nor generation of diacylglycerol (DAG) or release of calcium from intracellular stores participates in the response to CCK. These results suggest that alteration of membrane phosphatidylinositol 4,5-bisphosphate (PIP2) content by PLC activity mediates CCK-induced calcium response and that this pathway may underlie the vagally-mediated actions of CCK to induce satiation and alter gastrointestinal functions. PMID:21664195

  10. A new cellular nonlinear network emulation on FPGA for EEG signal processing in epilepsy

    NASA Astrophysics Data System (ADS)

    Müller, Jens; Müller, Jan; Tetzlaff, Ronald

    2011-05-01

    For processing of EEG signals, we propose a new architecture for the hardware emulation of discrete-time Cellular Nonlinear Networks (DT-CNN). Our results show the importance of a high computational accuracy in EEG signal prediction that cannot be achieved with existing analogue VLSI circuits. The refined architecture of the processing elements and its resource schedule, the cellular network structure with local couplings, the FPGA-based embedded system containing the DT-CNN, and the data flow in the entire system will be discussed in detail. The proposed DT-CNN design has been implemented and tested on an Xilinx FPGA development platform. The embedded co-processor with a multi-threading kernel is utilised for control and pre-processing tasks and data exchange to the host via Ethernet. The performance of the implemented DT-CNN has been determined for a popular example and compared to that of a conventional computer.

  11. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  12. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  13. Point process models for localization and interdependence of punctate cellular structures.

    PubMed

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures.

  14. Expression of transferrin receptors on mitogen-stimulated human peripheral blood lymphocytes: relation to cellular activation and related metabolic events.

    PubMed Central

    Galbraith, R M; Galbraith, G M

    1981-01-01

    Mitogen-activated normal human peripheral blood lymphocytes bind transferrin to specific membrane receptors. In this study, lymphocytes stimulated with phytohaemagglutinin for 0-66 hr were examined to determine the relation of this phenomenon to cellular activation and related metabolic events. Transferrin receptors were first detected at 20-24 hr. This event was consistently preceded by RNA and protein turnover which commenced during the first 6 hr of culture, whereas initiation of DNA synthesis was detected concurrently with the appearance of receptors or slightly later (24-30 hr). Exposure of cells to inhibitors of RNA and protein synthesis early during culture (at 0 or 24 hr) prevented the expression of transferrin receptors, but also caused generalized metabolic failure, and abrogated cellular activation. In contrast, later addition of these agents at 48 hr did not interfere significantly with the process of activation, but did suppress the terminal increase in receptor-bearing cells observed during the final 18 hr in control cultures lacking inhibitor. After deliberate thermal stripping of receptors from activated cells, the reappearance of membrance binding sites which normally occurred within 30 min, was also blocked by cycloheximide, puromycin and actinomycin D. However, similar inhibition of DNA which was induced by hydroxyurea had much less effect upon both the initial appearance of receptors and their reappearance after ligand-induced depletion. These results demonstrate that the appearance of transferrin receptors upon human lymphocytes is dependent upon cellular activation and requires synthesis of protein and RNA. PMID:6172372

  15. Cellular uptake and anticancer activity of carboxylated gallium corroles.

    PubMed

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit

    2016-04-19

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  16. Quantifying colocalization of a conditionally active transcription factor FOXP3 in three-dimensional cellular space

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Allan, Sarah E.; Levings, Megan K.

    2009-02-01

    Biological macromolecular interactions between proteins, transcription factors, DNA and other types of biomolecules, are fundamentally important to several cellular and biological processes. 3D Multi-channel confocal microscopy and colocalization analysis of fluorescent signals have proven to be invaluable tools for detecting such molecular interactions. The aim of this work was to quantify colocalization of the FOXP3 transcription factor in 3D cellular space generated from the confocal 3D image sets. 293T cells transfected with a conditionally active form of FOXP3 were stained for nuclei with Hoechst, for FOXP3 with anti-FOXP3 conjugated to PE, and 4-hydroxytamoxifen used as protein translocation and activation agent. Since the protein signal was weak and nonspecific intensity contributions were strong, it was difficult to perform colocalization analysis and estimate colocalization quantities. We performed 3D restoration by deconvolution method on the confocal images using experimentally measured point spread functions (PSFs) and subsequently a color shift correction. The deconvolution method eliminated nonspecific intensity contributions originating from PSF imposed by optical microscopy diffraction resolution limits and noise since these factors significantly affected colocalization analysis and quantification. Visual inspection of the deconvolved 3D image suggested that the FOXP3 molecules are predominantly colocalized within the nuclei although the fluorescent signals from FOXP3 molecules were also present in the cytoplasm. A close inspection of the scatter plot (colocalization map) and correlation quantities such as the Pearsons and colocalization coefficients showed that the fluorescent signals from the FOXP3 molecules and DNA are strongly correlated. In conclusion, our colocalization quantification approach confirms the preferential association of the FOXP3 molecules with the DNA despite the presence of fluorescent signals from the former one both in the

  17. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes.

    PubMed

    Shamseddine, Achraf A; Airola, Michael V; Hannun, Yusuf A

    2015-01-01

    Our understanding of the functions of ceramide signaling has advanced tremendously over the past decade. In this review, we focus on the roles and regulation of neutral sphingomyelinase 2 (nSMase2), an enzyme that generates the bioactive lipid ceramide through the hydrolysis of the membrane lipid sphingomyelin. A large body of work has now implicated nSMase2 in a diverse set of cellular functions, physiological processes, and disease pathologies. We discuss different aspects of this enzyme's regulation from transcriptional, post-translational, and biochemical. Furthermore, we highlight nSMase2 involvement in cellular processes including inflammatory signaling, exosome generation, cell growth, and apoptosis, which in turn play important roles in pathologies such as cancer metastasis, Alzheimer's disease, and other organ systems disorders. Lastly, we examine avenues where targeted nSMase2-inhibition may be clinically beneficial in disease scenarios. PMID:25465297

  18. Roles and regulation of Neutral Sphingomyelinase-2 in cellular and pathological processes

    PubMed Central

    Shamseddine, Achraf A.; Airola, Michael V.; Hannun, Yusuf A.

    2015-01-01

    Our understanding of the functions of ceramide signaling has advanced tremendously over the past decade. In this review, we focus on the roles and regulation of neutral sphingomyelinase 2 (nSMase2), an enzyme that generates the bioactive lipid ceramide through the hydrolysis of the membrane lipid sphingomyelin. A large body of work has now implicated nSMase2 in a diverse set of cellular functions, physiological processes, and disease pathologies. We discuss different aspects of this enzyme’s regulation from transcriptional, post-translational, and biochemical. Furthermore, we highlight nSMase2 involvement in cellular processes including inflammatory signaling, exosome generation, cell growth, and apoptosis, which in turn play important roles in pathologies such as cancer metastasis, Alzheimer’s disease, and other organ systems disorders. Lastly, we examine avenues where targeted nSMase2-inhibition may be clinically beneficial in disease scenarios. PMID:25465297

  19. The Sarcomeric M-Region: A Molecular Command Center for Diverse Cellular Processes

    PubMed Central

    Hu, Li-Yen R.; Ackermann, Maegen A.; Kontrogianni-Konstantopoulos, Aikaterini

    2015-01-01

    The sarcomeric M-region anchors thick filaments and withstands the mechanical stress of contractions by deformation, thus enabling distribution of physiological forces along the length of thick filaments. While the role of the M-region in supporting myofibrillar structure and contractility is well established, its role in mediating additional cellular processes has only recently started to emerge. As such, M-region is the hub of key protein players contributing to cytoskeletal remodeling, signal transduction, mechanosensing, metabolism, and proteasomal degradation. Mutations in genes encoding M-region related proteins lead to development of severe and lethal cardiac and skeletal myopathies affecting mankind. Herein, we describe the main cellular processes taking place at the M-region, other than thick filament assembly, and discuss human myopathies associated with mutant or truncated M-region proteins. PMID:25961035

  20. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  1. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Kim, Hyun-Seok; Jiang, Haiyan; Coleman, Mitchell C; Spitz, Douglas R; Gius, David

    2011-02-01

    A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise. PMID:21386137

  2. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  3. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    PubMed Central

    Spiers, Jereme G.; Chen, Hsiao-Jou Cortina; Sernia, Conrad; Lavidis, Nickolas A.

    2015-01-01

    Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis induce activity in the cellular reduction-oxidation (redox) system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure. PMID:25646076

  4. Cellular Antisense Activity of PNA-Oligo(bicycloguanidinium) Conjugates Forming Self-Assembled Nanoaggregates.

    PubMed

    Valero, Julián; Shiraishi, Takehiko; de Mendoza, Javier; Nielsen, Peter E

    2015-07-27

    A series of peptide nucleic acid-oligo(bicycloguanidinium) (PNA-BGn ) conjugates were synthesized and characterized in terms of cellular antisense activity by using the pLuc750HeLa cell splice correction assay. PNA-BG4 conjugates exhibited low micromolar antisense activity, and their cellular activity required the presence of a hydrophobic silyl terminal protecting group on the oligo(BG) ligand and a minimum of four guanidinium units. Surprisingly, a nonlinear dose-response with an activity threshold around 3-4 μM, indicative of large cooperativity, was observed. Supported by light scattering and electron microscopy analyses, we propose that the activity, and thus cellular delivery, of these lipo-PNA-BG4 conjugates is dependent on self-assembled nanoaggregates. Finally, cellular activity was enhanced by the presence of serum. Therefore we conclude that the lipo-BG-PNA conjugates exhibit an unexpected mechanism for cell delivery and are of interest for further in vivo studies. PMID:26010253

  5. Label free detection of optogenetically stimulated cellular activity by low coherence interferometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Satpathy, Sarmishtha; Batabyal, Subrata; Dave, Digant P.; Mohanty, Samarendra K.

    2016-03-01

    Detecting cellular activity in sub-millisecond timescale and micrometer resolution without using invasive means has been a long standing goal in the study of cellular networks. Here, we have employed phase sensitive low coherence interferometry for detecting optogenetically stimulated activity of cells. Nanoscale changes in optical path length (due to change in refractive index and changes in cell thickness) occur when cells are activated, which we aim to detect by phase sensitive low coherence interferometry. A low coherence interferometry and patch-clamp electrophysiology systems were integrated with an inverted fluorescence microscope. Blue laser beam was coupled to the electrophysiology-interferometric detection system for optogenetic stimulation. The phase-sensitive measurements were carried out on Channelrhodopsin-2 sensitized cells (identified by YFP fluorescence) as well as control cells in reflection mode for different intensities and exposures of optogenetic stimulation beam. This method offers good temporal and spatial resolution without using exogenous labeling. Results of studies on all optical stimulation and detection of cellular activity will be presented. Interpretation of the optical activity signals will be discussed in context with changes in cell physiology during stimulation. We will also discuss the potential sources of various artifacts in optical/electrical detection of cellular activity during optical stimulation.

  6. Cellular Telephones Measure Activity and Lifespace in Community-Dwelling Adults: Proof of Principle

    PubMed Central

    Schenk, Ana Katrin; Witbrodt, Bradley C.; Hoarty, Carrie A.; Carlson, Richard H.; Goulding, Evan H.; Potter, Jane F.; Bonasera, Stephen J.

    2011-01-01

    OBJECTIVES To describe a system that uses off-the-shelf sensor and telecommunication technologies to continuously measure individual lifespace and activity levels in a novel way. DESIGN Proof of concept involving three field trials of 30, 30, and 21 days. SETTING Omaha, Nebraska, metropolitan and surrounding rural region. PARTICIPANTS Three participants (48-year-old man, 33-year-old woman, and 27-year-old male), none with any functional limitations. MEASUREMENTS Cellular telephones were used to detect in-home position and in-community location and to measure physical activity. Within the home, cellular telephones and Bluetooth transmitters (beacons) were used to locate participants at room-level resolution. Outside the home, the same cellular telephones and global positioning system (GPS) technology were used to locate participants at a community-level resolution. Physical activity was simultaneously measured using the cellular telephone accelerometer. RESULTS This approach had face validity to measure activity and lifespace. More importantly, this system could measure the spatial and temporal organization of these metrics. For example, an individual’s lifespace was automatically calculated across multiple time intervals. Behavioral time budgets showing how people allocate time to specific regions within the home were also automatically generated. CONCLUSION Mobile monitoring shows much promise as an easily deployed system to quantify activity and lifespace, important indicators of function, in community-dwelling adults. PMID:21288235

  7. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time.

    PubMed

    Grossi, Marco; Morgunova, Marina; Cheung, Shane; Scholz, Dimitri; Conroy, Emer; Terrile, Marta; Panarella, Angela; Simpson, Jeremy C; Gallagher, William M; O'Shea, Donal F

    2016-01-01

    Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools. PMID:26927507

  8. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time

    PubMed Central

    Grossi, Marco; Morgunova, Marina; Cheung, Shane; Scholz, Dimitri; Conroy, Emer; Terrile, Marta; Panarella, Angela; Simpson, Jeremy C.; Gallagher, William M.; O'Shea, Donal F.

    2016-01-01

    Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools. PMID:26927507

  9. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma.

    PubMed

    Kodama, Takahiro; Newberg, Justin Y; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C; Parsons, Pamela H; Wu, Hao; Finegold, Milton J; Copeland, Neal G; Jenkins, Nancy A

    2016-06-14

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  10. Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level

    NASA Astrophysics Data System (ADS)

    Wu, Tao T.; Qu, Jianan Y.; Cheung, Tak Hong; Yim, So Fan; Wong, Yick Fu

    2005-06-01

    Acetic acid, inducing transient whitening (acetowhitening) when applied to epithelial tissues, is a commonly used contrast agent for detecting early cervical cancer. The goals of this research are to investigate the temporal characteristics of acetowhitening process in cervical epithelial tissue at cellular level and develop a clear understanding of the diagnostic information carried in the acetowhitening signal. A system measuring time-resolved reflectance was built to study the rising and decay processes of acetowhitening signal from the monolayered cell cultures of normal and cancerous cervical squamous cells. It is found that the dynamic processes of acetowhitening in normal and cancerous cells are significantly different. The results of this study provide insight valuable to further understand the acetowhitening process in epithelial cells and to encourage the development of an objective procedure to detect the early cervical cancers based on quantitative monitoring of the dynamic process of acetowhitening

  11. Endogenous Retroelements in Cellular Senescence and Related Pathogenic Processes: Promising Drug Targets in Age-Related Diseases.

    PubMed

    Cardelli, Maurizio; Giacconi, Robertina; Malavolta, Marco; Provinciali, Mauro

    2016-01-01

    Endogenous retroelements (ERs) represent nearly half of the human genome. Considered up to recent years as "functionless" DNA sequences, they are now known to be involved in important cellular functions such as stress response and generation of non coding regulatory RNAs. Moreover, an increasing amount of data supports the idea of ERs as key players in cellular senescence and in different senescence-related pathogenic cellular processes, including those leading to inflammation, cancer and major age-related multifactorial diseases. The involvement of ERs in these biological mechanisms can suggest new therapeutic strategies in neoplasms, inflammatory/autoimmune diseases and in different age-related pathologies, such as macular degeneration, diabetes, cardiovascular diseases and major age-related neurodegenerative disorders. The therapeutic approaches which can be suggested range from a set of well-known, common drugs that have been shown to modulate ERs activity, to immune therapy against ER-derived tumor antigens, to more challenging strategies such as those based on anti-ERs RNA interference. PMID:25981608

  12. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    PubMed

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes. PMID:26696016

  13. Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels

    PubMed Central

    WYGANOWSKA-ŚWIĄTKOWSKA, MARZENA; URBANIAK, PAULINA; NOHAWICA, MICHAŁ MAREK; KOTWICKA, MAŁGORZATA; JANKUN, JERZY

    2015-01-01

    Enamel matrix derivative (EMD) is a commercially available protein extract, mainly comprising amelogenins. A number of other polypeptides have been identified in EMD, mostly growth factors, which promote cementogenesis and osteogenesis during the regeneration processes through the regulation of cell proliferation, differentiation and activity; however, not all of their functions are clear. Enamel extracts have been proposed to have numerous activities such as bone morphogenetic protein- and transforming growth factor β (TGF-β)-like activity, and activities similar to those of insulin-like growth factor, fibroblast growth factor, platelet-derived growth factor, vascular endothelial growth factor and epidermal growth factor. These activities have been observed at the molecular and cellular levels and in numerous animal models. Furthermore, it has been suggested that EMD contains an unidentified biologically active factor that acts in combination with TGF-β1, and several studies have reported functional similarities between growth factors and TGF-β in cellular processes. The effects of enamel extracts on the cell cycle and biology are summarized and discussed in this review. PMID:26161150

  14. Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity

    SciTech Connect

    Catania, Annunziata; Iavarone, Carlo; Carlomagno, Stella M.; Chiariello, Mario . E-mail: chiariel@unina.it

    2006-05-05

    Histone deacetylases (HDACs) are key regulatory enzymes involved in the control of gene expression and their inhibition by specific drugs has been widely correlated to cell cycle arrest, terminal differentiation, and apoptosis. Here, we investigated whether HDAC activity was required for PDGF-dependent signal transduction and cellular proliferation. Exposure of PDGF-stimulated NIH3T3 fibroblasts to the HDAC inhibitor trichostatin A (TSA) potently repressed the expression of a group of genes correlated to PDGF-dependent cellular growth and pro-survival activity. Moreover, we show that TSA interfered with STAT3-dependent transcriptional activity induced by PDGF. Still, neither phosphorylation nor nuclear translocation and DNA-binding in vitro and in vivo of STAT3 were affected by using TSA to interfere with PDGF stimulation. Finally, TSA treatment resulted in the suppression of PDGF-dependent cellular proliferation without affecting cellular survival of NIH3T3 cells. Our data indicate that inhibition of HDAC activity antagonizes the mitogenic effect of PDGF, suggesting that these drugs may specifically act on the expression of STAT-dependent, PDGF-responsive genes.

  15. Epigenomic Regulation of Smad1 Signaling During Cellular Senescence Induced by Ras Activation.

    PubMed

    Kaneda, Atsushi; Nonaka, Aya; Fujita, Takanori; Yamanaka, Ryota; Fujimoto, Mai; Miyazono, Kohei; Aburatani, Hiroyuki

    2016-01-01

    Epigenomic modification plays important roles in regulating gene expression during development, differentiation, and cellular senescence. When oncogenes are activated, cells fall into stable growth arrest to block cellular proliferation, which is called oncogene-induced senescence. We recently identified through genome-wide analyses that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence of mouse embryonic fibroblasts. We describe in this chapter the methods for analyses of epigenomic alteration and Smad1 targets on genome-wide scale. PMID:26520136

  16. Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other 'Omics Data Sets to Characterize Cellular Glycosylation Processes.

    PubMed

    Bennun, Sandra V; Hizal, Deniz Baycin; Heffner, Kelley; Can, Ozge; Zhang, Hui; Betenbaugh, Michael J

    2016-08-14

    The number of proteins encoded in the human genome has been estimated at between 20,000 and 25,000, despite estimates that the entire proteome contains more than a million proteins. One reason for this difference is due to many post-translational modifications of protein that contribute to proteome complexity. Among these, glycosylation is of particular relevance because it serves to modify a large number of cellular proteins. Glycogenomics, glycoproteomics, glycomics, and glycoinformatics are helping to accelerate our understanding of the cellular events involved in generating the glycoproteome, the variety of glycan structures possible, and the importance of roles that glycans play in therapeutics and disease. Indeed, interest in glycosylation has expanded rapidly over the past decade, as large amounts of experimental 'omics data relevant to glycosylation processing have accumulated. Furthermore, new and more sophisticated glycoinformatics tools and databases are now available for glycan and glycosylation pathway analysis. Here, we summarize some of the recent advances in both experimental profiling and analytical methods involving N- and O-linked glycosylation processing for biotechnological and medically relevant cells together with the unique opportunities and challenges associated with interrogating and assimilating multiple, disparate high-throughput glycosylation data sets. This emerging era of advanced glycomics will lead to the discovery of key glycan biomarkers linked to diseases and help establish a better understanding of physiology and improved control of glycosylation processing in diverse cells and tissues important to disease and production of recombinant therapeutics. Furthermore, methodologies that facilitate the integration of glycomics measurements together with other 'omics data sets will lead to a deeper understanding and greater insights into the nature of glycosylation as a complex cellular process. PMID:27423401

  17. Correlation between proliferative activity and cellular thickness of human mesenchymal stem cells

    SciTech Connect

    Katsube, Yoshihiro; Hirose, Motohiro Nakamura, Chikashi; Ohgushi, Hajime

    2008-04-04

    A cell's shape is known to be related to its proliferative activity. In particular, large and flat mammalian adult stem cells seem to show slow proliferation, however using quantitative analysis to prove the phenomenon is difficult. We measured the proliferation and cellular thickness of human mesenchymal stem cells (MSCs) by atomic force microscopy and found that MSCs with high proliferative activity were thick while those with low proliferative activity were thin, even though these MSCs were early passage cells. Further, low proliferative MSCs contained many senescence-associated {beta}-galactosidase positive cells together with high senescence-associated gene expression. These findings suggest that the measurement of cellular thickness is useful for estimating the proliferative activity of human MSCs and is expected to be a practical tool for MSC applications in regenerative medicine.

  18. Avian renal proximal tubule urate secretion is inhibited by cellular stress-induced AMP-activated protein kinase.

    PubMed

    Bataille, Amy M; Maffeo, Carla L; Renfro, J Larry

    2011-06-01

    Urate is a potent antioxidant at high concentrations but it has also been associated with a wide variety of health risks. Plasma urate concentration is determined by ingestion, production, and urinary excretion; however, factors that regulate urate excretion remain uncertain. The objective of this study was to determine whether cellular stress, which has been shown to affect other renal transport properties, modulates urate secretion in the avian renal proximal tubule. Chick kidney proximal tubule epithelial cell primary culture monolayers were used to study the transepithelial transport of radiolabeled urate. This model allowed examination of the processes, such as multidrug resistance protein 4 (Mrp4, Abcc4), which subserve urate secretion in a functional, intact, homologous system. Our results show that the recently implicated urate efflux transporter, breast cancer resistance protein (ABCG2), does not significantly contribute to urate secretion in this system. Exposure to a high concentration of zinc for 6 h induced a cellular stress response and a striking decrease in transepithelial urate secretion. Acute exposure to zinc had no effect on transepithelial urate secretion or isolated membrane vesicle urate transport, suggesting involvement of a cellular stress adaptation. Activation of AMP-activated protein kinase (AMPK), a candidate modulator of ATP-dependent urate efflux, by 5'-aminoimidazole-4-carboxamide 1-β-d-ribo-furanoside caused a decrease in urate secretion similar to that seen with zinc-induced cellular stress. This effect was prevented with the AMPK inhibitor compound C. Notably, the decrease in urate secretion seen with zinc-induced cellular stress was also prevented by compound C, implicating AMPK in regulation of renal uric acid excretion. PMID:21429974

  19. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes.

    PubMed

    Bergman, Oded; Ben-Shachar, Dorit

    2016-08-01

    Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder. PMID:27412728

  20. The inactive-active phase transition in the noisy additive (exclusive-or) probabilistic cellular automaton

    NASA Astrophysics Data System (ADS)

    Mendonça, J. Ricardo G.

    2016-07-01

    We investigate the inactive-active phase transition in an array of additive (exclusive-or) cellular automata (CA) under noise. The model is closely related with the Domany-Kinzel (DK) probabilistic cellular automaton (PCA), for which there are rigorous as well as numerical estimates on the transition probabilities. Here, we characterize the critical behavior of the noisy additive cellular automaton by mean field analysis and finite-size scaling and show that its phase transition belongs to the directed percolation universality class of critical behavior. As a by-product of our analysis, we argue that the critical behavior of the noisy elementary CA 90 and 102 (in Wolfram’s enumeration scheme) must be the same. We also perform an empirical investigation of the mean field equations to assess their quality and find that away from the critical point (but not necessarily very far away) the mean field approximations provide a reasonably good description of the dynamics of the PCA.

  1. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles.

    PubMed

    Liu, Rong; Rallo, Robert; Bilal, Muhammad; Cohen, Yoram

    2015-01-01

    Quantitative structure-activity relationships (QSARs) were developed, for cellular uptake of nanoparticles (NPs) of the same iron oxide core but with different surface-modifying organic molecules, based on linear and non-linear (epsilon support vector regression (ε-SVR)). A linear QSAR provided high prediction accuracy of R2=0.751 (coefficient of determination) using 11 descriptors selected from an initial pool of 184 descriptors calculated for the NP surfacemodifying molecules, while a ε-SVR based QSAR with only 6 descriptors improved prediction accuracy to R2=0.806. The linear and ε-SVR based QSARs both demonstrated good robustness and well spanned applicability domains. It is suggested that the approach of evaluating pertinent descriptors and their significance, via QSAR analysis, to cellular NP uptake could support planning and interpretation of toxicity studies as well as provide guidance for the tailor-design NPs with respect to targeted cellular uptake for various applications. PMID:25747434

  2. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    SciTech Connect

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki . E-mail: yk-kim@korea.ac.kr

    2007-05-18

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway.

  3. Cellular electrical micro-impedance parameter artifacts produced by passive and active current regulation.

    PubMed

    English, Anthony E; Squire, James C; Moy, Alan B

    2008-03-01

    This study analyzes the cellular microelectrode voltage measurement errors produced by active and passive current regulation, and the propagation of these errors into cellular barrier function parameter estimates. The propagation of random and systematic errors into these parameters is accounted for within a Riemannian manifold framework consistent with information geometry. As a result, the full non-linearity of the model parameter state dependence, the instrumental noise distribution, and the systematic errors associated with the voltage to impedance conversion, are accounted for. Specifically, cellular model parameters are treated as the coordinates of a model space manifold that inherits a Riemannian metric from the data space. The model space metric is defined in terms of the pull back of an instrumental noise-dependent Fisher information metric. Additional noise sources produced by the evaluation of the cell-covered electrode model that is a function of a naked electrode random variable are also included in the analysis. Based on a circular cellular micro-impedance model in widespread use, this study shows that cellular barrier function parameter estimates are highly model state dependent. Systematic errors produced by coaxial lead capacitances and circuit loading can also lead to significant and model state-dependent parameter errors and should, therefore, be either reduced or corrected for analytically. PMID:18202917

  4. Micellar delivery of dasatinib for the inhibition of pathologic cellular processes of the retinal pigment epithelium.

    PubMed

    Li, Qingqing; Lai, Ka Lun; Chan, Pui Shan; Leung, Sui Chu; Li, Ho Yin; Fang, Yuan; To, Kenneth K W; Choi, Chung Hang J; Gao, Qian Ying; Lee, Thomas W Y

    2016-04-01

    The objective of this study was to fabricate dasatinib-loaded nanoparticles and evaluate their efficacy in inhibiting cellular processes of the retinal pigment epithelium (RPE) related to proliferative vitreoretinopathy (PVR), for which there are no approved pharmacological approaches. We successfully encapsulated dasatinib, a poorly soluble multi-targeted tyrosine kinase inhibitor which has great potential for the treatment of PVR, into nanoparticles prepared from micellation of PEG-b-PCL. The size of the nanomicelles was approximately 55nm with a narrow distribution. They increased the solubility of dasatinib by 475× and provided a sustained drug release. ARPE-19, an immortal RPE cell line, was used to assess the in vitro efficacy of micellar dasatinib because the RPE is believed to play a key role in the pathogenesis of PVR. Three cell-based assays, namely, proliferation, adhesion and migration, which represent three important PVR-related cellular changes of the RPE, were conducted and the cytotoxicity of micelles was also evaluated. Both blank and dasatinib-loaded micelles were non-cytotoxic towards ARPE-19 cells. Micellar dasatinib significantly inhibited cell proliferation, adhesion and migration compared to the free drug; this might be attributable to enhanced solubility. PEG-b-PCL micelles were taken up into the ARPE-19 cells by an energy-dependent clatharin and caveolae-mediated endocytosis. Our results indicated that cellular uptake and the anti-proliferation effect of drugloaded micelles were linearly correlated. Drug loading appears to be a critical parameter for cellular uptake which in turn impacts the in vitro bioactivities of polymeric micelles. Our results clearly demonstrated that dasatinib-encapsulated micelles offer considerable promise in the management of PVR. PMID:26764115

  5. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  6. Evidence of parasexual activity in "asexual amoebae" Cochliopodium spp. (Amoebozoa): extensive cellular and nuclear fusion.

    PubMed

    Tekle, Yonas I; Anderson, O Roger; Lecky, Ariel F

    2014-09-01

    The majority of microbial eukaryotes have long been considered asexual, though new evidence indicates sex, or sexual-like (parasexual) behaviors that deviate from the usual union of two gametes, among other variant aspects. Over a dozen amoebozoans are implicated to have sexual stages. However, the exact mechanism by which sex occurs in these lineages remains elusive. This is mainly due to the diverse quality and cryptic nature of their life cycle. In this study we present evidence of some previously unreported aspects of the life cycle of an amoeba, Cochliopodium, that undergoes unusual intraspecific interactions using light microscopy and immunocytochemistry. Similar to other amoebozoans, Cochliopodium, is considered asexual with no published reports of sex or parasexuality. We also investigated environmental conditions that govern the observed intraspecific interactions. Both light microscopic and immunocytochemistry evidence demonstrates Cochliopodium undergoes cellular fusion (plasmogamy) and nuclear fusion (karyogamy). Large plasmodia eventually undergo karyogamy and contain large fused, polyploid, nuclei. These are observed to fragment, subsequently, by karyotomy (nuclear fission) and cytoplasmic fission to yield uninucleated amoebae. This process could lead to a non-meiotic, parasexual exchange of chromosomes in Cochliopodium. These findings strongly suggest that Cochliopodium is involved in parasexual activity and should no longer be considered strictly asexual. PMID:25168314

  7. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation

    PubMed Central

    Hofseth, Lorne J.; Saito, Shin'ichi; Hussain, S. Perwez; Espey, Michael G.; Miranda, Katrina M.; Araki, Yuzuru; Jhappan, Chamelli; Higashimoto, Yuichiro; He, Peijun; Linke, Steven P.; Quezado, Martha M.; Zurer, Irit; Rotter, Varda; Wink, David A.; Appella, Ettore; Harris, Curtis C.

    2003-01-01

    Free radical-induced cellular stress contributes to cancer during chronic inflammation. Here, we investigated mechanisms of p53 activation by the free radical, NO. NO from donor drugs induced both ataxia-telangiectasia mutated (ATM)- and ataxia-telangiectasia mutated and Rad3-related-dependent p53 posttranslational modifications, leading to an increase in p53 transcriptional targets and a G2/M cell cycle checkpoint. Such modifications were also identified in cells cocultured with NO-releasing macrophages. In noncancerous colon tissues from patients with ulcerative colitis (a cancer-prone chronic inflammatory disease), inducible NO synthase protein levels were positively correlated with p53 serine 15 phosphorylation levels. Immunostaining of HDM-2 and p21WAF1 was consistent with transcriptionally active p53. Our study highlights a pivotal role of NO in the induction of cellular stress and the activation of a p53 response pathway during chronic inflammation. PMID:12518062

  8. Toxoplasma gondii Hsp90: potential roles in essential cellular processes of the parasite

    PubMed Central

    Angel, Sergio O.; Figueras, Maria J.; Alomar, Maria L.; Echeverria, Pablo C.; Deng, Bin

    2014-01-01

    SUMMARY Hsp90 is a widely distributed and highly conserved molecular chaperone that is ubiquitously expressed throughout nature, being one of the most abundant proteins within non-stressed cells. This chaperone is up-regulated following stressful events and has been involved in many cellular processes. In Toxoplasma gondii, Hsp90 could be linked with many essential processes of the parasite such as host cell invasion, replication and tachyzoite-bradyzoite interconversion. A Protein-Protein Interaction (PPI) network approach of TgHsp90 has allowed inferring how these processes may be altered. In addition, data mining of T. gondii phosphoproteome and acetylome has allowed the generation of the phosphorylation and acetylation map of TgHsp90. This review focuses on the potential roles of TgHsp90 in parasite biology and the analysis of experimental data in comparison with its counterparts in yeast and humans. PMID:24560345

  9. AMP-activated protein kinase regulates L-arginine mediated cellular responses

    PubMed Central

    2013-01-01

    Background Our prior study revealed the loss in short-term L-Arginine (ARG) therapeutic efficacy after continuous exposure; resulting in tolerance development, mediated by endothelial nitric oxide synthase (eNOS) down-regulation, secondary to oxidative stress and induced glucose accumulation. However, the potential factor regulating ARG cellular response is presently unknown. Method Human umbilical vein endothelial cells were incubated with 100 μM ARG for 2 h in buffer (short-term or acute), or for 7 days in culture medium and challenged for 2 h in buffer (continuous or chronic), in the presence or absence of other agents. eNOS activity was determined by analyzing cellular nitrite/nitrate (NO2–/NO3–), and AMP-activated protein kinase (AMPK) activity was assayed using SAMS peptide. 13C6 glucose was added to medium to measure glucose uptake during cellular treatments, which were determined by LC-MS/MS. Cellular glucose was identified by o-toluidine method. Superoxide (O2•–) was identified by EPR-spin-trap, and peroxynitrite (ONOO–) was measured by flow-cytometer using aminophenyl fluorescein dye. Results Short-term incubation of cells with 100 μM ARG in the presence or absence of 30 μM L-NG-Nitroarginine methyl ester (L-NAME) or 30 μM AMPK inhibitor (compound C, CMP-C) increased cellular oxidative stress and overall glucose accumulation with no variation in glucose transporter-1 (GLUT-1), or AMPK activity from control. The increase in total NO2–/NO3– after 2 h 100 μM ARG exposure, was suppressed in cells co-incubated with 30 μM CMP-C or L-NAME. Long-term exposure of ARG with or without CMP-C or L-NAME suppressed NO2–/NO3–, glucose uptake, GLUT-1, AMPK expression and activity below control, and increased overall cellular glucose, O2•– and ONOO–. Gluconeogenesis inhibition with 30 μM 5-Chloro-2-N-2,5-dichlorobenzenesulfonamido-benzoxazole (CDB) during ARG exposure for 2 h maintained overall cellular glucose to control, but increased

  10. Activation-dependent and biphasic electromagnetic field effects: Model based on cooperative enzyme kinetics in cellular signaling

    SciTech Connect

    Eichwald, C.; Walleczek, J.

    1996-12-31

    Experiments on field exposure effects of extremely-low-frequency electric and magnetic fields (EMFs) on biological systems have shown that, in many cases, the biological-functional status is of fundamental importance for an effective interaction. For example, studies of calcium uptake regulation in cells of the immune system, particularly in T lymphocytes, have revealed that, depending on the degree of cellular activation, either stimulatory, inhibitory, or no field exposure effects are observed for identical field parameters. A brief summary of the experimental findings is given, and a theoretical approach is presented that accounts in a qualitative manner for EMF exposure effects (1) that depend on the degree of cellular activation and (2) that exhibit a biphasic response behavior (stimulation/inhibition). In the model, biochemical stimulation of the cell results in activation of specific signaling pathways that regulate calcium dynamics in the cell (calcium release from intracellular calcium stores and capacitive calcium entry). The authors assume that, controlled by these pathways, a specific EMF-sensitive enzyme system becomes activated. The activated enzyme, in turn, exhibit a feedback control on the signal processes, thus leading to a modulation of calcium entry. This modulation may affect other cellular processes that are calcium dependent (e.g., DNA synthesis). Magnetic field exposure is assumed to alter the kinetics of a specific step within the enzyme-reaction cycle in accord with the radical-pair mechanism, although the formulism is not restricted to this specific example. Results show that inclusion of cooperative steps within the enzyme-reaction cycle provides a theoretical basis that enables a simple description of a biphasic response behavior to EMF exposure.

  11. Activation of hERG3 channel stimulates autophagy and promotes cellular senescence in melanoma

    PubMed Central

    Perez-Neut, Mathew; Haar, Lauren; Rao, Vidhya; Santha, Sreevidya; Lansu, Katherine; Rana, Basabi; Jones, Walter K.; Gentile, Saverio

    2016-01-01

    Ion channels play a major factor in maintaining cellular homeostasis but very little is known about the role of these proteins in cancer biology. In this work we have discovered that, the Kv11.3 (hERG3) a plasma-membrane potassium channel plays a critical role in the regulation of autophagy in a cancer cell model. We have found that pharmacologic stimulation of the Kv11.3 channel with a small molecule activator, NS1643 induced autophagy via activation of an AMPK-dependent signaling pathway in melanoma cell line. In addition, we have found that NS1643 produced a strong inhibition of cell proliferation by activating a cellular senescence program. Furthermore, inhibition of autophagy via siRNA targeting AMPK or treatment with hydroxychloroquine an autophagy inhibitor activates apoptosis in NS1643-treated cells. Thus, we propose that, Kv11.3 is a novel mediator of autophagy, autophagy can be a survival mechanism contributing to cellular senescence, and that use of a combinatorial pharmacologic approach of Kv11.3 activator with inhibitors of autophagy represents a novel therapeutic approach against melanoma. PMID:26942884

  12. Thresholds for cellular disruption and activation of the stress response in renal epithelia.

    PubMed

    van Why, S K; Kim, S; Geibel, J; Seebach, F A; Kashgarian, M; Siegel, N J

    1999-08-01

    Renal ischemia causes a rapid fall in cellular ATP, increased intracellular calcium (Ca(i)), and dissociation of Na(+)-K(+)-ATPase from the cytoskeleton along with initiation of a stress response. We examined changes in Ca(i), Na(+)-K(+)-ATPase detergent solubility, and activation of heat-shock transcription factor (HSF) in relation to graded reduction of ATP in LLC-PK(1) cells to determine whether initiation of the stress response was related to any one of these perturbations alone. Ca(i) increased first at 75% of control ATP. Triton X-100 solubility of Na(+)-K(+)-ATPase increased below 70% control ATP. Reducing cellular ATP below 50% control consistently activated HSF. Stepped decrements in cellular ATP below the respective thresholds caused incremental increases in Ca(i), Na(+)-K(+)-ATPase solubility, and HSF activation. ATP depletion activated both HSF1 and HSF2. Proteasome inhibition caused activation of HSF1 and HSF2 in a pattern similar to ATP depletion. Lactate dehydrogenase release remained at control levels irrespective of the degree of ATP depletion. Progressive accumulation of nonnative proteins may be the critical signal for the adaptive induction of the stress response in renal epithelia. PMID:10444577

  13. Antioxidative Activity of Platinum Nanocolloid and Its Protective Effect Against Chemical-Induced Hepatic Cellular Damage.

    PubMed

    Choi, Mi-Ran; Do, Le Thanh; Chung, Yong-Hoon; Yoo, Hoon; Yu, Rina

    2015-08-01

    Oxidative stress, a major cause of cellular injuries, is closely associated with a variety of chronic diseases such as cancer, liver diseases, degenerative brain disease and aging. In this study, we investigated antioxidant properties of platinum nanocolloid (PNC) against various oxidative stress conditions in vitro/in vivo by treating PNC on liver cell or tissue. Antioxidant activities of the PNC were determined by measuring quenching capacity on reactive oxygen species and its protective action against hydrogen peroxide or CCl4-induced oxidative cellular damage in HepG2 cell or liver tissue of mice. In vitro study, PNC markedly suppressed the production H2O2, ·OH, α,α-diphenyl-β-picrylhydrazyl radical and nitric oxide in a dose-dependent manner. PNC also inhibited hydrogen peroxide-induced oxidative cellular damage in HepG2 hepatocytes. In vivo study with mice, PNC reduced hepatic lipid peroxidation and CCl4 induced toxicity. Our results support that platinum nanocolloid has antioxidant activities and protects hepatic cellular oxidative damage. Thus platinum nanocolloid may have a potential to be used as an antioxidant supplement. PMID:26369119

  14. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models.

    PubMed

    Guo, Hui; Liu, Dongmei; Gao, Bin; Zhang, Xiaohui; You, Minli; Ren, Hui; Zhang, Hongbo; Santos, Hélder A; Xu, Feng

    2016-01-01

    Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs' IC50 values were significantly increased from the range of 6.4-44.1 μM in 2D monolayers to 21.8-138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds. PMID:27455219

  15. Co-evolutionary networks of genes and cellular processes across fungal species

    PubMed Central

    Tuller, Tamir; Kupiec, Martin; Ruppin, Eytan

    2009-01-01

    Background The introduction of measures such as evolutionary rate and propensity for gene loss have significantly advanced our knowledge of the evolutionary history and selection forces acting upon individual genes and cellular processes. Results We present two new measures, the 'relative evolutionary rate pattern' (rERP), which records the relative evolutionary rates of conserved genes across the different branches of a species' phylogenetic tree, and the 'copy number pattern' (CNP), which quantifies the rate of gene loss of less conserved genes. Together, these measures yield a high-resolution study of the co-evolution of genes in 9 fungal species, spanning 3,540 sets of orthologs. We find that the evolutionary tempo of conserved genes varies in different evolutionary periods. The co-evolution of genes' Gene Ontology categories exhibits a significant correlation with their functional distance in the Gene Ontology hierarchy, but not with their location on chromosomes, showing that cellular functions are a more important driving force in gene co-evolution than their chromosomal proximity. Two fundamental patterns of co-evolution of conserved genes, cooperative and reciprocal, are identified; only genes co-evolving cooperatively functionally back each other up. The co-evolution of conserved and less conserved genes exhibits both commonalities and differences; DNA metabolism is positively correlated with nuclear traffic, transcription processes and vacuolar biology in both analyses. Conclusions Overall, this study charts the first global network view of gene co-evolution in fungi. The future application of the approach presented here to other phylogenetic trees holds much promise in characterizing the forces that shape cellular co-evolution. PMID:19416514

  16. Histone H3.3 and its proteolytically processed form drive a cellular senescence program

    PubMed Central

    Duarte, Luis F.; Young, Andrew R. J.; Wang, Zichen; Wu, Hsan-Au; Panda, Taniya; Kou, Yan; Kapoor, Avnish; Hasson, Dan; Mills, Nicholas R.; Ma’ayan, Avi; Narita, Masashi; Bernstein, Emily

    2014-01-01

    The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Using models of oncogene-induced and replicative senescence, here we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first twenty-one amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence. PMID:25394905

  17. Proteomic characterization of cellular and molecular processes that enable the Nanoarchaeum equitans-Ignicoccus hospitalis relationship

    SciTech Connect

    Giannone, Richard J; Huber, Dr. Harald; Karpinets, Tatiana V; Heimerl, Dr. Thomas; Kueper, Dr. Ulf; Rachel, Dr. Reinhard; Keller, Martin; Hettich, Robert {Bob} L; Podar, Mircea

    2011-01-01

    Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its host's metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis.

  18. Proteomic Characterization of Cellular and Molecular Processes that Enable the Nanoarchaeum equitans-Ignicoccus hospitalis Relationship

    PubMed Central

    Giannone, Richard J.; Huber, Harald; Karpinets, Tatiana; Heimerl, Thomas; Küper, Ulf; Rachel, Reinhard; Keller, Martin; Hettich, Robert L.; Podar, Mircea

    2011-01-01

    Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its host's metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis. PMID:21826220

  19. Sprouty gain of function disrupts lens cellular processes and growth by restricting RTK signaling.

    PubMed

    Shin, Eun Hae; Zhao, Guannan; Wang, Qian; Lovicu, Frank J

    2015-10-15

    Sprouty proteins function as negative regulators of the receptor tyrosine kinase (RTK)-mediated Ras/Raf/MAPK pathway in many varied physiological and developmental processes, inhibiting growth factor-induced cellular proliferation, migration and differentiation. Like other negative regulators, Sprouty proteins are expressed in various organs during development, including the eye; ubiquitously expressed in the optic vesicle, lens pit, optic cup and lens vesicle. Given the synexpression of different antagonists (e.g, Sprouty, Sef, Spred) in the developing lens, to gain a better understanding of their specific role, in particular, their ability to regulate ocular growth factor signaling in lens cells, we characterized transgenic mice overexpressing Sprouty1 or Sprouty2 in the eye. Overexpression of Sprouty in the lens resulted in reduced lens and eye size during ocular morphogenesis, influenced by changes to the lens epithelium, aberrant fiber cell differentiation and compromised de novo maintenance of the lens capsule. Here we demonstrate an important inhibitory role for Sprouty in the regulation of lens cell proliferation and fiber differentiation in situ, potentially through its ability to modulate FGF- (and even EGF-) mediated MAPK/ERK1/2 signaling in lens cells. Whilst growth factor regulation of lens cell proliferation and fiber differentiation are required for orchestrating lens morphogenesis and growth, in turn, antagonists such as Sprouty are just as important for regulating the intracellular signaling pathways driving lens cellular processes. PMID:26375880

  20. Processing of Activated Core Components

    SciTech Connect

    Friske, A.; Gestermann, G.; Finkbeiner, R.

    2003-02-26

    Used activated components from the core of a NPP like control elements, water channels from a BWR, and others like in-core measurement devices need to be processed into waste forms suitable for interim storage, and for the final waste repository. Processing of the activated materials can be undertaken by underwater cutting and packaging or by cutting and high-pressure compaction in a hot cell. A hot cell is available in Germany as a joint investment between GNS and the Karlsruhe Research Center at the latter's site. Special transport equipment is available to transport the components ''as-is'' to the hot cell. Newly designed underwater processing equipment has been designed, constructed, and operated for the special application of NPP decommissioning. This equipment integrates an underwater cutting device with an 80 ton force underwater in-drum compactor.

  1. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review).

    PubMed

    Zhang, Sisen; Wu, Lihua

    2015-11-01

    Neural precursor cell expressed, developmentally downregulated 9 (NEDD9), a gene exclusively expressed in the brain during embryonic stages but not in brains of adult mice, is an important cytoskeletal protein and regarded as a 'router/hub' in cellular signal transduction processes connecting external stimulation signals with downstream target proteins that can directly promote tumor metastasis. Numerous studies showed that NEDD9 has an essential role in cell proliferation, apoptosis, adhesion, migration and invasion. The roles of NEDD9, including the underlying mechanisms of its regulation of cell migration, its distinctive functions in various tumor stages and its association with other diseases, are required to be elucidated at large. Future studies of NEDD9 may provide a more profound understanding of the development of tumor invasiveness and NEDD9 may serve as a potential novel target for tumor therapy. The present review examined the significant roles of NEDD9 in the abovementioned processes. PMID:26324022

  2. Signal processing for molecular and cellular biological physics: an emerging field

    PubMed Central

    Little, Max A.; Jones, Nick S.

    2013-01-01

    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  3. Signal processing for molecular and cellular biological physics: an emerging field.

    PubMed

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  4. Conflict game in evacuation process: A study combining Cellular Automata model

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoping; Cheng, Yuan

    2011-03-01

    The game-theoretic approach is an essential tool in the research of conflicts of human behaviors. The aim of this study is to research crowd dynamic conflicts during evacuation processes. By combining a conflict game with a Cellular Automata model, the following factors such as rationality, herding effect and conflict cost are taken into the research on frequency of each strategy of evacuees, and evacuation time. Results from Monte Carlo simulations show that (i) in an emergency condition, rationality leads to “vying” behaviors and inhibited “polite” behavior; (ii) high herding causes a crowd of high rationality (especially in normal circumstances) to become more “vying” in behavior; (iii) the high-rationality crowd is shown to spend more evacuation time than a low-rationality crowd in emergency situations. This study provides a new perspective to understand conflicts in evacuation processes as well as the rationality of evacuees.

  5. LED-activated pheophorbide a induces cellular destruction of colon cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, C. S.; Leung, A. W. N.; Liu, L.; Xia, X. S.

    2010-07-01

    Pheophorbide a (Pa) from Chinese herbal medicine Scutellaria Barbata and Silkworm Excreta shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that LED-activated Pa induced the cellular destruction of colon cancer HT-29 cells. The results showed that Pa resulted in a drug-dose dependent photocytotoxicity in the HT-29 cells, meaning the photocytotoxicity of Pa depends on the drug concentration (0 - 2 μM). We further investigated the apoptosis of the HT-29 cells 18 hours after photosensitization of Pa using a confocal laser scanning microscopy with Hoechst 33258 staining. These data demonstrated that LED-activated Pa could significantly induce the cellular destruction of the HT-29 cells.

  6. Preliminary cellular-automata forecast of permit activity from 1998 to 2010, Idaho and Western Montana

    USGS Publications Warehouse

    Raines, G.L.; Zientek, M.L.; Causey, J.D.; Boleneus, D.E.

    2002-01-01

    For public land management in Idaho and western Montana, the U.S. Forest Service (USFS) has requested that the U.S. Geological Survey (USGS) predict where mineral-related activity will occur in the next decade. Cellular automata provide an approach to simulation of this human activity. Cellular automata (CA) are defined by an array of cells, which evolve by a simple transition rule, the automaton. Based on exploration trends, we assume that future exploration will focus in areas of past exploration. Spatial-temporal information about mineral-related activity, that is permits issued by USFS and Bureau of Land Management (BLM) in the last decade, and spatial information about undiscovered resources, provide a basis to calibrate a CA. The CA implemented is a modified annealed voting rule that simulates mineral-related activity with spatial and temporal resolution of 1 mi2 and 1 year based on activity from 1989 to 1998. For this CA, the state of the economy and exploration technology is assumed constant for the next decade. The calibrated CA reproduces the 1989-1998-permit activity with an agreement of 94%, which increases to 98% within one year. Analysis of the confusion matrix and kappa correlation statistics indicates that the CA underestimates high activity and overestimates low activity. Spatially, the major differences between the actual and calculated activity are that the calculated activity occurs in a slightly larger number of small patches and is slightly more uneven than the actual activity. Using the calibrated CA in a Monte Carlo simulation projecting from 1998 to 2010, an estimate of the probability of mineral activity shows high levels of activity in Boise, Caribou, Elmore, Lincoln, and western Valley counties in Idaho and Beaverhead, Madison, and Stillwater counties in Montana, and generally low activity elsewhere. ?? 2002 International Association for Mathematical Geology.

  7. Morbilliviruses Use Signaling Lymphocyte Activation Molecules (CD150) as Cellular Receptors

    PubMed Central

    Tatsuo, Hironobu; Ono, Nobuyuki; Yanagi, Yusuke

    2001-01-01

    Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderstepoort vaccine strain and two B95a (marmoset B cell line)-isolated strains of canine distemper virus caused extensive cytopathic effects in normally resistant CHO (Chinese hamster ovary) cells after expression of canine SLAM. The Ako vaccine strain of rinderpest virus produced strong cytopathic effects in bovine SLAM-expressing CHO cells. The data on entry with vesicular stomatitis virus pseudotypes bearing measles, canine distemper, or rinderpest virus envelope proteins were consistent with development of cytopathic effects in SLAM-expressing CHO cell clones after infection with the respective viruses, confirming that SLAM acts at the virus entry step (as a cellular receptor). Furthermore, most measles, canine distemper, and rinderpest virus strains examined could any use of the human, canine, and bovine SLAMs to infect cells. Our findings suggest that the use of SLAM as a cellular receptor may be a property common to most, if not all, morbilliviruses and explain the lymphotropism and immunosuppressive nature of morbilliviruses. PMID:11390585

  8. Activating Akt and the brain's resources to drive cellular survival and prevent inflammatory injury

    PubMed Central

    Chong, Z.Z.; Li, F.; Maiese, K.

    2008-01-01

    Summary Protein kinase B, also known as Akt, is a serine/threonine kinase and plays a critical role in the modulation of cell development, growth, and survival. Interestingly, Akt is ubiquitously expressed throughout the body, but its expression in the nervous system is substantially up-regulated during cellular stress, suggesting a more expansive role for Akt in the nervous system that may involve cellular protection. In this regard, a body of recent work has identified a robust capacity for Akt and its downstream substrates to foster both neuronal and vascular survival during apoptotic injury. Cell survival by Akt is driven by the modulation of both intrinsic cellular pathways that oversee genomic DNA integrity and extrinsic mechanisms that control inflammatory microglial activation. A series of distinct pathways are regulated by Akt that include the Forkhead family of transcription factors, GSK-3ß, ß-catenin, c-Jun, CREB, Bad, IKK, and p53. Culminating below these substrates of Akt are the control of caspase mediated pathways that promote genomic integrity as well as prevent inflammatory cell demise. With further levels of progress in defining the cellular role of Akt, the attractiveness of Akt as a vital and broad cytoprotectant for both neuronal and vascular cell populations should continue to escalate. PMID:15578447

  9. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles.

    PubMed

    Pan-In, Porntip; Wanichwecharungruang, Supason; Hanes, Justin; Kim, Anthony J

    2014-01-01

    Garcinia mangostana Linn extract (GME) is a natural product that has received considerable attention in cancer therapy, and has the potential to reduce side effects of chemotherapeutics and improve efficacy. We formulated GME-encapsulated ethyl cellulose (GME-EC) and a polymer blend of ethyl cellulose and methyl cellulose (GME-EC/MC) nanoparticles. We achieved high drug-loading and encapsulation efficiency using a solvent-displacement method with particle sizes around 250 nm. Cellular uptake and accumulation of GME was higher for GME-encapsulated nanoparticles compared to free GME. In vitro cytotoxicity analysis showed effective anticancer activity of GME-EC and GME-EC/MC nanoparticles in HeLa cells in a dose-dependent manner. GME-EC/MC nanoparticles showed approximately twofold-higher anticancer activity compared to GME-EC nanoparticles, likely due to their enhanced bioavailability. GME-encapsulated nanoparticles primarily entered HeLa cells by clathrin-mediated endocytosis and trafficked through the endolysosomal pathway. As far as we know, this is the first report on the cellular uptake and intracellular trafficking mechanism of drug-loaded cellulose-based nanoparticles. In summary, encapsulation of GME using cellulose-derivative nanoparticles - GME-EC and GME-EC/MC nanoparticles - successfully improved the bioavailability of GME in aqueous solution, enhanced cellular uptake, and displayed effective anticancer activity. PMID:25125977

  10. Free-Radical-Scavenging, Antityrosinase, and Cellular Melanogenesis Inhibitory Activities of Synthetic Isoflavones.

    PubMed

    Lu, Tzy-Ming; Ko, Horng-Huey; Ng, Lean-Teik; Hsieh, Yen-Pin

    2015-06-01

    In this study, we examined the potential of synthetic isoflavones for application in cosmeceuticals. Twenty-five isoflavones were synthesized and their capacities of free-radical-scavenging and mushroom tyrosinase inhibition, as well as their impact on cell viability of B16F10 murine melanoma cells and HaCaT human keratinocytes were evaluated. Isoflavones that showed significant mushroom tyrosinase inhibitory activities were further studied on reduction of cellular melanin formation and antityrosinase activities in B16F10 melanocytes in vitro. Among the isoflavones tested, 6-hydroxydaidzein (2) was the strongest scavenger of both ABTS(.+) and DPPH(.) radicals with SC50 values of 11.3 ± 0.3 and 9.4 ± 0.1 μM, respectively. Texasin (20) exhibited the most potent inhibition of mushroom tyrosinase (IC50 14.9 ± 4.5 μM), whereas retusin (17) showed the most efficient inhibition both of cellular melanin formation and antityrosinase activity in B16F10 melanocytes, respectively. In summary, both retusin (17) and texasin (20) exhibited potent free-radical-scavenging capacities as well as efficient inhibition of cellular melanogenesis, suggesting that they are valuable hit compounds with potential for advanced cosmeceutical development. PMID:26080742

  11. Donut-shaped chambers for analysis of biochemical processes at the cellular and subcellular levels.

    PubMed

    Zurgil, N; Ravid-Hermesh, O; Shafran, Y; Howitz, S; Afrimzon, E; Sobolev, M; He, J; Shinar, E; Goldman-Levi, R; Deutsch, M

    2014-07-01

    In order to study cell-cell variation with respect to enzymatic activity, individual live cell analysis should be complemented by measurement of single cell content in a biomimetic environment on a cellular scale arrangement. This is a challenging endeavor due to the small volume of a single cell, the low number of target molecules and cell motility. Micro-arrayed donut-shaped chambers (DSCs) of femtoliter (fL), picoliter (pL), and nanoliter (nL) volumes have been developed and produced for the analysis of biochemical reaction at the molecular, cellular and multicellular levels, respectively. DSCs are micro-arrayed, miniature vessels, in which each chamber acts as an individual isolated reaction compartment. Individual live cells can settle in the pL and nL DSCs, share the same space and be monitored under the microscope in a noninvasive, time-resolved manner. Following cell lysis and chamber sealing, invasive kinetic measurement based on cell content is achieved for the same individual cells. The fL chambers are used for the analysis of the same enzyme reaction at the molecular level. The various DSCs were used in this proof-of-principle work to analyze the reaction of intracellular esterase in both primary and cell line immune cell populations. These unique DSC arrays are easy to manufacture and offer an inexpensive and simple operating system for biochemical reaction measurement of numerous single cells used in various practical applications. PMID:24829933

  12. Oxidized (non)-regenerated cellulose affects fundamental cellular processes of wound healing

    PubMed Central

    Wagenhäuser, M. U.; Mulorz, J.; Ibing, W.; Simon, F.; Spin, J. M.; Schelzig, H.; Oberhuber, A.

    2016-01-01

    In this study we investigated how hemostats such as oxidized regenerated cellulose (ORC, TABOTAMP) and oxidized non-regenerated cellulose (ONRC, RESORBA CELL) influence local cellular behavior and contraction of the extracellular matrix (ECM). Human stromal fibroblasts were inoculated in vitro with ORC and ONRC. Cell proliferation was assayed over time, and migration was evaluated by Live Cell imaging microscopy. Fibroblasts grown in collagen-gels were treated with ORC or ONRC, and ECM contraction was measured utilizing a contraction assay. An absolute pH decline was observed with both ORC and ONRC after 1 hour. Mean daily cell proliferation, migration and matrix contraction were more strongly inhibited by ONRC when compared with ORC (p < 0.05). When control media was pH-lowered to match the lower pH values typically seen with ORC and ONRC, significant differences in cell proliferation and migration were still observed between ONRC and ORC (p < 0.05). However, in these pH conditions, inhibition of matrix contraction was only significant for ONRC (p < 0.05). We find that ORC and ONRC inhibit fibroblast proliferation, migration and matrix contraction, and stronger inhibition of these essential cellular processes of wound healing were observed for ONRC when compared with ORC. These results will require further validation in future in vivo experiments to clarify the clinical implications for hemostat use in post-surgical wound healing. PMID:27557881

  13. Oxidized (non)-regenerated cellulose affects fundamental cellular processes of wound healing.

    PubMed

    Wagenhäuser, M U; Mulorz, J; Ibing, W; Simon, F; Spin, J M; Schelzig, H; Oberhuber, A

    2016-01-01

    In this study we investigated how hemostats such as oxidized regenerated cellulose (ORC, TABOTAMP) and oxidized non-regenerated cellulose (ONRC, RESORBA CELL) influence local cellular behavior and contraction of the extracellular matrix (ECM). Human stromal fibroblasts were inoculated in vitro with ORC and ONRC. Cell proliferation was assayed over time, and migration was evaluated by Live Cell imaging microscopy. Fibroblasts grown in collagen-gels were treated with ORC or ONRC, and ECM contraction was measured utilizing a contraction assay. An absolute pH decline was observed with both ORC and ONRC after 1 hour. Mean daily cell proliferation, migration and matrix contraction were more strongly inhibited by ONRC when compared with ORC (p < 0.05). When control media was pH-lowered to match the lower pH values typically seen with ORC and ONRC, significant differences in cell proliferation and migration were still observed between ONRC and ORC (p < 0.05). However, in these pH conditions, inhibition of matrix contraction was only significant for ONRC (p < 0.05). We find that ORC and ONRC inhibit fibroblast proliferation, migration and matrix contraction, and stronger inhibition of these essential cellular processes of wound healing were observed for ONRC when compared with ORC. These results will require further validation in future in vivo experiments to clarify the clinical implications for hemostat use in post-surgical wound healing. PMID:27557881

  14. Fatigue failure of osteocyte cellular processes: implications for the repair of bone.

    PubMed

    Dooley, C; Cafferky, D; Lee, T C; Taylor, D

    2014-01-01

    The physical effects of fatigue failure caused by cyclic strain are important and for most materials well understood. However, nothing is known about this mode of failure in living cells. We developed a novel method that allowed us to apply controlled levels of cyclic displacement to networks of osteocytes in bone. We showed that under cyclic loading, fatigue failure takes place in the dendritic processes of osteocytes at cyclic strain levels as low as one tenth of the strain needed for instantaneous rupture. The number of cycles to failure was inversely correlated with the strain level. Further experiments demonstrated that these failures were not artefacts of our methods of sample preparation and testing, and that fatigue failure of cell processes also occurs in vivo. This work is significant as it is the first time it has been possible to conduct fatigue testing on cellular material of any kind. Many types of cells experience repetitive loading which may cause failure or damage requiring repair. It is clinically important to determine how cyclic strain affects cells and how they respond in order to gain a deeper understanding of the physiological processes stimulated in this manner. The more we understand about the natural repair process in bone the more targeted the intervention methods may become if disruption of the repair process occurred. Our results will help to understand how the osteocyte cell network is disrupted in the vicinity of matrix damage, a crucial step in bone remodelling. PMID:24464727

  15. A Cellular Automata Based Model for Simulating Surface Hydrological Processes in Catchments

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Baumgartl, Thomas; Huang, Longbin; Weatherley, Dion

    2014-05-01

    The Runoff Model Based on Cellular Automata (RunCA) has been developed to simulate the surface hydrological processes at the catchment scale by integrating basic cellular automata (CA) rules with fundamental measureable hydraulic properties. In this model, a two-dimensional lattice composed of a series of rectangular cells was employed to cover the study area. Runoff production within each cell was simulated by determining its water depth based on the rainfall, interception, infiltration and the balance between inflows and outflows. Particularly different infiltration equations were incorporated to make the model applicable for both single rainfall event (short term simulation) and multiple rainfall events (long term simulation). The distribution of water flow among cells was determined by applying CA transition rules based on the improved minimization-of-difference algorithm and the calculated spatially and temporally varied flow velocities according to the Manning's equation. RunCA was tested and validated at two catchments (Pine Glen Basin and Snow Shoe Basin, USA) with data taken from literature. The predicted hydrographs agreed well with the measured results. Simulated flow maps also demonstrated the model capability in capturing both the spatial and temporal variations in the runoff process. Model sensitivity analysis results showed that the simulated hydrographs were mostly influenced by the input parameters that represent the final steady infiltration rate, as well as the model settings of time step and cell size. Compared to some conventional distributed hydrologic models that calculate the runoff routing process by solving complex continuity equations, this model integrates a novel method and is expected to be more computationally efficient as it is based on simple CA transition rules when determining the flow distribution.

  16. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio

  17. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids.

    PubMed Central

    Keller, R; Fischer, W; Keist, R; Bassetti, S

    1992-01-01

    Lipoteichoic acids (LTAs) from various bacterial species, including Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Listeria monocytogenes, were examined for the ability to induce secretory and cellular responses in a pure population of bone marrow-derived mononuclear phagocytes. Some of the highly purified LTAs, in particular LTAs from Bacillus subtilis, S. pyogenes, E. faecalis, and Enterococcus hirae, were able to affect each of the macrophage parameters measured, i.e., reductive capacity, secretion of tumor necrosis factor and nitrite, and tumoricidal activity. As after stimulation with whole organisms or other bacterial products, secretion of tumor necrosis factor induced by these LTAs reached its maximum within the first few hours of the interaction, while secretion of nitrite and tumoricidal activity required 24 to 36 h for full expression. Other purified LTAs, i.e., LTAs from Streptococcus sanguis, S. pneumoniae, and L. monocytogenes, as well as lipomannan from Micrococcus luteus affected only some of these parameters, while native LTA from S. aureus was inactive. There was no obvious correlation between biological activity and chain length, kind of glycosyl substituents, glycolipid structures, or fatty acid composition of LTAs. Deacylation of LTAs resulted in a complete loss of activity, and deacylated LTAs did not impair the activity of their acylated counterparts, suggesting that acyl chains may be essential for binding of LTA to the cell surface. The results demonstrate that some LTA species are potent inducers of macrophage secretory and cellular activities. PMID:1500175

  18. NMDA-R inhibition affects cellular process formation in Tilapia melanocytes; a model for pigmented adrenergic neurons in process formation and retraction.

    PubMed

    Ogundele, Olalekan Michael; Okunnuga, Adetokunbo Adedotun; Fabiyi, Temitope Deborah; Olajide, Olayemi Joseph; Akinrinade, Ibukun Dorcas; Adeniyi, Philip Adeyemi; Ojo, Abiodun Ayodele

    2014-06-01

    elongation of secondary cellular processes (highly branched) from primary major processes (Less branched); co-incubation of glutamate and ketamine induced short and highly branched process formation. Cyanide toxicity induced degeneration and reduction of cell size while co-treatment of cyanide and ketamine gave changes similar to that observed in glutamate-ketamine co-incubation. NMDA-R is present in the melanocytes. Activation of the receptor reduced elongation process, while inhibition of the receptor facilitated cell process elongation and branching. This confirms that like pigmented adrenergic cells of the nervous system, this cell contains NMDA-R and this receptor also regulates cell process elongation. The study also showed that inhibition of NMDA-R in melanocytes gave opposite outcomes to the role of the receptor in developing neurons; a function that is protective in adult neurons. PMID:24242214

  19. Antioxidant activity, cellular bioavailability, and iron and calcium management of neuroprotective and nonneuroprotective flavones.

    PubMed

    Echeverry, Carolina; Arredondo, Florencia; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Midiwo, Jacob; Dajas, Federico

    2015-01-01

    Few studies have been undertaken on the relationship of the structure of flavones and neuroprotection. Previously, we described the structural determinants of the neuroprotective activity of some natural flavones in cerebellar granule neurons in culture against an oxidative insult (H2O2). In the present work, we analyzed anti-oxidant activity, cellular iron, and Ca(2+) levels and cellular bioavailability of neuroprotective and nonneuroprotective flavones in the same experimental paradigm. Oxidative cellular damage produced by H2O2 was prevented by all of the studied flavones with rather similar potency for all of them. Labile Iron Pool was neither affected by protective nor nonprotective flavones. Intracellular Ca(2+) homeostasis was not affected by protective flavones either. Nonetheless, fisetin, the nonprotective flavone, decreased Ca(2+) levels modifying Ca(2+) homeostasis. Methylation of the catechol group, although weakens anti-oxidant capacity, keeps the neuroprotective capacity with less degradation and lower toxicity, constituting promising structural alternatives as leads for the design of neuroprotective molecules. PMID:24972590

  20. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models

    PubMed Central

    Seervi, M; Joseph, J; Sobhan, P K; Bhavya, B C; Santhoshkumar, T R

    2011-01-01

    Mitochondrial cytochrome c (cyt. c) release and caspase activation are often impaired in tumors with Bcl-2 overexpression or Bax and Bak-defective status. Direct triggering of cell death downstream of Bax and Bak is an attractive strategy to kill such cancers. Small molecule compounds capable of direct caspase activation appear to be the best mode for killing such tumors. However, there is no precise model to screen such compounds. The currently employed cell-free systems possess the inherent drawback of lacking cellular contents and organelles that operate in integrating cell death signaling. We have developed highly refined cell-based approaches to validate direct caspase activation in cancer cells. Using this approach, we show that PAC-1 (first procaspase-activating compound), the first direct activator of procaspases identified in a cell-free system, in fact requires mitochondrial cyt. c release for triggering caspase activation similar to other antitumor agents. It can induce significant caspase activation and cell death in the absence of Bax and Bak, and in cells overexpressing Bcl-2 and Bcl-xL. This study for the first time defines precise criteria for the validation of direct caspase-activating compounds using specialized cellular models that is expected to accelerate the discovery of potential direct caspase activators. PMID:21900958

  1. Role of diacylglycerol kinase in cellular regulatory processes: a new regulator for cardiomyocyte hypertrophy.

    PubMed

    Takeishi, Yasuchika; Goto, Kaoru; Kubota, Isao

    2007-09-01

    Diacylglycerol (DAG) kinase (DGK) phosphorylates and converts DAG to phosphatidic acid. DGK regulates cellular DAG levels and attenuates DAG signaling. The 10 mammalian DGK isoforms have been identified to date. In cardiac myocytes, DGKalpha, epsilon, and zeta are expressed, and DGKzeta is the predominant isoform. DGKzeta inhibits protein kinase C (PKC) activation and subsequent hypertrophic programs in response to endothelin-1 (ET-1) in neonatal rat cardiomyocytes. DGKzeta blocks cardiac hypertrophy induced by G protein-coupled receptor agonists and pressure overload in vivo. DGKzeta attenuates ventricular remodeling and improves survival after myocardial infarction. These data provide a novel insight for subcellular mechanisms of cardiac hypertrophy and heart failure, and DGKzeta may be a new therapeutic target to prevent cardiac hypertrophy and progression to heart failure. PMID:17659347

  2. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity.

    PubMed

    Li, Ruibin; Wang, Xiang; Ji, Zhaoxia; Sun, Bingbing; Zhang, Haiyuan; Chang, Chong Hyun; Lin, Sijie; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Li, Zongxi; Hwang, Angela A; Song, Tze-Bin; Xu, Run; Yang, Yang; Zink, Jeffrey I; Nel, André E; Xia, Tian

    2013-03-26

    Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored. In this study, we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes' pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylate (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2), and polyetherimide (PEI)-modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs and comprehensively characterized by TEM, XPS, FTIR, and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size, and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1, and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity toward lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEI-MWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis. These

  3. The Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity

    PubMed Central

    Li, Ruibin; Wang, Xiang; Ji, Zhaoxia; Sun, Bingbing; Zhang, Haiyuan; Chang, Chong Hyun; Lin, Sijie; Meng, Huan; Liao, Yu-Pei; Wang, Meiying; Li, Zongxi; Hwang, Angela; Song, Tze-Bin; Xu, Run; Yang, Yang; Zink, Jeffrey I.; Nel, André E.; Xia, Tian

    2014-01-01

    Functionalized carbon nanotubes (f-CNTs) are being produced in increased volume because of the ease of dispersion and maintenance of the pristine material physicochemical properties when used in composite materials as well as for other commercial applications. However, the potential adverse effects of f-CNTs have not been quantitatively or systematically explored, and in this study we used a library of covalently functionalized multiwall carbon nanotubes (f-MWCNTs), established from the same starting material, to assess the impact of surface charge in a predictive toxicological model that relates the tubes’ pro-inflammatory and pro-fibrogenic effects at cellular level to the development of pulmonary fibrosis. Carboxylated (COOH), polyethylene glycol (PEG), amine (NH2), sidewall amine (sw-NH2) and polyetherimide (PEI) modified MWCNTs were successfully established from raw or as-prepared (AP-) MWCNTs, and comprehensively characterized by TEM, XPS, FTIR and DLS to obtain information about morphology, length, degree of functionalization, hydrodynamic size and surface charge. Cellular screening in BEAS-2B and THP-1 cells showed that, compared to AP-MWCNTs, anionic functionalization (COOH and PEG) decreased the production of pro-fibrogenic cytokines and growth factors (including IL-1β, TGF-β1 and PDGF-AA), while neutral and weak cationic functionalization (NH2 and sw-NH2) showed intermediary effects. In contrast, the strongly cationic PEI-functionalized tubes induced robust biological effects. These differences could be attributed to differences in cellular uptake and NLRP3 inflammasome activation, which depends on the propensity towards lysosomal damage and cathepsin B release in macrophages. Moreover, the in vitro hazard ranking was validated by the pro-fibrogenic potential of the tubes in vivo. Compared to pristine MWCNTs, strong cationic PEIMWCNTs induced significant lung fibrosis, while carboxylation significantly decreased the extent of pulmonary fibrosis

  4. Examining the connectivity between different cellular processes in the Barrett tissue microenvironment.

    PubMed

    Phelan, J J; Feighery, R; Eldin, O S; Meachair, S Ó; Cannon, A; Byrne, R; MacCarthy, F; O'Toole, D; Reynolds, J V; O'Sullivan, J

    2016-02-28

    In Barrett associated tumorigenesis, oxidative phosphorylation and glycolysis are reprogrammed early in the disease sequence and act mutually to promote disease progression. However, the link between energy metabolism and its connection with other central cellular processes within the Barrett microenvironment is unknown. The aim of this study was to examine the relationship between metabolism (ATP5B/GAPDH), hypoxia (HIF1α), inflammation (IL1β/SERPINA3), p53 and obesity status using in-vivo and ex-vivo models of Barrett oesophagus. At the protein level, ATP5B (r = 0.71, P < 0.0001) and p53 (r = 0.455, P = 0.015) were found to be strongly associated with hypoxia. In addition, levels of ATP5B (r = 0.53, P = 0.0031) and GAPDH (r = -0.39, P = 0.0357) were positively associated with p53 expression. Moreover, we demonstrate that ATP5B (r = 0.8, P < 0.0001) and GAPDH (r = 0.43, P = 0.022) were positively associated with IL1β expression. Interestingly, obesity was negatively associated with oxidative phosphorylation (r = -0.6016, P = 0.0177) but positively associated with glycolysis (r = 0.743, P = 0.0015). Comparable correlations were exhibited in the ex-vivo explant tissue between metabolism, p53, hypoxia, inflammation and angiogenesis (P < 0.05). We have shown that metabolism is closely linked with many cellular processes in the Barrett tissue microenvironment. PMID:26688097

  5. Regulation of cellular signals from nutritional molecules: a specific role for phytochemicals, beyond antioxidant activity.

    PubMed

    Virgili, Fabio; Marino, Maria

    2008-11-01

    Phytochemicals (PhC) are a ubiquitous class of plant secondary metabolites. A "recommended" human diet should warrant a high proportion of energy from fruits and vegetables, therefore providing, among other factors, a huge intake of PhC, in general considered "health promoting" by virtue of their antioxidant activity and positive modulation, either directly or indirectly, of the cellular and tissue redox balance. Diet acts through multiple pathways and the association between the consumption of specific food items and the risk of degenerative diseases is extremely complex. Recent literature suggests that molecules having a chemical structure compatible with a putative antioxidant capacity can actually "perform" activities and roles independent of such capacity, interacting with cellular functions at different levels, such as affecting enzyme activities, binding to membrane or nuclear receptors as either an elective ligand or a ligand mimic. Inductive or signaling effects may occur at concentrations much lower than that required for effective antioxidant activity. Therefore, the "antioxidant hypothesis" is to be considered in some cases an intellectual "shortcut" possibly biasing the real understanding of the molecular mechanisms underlying the beneficial effects of various classes of food items. In the past few years, many exciting new indications elucidating the mechanisms of polyphenols have been published. Here, we summarize the current knowledge of the mechanisms by which specific molecules of nutritional interest, and in particular polyphenols, play a role in cellular response and in preventing pathologies. In particular, their direct interaction with nuclear receptors and their ability to modulate the activity of key enzymes involved in cell signaling and antioxidant responses are presented and discussed. PMID:18762244

  6. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides

    SciTech Connect

    Brodie, A.E.; Reed, D.J. )

    1990-01-01

    The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.

  7. Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662

    PubMed Central

    Ducommun, Serge; Ford, Rebecca J.; Bultot, Laurent; Deak, Maria; Bertrand, Luc; Kemp, Bruce E.; Steinberg, Gregory R.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Activation of AMPK provides beneficial outcomes in fighting against metabolic disorders such as insulin resistance and type 2 diabetes. Currently, there is no allosteric AMPK activator available for the treatment of metabolic diseases, and limited compounds are available to robustly stimulate cellular/tissue AMPK in a specific manner. Here we investigated whether simultaneous administration of two different pharmacological AMPK activators, which bind and act on different sites, would result in an additive or synergistic effect on AMPK and its downstream signaling and physiological events in intact cells. We observed that cotreating primary hepatocytes with the AMP mimetic 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) and a low dose (1 μM) of the allosteric activator A769662 produced a synergistic effect on AMPK Thr172 phosphorylation and catalytic activity, which was associated with a more profound increase/decrease in phosphorylation of downstream AMPK targets and inhibition of hepatic lipogenesis compared with single-compound treatment. Mechanistically, we found that cotreatment does not stimulate LKB1, upstream kinase for AMPK, but it protects against dephosphorylation of Thr172 phosphorylation by protein phosphatase PP2Cα in an additive manner in a cell-free assay. Collectively, we demonstrate that AICAR sensitizes the effect of A769662 and promotes AMPK activity and its downstream events. The study demonstrates the feasibility of promoting AMPK activity by using two activators with distinct modes of action in order to achieve a greater activation of AMPK and downstream signaling. PMID:24425763

  8. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models

    PubMed Central

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q.

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  9. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models.

    PubMed

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  10. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions

    PubMed Central

    Heistermann, Michael; Higham, James P.

    2015-01-01

    Studying immunity and immune function in ecology and evolution requires field studies, but there has been a dearth of non-invasive markers of immune activation available for studying large wild mammals. Recently, we analytically and biologically validated the measurement of urinary neopterin (NEO), a biomarker of cellular immune activation, in captive macaques. However, applying this to free-ranging settings is complicated by issues involving sample collection, processing, storage, and transport. Here, we collected urine samples from captive macaques and undertook experiments simulating common field issues. We tested the effects on urinary NEO sample measurements following: dirt and faecal contamination; storage at room temperature; differences in processing and long-term storage methods (freezing, lyophilising, blotting onto filter paper); and freeze-thaw cycles. Our results show that concentrations of urinary NEO are highly stable – they are not affected by soil or faecal contamination, can be collected on filter paper and stored for many months frozen or lyophilised with minimal effect, and are resistant to multiple 24 hr freeze-thaws. With the addition of a biocidal preservative, concentrations are even stable at room temperature for long periods. Urinary NEO is remarkably resilient, and is highly suitable for non-invasive field studies of cellular immune responses in wild large mammals. PMID:26549509

  11. Regulatory aspects of cellular therapy product in Europe: JACIE accreditation in a processing facility.

    PubMed

    Caunday, Olivia; Bensoussan, Danièle; Decot, Véronique; Bordigoni, Pierre; Stoltz, Jean François

    2009-01-01

    In 1997, the Joint Accreditation Committee ISCT & EBMT (JACIE) was created. The following year, it approved the first edition of standards for haemopoietic progenitor cell collection, processing and transplantation. The purpose of the standards is to ensure a minimal level of quality, alertness and homogeneity in the implementation of autologous and allogeneic haemopoietic stem cell transplantation (HSCT) programme in onco-hematology. The acquisition of accreditation is based upon the system of examination by trained medical professionals according to countries endorsements with the national regulation obligations applicable to HSCT. In 2008, the fourth edition has been launched. The range of application of the standards comprises both donors and recipients, and all phases of collection, processing, storage and administration of haemopoietic progenitor cells. Among the accredited processing facilities, a few have been integrated JACIE standards into their existing management quality system which is inspected by national health authority. In France, the comparison between JACIE standards and the good manufacturing practices of cellular therapy product reveals some common points and some differences to apply. PMID:20042804

  12. Synthesis of amphiphilic seleninic acid derivatives with considerable activity against cellular membranes and certain pathogenic microbes.

    PubMed

    Du, Peng; Viswanathan, Uma M; Xu, Zhanjie; Ebrahimnejad, Hadi; Hanf, Benjamin; Burkholz, Torsten; Schneider, Marc; Bernhardt, Ingolf; Kirsch, Gilbert; Jacob, Claus

    2014-03-30

    Selenium compounds play a major role in Biology, where they are often associated with pronounced antioxidant activity or toxicity. Whilst most selenium compounds are not necessarily hazardous, their often selective cytotoxicity is interesting from a biochemical and pharmaceutical perspective. We have synthesized a series of amphiphilic molecules which combine a hydrophilic seleninic acid head group - which at the same time serves as thiol-specific warhead - with a hydrophobic tail. These molecules possess a surface activity similar to the one of SDS, yet their biological activity seems to exceed by far the one of a simple surfactant (e.g. SDS) or seleninic acid (e.g. phenyl seleninic acid). Such compounds effectively haemolyse Red Blood Cells and exhibit pronounced activity against Saccharomyces cerevisiae. From a chemical perspective, the seleninic warheads are likely to attack crucial cysteine proteins of the cellular thiolstat. PMID:24491370

  13. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation.

    PubMed Central

    Stack, M S; Gately, S; Bafetti, L M; Enghild, J J; Soff, G A

    1999-01-01

    Angiostatin, a kringle-containing fragment of plasminogen, is a potent inhibitor of angiogenesis. The mechanism(s) responsible for the anti-angiogenic properties of angiostatin are unknown. We now report that human angiostatin blocks plasmin(ogen)-enhanced in vitro invasion of tissue plasminogen activator (t-PA)-producing endothelial and melanoma cells. Kinetic analyses demonstrated that angiostatin functions as a non-competitive inhibitor of extracellular-matrix (ECM)-enhanced, t-PA-catalysed plasminogen activation, with a Ki of 0.9+/-0.03 microM. This mechanism suggests that t-PA has a binding site for the inhibitor angiostatin, as well as for its substrate plasminogen that, when occupied, prevents ternary complex formation between t-PA, plasminogen and matrix protein. Direct binding experiments confirmed that angiostatin bound to t-PA with an apparent Kd [Kd(app)] of 6.7+/-0.7 nM, but did not bind with high affinity to ECM proteins. Together, these data suggest that angiostatin in the cellular micro-environment can inhibit matrix-enhanced plasminogen activation, resulting in reduced invasive activity, and suggest a biochemical mechanism whereby angiostatin-mediated regulation of plasmin formation could influence cellular migration and invasion. PMID:10229661

  14. Opportunistic activation of TRP receptors by endogenous lipids: Exploiting lipidomics to understand TRP receptor cellular communication

    PubMed Central

    Bradshaw, Heather B.; Raboune, Siham; Hollis, Jennifer L.

    2012-01-01

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining “orphans”. That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are “promiscuous” in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically “opportunistic” in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an “orphan” lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. PMID:23178153

  15. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN

    PubMed Central

    Davidson, Lindsay; Maccario, Helene; Perera, Nevin M.; Yang, Xuesong; Spinelli, Laura; Tibarewal, Priyanka; Glancy, Ben; Gray, Alex; Weijer, Cornelis J.; Downes, C. Peter; Leslie, Nick R.

    2009-01-01

    PTEN is a tumour suppressor with phosphatase activity in vitro against both lipids and proteins and other potential non-enzymatic mechanisms of action. Although the importance of PTEN’s lipid phosphatase activity in regulating the PI3K signalling pathway is recognised, the significance of PTEN’s other mechanisms of action is currently unclear. Here, we describe the systematic identification of a PTEN mutant, PTEN Y138L, with activity against lipid, but not soluble substrates. Using this mutant we provide evidence for the interfacial activation of PTEN against lipid substrates. We also show that when re-expressed at physiological levels in PTEN null U87MG glioblastoma cells the protein phosphatase activity of PTEN is not required to regulate cellular PtdInsP3 levels or the downstream protein kinase Akt/PKB. Finally, in 3D Matrigel cultures of U87MG cells similarly re-expressing PTEN mutants, both the protein and lipid phosphatase activities were required to inhibit invasion, but either activity alone significantly inhibited proliferation, albeit only weakly for the protein phosphatase activity. Our data provides a novel tool to address the significance of PTEN’s separable lipid and protein phosphatase activities and suggest that both activities act to suppress proliferation and act together to suppress invasion. PMID:19915616

  16. Apoptotic human neutrophil peptide-1 anti-tumor activity revealed by cellular biomechanics.

    PubMed

    Gaspar, Diana; Freire, João M; Pacheco, Teresa R; Barata, João T; Castanho, Miguel A R B

    2015-02-01

    Cancer remains a major cause of morbidity and mortality worldwide. Although progress has been made regarding chemotherapeutic agents, new therapies that combine increased selectivity and efficacy with low resistance are still needed. In the search for new anticancer agents, therapies based on biologically active peptides, in particular, antimicrobial peptides (AMPs), have attracted attention for their decreased resistance development and low cytotoxicity. Many AMPs have proved to be tumoricidal agents against human cancer cells, but their mode of action is still controversial. The existence of common properties shared by the membranes of bacteria and tumor cells points to similar lipid-targeting mechanisms in both cases. On the other hand, anticancer peptides (ACPs) also induce apoptosis and inhibit angiogenesis. Human neutrophil peptide-1 (HNP-1) is an endogenous AMP that has been implicated in different cellular phenomena such as tumor proliferation. The presence of HNP-1 in the serum/plasma of oncologic patients turns this peptide into a potential tumor biomarker. The present work reveals the different effects of HNP-1 on the biophysical and nanomechanical properties of solid and hematological tumor cells. Studies on cellular morphology, cellular stiffness, and membrane ultrastructure and charge using atomic force microscopy (AFM) and zeta potential measurements show a preferential binding of HNP-1 to solid tumor cells from human prostate adenocarcinoma when compared to human leukemia cells. AFM also reveals induction of apoptosis with cellular membrane defects at very low peptide concentrations. Understanding ACPs mode(s) of action will certainly open innovative pathways for drug development in cancer treatment. PMID:25447543

  17. The role of cellular coupling in the spontaneous generation of electrical activity in uterine tissue.

    PubMed

    Xu, Jinshan; Menon, Shakti N; Singh, Rajeev; Garnier, Nicolas B; Sinha, Sitabhra; Pumir, Alain

    2015-01-01

    The spontaneous emergence of contraction-inducing electrical activity in the uterus at the beginning of labor remains poorly understood, partly due to the seemingly contradictory observation that isolated uterine cells are not spontaneously active. It is known, however, that the expression of gap junctions increases dramatically in the approach to parturition, by more than one order of magnitude, which results in a significant increase in inter-cellular electrical coupling. In this paper, we build upon previous studies of the activity of electrically excitable smooth muscle cells (myocytes) and investigate the mechanism through which the coupling of these cells to electrically passive cells results in the generation of spontaneous activity in the uterus. Using a recently developed, realistic model of uterine muscle cell dynamics, we investigate a system consisting of a myocyte coupled to passive cells. We then extend our analysis to a simple two-dimensional lattice model of the tissue, with each myocyte being coupled to its neighbors, as well as to a random number of passive cells. We observe that different dynamical regimes can be observed over a range of gap junction conductances: at low coupling strength, corresponding to values measured long before delivery, the activity is confined to cell clusters, while the activity for high coupling, compatible with values measured shortly before delivery, may spread across the entire tissue. Additionally, we find that the system supports the spontaneous generation of spiral wave activity. Our results are both qualitatively and quantitatively consistent with observations from in vitro experiments. In particular, we demonstrate that the increase in inter-cellular electrical coupling observed experimentally strongly facilitates the appearance of spontaneous action potentials that may eventually lead to parturition. PMID:25793276

  18. Concurrent measurement of cellular turbidity and hemoglobin to evaluate the antioxidant activity of plants.

    PubMed

    Bellik, Yuva; Iguer-Ouada, Mokrane

    2016-01-01

    In past decades, a multitude of analytical methods for measuring antioxidant activity of plant extracts has been developed. However, when using methods to determine hemoglobin released from human erythrocytes treated with ginger extracts, we found hemoglobin concentrations were significantly higher than in untreated control samples. This suggests in the presence of antioxidants that measuring hemoglobin alone is not sufficient to determine hemolysis. We show concurrent measurement of erythrocyte concentration and hemoglobin is essential in such assays, and describe a new protocol based on simultaneous measurement of cellular turbidity and hemoglobin. PMID:26212998

  19. Invariant Measures and Convergence Properties for Cellular Automaton 184 and Related Processes

    NASA Astrophysics Data System (ADS)

    Belitsky, Vladimir; Ferrari, Pablo A.

    2005-02-01

    Our results concern long time limit properties of a deterministic dynamics that is common for a wide class of processes that have been studied so far during at least last two decades. The most widely known process from this class is a cellular automaton that acquired number 184 in the classification of S. Wolfram. This CA 184 is being intensively used to model vehicular traffic. However, our results are mainly derived with help of another process that offers a helpful insight into the studied dynamics, it is a so-called Ballistic Annihilation Model (abbreviated by BA). BA is a model for chemical reaction A+B → inert. In BA, A and B-type particles move in opposite directions with velocities 1 and -1, respectively, and annihilate upon collisions. Certain results concerning BA and CA 184 are also formulated in terms of another process known as a Model of Surface Growth (SG, for short); the surface shape in this process behaves as the integrated profile of particle distribution in CA 184. Our results are as follows. First, we characterize the invariant measures of the dynamics in interest. The bulk of our effort is devoted to the characterization of those of them that are not translation invariant; we call them phase separating invariant measures. In the case of BA, such measures are concentrated on the configurations consisting of two converging infinite blocks of (not necessarily adjacent) particles. In the case of CA 184, a phase separating measure describes the transition from free traffic phase to jammed phase. We also analyze domains of attraction of invariant measures and rates of convergence to them. This analysis then allows us to express the long time limit of particle current in CA 184 as a function of certain characteristics of its initial distribution, when it is translation invariant. This expression has been used in a companion paper (V. Belitsky, J. Krug, E. J. Neves and G. Schütz, A cellular automaton model for two-lane traffic, J. Stat. phys.103

  20. Protease activated receptor-1 regulates macrophage-mediated cellular senescence: a risk for idiopathic pulmonary fibrosis

    PubMed Central

    Lin, Cong; Rezaee, Farhad; Waasdorp, Maaike; Shi, Kun; van der Poll, Tom

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive disease in part resulting from premature or mature cellular aging. Protease-activated receptor-1 (PAR-1) recently emerged as a critical component in the context of fibrotic lung diseases. Therefore, we aimed to study the role of macrophages in PAR-1-mediated idiopathic pulmonary fibrosis. The number of macrophages were significantly reduced in lungs of PAR-1 antagonist (P1pal-12) treated animals upon bleomycin instillation. In line with these data, PAR-1 stimulation increased monocyte/macrophage recruitment in response to epithelium injury in in vitro trans-well assays. Moreover, macrophages induced fibroblasts migration, differentiation and secretion of collagen, which were inhibited in the presence of TGF-β receptor inhibitors. Interestingly, these profibrotic effects were partially inhibited by treatment with the PAR-1 inhibitor P1pal-12. Using shRNA mediated PAR-1 knock down in fibroblasts, we demonstrate that fibroblast PAR-1 contributes to TGF-β activation and production. Finally, we show that the macrophage-dependent induction of PAR-1 driven TGF-β activation was mediated by FXa. Our data identify novel mechanisms by which PAR-1 stimulation on different cell types can contribute to IPF and identify macrophages as key players in PAR-1 dependent development of this devastating disease. IPF may result from cellular senescence mediated by macrophages in the lung. PMID:26474459

  1. How the Venus flytrap actively snaps: hydrodynamic measurements at the cellular level

    NASA Astrophysics Data System (ADS)

    Colombani, Mathieu; Forterre, Yoel; GEP Team

    2012-11-01

    Although they lack muscle, plants have evolved a remarkable range of mechanisms to create rapid motion, from the rapid folding of sensitive plants to seed dispersal. Of these spectacular examples that have long fascinated scientists, the carnivorous plant Venus flytrap, whose leaves snap together in a fraction of second to capture insects, has long been a paradigm for study. Recently, we have shown that this motion involves a snap-buckling instability due to the shell-like geometry of the leaves of the trap. However, the origin of the movement that allows the plant to cross the instability threshold and actively bend remains largely unknown. In this study, we investigate this active motion using a micro-fluidic pressure probe that gives direct hydraulic and mechanical measurements at the cellular level (osmotic pressure, cell membrane permeability, cell wall elasticity). Our results challenge the role of osmotically-driven water flows usually put forward to explain Venus flytrap's active closure.

  2. Effect of Cellular Location of Human Carboxylesterase 2 on CPT-11 Hydrolysis and Anticancer Activity

    PubMed Central

    Hsieh, Yuan-Ting; Lin, Hsuan-Pei; Chen, Bing-Mae; Huang, Ping-Ting; Roffler, Steve R.

    2015-01-01

    CPT-11 is an anticancer prodrug that is clinically used for the treatment of metastatic colorectal cancer. Hydrolysis of CPT-11 by human carboxylesterase 2 (CE2) generates SN-38, a topoisomerase I inhibitor that is the active anti-tumor agent. Expression of CE2 in cancer cells is under investigation for the tumor-localized activation of CPT-11. CE2 is normally expressed in the endoplasmic reticulum of cells but can be engineered to direct expression of active enzyme on the plasma membrane or as a secreted form. Although previous studies have investigated different locations of CE2 expression in cancer cells, it remains unclear if CE2 cellular location affects CPT-11 anticancer activity. In the present study, we directly compared the influence of CE2 cellular location on substrate hydrolysis and CPT-11 cytotoxicity. We linked expression of CE2 and enhanced green fluorescence protein (eGFP) via a foot-and-mouth disease virus 2A (F2A) peptide to facilitate fluorescence-activated cell sorting to achieve similar expression levels of ER-located, secreted or membrane-anchored CE2. Soluble CE2 was detected in the medium of cells that expressed secreted and membrane-anchored CE2, but not in cells that expressed ER-retained CE2. Cancer cells that expressed all three forms of CE2 were more sensitive to CPT-11 as compared to unmodified cancer cells, but the membrane-anchored and ER-retained forms of CE2 were consistently more effective than secreted CE2. We conclude that expression of CE2 in the ER or on the membrane of cancer cells is suitable for enhancing CPT-11 anticancer activity. PMID:26509550

  3. Paradoxical effects of ethoxidine, a topoisomerase I inhibitor, in the cellular processes leading to angiogenesis on endothelial cells.

    PubMed

    Clere, Nicolas; Faure, Sébastien; Helesbeux, Jean-Jacques; Duval, Olivier; Andriantsitohaina, Ramaroson

    2011-03-01

    Angiogenesis, a critical step in tumorigenesis, is defined by different processes leading to neovascularization. Topoisomerase I (Top I) is the target for some of the most successful anticancer drugs that decrease tumor cell proliferation. Ethoxidine, a benzo[c]phenanthridines derivative, camptothecin analogue, has been identified as a potent inhibitor of Top I in various cancer cell lines. This study was aimed to investigate the impact of ethoxidine on angiogenesis and cellular processes including migration, proliferation and adhesion since these processes play an important role in tumor progression. Ethoxidine was incubated for 24 h at low (10⁻⁹ M) and high (10⁻⁵ M) concentrations on two types of human endothelial cells: EaHy.926 and human umbilical endothelial cells. Vascular endothelial growth factor (VEGF, 20 ng/ml) was used as a positive control. Ethoxidine at low concentration increased cell proliferation and migration that was associated with enhanced metalloproteinase 2 expression and activity, whereas high concentration of ethoxidine inhibited all of these effects. The two concentrations of ethoxidine did not affect endothelial cell adhesion. Low concentration of ethoxidine increased VEGF expression and endothelial nitric oxide (NO) synthase expression, NO and superoxide anion productions, whereas high concentration of ethoxidine did not induce any effect. Taken together, the present results highlight paradoxical effects of ethoxidine on angiogenesis depending on the concentration used. This study underscores that in addition to its anti-proliferative properties, ethoxidine may affect the generation of vascular network in tumorigenesis. PMID:21135154

  4. A meta-analysis to evaluate the cellular processes regulated by the interactome of endogenous and over-expressed estrogen receptor alpha

    PubMed Central

    Simões, Joana; Amado, Francisco M.

    2015-01-01

    The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels. PMID:26097882

  5. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones

    PubMed Central

    2010-01-01

    Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to pregnenolone (the common

  6. New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: spectroscopic, electrochemistry, and cellular studies.

    PubMed

    Mura, F; Silva, T; Castro, C; Borges, F; Zuñiga, M C; Morales, J; Olea-Azar, C

    2014-12-01

    A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7-11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1-3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure-property- activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction. PMID:25236566

  7. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  8. mTORC1 signaling activates NRF1 to increase cellular proteasome levels

    PubMed Central

    Zhang, Yinan; Manning, Brendan D

    2015-01-01

    Defects in the maintenance of protein homeostasis, or proteostasis, has emerged as an underlying feature of a variety of human pathologies, including aging-related diseases. Proteostasis is achieved through the coordinated action of cellular systems overseeing amino acid availability, mRNA translation, protein folding, secretion, and degradation. The regulation of these distinct systems must be integrated at various points to attain a proper balance. In a recent study, we found that the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway, well known to enhance the protein synthesis capacity of cells while concordantly inhibiting autophagy, promotes the production of more proteasomes. Activation of mTORC1 genetically, through loss of the tuberous sclerosis complex (TSC) tumor suppressors, or physiologically, through growth factors or feeding, stimulates a transcriptional program involving the sterol-regulatory element binding protein 1 (SREBP1) and nuclear factor erythroid-derived 2-related factor 1 (NRF1; also known as NFE2L1) transcription factors leading to an increase in cellular proteasome content. As discussed here, our findings suggest that this increase in proteasome levels facilitates both the maintenance of proteostasis and the recovery of amino acids in the face of an increased protein load consequent to mTORC1 activation. We also consider the physiological and pathological implications of this unexpected new downstream branch of mTORC1 signaling. PMID:26017155

  9. Cellular immune activity in response to increased training of elite oarsmen prior to Olympic competition.

    PubMed

    Jakeman, P M; Weller, A; Warrington, G

    1995-06-01

    This study investigated the changes in urinary neopterin, a biochemical marker of cellular immune activity, in elite male rowers undertaking a progressive increase in training prior to Olympic competition. Twenty-seven male rowers of the 1992 Great Britain team provided daily urine samples for a 4-week period of training that included 17 days of altitude training and 10 days of heat acclimatization. The mean (+/- S.D.) ratio of neopterin/creatinine in urine increased from pre-training values of 135 +/- 32 to a peak of 219 +/- 121 mumol neopterin per mol creatinine on day 19 of training (P < 0.05). Changes in the ratio of neopterin/creatinine with training were found to be transient and highly variable between subjects, ranging from no change to peak values five-fold greater than baseline. On the basis of the in vivo measurement of cell-mediated immunity employed in this study, we conclude that elite athletes engaged in high-intensity training prior to competition show either no change or a moderate increase in cellular immune activation. PMID:7563287

  10. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins.

    PubMed

    Fuhrmann, Gregor; Serio, Andrea; Mazo, Manuel; Nair, Rekha; Stevens, Molly M

    2015-05-10

    Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their natural composition and selective cell interactions make them promising drug carriers. However, in order to harness their properties, efficient exogenous drug encapsulation methods need to be investigated. Here, EVs from various cellular origins (endothelial, cancer and stem cells) were produced and characterised for size and composition. Porphyrins of different hydrophobicities were employed as model drugs and encapsulated into EVs using various passive and active methods (electroporation, saponin, extrusion and dialysis). Hydrophobic compounds loaded very efficiently into EVs and at significantly higher amounts than into standard liposomes composed of phosphocholine and cholesterol using passive incubation. Moreover, loading into EVs significantly increased the cellular uptake by >60% and the photodynamic effect of hydrophobic porphyrins in vitro compared to free or liposome encapsulated drug. The active encapsulation techniques, with the saponin-assisted method in particular, allowed an up to 11 fold higher drug loading of hydrophilic porphyrins compared to passive methods. EVs loaded with hydrophilic porphyrins induced a stronger phototoxic effect than free drug in a cancer cell model. Our findings create a firm basis for the development of EVs as smart drug carriers based on straightforward and transferable methods. PMID:25483424

  11. Human immunodeficiency virus-induced pathology favored by cellular transmission and activation

    SciTech Connect

    Lewis, D.E.; Yoffe, B.; Bosworth, C.G.; Hollinger, F.B.; Rich, R.R.

    1988-03-01

    Epidemiological data suggest that transmission of human immunodeficiency virus (HIV) occurs primarily by transference of virally infected cells. However, the efficiency of lytic productive infection induced by HIV after transmission of cell-associated virus vs. free virus is difficult to assess. The present studies compare the extent of depletion of CD4+ (helper/inducer) T cells after mixing uninfected cells with either free HIV or irradiated HIV-infected allogeneic or autologous cells in vitro. Rapid CD4+ cellular depletion occurred only in cultures containing allogeneic infected cells or after addition of a nonspecific T cell activation signal to cultures with autologous infected cells. These in vitro observations strongly support the epidemiological implication that interactions between infected and uninfected cells are the most efficient means of transmission and HIV-induced cytopathology in vivo. They also provide direct support for the concept that immunological stimulation by foreign cells infected with HIV dramatically increases the likelihood of transmission. These in vitro observations suggest a model for the acquisition of HIV in vivo and the role of cellular activation in dissemination of the virus to uninfected cells in an infected individual.

  12. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    PubMed Central

    2010-01-01

    Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimer's disease (AD), and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4) and plasmalogen sufficient (HEK293) cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing ethanolamine plasmalogen (PlsEtn) present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1) levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells. PMID:20546600

  13. Sleep Deprivation and Divergent Toll-like Receptor-4 Activation of Cellular Inflammation in Aging

    PubMed Central

    Carroll, Judith E.; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C.; Yokomizo, Megumi; Seeman, Teresa E.; Irwin, Michael R.

    2015-01-01

    Objectives: Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Design, Setting, and Participants: Community-dwelling adults (n = 70) who were categorized as younger (25–39 y old, n = 21) and older (60–84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00–07:00), and recovery. Measurement and Results: Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Conclusion: Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. Citation: Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman TE, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging. SLEEP

  14. A software architecture for multi-cellular system simulations on graphics processing units.

    PubMed

    Jeannin-Girardon, Anne; Ballet, Pascal; Rodin, Vincent

    2013-09-01

    The first aim of simulation in virtual environment is to help biologists to have a better understanding of the simulated system. The cost of such simulation is significantly reduced compared to that of in vivo simulation. However, the inherent complexity of biological system makes it hard to simulate these systems on non-parallel architectures: models might be made of sub-models and take several scales into account; the number of simulated entities may be quite large. Today, graphics cards are used for general purpose computing which has been made easier thanks to frameworks like CUDA or OpenCL. Parallelization of models may however not be easy: parallel computer programing skills are often required; several hardware architectures may be used to execute models. In this paper, we present the software architecture we built in order to implement various models able to simulate multi-cellular system. This architecture is modular and it implements data structures adapted for graphics processing units architectures. It allows efficient simulation of biological mechanisms. PMID:23900760

  15. Focused Metabolite Profiling for Dissecting Cellular and Molecular Processes of Living Organisms in Space Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Regulatory control in biological systems is exerted at all levels within the central dogma of biology. Metabolites are the end products of all cellular regulatory processes and reflect the ultimate outcome of potential changes suggested by genomics and proteomics caused by an environmental stimulus or genetic modification. Following on the heels of genomics, transcriptomics, and proteomics, metabolomics has become an inevitable part of complete-system biology because none of the lower "-omics" alone provide direct information about how changes in mRNA or protein are coupled to changes in biological function. The challenges are much greater than those encountered in genomics because of the greater number of metabolites and the greater diversity of their chemical structures and properties. To meet these challenges, much developmental work is needed, including (1) methodologies for unbiased extraction of metabolites and subsequent quantification, (2) algorithms for systematic identification of metabolites, (3) expertise and competency in handling a large amount of information (data set), and (4) integration of metabolomics with other "omics" and data mining (implication of the information). This article reviews the project accomplishments.

  16. Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes

    PubMed Central

    Koman, Volodymyr B.; Santschi, Christian; Martin, Olivier J. F.

    2015-01-01

    The continuous measurement of uptake or release of biomarkers provides invaluable information for understanding and monitoring the metabolism of cells. In this work, a multiscattering-enhanced optical biosensor for the multiplexed, non-invasive, and continuous detection of hydrogen peroxide (H2O2), lactate and glucose is presented. The sensing scheme is based on optical monitoring of the oxidation state of the metalloprotein cytochrome c (cyt c). The analyte of interest is enzymatically converted into H2O2 leading to an oxidation of the cyt c. Contact microspotting is used to prepare nanoliter-sized sensing spots containing either pure cyt c, a mixture of cyt c with glucose oxidase (GOx) to detect glucose, or a mixture of cyt c with lactate oxidase (LOx) to detect lactate. The sensing spots are embedded in a multiscattering porous medium that enhances the optical signal. We achieve limits of detection down to 240 nM and 110 nM for lactate and glucose, respectively. A microfluidic embodiment enables multiplexed and crosstalk-free experiments on living organisms. As an example, we study the uptake of exogenously supplied glucose by the green algae Chlamydomonas reinhardtii and simultaneously monitor the stress-related generation of H2O2. This multifunctional detection scheme provides a powerful tool to study biochemical processes at cellular level. PMID:26203366

  17. Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes.

    PubMed

    Koman, Volodymyr B; Santschi, Christian; Martin, Olivier J F

    2015-07-01

    The continuous measurement of uptake or release of biomarkers provides invaluable information for understanding and monitoring the metabolism of cells. In this work, a multiscattering-enhanced optical biosensor for the multiplexed, non-invasive, and continuous detection of hydrogen peroxide (H2O2), lactate and glucose is presented. The sensing scheme is based on optical monitoring of the oxidation state of the metalloprotein cytochrome c (cyt c). The analyte of interest is enzymatically converted into H2O2 leading to an oxidation of the cyt c. Contact microspotting is used to prepare nanoliter-sized sensing spots containing either pure cyt c, a mixture of cyt c with glucose oxidase (GOx) to detect glucose, or a mixture of cyt c with lactate oxidase (LOx) to detect lactate. The sensing spots are embedded in a multiscattering porous medium that enhances the optical signal. We achieve limits of detection down to 240 nM and 110 nM for lactate and glucose, respectively. A microfluidic embodiment enables multiplexed and crosstalk-free experiments on living organisms. As an example, we study the uptake of exogenously supplied glucose by the green algae Chlamydomonas reinhardtii and simultaneously monitor the stress-related generation of H2O2. This multifunctional detection scheme provides a powerful tool to study biochemical processes at cellular level. PMID:26203366

  18. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  19. Blood biochemical and cellular changes during decompression and simulated extravehicular activity

    NASA Technical Reports Server (NTRS)

    Jauchem, J. R.; Waligora, J. M.; Johnson, P. C. Jr

    1990-01-01

    Blood biochemical and cellular parameters were measured in human subjects before and after exposure to a decompression schedule involving 6 h of oxygen prebreathing. The exposure was designed to simulate extravehicular activity for 6 h (subjects performed exercise while exposed to 29.6 kPa). There were no significant differences between blood samples from subjects who were susceptible (n = 11) versus those who were resistant (n = 27) to formation of venous gas emboli. Although several statistically significant (P less than 0.05) changes in blood parameters were observed following the exposure (increases in white blood cell count, prothrombin time, and total bilirubin, and decreases in triglycerides, very-low-density lipoprotein cholesterol, and blood urea nitrogen), the changes were small in magnitude and blood factor levels remained within normal clinical ranges. Thus, the decompression schedule used in this study is not likely to result in blood changes that would pose a threat to astronauts during extravehicular activity.

  20. Cellular but not humoral antibacterial activity of earthworms is inhibited by Aroclor 1254.

    PubMed

    Roch, P; Cooper, E L

    1991-12-01

    Earthworms, Eisenia fetida andrei and Lumbricus terrestris, exposed to Aroclor 1254, followed by infestation with Aeromonas hydrophila, elicited two types of responses. First, in E. fetida, there was no change in the LD50 nor in the in vitro antibacterial growth capacity of cell-free coelomic fluid. Thus, Aroclor exerts no influence on antibacterial proteins nor on the chloragogue cells responsible for their release. Second, in L. terrestris, both a high LD50 value and no antibacterial activity indicate that A. hydrophila was not pathogenic. The 10(4) times higher sensitivity of exposed L. terrestris suggests that Aroclor inhibits leukocyte activity since E. fetida eliminates nonpathogenic bacteria by a cellular mechanism. PMID:1723380

  1. Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits.

    PubMed

    Neufer, P Darrell; Bamman, Marcas M; Muoio, Deborah M; Bouchard, Claude; Cooper, Dan M; Goodpaster, Bret H; Booth, Frank W; Kohrt, Wendy M; Gerszten, Robert E; Mattson, Mark P; Hepple, Russell T; Kraus, William E; Reid, Michael B; Bodine, Sue C; Jakicic, John M; Fleg, Jerome L; Williams, John P; Joseph, Lyndon; Evans, Mary; Maruvada, Padma; Rodgers, Mary; Roary, Mary; Boyce, Amanda T; Drugan, Jonelle K; Koenig, James I; Ingraham, Richard H; Krotoski, Danuta; Garcia-Cazarin, Mary; McGowan, Joan A; Laughlin, Maren R

    2015-07-01

    The beneficial effects of physical activity (PA) are well documented, yet the mechanisms by which PA prevents disease and improves health outcomes are poorly understood. To identify major gaps in knowledge and potential strategies for catalyzing progress in the field, the NIH convened a workshop in late October 2014 entitled "Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits." Presentations and discussions emphasized the challenges imposed by the integrative and intermittent nature of PA, the tremendous discovery potential of applying "-omics" technologies to understand interorgan crosstalk and biological networking systems during PA, and the need to establish an infrastructure of clinical trial sites with sufficient expertise to incorporate mechanistic outcome measures into adequately sized human PA trials. Identification of the mechanisms that underlie the link between PA and improved health holds extraordinary promise for discovery of novel therapeutic targets and development of personalized exercise medicine. PMID:26073496

  2. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  3. Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide.

    PubMed

    Hallett, Ryan A; Zimmerman, Seth P; Yumerefendi, Hayretin; Bear, James E; Kuhlman, Brian

    2016-01-15

    Light-inducible dimers are powerful tools for cellular optogenetics, as they can be used to control the localization and activity of proteins with high spatial and temporal resolution. Despite the generality of the approach, application of light-inducible dimers is not always straightforward, as it is frequently necessary to test alternative dimer systems and fusion strategies before the desired biological activity is achieved. This process is further hindered by an incomplete understanding of the biophysical/biochemical mechanisms by which available dimers behave and how this correlates to in vivo function. To better inform the engineering process, we examined the biophysical and biochemical properties of three blue-light-inducible dimer variants (cryptochrome2 (CRY2)/CIB1, iLID/SspB, and LOVpep/ePDZb) and correlated these characteristics to in vivo colocalization and functional assays. We find that the switches vary dramatically in their dark and lit state binding affinities and that these affinities correlate with activity changes in a variety of in vivo assays, including transcription control, intracellular localization studies, and control of GTPase signaling. Additionally, for CRY2, we observe that light-induced changes in homo-oligomerization can have significant effects on activity that are sensitive to alternative fusion strategies. PMID:26474029

  4. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes

    PubMed Central

    Anta, B; Pérez-Rodríguez, A; Castro, J; García- Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  5. Altered calmodulin activity in fluphenazine-resistant mutant strains. Pleiotropic effect on development and cellular organization in Volvox carteri.

    PubMed

    Kurn, N; Sela, B A

    1981-12-01

    Genetically altered calmodulin activity in spontaneously derived mutant strains, which were selected for resistance to the toxic effect of a specific inhibitor, the phenothiazine drug fluphenazine, is demonstrated. Partially purified calmodulin preparations from wild-type and fluphenazine-resistant strains of the multicellular alga Volvox carteri, were tested for the ability to activate Ca2+-ATPase of the erythrocyte membranes, and the inhibition of this stimulatory activity by fluphenazine. Unlike the preparation obtained from wild-type cells, mutant calmodulin is shown to be insensitive to fluphenazine inhibition, in one case, and calmodulin from another strain was found to be inactive in vitro, i.e. it did not activate Ca2+-ATPase. The pleiotropic phenotype of the spontaneously derived mutant strains involved aberrant multicellular organization and hormone-independent commitment of the multipotent asexual reproductive cells, gonodia, to sexual development. These results clearly implicate calmodulin in the control of development and morphogenesis in this simple multicellular eukaryote. In addition, intracellular inhibition of calmodulin in wild-type cells is shown to block the morphogenic process of embryo inversion and to arrest motility. The availability of mutant calmodulin will facilitate further investigation of the role of this ubiquitous regulatory protein in the control of development and differentiation in multicellular eukarytes, as well as the fine structure/function relationship with regard to calmodulin modulation of a wide variety of cellular processes. PMID:6459931

  6. Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing.

    PubMed

    Nemenman, Ilya; Faeder, James R; Hlavacek, William S; Jiang, Yi; Wall, Michael E; Zilman, Anton

    2011-10-01

    This special issue consists of 11 original papers that elaborate on work presented at the Fourth Annual q-bio Conference on Cellular Information Processing, which was held on the campus of St John's College in Santa Fe, New Mexico, USA, 11-14 August 2010. Now in its fourth year, the q-bio conference has changed considerably over time. It is now well established and a major event in systems biology. The 2010 conference saw attendees from all continents (except Antarctica!) sharing novel results and participating in lively discussions at both the oral and poster sessions. The conference was oversubscribed and grew to 27 contributed talks, 16 poster spotlights and 137 contributed posters. We deliberately decreased the number of invited speakers to 21 to leave more space for contributed presentations, and the attendee feedback confirmed that the choice was a success. Although the q-bio conference has grown and matured, it has remained true to the original goal of being an intimate and dynamic event that brings together modeling, theory and quantitative experimentation for the study of cell regulation and information processing. Funded in part by a grant from NIGMS and by DOE funds through the Los Alamos National Laboratory Directed Research and Development program, the conference has continued to exhibit youth and vigor by attracting (and partially supporting) over 100 undergraduate, graduate and postdoctoral researchers. The associated q-bio summer school, which precedes the conference each year, further emphasizes the development of junior scientists and makes q-bio a singular event in its impact on the future of quantitative biology. In addition to an increased international presence, the conference has notably diversified its demographic representation within the USA, including increased participation from the southeastern corner of the country. One big change in the conference this year is our new publication partner, Physical Biology. Although we are very

  7. Restriction on an Energy-Dense Diet Improves Markers of Metabolic Health and Cellular Aging in Mice Through Decreasing Hepatic mTOR Activity

    PubMed Central

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald

    2015-01-01

    Abstract Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum–fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5′-adenosine monophosphate–activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation. PMID:25405871

  8. Theoretical aspects and modelling of cellular decision making, cell killing and information-processing in photodynamic therapy of cancer

    PubMed Central

    2013-01-01

    Background The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. Methods Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. Results Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. Conclusions

  9. QUANTITATIVE IN VITRO MEASUREMENT OF CELLULAR PROCESSES CRITICAL TO THE DEVELOPMENT OF NEURAL CONNECTIVITY USING HCA.

    EPA Science Inventory

    New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...

  10. Kresoxim methyl dissipation kinetics and its residue effect on soil extra-cellular and intra-cellular enzymatic activity in four different soils of India.

    PubMed

    Sabale, Rupali P; Shabeer T P, Ahammed; Utture, Sagar C; Banerjee, Kaushik; Oulkar, Dasharath P; Adsule, Pandurang G; Deshmukh, Madhukar B

    2015-01-01

    The rate of degradation of kresoxim methyl and its effect on soil extra-cellular (acid phosphatase, alkaline phosphatase and β-glucosidase) and intra-cellular (dehydrogenase) enzymes were explored in four different soils of India. In all the tested soils, the degradation rate was faster at the beginning, which slowed down with time indicating a non-linear pattern of degradation. Rate of degradation in black soil was fastest followed by saline, brown and red soils, respectively and followed 1st or 1st + 1st order kinetics with half-life ranging between 1-6 days for natural soil and 1-19 days for sterile soils. The rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Although small changes in enzyme activities were observed, kresoxim methyl did not have any significant deleterious effect on the enzymatic activity of the various test soils in long run. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily due to the effect of the incubation period rather than the effect of kresoxim methyl itself. PMID:25587778

  11. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes.

    PubMed

    Wang, Yao; Zhao, Gao-Xiang; Xu, Li-Hui; Liu, Kun-Peng; Pan, Hao; He, Jian; Cai, Ji-Ye; Ouyang, Dong-Yun; He, Xian-Hui

    2014-01-01

    Cucurbitacin IIb (CuIIb) is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A)-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1) and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+) T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65), it blocked the nuclear translocation of NF-κB (p65). In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response. PMID:24587010

  12. Cucurbitacin IIb Exhibits Anti-Inflammatory Activity through Modulating Multiple Cellular Behaviors of Mouse Lymphocytes

    PubMed Central

    Liu, Kun-Peng; Pan, Hao; He, Jian; Cai, Ji-Ye; Ouyang, Dong-Yun; He, Xian-Hui

    2014-01-01

    Cucurbitacin IIb (CuIIb) is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A)-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27Kip1 and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3+ T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65), it blocked the nuclear translocation of NF-κB (p65). In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response. PMID:24587010

  13. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity

    NASA Astrophysics Data System (ADS)

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G.; Achilefu, Samuel

    2013-04-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  14. Cellular localization of BARF1 oncoprotein and its cell stimulating activity in human epithelial cell.

    PubMed

    Sakka, Emna; Zur Hausen, Axel; Houali, Karim; Liu, Haying; Fiorini, Sylvie; Ooka, Tadamasa

    2013-06-01

    BARF1 gene encoded by Epstein-Barr virus is capable of immortalizing the primary monkey epithelial cells and of inducing malignant transformation in human EBV-negative B cell lines as well as rodent fibroblast. This oncoprotein is a secreted protein capable of acting as a powerful mitogen. We have studied the effect of BARF1 protein in transfected or BARF1 protein treated human HaCaT epithelial cells. In BARF1-transfected cells, cell growth was activated and its protein was found both in culture medium and cellular compartment (membrane, cytoplasm and nuclei). When purified BARF1 protein was exogenously added in the cell culture medium of HaCaT cells in absence of fetal calf serum led to its entrance into cells and its intracellular localization in cytoplasm, nuclear periphery and nuclei at 14h treatment, determined by confocal and immunoelectron microscopy. Cell fractionation confirmed its nuclear localization. Nuclear localization was observed in both systems. More interestingly, purified BARF1 protein p29 exogenously added in the cell culture medium activated cell passage of G1 to S phase. S phase activation by its autocrine activity and its tumorigenic activity would be associated with the development of EBV-associated carcinomas. PMID:23458996

  15. Mapping the crossroads of immune activation and cellular stress response pathways

    PubMed Central

    Cláudio, Nuno; Dalet, Alexandre; Gatti, Evelina; Pierre, Philippe

    2013-01-01

    The innate immune cell network detects specific microbes and damages to cell integrity in order to coordinate and polarize the immune response against invading pathogens. In recent years, a cross-talk between microbial-sensing pathways and endoplasmic reticulum (ER) homeostasis has been discovered and have attracted the attention of many researchers from the inflammation field. Abnormal accumulation of proteins in the ER can be seen as a sign of cellular malfunction and triggers a collection of conserved emergency rescue pathways. These signalling cascades, which increase ER homeostasis and favour cell survival, are collectively known as the unfolded protein response (UPR). The induction or activation by microbial stimuli of several molecules linked to the ER stress response pathway have led to the conclusion that microbe sensing by immunocytes is generally associated with an UPR, which serves as a signal amplification cascade favouring inflammatory cytokines production. Induction of the UPR alone was shown to promote inflammation in different cellular and pathological models. Here we discuss how the innate immune and ER-signalling pathways intersect. Moreover, we propose that the induction of UPR-related molecules by microbial products does not necessarily reflect ER stress, but instead is an integral part of a specific transcription programme controlled by innate immunity receptors. PMID:23584529

  16. Photonic crystals as templates and active devices for cellular and molecular interactions

    NASA Astrophysics Data System (ADS)

    Sonek, G. J.

    2005-04-01

    Photonic crystals are emerging as an important class of engineered nanophotonic devices that possess unique optical properties and which can also provide textured surfaces for the study and control of cellular and molecular interactions. From among the many types of photonic crystal structures, two-dimensional (2D) and planar (slab) photonic crystals are the most attractive because of their ability to support guided-wave and active optical devices in semiconductor and polymer materials, serve as templates for device replication, and interface with colloidal and nanoparticle systems. This paper reports on the results of modeling and design efforts that show how 2d and slab silicon photonic crystals, based on their in-plane optical waveguiding and out-of-plane radiation properties, might be used to probe surface-bound cells and molecules or perform localized spectroscopy. The results of a parametric analysis show that photonic crystals comprised of high-index contrast materials (e.g. Si, air) are sensitive to geometric and material factors, potentially making them an effective medium to study molecular and cellular interactions critical to a number of biotechnological applications

  17. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor.

    PubMed

    Liu, Wei; Sun, Cheng; Liao, Chunyang; Cui, Lin; Li, Haishan; Qu, Guangbo; Yu, Wenlian; Song, Naining; Cui, Yuan; Wang, Zheng; Xie, Wenping; Chen, Huiming; Zhou, Qunfang

    2016-07-27

    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety

  18. Active Degradation Explains the Distribution of Nuclear Proteins during Cellular Senescence

    PubMed Central

    Giampieri, Enrico; De Cecco, Marco; Remondini, Daniel; Sedivy, John; Castellani, Gastone

    2015-01-01

    The amount of cellular proteins is a crucial parameter that is known to vary between cells as a function of the replicative passages, and can be important during physiological aging. The process of protein degradation is known to be performed by a series of enzymatic reactions, ranging from an initial step of protein ubiquitination to their final fragmentation by the proteasome. In this paper we propose a stochastic dynamical model of nuclear proteins concentration resulting from a balance between a constant production of proteins and their degradation by a cooperative enzymatic reaction. The predictions of this model are compared with experimental data obtained by fluorescence measurements of the amount of nuclear proteins in murine tail fibroblast (MTF) undergoing cellular senescence. Our model provides a three-parameter stationary distribution that is in good agreement with the experimental data even during the transition to the senescent state, where the nuclear protein concentration changes abruptly. The estimation of three parameters (cooperativity, saturation threshold, and maximal velocity of the reaction), and their evolution during replicative passages shows that only the maximal velocity varies significantly. Based on our modeling we speculate the reduction of functionality of the protein degradation mechanism as a possible competitive inhibition of the proteasome. PMID:26115222

  19. Domain-Specific Activation of Death-Associated Intracellular Signalling Cascades by the Cellular Prion Protein in Neuroblastoma Cells.

    PubMed

    Vilches, Silvia; Vergara, Cristina; Nicolás, Oriol; Mata, Ágata; Del Río, José A; Gavín, Rosalina

    2016-09-01

    The biological functions of the cellular prion protein remain poorly understood. In fact, numerous studies have aimed to determine specific functions for the different protein domains. Studies of cellular prion protein (PrP(C)) domains through in vivo expression of molecules carrying internal deletions in a mouse Prnp null background have provided helpful data on the implication of the protein in signalling cascades in affected neurons. Nevertheless, understanding of the mechanisms underlying the neurotoxicity induced by these PrP(C) deleted forms is far from complete. To better define the neurotoxic or neuroprotective potential of PrP(C) N-terminal domains, and to overcome the heterogeneity of results due to the lack of a standardized model, we used neuroblastoma cells to analyse the effects of overexpressing PrP(C) deleted forms. Results indicate that PrP(C) N-terminal deleted forms were properly processed through the secretory pathway. However, PrPΔF35 and PrPΔCD mutants led to death by different mechanisms sharing loss of alpha-cleavage and activation of caspase-3. Our data suggest that both gain-of-function and loss-of-function pathogenic mechanisms may be associated with N-terminal domains and may therefore contribute to neurotoxicity in prion disease. Dissecting the molecular response induced by PrPΔF35 may be the key to unravelling the physiological and pathological functions of the prion protein. PMID:26250617

  20. Characteristics of Middle School Students Learning Actions in Outdoor Mathematical Activities with the Cellular Phone

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Baya'a, Nimer

    2012-01-01

    Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…

  1. Endothelin-1 activation of ETB receptors leads to a reduced cellular proliferative rate and an increased cellular footprint

    SciTech Connect

    Wilson, Jamie L.; Taylor, Linda; Polgar, Peter

    2012-06-10

    Endothelin-1 (ET-1) is a vasoactive peptide which signals through two G-protein coupled receptors, endothelin receptor A (ETA) and B (ETB). We determined that ET-1 activation of its ETB receptor in stably cDNA transfected CHO cells leads to a 55% reduction in cell number by end-point cell counting and a 35% decrease in cell growth by a real-time cell-substrate impedance-based assay after 24 h of cell growth. When CHO ETB cells were synchronized in the late G1 cell cycle phase, ET-1 delayed their S phase progression compared to control by 30% as determined by [{sup 3}H]-thymidine incorporation. On the other hand, no such delay was observed during late G2/M to G1 transit when cells were treated with ET-1 after release from mitotic arrest. Using the cell-substrate impedance-based assay, we observed that ET-1 induces opposing morphological changes in CHO ETA and CHO ETB cells with ETB causing an increase in the cell footprint and ETA a decrease. Likewise, in pulmonary artery smooth muscle cells, which express both ETA and ETB receptors, ET-1 induces an ETA-dependent contraction and an ETB dependent dilation. These results are shedding light on a possible beneficial role for ETB in diseases involving ET-1 dysfunction such as pulmonary hypertension. -- Highlights: Black-Right-Pointing-Pointer ET- hinders cell proliferation in CHO cells transfected with ETB. Black-Right-Pointing-Pointer ET-1 also decreases the rate of DNA synthesis in CHO ETB cells. Black-Right-Pointing-Pointer JNK and PI3K appear to be involved in this reduction of DNA synthesis. Black-Right-Pointing-Pointer ETB activation in CHO ETB cells and hSMCs leads to dilatory morphological changes. Black-Right-Pointing-Pointer In CHO ETA and hSMCs, ETA activation leads to constrictive morphological changes.

  2. The relationship between redox enzyme activity and electrochemical potential-cellular and mechanistic implications from protein film electrochemistry.

    PubMed

    Gates, Andrew J; Kemp, Gemma L; To, Chun Yip; Mann, James; Marritt, Sophie J; Mayes, Andrew G; Richardson, David J; Butt, Julea N

    2011-05-01

    In protein film electrochemistry a redox protein of interest is studied as an electroactive film adsorbed on an electrode surface. For redox enzymes this configuration allows quantification of the relationship between catalytic activity and electrochemical potential. Considered as a function of enzyme environment, i.e., pH, substrate concentration etc., the activity-potential relationship provides a fingerprint of activity unique to a given enzyme. Here we consider the nature of the activity-potential relationship in terms of both its cellular impact and its origin in the structure and catalytic mechanism of the enzyme. We propose that the activity-potential relationship of a redox enzyme is tuned to facilitate cellular function and highlight opportunities to test this hypothesis through computational, structural, biochemical and cellular studies. PMID:21423952

  3. Exosome poly-ubiquitin inhibits platelet activation, downregulates CD36, and inhibits pro-atherothombotic cellular functions

    PubMed Central

    Srikanthan, Sowmya; Li, Wei; Silverstein, Roy L.; McIntyre, Thomas M.

    2014-01-01

    Introduction Activated platelets shed microparticles from plasma membranes, but also release smaller exosomes from internal compartments. While microparticles participate in athero-thrombosis, little is known of exosomes in this process. Materials & Methods Ex vivo biochemical experiments with human platelets and exosomes, and FeCl3-induced murine carotid artery thrombosis. Results Both microparticles and exosomes were abundant in human plasma. Platelet-derived exosomes suppressed ex vivo platelet aggregation and reduced adhesion to collagen-coated microfluidic channels at high shear. Injected exosomes inhibited occlusive thrombosis in FeCl3-damaged murine carotid arteries. Control platelets infused into irradiated, thrombocytopenic mice reconstituted thrombosis in damaged carotid arteries, but failed to do so after prior ex vivo incubation with exosomes. CD36 promotes platelet activation, and exosomes dramatically reduced platelet CD36. CD36 is also expressed by macrophages where it binds and internalizes oxidized LDL and microparticles, supplying lipid to promote foam cell formation. Platelet exosomes inhibited oxidized-LDL binding and cholesterol loading into macrophages. Exosomes were not competitive CD36 ligands, but instead sharply reduced total macrophage CD36 content. Exosomal proteins, in contrast to microparticle or cellular proteins, were highly adducted by ubiquitin. Exosomes enhanced ubiquitination of cellular proteins, including CD36, and blockade of proteosome proteolysis with MG-132 rescued CD36 expression. Recombinant unanchored K48 poly-ubiquitin behaved similarly to exosomes, inhibiting platelet function, macrophage CD36 expression, and macrophage particle uptake. Conclusions Platelet-derived exosomes inhibit athero-thrombotic processes by reducing CD36-dependent lipid loading of macrophages and by suppressing platelet thrombosis. Exosomes increase protein ubiquitination, and enhance proteasome degradation of CD36. PMID:25163645

  4. Sleep Loss Activates Cellular Inflammation and Signal Transducer and Activator of Transcription (STAT) Family Proteins in Humans

    PubMed Central

    Irwin, Michael R.; Witarama, Tuff; Caudill, Marissa; Olmstead, Richard; Breen, Elizabeth Crabb

    2014-01-01

    Sleep disturbance and short sleep duration are associated with inflammation and related disorders including cardiovascular disease, arthritis, diabetes mellitus, and certain cancers. This study was undertaken to test the effects of experimental sleep loss on spontaneous cellular inflammation and activation of signal transducer and activator of transcription (STAT) family proteins, which together promote an inflammatory microenvironment. In 24 healthy adults (16 females; 8 males), spontaneous production of IL-6 and TNF in monocytes and spontaneous intranuclear expression of activated STAT1, STAT3, and STAT5 in peripheral blood mononuclear cells (PBMC), monocyte-, and lymphocyte populations were measured in the morning after uninterrupted baseline sleep, partial sleep deprivation (PSD, sleep period from 3 a.m. to 7 a.m.), and recovery sleep. Relative to baseline, spontaneous monocytic expression of IL-6 and TNF-α was significantly greater after PSD (P<0.02) and after recovery sleep (P<0.01). Relative to baseline, spontaneous monocytic expression of activated STAT 1 and STAT 5 was significantly greater after recovery sleep (P<0.007P<0.02, respectively) but not STAT 3 (P=0.09). No changes in STAT1, STAT3, or STAT5 were found in lymphocyte populations. Sleep loss induces activation of spontaneous cellular innate immunity and of STAT family proteins, which together map the dynamics of sleep loss on the molecular signaling pathways that regulate inflammatory and other immune responses. Treatments that target short sleep duration have the potential to constrain inflammation and reduce the risk for inflammatory disorders and some cancers in humans. PMID:25451613

  5. Silibinin Inhibits HIV-1 Infection by Reducing Cellular Activation and Proliferation

    PubMed Central

    McClure, Janela; Lovelace, Erica S.; Elahi, Shokrollah; Maurice, Nicholas J.; Wagoner, Jessica; Dragavon, Joan; Mittler, John E.; Kraft, Zane; Stamatatos, Leonidis; Horton, Helen; De Rosa, Stephen C.; Coombs, Robert W.; Polyak, Stephen J.

    2012-01-01

    Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects. PMID:22848626

  6. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    SciTech Connect

    Herr, Michael J.; Longhurst, Celia M.; Baker, Benjamin; Homayouni, Ramin; Speich, Henry E.; Kotha, Jayaprakash; Jennings, Lisa K.

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  7. Context Modulates the Expression of Conditioned Motor Sensitization, Cellular Activation, and Synaptophysin Immunoreactivity

    PubMed Central

    Rademacher, David J.; Celeste Napier, T.; Meredith, Gloria E.

    2007-01-01

    We tested the hypothesis that amphetamine- (AMPH) induced conditioned motor sensitization is accompanied by cellular activation (measured by Fos immunoreactivity) and synaptophysin immunoreactivity in reward-related brain areas. Forty-eight rats were tested for conditioned motor sensitization using a conditioning paradigm that was performed in a three-chambered apparatus. Rats underwent two drug pairings with 1.0 mg/kg AMPH in one outer chamber and, on alternate days, were paired with saline in the other. On the fifth day, relative to the first AMPH treatment, AMPH administration increased motor activity in the AMPH-paired context but not in the saline-paired context. Relative to the first saline treatment, saline on the fifth day produced a conditioned increase in motor activity when given in the chamber previously paired with AMPH, and saline given in the saline-paired context produced a conditioned decrease in motor activity. AMPH administered in the AMPH-paired context increased the density of both Fos and synaptophysin immunoreactivity in the dentate gyrus, cornu ammonis (CA)1, CA3, basolateral amygdala, and dorsolateral striatum. This pairing between context and drug increased Fos but not synaptophysin immunoreactivity in the nucleus accumbens core and shell. Saline administered in the AMPH-paired context increased the density of Fos immunoreactivity in the basolateral amygdala and nucleus accumbens core. These data indicate that the basolateral amygdala-nucleus accumbens core pathway is necessary for the context-elicited conditioned motor responses, while the hippocampus encodes the spatial context. PMID:17970739

  8. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission?

    PubMed Central

    Salari, Vahid; Scholkmann, Felix; Bokkon, Istvan; Shahbazi, Farhad; Tuszynski, Jack

    2016-01-01

    For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation. PMID:26950936

  9. Structure–Activity Relationship of Semicarbazone EGA Furnishes Photoaffinity Inhibitors of Anthrax Toxin Cellular Entry

    PubMed Central

    2014-01-01

    EGA, 1, prevents the entry of multiple viruses and bacterial toxins into mammalian cells by inhibiting vesicular trafficking. The cellular target of 1 is unknown, and a structure–activity relationship study was conducted in order to develop a strategy for target identification. A compound with midnanomolar potency was identified (2), and three photoaffinity labels were synthesized (3–5). For this series, the expected photochemistry of the phenyl azide moiety is a more important factor than the IC50 of the photoprobe in obtaining a successful photolabeling event. While 3 was the most effective reversible inhibitor of the series, it provided no protection to cells against anthrax lethal toxin (LT) following UV irradiation. Conversely, 5, which possessed weak bioactivity in the standard assay, conferred robust irreversible protection vs LT to cells upon UV photolysis. PMID:24900841

  10. Insight into the impact of dietary saturated fat on tissue-specific cellular processes underlying obesity-related diseases☆

    PubMed Central

    Enos, Reilly T.; Velázquez, Kandy T.; Murphy, E. Angela

    2014-01-01

    This study investigated the influence of three high-fat diets (HFDs), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, 24%) but identical in total fat (40%), for a 16-week period in mice on a variety of tissue-specific cellular processes believed to be at the root of obesity-related diseases. Specifically, we examined ectopic lipid accumulation, oxidative capacity [peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA and protein; mtDNA; Cox IV and cytochrome C protein; citrate synthase activity; and gene expression of fission 1, mitofusin (Mfn) 1 and Mfn2], oxidative stress (4-hydroxy-2-nonenal), endoplasmic reticulum (ER) stress (binding immunoglobulin protein, activating transcription factor 6-p50, p-eukaryotic initiation factor 2 alpha and x-box binding protein 1 spliced protein), inflammatory [p-c-Jun N-terminal kinase (JNK), p-nuclear factor kappa-B, p-p38 mitogen-activated protein kinase) and insulin signaling (p-Akt), and inflammation [tumor necrosis factor-alpha, monocyte chemotactic protein-1, interleukin-6, F4/80, toll-like receptor (TLR)2 and TLR4 gene expression] in various tissues, including the adipose tissue, liver, skeletal muscle and heart. In general, adipose and hepatic tissues were the only tissues which displayed evidence of dysfunction. All HFDs down-regulated adipose, cardiac and hepatic PGC-1α mRNA and hepatic citrate synthase activity, and induced adipose tissue oxidative stress, whereas only the 6%-SF and 12%-SF diet produced hepatic steatosis. However, compared to the 6%-SF and 24%-SF diets, consumption of the 12%-SF diet resulted in the greatest degree of dysregulation (hepatic ER and oxidative stress, JNK activation, increased F4/80 gene expression and down-regulation of adipose tissue Akt signaling). These findings suggest that the saturated fatty acid composition of an HFD can greatly influence the processes responsible for obesity-related diseases — nonalcoholic fatty

  11. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  12. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions

    PubMed Central

    Brandao, Katherine; Deason-Towne, Francina; Zhao, Xiaoyun; Perraud, Anne-Laure; Schmitz, Carsten

    2014-01-01

    The channel kinases TRPM6 and TRPM7 are both members of the melastatin related transient receptor potential (TRPM) subfamily of ion channels and the only known fusions of an ion channel pore with a kinase domain. TRPM6 and TRPM7 form functional, tetrameric channel complexes at the plasma membrane by heteromerization. TRPM6 was previously shown to cross-phosphorylate TRPM7 on threonine residues, but not vice versa. Genetic studies demonstrated that TRPM6 and TRPM7 fulfill non-redundant functions, and that each channel contributes uniquely to the regulation of Mg2+ homeostasis. Although there are indications that TRPM6 and TRPM7 can influence each other’s cellular distribution and activity, little is known about the functional relationship between these two channel-kinases. In the present study, we examined how TRPM6 kinase activity influences TRPM7 serine phosphorylation, intracellular trafficking, and cell surface expression of TRPM7, as well as Mg2+-dependent cellular growth. We found TRPM7 serine phosphorylation via the TRPM6 kinase, but no TRPM6 serine phosphorylation via the TRPM7 kinase. Intracellular trafficking of TRPM7 was altered in HEK-293 epithelial kidney cells and DT40 B cells in the presence of TRPM6 with intact kinase activity, independently of the availability of extracellular Mg2+, but TRPM6/7 surface labeling experiments indicate comparable levels of the TRPM6/7 channels at the plasma membrane. Furthermore, using a complementation approach in TRPM7-deficient DT40 B-cells, we demonstrated that wildtype TRPM6 inhibited cell growth under hypomagnesic cell culture conditions in cells co-expressing TRPM6 and TRPM7, however co-expression of a TRPM6 kinase dead mutant had no effect – a similar phenotype was also observed in TRPM6/7 co-expressing HEK-293 cells. Our results provide first clues about how heteromer formation between TRPM6 and TRPM7 influences the biological activity of these ion channels. We show that TRPM6 regulates TRPM7 intracellular

  13. Cellular mechanisms of activity-dependent BDNF expression in primary sensory neurons.

    PubMed

    Vermehren-Schmaedick, A; Khanjian, R A; Balkowiec, A

    2015-12-01

    Brain-derived neurotrophic factor (BDNF) is abundantly expressed by both developing and adult rat visceral sensory neurons from the nodose ganglion (NG) in vivo and in vitro. We have previously shown that BDNF is released from neonatal NG neurons by activity and regulates dendritic development in their postsynaptic targets in the brainstem. The current study was carried out to examine the cellular and molecular mechanisms of activity-dependent BDNF expression in neonatal rat NG neurons, using our established in vitro model of neuronal activation by electrical field stimulation with patterns that mimic neuronal activity in vivo. We show that BDNF mRNA (transcript 4) increases over threefold in response to a 4-h tonic or bursting pattern delivered at the frequency of 6 Hz, which corresponds to the normal heart rate of a newborn rat. No significant increase in BDNF expression was observed following stimulation at 1 Hz. The latter effect suggests a frequency-dependent mechanism of regulated BDNF expression. In addition to BDNF transcript 4, which is known to be regulated by activity, transcript 1 also showed significant upregulation. The increases in BDNF mRNA were followed by BDNF protein upregulation of a similar magnitude after 24h of stimulation at 6 Hz. Electrical stimulation-evoked BDNF expression was inhibited by pretreating neurons with the blocker of voltage-gated sodium channels tetrodotoxin and by removing extracellular calcium. Moreover, our data show that repetitive stimulation-evoked BDNF expression requires calcium influx through N-, but not L-type, channels. Together, our study reveals novel mechanisms through which electrical activity stimulates de novo synthesis of BDNF in sensory neurons, and points to the role of N-type calcium channels in regulating BDNF expression in sensory neurons in response to repetitive stimulation. PMID:26459016

  14. Cellular Immune Activation in Cerebrospinal Fluid From Ugandans With Cryptococcal Meningitis and Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Meya, David B.; Okurut, Samuel; Zziwa, Godfrey; Rolfes, Melissa A.; Kelsey, Melander; Cose, Steve; Joloba, Moses; Naluyima, Prossy; Palmer, Brent E.; Kambugu, Andrew; Mayanja-Kizza, Harriet; Bohjanen, Paul R.; Eller, Michael A.; Wahl, Sharon M.; Boulware, David R.; Manabe, Yuka C.; Janoff, Edward N.

    2015-01-01

    Background. Human immunodeficiency virus (HIV)-associated cryptococcal meningitis (CM) is characterized by high fungal burden and limited leukocyte trafficking to cerebrospinal fluid (CSF). The immunopathogenesis of CM immune reconstitution inflammatory syndrome (IRIS) after initiation of antiretroviral therapy at the site of infection is poorly understood. Methods. We characterized the lineage and activation status of mononuclear cells in blood and CSF of HIV-infected patients with noncryptococcal meningitis (NCM) (n = 10), those with CM at day 0 (n = 40) or day 14 (n = 21) of antifungal therapy, and those with CM-IRIS (n = 10). Results. At diagnosis, highly activated CD8+ T cells predominated in CSF in both CM and NCM. CM-IRIS was associated with an increasing frequency of CSF CD4+ T cells (increased from 2.2% to 23%; P = .06), a shift in monocyte phenotype from classic to an intermediate/proinflammatory, and increased programmed death ligand 1 expression on natural killer cells (increased from 11.9% to 61.6%, P = .03). CSF cellular responses were distinct from responses in peripheral blood. Conclusions. After CM, T cells in CSF tend to evolve with the development of IRIS, with increasing proportions of activated CD4+ T cells, migration of intermediate monocytes to the CSF, and declining fungal burden. These changes provide insight into IRIS pathogenesis and could be exploited to more effectively treat CM and prevent CM-IRIS. PMID:25492918

  15. Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease

    PubMed Central

    Rosenbusch, Katharina E.; Kortholt, Arjan

    2016-01-01

    Human LRRK2 (Leucine-Rich Repeat Kinase 2) has been associated with both familial and idiopathic Parkinson's disease (PD). Although several LRRK2 mediated pathways and interaction partners have been identified, the cellular functions of LRRK2 and LRRK2 mediated progression of PD are still only partially understood. LRRK2 belongs to the group of Roco proteins which are characterized by the presence of a Ras-like G-domain (Roc), a C-terminal of Roc domain (COR), a kinase, and several protein-protein interaction domains. Roco proteins exhibit a complex activation mechanism involving intramolecular signaling, dimerization, and substrate/effector binding. Importantly, PD mutations in LRRK2 have been linked to a decreased GTPase and impaired kinase activity, thus providing putative therapeutic targets. To fully explore these potential targets it will be crucial to understand the function and identify the pathways responsible for LRRK2-linked PD. Here, we review the recent progress in elucidating the complex LRRK2 activation mechanism, describe the accumulating evidence that link LRRK2-mediated PD to mitochondrial dysfunction and aberrant autophagy, and discuss possible ways for therapeutically targeting LRRK2. PMID:27293958

  16. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo

    PubMed Central

    Packer, Adam M.; Russell, Lloyd E.; Dalgleish, Henry W.P.; Häusser, Michael

    2016-01-01

    We describe an all-optical strategy for simultaneously manipulating and recording the activity of multiple neurons with cellular resolution in vivo. Concurrent two-photon optogenetic activation and calcium imaging is enabled by coexpression of a red-shifted opsin and a genetically encoded calcium indicator. A spatial light modulator allows tens of user-selected neurons to be targeted for spatiotemporally precise optogenetic activation, while simultaneous fast calcium imaging provides high-resolution network-wide readout of the manipulation with negligible optical crosstalk. Proof-of-principle experiments in mouse barrel cortex demonstrate interrogation of the same neuronal population during different behavioral states, and targeting of neuronal ensembles based on their functional signature. This approach extends the optogenetic toolkit beyond the specificity obtained with genetic or viral approaches, enabling high-throughput, flexible and long-term optical interrogation of functionally defined neural circuits with single-cell and single-spike resolution in the mammalian brain in vivo. PMID:25532138

  17. Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage.

    PubMed

    Shi, Nian-Qiu; Gao, Wei; Xiang, Bai; Qi, Xian-Rong

    2012-01-01

    The use of activable cell-penetrating peptides (ACPPs) as molecular imaging probes is a promising new approach for the visualization of enzymes. The cell-penetrating function of a polycationic cell-penetrating peptide (CPP) is efficiently blocked by intramolecular electrostatic interactions with a polyanionic peptide. Proteolysis of a proteinase-sensitive substrate present between the CPP and polyanionic peptide affords dissociation of both domains and enables the activated CPP to enter cells. This ACPP strategy could also be used to modify antitumor agents for tumor-targeting therapy. Here, we aimed to develop a conjugate of ACPP with antitumor drug doxorubicin (DOX) sensitive to matrix metalloproteinase-2 and -9 (MMP-2/9) for tumor-targeting therapy purposes. The ACPP-DOX conjugate was successfully synthesized. Enzymatic cleavage of ACPP-DOX conjugate by matrix metalloproteinase (MMP)-2/9 indicated that the activation of ACPP-DOX occurred in an enzyme concentration-dependent manner. Flow cytometry and laser confocal microscope studies revealed that the cellular uptake of ACPP-DOX was enhanced after enzymatic-triggered activation and was higher in HT-1080 cells (overexpressed MMPs) than in MCF-7 cells (under-expressed MMPs). The antiproliferative assay showed that ACPP had little toxicity and that ACPP-DOX effectively inhibited HT-1080 cell proliferation. These experiments revealed that the ACPP-DOX conjugate could be triggered by MMP-2/9, which enabled the activated CPP-DOX to enter cells. ACPP-DOX conjugate may be a potential prodrug delivery system used to carry antitumor drugs for MMP-related tumor therapy. PMID:22619516

  18. Amide-Modified Prenylcysteine based Icmt Inhibitors: Structure Activity Relationships, Kinetic Analysis and Cellular Characterization

    PubMed Central

    Majmudar, Jaimeen D.; Hodges-Loaiza, Heather B.; Hahne, Kalub; Donelson, James L.; Song, Jiao; Shrestha, Liza; Harrison, Marietta L.; Hrycyna, Christine A.; Gibbs, Richard A.

    2012-01-01

    Human protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the α-carboxyl methylation of the C-termimal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents. Previous analog studies based on N-acetyl-S-farnesylcysteine identified two prenylcysteine-based low micromolar inhibitors (1a and 1b) of hIcmt, each bearing a phenoxyphenyl amide modification. In this study, a focused library of analogs of 1a and 1b was synthesized and screened versus hIcmt, delineating structural features important for inhibition. Kinetic characterization of the most potent analogs 1a and 1b established that both inhibitors exhibited mixed-mode inhibition and that the competitive component predominated. Using the Cheng – Prusoff method, the Ki values were determined from the IC50 values. Analog 1a has a KIC of 1.4 ± 0.2 μM and a KIU of 4.8 ± 0.5 μM while 1b has a KIC of 0.5 ± 0.07 μM and a KIU of 1.9 ± 0.2 μM. Cellular evaluation of 1b revealed that it alters the subcellular localization of GFP-KRas, and also inhibits both Ras activation and Erk phosphorylation in Jurkat cells. PMID:22142613

  19. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase

    PubMed Central

    Shi, Xiaohong; Botting, Catherine H.; Li, Ping; Niglas, Mark; Brennan, Benjamin; Shirran, Sally L.; Szemiel, Agnieszka M.; Elliott, Richard M.

    2016-01-01

    The M genome segment of Bunyamwera virus (BUNV)—the prototype of both the Bunyaviridae family and the Orthobunyavirus genus—encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SPNSm and NSm domain V as SPGc. Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SPGc) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17–312 or nearby residues; NSm, 332–477; and Gc, 478–1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies. PMID:27439867

  20. AIE-Active Tetraphenylethylene Cross-Linked N-Isopropylacrylamide Polymer: A Long-Term Fluorescent Cellular Tracker.

    PubMed

    Ma, Hengchang; Qi, Chunxuan; Cheng, Chao; Yang, Zengming; Cao, Haiying; Yang, Zhiwang; Tong, Jinhui; Yao, Xiaoqiang; Lei, Ziqiang

    2016-04-01

    There is a great demand to understand cell transplantation, migration, division, fusion, and lysis. Correspondingly, illuminant object-labeled bioprobes have been employed as long-term cellular tracers, which could provide valuable insights into detecting these biological processes. In this work, we designed and synthesized a fluorescent polymer, which was comprised of hydrophilic N-isopropylacrylamide polymers as matrix and a hydrophobic tetraphenylethene (TPE) unit as AIE-active cross-linkers (DDBV). It was found that when the feed molar ratio of N-isopropylacrylamides to cross-linkers was 22:1, the produced polymers demonstrated the desirable LCST at 37.5 °C. And also, the temperature sensitivity of polymers could induce phase transfer within a narrow window (32-38 °C). Meanwhile, phase transfer was able to lead the florescent response. And thus, we concluded that two responses occur when one stimulus is input. Therefore, the new cross-linker of DDBV rendered a new performance from PNIPAm and a new chance to create new materials. Moreover, the resulted polymers demonstrated very good biocompatibility with living A549 human lung adenocarcinoma cells and L929 mouse fibroblast cells, respectively. Both of these cells retained very active viabilities in the concentration range of 7.8-125 μL/mg of polymers. Notably, P[(NIPAm)22-(DDBV)1] (P6) could be readily internalized by living cells with a noninvasive manner. The cellular staining by the fluorescent polymer is so indelible that it enables cell tracing for at least 10 passages. PMID:26966832

  1. Special issue: redox active natural products and their interaction with cellular signalling pathways.

    PubMed

    Jacob, Claus

    2014-01-01

    During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, "natural" cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature's treasure chest of "green gold". Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-)organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic "sensor/effector" anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s) of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for "intracellular diagnostics". In the case of redox active compounds, especially of Reactive Sulfur Species (RSS), such techniques have

  2. New water-soluble ruthenium(II) cytotoxic complex: biological activity and cellular distribution.

    PubMed

    Morais, Tânia S; Santos, Filipa C; Jorge, Tiago F; Côrte-Real, Leonor; Madeira, Paulo J Amorim; Marques, Fernanda; Robalo, M Paula; Matos, António; Santos, Isabel; Garcia, M Helena

    2014-01-01

    A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=η(5)-cyclopentadienyl, mTPPMS=diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy=2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. PMID:24145065

  3. Metabolism of platelet activating factor at the whole organ and cellular level

    SciTech Connect

    Haroldsen, P.E.

    1987-01-01

    Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-3-glycerophosphocholine) has been characterized as a phospholipid possessing a myriad of effects from the cellular to whole organism levels. Analytical methods and procedures were developed in order to measure and identify PAF precursors and metabolites. Two quantitative physicochemical methods based on isotope dilution mass spectrometry (MS) were developed to measure lyso-PAF and applied to the calcium ionophore stimulated human neutrophil. Levels of lyso-PAF were found to be significantly increased, 2-3 fold, upon cell activation with a stimulus that concomitantly elicits the production of PAF. Investigation into the metabolism of PAF by the isolated perfused rat lung by intratracheal instillation revealed (/sup 3/H)-PAF to be extensively metabolized over a 15 minute time course. Greater than 96% of the administered dose was retained by the lung and was distributed as: lyso-PAF (3.3%), phosphatidylcholine (GPC, 82.3%), phosphatidylethanolamine (2.5%), and neutral lipid (2.5%), the remainder was intact PAF.

  4. Enhanced OCT4 transcriptional activity substitutes for exogenous SOX2 in cellular reprogramming

    PubMed Central

    Marthaler, Adele G.; Adachi, Kenjiro; Tiemann, Ulf; Wu, Guangming; Sabour, Davood; Velychko, Sergiy; Kleiter, Ingo; Schöler, Hans R.; Tapia, Natalia

    2016-01-01

    Adenoviral early region 1A (E1A) is a viral gene that can promote cellular proliferation and de-differentiation in mammalian cells, features required for the reprogramming of somatic cells to a pluripotent state. E1A has been shown to interact with OCT4, and as a consequence, to increase OCT4 transcriptional activity. Indeed, E1A and OCT4 are sufficient to revert neuroepithelial hybrids to pluripotency, as demonstrated in previous cell fusion experiments. However, the role that E1A might play in the generation of induced pluripotent stem cells (iPSCs) has not been investigated yet. In this report, we show that E1A can generate iPSCs in combination with OCT4 and KLF4, thus replacing exogenous SOX2. The generated iPSCs are bona fide pluripotent cells as shown by in vitro and in vivo tests. Overall, our study suggests that E1A might replace SOX2 through enhancing OCT4 transcriptional activity at the early stages of reprogramming. PMID:26762895

  5. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease.

    PubMed

    Wu, Yuncheng; Li, Xinqun; Zhu, Julie Xiaohong; Xie, Wenjie; Le, Weidong; Fan, Zhen; Jankovic, Joseph; Pan, Tianhong

    2011-01-01

    Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models. PMID:21778691

  6. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    PubMed Central

    Massignan, Tania; Cimini, Sara; Stincardini, Claudia; Cerovic, Milica; Vanni, Ilaria; Elezgarai, Saioa R.; Moreno, Jorge; Stravalaci, Matteo; Negro, Alessandro; Sangiovanni, Valeria; Restelli, Elena; Riccardi, Geraldina; Gobbi, Marco; Castilla, Joaquín; Borsello, Tiziana; Nonno, Romolo; Biasini, Emiliano

    2016-01-01

    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity. PMID:26976106

  7. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    SciTech Connect

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-05-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and {beta}-naphthylamine ({beta}-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H{sub 2}O{sub 2} or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  8. Human cellular retinaldehyde-binding protein has secondary thermal 9-cis-retinal isomerase activity.

    PubMed

    Bolze, Christin S; Helbling, Rachel E; Owen, Robin L; Pearson, Arwen R; Pompidor, Guillaume; Dworkowski, Florian; Fuchs, Martin R; Furrer, Julien; Golczak, Marcin; Palczewski, Krzysztof; Cascella, Michele; Stocker, Achim

    2014-01-01

    Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction. PMID:24328211

  9. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.

    PubMed

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P

    2014-03-01

    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide. PMID:24287152

  10. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway

    NASA Astrophysics Data System (ADS)

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases.

  11. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway.

    PubMed

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases. PMID:27224746

  12. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A.S.; Wallace, W.T.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure

  13. Antibacterial and Anti-inflammatory Activities of Ppc-1, Active Principle of the Cellular Slime Mold Polysphondylium pseudo-candidum.

    PubMed

    Azelmat, Jabrane; Fiorito, Serena; Genovese, Salvatore; Epifano, Francesco; Grenier, Daniel

    2015-01-01

    The diisopentenyloxy quinolobactin derivative 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy] quinoline-2-carboxylate, also named as Ppc-1, has been initially isolated from the fruiting bodies of the cellular slime mold Polysphondylium pseudo-candidum. Given that few data are available in the literature concerning the biological properties of this compound, this study was undertaken to evaluate its antibacterial and anti-inflammatory properties. Ppc-1 exerted antibacterial activity on the Gram negative periodontopathogen Porphyromonas gingivalis, while it had no such effect on the other bacterial species tested. The antibacterial activity of Ppc-1 appeared to result from its ability to permeate the cell membrane. Using the U937-3xκB-LUC human monocytic cell line, Ppc-1 was found to dose-dependently inhibit the lipopolysaccharide-induced NF-κB activation, a signaling pathway that has been associated with inflammatory mediator secretion. In conclusion, Ppc-1, by exhibiting a dual mode of action including antibacterial and anti-inflammatory activities, may represent a promising targeted therapeutic agent for periodontal diseases. PMID:25925558

  14. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    Intracellular water is an important pool of oxygen and hydrogen atoms for biosynthesis. Intracellular water is usually assumed to be isotopically identical to extracellular water, but an unexpected experimental result caused us to question this assumption. Heme O isolated from Escherichia coli cells grown in 95% H218O contained only a fraction of the theoretical value of labeled oxygen at a position where the O atom was known to be derived from water. In fact, fewer than half of the oxygen atoms were labeled. In an effort to explain this surprising result, we developed a method to determine the isotope ratios of intracellular water in cultured cells. The results of our experiments showed that during active growth, up to 70% of the oxygen atoms and 50% of the hydrogen atoms in the intracellular water of E. coli are generated during metabolism and can be isotopically distinct from extracellular water. The fraction of isotopically distinct atoms was substantially less in stationary phase and chilled cells, consistent with our hypothesis that less metabolically-generated water would be present in cells with lower metabolic activity. Our results were consistent with and explained the result of the heme O labeling experiment. Only about 40% of the O atoms on the heme O molecule were labeled because, presumably, only about 40% of the water inside the cells was 18O water that had diffused in from the culture medium. The rest of the intracellular water contained 16O atoms derived from either nutrients or atmospheric oxygen. To test whether we could also detect metabolically-derived hydrogen atoms in cellular constituents, we isolated fatty acids from log-phase and stationary phase E. coli and determined the H isotope ratios of individual fatty acids. The results of these experiments showed that environmental water contributed more H atoms to fatty acids isolated in stationary phase than to the same fatty acids isolated from log-phase cells. Stable isotope analyses of

  15. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes. PMID:25400546

  16. Using Cultured Mammalian Neurons to Study Cellular Processes and Neurodegeneration: A Suite of Undergraduate Lab Exercises

    PubMed Central

    Catlin, Rachel; Taylor, Abigail; Ditchek, Lisa; Burnett, Samantha; Khan, Showkhin; Todd, Olivia; Adams, Marguerite; Touhey, Eva; Wynkoop, Andrew; Ryan, James

    2016-01-01

    Cell culture is a powerful tool for exploring cellular function. Culturing primary neurons has revealed how neurons communicate in learning and memory (Kandel, 2006) and provided insights into the mechanisms of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease (Alberio et al., 2012; Trinchese, et al., 2004). Here we describe a series of four modular laboratory exercises to integrate this neuroscience technique in undergraduate teaching laboratories. First, we describe the modular approach. Then we provide educators with simple techniques for culturing rat primary neurons, performing immunohistochemistry to label cellular components, and illustrating neurodegeneration caused by reactive oxygen species. We describe teaching exercises that culminate in student-generated research projects. Finally, we describe potential barriers students may face when integrating modern cell culture experiments into teaching laboratories. PMID:27385922

  17. Using Cultured Mammalian Neurons to Study Cellular Processes and Neurodegeneration: A Suite of Undergraduate Lab Exercises.

    PubMed

    Catlin, Rachel; Taylor, Abigail; Ditchek, Lisa; Burnett, Samantha; Khan, Showkhin; Todd, Olivia; Adams, Marguerite; Touhey, Eva; Wynkoop, Andrew; Ryan, James

    2016-01-01

    Cell culture is a powerful tool for exploring cellular function. Culturing primary neurons has revealed how neurons communicate in learning and memory (Kandel, 2006) and provided insights into the mechanisms of neurodegenerative diseases such as Parkinson's and Alzheimer's disease (Alberio et al., 2012; Trinchese, et al., 2004). Here we describe a series of four modular laboratory exercises to integrate this neuroscience technique in undergraduate teaching laboratories. First, we describe the modular approach. Then we provide educators with simple techniques for culturing rat primary neurons, performing immunohistochemistry to label cellular components, and illustrating neurodegeneration caused by reactive oxygen species. We describe teaching exercises that culminate in student-generated research projects. Finally, we describe potential barriers students may face when integrating modern cell culture experiments into teaching laboratories. PMID:27385922

  18. Efficient process development for bulk silicon etching using cellular automata simulation techniques

    NASA Astrophysics Data System (ADS)

    Marchetti, James; He, Yie; Than, Olaf; Akkaraju, Sandeep

    1998-09-01

    This paper describes cellular automata simulation techniques used to predict the anisotropic etching of single-crystal silicon. In particular, this paper will focus on the application of wet etching of silicon wafers using typical anisotropic etchants such as KOH, TMAH, and EDP. Achieving a desired final 3D geometry of etch silicon wafers often is difficult without requiring a number of fabrication design iterations. The result is wasted time and resources. AnisE, a tool to simulate anisotropic etching of silicon wafers using cellular automata simulation, was developed in order to efficiently prototype and manufacture MEMS devices. AnisE has been shown to effectively decrease device development time and costs by up to 50% and 60%, respectively.

  19. Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution.

    PubMed

    Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Aguado, E; Daculsi, G

    1999-08-01

    This in vivo study investigated the influence of two calcium phosphate particle sizes (40-80 microm and 200-500 microm) on the cellular degradation activity associated with the bone substitution process of two injectable bone substitutes (IBS). The tested biomaterials were obtained by associating a biphasic calcium phosphate (BCP) ceramic mineral phase and a 3% aqueous solution of a cellulosic polymer (hydroxypropylmethylcellulose). Both were injected into osseous defects at the distal end of rabbit femurs for 2- and 3-week periods. Quantitative results for tartrate-resistant acid phosphatase (TRAP) cellular activity, new bone formation, and ceramic resorption were studied for statistical purposes. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than IBS 200-500, regardless of implantation time. BCP degradation was quite marked during the first 2 weeks for IBS 40-80, and bone colonization occurred more extensively for IBS 40-80 than for IBS 200-500. The resorption-bone substitution process occurred earlier and faster for IBS 40-80 than IBS 200-500. Both tested IBS displayed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Differences in calcium phosphate particle sizes influenced cellular degradation activity and ceramic resorption but were compatible with efficient bone substitution. PMID:10458280

  20. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes

    PubMed Central

    Roze, Ludmila V.; Chanda, Anindya; Linz, John E.

    2010-01-01

    Great progress has been made in understanding the regulation of expression of genes involved in secondary metabolism. Less is known about the mechanisms that govern the spatial distribution of the enzymes, cofactors, and substrates that mediate catalysis of secondary metabolites within the cell. Filamentous fungi in the genus Aspergillus synthesize an array of secondary metabolites and provide useful systems to analyze the mechanisms that mediate the temporal and spatial regulation of secondary metabolism in eukaryotes. For example, aflatoxin biosynthesis in A. parasiticus has been studied intensively because this mycotoxin is highly toxic, mutagenic, and carcinogenic in humans and animals. Using aflatoxin synthesis to illustrate key concepts, this review focuses on the mechanisms by which sub-cellular compartmentalization and intra-cellular molecular traffic contribute to the initiation and completion of secondary metabolism within the cell. We discuss the recent discovery of aflatoxisomes, specialized trafficking vesicles that participate in the compartmentalization of aflatoxin synthesis and export of the toxin to the cell exterior; this work provides a new and clearer understanding of how cells integrate secondary metabolism into basic cellular metabolism via the intracellular trafficking machinery. PMID:20519149

  1. Abnormalities in the cellular phase of blood fibrinolytic activity in systemic lupus erythematosus and in venous thromboembolism

    SciTech Connect

    Moroz, L.A.; MacLean, L.D.; Langleben, D.

    1986-09-15

    Fibrinolytic activities of whole blood and plasma were determined by /sup 125/I-fibrin radiometric assay in 16 normal subjects, and in 11 patients with systemic lupus erythematosus (SLE), 14 with progressive systemic sclerosis (PSS), 23 with venous thromboembolic disease, and 20 patients awaiting elective surgery. Mean whole blood and plasma activities for patients with PSS, and for those awaiting elective surgery, were similar to normal values, as was the mean plasma activity in patients with SLE. However, mean whole blood activity in SLE was significantly decreased compared with normals (p less than 0.05), with mean plasma activity accounting for 44% of mean whole blood activity (compared with 17% in normal subjects), representing a 67% decrease in mean calculated cellular phase activity in SLE, when compared with normals. Since the numbers of cells (neutrophils, monocytes) possibly involved in cellular activity were not decreased, the findings suggest a functional defect in fibrinolytic activity of one or more blood cell types in SLE. An additional finding was the participation of the cellular phase as well as the well-known plasma phase of blood in the fibrinolytic response to thromboembolism.

  2. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies.

    PubMed

    Hoque, Ashfaqul; Hossain, M Iqbal; Ameen, S Sadia; Ang, Ching-Seng; Williamson, Nicholas; Ng, Dominic C H; Chueh, Anderly C; Roulston, Carli; Cheng, Heung-Chin

    2016-04-01

    Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection. PMID:26899498

  3. TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS

    SciTech Connect

    López Fuentes, Marcelo; Klimchuk, James A.

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of –2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  4. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves

    PubMed Central

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE)/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE)/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R2 = 0.96). The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL). According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant. PMID:20976084

  5. Phenolic contents and cellular antioxidant activity of Chinese hawthorn "Crataegus pinnatifida".

    PubMed

    Wen, Lingrong; Guo, Xingbo; Liu, Rui Hai; You, Lijun; Abbasi, Arshad Mehmood; Fu, Xiong

    2015-11-01

    It is evident from various epidemiological studies that consumption of fruits and vegetables is essential to maintain health and in the disease prevention. Present study was designed to examine phenolic contents and antioxidant properties of three varieties of Crataegus pinnatifida (Chinese hawthorn). Shanlihong variety exhibited elevated levels of total phenolics and flavonoid contents, including free and bond phenolics. Procyanidin B2 was most abundant phenolic compound in all samples, followed by epicatechin, chlorogenic acid, hyperoside, and isoquercitrin. The free ORAC values, and free hydro-PSC values were 398.3-555.8 μmol TE/g DW, and 299.1-370.9 μmol VCE/g DW, respectively. Moreover, the free cellular antioxidant activity (CAA) values were 678-1200 μmol of QE/100 g DW in the no PBS wash protocol, and 345.9-532.9 μmol of QE/100 g DW in the PBS wash protocol. C. pinnatifida fruit could be valuable to promote consumer health. PMID:25976791

  6. Inhibition of Cellular Proteasome Activities Mediates HBX-Independent Hepatitis B Virus Replication In Vivo▿

    PubMed Central

    Zhang, Zhensheng; Sun, Eun; Ou, Jing-hsiung James; Liang, T. Jake

    2010-01-01

    The X protein (HBX) of the hepatitis B virus (HBV) is essential for HBV productive infection in vivo. Our previous study (Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, J. Virol. 73:7231-7240, 1999) shows that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. Previously, we demonstrated that HBX affects hepadnaviral replication through a proteasome-dependent pathway in cell culture models. In the present study, we studied the effect of the proteasome inhibitor MLN-273 in two HBV mouse models. We demonstrated that administration of MLN-273 to transgenic mice containing the replication-competent HBV genome with the defective HBX gene substantially enhanced HBV replication, while the compound had a minor effect on wild-type HBV transgenic mice. Similar results were obtained by using C57BL/6 mice infected with recombinant adenoviruses expressing the replicating HBV genome. Our data suggest that HBV replication is subjected to regulation by cellular proteasome and HBX functions through the inhibition of proteasome activities to enhance HBV replication in vivo. PMID:20592087

  7. Chemical Composition and, Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves.

    PubMed

    Muanda, François Nsemi; Bouayed, Jaouad; Djilani, Abdelouaheb; Yao, Chunyan; Soulimani, Rachid; Dicko, Amadou

    2011-01-01

    Desmodium adscendens plant is widely used as juice or tea in various parts of the world against a wide range of diseases. This study determines the quality and the quantity of polyphenols, flavonoids, anthocyanins, and tannins in D. adscendens leaves by UV-spectrophotometry and RP-HPLC methods. In addition, the antioxidant capacity of these phenolic compounds is evaluated by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)), DPPH (2,2-diphenyl-1 picrylhydrazyl), and Cellular tests. D. adscendens leaves are mainly composite of flavonoid compounds with 12.8 mg of catechin equivalent (CE)/g dw. The amounts of total polyphenol compounds are 11.1 mg of gallic acid equivalent (GAE)/g dw. The quantity of total anthocyanin and total tannin compounds is not considerable 0.0182 mg CgE/g dw and 0.39 mg CE/g dw, respectively. A direct correlation between phenolic compounds and antioxidant activity is observed (R(2) = 0.96). The RP-HPLC analyses reveal that the main phenolic compound identified in the methanol-water extract is quercetrin dihydrat (2.11 mg/mL). According to the results, it is observed that D. adscendens leaves possess a considerable scavenging antioxidant and antiradical capacity, therefore these antioxidant properties might increase the therapeutic value of this medicinal plant. PMID:20976084

  8. Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice.

    PubMed

    Liu, Lei; Guo, Jinjie; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Guo, Jinxin; Zhang, Mingwei

    2015-10-15

    The impact of increasing degree of milling (DOM) on free and bound phenolics and flavonoids and on cellular antioxidant activity (CAA) of japonica and indica brown rice was investigated. As the average DOM increased from 0 to 2.67, 7.25 and 9.60%, the average total phenolic content decreased by 21.1, 42.6 and 55.6%, and the average total CAA value decreased by 37.4, 84.0 and 92.8%, respectively. Furthermore, the percentage contributions of bound forms to total phenolics and flavonoids decreased with increasing DOM. The contents of nine phenolic compounds significantly decreased with increasing DOM, including quercetin, ferulic and coumaric acids. Interestingly, as the DOM increased to 9.6%, free ferulic and coumaric acids were undetectable in japonica rice, while neither free nor bound caffeic acid was detectable in indica rice. These findings indicate that DOM should be carefully controlled for acceptable sensory quality and retention of phytochemicals during brown rice milling. PMID:25952874

  9. Two-dimensional Cellular Automaton Model for the Evolution of Active Region Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    López Fuentes, Marcelo; Klimchuk, James A.

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  10. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease

    PubMed Central

    Hipp, Mark S.; Patel, Chetan N.; Bersuker, Kirill; Riley, Brigit E.; Kaiser, Stephen E.; Shaler, Thomas A.; Brandeis, Michael

    2012-01-01

    Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington’s disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that ubiquitinated N-htt—whether aggregated or not—did not choke or clog the proteasome. Both Ub-dependent and Ub-independent proteasome reporters accumulated when the concentration of mutant N-htt exceeded a solubility threshold, indicating that stabilization of 26S substrates is not linked to impaired Ub conjugation. Above this solubility threshold, mutant N-htt was rapidly recruited to cytoplasmic inclusions that were initially devoid of Ub. Although synthetically polyubiquitinated N-htt competed with other Ub conjugates for access to the proteasome, the vast majority of mutant N-htt in cells was not Ub conjugated. Our data confirm that proteasomes are not directly impaired by aggregated N-terminal fragments of htt; instead, our data suggest that Ub accumulation is linked to impaired function of the cellular proteostasis network. PMID:22371559

  11. Moisture processes accompanying convective activity

    NASA Technical Reports Server (NTRS)

    Sienkiewicz, M. E.; Scoggins, J. R.

    1982-01-01

    A moisture budget analysis was performed on data collected during the AVE 7 (May 2 to 3, 1978) and AVE-SESAME1 (April 10 to 11, 1979) experiments. Local rates-of-change of moisture were compared with average moisture divergence in the same time period. Results were presented as contoured plots in the horizontal and as vertical cross sections. These results were used to develop models of the distribution of moisture processes in the vicinity of convective areas in two layers representing lower and middle tropospheric conditions. Good correspondence was found between the residual term of the moisture budget and actual precipitation.

  12. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    PubMed Central

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  13. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage.

    PubMed

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound "natural Aβ", sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson's disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  14. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein.

    PubMed

    Massignan, Tania; Cimini, Sara; Stincardini, Claudia; Cerovic, Milica; Vanni, Ilaria; Elezgarai, Saioa R; Moreno, Jorge; Stravalaci, Matteo; Negro, Alessandro; Sangiovanni, Valeria; Restelli, Elena; Riccardi, Geraldina; Gobbi, Marco; Castilla, Joaquín; Borsello, Tiziana; Nonno, Romolo; Biasini, Emiliano

    2016-01-01

    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrP(Sc) is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrP(C) may provide an opportunity to overcome these problems. PrP(C) ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrP(C), and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrP(C)-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrP(C)-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrP(C) may produce a dual effect of blocking prion replication and inhibiting PrP(C)-mediated toxicity. PMID:26976106

  15. Light-Triggered Modulation of Cellular Electrical Activity by Ruthenium Diimine Nanoswitches

    PubMed Central

    2013-01-01

    Ruthenium diimine complexes have previously been used to facilitate light-activated electron transfer in the study of redox metalloproteins. Excitation at 488 nm leads to a photoexcited state, in which the complex can either accept or donate an electron, respectively, in the presence of a soluble sacrificial reductant or oxidant. Here, we describe a novel application of these complexes in mediating light-induced changes in cellular electrical activity. We demonstrate that RubpyC17 ([Ru(bpy)2(bpy-C17)]2+, where bpy is 2,2′-bipyridine and bpy-C17 is 2,2′-4-heptadecyl-4′-methyl-bipyridine), readily incorporates into the plasma membrane of cells, as evidenced by membrane-confined luminescence. Excitable cells incubated in RubpyC17 and then illuminated at 488 nm in the presence of the reductant ascorbate undergo membrane depolarization leading to firing of action potentials. In contrast, the same experiment performed with the oxidant ferricyanide, instead of ascorbate, leads to hyperpolarization. These experiments suggest that illumination of membrane-associated RubpyC17 in the presence of ascorbate alters the cell membrane potential by increasing the negative charge on the outer face of the cell membrane capacitor, effectively depolarizing the cell membrane. We rule out two alternative explanations for light-induced membrane potential changes, using patch clamp experiments: (1) light-induced direct interaction of RubpyC17 with ion channels and (2) light-induced membrane perforation. We show that incorporation of RubpyC17 into the plasma membrane of neuroendocrine cells enables light-induced secretion as monitored by amperometry. While the present work is focused on ruthenium diimine complexes, the findings point more generally to broader application of other transition metal complexes to mediate light-induced biological changes. PMID:23419103

  16. Activation of human natural killer cells by the soluble form of cellular prion protein

    SciTech Connect

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  17. Cellular inhibitor of apoptosis protein 2 controls human colonic epithelial restitution, migration, and Rac1 activation.

    PubMed

    Seidelin, Jakob Benedict; Larsen, Sylvester; Linnemann, Dorte; Vainer, Ben; Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2015-01-15

    Identification of pathways involved in wound healing is important for understanding the pathogenesis of various intestinal diseases. Cellular inhibitor of apoptosis protein 2 (cIAP2) regulates proliferation and migration in nonepithelial cells and is expressed in human colonocytes. The aim of the study was to investigate the role of cIAP2 for wound healing in the normal human colon. Wound tissue was generated by taking rectosigmoidal biopsies across an experimental ulcer in healthy subjects after 5, 24, and 48 h. In experimental ulcers, the expression of cIAP2 in regenerating intestinal epithelial cells (IECs) was increased at the wound edge after 24 h (P < 0.05), returned to normal after reepithelialization, and correlated with the inflammatory reaction in the experimental wounds (P < 0.001). cIAP2 was induced in vitro in regenerating Caco2 IECs after wound infliction (P < 0.01). Knockdown of cIAP2 caused a substantial impairment of the IEC regeneration through inhibition of migration (P < 0.005). cIAP2 overexpression lead to formation of migrating IECs and upregulation of expression of RhoA and Rac1 as well as GTP-activation of Rac1. Transforming growth factor-β1 enhanced the expression of cIAP2 but was not upregulated in wounds in vivo and in vitro. NF-κB and MAPK pathways did not affect cIAP2 expression. cIAP2 is in conclusion a regulator of human intestinal wound healing through enhanced migration along with activation of Rac1, and the findings suggest that cIAP2 could be a future therapeutic target to improve intestinal wound healing. PMID:25394657

  18. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis

  19. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells

    PubMed Central

    Lehto, Taavi; Castillo Alvarez, Alejandra; Gauck, Sarah; Gait, Michael J.; Coursindel, Thibault; Wood, Matthew J. A.; Lebleu, Bernard; Boisguerin, Prisca

    2014-01-01

    Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyocytes. Our results indicate that Pip6a-PMO is taken up in the skeletal muscle cells by an energy- and caveolae-mediated endocytosis. Interestingly, its cellular distribution is different in undifferentiated and differentiated skeletal muscle cells (vesicular versus nuclear). Likewise, Pip6a-PMO mainly accumulates in cytoplasmic vesicles in primary cardiomyocytes, in which clathrin-mediated endocytosis seems to be the pre-dominant uptake pathway. These differences in cellular trafficking correspond well with the exon-skipping data, with higher activity in myotubes than in myoblasts or cardiomyocytes. These differences in cellular trafficking thus provide a possible mechanistic explanation for the variations in exon-skipping activity and restoration of dystrophin protein in heart muscle compared with skeletal muscle tissues in DMD models. Overall, Pip6a-PMO appears as the most efficient conjugate to date (low nanomolar EC50), even if limitations remain from endosomal escape. PMID:24366877

  20. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  1. Evolving a three-dimensional cellular automata dynamic system constituted of cells-charges for modelling real earthquake activity

    NASA Astrophysics Data System (ADS)

    Sirakoulis, G. Ch.

    2009-04-01

    Greece is referred as the most active seismically region of Europe and one of the top active lands in the world. However, the complexity of the available seismicity information calls for the development of ever more powerful and more reliable computational tools to tackle complex problems associated with proper interpretation of the obtained geophysical information. Cellular Automata (CAs) were showed to be a promising model for earthquake modelling, because certain aspects of the earthquake dynamics, function and evolution can be simulated using several mathematical tools introduced through the use of CAs. In this study, a three-dimensional (3-d) CA dynamic system constituted of cell-charges and taking into account the recorded focal depth, able to simulate real earthquake activity is presented. The whole simulation process of the earthquake activity is evolved with an LC analogue CA model in correspondence to well known earthquake models. The parameterisation of the CA model in terms of potential threshold and geophysical area characteristics is succeeded by applying a standard genetic algorithm (GA) which would extend the model ability to study various hypotheses concerning the seismicity of the region under consideration. As a result, the proposed model optimizes the simulation results, which are compared with the Gutenberg - Richter (GR) scaling relations derived by the use of real data, as well as it expands its validity in broader and different regions of increased hazard. Finally, the hardware implementation of the proposed model is also examined. The FPGA realisation of the proposed 3-d CA based earthquake simulation model will exhibit distinct features that facilitate its utilisation, meaning low-cost, high-speed, compactness and portability. The development and manufacture of the dedicated processor aims at its effective incorporation into an efficient seismographic system. As a result, the dedicated processor could realize the first stage of a

  2. Endothelial cellular senescence is inhibited by liver X receptor activation with an additional mechanism for its atheroprotection in diabetes

    PubMed Central

    Hayashi, Toshio; Kotani, Hitoshi; Yamaguchi, Tomoe; Taguchi, Kumiko; Iida, Mayu; Ina, Koichiro; Maeda, Morihiko; Kuzuya, Masafumi; Hattori, Yuichi; Ignarro, Louis J.

    2014-01-01

    Senescence of vascular endothelial cells leads to endothelial dysfunction and contributes to the progression of atherosclerosis. Liver X receptors (LXRs) are nuclear receptors whose activation protects against atherosclerosis by transcriptional regulation of genes important in promoting cholesterol efflux and inhibiting inflammation. Here we found that LXR activation with specific ligands reduced the increase in senescence-associated (SA) β-gal activity, a senescence marker, and reversed the decrease in telomerase activity, a replicative senescence marker, in human endothelial cells under high glucose. This effect of LXR activation was associated with reduced reactive oxygen species and increased endothelial NO synthase activity. A series of experiments that used siRNAs indicated that LXRβ mediates the prevention of endothelial cellular senescence, and that sterol regulatory element binding protein-1, which was up-regulated as a direct LXRβ target gene, may act as a brake of endothelial cellular senescence. Although oral administration of the LXR ligand led to severe fatty liver in diabetic rats, concomitant therapy with metformin avoided the development of hepatic steatosis. However, the preventive effect of the LXR ligand on SA β-gal–stained cells in diabetic aortic endothelium was preserved even if metformin was coadministered. Taken together, our studies demonstrate that an additional mechanism, such as the regulation of endothelial cellular senescence, is related to the antiatherogenic properties of LXRs, and concomitant treatment with metformin may provide a clinically useful therapeutic strategy to alleviate an LXR activation-mediated adverse effects on liver triglyceride metabolism. PMID:24398515

  3. Energetics of active transport processes.

    PubMed

    Essig, A; Caplan, S R

    1968-12-01

    Discussions of active transport usually assume stoichiometry between the rate of transport J(+) and the metabolic rate J(r). However, the observation of a linear relationship between J(+) and J(r) does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J(+) and J(r) linear functions of the electrochemical potential difference, -X(+), and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Deltapsi)(I=0) and the natural limits, level flow (J(+))(X+=0), and static head X(0) (+) = (X(+))(J+=0). With high degrees of coupling -X(0) (+)/F approaches the electromotive force E(Na) (Ussing); -X(0) (+)/F cannot be identified with ((RT/F) ln f)(X+=0), where f is the flux ratio. The efficiency eta = -J(+)X(+)/J(r)A is of significance only when appreciable energy is being converted from one form to another. When either J(+) or -X(+) is small eta is low; the significant parameters are then the efficacies epsilon(J+) = J(+)/J(r)A and epsilon(X+) = -X(+)/J(r)A, respectively maximal at level flow and static head. Leak increases both J(+) and epsilon(J+) for isotonic saline reabsorption, but diminishes -X(0) (+) and epsilon(Xfemale symbol). Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows. PMID:5713453

  4. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells

    PubMed Central

    Agarwal, Rajesh

    2013-01-01

    Prognosis of pancreatic cancer is extremely poor, suggesting critical needs for additional drugs to improve disease outcome. In this study, we examined efficacy and associated mechanism of a novel agent bitter melon juice (BMJ) against pancreatic carcinoma cells both in culture and nude mice. BMJ anticancer efficacy was analyzed in human pancreatic carcinoma BxPC-3, MiaPaCa-2, AsPC-1 and Capan-2 cells by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide, cell death enzyme-linked immunosorbent assay and annexin/propidium iodide assays. BMJ effect on apoptosis regulators was assessed by immunoblotting. In vivo BMJ efficacy was evaluated against MiaPaCa-2 tumors in nude mice, and xenograft was analyzed for biomarkers by immunohistochemistry (IHC). Results showed that BMJ (2–5% v/v) decreases cell viability in all four pancreatic carcinoma cell lines by inducing strong apoptotic death. At molecular level, BMJ caused caspases activation, altered expression of Bcl-2 family members and cytochrome-c release into the cytosol. Additionally, BMJ decreased survivin and X-linked inhibitor of apoptosis protein but increased p21, CHOP and phosphorylated mitogen-activated protein kinases (extracellular signal-regulated kinase 1/2 and p38) levels. Importantly, BMJ activated adenosine monophosphate-activated protein kinase (AMPK), a biomarker for cellular energy status, and an AMPK inhibitor (Compound C) reversed BMJ-induced caspase-3 activation suggesting activated AMPK involvement in BMJ-induced apoptosis. In vivo, oral administration of lyophilized BMJ (5mg in 100 µl water/day/mouse) for 6 weeks inhibited MiaPaCa-2 tumor xenograft growth by 60% (P < 0.01) without noticeable toxicity in nude mice. IHC analyses of MiaPaCa-2 xenografts showed that BMJ also inhibits proliferation, induces apoptosis and activates AMPK in vivo. Overall, BMJ exerts strong anticancer efficacy against human pancreatic carcinoma cells, both in vitro and in vivo, suggesting its clinical

  5. Flow and Microwave-Assisted Synthesis of N-(Triethylene glycol)glycine Oligomers and Their Remarkable Cellular Transporter Activities.

    PubMed

    Jong, ThingSoon; Pérez-López, Ana M; Johansson, Emma M V; Lilienkampf, Annamaria; Bradley, Mark

    2015-08-19

    Peptidomimetics, such as oligo-N-alkylglycines (peptoids), are attractive alternatives to traditional cationic cell-penetrating peptides (such as R9) due to their robust proteolytic stability and reduced cellular toxicity. Here, monomeric N-alkylglycines, incorporating amino-functionalized hexyl or triethylene glycol (TEG) side chains, were synthesized via a three-step continuous-flow reaction sequence, giving the monomers N-Fmoc-(6-Boc-aminohexyl)glycine and N-Fmoc-((2-(2-Boc-aminoethoxy)ethoxy)ethyl)glycine in 49% and 41% overall yields, respectively. These were converted into oligomers (5, 7, and 9-mers) using an Fmoc-based solid-phase protocol and evaluated as cellular transporters. Hybrid oligomers, constructed of alternating units of the aminohexyl and amino-TEG monomers, were non-cytotoxic and exhibited remarkable cellular uptake activity compared to the analogous fully TEG or lysine-like compounds. PMID:26155805

  6. Antagonistic Activity of Cellular Components of Potential Probiotic Bacteria, Isolated from the Gut of Labeo rohita, Against Aeromonas hydrophila.

    PubMed

    Giri, Sib Sankar; Sukumaran, V; Sen, Shib Sankar; Vinumonia, J; Banu, B Nazeema; Jena, Prasant Kumar

    2011-12-01

    The objective of this study was to characterise the antagonistic activity of cellular components of potential probiotic bacteria isolated from the gut of healthy rohu (Labeo rohita), a tropical freshwater fish, against the fish pathogen, Aeromonas hydrophila. Three potential probiotic strains (referred to as R1, R2, and R5) were screened using a well diffusion, and their antagonistic activity against A. hydrophila was determined. Biochemical tests and 16S rRNA gene analysis confirmed that R1, R2, and R5 were Lactobacillus plantarum VSG3, Pseudomonas aeruginosa VSG2, and Bacillus subtilis VSG1, respectively. Four different fractions of cellular components (i.e. the whole-cell product, heat-killed whole-cell product [HKWCP], intracellular product [ICP], and extracellular product) of these selected strains were effective in an in vitro sensitivity test against 6 A. hydrophila strains. Among the cellular components, the ICP of R1, HKWCP of R2, and ICP of R5 exhibited the strongest antagonistic activities, as evidenced by their inhibition zones. The antimicrobial compounds from these selected cellular components were partially purified by thin-layer and high-performance liquid chromatography, and their properties were analysed. The ranges of pH stability of the purified compounds were wide (3.0-10.0), and compounds were thermally stable up to 90 °C. Considering these results, isolated probiotic strains may find potential applications in the prevention and treatment of aquatic aeromonosis. PMID:26781682

  7. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Dietrich, W Dalton; Keane, Robert W

    2014-03-01

    The inflammasome is an intracellular multiprotein complex involved in the activation of caspase-1 and the processing of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The inflammasome in the central nervous system (CNS) is involved in the generation of an innate immune inflammatory response through IL-1 cytokine release and in cell death through the process of pyroptosis. In this review, we consider the different types of inflammasomes (NLRP1, NLRP2, NLRP3, and AIM2) that have been described in CNS cells, namely neurons, astrocytes, and microglia. Importantly, we focus on the role of the inflammasome after brain and spinal cord injury and cover the potential activators of the inflammasome after CNS injury such as adenosine triphosphate and DNA, and the therapeutic potential of targeting the inflammasome to improve outcomes after CNS trauma. PMID:24398940

  8. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury

    PubMed Central

    de Rivero Vaccari, Juan Pablo; Dietrich, W Dalton; Keane, Robert W

    2014-01-01

    The inflammasome is an intracellular multiprotein complex involved in the activation of caspase-1 and the processing of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The inflammasome in the central nervous system (CNS) is involved in the generation of an innate immune inflammatory response through IL-1 cytokine release and in cell death through the process of pyroptosis. In this review, we consider the different types of inflammasomes (NLRP1, NLRP2, NLRP3, and AIM2) that have been described in CNS cells, namely neurons, astrocytes, and microglia. Importantly, we focus on the role of the inflammasome after brain and spinal cord injury and cover the potential activators of the inflammasome after CNS injury such as adenosine triphosphate and DNA, and the therapeutic potential of targeting the inflammasome to improve outcomes after CNS trauma. PMID:24398940

  9. Resistance to Degradation and Cellular Distribution are Important Features for the Antitumor Activity of Gomesin

    PubMed Central

    Buri, Marcus V.; Domingues, Tatiana M.; Paredes-Gamero, Edgar J.; Casaes-Rodrigues, Rafael L.; Rodrigues, Elaine Guadelupe; Miranda, Antonio

    2013-01-01

    Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr2,6,11,15]-Gm, and [Ser2,6,11,15]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr2,6,11,15]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr2,6,11,15, Pro9]-D-Gm, and [Thr2,6,11,15, D-Pro9]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity. PMID:24312251

  10. Array of amorphous calcium phosphate particles improves cellular activity on a hydrophobic surface.

    PubMed

    Kim, InAe; Kim, Hyun Jung; Kim, Hyun-Man

    2010-04-01

    Poor interaction between cells and surfaces, especially hydrophobic surfaces, results in delayed proliferation and increased apoptosis due to low cell adhesion signaling. To improve cell adhesion, hydrophilic array of amorphous calcium phosphate (ACP) was fabricated on a surface. A phosphate-buffered solution containing calcium ions was prepared at low temperature to prevent spontaneous precipitation. Then, the ion solution was heated to generate nuclei of ACP nanoparticles. The ACP nanoparticles adhered to the hydrophobic polystyrene surface forming an array composed of ACP particles. Multiple treatments of these nuclei with fresh CaP ion solutions increased the diameter and decreased the solubility of ACP particles enough to mediate cellular adhesion. The particle density in the array was dependent on the ion concentration of the CaP ion solutions. The ACP array improved a wide variety of activities when osteoblastic MC3T3-E1 cells were cultured on the ACP array fabricated on a hydrophobic bacteriological dish surface, compared to those cultured without the ACP array in vitro. The use of ACP array resulted in a lower apoptosis and also increased the spreading of cells to form stress fibers and focal contacts. Cells cultured on the ACP array proliferated more than cells cultured on a hydrophobic surface without the ACP array. The ACP array increased the expression of markers of differentiation in osteoblast. These results indicate that an array of ACP can be used as a coating material for enhancing biocompatibility in tissue engineering or biomaterials rather than modifying the surface with organic molecules. PMID:20119940

  11. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  12. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity.

    PubMed

    Habermeyer, Michael; Fritz, Jessica; Barthelmes, Hans U; Christensen, Morten O; Larsen, Morten K; Boege, Fritz; Marko, Doris

    2005-09-01

    In the present study, we investigated the effect of anthocyanidins on human topoisomerases I and II and its relevance for DNA integrity within human cells. Anthocyanidins bearing vicinal hydroxy groups at the B-ring (delphinidin, DEL; cyanidin, CY) were found to potently inhibit the catalytic activity of human topoisomerases I and II, without discriminating between the IIalpha and the IIbeta isoforms. However, in contrast to topoisomerase poisons, DEL and CY did not stabilize the covalent DNA-topoisomerase intermediates (cleavable complex) of topoisomerase I or II. Using recombinant topoisomerase I, the presence of CY or DEL (> or = 1 microM) effectively prohibited the stabilization of the cleavable complex by the topoisomerase I poison camptothecin. We furthermore investigated whether the potential protective effect vs topoisomerase I poisons is reflected also on the cellular level, affecting the DNA damaging properties of camptothecin. Indeed, in HT29 cells, low micromolar concentrations of DEL (1-10 microM) significantly diminished the DNA strand breaking effect of camptothecin (100 microM). However, at concentrations > or = 50 microM, all anthocyanidins tested (delphinidin, cyanidin, malvidin, pelargonidin, and paeonidin), including those not interfering with topoisomerases, were found to induce DNA strand breaks in the comet assay. All of these analogues were able to compete with ethidium bromide for the intercalation into calf thymus DNA and to replace the minor groove binder Hoechst 33258. These data indicate substantial affinity to double-stranded DNA, which might contribute at least to the DNA strand breaking effect of anthocyanidins at higher concentrations (> or = 50 microM). PMID:16167831

  13. Persistent Receptor Activity Underlies Group I mGluR-Mediated Cellular Plasticity in CA3 Neuron

    PubMed Central

    Young, Steven R.; Chuang, Shih-Chieh; Zhao, Wangfa; Wong, Robert K.S.; Bianchi, Riccardo

    2013-01-01

    Plastic changes in cortical activities induced by group I metabotropic glutamate receptor (mGluR) stimulation include epileptogenesis, expressed in vitro as the conversion of normal neuronal activity to persistent, prolonged synchronized (ictal) discharges. At present, the mechanism that maintains group I mGluR-induced plasticity is not known. We examined this issue using hippocampal slices from guinea pigs and mice. Agonist [(S)-3,5-dihydroxyphenylglycine; DHPG; 30– 50 μM)] stimulation of group I mGluRs induces persistent prolonged synchronized (ictal-like) discharges in CA3 that are associated with three identified excitatory cellular responses – suppression of spike afterhyperpolarizations, activation of a voltage-dependent cationic current, and increase in neuronal input resistance. Persistent prolonged synchronized discharges and the underlying excitatory cellular responses maintained following induction were reversibly blocked by mGluR1 antagonists [LY 367385; (S)-+-α-amino-4-carboxy-2-methylbenzeneacetic acid; 50, 100 μM; CPCCOEt (hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester; 100 μM], and to a lesser extent by the mGluR5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride; 50 μM]. Activation of persistent cellular responses to DHPG were unaffected by tetrodotoxin (0.5–1 μM) or perfusion with low Ca2+(0.2 mM)-Mn2+(0.5 mM) media – conditions that suppress endogenous glutamate release. The pharmacological profile of the blocking action of the group I mGluR antagonist MCPG [(RS)-α-methyl-4-carboxyphenylglycine; 50–500 μM] on persistent cellular responses was different from that on cellular responses directly activated by DHPG. These data indicate that transient stimulation of group I mGluRs alters receptor properties rendering them persistently active in the absence of applied agonist or endogenous glutamate activation. Persistent receptor activities, primarily involving mGluR1, maintain excitatory cellular

  14. TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics.

    PubMed

    Etournay, Raphaël; Merkel, Matthias; Popović, Marko; Brandl, Holger; Dye, Natalie A; Aigouy, Benoît; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    2016-01-01

    Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins. PMID:27228153

  15. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium

    PubMed Central

    Vinh, Nguyen X.; Viswanathan, Ganesh A.; Chetty, Madhu; Wangikar, Pramod P.

    2015-01-01

    Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell’s metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production. PMID:25973856

  16. A unique hinge binder of extremely selective aminopyridine-based Mps1 (TTK) kinase inhibitors with cellular activity.

    PubMed

    Kusakabe, Ken-ichi; Ide, Nobuyuki; Daigo, Yataro; Itoh, Takeshi; Yamamoto, Takahiko; Kojima, Eiichi; Mitsuoka, Yasunori; Tadano, Genta; Tagashira, Sachie; Higashino, Kenichi; Okano, Yousuke; Sato, Yuji; Inoue, Makiko; Iguchi, Motofumi; Kanazawa, Takayuki; Ishioka, Yukichi; Dohi, Keiji; Kido, Yasuto; Sakamoto, Shingo; Ando, Shigeru; Maeda, Masahiro; Higaki, Masayo; Yoshizawa, Hidenori; Murai, Hitoshi; Nakamura, Yusuke

    2015-05-01

    Mps1, also known as TTK, is a dual-specificity kinase that regulates the spindle assembly check point. Increased expression levels of Mps1 are observed in cancer cells, and the expression levels correlate well with tumor grade. Such evidence points to selective inhibition of Mps1 as an attractive strategy for cancer therapeutics. Starting from an aminopyridine-based lead 3a that binds to a flipped-peptide conformation at the hinge region in Mps1, elaboration of the aminopyridine scaffold at the 2- and 6-positions led to the discovery of 19c that exhibited no significant inhibition for 287 kinases as well as improved cellular Mps1 and antiproliferative activities in A549 lung carcinoma cells (cellular Mps1 IC₅₀=5.3 nM, A549 IC₅₀=26 nM). A clear correlation between cellular Mps1 and antiproliferative IC₅₀ values indicated that the antiproliferative activity observed in A549 cells would be responsible for the cellular inhibition of Mps1. The X-ray structure of 19c in complex with Mps1 revealed that this compound retains the ability to bind to the peptide flip conformation. Finally, comparative analysis of the X-ray structures of 19c, a deamino analogue 33, and a known Mps1 inhibitor bound to Mps1 provided insights into the unique binding mode at the hinge region. PMID:25801152

  17. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue

    PubMed Central

    Atamna, Hani; Atamna, Wafa; Al-Eyd, Ghaith; Shanower, Gregory; Dhahbi, Joseph M.

    2015-01-01

    Methylene blue (MB) delays cellular senescence, induces complex-IV, and activates Keap1/Nrf2; however, the molecular link of these effects to MB is unclear. Since MB is redox-active, we investigated its effect on the NAD/NADH ratio in IMR90 cells. The transient increase in NAD/NADH observed in MB-treated cells triggered an investigation of the energy regulator AMPK. MB induced AMPK phosphorylation in a transient pattern, which was followed by the induction of PGC1α and SURF1: both are inducers of mitochondrial and complex-IV biogenesis. Subsequently MB-treated cells exhibited >100% increase in complex-IV activity and a 28% decline in cellular oxidants. The telomeres erosion rate was also significantly lower in MB-treated cells. A previous research suggested that the pattern of AMPK activation (i.e., chronic or transient) determines the AMPK effect on cell senescence. We identified that the anti-senescence activity of MB (transient activator) was 8-times higher than that of AICAR (chronic activator). Since MB lacked an effect on cell cycle, an MB-dependent change to cell cycle is unlikely to contribute to the anti-senescence activity. The current findings in conjunction with the activation of Keap1/Nrf2 suggest a synchronized activation of the energy and cellular defense pathways as a possible key factor in MB's potent anti-senescence activity. PMID:26386875

  18. Cellular differentiation in the process of generation of the eukaryotic cell

    NASA Astrophysics Data System (ADS)

    Nakamura, Hakobu; Hase, Atsushi

    1990-11-01

    Primitive atmosphere of the earth did not contain oxygen gas (O2) when the proto-cells were generated successfully as the resut of chemical evolution and then evolved. Therefore, they first had acquired anaerobic energy metabolism, fermentation. The cellular metabolisms have often been formed by reorganizing to combine or recombinate between pre-existing metabolisms and newly born bioreactions. Photosynthetic metabolism in eukaryotic chloroplast consists of an electron-transfer photosystem and a fermentative reductive pentose phosphate cycle. On the other hand, O2-respiration of eukaryotic mitochondrion is made of Embden-Meyerhof (EM) pathway and tricarboxylic acid cycle, which originate from a connection of fermentative metabolisms, and an electron-transfer respiratory chain, which has been derived from the photosystem. These metabolisms already are completed in some evolved prokaryotes, for example the cyanobacteriumChlorogloea fritschii and aerobic photosynthetic bacteriaRhodospirillum rubrum andErythrobacter sp. Therefore, it can be reasonably presumed that the eukaryotic chloroplast and mitochondrion have once been formed as the result of metabolic (and genetic) differentiations in most evolved cyanobacterium. Symbiotic theory has explained the origin of eukaryotic cell as that in which the mitochondrion and chloroplast have been derived from endosymbionts of aerobic bacterium and cyanobacterium, respectively, and has mentioned as one of the most potent supportive evidences that amino acid sequences of the photosynthetic and O2 -respiratory enzymes show similarities to corresponding prokaryotic enzymes. However, as will be shown in this discussion, many examples have shown currently that prokaryotic sequences of informative molecules are conserved well not only in those of the mitochondrial and chloroplast molecules but also in the nuclear molecules. In fact, the similarities in sequence of informative molecules are preserved well among the organisms not only

  19. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Yang, Qiaoyu; Xiao, Lehui

    2014-08-01

    Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs

  20. The first cellular bioenergetic process: primitive generation of a proton-motive force.

    PubMed

    Koch, A L; Schmidt, T M

    1991-10-01

    It is proposed that the energy-transducing system of the first cellular organism and its precursor was fueled by the oxidation of hydrogen sulfide and ferric sulfide to iron pyrites and two [H+] on the outside surface of a vesicle (the cell membrane), with the concomitant reduction of CO or CO2 on the interior. The resulting proton gradient across the cell membrane provides a proton-motive force, so that a variety of kinds of work can be done. It is envisioned as providing a selective advantage for cells capable of harvesting this potential. The proposed reactants for these reactions are consistent with the predicted composition of the Earth's early environment. Modern-day homologs of the ancestral components of the energy-transducing system are thought to be membrane-associated ferredoxins for the extracellular redox reaction, carbon monoxide dehydrogenase for the carbon fixation reaction, and ATPase for the harvesting of the proton gradient. With a source of consumable energy, the cell could drive chemical reactions and transport events in such a way as to be exploited by Darwinian evolution. PMID:1663558

  1. Long-Term Calorie Restriction Enhances Cellular Quality-Control Processes in Human Skeletal Muscle.

    PubMed

    Yang, Ling; Licastro, Danilo; Cava, Edda; Veronese, Nicola; Spelta, Francesco; Rizza, Wanda; Bertozzi, Beatrice; Villareal, Dennis T; Hotamisligil, Gökhan S; Holloszy, John O; Fontana, Luigi

    2016-01-26

    Calorie restriction (CR) retards aging, acts as a hormetic intervention, and increases serum corticosterone and HSP70 expression in rodents. However, less is known regarding the effects of CR on these factors in humans. Serum cortisol and molecular chaperones and autophagic proteins were measured in the skeletal muscle of subjects on CR diets for 3-15 years and in control volunteers. Serum cortisol was higher in the CR group than in age-matched sedentary and endurance athlete groups (15.6 ± 4.6 ng/dl versus 12.3 ± 3.9 ng/dl and 11.2 ± 2.7 ng/dl, respectively; p ≤ 0.001). HSP70, Grp78, beclin-1, and LC3 mRNA and/or protein levels were higher in the skeletal muscle of the CR group compared to controls. Our data indicate that CR in humans is associated with sustained rises in serum cortisol, reduced inflammation, and increases in key molecular chaperones and autophagic mediators involved in cellular protein quality control and removal of dysfunctional proteins and organelles. PMID:26774472

  2. Processing and properties of multiscale cellular thermoplastic fiber reinforced composite (CellFRC)

    NASA Astrophysics Data System (ADS)

    Sorrentino, L.; Cafiero, L.; D'Auria, M.; Iannace, S.

    2015-12-01

    High performance fiber reinforced polymer composites are made by embedding high strength/modulus fibers in a polymeric matrix. They are a class of materials that owe its success to the impressive specific mechanical properties with respect to metals. In many weight-sensitive applications, where high mechanical properties and low mass are required, properties per unit of mass are more important than absolute properties and further weight reduction is desirable. A route to reach this goal could be the controlled induction of porosity into the polymeric matrix, while still ensuring load transfer to the reinforcing fibers and fiber protection from the environment. Cellular lightweight fiber reinforced composites (CellFRC) were prepared embedding gas bubbles of controlled size within a high performance thermoplastic matrix reinforced with continuous fibers. Pores were induced after the composite was first saturated with CO2 and then foamed by using an in situ foaming/shaping technology based on compression moulding with adjustable mould cavities. The presence of micro- or submicro-sized cells in the new CellFRC reduced the apparent density of the structure and led to significant improvements of its impact properties. Both structural and functional performances were further improved through the use of a platelet-like nanofiller (Expanded Graphite) dispersed into the matrix.

  3. TissueMiner: A multiscale analysis toolkit to quantify how cellular processes create tissue dynamics

    PubMed Central

    Etournay, Raphaël; Merkel, Matthias; Popović, Marko; Brandl, Holger; Dye, Natalie A; Aigouy, Benoît; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    2016-01-01

    Segmentation and tracking of cells in long-term time-lapse experiments has emerged as a powerful method to understand how tissue shape changes emerge from the complex choreography of constituent cells. However, methods to store and interrogate the large datasets produced by these experiments are not widely available. Furthermore, recently developed methods for relating tissue shape changes to cell dynamics have not yet been widely applied by biologists because of their technical complexity. We therefore developed a database format that stores cellular connectivity and geometry information of deforming epithelial tissues, and computational tools to interrogate it and perform multi-scale analysis of morphogenesis. We provide tutorials for this computational framework, called TissueMiner, and demonstrate its capabilities by comparing cell and tissue dynamics in vein and inter-vein subregions of the Drosophila pupal wing. These analyses reveal an unexpected role for convergent extension in shaping wing veins. DOI: http://dx.doi.org/10.7554/eLife.14334.001 PMID:27228153

  4. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials.

    PubMed

    Dowding, Janet M; Das, Soumen; Kumar, Amit; Dosani, Talib; McCormack, Rameech; Gupta, Ankur; Sayle, Thi X T; Sayle, Dean C; von Kalm, Laurence; Seal, Sudipta; Self, William T

    2013-06-25

    The study of the chemical and biological properties of CeO2 nanoparticles (CNPs) has expanded recently due to its therapeutic potential, and the methods used to synthesize these materials are diverse. Moreover, conflicting reports exist regarding the toxicity of CNPs. To help resolve these discrepancies, we must first determine whether CNPs made by different methods are similar or different in their physicochemical and catalytic properties. In this paper, we have synthesized several forms of CNPs using identical precursors through a wet chemical process but using different oxidizer/reducer; H2O2 (CNP1), NH4OH (CNP2), or hexamethylenetetramine (HMT-CNP1). Physicochemical properties of these CNPs were extensively studied and found to be different depending on the preparation methods. Unlike CNP1 and CNP2, HMT-CNP1 was readily taken into endothelial cells and the aggregation can be visualized using light microscopy. Exposure to HMT-CNP1 also reduced cell viability at a 10-fold lower concentration than CNP1 or CNP2. Surprisingly, exposure to HMT-CNP1 led to substantial decreases in ATP levels. Mechanistic studies revealed that HMT-CNP1 exhibited substantial ATPase (phosphatase) activity. Though CNP2 also exhibits ATPase activity, CNP1 lacked ATPase activity. The difference in catalytic (ATPase) activity of different CNPs preparation may be due to differences in their morphology and oxygen extraction energy. These results suggest that the combination of increased uptake and ATPase activity of HMT-CNP1 may underlie the biomechanism of the toxicity of this preparation of CNPs and may suggest that ATPase activity should be considered when synthesizing CNPs for use in biomedical applications. PMID:23668322

  5. Cellular Interaction and Toxicity Depends on Physiochemical Properties and Surface Modification of Redox Active Nanomaterials

    PubMed Central

    Dowding, Janet M.; Das, Soumen; Kumar, Amit; Dosani, Talib; McCormack, Rameech; Gupta, Ankur; Sayle, Thi X. T.; Sayle, Dean C.; von Kalm, Laurence; Seal, Sudipta; Self, William T.

    2013-01-01

    The study of the chemical and biological properties of CeO2 NPs (CNPs) has expanded recently due to its therapeutic potential, and the methods used to synthesize these materials are diverse. Moreover, conflicting reports exists regarding the toxicity of CNP. To help resolve these discrepancies, we must first determine whether CeO2 NPs made by different methods are similar or different in their physiochemical and catalytic properties. In this paper, we have synthesized several forms of CNPs using identical precursors through a wet chemical process but using different oxidizer/reducer H2O2 (CNP1), NH4OH (CNP2) or hexamethylenetetramine (HMT-CNP1). Physiochemical properties of these CeO2 NPs were extensively studied and found to be different depending on the preparation methods. Unlike CNP1 and CNP2, HMT-CNP1 were readily taken into endothelial cells and their aggregation can be visualized using light microscopy. Exposure to HMT-CNP1 also reduced cell viability (MTT) at a 10-fold lower concentration than CNP1 or CNP2. Surprisingly, exposure to HMT-CNP1 led to substantial decreases in the ATP levels. Mechanistic studies revealed that HMT-CNP1 exhibited substantial ATPase (phosphatase) activity. Though CNP2 also exhibits ATPase activity, CNP1 lacked ATPase activity. The difference in catalytic (ATPase) activity of different CeO2 NPs preparation may be due to differences in their morphology and oxygen extraction energy. These results suggest the combination of increased uptake and ATPase activity of HMT-CNP1 may underlie the biomechanism of the toxicity of this preparation of CNPs, and may suggest ATPase activity should be considered when synthesizing CNPs for use in biomedical applications. PMID:23668322

  6. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    PubMed Central

    Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.

    2016-01-01

    ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387

  7. Autoinducer AI-2 is involved in regulating a variety of cellular processes in Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LuxS/AI-2 mediated cell signaling is a known strategy that modulates a variety of bacterial processes in prokaryotes. Salmonella Typhimurium is known to possess LuxS/AI-2 mediated cell signaling. Until now, the Lsr- ABC transporter system (LuxS- regulated) is the only known process controlled by t...

  8. Magneto-optical cellular chip model for intracellular orientational-dynamic-activity detection

    NASA Astrophysics Data System (ADS)

    Miyashita, Y.; Iwasaka, M.; Kurita, S.; Owada, N.

    2012-04-01

    In the present study, a magneto-optical cellular chip model (MoCCM) was developed to detect intracellular dynamics in macromolecules by using magneto-optical effects. For the purpose of cell-measurement under strong static magnetic fields of up to 10 T, we constructed a cellular chip model, which was a thin glass plate with a well for a cell culture. A cell line of osteoblast MC3T3-E1 was incubated in the glass well, and the well, 0.3 mm in depth, was sealed by a cover glass when the MoCCM was set in a fiber optic system. An initial intensity change of the polarized light transmission, which dispersed perpendicular to the cell's attaching surface, was collected for 10 to 60 min, and then magnetic fields were applied parallel and perpendicular to the surface and light direction, respectively. The magnetic birefringence signals that originated from the magnetic orientation of intracellular molecules such as cytoskeletons apparently appeared when the magnetic fields were constant at 10 T. A statistical analysis with 15 experiments confirmed that the cellular components under 10 T magnetic fields caused a stronger alignment, which was transferred into polarizing light intensity that increased more than the case before exposure. Cellular conditions such as generation and cell density affected the magnetic birefringence signals.

  9. Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus.

    PubMed Central

    Reynolds, A B; Vila, J; Lansing, T J; Potts, W M; Weber, M J; Parsons, J T

    1987-01-01

    The role of tyrosine phosphorylation in the regulation of tyrosine protein kinase activity was investigated using site-directed mutagenesis to alter the structure and environment of the three tyrosine residues present in the C terminus of avian pp60c-src. Mutations that change Tyr 527 to Phe or Ser activate in vivo tyrosine protein kinase activity and induce cellular transformation of chicken cells in culture. In contrast, alterations of tyrosine residues present at positions 511 or 519 in c-src do not induce transformation or in vivo tyrosine protein kinase activity. Amber mutations, which alter the structure of the pp60c-src C terminus by inducing premature termination of the c-src protein at either residue 518 or 523 also induce morphological transformation and increase in vivo tyrosine phosphorylation, whereas removal of the last four residues of c-src by chain termination at residue 530 does not alter the kinase activity or the biological activity of the resultant c-src protein. We conclude from these studies that C-terminal alterations which either remove or replace Tyr 527 serve to activate the c-src protein resulting in cellular transformation and increased in vivo tyrosine protein kinase activity. Images Fig. 2. Fig. 3. Fig. 4. PMID:2822389

  10. Processed sweet corn has higher antioxidant activity.

    PubMed

    Dewanto, Veronica; Wu, Xianzhong; Liu, Rui Hai

    2002-08-14

    Processed fruits and vegetables have been long considered to have lower nutritional value than the fresh produce due to the loss of vitamin C during processing. Vitamin C in apples has been found to contribute <0.4% of total antioxidant activity, indicating most of the activity comes from the natural combination of phytochemicals. This suggests that processed fruits and vegetables may retain their antioxidant activity despite the loss of vitamin C. Here it is shown that thermal processing at 115 degrees C for 25 min significantly elevated the total antioxidant activity of sweet corn by 44% and increased phytochemical content such as ferulic acid by 550% and total phenolics by 54%, although 25% vitamin C loss was observed. Processed sweet corn has increased antioxidant activity equivalent to 210 mg of vitamin C/100 g of corn compared to the remaining 3.2 mg of vitamin C in the sample that contributed only 1.5% of its total antioxidant activity. These findings do not support the notion that processed fruits and vegetables have lower nutritional value than fresh produce. This information may have a significant impact on consumers' food selection by increasing their consumption of fruits and vegetables to reduce the risk of chronic diseases. PMID:12166989

  11. Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide.

    PubMed

    Edwards, Amanda L; Wachter, Franziska; Lammert, Margaret; Huhn, Annissa J; Luccarelli, James; Bird, Gregory H; Walensky, Loren D

    2015-09-18

    Hydrocarbon stapling has been applied to restore and stabilize the α-helical structure of bioactive peptides for biochemical, structural, cellular, and in vivo studies. The peptide sequence, in addition to the composition and location of the installed staple, can dramatically influence the properties of stapled peptides. As a result, constructs that appear similar can have distinct functions and utilities. Here, we perform a side-by-side comparison of stapled peptides modeled after the pro-apoptotic BIM BH3 helix to highlight these principles. We confirm that replacing a salt-bridge with an i, i + 4 hydrocarbon staple does not impair target binding affinity and instead can yield a biologically and pharmacologically enhanced α-helical peptide ligand. Importantly, we demonstrate by electron microscopy that the pro-apoptotic activity of a stapled BIM BH3 helix correlates with its capacity to achieve cellular uptake without membrane disruption and accumulate at the organellar site of mechanistic activity. PMID:26151238

  12. Cellular processing of copper-67-labeled monoclonal antibody chCE7 by human neuroblastoma cells.

    PubMed

    Novak-Hofer, I; Amstutz, H P; Mäcke, H R; Schwarzbach, R; Zimmermann, K; Morgenthaler, J J; Schubiger, P A

    1995-01-01

    Monoclonal antibody chCE7, an internalizing neuroblastoma-specific chimeric antibody, was derivatized with the macrocyclic amine ligand 4-[(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl] benzoic acid tetrahydrochloride and labeled with the potential therapeutic nuclide 67Cu. Using pulse labeling and an acid elution endocytosis assay, 67Cu-chCE7 was found to be internalized into human neuroblastoma (SKN-AS) cells at a similar rate and to a similar extent as 125I-labeled chCE7. Uptake of 67Cu-chCE7 and 125I-chCE7 into the acid stable (intracellular) pool proceeded with similar kinetics during the first 2 h of internalization. However, in contrast to 125I-chCE7-loaded cells, at later times intracellular radioactivity kept increasing in the case of 67Cu-chCE7-loaded cells. It was shown that this effect is due to the intracellular accumulation of a low M(r) degradation product consisting of the 67Cu-4[(1,4,8,11-tetraazacyclotetradec-1-yl)-methyl] benzoic acid complex, possibly with a short peptide attached to it. Degradation of both 125I-chCE7 and 67Cu-chCE7 was inhibited by chloroquine, indicating endosomal or lysosomal degradation, and a 43,000 M(r) fragment was found to be the major high M(r) degradation product in both cases. Although at times between 4 and 6 h of internalization intracellular breakdown of 67Cu-chCE7 was found to proceed more slowly, the major difference between the two immunoconjugates resides in the prolonged cellular retention of the 67Cu-chCE7 metabolite. PMID:7805039

  13. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression

    PubMed Central

    SUN, BO; FANG, YANTIAN; LI, ZHENYANG; CHEN, ZONGYOU; XIANG, JIANBIN

    2015-01-01

    Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial-mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin-rich to vimentin-rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration. PMID:26405532

  14. PDX1, a cellular homeoprotein, binds to and regulates the activity of human cytomegalovirus immediate early promoter.

    PubMed

    Chao, Sheng-Hao; Harada, Josephine N; Hyndman, Francie; Gao, Xiaoqi; Nelson, Christian G; Chanda, Sumit K; Caldwell, Jeremy S

    2004-04-16

    Cellular homeoproteins have been shown to regulate the transcription of several viruses, including herpes simplex viruses, human papillomaviruses, and mouse mammary tumor viruses. Previous studies investigating the anti-viral mechanisms of several cyclin-dependent kinase inhibitors showed that the homeoproteins, pre B-cell leukemia transcription factor 1 (PBX1) and PBX-regulating protein-1 (PREP1), function as transcriptional activators of Moloney murine leukemia virus. Here, we examined the involvement of cellular homeoproteins in regulating the activity of the human cytomegalovirus immediate early (CMV IE) promoter. We identified a 45-bp element located at position -593 to -549 upstream of the transcription start site of the CMV IE gene, which contains multiple putative homeoprotein binding motifs. Gel shift assays demonstrated the physical association between a homeodomain protein, pancreatic-duodenal homeobox factor-1 (PDX1) and the 45-bp cytomegalovirus (CMV) region. We further determined that PDX1 represses the CMV IE promoter activity in 293 cells. Overexpression of PDX1 resulted in a decrease in transcription of the CMV IE gene. Conversely, blocking PDX1 protein synthesis and mutating the PDX1 binding sites enhanced CMV IE-dependent transcription. Collectively, our results represent the first work demonstrating that a cellular homeoprotein, PDX1, may be a repressor involved in regulation of human CMV gene expression. PMID:14764605

  15. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle. PMID:27087101

  16. Formation of cellular projections in neural progenitor cells depends on SK3 channel activity.

    PubMed

    Liebau, Stefan; Vaida, Bianca; Proepper, Christian; Grissmer, Stephan; Storch, Alexander; Boeckers, Tobias M; Dietl, Paul; Wittekindt, Oliver H

    2007-06-01

    Ion channels are potent modulators for developmental processes in progenitor cells. In a screening approach for different ion channels in neural progenitor cells (NPCs) we observed a 1-ethyl-2-benzimidazolinone (1-EBIO) activated inward current, which could be blocked by scyllatoxin (ScTX, IC50=2+/- 0.3 nmol/L). This initial evidence for the expression of the small conductance Ca2+ activated K+-channel SK3 was confirmed by the detection of SK3 transcripts and protein in NPCs. Interestingly, SK3 proteins were highly expressed in non-differentiated NPCs with a focused localization in lamellipodia as well as filopodial structures. The activation of SK3 channels using 1-EBIO lead to an immediate filopodial sprouting and the translocation of the protein into these novel filopodial protrusions. Both effects could be prevented by the pre-incubation of NPCs with ScTX. Our study gives first evidence that the formation and prolongation of filopodia in NPCs is, at least in part, effectively induced and regulated by SK3 channels. PMID:17459146

  17. Molecular and Cellular Regulation of Toll-Like Receptor-4 Activity Induced by Lipopolysaccharide Ligands

    PubMed Central

    Liaunardy-Jopeace, Ardiyanto; Gay, Nicholas J.

    2014-01-01

    As well as being the primary signaling receptor for bacterial endotoxin or lipopolysaccharide Toll-like receptor-4 function is modulated by numerous factors not only in the context of microbial pathogenesis but also autoimmune and allergic diseases. TLR4 is subject to multiple levels of endogenous control and regulation from biosynthesis and trafficking to signal transduction and degradation. On the other hand regulation of TLR4 activity breaks down during Gram −ve sepsis leading to systemic damage, multi organ failure, and death. In this article, we review how TLR4 traffics from the early secretory pathway, the cis/trans Golgi to the cell surface and endolysosomal compartments. We will present evidence about how these processes influence signaling and can potentially lead to increased sensitivity to ligand-dependent activation as well as ligand-independent constitutive activation that may contribute to pathogenesis in sepsis. We will also discuss how sustained signaling may be coupled to endocytosis and consider the potential molecular mechanisms of immuno-modulators that modify TLR4 signaling function including the cat allergen FelD1 and endogenous protein ligands such as the extracellular matrix protein tenascin C and calprotectin (MRP8/14). PMID:25339952

  18. Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Azidin, A.; Taib, Z. A. M.; Harun, W. S. W.; Che Ghani, S. A.; Faisae, M. F.; Omar, M. A.; Ramli, H.

    2015-12-01

    Orthodontic implants have been a major focus through mechanical and biological performance in advance to fabricate shape of complex anatomical. Designing the part with a complex mechanism is one of the challenging process and addition to achieve the balance and desired mechanical performance brought to the right manufacture technique to fabricate. Metal additive manufacturing (MAM) is brought forward to the newest fabrication technology in this field. In this study, selective laser melting (SLM) process was utilized on a medical grade cobalt-chrome molybdenum (CoCrMo) alloy. The work has focused on mechanical properties of the CoCrMo open cellular structures samples with 60%, 70%, and 80% designed volume porosity that could potentially emulate the properties of human bone. It was observed that hardness values decreased as the soaking time increases except for bottom face. For compression test, 60% designed volume porosity demonstrated highest ultimate compressive strength compared to 70% and 80%.

  19. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    PubMed Central

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  20. Measles Virus Infection Inactivates Cellular Protein Phosphatase 5 with Consequent Suppression of Sp1 and c-Myc Activities

    PubMed Central

    Sato, Hiroki; Yoneda, Misako; Honma, Reiko; Ikeda, Fusako; Watanabe, Shinya

    2015-01-01

    ABSTRACT Measles virus (MeV) causes several unique syndromes, including transient immunosuppression. To clarify the cellular responses to MeV infection, we previously analyzed a MeV-infected epithelial cell line and a lymphoid cell line by microarray and showed that the expression of numerous genes was up- or downregulated in the epithelial cells. In particular, there was a characteristic comprehensive downregulation of housekeeping genes during late stage infection. To identify the mechanism underlying this phenomenon, we examined the phosphorylation status of transcription factors and kinase/phosphatase activities in epithelial cells after infection. MeV infection inactivated cellular protein phosphatase 5 (PP5) that consequently inactivated DNA-dependent protein kinase, which reduced Sp1 phosphorylation levels, and c-Myc degradation, both of which downregulated the expression of many housekeeping genes. In addition, intracellular accumulation of viral nucleocapsid inactivated PP5 and subsequent downstream responses. These findings demonstrate a novel strategy of MeV during infection, which causes the collapse of host cellular functions. IMPORTANCE Measles virus (MeV) is one of the most important pathogens in humans. We previously showed that MeV infection induces the comprehensive downregulation of housekeeping genes in epithelial cells. By examining this phenomenon, we clarified the molecular mechanism underlying the constitutive expression of housekeeping genes in cells, which is maintained by cellular protein phosphatase 5 (PP5) and DNA-dependent protein kinase. We also demonstrated that MeV targets PP5 for downregulation in epithelial cells. This is the first report to show how MeV infection triggers a reduction in overall cellular functions of infected host cells. Our findings will help uncover unique pathogenicities caused by MeV. PMID:26157124

  1. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    SciTech Connect

    Lee, Jun Han; Kim, Sung-Hak; Pascua, Philippe Noriel Q.; Song, Min-Suk; Baek, Yun Hee; Jin, Xun; Choi, Joong-Kook; Kim, Chul-Joong; Kim, Hyunggee; Choi, Young Ki

    2010-02-05

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  2. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes.

    PubMed

    Lutchman, Vicky; Medkour, Younes; Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I

    2016-03-29

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  3. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  4. Germiston virus transcriptase requires active 40S ribosomal subunits and utilizes capped cellular RNAs.

    PubMed Central

    Vialat, P; Bouloy, M

    1992-01-01

    The transcriptase associated with Germiston virus was assayed in an in vitro reaction in which transcription was coupled to translation by adding reticulocyte lysate under the appropriate salt conditions. When analyzed in polyacrylamide gels, the major transcripts migrated like authentic S mRNAs and possessed 12- to 18-base-long nontemplated 5' extensions similar to the 5' end of viral mRNAs. These transcripts were functional for the synthesis of at least proteins N and NSS. When translation was inhibited by adding protein synthesis inhibitors such as puromycin, cycloheximide, and anisomycin, a drastic inhibitory effect was observed on the synthesis of the complete S mRNA transcripts. However, initiation and part of the elongation process were still active, since short and incomplete RNA molecules with RNA primers at their 5' ends were synthesized. On the other hand, we found that edeine, another inhibitor of protein synthesis, stimulated not only synthesis of S mRNAs but also that of the full-length S cRNAs. Taking into account the mode of action of this antibiotic, we discuss the results, which emphasize the crucial role of active ribosomes during bunyavirus transcription and confirm the observations reported on La Crosse virions. Moreover, we showed that the RNA transcripts synthesized in a transcription-translation reaction were capped and that most of them have acquired the 5' terminal sequences of the alpha- or beta-globin mRNA. Images PMID:1731108

  5. Sampangine (a Copyrine Alkaloid) Exerts Biological Activities through Cellular Redox Cycling of Its Quinone and Semiquinone Intermediates.

    PubMed

    Mahdi, Fakhri; Morgan, J Brian; Liu, Wenlong; Agarwal, Ameeta K; Jekabsons, Mika B; Liu, Yang; Zhou, Yu-Dong; Nagle, Dale G

    2015-12-24

    The cananga tree alkaloid sampangine (1) has been extensively investigated for its antimicrobial and antitumor potential. Mechanistic studies have linked its biological activities to the reduction of cellular oxygen, the induction of reactive oxygen species (ROS), and alterations in heme biosynthesis. Based on the yeast gene deletion library screening results that indicated mitochondrial gene deletions enhanced the sensitivity to 1, the effects of 1 on cellular respiration were examined. Sampangine increased oxygen consumption rates in both yeast and human tumor cells. Mechanistic investigation indicated that 1 may have a modest uncoupling effect, but predominately acts by increasing oxygen consumption independent of mitochondrial complex IV. Sampangine thus appears to undergo redox cycling that may involve respiratory chain-dependent reduction to a semi-iminoquinone followed by oxidation and consequent superoxide production. Relatively high concentrations of 1 showed significant neurotoxicity in studies conducted with rat cerebellar granule neurons, indicating that sampangine use may be associated with potential neurotoxicity. PMID:26637046

  6. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  7. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.

    PubMed

    Hoque, Md Enamul; San, Wong Yoke; Wei, Feng; Li, Suming; Huang, Ming-Hsi; Vert, Michel; Hutmacher, Dietmar W

    2009-10-01

    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study. PMID:19331580

  8. Internalization and cellular processing of cholecystokinin in rat pancreatic acinar cells

    SciTech Connect

    Izzo, R.S.; Pellecchia, C.; Praissman, M. )

    1988-12-01

    To evaluate the internalization of cholecystokinin, monoiodinated imidoester of cholecystokinin octapeptide ({sup 125}I-(IE)-CCK-8) was bound to dispersed pancreatic acinar cells, and surface-bound and internalized radioligand were differentiated by treating with an acidified glycine buffer. The amount of internalized radioligand was four- and sevenfold greater at 24 and 37{degree}C than at 4{degree}C between 5 and 60 min of association. Specific binding of radioligand to cell surface receptors was not significantly different at these temperatures. Chloroquine, a lysosomotropic agent that blocks intracellular proteolysis, significantly increased the amount of CCK-8 internalized by 18 and 16% at 30 and 60 min of binding, respectively, compared with control. Dithiothreitol (DTT), a sulfhydryl reducing agent, also augmented the amount of CCK-8 radioligand internalized by 25 and 29% at 30 and 60 min, respectively. The effect of chloroquine and DTT on the processing of internalized radioligand was also considered after an initial 60 min of binding of radioligand to acinar cells. After 180 min of processing, the amount of radioligand internalized was significantly greater in the presence of chloroquine compared with controls, whereas the amount of radioligand declined in acinar cells treated with DTT. Internalized and released radioactivity from acinar cells was rebound to pancreatic membrane homogenates to determine the amount of intact radioligand during intracellular processing. Chloroquine significantly increased the amount of intact {sup 125}I-(IE)-CCK-8 radioligand in released and internalized radioactivity while DTT increased the amount of intact radioligand only in internalized samples. This study shows that pancreatic acinar cells rapidly internalize large amounts of CCK-8 and that chloroquine and DTT inhibit intracellular degradation.

  9. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  10. Enhanced Fibroblast Cellular Ligamentization Process to Polyethylene Terepthalate Artificial Ligament by Silk Fibroin Coating.

    PubMed

    Jiang, Jia; Ai, Chengchong; Zhan, Zufeng; Zhang, Peng; Wan, Fang; Chen, Jun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Chen, Tianwu; Zhou, Liang; Chen, Shiyi

    2016-04-01

    Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly. PMID:26526301

  11. Cellular mechanisms of deep brain stimulation: activity-dependent focal circuit reprogramming?

    PubMed Central

    Veerakumar, Avin; Berton, Olivier

    2015-01-01

    Deep brain stimulation (DBS) is a well-established treatment modality for movement disorders. As more behavioral disorders are becoming understood as specific disruptions in neural circuitry, the therapeutic realm of DBS is broadening to encompass a wider range of domains, including disorders of compulsion, affect, and memory, but current understanding of the cellular mechanisms of DBS remains limited. We review progress made during the last decade focusing in particular on how recent methods for targeted circuit manipulations, imaging and reconstruction are fostering preclinical and translational advances that improve our neurobiological understanding of DBS’s action in psychiatric disorders. PMID:26719852

  12. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes

    PubMed Central

    Killackey, Samuel A.; Sorbara, Matthew T.; Girardin, Stephen E.

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general. PMID:27066460

  13. The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels.

    PubMed

    Hawley, Simon A; Ford, Rebecca J; Smith, Brennan K; Gowans, Graeme J; Mancini, Sarah J; Pitt, Ryan D; Day, Emily A; Salt, Ian P; Steinberg, Gregory R; Hardie, D Grahame

    2016-09-01

    Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors. PMID:27381369

  14. Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process.

    PubMed

    Swynghedauw, B; Chevalier, B; Charlemagne, D; Mansier, P; Carré, F

    1997-07-01

    Ventricular fibrosis is not the only structural determinant of arrhythmias in left ventricular hypertrophy. In an experimental model of compensatory cardiac hypertrophy (CCH) the degree of cardiac hypertrophy is also independently linked to ventricular arrhythmias. Cardiac hypertrophy reflects the level of adaptation, and matches the adaptational modifications of the myocardial phenotype. We suggest that these modifications have detrimental aspects. The increased action potential (AP) and QT duration and the prolonged calcium transient both favour spontaneous calcium oscillations, and both are potentially arrhythmogenic and linked to phenotypic changes in membrane proteins. To date, only two ionic currents have been studied in detail: Ito is depressed (likely the main determinant in AP durations), and If, the pacemaker current, is induced in the overloaded ventricular myocytes. In rat CCH, the two components of the sarcoplasmic reticulum, namely Ca(2+)-ATPase and ryanodine receptors, are down-regulated in parallel. Nevertheless, while the inward calcium current is unchanged, the functionally linked duo composed of the Na+/Ca2+ exchanged and (Na+, K+)-ATPase, is less active. Such an imbalance may explain the prolonged calcium transient. The changes in heart rate variability provide information about the state of the autonomic nervous system and has prognostic value even in CCH. Transgenic studies have demonstrated that the myocardial adrenergic and muscarinic receptor content is also a determining factor. During CCH, several phenotypic membrane changes participate in the slowing of contraction velocity and are thus adaptational. They also have a detrimental counterpart and, together with fibrosis, favour arrhythmias. PMID:9302342

  15. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    NASA Astrophysics Data System (ADS)

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-01

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm-3 respectively, pore linear density of ±35 cm-1, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  16. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  17. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    PubMed

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake. PMID:26672619

  18. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  19. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    SciTech Connect

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R.; Katzenellenbogen, Rachel A.

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  20. Processing and characterization of multi-cellular monolithic bioceramics for bone regenerative scaffolds

    SciTech Connect

    Ari-Wahjoedi, Bambang; Ginta, Turnad Lenggo; Parman, Setyamartana; Abustaman, Mohd Zikri Ahmad

    2014-10-24

    Multicellular monolithic ceramic body is a ceramic material which has many gas or liquid passages partitioned by thin walls throughout the bulk material. There are many currently known advanced industrial applications of multicellular ceramics structures i.e. as supports for various catalysts, electrode support structure for solid oxide fuel cells, refractories, electric/electronic materials, aerospace vehicle re-entry heat shields and biomaterials for dental as well as orthopaedic implants by naming only a few. Multicellular ceramic bodies are usually made of ceramic phases such as mullite, cordierite, aluminum titanate or pure oxides such as silica, zirconia and alumina. What make alumina ceramics is excellent for the above functions are the intrinsic properties of alumina which are hard, wear resistant, excellent dielectric properties, resists strong acid and alkali attacks at elevated temperatures, good thermal conductivities, high strength and stiffness as well as biocompatible. In this work the processing technology leading to truly multicellular monolithic alumina ceramic bodies and their characterization are reported. Ceramic slip with 66 wt.% solid loading was found to be optimum as impregnant to the polyurethane foam template. Mullitic ceramic composite of alumina-sodium alumino disilicate-Leucite-like phases with bulk and true densities of 0.852 and 1.241 g cm{sup −3} respectively, pore linear density of ±35 cm{sup −1}, linear and bulk volume shrinkages of 7-16% and 32 vol.% were obtained. The compressive strength and elastic modulus of the bioceramics are ≈0.5-1.0 and ≈20 MPa respectively.

  1. A vanadyl sulfate-bovine serum albumin complex stimulates the release of lipoprotein lipase activity from isolated rat fat pads through an increase in the cellular content of cAMP and myo-inositol 1,4,5-trisphosphate.

    PubMed

    Motoyashiki, T; Miyake, M; Yoshida, A; Morita, T; Ueki, H

    1999-08-01

    A vanadyl sulfate-bovine serum albumin complex (vanadyl-BSA) prolonged the stability of the V4+ oxidation state, although vanadyl alone can readily change the oxidation state from V4+ to V5+ under physiological conditions. Vanadyl-BSA stimulated the release of lipoprotein lipase (LPL) activity from isolated rat fat pads and increased the cellular LPL activity in a time-dependent manner. These effects were independent of protein synthesis. Propranolol, quin 2-AM, ruthenium red, and neomycin all inhibited LPL release more potently than the increase in activity. In contrast, potent inhibition of the increase effect was observed with genistein and wortmannin. Short-term incubation of the fat pads with vanadyl-BSA showed a transient increase in the cellular content of cAMP and myo-inositol 1,4,5-trisphosphate (IP3), which was inhibited by propranolol and neomycin, respectively. These results suggest that vanadyl-BSA stimulates the release of LPL activity through an increase in the cellular content of cAMP and IP3, leading to an increased intracellular Ca2+ concentration, and that it also increases cellular LPL activity via process(es) sensitive to genistein and wortmannin. PMID:10480313

  2. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    SciTech Connect

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  3. On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain

    NASA Astrophysics Data System (ADS)

    Salari, V.; Tuszynski, J.; Bokkon, I.; Rahnama, M.; Cifra, M.

    2011-12-01

    The subject of Ultraweak Photon Emission (UPE) by biological systems is very fascinating, and both evidence of its effects and applications are growing rapidly due to improvements in experimental techniques. Since the relevant equipment should be ultrasensitive with high quantum efficiencies and very low noise levels, the subject of UPE is still hotly debated and some of the interpretations need stronger empirical evidence to be accepted at face value. In this paper we first review different types of interactions between light and living systems based on recent publications. We then discuss the feasibility of UPE production in the human brain. The subject of UPE in the brain is still in early stages of development and needs more accurate experimental methods for proper analysis. In this work we also discuss a possible role of mitochondria in the production of UPE in the neurons of the brain and the plausibility of their effects on microtubules (MTs). MTs have been implicated as playing an important role in the signal and information processing taking place in the mammalian (especially human) brain. Finally, we provide a short discussion about the feasible effects of MTs on electric neural activity in the human brain.

  4. Mitochondria toxin-induced acute cochlear cell death indicates cellular activity-correlated energy consumption.

    PubMed

    Zou, Jing; Zhang, Ya; Zhang, Weikai; Poe, Dennis; Zhai, Suoqiang; Yang, Shiming; Pyykkö, Ilmari

    2013-09-01

    The different cell types within the cochlea may have a specific contribution to the pathological changes during metabolism failure, which may provide clues for developing novel strategies for inner ear therapy. In order to evaluate activity-correlated cell death during metabolism failure in the cochlea, 3-nitropropionic acid was used to irreversibly inhibit the respiratory chain. Dose-response of the cochlear cells to 3-nitropropionic acid was analyzed in vitro. 3-Nitropropionic acid was administered onto the round window of guinea pigs. Cell death was identified by terminal transferase labeling the free 3'OH breaks in the DNA strands in vivo and propidium iodide nuclear permeation in vitro. As a result, 23.6 and 96.3 % cell death were induced by 10 and 100 mM 3-nitropropionic acid, respectively, in vitro. In the guinea pigs, 500 mM 3-nitropropionic acid induced vestibular dysfunction and severe to profound hearing losses. The cells that are the most sensitive to 3-nitropropionic acid treatment include the stria marginal and intermediate cells, epithelial cells of the Reissner's membrane, and spiral ligament fibrocytes (types II and V). Moderate sensitive cells were satellite fibrocytes of the spiral limbic central zone, osteocytes of the cochlear shell, hair cells, and spiral ganglion cells. Reduction of neurofilament in the soma and periphery processes of spiral ganglion cells occurred after the exposure. These results may be relevant to the mechanisms of injury in sudden onset sensorineural hearing loss and hazardous substance exposure-induced hearing loss. PMID:23179932

  5. The Nrf2 Activator Vinylsulfone Reduces High Glucose-Induced Neural Tube Defects by Suppressing Cellular Stress and Apoptosis.

    PubMed

    Dong, Daoyin; Reece, E Albert; Yang, Peixin

    2016-08-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is one of the primary pathways responsible for the cellular defense system against oxidative stress. Oxidative stress-induced apoptosis is a causal event in diabetic embryopathy. Thus, the Nrf2 pathway may play an important role in the induction of diabetic embryopathy. In the present study, we investigated the potentially protective effect of the Nrf2 activator, vinylsulfone, on high glucose-induced cellular stress, apoptosis, and neural tube defects (NTDs). Embryonic day 8.5 (E8.5) whole mouse embryos were cultured in normal (5 mmol/L) or high (16.7 mmol/L) glucose conditions, with or without vinylsulfone. At a concentration of 10 μmol/L, vinylsulfone had an inhibitory effect on high glucose-induced NTD formation, but it was not significant. At a concentration of 20 μmol/L, vinylsulfone significantly reduced high glucose-induced NTDs. In addition, 20 μmol/L vinylsulfone abrogated the high glucose-induced oxidative stress markers lipid hydroperoxide (LPO), 4-hydroxynonenal (4-HNE), and nitrotyrosine-modified proteins. The high glucose-induced endoplasmic reticulum (ER) stress biomarkers were also suppressed by 20 μmol/L vinylsulfone through the inhibition of phosphorylated protein kinase RNA-like ER kinase (PERK), inositol requiring protein 1α (IRE1a), eukaryotic initiation factor 2α (eIF2a), upregulated C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP), and x-box binding protein 1 (XBP1) messenger RNA splicing. Furthermore, 20 μmol/L vinylsulfone abolished caspase 3 and caspase 8 cleavage, markers of apoptosis, in embryos cultured under high glucose conditions. The Nrf2 activator, vinylsulfone, is protective against high glucose-induced cellular stress, caspase activation, and subsequent NTD formation. Our data suggest that vinylsulfone supplementation is a potential therapy for diabetes-associated neurodevelopmental defects. PMID:26802109

  6. Multifunctional Hyaluronic Acid and Chondroitin Sulfate Nanoparticles: Impact of Glycosaminoglycan Presentation on Receptor Mediated Cellular Uptake and Immune Activation.

    PubMed

    Oommen, Oommen P; Duehrkop, Claudia; Nilsson, Bo; Hilborn, Jöns; Varghese, Oommen P

    2016-08-17

    Hyaluronic acid (HA) and chondroitin sulfate (CS) polymers are extensively used for various biomedical applications, such as for tissue engineering, drug delivery, and gene delivery. Although both these biopolymers are known to target cell surface CD44 receptors, their relative cellular targeting properties and immune activation potential have never been evaluated. In this article, we present the synthesis and characterization of novel self-assembled supramolecular HA and CS nanoparticles (NPs). These NPs were developed using fluorescein as a hydrophobic component that induced amphiphilicity in biopolymers and also efficiently stabilized anticancer drug doxorubicin (DOX) promoting a near zero-order drug release. The cellular uptake and cytotoxicity studies of these NPs in different human cancer lines, namely, human colorectal carcinoma cell line HCT116 and human breast cancer cell line MCF-7 demonstrated dose dependent cytotoxicity. Interestingly, both NPs showed CD44 dependent cellular uptake with the CS-DOX NP displaying higher dose-dependent cytotoxicity than the HA-DOX NP in different mammalian cells tested. Immunological evaluation of these nanocarriers in an ex vivo human whole blood model revealed that unlike unmodified polymers, the HA NP and CS NP surprisingly showed platelet aggregation and thrombin-antithrombin complex formation at high concentrations (0.8 mg/mL). We also observed a clear difference in early- and late-stage complement activation (C3a and sC5b-9) with CS and CS NP triggering significant complement activation at high concentrations (0.08-0.8 mg/mL), unlike HA and HA NP. These results offer new insight into designing glycosaminoglycan-based NPs and understanding their hematological responses and targeting ability. PMID:27468113

  7. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    SciTech Connect

    Roper, Katherine; Coverley, Dawn

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  8. Speech perception as an active cognitive process

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy. PMID

  9. The orally active urotensin receptor antagonist, KR36676, attenuates cellular and cardiac hypertrophy

    PubMed Central

    Oh, K S; Lee, J H; Yi, K Y; Lim, C J; Lee, S; Park, C H; Seo, H W; Lee, B H

    2015-01-01

    Background and Purpose Blockade of the actions of urotensin-II (U-II) mediated by the urotensin (UT) receptor should improve cardiac function and prevent cardiac remodelling in cardiovascular disease. Here, we have evaluated the pharmacological properties of the recently identified UT receptor antagonist, 2-(6,7-dichloro-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl)-N-methyl-N-(2-(pyrrolidin-1-yl)-1-(4-(thiophen-3-yl)phenyl) ethyl)acetamide (KR36676). Experimental Approach Pharmacological properties of KR36676 were studied in a range of in vitro assays (receptor binding, calcium mobilization, stress fibre formation, cellular hypertrophy) and in vivo animal models such as cardiac hypertrophy induced by transverse aortic constriction (TAC) or myocardial infarction (MI). Key Results KR36676 displayed high binding affinity for the UT receptor (Ki: 0.7 nM), similar to that of U-II (0.4 nM), and was a potent antagonist at that receptor (IC50: 4.0 nM). U-II-induced stress fibre formation and cellular hypertrophy were significantly inhibited with low concentrations of KR36676 (≥0.01 μM). Oral administration of KR36676 (30 mg·kg−1) in a TAC model in mice attenuated cardiac hypertrophy and myocardial fibrosis. Moreover, KR36676 restored cardiac function and myocyte size in rats with MI-induced cardiac hypertrophy. Conclusions and Implications A highly potent UT receptor antagonist exerted anti-hypertrophic effects not only in infarcted rat hearts but also in pressure-overloaded mouse hearts. KR36676 could be a valuable pharmacological tool in elucidating the complicated physiological role of U-II and UT receptors in cardiac hypertrophy. PMID:25597918

  10. Changes in cellular distribution regulate SKD1 ATPase activity in response to a sudden increase in environmental salinity in halophyte ice plant.

    PubMed

    Jou, Yingtzy; Chiang, Chih-Pin; Yen, Hungchen Emilie

    2013-01-01

    Halophyte Mesembryanthemum crystallinum L. (ice plant) rapidly responds to sudden increases in salinity in its environment by activating specific salt-tolerant mechanisms. One major strategy is to regulate a series of ion transporters and proton pumps to maintain cellular Na(+)/K(+) homeostasis. Plant SKD1 (suppressor of K(+) transport growth defect 1) proteins accumulate in cells actively engaged in the secretory processes, and play a critical role in intracellular protein trafficking. Ice plant SKD1 redistributes from the cytosol to the plasma membrane hours after salt stressed. In combination with present knowledge of this protein, we suggest that stress facilitates SKD1 movement to the plasma membrane where ADP/ATP exchange occurs, and functions in the regulation of membrane components such as ion transporters to avoid ion toxicity. PMID:24390077

  11. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  12. Depletion of arachidonic acid from GH3 cells. Effects on inositol phospholipid turnover and cellular activation.

    PubMed Central

    Dudley, D T; Macfarlane, D E; Spector, A A

    1987-01-01

    We have adapted rat pituitary GH3 cells to grow in delipidated culture medium. In response, esterfied linoleic acid and arachidonic acid become essentially undetectable, whereas eicosa-5,8,11-trienoic acid accumulates and oleic acid increases markedly. These changes occur in all phospholipid classes, but are particularly pronounced in inositol phospholipids, where the usual stearate/arachidonate profile is replaced with oleate/eicosatrienoate (n - 9) and stearate/eicosatrienoate (n - 9). Incubation of arachidonate-depleted cells with 10 microM-arachidonic acid for only 24 h results in extensive remodelling of phospholipid fatty acids, such that close-to-normal compositions and arachidonic acid content are achieved for the inositol phospholipids. In comparison studies with arachidonic acid-depleted or -repleted cells, it was found that the arachidonate content does not affect thyrotropin-releasing-hormone (TRH)-stimulated responses measured at long time points, including [32P]Pi labelling of phosphatidylinositol and phosphatidic acid, stimulation of protein phosphorylation, and basal or TRH-stimulated prolactin release. However, transient events such as stimulated breakdown of inositol phospholipids and an initial rise in diacylglycerol are enhanced by the presence of arachidonate. These results show that arachidonic acid itself is not required for operation of the phosphatidylinositol cycle and is not an obligatory intermediate in TRH-mediated GH3 cell activation. It is possible that any structural or functional role of arachidonic acid in these processes is largely met by replacement with eicosatrienoate (n - 9). However, since arachidonate in inositol phospholipids facilitates their hydrolysis upon stimulation by TRH, arachidonic acid apparently may have a specific role in the recognition of these lipids by phospholipase C. Images Fig. 4. PMID:3120699

  13. Cellular resilience.

    PubMed

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  14. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  15. Modelling cellular behaviour

    NASA Astrophysics Data System (ADS)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  16. Chiral Ruthenium(II) Polypyridyl Complexes: Stabilization of G-Quadruplex DNA, Inhibition of Telomerase Activity and Cellular Uptake

    PubMed Central

    Yu, Qianqian; Liu, Yanan; Wang, Chuan; Sun, Dongdong; Yang, Xingcheng; Liu, Yanyu; Liu, Jie

    2012-01-01

    Two ruthenium(II) complexes, Λ-[Ru(phen)2(p-HPIP)]2+ and Δ-[Ru(phen)2(p-HPIP)]2+, were synthesized and characterized via proton nuclear magnetic resonance spectroscopy, electrospray ionization-mass spectrometry, and circular dichroism spectroscopy. This study aims to clarify the anticancer effect of metal complexes as novel and potent telomerase inhibitors and cellular nucleus target drug. First, the chiral selectivity of the compounds and their ability to stabilize quadruplex DNA were studied via absorption and emission analyses, circular dichroism spectroscopy, fluorescence-resonance energy transfer melting assay, electrophoretic mobility shift assay, and polymerase chain reaction stop assay. The two chiral compounds selectively induced and stabilized the G-quadruplex of telomeric DNA with or without metal cations. These results provide new insights into the development of chiral anticancer agents for G-quadruplex DNA targeting. Telomerase repeat amplification protocol reveals the higher inhibitory activity of Λ-[Ru(phen)2(p-HPIP)]2+ against telomerase, suggesting that Λ-[Ru(phen)2(p-HPIP)]2+ may be a potential telomerase inhibitor for cancer chemotherapy. MTT assay results show that these chiral complexes have significant antitumor activities in HepG2 cells. More interestingly, cellular uptake and laser-scanning confocal microscopic studies reveal the efficient uptake of Λ-[Ru(phen)2(p-HPIP)]2+ by HepG2 cells. This complex then enters the cytoplasm and tends to accumulate in the nucleus. This nuclear penetration of the ruthenium complexes and their subsequent accumulation are associated with the chirality of the isomers as well as with the subtle environment of the ruthenium complexes. Therefore, the nucleus can be the cellular target of chiral ruthenium complexes for anticancer therapy. PMID:23236402

  17. Formin’ cellular structures

    PubMed Central

    Bogdan, Sven; Schultz, Jörg; Grosshans, Jörg

    2014-01-01

    Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation. PMID:24719676

  18. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism.

    PubMed

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  19. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism

    PubMed Central

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N. Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  20. Determining Antioxidant Activities of Lactobacilli Cell-Free Supernatants by Cellular Antioxidant Assay: A Comparison with Traditional Methods

    PubMed Central

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  1. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    PubMed

    Xing, Jiali; Wang, Gang; Zhang, Qiuxiang; Liu, Xiaoming; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Wei

    2015-01-01

    Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA) assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs) of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS), reducing power (RP), and inhibition of linoleic acid peroxidation (ILAP). Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs. PMID:25789875

  2. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  3. Precise quantification of cellular uptake of cell-penetrating peptides using fluorescence-activated cell sorting and fluorescence correlation spectroscopy.

    PubMed

    Rezgui, Rachid; Blumer, Katy; Yeoh-Tan, Gilbert; Trexler, Adam J; Magzoub, Mazin

    2016-07-01

    Cell-penetrating peptides (CPPs) have emerged as a potentially powerful tool for drug delivery due to their ability to efficiently transport a whole host of biologically active cargoes into cells. Although concerted efforts have shed some light on the cellular internalization pathways of CPPs, quantification of CPP uptake has proved problematic. Here we describe an experimental approach that combines two powerful biophysical techniques, fluorescence-activated cell sorting (FACS) and fluorescence correlation spectroscopy (FCS), to directly, accurately and precisely measure the cellular uptake of fluorescently-labeled molecules. This rapid and technically simple approach is highly versatile and can readily be applied to characterize all major CPP properties that normally require multiple assays, including amount taken up by cells (in moles/cell), uptake efficiency, internalization pathways, intracellular distribution, intracellular degradation and toxicity threshold. The FACS-FCS approach provides a means for quantifying any intracellular biochemical entity, whether expressed in the cell or introduced exogenously and transported across the plasma membrane. PMID:27033412

  4. Enhanced cellular uptake and gene silencing activity of siRNA molecules mediated by chitosan-derivative nanocomplexes.

    PubMed

    Guzman-Villanueva, Diana; El-Sherbiny, Ibrahim M; Vlassov, Alexander V; Herrera-Ruiz, Dea; Smyth, Hugh D C

    2014-10-01

    The RNA interference (RNAi) constitutes a conservative mechanism in eukaryotic cells that induces silencing of target genes. In mammalians, the RNAi is triggered by siRNA (small interfering RNA) molecules. Due to its potential in silencing specific genes, the siRNA has been considered a potential alternative for the treatment of genetic and acquired diseases. However, the siRNA therapy has been limited by its low stability and rapid degradation in presence of nucleases, low cellular uptake, and immune response activation. In order to overcome these drawbacks, we propose the synthesis and characterization of non-viral delivery systems using chitosan derivatives to obtain siRNA complexes (polyplexes). The non-viral delivery systems synthesized included PEG-g-OCs (oligochitosan) and PEG-g-Cs (chitosan medium molecular weight). Both systems allowed the formation of siRNA polyplexes, increased the stability of siRNA in the presence of nucleases, enhanced cellular internalization, and showed low toxicity in the A549 cell line. Finally, the complexes obtained with the PEG-g-OCs system showed silencing activity in a GFP model in the cell line A549 in comparison with naked siRNA. PMID:25063077

  5. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds.

    PubMed

    Laukkanen, Hanna; Rautiainen, Lea; Taulavuori, Erja; Hohtola, Anja

    2000-04-01

    Visible browning is a typical feature of callus cultures derived from shoot tips of mature Scots pine (Pinus sylvestris L.). Because the ability of callus to regenerate is low, we determined the effect of browning on growth and changes in cellular structure during culture. Striking alterations in cellular structure were detected by LM (light microscopy), EM (electron microscopy) and SEM (scanning electron microscopy). Accumulation of phenolic substances was shown by histochemical staining. Staining for beta-glucosidase activity of soluble proteins that had been subjected to polyacrylamide gel electrophoresis indicated lignification of cells. The measured growth rate of callus was low compared with a hypothetical growth curve. Peroxidase activity increased rapidly soon after the start of the culture period, but especially between the second and third weeks of culture. At this time, the degradation of cell membranes and browning began coincident with the loss of chlorophyll. We conclude that browning is associated with cell disorganization and eventual cell death, making tissue culture of mature pine especially difficult. PMID:12651442

  6. Flow-dependent myosin recruitment during Drosophila cellularization requires zygotic dunk activity.

    PubMed

    He, Bing; Martin, Adam; Wieschaus, Eric

    2016-07-01

    Actomyosin contractility underlies force generation in morphogenesis ranging from cytokinesis to epithelial extension or invagination. In Drosophila, the cleavage of the syncytial blastoderm is initiated by an actomyosin network at the base of membrane furrows that invaginate from the surface of the embryo. It remains unclear how this network forms and how it affects tissue mechanics. Here, we show that during Drosophila cleavage, myosin recruitment to the cleavage furrows proceeds in temporally distinct phases of tension-driven cortical flow and direct recruitment, regulated by different zygotic genes. We identify the gene dunk, which we show is transiently transcribed when cellularization starts and functions to maintain cortical myosin during the flow phase. The subsequent direct myosin recruitment, however, is Dunk-independent but requires Slam. The Slam-dependent direct recruitment of myosin is sufficient to drive cleavage in the dunk mutant, and the subsequent development of the mutant is normal. In the dunk mutant, cortical myosin loss triggers misdirected flow and disrupts the hexagonal packing of the ingressing furrows. Computer simulation coupled with laser ablation suggests that Dunk-dependent maintenance of cortical myosin enables mechanical tension build-up, thereby providing a mechanism to guide myosin flow and define the hexagonal symmetry of the furrows. PMID:27226317

  7. Flow-dependent myosin recruitment during Drosophila cellularization requires zygotic dunk activity

    PubMed Central

    Martin, Adam; Wieschaus, Eric

    2016-01-01

    Actomyosin contractility underlies force generation in morphogenesis ranging from cytokinesis to epithelial extension or invagination. In Drosophila, the cleavage of the syncytial blastoderm is initiated by an actomyosin network at the base of membrane furrows that invaginate from the surface of the embryo. It remains unclear how this network forms and how it affects tissue mechanics. Here, we show that during Drosophila cleavage, myosin recruitment to the cleavage furrows proceeds in temporally distinct phases of tension-driven cortical flow and direct recruitment, regulated by different zygotic genes. We identify the gene dunk, which we show is transiently transcribed when cellularization starts and functions to maintain cortical myosin during the flow phase. The subsequent direct myosin recruitment, however, is Dunk-independent but requires Slam. The Slam-dependent direct recruitment of myosin is sufficient to drive cleavage in the dunk mutant, and the subsequent development of the mutant is normal. In the dunk mutant, cortical myosin loss triggers misdirected flow and disrupts the hexagonal packing of the ingressing furrows. Computer simulation coupled with laser ablation suggests that Dunk-dependent maintenance of cortical myosin enables mechanical tension build-up, thereby providing a mechanism to guide myosin flow and define the hexagonal symmetry of the furrows. PMID:27226317

  8. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  9. A Nucleolar Protein, Ribosomal RNA Processing 1 Homolog B (RRP1B), Enhances the Recruitment of Cellular mRNA in Influenza Virus Transcription

    PubMed Central

    Su, Wen-Chi; Hsu, Shih-Feng; Lee, Yi-Yuan; Jeng, King-Song

    2015-01-01

    ABSTRACT Influenza A virus (IAV) undergoes RNA transcription by a unique capped-mRNA-dependent transcription, which is carried out by the viral RNA-dependent RNA polymerase (RdRp), consisting of the viral PA, PB1, and PB2 proteins. However, how the viral RdRp utilizes cellular factors for virus transcription is not clear. Previously, we conducted a genome-wide pooled short hairpin RNA (shRNA) screen to identify host factors important for influenza A virus replication. Ribosomal RNA processing 1 homolog B (RRP1B) was identified as one of the candidates. RRP1B is a nucleolar protein involved in ribosomal biogenesis. Upon IAV infection, part of RRP1B was translocated from the nucleolus to the nucleoplasm, where viral RNA synthesis likely takes place. The depletion of RRP1B significantly reduced IAV mRNA transcription in a minireplicon assay and in virus-infected cells. Furthermore, we showed that RRP1B interacted with PB1 and PB2 of the RdRp and formed a coimmunoprecipitable complex with RdRp. The depletion of RRP1B reduced the amount of capped mRNA in the RdRp complex. Taken together, these findings indicate that RRP1B is a host factor essential for IAV transcription and provide a target for new antivirals. IMPORTANCE Influenza virus is an important human pathogen that causes significant morbidity and mortality and threatens the human population with epidemics and pandemics every year. Due to the high mutation rate of the virus, antiviral drugs targeting viral proteins might ultimately lose their effectiveness. An alternative strategy that explores the genetic stability of host factors indispensable for influenza virus replication would thus be desirable. Here, we characterized the rRNA processing 1 homolog B (RRP1B) protein as an important cellular factor for influenza A virus transcription. We showed that silencing RRP1B hampered viral RNA-dependent RNA polymerase (RdRp) activity, which is responsible for virus transcription and replication. Furthermore, we

  10. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    PubMed

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-01

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. PMID:27123900

  11. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    PubMed Central

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  12. Plastid Osmotic Stress Activates Cellular Stress Responses in Arabidopsis1[C][W][OPEN

    PubMed Central

    Wilson, Margaret E.; Basu, Meera R.; Bhaskara, Govinal Badiger; Verslues, Paul E.; Haswell, Elizabeth S.

    2014-01-01

    Little is known about cytoplasmic osmoregulatory mechanisms in plants, and even less is understood about how the osmotic properties of the cytoplasm and organelles are coordinately regulated. We have previously shown that Arabidopsis (Arabidopsis thaliana) plants lacking functional versions of the plastid-localized mechanosensitive ion channels Mechanosensitive Channel of Small Conductance-Like2 (MSL2) and MSL3 contain leaf epidermal plastids under hypoosmotic stress, even during normal growth and development. Here, we use the msl2 msl3 mutant as a model to investigate the cellular response to constitutive plastid osmotic stress. Under unstressed conditions, msl2 msl3 seedlings exhibited several hallmarks of drought or environmental osmotic stress, including solute accumulation, elevated levels of the compatible osmolyte proline (Pro), and accumulation of the stress hormone abscisic acid (ABA). Furthermore, msl2 msl3 mutants expressed Pro and ABA metabolism genes in a pattern normally seen under drought or osmotic stress. Pro accumulation in the msl2 msl3 mutant was suppressed by conditions that reduce plastid osmotic stress or inhibition of ABA biosynthesis. Finally, treatment of unstressed msl2 msl3 plants with exogenous ABA elicited a much greater Pro accumulation response than in the wild type, similar to that observed in plants under drought or osmotic stress. These results suggest that osmotic imbalance across the plastid envelope can elicit a response similar to that elicited by osmotic imbalance across the plasma membrane and provide evidence for the integration of the osmotic state of an organelle into that of the cell in which it resides. PMID:24676856

  13. A-Ring Dihalogenation Increases the Cellular Activity of Combretastatin-Templated Tetrazoles

    PubMed Central

    2012-01-01

    The combretastatins have been investigated for their antimitotic and antivascular properties, and it is widely postulated that a 3,4,5-trimethoxyaryl A-ring is essential to maintain potent activity. We have synthesized new tetrazole analogues (32–34), demonstrating that 3,5-dihalogenation can consistently increase potency by up to 5-fold when compared to the equivalent trimethoxy compound on human umbilical vein endothelial cells (HUVECs) and a range of cancer cells. Moreover, this increased potency offsets that lost by installing the tetrazole bridge into combretastatin A-4 (1), giving crystalline, soluble compounds that have low nanomolar activity, arrest cells in G2/M phase, and retain microtubule inhibitory activity. Molecular modeling has shown that optimized packing within the binding site resulting in increased Coulombic interaction may be responsible for this improved activity. PMID:24900453

  14. Activation and suppression of cellular immunity during reparative liver regeneration in mice

    SciTech Connect

    Rakhmilevich, A.L.; Sidorenko, O.N.

    1986-10-01

    The authors study the effect of partial hepatectomy (PHE) on the functional activity of various lymphocyte populations in vitro and in vivo, namely its effect on proliferative, effector and killer activity. A mixture of 50 microliters of reacting spleen cells and 100 microliters of stimulating spleen cells from mice, irradiated in a dose of 2000 rads, was incubated as described. /sup 3/H-thymidine was added to the medium before the end of incubation. The radioactivity of the samples was measured in a beta-spectrometer. Activity of immune and normal killer cells was determined in the membrane-toxic test with /sup 3/H-uridine. Depression of killer activity and of the graft versus host reaction after PHE is evidently due to the action of suppressor cells as is shown by the example of lowering of the helper function in mixed lymphocyte culture.

  15. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators.

    PubMed

    Dugan, Amanda; Pricer, Rachel; Katz, Micah; Mapp, Anna K

    2016-08-01

    Transcriptional activators coordinate the dynamic assembly of multiprotein coactivator complexes required for gene expression to occur. Here we combine the power of in vivo covalent chemical capture with p-benzoyl-L-phenylalanine (Bpa), a genetically incorporated photo-crosslinking amino acid, and chromatin immunoprecipitation (ChIP) to capture the direct protein interactions of the transcriptional activator VP16 with the general transcription factor TBP at the GAL1 promoter in live yeast. PMID:27213278

  16. Molecular and cellular effects of NEDD8-activating enzyme inhibition in myeloma.

    PubMed

    McMillin, Douglas W; Jacobs, Hannah M; Delmore, Jake E; Buon, Leutz; Hunter, Zachary R; Monrose, Val; Yu, Jie; Smith, Peter G; Richardson, Paul G; Anderson, Kenneth C; Treon, Steven P; Kung, Andrew L; Mitsiades, Constantine S

    2012-04-01

    The NEDD8-activating enzyme is upstream of the 20S proteasome in the ubiquitin/proteasome pathway and catalyzes the first step in the neddylation pathway. NEDD8 modification of cullins is required for ubiquitination of cullin-ring ligases that regulate degradation of a distinct subset of proteins. The more targeted impact of NEDD8-activating enzyme on protein degradation prompted us to study MLN4924, an investigational NEDD8-activating enzyme inhibitor, in preclinical multiple myeloma models. In vitro treatment with MLN4924 led to dose-dependent decrease of viability (EC(50) = 25-150 nmol/L) in a panel of human multiple myeloma cell lines. MLN4924 was similarly active against a bortezomib-resistant ANBL-6 subline and its bortezomib-sensitive parental cells. MLN4924 had submicromolar activity (EC(50) values <500 nmol/L) against primary CD138(+) multiple myeloma patient cells and exhibited at least additive effect when combined with dexamethasone, doxorubicin, and bortezomib against MM.1S cells. The bortezomib-induced compensatory upregulation of transcripts for ubiquitin/proteasome was not observed with MLN4924 treatment, suggesting distinct functional roles of NEDD8-activating enzyme versus 20S proteasome. MLN4924 was well tolerated at doses up to 60 mg/kg 2× daily and significantly reduced tumor burden in both a subcutaneous and an orthotopic mouse model of multiple myeloma. These studies provide the framework for the clinical investigation of MLN4924 in multiple myeloma. PMID:22246439

  17. Complete solids retention activated sludge process.

    PubMed

    Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L

    2016-01-01

    In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration. PMID:27003077

  18. Modeling of an Active Tablet Coating Process.

    PubMed

    Toschkoff, Gregor; Just, Sarah; Knop, Klaus; Kleinebudde, Peter; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes G

    2015-12-01

    Tablet coating is a common unit operation in the pharmaceutical industry, during which a coating layer is applied to tablet cores. The coating uniformity of tablets in a batch is especially critical for active coating, that is, coating that contains an active pharmaceutical ingredient. In recent years, discrete element method (DEM) simulations became increasingly common for investigating tablet coating. In this work, DEM was applied to model an active coating process as closely as possible, using measured model parameters and non-spherical particles. We studied how operational conditions (rotation speed, fill level, number of nozzles, and spray rate) influence the coating uniformity. To this end, simulation runs were planned and interpreted according to a statistical design of (simulation) experiments. Our general goal was to achieve a deeper understanding of the process in terms of residence times and dimensionless scaling laws. With that regard, the results were interpreted in light of analytical models. The results were presented at various detail levels, ranging from an overview of all variations to in-depth considerations. It was determined that the biggest uniformity improvement in a realistic setting was achieved by increasing the number of spray nozzles, followed by increasing the rotation speed and decreasing the fill level. PMID:26344941

  19. Cellular Transformation of Mouse Embryo Fibroblasts in the Absence of Activator E2Fs

    PubMed Central

    Gupta, Tushar; Sáenz Robles, Maria Teresa

    2015-01-01

    ABSTRACT The E2F family of transcription factors, broadly divided into activator and repressor E2Fs, regulates cell cycle genes. Current models indicate that activator E2Fs are necessary for cell cycle progression and tumorigenesis and are also required to mediate transformation induced by DNA tumor viruses. E2Fs are negatively regulated by the retinoblastoma (RB) family of tumor suppressor proteins, and virus-encoded oncogenes disrupt the RB-E2F repressor complexes. This results in the release of activator E2Fs and induction of E2F-dependent genes. In agreement, expression of large tumor T antigens (TAg) encoded by polyomaviruses in mammalian cells results in increased transcriptional levels of E2F target genes. In addition, tumorigenesis induced by transgenic expression of simian virus 40 (SV40) TAg in choroid plexus or intestinal villi requires at least one activator E2F. In contrast, we show that SV40 TAg-induced transformation in mouse embryonic fibroblasts is independent of activator E2Fs. This work, coupled with recent studies showing that proliferation in stem and progenitor cells is independent of activator E2Fs, suggests the presence of parallel pathways governing cell proliferation and tumorigenesis. IMPORTANCE The RB-E2F pathway is altered in many cancers and is also targeted by DNA tumor viruses. Viral oncoprotein action on RBs results in the release of activator E2Fs and upregulation of E2F target genes; thus, activator E2Fs are considered essential for normal and tumorigenic cell proliferation. However, we have observed that SV40 large T antigen can induce cell proliferation and transformation in the absence of activator E2Fs. Our results also suggest that TAg action on pRBs regulates both E2F-dependent and -independent pathways that govern proliferation. Thus, specific cell proliferation pathways affected by RB alterations in cancer may be a factor in tumor behavior and response to therapy. PMID:25717106

  20. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity

    PubMed Central

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-01-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe2+ chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods. PMID:26451354

  1. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  2. The extracellular matrix microtopography drives critical changes in cellular motility and Rho A activity in colon cancer cells

    PubMed Central

    2010-01-01

    We have shown that the microtopography (mT) underlying colon cancer changes as a tumor de-differentiates. We distinguish the well-differentiated mT based on the increasing number of "pits" and poorly differentiated mT on the basis of increasing number of "posts." We investigated Rho A as a mechanosensing protein using mT features derived from those observed in the ECM of colon cancer. We evaluated Rho A activity in less-tumorogenic (Caco-2 E) and more tumorigenic (SW620) colon cancer cell-lines on microfabricated pits and posts at 2.5 μm diameter and 200 nm depth/height. In Caco-2 E cells, we observed a decrease in Rho A activity as well as in the ratio of G/F actin on surfaces with either pits or posts but despite this low activity, knockdown of Rho A led to a significant decrease in confined motility suggesting that while Rho A activity is reduced on these surfaces it still plays an important role in controlling cellular response to barriers. In SW620 cells, we observed that Rho A activity was greatest in cells plated on a post microtopography which led to increased cell motility, and an increase in actin cytoskeletal turnover. PMID:20667086

  3. Epstein-Barr virus induces cellular transcription factors to allow active expression of EBER genes by RNA polymerase III.

    PubMed

    Felton-Edkins, Zoë A; Kondrashov, Alexander; Karali, Dimitra; Fairley, Jennifer A; Dawson, Christopher W; Arrand, John R; Young, Lawrence S; White, Robert J

    2006-11-10

    The EBER genes of Epstein-Barr virus (EBV) are transcribed by RNA polymerase (pol) III to produce untranslated RNAs that are implicated in oncogenesis. These EBER transcripts are the most highly expressed viral gene products in EBV-transformed cells. We have identified changes to the cellular transcription machinery that may contribute to the high levels of EBER RNA. These include phosphorylation of ATF2, which interacts with EBER promoters. A second is induction of TFIIIC, a pol III-specific factor that activates EBER genes; all five subunits of TFIIIC are overexpressed in EBV-positive cells. In addition, EBV induces BDP1, a subunit of the pol III-specific factor TFIIIB. Although BDP1 is the only TFIIIB subunit induced by EBV, its induction is sufficient to stimulate EBER expression in vivo, implying a limiting function. The elevated levels of BDP1 and TFIIIC in EBV-positive cells stimulate production of tRNA, 7SL, and 5S rRNA. Abnormally high expression of these cellular pol III products may contribute to the ability of EBV to enhance growth potential. PMID:16956891

  4. Activity against Mycobacterium tuberculosis with concomitant induction of cellular immune responses by a tetraaza-macrocycle with acetate pendant arms.

    PubMed

    David, S; Ordway, D; Arroz, M J; Costa, J; Delgado, R

    2001-01-01

    The novel tetraaza-macrocyclic compound 3,7,11-tris(carboxymethyl)-3,7,11,17-tetraaza-bicyclo[11.3.1]heptadeca-1(17),13,15-triene, abbreviated as ac3py14, was investigated for its activity against Mycobacterium tuberculosis and for induction of protective cellular immune responses. Perspective results show that ac3py14 and its Fe3+ 1:1 complex, [Fe(ac3py14)], inhibited radiometric growth of several strains of M. tuberculosis. Inhibition with 25 microg/mL varied from 99% for H37Rv to 80% and above for multiple drug-resistant clinical isolates. The capacity of ac3py14 to elicit a beneficial immune response without cellular apoptosis was assessed and compared to the effects of virulent M. tuberculosis. The present study produces evidence that after stimulation with ac3py14 there was significant production of interferon gamma (IFN-gamma), whereas the production of interleukin-5 (IL-5) remained low, and there was development of a memory population (CD45RO). The level of binding of Annexin V, a marker of apoptosis, was not sufficient to result in toxic effects toward alphabeta and gammadelta T cells and CD14+ macrophages. This preliminary study is the first report of a compound that simultaneously exerts an inhibitory effect against M. tuberculosis and induces factors associated with protective immune responses. PMID:11501675

  5. Pilocarpine modulates the cellular electrical properties of mammalian hearts by activating a cardiac M3 receptor and a K+ current

    PubMed Central

    Wang, Huizhen; Shi, Hong; Lu, Yanjie; Yang, Baofeng; Wang, Zhiguo

    1999-01-01

    Pilocarpine, a muscarinic acetylcholine receptor (mAChR) agonist, is widely used for treatment of xerostomia and glaucoma. It can also cause many other cellular responses by activating different subtypes of mAChRs in different tissues. However, the potential role of pilocarpine in modulating cardiac function remained unstudied.We found that pilocarpine produced concentration-dependent (0.1–10 μM) decrease in sinus rhythm and action potential duration, and hyperpolarization of membrane potential in guinea-pig hearts. The effects were nearly completely reversed by 1 μM atropine or 2 nM 4DAMP methiodide (an M3-selective antagonist).Patch-clamp recordings in dispersed myocytes from guinea-pig and canine atria revealed that pilocarpine induces a novel K+ current with delayed rectifying properties. The current was suppressed by low concentrations of M3-selective antagonists 4DAMP methiodide (2–10 nM), 4DAMP mustard (4–20 nM, an ackylating agent) and p-F-HHSiD (20–200 nM). Antagonists towards other subtypes (M1, M2 or M4) all failed to alter the current.The affinity of pilocarpine (KD) at mAChRs derived from displacement binding of [3H]-NMS in the homogenates from dog atria was 2.2 μM (65% of the total binding) and that of 4DAMP methiodide was 2.8 nM (70% of total binding), consistent with the concentration of pilocarpine needed for the current induction and for the modulation of the cardiac electrical activity and the concentration of 4DAMP to block pilocarpine effects.Our data indicate, for the first time, that pilocarpine modulates the cellular electrical properties of the hearts, likely by activating a K+ current mediated by M3 receptors. PMID:10372814

  6. Drosophila translational elongation factor-1gamma is modified in response to DOA kinase activity and is essential for cellular viability.

    PubMed

    Fan, Yujie; Schlierf, Michael; Gaspar, Ana Cuervo; Dreux, Catherine; Kpebe, Arlette; Chaney, Linda; Mathieu, Aurelie; Hitte, Christophe; Grémy, Olivier; Sarot, Emeline; Horn, Mark; Zhao, Yunlong; Kinzy, Terri Goss; Rabinow, Leonard

    2010-01-01

    Drosophila translational elongation factor-1gamma (EF1gamma) interacts in the yeast two-hybrid system with DOA, the LAMMER protein kinase of Drosophila. Analysis of mutant EF1gamma alleles reveals that the locus encodes a structurally conserved protein essential for both organismal and cellular survival. Although no genetic interactions were detected in combinations with mutations in EF1alpha, an EF1gamma allele enhanced mutant phenotypes of Doa alleles. A predicted LAMMER kinase phosphorylation site conserved near the C terminus of all EF1gamma orthologs is a phosphorylation site in vitro for both Drosophila DOA and tobacco PK12 LAMMER kinases. EF1gamma protein derived from Doa mutant flies migrates with altered mobility on SDS gels, consistent with it being an in vivo substrate of DOA kinase. However, the aberrant mobility appears to be due to a secondary protein modification, since the mobility of EF1gamma protein obtained from wild-type Drosophila is unaltered following treatment with several nonspecific phosphatases. Expression of a construct expressing a serine-to-alanine substitution in the LAMMER kinase phosphorylation site into the fly germline rescued null EF1gamma alleles but at reduced efficiency compared to a wild-type construct. Our data suggest that EF1gamma functions in vital cellular processes in addition to translational elongation and is a LAMMER kinase substrate in vivo. PMID:19841092

  7. Degradation of corticosteroids during activated sludge processing.

    PubMed

    Miyamoto, Aoi; Kitaichi, Yuko; Uchikura, Kazuo

    2014-01-01

    Laboratory tests of the decomposition of corticosteroids during activated sludge processing were investigated. Corticosteroid standards were added to activated sludge, and aliquots were regularly taken for analysis. The corticosteroids were extracted from the samples using a solid-phase extraction method and analyzed LC-MS. Ten types of corticosteroids were measured and roughly classified into three groups: 1) prednisolone, triamcinolone, betamethasone, prednisolone acetate, and hydrocortisone acetate, which decomposed within 4 h; 2) flunisolide, betamethasone valerate, and budesonide of which more than 50% remained after 4 h, but almost all of which decomposed within 24 h; and 3) triamcinolone acetonide, and fluocinolone acetonide of which more than 50% remained after 24 h. The decomposed ratio was correlated with each corticosteroid's Log P, especially groups 2) and 3). PMID:24390495

  8. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    PubMed Central

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the

  9. Functionally Charged Polystyrene Particles Activate Immortalized Mouse Microglia (BV2): Cellular and Genomic Response

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2

  10. A novel pathway of cellular activation mediated by antiphospholipid antibody-induced extracellular vesicles

    PubMed Central

    WU, M.; BARNARD, J.; KUNDU, S.; MCCRAE, K. R.

    2016-01-01

    Summary Background Elevated levels of endothelial cell (EC)-derived extracellular vesicles (EVs) circulate in patients with antiphospholipid antibodies (APLAs), and APLAs, particularly those against β2-glycoprotein I (β2GPI), stimulate EV release from ECs. However, the effects of EC-derived EVs have not been characterized. Objective To determine the mechanism by which EVs released from ECs by anti-β2GPI antibodies activate unstimulated ECs. Patients/methods We used interleukin (IL)-1 receptor inhibitors, small interfering RNA (siRNA) against Toll-like receptors (TLRs) and microRNA (miRNA) profiling to assess the mechanism(s) by which EVs released from ECs exposed to anti-β2GPI antibodies activated unstimulated ECs. Results and conclusions Anti-β2GPI antibodies caused formation of an EC inflammasome and the release of EVs that were enriched in mature IL-1β, had a distinct miRNA profile, and caused endothelial activation. However, activation was not inhibited by an IL-1β antibody, an IL-1 receptor antagonist, or IL-1 receptor siRNA. EC activation by EVs required IL-1 receptor-associated kinase 4 phosphorylation, and was inhibited by pretreatment of cells with TLR7 siRNA or RNase A, which degrades ssRNA. Profiling of miRNA in EVs released from ECs incubated with β2GPI and either control IgG or anti-β2GPI antibodies revealed numerous differences in the content of specific miRNAs, including a significant decrease in mIR126. These observations demonstrate that, although anti-β2GPI-derived endothelial EVs contain IL-1β, they activate unstimulated ECs through a TLR7-dependent and ssRNA-dependent pathway. Alterations in miRNA content may contribute to the ability of EVs derived from ECs exposed to anti-β2GPI antibodies to activate unstimulated ECs in an autocrine or paracrine manner. PMID:26264622

  11. Functional Anthology of Intrinsic Disorder. II. Cellular Components, Domains, Technical Terms, Developmental Processes and Coding Sequence Diversities Correlated with Long Disordered Regions

    PubMed Central

    Vucetic, Slobodan; Xie, Hongbo; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes ~90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes and coding sequence diversities possessing strong positive and negative correlation with long disordered regions. PMID:17391015

  12. Preformed Soluble Chemoreceptor Trimers That Mimic Cellular Assembly States and Activate CheA Autophosphorylation

    PubMed Central

    2015-01-01

    Bacterial chemoreceptors associate with the histidine kinase CheA and coupling protein CheW to form extended membrane arrays that receive and transduce environmental signals. A receptor trimers-of-dimers resides at each vertex of the hexagonal protein lattice. CheA is fully activated and regulated when it is integrated into the receptor assembly. To mimic these states in solution, we have engineered chemoreceptor cytoplasmic kinase-control modules (KCMs) based on the Escherichia coli aspartate receptor Tar that are covalently fused and trimerized by a foldon domain (TarFO). Small-angle X-ray scattering, multi-angle light scattering, and pulsed-dipolar electron spin resonance spectroscopy of spin-labeled proteins indicate that the TarFO modules assemble into homogeneous trimers wherein the protein interaction regions closely associate at the end opposite to the foldon domains. The TarFO variants greatly increase the saturation levels of phosphorylated CheA (CheA-P), indicating that the association with a trimer of receptor dimers changes the fraction of active kinase. However, the rate constants for CheA-P formation with the Tar variants are low compared to those for autophosphorylation by free CheA, and net phosphotransfer from CheA to CheY does not increase commensurately with CheA autophosphorylation. Thus, the Tar variants facilitate slow conversion to an active form of CheA that then undergoes stable autophosphorylation and is capable of subsequent phosphotransfer to CheY. Free CheA is largely incapable of phosphorylation but contains a small active fraction. Addition of TarFO to CheA promotes a planar conformation of the regulatory domains consistent with array models for the assembly state of the ternary complex and different from that observed with a single inhibitory receptor. Introduction of TarFO into E. coli cells activates endogenous CheA to produce increased clockwise flagellar rotation, with the effects increasing in the presence of the chemotaxis

  13. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lionel B

    2015-08-01

    Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation. PMID:26147685

  14. Solid-Phase Synthesis, Characterization, and Cellular Activities of Collagen-Model Nanodiamond-Peptide Conjugates

    PubMed Central

    Knapinska, Anna M.; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N.; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C.; Fields, Gregg B.

    2015-01-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (~5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND–biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND–peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to. PMID:25753561

  15. Transcriptional activation and repression by cellular DNA-binding protein C/EBP.

    PubMed Central

    Pei, D Q; Shih, C H

    1990-01-01

    A putative transcription factor, C/EBP, isolated from rat liver nuclei, has been shown to bind to at least two different sequence motifs: the CCAAT promoter domain and a core sequence [GTGG(T/A)(T/A)(T/A)G] common to many viral enhancers, including simian virus 40 and human hepatitis B virus. It has been proposed that C/EBP might function as a positive transcription factor by facilitating the communication between promoter and enhancer elements through its dual binding activities to DNA. Surprisingly, results from three different approaches suggest that C/EBP functions as a transcriptional repressor to hepatitis B virus and simian virus 40. Further investigation indicated that C/EBP can function as both a transcriptional activator and a repressor, depending on the reporter gene system. Images PMID:2157040

  16. Synthesis, antiviral activity, cytotoxicity and cellular pharmacology of l-3'-azido-2',3'-dideoxypurine nucleosides.

    PubMed

    Zhang, Hong-Wang; Detorio, Mervi; Herman, Brian D; Solomon, Sarah; Bassit, Leda; Nettles, James H; Obikhod, Aleksandr; Tao, Si-Jia; Mellors, John W; Sluis-Cremer, Nicolas; Coats, Steven J; Schinazi, Raymond F

    2011-09-01

    Microwave-assisted optimized transglycosylation reactions were used to prepare eleven modified l-3'-azido-2',3'-dideoxypurine nucleosides. These l-nucleoside analogs were evaluated against HIV and hepatitis B virus. The l-3'-azido-2',3'-dideoxypurines nucleosides were metabolized to nucleoside 5'-triphosphates in primary human lymphocytes, but exhibited weak or no antiviral activity against HIV-1. The nucleosides were also inactive against HBV in HepG2 cells. Pre-steady state kinetic experiments demonstrated that the l-3'-azido-2',3'-dideoxypurine triphosphates could be incorporated by purified HIV-1 reverse transcriptase, although their catalytic efficiency (k(pol)/K(d)) of incorporation was low. Interestingly, a phosphoramidate prodrug of l-3'-azido-2',3'-dideoxyadenosine exhibited anti-HIV-1 activity without significant toxicity. PMID:21700368

  17. Inhibition of Cellular Methyltransferases Promotes Endothelial Cell Activation by Suppressing Glutathione Peroxidase 1 Protein Expression*

    PubMed Central

    Barroso, Madalena; Florindo, Cristina; Kalwa, Hermann; Silva, Zélia; Turanov, Anton A.; Carlson, Bradley A.; de Almeida, Isabel Tavares; Blom, Henk J.; Gladyshev, Vadim N.; Hatfield, Dolph L.; Michel, Thomas; Castro, Rita; Loscalzo, Joseph; Handy, Diane E.

    2014-01-01

    S-Adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNASec to the Um34 form. The formation of methylated tRNASec facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNASec and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNASec hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype. PMID:24719327

  18. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules.

    PubMed

    Mosqueira, V C; Legrand, P; Gulik, A; Bourdon, O; Gref, R; Labarre, D; Barratt, G

    2001-11-01

    The aim of our work was to examine the relationship between modifications of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the first time that such properties have been correlated with biological interactions for NC, a novel carrier system with a structure more complex than nanospheres. C3 crossed immunoelectrophoresis revealed the reduced activation for NC with longer PEG chain and higher density, although all formulations induced C3 cleavage to a lesser or greater extent. NC bearing PEG covalently bound to the surface were weaker activators of complement than plain PLA [poly(D,L-lactide)] NC or nanospheres (NS). Furthermore, the fluorescent/confocal microscopy of J774A1 cells in contact with NC reveal a dramatically reduced interaction with PEG-bearing NC. However, the way in which PEG was attached (covalent or adsorbed) seemed to affect the mechanism of uptake. Taken together, these results suggest that the low level of protein binding to NC covered with a high density of 20kDa PEG chains is likely to be due to the steric barriers surrounding these particles, which prevents protein adsorption and reduces their interaction with macrophages. PMID:11575471

  19. Abr and Bcr, Two Homologous Rac GTPase-Activating Proteins, Control Multiple Cellular Functions of Murine Macrophages▿ †

    PubMed Central

    Cho, Young Jin; Cunnick, Jess M.; Yi, Sun-Ju; Kaartinen, Vesa; Groffen, John; Heisterkamp, Nora

    2007-01-01

    Small GTPases of the Rho family are key regulators of phagocytic leukocyte function. Abr and Bcr are homologous, multidomain proteins. Their C-terminal domain has GTPase-activating protein (GAP) activity that, in vitro, is specific for Rac and Cdc42. To address the in vivo relevance of these entire proteins, of which little is known, the current study examined the effect of the genetic ablation of Abr and Bcr in murine macrophages. The concomitant loss of Abr and Bcr induced multiple alterations of macrophage cellular behavior known to be under the control of Rac. Macrophages lacking both Abr and Bcr exhibited an atypical, elongated morphology that was reproduced by the ectopic expression of GAP domain mutant Abr and Bcr in a macrophage cell line and of constitutively active Rac in primary macrophages. A robust increase in colony-stimulating factor 1 (CSF-1)-directed motility was observed in macrophages deficient for both proteins and, in response to CSF-1 stimulation, Abr and Bcr transiently translocated to the plasma membrane. Phagocytosis of opsonized particles was also increased in macrophages lacking both proteins and correlated with sustained Rac activation. Bcr and Abr GAP mutant proteins localized around phagosomes and induced distinct phagocytic cup formation. These results identify Abr and Bcr as the only GAPs to date that specifically negatively regulate Rac function in vivo in primary macrophages. PMID:17116687

  20. Intercalator conjugates of pyrimidine locked nucleic acid-modified triplex-forming oligonucleotides: improving DNA binding properties and reaching cellular activities

    PubMed Central

    Brunet, Erika; Corgnali, Maddalena; Perrouault, Loïc; Roig, Victoria; Asseline, Ulysse; Sørensen, Mads D.; Babu, B. Ravindra; Wengel, Jesper; Giovannangeli, Carine

    2005-01-01

    Triplex-forming oligonucleotides (TFOs) are powerful tools to interfere sequence-specifically with DNA-associated biological functions. (A/T,G)-containing TFOs are more commonly used in cells than (T,C)-containing TFOs, especially C-rich sequences; indeed the low intracellular stability of the non-covalent pyrimidine triplexes make the latter less active. In this work we studied the possibility to enhance DNA binding of (T,C)-containing TFOs, aiming to reach cellular activities; to this end, we used locked nucleic acid-modified TFOs (TFO/LNAs) in association with 5′-conjugation of an intercalating agent, an acridine derivative. In vitro a stable triplex was formed with the TFO-acridine conjugate: by SPR measurements at 37°C and neutral pH, the dissociation equilibrium constant was found in the nanomolar range and the triplex half-life ∼10 h (50-fold longer compared with the unconjugated TFO/LNA). Moreover to further understand DNA binding of (T,C)-containing TFO/LNAs, hybridization studies were performed at different pH values: triplex stabilization associated with pH decrease was mainly due to a slower dissociation process. Finally, biological activity of pyrimidine TFO/LNAs was evaluated in a cellular context: it occurred at concentrations ∼0.1 μM for acridine-conjugated TFO/LNA (or ∼2 μM for the unconjugated TFO/LNA) whereas the corresponding phosphodiester TFO was inactive, and it was demonstrated to be triplex-mediated. PMID:16049028

  1. Small Molecule Inhibitors of Staphylococcus aureus RnpA Alter Cellular mRNA Turnover, Exhibit Antimicrobial Activity, and Attenuate Pathogenesis

    PubMed Central

    Olson, Patrick D.; Kuechenmeister, Lisa J.; Anderson, Kelsi L.; Daily, Sonja; Beenken, Karen E.; Roux, Christelle M.; Reniere, Michelle L.; Lewis, Tami L.; Weiss, William J.; Pulse, Mark; Nguyen, Phung; Simecka, Jerry W.; Morrison, John M.; Sayood, Khalid; Asojo, Oluwatoyin A.; Smeltzer, Mark S.; Skaar, Eric P.; Dunman, Paul M.

    2011-01-01

    Methicillin-resistant Staphylococcus aureus is estimated to cause more U.S. deaths annually than HIV/AIDS. The emergence of hypervirulent and multidrug-resistant strains has further amplified public health concern and accentuated the need for new classes of antibiotics. RNA degradation is a required cellular process that could be exploited for novel antimicrobial drug development. However, such discovery efforts have been hindered because components of the Gram-positive RNA turnover machinery are incompletely defined. In the current study we found that the essential S. aureus protein, RnpA, catalyzes rRNA and mRNA digestion in vitro. Exploiting this activity, high through-put and secondary screening assays identified a small molecule inhibitor of RnpA-mediated in vitro RNA degradation. This agent was shown to limit cellular mRNA degradation and exhibited antimicrobial activity against predominant methicillin-resistant S. aureus (MRSA) lineages circulating throughout the U.S., vancomycin intermediate susceptible S. aureus (VISA), vancomycin resistant S. aureus (VRSA) and other Gram-positive bacterial pathogens with high RnpA amino acid conservation. We also found that this RnpA-inhibitor ameliorates disease in a systemic mouse infection model and has antimicrobial activity against biofilm-associated S. aureus. Taken together, these findings indicate that RnpA, either alone, as a component of the RNase P holoenzyme, and/or as a member of a more elaborate complex, may play a role in S. aureus RNA degradation and provide proof of principle for RNA catabolism-based antimicrobial therapy. PMID:21347352

  2. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  3. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  4. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  5. Anti-(herpes simplex virus) activity of 4'-thio-2'-deoxyuridines: a biochemical investigation for viral and cellular target enzymes.

    PubMed Central

    Verri, A; Focher, F; Duncombe, R J; Basnak, I; Walker, R T; Coe, P L; de Clercq, E; Andrei, G; Snoeck, R; Balzarini, J; Spadari, S

    2000-01-01

    The antiviral activity of several nucleoside analogues is often limited by their rapid degradation by pyrimidine nucleoside phosphorylases. In an attempt to avoid this degradation, several modified nucleosides have been synthesized. A series of 4'-thio-2'-deoxyuridines exhibits an anti-[herpes simplex virus (HSV)] activity significantly higher (20-600 times) than that shown by the corresponding 4'-oxy counterpart. We investigated the mode of action of these compounds and we found that: (i) several 4'-thio-2'-deoxyuridines are phosphorylated to the mono- and di-phosphates by HSV-1 thymidine kinase (TK) more efficiently than their corresponding 4'-oxy counterpart; (ii) both are inhibitors of cellular thymidylate synthase; (iii) 4'-thio-2'-deoxyuridines are resistant to phosphorolysis by human thymidine phosphorylase; (iv) both 4'-oxy- and 4'-thio-2'-deoxyuridines are phosphorylated to deoxyribonucleotide triphosphate in HSV-1-infected cells and are incorporated into viral DNA; (v) 4'-thio-2'-deoxyuridines are better inhibitors than their 4'-oxy counterparts of [(3)H]thymidine incorporation in HSV-1-infected cells; (vi) 4'-thio-2'-deoxyuridines are not recognized by HSV-1 and human uracil-DNA glycosylases. Our data suggest that 4'-thio-2'-deoxyuridines, resistant to pyrimidine phosphorylase, can be preferentially or selectively phosphorylated by viral TK in HSV-infected cells, where they are further converted into triphosphate by cellular nucleotide kinases. Once incorporated into viral DNA, they are better inhibitors of viral DNA synthesis than their corresponding 4'-oxy counterpart, either because they are not recognized, and thus not removed, by viral uracil-DNA glycosylase, or because they preferentially interfere with viral DNA polymerase. PMID:11023816

  6. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution.

    PubMed

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity. PMID:22937104

  7. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles.

    PubMed

    Garanti, Tanem; Stasik, Aneta; Burrow, Andrea Julie; Alhnan, Mohamed A; Wan, Ka-Wai

    2016-03-16

    Asiatic acid (AA), a pentacyclic triterpene found in Centella Asiatica, has shown neuroprotective and anti-cancer activity against glioma. However, owing to its poor aqueous solubility, effective delivery and absorption across biological barriers, in particular the blood brain barrier (BBB), are challenging. Solid lipid nanoparticles (SLNs) have shown a promising potential as a drug delivery system to carry lipophilic drugs across the BBB, a major obstacle in brain cancer therapy. Nevertheless, limited information is available about the cytotoxic mechanisms of nano-lipidic carriers with AA on normal and glioma cells. This study assessed the anti-cancer efficacy of AA-loaded SLNs against glioblastoma and their cellular uptake mechanism in comparison with SVG P12 (human foetal glial) cells. SLNs were systematically investigated for three different solid lipids; glyceryl monostearate (MS), glyceryl distearate (DS) and glyceryl tristearate (TS). The non-drug containing MS-SLNs (E-MS-SLNs) did not show any apparent toxicity towards normal SVG P12 cells, whilst the AA-loaded MS-SLNs (AA-MS-SLNs) displayed a more favourable drug release profile and higher cytotoxicity towards U87 MG cells. Therefore, MS-SLNs were chosen for further in vitro studies. Cytotoxicity studies of SLNs (± AA) were performed using MTT assay where AA-SLNs showed significantly higher cytotoxicity towards U87 MG cells than SVG P12 normal cells, as confirmed by flow cell cytometry. Cellular uptake of SLNs also appeared to be preferentially facilitated by energy-dependent endocytosis as evidenced by fluorescence imaging and flow cell cytometry. Using the Annexin V-PI double staining technique, it was found that these AA-MS-SLNs displayed concentration-dependent apoptotic activity on glioma cells, which further confirms the potential of exploiting these AA-loaded MS-SLNs for brain cancer therapy. PMID:26775062

  8. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities.

    PubMed

    Appadurai, Prakash; Rathinasamy, Krishnan

    2015-10-01

    Colloidal silver nanoparticles (AgNPs) have attracted much attention in recent years as diagnostics and new drug delivery system in cancer medicine. To study the effects of plumbagin (PLB), a relatively non-toxic napthaquinone isolated from the roots of Plumbago indica in human cervical cancer cell line and developed a formulation to enhance its cytotoxic activities. Silver nanoparticles were synthesised by chemical reduction method and complexed with PLB. Both the AgNPs and the complex PLB-AgNPs were characterised by dynamic light scattering, high-resolution scanning electron microscopy and transmission electron microscopy. The amount of PLB and PLB-AgNPs internalised was determined by ultra-violet-visible spectrophotometer. Cell inhibition was determined by sulphorhodamine B assay. Mitotic index was determined by Wright-Giemsa staining. Apoptosis induction was assessed by western blot using cleaved poly adenosine diphosphate-ribose polymerase antibody. The scanning electron microscope analysis indicated an average particle size of 32±8 nm in diameter. Enhanced internalisation of PLB into the HeLa cells was observed in PLB-AgNPs. PLB inhibited proliferation of cells with IC50 value of about 18±0.6 µM and blocked the cells at mitosis in a concentration-dependent manner. PLB also inhibited the post-drug exposure clonogenic survival of cells and induced apoptosis. The antiproliferative, antimitotic and apoptotic activities were also found to be increased when cells were treated with PLB-AgNPs. The authors results support the idea that AgNP could be a promising and effective drug delivery system for enhanced activity of PLB in cancer treatment. PMID:26435279

  9. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. PMID:24631200

  10. A Redundant Role of Human Thyroid Peroxidase Propeptide for Cellular, Enzymatic, and Immunological Activity

    PubMed Central

    Góra, Monika; Buckle, Ashley M.; Porebski, Benjamin T.; Kemp, E. Helen; Sutton, Brian J.; Czarnocka, Barbara; Banga, J. Paul

    2014-01-01

    Background: Thyroid peroxidase (TPO) is a dimeric membrane-bound enzyme of thyroid follicular cells, responsible for thyroid hormone biosynthesis. TPO is also a common target antigen in autoimmune thyroid disease (AITD). With two active sites, TPO is an unusual enzyme, and thus there is much interest in understanding its structure and role in AITD. Homology modeling has shown TPO to be composed of different structural modules, as well as a propeptide sequence. During the course of studies to obtain homogeneous preparations of recombinant TPO for structural studies, we investigated the role of the large propeptide sequence in TPO. Methods: An engineered recombinant human TPO preparation expressed in Chinese hamster ovary (CHO) cells lacking the propeptide (TPOΔpro; amino acid residues 21–108) was characterized and its properties compared to wild-type TPO. Plasma membrane localization was determined by cell surface protein biotinylation, and biochemical studies were performed to evaluate enzymatic activity and the effect of deglycosylation. Immunological investigations using autoantibodies from AITD patients and other epitope-specific antibodies that recognize conformational determinants on TPO were evaluated for binding to TPOΔpro by flow cytometry, immunocytochemistry, and capture enzyme-linked immunosorbent assay. Molecular modeling and dynamics simulation of TPOΔpro comprising a dimer of myeloperoxidase-like domains was performed in order to investigate the impact of propeptide removal and the role of glycosylation. Results: The TPOΔpro was expressed on the cell surface at comparable levels to wild-type TPO. The TPOΔpro was enzymatically active and recognized by patients' autoantibodies and a panel of epitope-specific antibodies, confirming structural integrity of the two major conformational determinants recognized by autoantibodies. Faithful intracellular trafficking and N-glycosylation of TPOΔpro was also maintained. Molecular modeling and dynamics

  11. Structure–activity relationships of the human prothrombin kringle-2 peptide derivative NSA9: anti-proliferative activity and cellular internalization

    PubMed Central

    Hwang, Hyun Sook; Kim, Dong Won; Kim, Soung Soo

    2006-01-01

    The human prothrombin kringle-2 protein inhibits angiogenesis and LLC (Lewis lung carcinoma) growth and metastasis in mice. Additionally, the NSA9 peptide (NSAVQLVEN) derived from human prothrombin kringle-2 has been reported to inhibit the proliferation of BCE (bovine capillary endothelial) cells and CAM (chorioallantoic membrane) angiogenesis. In the present study, we examined the structure–activity relationships of the NSA9 peptide in inhibiting the proliferation of endothelial cells lines e.g. BCE and HUVE (human umbilical vein endothelial). N- or C-terminal truncated derivatives and reverse sequence analogues of NSA9 were prepared and their anti-proliferative activities were assessed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay. This cell proliferation assay demonstrated that both the N-terminal region and sequence orientation of NSA9 are important for inhibiting the proliferation of endothelial cells. In particular 2 C-terminal truncation derivatives of NSA9 [NSA7 (NSAVQLV) and NSA8 (NSAVQLVE)] inhibited cellular proliferation to a greater extent than did NSA9. The heptapeptide NSA7, was found to be more potent than NSA9 in inhibiting CAM angiogenesis, and tubular formation and migration of HUVE cells. In addition NSA9, NSA8 and NSA7 peptides exhibited considerable inhibitory effects on the proliferation of tumour cells such as B16F10 (murine melanoma), LLC and L929 (murine fibroblast). Also, cellular internalization studies demonstrated that NSA7 was internalized into both endothelial and tumour cells more easily than was NSA9. In conclusion, these results suggest that NSA7, residing within the full sequence of NSA9, contains the required sequence for anti-proliferative activity and cellular internalization. PMID:16390327

  12. Structure-activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling.

    PubMed

    Nagamori, Shushi; Wiriyasermkul, Pattama; Okuda, Suguru; Kojima, Naoto; Hari, Yoshiyuki; Kiyonaka, Shigeki; Mori, Yasuo; Tominaga, Hideyuki; Ohgaki, Ryuichi; Kanai, Yoshikatsu

    2016-04-01

    Among amino acids, leucine is a potential signaling molecule to regulate cell growth and metabolism by activating mechanistic target of rapamycin complex 1 (mTORC1). To reveal the critical structures of leucine molecule to activate mTORC1, we examined the structure-activity relationships of leucine derivatives in HeLa S3 cells for cellular uptake and for the induction of phosphorylation of p70 ribosomal S6 kinase 1 (p70S6K), a downstream effector of mTORC1. The activation of mTORC1 by leucine and its derivatives was the consequence of two successive events: the cellular uptake by L-type amino acid transporter 1 (LAT1) responsible for leucine uptake in HeLa S3 cells and the activation of mTORC1 following the transport. The structural requirement for the recognition by LAT1 was to have carbonyl oxygen, alkoxy oxygen of carboxyl group, amino group and hydrophobic side chain. In contrast, the requirement for mTORC1 activation was more rigorous. It additionally required fixed distance between carbonyl oxygen and alkoxy oxygen of carboxyl group, and amino group positioned at α-carbon. L-Configuration in chirality and appropriate length of side chain with a terminal isopropyl group were also important. This confirmed that LAT1 itself is not a leucine sensor. Some specialized leucine sensing mechanism with rigorous requirement for agonistic structures should exist inside the cells because leucine derivatives not transported by LAT1 did not activate mTORC1. Because LAT1-mTOR axis is involved in the regulation of cell growth and cancer progression, the results from this study may provide a new insight into therapeutics targeting both LAT1 and leucine sensor. PMID:26724922

  13. Surface and semantic processing of cellular transport representations by high school students with low and high prior knowledge

    NASA Astrophysics Data System (ADS)

    Cook, Michelle Patrick

    The purpose of this study was to examine the influence of prior knowledge of cell transport processes on how students viewed and interpreted visual representations related to that topic. The participants were high school students (n=65) enrolled in Advanced Placement biology. Prior knowledge was assessed using a modified version of the Diffusion and Osmosis Diagnostic Test (Odom & Barrow, 1995). Eye movements were measured to reveal how students distribute their visual attention as they perceive and interpret graphics; in addition, interviews and questionnaires were employed to provide more interpretive data sources. The first manuscript of the study investigates the relationship between prior knowledge and students' ability to perceive salient features and interpret graphic representations of cellular transport. The results from eye tracking data, interviews, and questionnaire responses were triangulated and revealed differences in how high and low prior knowledge students attended to and interpreted various features of the graphic representations. Without adequate domain knowledge, low prior knowledge students focused on surface features of the graphics to build an understanding of the concepts represented. High prior knowledge students, with more abundant and better organized domain knowledge, were more likely to attend to thematically relevant content in the graphics and construct deeper understandings. The second manuscript of the study examines the influence of prior knowledge on how students transitioned among the macroscopic and molecular representations of selected graphics. Eye tracking and sequential analysis results indicated that high prior knowledge students transitioned more frequently between the molecular representations, where as low prior knowledge students transitioned more frequently between the macroscopic representations. In addition, low prior knowledge students transitioned more frequently between macroscopic and molecular representations

  14. Sesquiterpene lactones: Mechanism of antineoplastic activity; relationship of cellular glutathione to cytotoxicity; and disposition

    SciTech Connect

    Grippo, A.A.

    1987-01-01

    Helenalin, a sesquiterpene lactone, inhibited the growth of P388 lymphocytic and L1210 lymphoid leukemia, and Ehrlich ascites and KB carcinoma cells. The L1210 leukemia cells were most sensitive to the cytotoxic effects of helenalin. Helenalin's antineoplastic effects were due to inhibition of DNA synthesis by suppressing the activities of enzymes involved in this biosynthetic pathway; i.e., IMP dehydrogenase, ribonucleoside diphosphate reductase, thioredoxin complex, GSH disulfide oxidoreductase and DNA polymerase {alpha} activities. The relationship of reduced glutathione (GSH) to the cytotoxic effects of helanalin was evaluated. L1210 cells, which were more sensitive to helenalin's toxicity, contained lower basal concentrations of GSH. Helenalin decreased the concentration of reduced glutathione in both L1210 and P388 leukemia cells. Concurrent administration of helanalin with agents reported to raise GSH concentrations did not substantially effect GSH levels, nor were survival times of tumor-bearing mice enhanced. Following intraperitoneal administration of {sup 3}H-plenolin, no radioactive drug and/or metabolite was sequestered in the organs of BDF{sub 1} mice. Approximately 50% of {sup 3}H-plenolin and/or its metabolites were eliminated via urine while lesser amounts of radioactive drug and/or metabolites were eliminated in the feces.

  15. GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis.

    PubMed

    Prione, Lilian P; Olchanheski, Luiz R; Tullio, Leandro D; Santo, Bruno C E; Reche, Péricles M; Martins, Paula F; Carvalho, Giselle; Demiate, Ivo M; Pileggi, Sônia A V; Dourado, Manuella N; Prestes, Rosilene A; Sadowsky, Michael J; Azevedo, Ricardo A; Pileggi, Marcos

    2016-12-01

    Callisto(®), containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto(®)-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment. PMID:27620734

  16. PKR is activated by cellular dsRNAs during mitosis and acts as a mitotic regulator

    PubMed Central

    Kim, Yoosik; Lee, Jung Hyun; Park, Jong-Eun; Cho, Jun; Yi, Hyerim; Kim, V. Narry

    2014-01-01

    dsRNA-dependent protein kinase R (PKR) is a ubiquitously expressed enzyme well known for its roles in immune response. Upon binding to viral dsRNA, PKR undergoes autophosphorylation, and the phosphorylated PKR (pPKR) regulates translation and multiple signaling pathways in infected cells. Here, we found that PKR is activated in uninfected cells, specifically during mitosis, by binding to dsRNAs formed by inverted Alu repeats (IRAlus). While PKR and IRAlu-containing RNAs are segregated in the cytosol and nucleus of interphase cells, respectively, they interact during mitosis when nuclear structure is disrupted. Once phosphorylated, PKR suppresses global translation by phosphorylating the α subunit of eukaryotic initiation factor 2 (eIF2α). In addition, pPKR acts as an upstream kinase for c-Jun N-terminal kinase and regulates the levels of multiple mitotic factors such as CYCLINS A and B and POLO-LIKE KINASE 1 and phosphorylation of HISTONE H3. Disruption of PKR activation via RNAi or expression of a transdominant-negative mutant leads to misregulation of the mitotic factors, delay in mitotic progression, and defects in cytokinesis. Our study unveils a novel function of PKR and endogenous dsRNAs as signaling molecules during the mitosis of uninfected cells. PMID:24939934

  17. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity

    SciTech Connect

    Boel, Gaby-Fleur . E-mail: boel@mail.dife.de; Jurrmann, Nadine; Brigelius-Flohe, Regina

    2005-06-24

    Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4{sup IRAK-1-K239S}). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24 kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4{sup IRAK-1-K239S} cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.

  18. T-lymphocyte activation and the cellular form of the prion protein.

    PubMed Central

    Mabbott, N A; Brown, K L; Manson, J; Bruce, M E

    1997-01-01

    The transmissible spongiform encephalopathies are neurodegenerative disorders which include Creutzfeldt-Jakob disease in humans, and scrapie and bovine spongiform encephalopathy in animals. A major component of the infectious agent responsible for these diseases is considered to be a post-translationally modified form of a host-encoded glycoprotein PrPc, termed PrPSc. While PrPc is abundantly expressed in tissues of the central nervous system (CNS), little is known about its normal function. The expression of PrPc is not restricted to the CNS, as this protein can also be detected in the lymphoid tissues of mice and sheep. In this report we demonstrate that resting murine splenic lymphocytes express PrPc protein on their cell membranes. Furthermore, expression of PrPc was significantly enhanced following in vitro stimulation with the non-specific T-cell mitogen concanavalin A (Con A). Genetically engineered mice with an inactive PrPc gene (PrP-/- mice), were utilized to investigate the involvement of PrPc in lymphocyte activation. Experiments revealed that the Con A-induced proliferation of lymphocytes from PrP-/- mice was significantly reduced to approximately 50-80% that of wild-type (PrP+/+) mice 48 hr post-stimulation. These findings demonstrate an important role for PrPc in extra-neuronal tissues and suggest that PrPc is a lymphocyte surface molecule that participates in T-cell activation. PMID:9415021

  19. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers.

    PubMed

    Iizuka, Masayoshi; Takahashi, Yoshihisa; Mizzen, Craig A; Cook, Richard G; Fujita, Masatoshi; Allis, C David; Frierson, Henry F; Fukusato, Toshio; Smith, M Mitchell

    2009-05-01

    In addition to the well-characterized proteins that comprise the pre-replicative complex, recent studies suggest that chromatin structure plays an important role in DNA replication initiation. One of these chromatin factors is the histone acetyltransferase (HAT) Hbo1 which is unique among HAT enzymes in that it serves as a positive regulator of DNA replication. However, several of the basic properties of Hbo1 have not been previously examined, including its intrinsic catalytic activity, its molecular abundance in cells, and its pattern of expression in primary cancer cells. Here we show that recombinant Hbo1 can acetylate nucleosomal histone H4 in vitro, with a preference for lysines 5 and 12. Using semi-quantitative western blot analysis, we find that Hbo1 is approximately equimolar with the number of active replication origins in normal human fibroblasts but is an order of magnitude more abundant in both MCF7 and Saos-2 established cancer cell lines. Immunohistochemistry for Hbo1 in 11 primary human tumor types revealed strong Hbo1 protein expression in carcinomas of the testis, ovary, breast, stomach/esophagus, and bladder. PMID:19393168

  20. Ethanol alters cellular activation and CD14 partitioning in lipid rafts

    SciTech Connect

    Dai Qun; Zhang Jun; Pruett, Stephen B. . E-mail: spruet@lsuhsc.edu

    2005-06-24

    Alcohol consumption interferes with innate immunity. In vivo EtOH administration suppresses cytokine responses induced through Toll-like receptor 4 (TLR4) and inhibits TLR4 signaling. Actually, EtOH exhibits a generalized suppressive effect on signaling and cytokine responses induced by through most TLRs. However, the underlying mechanism remains unknown. RAW264.7 cells were treated with LPS or co-treated with EtOH or with lipid raft-disrupting drugs. TNF-{alpha} production, IRAK-1 activation, and CD14 partition were evaluated. EtOH or nystatin, a lipid raft-disrupting drug, suppressed LPS-induced production of TNF-{alpha}. The suppressive effect of EtOH on LPS-induced TNF-{alpha} production was additive with that of methyl-{beta}-cyclodextrin (MCD), another lipid raft-disrupting drug. EtOH interfered with IRAK-1 activation, an early TLR4 intracellular signaling event. Cell fractionation analyses show that acute EtOH altered LPS-related partition of CD14, a critical component of the LPS receptor complex. These results suggest a novel mechanism of EtOH action that involves interference with lipid raft clustering induced by LPS. This membrane action of EtOH might be one of the mechanisms by which EtOH acts as a generalized suppressor for TLR signaling.

  1. Broadband activation by white-opsin lowers intensity threshold for cellular stimulation

    PubMed Central

    Batabyal, Subrata; Cervenka, Gregory; Birch, David; Kim, Young-tae; Mohanty, Samarendra

    2015-01-01

    Photoreceptors, which initiate the conversion of ambient light to action potentials via retinal circuitry, degenerate in retinal diseases such as retinitis pigmentosa and age related macular degeneration leading to loss of vision. Current prosthetic devices using arrays consisting of electrodes or LEDs (for optogenetic activation of conventional narrow-band opsins) have limited spatial resolution and can cause damage to retinal circuits by mechanical or photochemical (by absorption of intense narrow band light) means. Here, we describe a broad-band light activatable white-opsin for generating significant photocurrent at white light intensity levels close to ambient daylight conditions. White-opsin produced an order of magnitude higher photocurrent in response to white light as compared to narrow-band opsin channelrhodopsin-2, while maintaining the ms-channel kinetics. High fidelity of peak-photocurrent (both amplitude and latency) of white-opsin in response to repetitive white light stimulation of varying pulse width was observed. The significantly lower intensity stimulation required for activating white-opsin sensitized cells may facilitate ambient white light-based restoration of vision for patients with widespread photoreceptor degeneration. PMID:26658483

  2. Physics of active jamming during collective cellular motion in a monolayer.

    PubMed

    Garcia, Simon; Hannezo, Edouard; Elgeti, Jens; Joanny, Jean-François; Silberzan, Pascal; Gov, Nir S

    2015-12-15

    Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data. PMID:26627719

  3. Physics of active jamming during collective cellular motion in a monolayer

    PubMed Central

    Garcia, Simon; Hannezo, Edouard; Elgeti, Jens; Joanny, Jean-François; Silberzan, Pascal; Gov, Nir S.

    2015-01-01

    Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell−cell and cell−substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data. PMID:26627719

  4. Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase

    PubMed Central

    Combs, David J.; Shin, Hyeon-Gyu; Xu, Yanping; Ramu, Yajamana

    2013-01-01

    Voltage-gated ion channels generate action potentials in excitable cells and help set the resting membrane potential in nonexcitable cells like lymphocytes. It has been difficult to investigate what kinds of phospholipids interact with these membrane proteins in their native environments and what functional impacts such interactions create. This problem might be circumvented if we could modify specific lipid types in situ. Using certain voltage-gated K+ (KV) channels heterologously expressed in Xenopus laevis oocytes as a model, our group has shown previously that sphingomyelinase (SMase) D may serve this purpose. SMase D is known to remove the choline group from sphingomyelin, a phospholipid primarily present in the outer leaflet of plasma membranes. This SMase D action lowers the energy required for voltage sensors of a KV channel to enter the activated state, causing a hyperpolarizing shift of the Q-V and G-V curves and thus activating them at more hyperpolarized potentials. Here, we find that this SMase D effect vanishes after removing most of the voltage-sensor paddle sequence, a finding supporting the notion that SMase D modification of sphingomyelin molecules alters these lipids’ interactions with voltage sensors. Then, using SMase D to probe lipid–channel interactions, we find that SMase D not only similarly stimulates voltage-gated Na+ (NaV) and Ca2+ channels but also markedly slows NaV channel inactivation. However, the latter effect is not observed in tested mammalian cells, an observation highlighting the profound impact of the membrane environment on channel function. Finally, we directly demonstrate that SMase D stimulates both native KV1.3 in nonexcitable human T lymphocytes at their typical resting membrane potential and native NaV channels in excitable cells, such that it shifts the action potential threshold in the hyperpolarized direction. These proof-of-concept studies illustrate that the voltage-gated channel activity in both excitable and

  5. PREFACE: Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing Selected papers from the Fourth Annual q-bio Conference on Cellular Information Processing

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya; Faeder, James R.; Hlavacek, William S.; Jiang, Yi; Wall, Michael E.; Zilman, Anton

    2011-10-01

    Summary This special issue consists of 11 original papers that elaborate on work presented at the Fourth Annual q-bio Conference on Cellular Information Processing, which was held on the campus of St John's College in Santa Fe, New Mexico, USA, 11-14 August 2010. Now in its fourth year, the q-bio conference has changed considerably over time. It is now well established and a major event in systems biology. The 2010 conference saw attendees from all continents (except Antarctica!) sharing novel results and participating in lively discussions at both the oral and poster sessions. The conference was oversubscribed and grew to 27 contributed talks, 16 poster spotlights and 137 contributed posters. We deliberately decreased the number of invited speakers to 21 to leave more space for contributed presentations, and the attendee feedback confirmed that the choice was a success. Although the q-bio conference has grown and matured, it has remained true to the original goal of being an intimate and dynamic event that brings together modeling, theory and quantitative experimentation for the study of cell regulation and information processing. Funded in part by a grant from NIGMS and by DOE funds through the Los Alamos National Laboratory Directed Research and Development program, the conference has continued to exhibit youth and vigor by attracting (and partially supporting) over 100 undergraduate, graduate and postdoctoral researchers. The associated q-bio summer school, which precedes the conference each year, further emphasizes the development of junior scientists and makes q-bio a singular event in its impact on the future of quantitative biology. In addition to an increased international presence, the conference has notably diversified its demographic representation within the USA, including increased participation from the southeastern corner of the country. One big change in the conference this year is our new publication partner, Physical Biology. Although we are very

  6. Proteasome-Mediated Processing of Def1, a Critical Step in the Cellular Response to Transcription Stress

    PubMed Central

    Wilson, Marcus D.; Harreman, Michelle; Taschner, Michael; Reid, James; Walker, Jane; Erdjument-Bromage, Hediye; Tempst, Paul; Svejstrup, Jesper Q.

    2013-01-01

    Summary DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a “mechanism of last resort” employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation of the clipped protein. Nuclear Def1 then binds RNAPII, utilizing a ubiquitin-binding domain to recruit the Elongin-Cullin E3 ligase complex via a ubiquitin-homology domain in the Ela1 protein. This facilitates polyubiquitylation of Rpb1, triggering its proteasome-mediated degradation. Together, these results outline the multistep mechanism of Rpb1 polyubiquitylation triggered by transcription stress and uncover the key role played by Def1 as a facilitator of Elongin-Cullin ubiquitin ligase function. PMID:23993092

  7. Passive Noise Filtering by Cellular Compartmentalization.

    PubMed

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. PMID:26967282

  8. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    SciTech Connect

    Rao, K.V.; Peralta, W.D.; Greene, G.L.; Fox, C.F.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell free systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.

  9. Cellular Uptake and Antitumor Activity of DOX-hyd-PEG-FA Nanoparticles

    PubMed Central

    Na, Ren; Song, Yan-feng; Mei, Qi-bing; Zhao, Ming-gao; Zhou, Si-yuan

    2014-01-01

    A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy. PMID:24828815

  10. Probing Binding and Cellular Activity of Pyrrolidinone and Piperidinone Small Molecules Targeting the Urokinase Receptor

    PubMed Central

    Mani, Timmy; Liu, Degang; Zhou, Donghui; Li, Liwei; Knabe, William Eric; Wang, Fang; Oh, Kyungsoo; Meroueh, Samy O.

    2014-01-01

    The urokinase receptor (uPAR) is a cell-surface protein that is part of an intricate web of transient and tight protein interactions that promote cancer cell invasion and metastasis. Here we evaluate the binding and biological activity of a new class of pyrrolidinone (3) and piperidinone (4) compounds, along with derivatives of previously-identified pyrazole (1) and propylamine (2) compounds. Competition assays revealed that the compounds displaced a fluorescently-labeled peptide (AE147-FAM) with inhibition constant Ki ranging from 6 to 63 μM. Structure-based computational pharmacophore analysis followed by extensive explicit-solvent molecular dynamics simulations and free energy calculations suggested pyrazole-based 1a and piperidinone-based 4 adopt different binding modes, despite their similar two-dimensional structures. In cells, compounds 1b and 1f showed significant inhibition of breast MDA-MB-231 and pancreatic ductal adenocarcinoma (PDAC) cell proliferation, but 4b exhibited no cytotoxicity even at concentrations of 100 μM. 1f impaired MDA-MB-231 invasion, adhesion, and migration in a concentration-dependent manner, while 4b inhibited only invasion. 1f inhibited gelatinase (MMP-9) activity in a concentration-dependent manner, while 4b showed no effect suggesting different mechanisms for inhibition of cell invasion. Signaling studies further highlighted these differences, showing that pyrazole compounds completely inhibited ERK phosphorylation and impaired HIF1α and NF-κB signaling, while pyrrolidinone and piperidinone (3 and 4b) had no effect. Annexin V staining suggested that the effect of pyrazole-based 1f on proliferation was due to cell killing through an apoptotic mechanism. PMID:24115356

  11. Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates

    NASA Astrophysics Data System (ADS)

    Park, Soonhyang; Chibli, Hicham; Wong, Jody; Nadeau, Jay L.

    2011-05-01

    We investigate the antimicrobial activity and cytotoxicity to mammalian cells of conjugates of the peptide antibiotic polymyxin B (PMB) to Au nanoparticles and CdTe quantum dots. Au nanoparticles fully covered with PMB are identical in antimicrobial activity to the free drug alone, whereas partially-conjugated Au particles show decreased effectiveness in proportion to the concentration of Au. CdTe-PMB conjugates are more toxic to Escherichia coli than PMB alone, resulting in a flattening of the steep PMB dose-response curve. The effect is most pronounced at low concentrations of PMB, with a greater effect on the concentration required to reduce growth by half (IC50) than on the concentration needed to inhibit all growth (minimum inhibitory concentration, MIC). The Gram positive organism Staphylococcus aureus is resistant to both PMB and CdTe, showing minimal increased sensitivity when the two are conjugated. Measurement of reactive oxygen species (ROS) generation shows a significant reduction in photo-generated hydroxyl and superoxide radicals with CdTe-PMB as compared with bare CdTe. There is a corresponding reduction in toxicity of QD-PMB versus bare CdTe to mammalian cells, with nearly 100% survival in fibroblasts exposed to bactericidal concentrations of QD-PMB. The situation in bacteria is more complex: photoexcitation of the CdTe particles plays a small role in IC50 but has a significant effect on the MIC, suggesting that at least two different mechanisms are responsible for the antimicrobial action seen. These results show that it is possible to create antimicrobial agents using concentrations of CdTe quantum dots that do not harm mammalian cells.

  12. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities

    PubMed Central

    Rohena, Cristina C.

    2014-01-01

    Nature has yielded numerous classes of chemically distinct microtubule stabilizers. Several of these, including paclitaxel (Taxol) and docetaxel (Taxotere), are important drugs used in the treatment of cancer. New microtubule stabilizers and novel formulations of these agents continue to provide advances in cancer therapy. In this review we cover recent progress from late 2008 to August 2013 in the chemistry and biology of these diverse microtubule stabilizers focusing on the wide range of organisms that produce these compounds, their mechanisms of inhibiting microtubule-dependent processes, mechanisms of drug resistance, and their interactions with tubulin including their distinct binding sites and modes. A new potential role for microtubule stabilizers in neurodegenerative diseases is reviewed. PMID:24481420

  13. Chemical constituents of Hericium erinaceum associated with the inhibitory activity against cellular senescence in human umbilical vascular endothelial cells.

    PubMed

    Noh, Hyung Jun; Yang, Hyo Hyun; Kim, Geum Soog; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Lee, Eun Suk; Ji, Seung Heon; Kang, Ki Sung; Park, Hye-Jin; Kim, Jae-Ryong; Kim, Ki Hyun

    2015-12-01

    Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (1-6) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases. PMID:25676326

  14. Sub-cellular localisation of alkaline phosphatase activity in the cytoplasm of tammar wallaby (Macropus eugenii) neutrophils and eosinophils.

    PubMed

    Hulme-Moir, K Lisa; Clark, Phillip

    2011-07-15

    Alkaline phosphatase (ALP) has been used in studies of neutrophil morphology and function as a marker for identifying different granule populations. In human neutrophils, ALP is found within secretory vesicles, a rapidly mobilisable vesicle population important for upregulating membrane receptors during early activation. Intra-cellular ALP activity in the heterophils of rabbits and guinea pigs, in contrast, is found only in secondary granules. The neutrophils and eosinophils of tammar wallabies (Macropus eugenii) have previously been reported to contain large amounts of ALP activity when stained using routine cytochemical techniques. To define the subcellular location of ALP in this species, cell suspensions were examined using cerium chloride cytochemistry and transmission electron microscopy (TEM). ALP was found in 2 distinct cytoplasmic compartments. One compartment displayed morphology consistent with a subpopulation of secondary granules while a second tubulo-vesicular population appeared similar to the secretory vesicles of human neutrophils. Thin tubular vesicles containing ALP were also identified within the cytoplasm of tammar wallaby eosinophils. Large numbers of ALP-containing vesicles have not been recognised previously in eosinophils and this may represent a novel cytoplasmic compartment. In both cell types, ALP-containing structures showed alteration in morphology following stimulation with N-formyl-Met-Leu-Phe (fMLP) and PMA. PMID:21596444

  15. Cellular effects of deoxynojirimycin analogues: inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides

    PubMed Central

    2004-01-01

    In the accompanying paper [Mellor, Neville, Harvey, Platt, Dwek and Butters (2004) Biochem. J. 381, 861–866] we treated HL60 cells with N-alk(en)yl-deoxynojirimycin (DNJ) compounds to inhibit glucosphingolipid (GSL) biosynthesis and identified a number of non-GSL-derived, small, free oligosaccharides (FOS) most likely produced due to inhibition of the oligosaccharide-processing enzymes α-glucosidases I and II. When HL60 cells were treated with concentrations of N-alk(en)ylated DNJ analogues that inhibited GSL biosynthesis completely, N-butyl- and N-nonyl-DNJ inhibited endoplasmic reticulum (ER) glucosidases I and II, but octadecyl-DNJ did not, probably due to the lack of ER lumen access for this novel, long-chain derivative. Glucosidase inhibition resulted in the appearance of free Glc1–3Man structures, which is evidence of Golgi glycoprotein endomannosidase processing of oligosaccharides with retained glucose residues. Additional large FOS was also detected in cells following a 16 h treatment with N-butyl- and N-nonyl-DNJ. When these FOS structures (>30, including >20 species not present in control cells) were characterized by enzyme digests and MALDI-TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS, all were found to be polymannose-type oligosaccharides, of which the majority were glucosylated and had only one reducing terminal GlcNAc (N-acetylglucosamine) residue (FOS-GlcNAc1), demonstrating a cytosolic location. These results support the proposal that the increase in glucosylated FOS results from enzyme-mediated cytosolic cleavage of oligosaccharides from glycoproteins exported from the ER because of misfolding or excessive retention. Importantly, the present study characterizes the cellular properties of DNJs further and demonstrates that side-chain modifications allow selective inhibition of protein and lipid glycosylation pathways. This represents the most detailed characterization of the FOS structures arising from ER

  16. Characterization of a cellular inhibitory activity affecting the human autologous mixed lymphocyte reaction

    SciTech Connect

    Haynes, M.K.

    1987-01-01

    The human autologous mixed lymphocyte reaction, peripheral blood T cells are stimulated to proliferate when co-cultured with irradiated, autologous, non-T cells was studied. ({sup 3}H)-thymidine uptake was maximal on day 7 and observable on day 9. Non-adherent and adherent fractions of non-T population and lectin-activated T cell blasts contributed. Unseparated non-T stimulator cells were used. Autologous T cells, when added as irradiated third party cells, reduced AMLR proliferative responses. Depletion of Fc IgG receptor-bearing cells (T{gamma}) from T cell population by (a) IgG-sensitized ox erythrocyte rosetting (EA-rosettes) or (b) adsorption of the T{gamma} cells onto a Sepharose 6MB {approximately} BSA/anti-BSA immune complex column resulted in enhanced AMLR proliferation not attributed solely to an increase in CD8+ AMLR responder cell phenotype. Isolated T{gamma} populations exhibited a reversed helper/suppressor phenotype containing HLA DR+ and CD8+ cells. Dual labeling studies demonstrated 7-24% of CD8+ cells expressed DR antigens. After separation, AMLR proliferative capacity was localized in T-depleted population.

  17. Enterohemorrhagic Escherichia coli O157:H7 Shiga Toxins Inhibit Gamma Interferon-Mediated Cellular Activation

    PubMed Central

    Ho, Nathan K.; Ossa, Juan C.; Silphaduang, Uma; Johnson, Roger; Johnson-Henry, Kathene C.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a food-borne pathogen that causes significant morbidity and mortality in developing and industrialized nations. EHEC infection of host epithelial cells is capable of inhibiting the gamma interferon (IFN-γ) proinflammatory pathway through the inhibition of Stat-1 phosphorylation, which is important for host defense against microbial pathogens. The aim of this study was to determine the bacterial factors involved in the inhibition of Stat-1 tyrosine phosphorylation. Human HEp-2 and Caco-2 epithelial cells were challenged directly with either EHEC or bacterial culture supernatants and stimulated with IFN-γ, and then the protein extracts were analyzed by immunoblotting. The data showed that IFN-γ-mediated Stat-1 tyrosine phosphorylation was inhibited by EHEC secreted proteins. Using two-dimensional difference gel electrophoresis, EHEC Shiga toxins were identified as candidate inhibitory factors. EHEC Shiga toxin mutants were then generated and complemented in trans, and mutant culture supernatant was supplemented with purified Stx to confirm their ability to subvert IFN-γ-mediated cell activation. We conclude that while other factors are likely involved in the suppression of IFN-γ-mediated Stat-1 tyrosine phosphorylation, E. coli-derived Shiga toxins represent a novel mechanism by which EHEC evades the host immune system. PMID:22526675

  18. Cellular Accumulation, Localization, and Activity of a Synthetic Cyclopeptamine in Fungi

    PubMed Central

    Capobianco, John O.; Zakula, Dorothy; Frost, David J.; Goldman, Robert C.; Li, Leping; Klein, Larry L.; Lartey, Paul A.

    1998-01-01

    A novel synthetic cyclopeptamine, A172013, rapidly accumulated by passive diffusion into Candida albicans CCH442. Drug influx could not be totally facilitated by the membrane-bound target, β-(1,3)-glucan synthase, since accumulation was unsaturable at drug concentrations up to 10 μg/ml (about 1.6 × 10−7 molecules/cell), or 25× MIC. About 55 and 23% of the cell-incorporated drug was associated with the cell wall and protoplasts, respectively. Isolated microsomes contained 95% of the protoplast-associated drug, which was fully active against glucan synthesis in vitro. Drug (0.1 μg/ml) accumulation was rapid and complete after 5 min in several fungi tested, including a lipopeptide/cyclopeptamine-resistant strain of C. albicans (LP3-1). The compound penetrated to comparable levels in both yeast and hyphal forms of C. albicans, and accumulation in Aspergillus niger was 20% that in C. albicans. These data indicated that drug-cell interactions were driven by the amphiphilic nature of the compound and that the cell wall served as a major drug reservoir. PMID:9527791

  19. Cellular membranes, the sites for the antifungal activity of the herbicide sethoxydim.

    PubMed

    Pakdaman, B S; Goltapeh, E Mohammadi; Sepehrifar, R; Pouriesa, M; Fard, M Rahimi; Moradi, F; Modarres, S A M

    2007-08-01

    The fungicidal effect of sethoxydim on the canola (Brassica napus var. Olifera) white stem rot pathogen (Sclerotinia sclerotiorum) encouraged us to conduct a series of studies on the mechanism of the antifungal activity of this herbicide commonly applied in Iranian fields under canola cultivation. Present preliminary studies on the changes in the level of Malondialdehyde (MDA) as the main product generated through peroxidation of polyunsaturated fatty acids indicated the disintegration of the fungal bilayer of plasma membrane as the result of the herbicidal treatment. Also, it was demonstrated that the amount of hydrogen peroxide in the treated samples was higher than the control samples with no herbicidal treatment. Therefore, our present results confirm the disintegration of the plasma membrane as one of the mechanism for the antifungal impact of sethoxydim. As with weed plants, the phytotoxic impact of this herbicide has been attributed to the inhibition of the first enzyme in the lipid biosynthesis pathway, acetyl-CoA carboxylase, therefore, it would be very interesting to study on this subject and the relations between the sensitivity of different fungi and their DNA and protein sequences of acetyl-CoA carboxylase. PMID:19070118

  20. Antisperm antibody-mediated alterations in the cellular activity of human trophoblast cells in culture.

    PubMed

    Sinha, D; Chattopadhyay, S

    1994-04-01

    Immune recognition of the fetus is well documented, yet the immunological basis of pregnancy loss awaits elucidation. Identification of trophoblast membrane epitopes as non-self either by preformed immunoglobulins or by circulating immunocompetent cells would lead to immunological rejection of the tissue. Such an event may occur in cases of cross-reacting antibodies developed as a consequence of exposure of sperm surface antigens. This hypothesis was tested by developing specific antibodies in rabbits against intact sperm surface antigens. These were subjected to different schedules of IgG purification and characterization. By means of nuclide precursor incorporation, the effect of antisperm antibody on DNA, RNA and protein synthesis of trophoblast cells in culture were studied. The results showed that the antibody inhibits incorporation into cells but after a delay of 72 hours some cells gradually recover. The interaction also led to a reduced rate of hCG production. Lysosomal enzyme activity was inhibited in the spent medium of antibody-treated cells but lysosome rich fractions showed no effect. This indicated that the major effect of the antibody was growth inhibitory rather than cytolytic. PMID:7520885

  1. Genotoxicity and activation of cellular defenses in transplanted zebra mussels Dreissena polymorpha along the Seine river.

    PubMed

    Châtel, Amélie; Faucet-Marquis, Virginie; Gourlay-Francé, Catherine; Pfohl-Leszkowicz, Annie; Vincent-Hubert, Françoise

    2015-04-01

    The aim of the present study was to confirm the relevance of studying DNA adduct formation in a field study. In that context, freshwater mussels Dreissena polymorpha, collected in a reference station, were transplanted in different sites with a pollution gradient. After one and two months, mussels were collected and DNA adduct formation was analyzed using the (32)P post labelling technique on both gills and digestive glands. In addition, the expression of genes involved in the detoxification system (catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), HSP70, aryl hydrocarbon receptor (AHR), P glycoprotein (PgP), metallothionein (MT)) was assessed by RT-PCR. DNA adducts were observed at amount comparable to data from literature. Increase of DNA adducts after two months of transplantation could be correlated with strong modulation of gene expression implicated in detoxification processes. Indeed, PgP and HSP70 gene expressions were similarly induced in gills and digestive glands while SOD and CAT expressions were down regulated in both tissues. AHR, GST and MT genes were differently regulated depending upon the tissue studied and the level of contamination in the different sites. We demonstrated that mussels transplanted in the different stations with pollution gradient were able to biotransform PAHs, assessed by DNA adduct formation and the high decrease of detoxification genes. Specific DNA adducts pattern obtained after one and two month mussel transplantations demonstrated the relevance of DNA adduct as biomarker of environmental pollution. PMID:24951272

  2. Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro

    PubMed Central

    Pogany, Judit

    2015-01-01

    complex, the viral RdRp becomes activated through an incompletely understood process that makes the RdRp capable of RNA synthesis. By using TBSV RdRp, we show that the co-opted cellular Hsp70 chaperone and neutral phospholipids facilitate RdRp activation in vitro. In contrast, phosphatidylglycerol (PG) has a dominant inhibitory effect on in vitro RdRp activation and RdRp-viral RNA interaction, suggesting that the membranous microdomain surrounding the RdRp greatly affects its ability for RNA synthesis. Thus, the activation of the viral RdRp likely depends on multiple host components in infected cells. PMID:25762742

  3. Prolactin kinase activity in bovine anterior pituitary sub-cellular fractions.

    PubMed

    Wicks, J R; Brooks, C L

    1999-01-25

    Bovine anterior pituitary cells phosphorylate prolactin (PRL). We describe the phosphorylation of endogenous and exogenous bPRL in highly enriched subcellular fractions of bovine anterior pituitary using [gamma-32P]-ATP. 32P-labeling of endogenous and exogenous bPRL occurred in all subcellular membrane fractions, but most significantly in the fraction enriched for secretory granules. Zn2+ (0.8 mM), Cu2+ (0.8 mM), and Mn2+ (9.8 mM) increased bPRL phosphorylation by 268, 214, and 154%, respectively, relative to basal phosphorylation with no added cations. Neither Mg2+ (10 mM) nor Ca2+ (0.9 mM) increased bPRL phosphorylation above basal levels. Phosphorylation was dependent on the concentration of Zn2+ with an apparent Km of 570 microM. bPRL phosphorylation occurred over a wide pH range of 5.9-8.3, with the greatest activity at pH of 6.7 or greater. Phosphorylation of bPRL was time-dependent. The apparent Kms of the bPRL kinase for exogenous bPRL and ATP were 15.3 and 267 microM, respectively. bPRL incorporation of 32P was unaffected by the presence of calcium and calmodulin, cAMP, phosphotidylserine and diolein, or spermine. From these results we conclude that in vitro phosphorylation of bPRL occurs under physiological conditions that would be found in pituitary cells. PMID:10195699

  4. Combined Alloreactive CTL Cellular Therapy with Prodrug Activator Gene Therapy in a Model of Breast Cancer Metastatic to the Brain

    PubMed Central

    Hickey, Michelle J.; Malone, Colin C.; Erickson, Kate L.; Lin, Amy; Soto, Horacio; Ha, Edward T.; Kamijima, Shuichi; Inagaki, Akihito; Takahashi, Masamichi; Kato, Yuki; Kasahara, Noriyuki; Mueller, Barbara M.; Kruse, Carol A.

    2013-01-01

    Purpose Individual or combined strategies of cellular therapy with alloreactive cytotoxic T lymphocytes (alloCTL) and gene therapy employing retroviral replicating vectors (RRV) encoding a suicide prodrug activating gene were explored for the treatment of breast tumors metastatic to the brain. Experimental Design AlloCTL, sensitized to the human leukocyte antigens of MDA-MB-231 breast cancer cells, were examined in vitro for anti-tumor functionality toward breast cancer targets. RRV encoding the yeast cytosine deaminase (CD) gene was tested in vivo for virus spread, ability to infect, and kill breast cancer targets when exposed to 5-fluorocytosine (5-FC). Individual and combination treatments were tested in subcutaneous and intracranial xenograft models with 231BR, a brain tropic variant. Results AlloCTL preparations were cytotoxic, proliferated and produced interferon-gamma when coincubated with target cells displaying relevant HLA. In vivo, intratumorally-placed alloCTL trafficked through one established intracranial 231BR focus to another in contralateral brain and induced tumor cell apoptosis. RRV-CD efficiently spread in vivo, infected 231BR and induced their apoptosis upon 5-FC exposure. Subcutaneous tumor volumes were significantly reduced in alloCTL and/or gene therapy treated groups compared to control groups. Mice with established intracranial 231BR tumors treated with combined alloCTL and RRV-CD had a median survival of 97.5 days compared with single modalities (50–83 days); all experimental treatment groups survived significantly longer than sham-treated groups (median survivals 31.5 or 40 days) and exhibited good safety/toxicity profiles. Conclusion The results indicate combining cellular and suicide gene therapies is a viable strategy for the treatment of established breast tumors in the brain. PMID:23780889

  5. In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects.

    PubMed

    Boudard, Delphine; Forest, Valérie; Pourchez, Jérémie; Boumahdi, Najih; Tomatis, Maura; Fubini, Bice; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe

    2014-08-01

    Silicon carbide (SiC) an industrial-scale product manufactured through the Acheson process, is largely employed in various applications. Its toxicity has been poorly investigated. Our study aims at characterizing the physico-chemical features and the in vitro impact on biological activity of five manufactured SiC powders: two coarse powders (SiC C1/C2), two fine powders (SiC F1/F2) and a powder rich in iron impurities (SiC I). RAW 264.7 macrophages were exposed to the different SiC particles and the cellular responses were evaluated. Contrary to what happens with silica, no SiC cytotoxicity was observed but pro-oxidative and pro-inflammatory responses of variable intensity were evidenced. Oxidative stress (H₂O₂ production) appeared related to SiC particle size, while iron level regulated pro-inflammatory response (TNFα production). To investigate the impact of surface reactivity on the biological responses, coarse SiC C1 and fine SiC F1 powders were submitted to different thermal treatments (650-1400 °C) in order to alter the oxidation state of the particle surface. At 1400 °C a decrease in TNFα production and an increase in HO·, COO(·-) radicals production were observed in correlation with the formation of a surface layer of crystalline silica. Finally, a strong correlation was observed between surface oxidation state and in vitro toxicity. PMID:24603312

  6. Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds.

    PubMed Central

    Huang, Yi; Davidson, Gerard; Li, Jingxia; Yan, Yan; Chen, Fei; Costa, Max; Chen, Lung Chi; Huang, Chuanshu

    2002-01-01

    The predominant exposure route for nickel compounds is by inhalation, and several studies have indicated the correlation between nickel exposure and respiratory cancers. The tumor-promoting effects of nickel compounds are thought to be associated with their transactivation of transcription factors. We have investigated the possible activation of activator protein-1 (AP-1) and nuclear factor KB (NF-kappaB) in mouse C141 epidermal cells and fibroblasts 3T3 and B82, and human bronchoepithelial BEAS-2B cells in response to nickel compound exposure. Our results show that NF-kappaB activity is induced by nickel exposure in 3T3 and BEAS-2B cells. Conversely, similar nickel treatment of these cells did not induce AP-1 activity, suggesting that nickel tumorigenesis occurs through NF-kappaB and not AP-1. We also investigated the role of NF-kappaB in the induction of Cap43 by nickel compounds using dominant negative mutant Ikappabeta kinase b-KM BEAS-2B transfectants. PMID:12426142

  7. Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

    PubMed Central

    Lee, Yoo-hwan; Kim, Jung-hee; Song, Choon-ho; Jang, Kyung-jeon; kim, Cheol-hong; Kang, Ji- Sook; Choi, Yung-hyun

    2016-01-01

    Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, H2O2) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and H2O2 in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and H2O2-induced growth inhibition. Results: The results showed that EGL effectively inhibited H2O2-induced growth and the generation of ROS. EGL markedly suppressed H2O2-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 (p-γH2AX), a widely used marker of DNA damage, suggesting that EGL prevented H2O2-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against H2O2-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the

  8. Saccharomyces cerevisiae Ngl3p is an active 3′–5′ exonuclease with a specificity towards poly-A RNA reminiscent of cellular deadenylases

    PubMed Central

    Feddersen, Ane; Dedic, Emil; Poulsen, Esben G.; Schmid, Manfred; Van, Lan Bich; Jensen, Torben Heick; Brodersen, Ditlev E.

    2012-01-01

    Deadenylation is the first and rate-limiting step during turnover of mRNAs in eukaryotes. In the yeast, Saccharomyces cerevisiae, two distinct 3′–5′ exonucleases, Pop2p and Ccr4p, have been identified within the Ccr4-NOT deadenylase complex, belonging to the DEDD and Exonuclease–Endonuclease–Phosphatase (EEP) families, respectively. Ngl3p has been identified as a new member of the EEP family of exonucleases based on sequence homology, but its activity and biological roles are presently unknown. Here, we show using in vitro deadenylation assays on defined RNA species mimicking poly-A containing mRNAs that yeast Ngl3p is a functional 3′–5′ exonuclease most active at slightly acidic conditions. We further show that the enzyme depends on divalent metal ions for activity and possesses specificity towards poly-A RNA similar to what has been observed for cellular deadenylases. The results suggest that Ngl3p is naturally involved in processing of poly-adenylated RNA and provide insights into the mechanistic variations observed among the redundant set of EEP enzymes found in yeast and higher eukaryotes. PMID:21965533

  9. Phyto-mediated nanostructured carriers based on dual vegetable actives involved in the prevention of cellular damage.

    PubMed

    Istrati, D; Lacatusu, I; Bordei, N; Badea, G; Oprea, O; Stefan, L M; Stan, R; Badea, N; Meghea, A

    2016-07-01

    The growing scientific interest in exploitation of vegetable bioactives has raised a number of questions regarding their imminent presence in pharmaceutical formulations. This study intends to demonstrate that a dual combination between vegetable oil (e.g. thistle oil, safflower oil, sea buckthorn oil) and a carrot extract represents an optimal approach to formulate safe carrier systems that manifest cell regeneration effect and promising antioxidant and anti-inflammatory activity. Inclusion of both natural actives into lipid carriers imparted a strong negative charge on the nanocarrier surface (up to -45mV) and displayed average sizes of 70nm to 140nm. The entrapment efficiency of carrot extract into nanostructured carriers ranged between 78.3 and 88.3%. The in vitro release study has demonstrated that the entrapment of the extract represents a viable way for an equilibrated release of carotenoids. Besides the excellent antioxidant properties (e.g. scavenging up to 98% of the free oxygen radicals), the results of cellular integrity (e.g. cell viability of 133%) recommend these nanocarriers based on dual carrot extract-bioactive oil as a promising trend for the treatment of certain disorders in which oxidative stress plays a prominent role. In addition, the lipid nanocarriers based on safflower oil and sea buckthorn oil demonstrated an anti-inflammatory effect on LPS induced THP-1