Science.gov

Sample records for active channel layer

  1. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons

    PubMed Central

    Bock, Tobias

    2016-01-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels on N-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  2. Exploring active layer thaw depth and water content dynamics with multi-channel GPR

    NASA Astrophysics Data System (ADS)

    Wollschlaeger, U.; Gerhards, H.; Westermann, S.; Pan, X.; Boike, J.; Schiwek, P.; Yu, Q.; Roth, K.

    2011-12-01

    In permafrost landscapes, the active layer is the highly dynamic uppermost section of the ground where many important hydrological, biological and geomorphological processes take place. Active layer hydrological processes are controlled by many different factors like thaw depth, soil textural properties, vegetation, and snow cover. These may lead to complex runoff patterns that are difficult to estimate from point measurements in boreholes. New multi-channel GPR systems provide the opportunity to non-invasively estimate reflector depth and average volumetric water content of distinct soil layers over distances ranging from some ten meters up to a few kilometers. Due to the abrupt change in dielectric permittivity between frozen and unfrozen ground, multi-channel GPR is a valuable technique for mapping the depth of the frost table along with the volumetric water content of the active layer without the need of laborious drillings or frost probe measurements. Knowing both values, the total amount of water stored in the active layer can be determined which may be used as an estimate of its latent heat content. Time series of measurements allow spatial monitoring of the progression of the thawing front. Multi-channel GPR thus offers new opportunities for monitoring active layer hydrological processes. This presentation will provide a brief introduction of the multi-channel GPR evaluation technique and will present different applications from several permafrost sites.

  3. Potassium channels control the interaction between active dendritic integration compartments in layer 5 cortical pyramidal neurons

    PubMed Central

    Harnett, Mark T.; Xu, Ning-Long; Magee, Jeffrey C.; Williams, Stephen R.

    2013-01-01

    Active dendritic synaptic integration enhances the computational power of neurons. Such nonlinear processing generates an object-localization signal in the apical dendritic tuft of layer 5B cortical pyramidal neurons during sensory-motor behaviour. Here we employ electrophysiological and optical approaches in brain-slices and behaving animals to investigate how excitatory synaptic input to this distal dendritic compartment influences neuronal output. We find that active dendritic integration throughout the apical dendritic tuft is highly compartmentalized by voltage-gated potassium (KV) channels. A high-density of both transient and sustained KV channels was observed in all apical dendritic compartments. These channels potently regulated the interaction between apical dendritic tuft, trunk, and axo-somatic integration zones to control neuronal output in vitro as well as the engagement of dendritic nonlinear processing in vivo during sensory-motor behaviour. Thus, KV channels dynamically tune the interaction between active dendritic integration compartments in layer 5B pyramidal neurons to shape behaviourally relevant neuronal computations. PMID:23931999

  4. Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer.

    PubMed

    Shin, Minkwan; Oh, Jin Young; Byun, Kyung-Eun; Lee, Yu-Jeong; Kim, Bongsoo; Baik, Hong-Koo; Park, Jong-Jin; Jeong, Unyong

    2015-02-18

    A stretchable polymer channel layer for organic field-effect transistors is obtained by spin-coating a blend solution of polythiophene and rubber polymer. A network of the polythiophene nanofibril bundles surface-embedded in the rubber matrix allows large stretchability of the polythiophene film layer.

  5. High-performance back-channel-etched thin-film transistors with amorphous Si-incorporated SnO2 active layer

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhe; Ning, Honglong; Chen, Jianqiu; Cai, Wei; Hu, Shiben; Tao, Ruiqiang; Zeng, Yong; Zheng, Zeke; Yao, Rihui; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2016-03-01

    In this report, back-channel-etched (BCE) thin-film transistors (TFTs) were achieved by using Si-incorporated SnO2 (silicon tin oxide (STO)) film as active layer. It was found that the STO film was acid-resistant and in amorphous state. The BCE-TFT with STO active layer exhibited a mobility of 5.91 cm2/V s, a threshold voltage of 0.4 V, an on/off ratio of 107, and a steep subthreshold swing of 0.68 V/decade. Moreover, the device had a good stability under the positive/negative gate-bias stress.

  6. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  7. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  8. Investigations on the roles of position controlled Al layers incorporated into an Al-doped ZnO active channel during atomic layer deposition for thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Eom-Ji; Lee, Won-Ho; Yoon, Sung-Min

    2016-03-01

    We investigated the effects of the distance between incorporated Al layers on the characteristics of thin-film transistors (TFTs) using Al-doped ZnO (AZO) as the active channels. The intervals between the Al layers were controlled by designing the sequences of Al cycles during the atomic-layer deposition. Two configurations were designed as “scatter” or “focus”, in which the incorporated Al layers were dispersed to bottom and top sides or concentrated on the center region. Electrical conductivities of “scatter” and “focus” films were observed to be different. While the dispersed Al layers could work as dopants, a too-close interval between the Al layers suppressed carrier transport, even with the same incorporated Al amounts. These differences were reflected on the device characteristics. The TFT performance of the “scatter” device was better than that of the “focus” device. Consequently, adequately dispersed Al layers in the AZO channel are very important for improving device performance.

  9. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  10. The Onset of Channelling in a Fluidized Mud Layer

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.

    2012-12-01

    Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q

  11. Vibrationally induced center reconfiguration in co-doped GaN:Eu, Mg epitaxial layers: Local hydrogen migration vs. activation of non-radiative channels

    SciTech Connect

    Mitchell, B.; Dierolf, V.; Lee, D.; Lee, D.; Fujiwara, Y.

    2013-12-09

    Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.

  12. Vibrationally induced center reconfiguration in co-doped GaN:Eu, Mg epitaxial layers: Local hydrogen migration vs. activation of non-radiative channels

    NASA Astrophysics Data System (ADS)

    Mitchell, B.; Lee, D.; Lee, D.; Fujiwara, Y.; Dierolf, V.

    2013-12-01

    Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.

  13. Lubiprostone: a chloride channel activator.

    PubMed

    Lacy, Brian E; Levy, L Campbell

    2007-04-01

    In January 2006 the Food and Drug Administration approved lubiprostone for the treatment of chronic constipation in men and women aged 18 and over. Lubiprostone is categorized as a prostone, a bicyclic fatty acid metabolite of prostaglandin E1. Lubiprostone activates a specific chloride channel (ClC-2) in the gastrointestinal (GI) tract to enhance intestinal fluid secretion, which increases GI transit and improves symptoms of constipation. This article reviews the role of chloride channels in the GI tract, describes the structure, function, and pharmacokinetics of lubiprostone, and discusses clinically important data on this new medication.

  14. Strain tensors in layer systems by precision ion channeling measurements

    SciTech Connect

    Trinkaus, H.; Buca, D.; Hollaender, B.; Minamisawa, R. A.; Mantl, S.; Hartmann, J. M.

    2010-06-15

    A powerful method for analyzing general strain states in layer systems is the measurement of changes in the ion channeling directions. We present a systematic derivation and compilation of the required relations between the strain induced angle changes and the components of the strain tensor for general crystalline layer systems of reduced symmetry compared to the basic (cubic) crystal. It is shown that, for the evaluation of channeling measurements, virtually all layers of interest may be described as being 'pseudo-orthorhombic'. The commonly assumed boundary conditions and the effects of surface misorientations on them are discussed. Asymmetric strain relaxation in layers of reduced symmetry is attributed to a restriction in the slip system of the dislocations inducing it. The results are applied to {l_brace}110{r_brace}SiGe/Si layer systems.

  15. Calcium Activation of Mougeotia Potassium Channels 1

    PubMed Central

    Lew, Roger R.; Serlin, Bruce S.; Schauf, Charles L.; Stockton, Marsha E.

    1990-01-01

    Phytochrome mediates chloroplast movement in the alga Mougeotia, possibly via changes in cytosolic calcium. It is known to regulate a calcium-activated potassium channel in the algal plasma membrane. As part of a characterization of the potassium channel, we examined the properties of calcium activation. The calcium ionophore A23187 activates the channel at external [Ca2+] as low as 20 micromolar. However, external [Ca2+] is not required for activation of the channel by photoactivated phytochrome. Furthermore, when an inhibitor of calcium release from internal stores, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, hydrochloride (TMB-8), is present, red light no longer stimulates channel activity. We conclude that phytochrome activates the plasma membrane potassium channel by releasing calcium from intracellular calcium vesicles; the elevated cytosolic calcium then stimulates channel activity by an unknown mechanism. In the presence of TMB-8, red light does induce chloroplast rotation; thus, potassium channel activation may not be coupled to chloroplast rotation. PMID:16667356

  16. Thermally activated TRPV3 channels.

    PubMed

    Luo, Jialie; Hu, Hongzhen

    2014-01-01

    TRPV3 is a temperature-sensitive transient receptor potential (TRP) ion channel. The TRPV3 protein functions as a Ca(2+)-permeable nonselective cation channel with six transmembrane domains forming a tetrameric complex. TRPV3 is known to be activated by warm temperatures, synthetic small-molecule chemicals, and natural compounds from plants. Its function is regulated by a variety of physiological factors including extracellular divalent cations and acidic pH, intracellular adenosine triphosphate, membrane voltage, and arachidonic acid. TRPV3 shows a broad expression pattern in both neuronal and non-neuronal tissues including epidermal keratinocytes, epithelial cells in the gut, endothelial cells in blood vessels, and neurons in dorsal root ganglia and CNS. TRPV3 null mice exhibit abnormal hair morphogenesis and compromised skin barrier function. Recent advances suggest that TRPV3 may play critical roles in inflammatory skin disorders, itch, and pain sensation. Thus, identification of selective TRPV3 activators and inhibitors could potentially lead to beneficial pharmacological interventions in several diseases. The intent of this review is to summarize our current knowledge of the tissue expression, structure, function, and mechanisms of activation of TRPV3.

  17. Free-space optical channel estimation for physical layer security

    NASA Astrophysics Data System (ADS)

    Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Toyoshima, Morio; Takayama, Yoshihisa; Takenaka, Hideki; Shimizu, Ryosuke; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo; Aoki, Takao; Sasaki, Masahide

    2016-04-01

    We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.

  18. Free-space optical channel estimation for physical layer security.

    PubMed

    Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Toyoshima, Morio; Takayama, Yoshihisa; Takenaka, Hideki; Shimizu, Ryosuke; Laurenti, Nicola; Vallone, Giuseppe; Villoresi, Paolo; Aoki, Takao; Sasaki, Masahide

    2016-04-18

    We present experimental data on message transmission in a free-space optical (FSO) link at an eye-safe wavelength, using a testbed consisting of one sender and two receiver terminals, where the latter two are a legitimate receiver and an eavesdropper. The testbed allows us to emulate a typical scenario of physical-layer (PHY) security such as satellite-to-ground laser communications. We estimate information-theoretic metrics including secrecy rate, secrecy outage probability, and expected code lengths for given secrecy criteria based on observed channel statistics. We then discuss operation principles of secure message transmission under realistic fading conditions, and provide a guideline on a multi-layer security architecture by combining PHY security and upper-layer (algorithmic) security.

  19. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  20. Electron channeling in TiO2 coated Cu layers

    NASA Astrophysics Data System (ADS)

    Zheng, Pengyuan; Zhou, Tianji; Gall, Daniel

    2016-05-01

    Electron transport in metal conductors with ˜5-30 nm width is dominated by surface scattering. In situ transport measurements as a function of surface chemistry demonstrate that the primary parameter determining the surface scattering specularity is the localized surface density of states at the Fermi level N(E f ). In particular, the measured sheet resistance of epitaxial Cu(001) layers with thickness d Cu = 9-25 nm increases when coated with d Ti = 0.1-4.0 monolayers (MLs) of Ti, but decreases again during exposure to 37 Pa of O2. These resistivity changes are a function of d Cu and d Ti and are due to a transition from partially specular electron scattering at the Cu surface to completely diffuse scattering at the Cu-Ti interface, and the recovery of surface specularity as the Ti is oxidized. X-ray reflectivity and photoelectron spectroscopy indicate the formation of a 0.47 ± 0.03 nm thick Cu2O surface layer on top of the TiO2-Cu2O during air exposure, while density functional calculations of TiO x cap layers as a function of x = 0-2 and d Ti = 0.25-1.0 ML show a reduction of N(E f ) by up to a factor of four. This reduction is proposed to be the key cause for the recovery of surface specularity and results in electron confinement and channeling in the Cu layer upon Ti oxidation. Transport measurements at 293 and 77 K confirm the channeling and demonstrate the potential for high-conductivity metal nanowires by quantifying the surface specularity parameter p = 0.67 ± 0.05, 0.00 ± 0.05, and 0.35 ± 0.05 at the Cu-vacuum, Cu-Ti, and Cu-TiO2 interfaces.

  1. BK channel activation: structural and functional insights

    PubMed Central

    Lee, Urvi S.; Cui, Jianmin

    2010-01-01

    The voltage and Ca2+ activated K+ (BK) channels are involved in the regulation of neurotransmitter release and neuronal excitability. Structurally, BK channels are homologous to voltage- and ligand-gated K+ channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain containing metal binding sites. Recently published electron cryomicroscopy (cryo-EM) and X-ray crystallographic structures of the BK channel provided the first look into the assembly of these domains, corroborating the close interactions among these domains during channel gating that have been suggested by functional studies. This review discusses these latest findings and an emerging new understanding about BK channel gating and implications for diseases such as epilepsy, in which mutations in BK channel genes have been associated. PMID:20663573

  2. BK channel activators and their therapeutic perspectives

    PubMed Central

    Bentzen, Bo H.; Olesen, Søren-Peter; Rønn, Lars C. B.; Grunnet, Morten

    2014-01-01

    The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease. PMID:25346695

  3. Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet

    NASA Technical Reports Server (NTRS)

    Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.

    2010-01-01

    Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.

  4. Temperature-sensitive transient receptor potential channels in corneal tissue layers and cells.

    PubMed

    Mergler, Stefan; Valtink, Monika; Takayoshi, Sumioka; Okada, Yuka; Miyajima, Masayasu; Saika, Shizuya; Reinach, Peter S

    2014-01-01

    We here provide a brief summary of the characteristics of transient receptor potential channels (TRPs) identified in corneal tissue layers and cells. In general, TRPs are nonselective cation channels which are Ca(2+) permeable. Most TRPs serve as thermosensitive molecular sensors (thermo-TRPs). Based on their functional importance, the possibilities are described for drug-targeting TRP activity in a clinical setting. TRPs are expressed in various tissues of the eye including both human corneal epithelial and endothelial layers as well as stromal fibroblasts and stromal nerve fibers. TRP vanilloid type 1 (TRPV1) heat receptor, also known as capsaicin receptor, along with TRP melastatin type 8 (TRPM8) cold receptor, which is also known as menthol receptor, are prototypes of the thermo-TRP family. The TRPV1 functional channel is the most investigated TRP channel in these tissues, owing to its contribution to maintaining tissue homeostasis as well as eliciting wound healing responses to injury. Other thermo-TRP family members identified in these tissues are TRPV2, 3 and 4. Finally, there is the TRP ankyrin type 1 (TRPA1) cold receptor. All of these thermo-TRPs can be activated within specific temperature ranges and transduce such inputs into chemical and electrical signals. Although several recent studies have begun to unravel complex roles for thermo-TRPs such as TRPV1 in corneal layers and resident cells, additional studies are needed to further elucidate their roles in health and disease.

  5. BK channels: multiple sensors, one activation gate.

    PubMed

    Yang, Huanghe; Zhang, Guohui; Cui, Jianmin

    2015-01-01

    Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca(2+) activated BK channels, a K(+) channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate.

  6. Constitutive Activation of the Shaker Kv Channel

    PubMed Central

    Sukhareva, Manana; Hackos, David H.; Swartz, Kenton J.

    2003-01-01

    In different types of K+ channels the primary activation gate is thought to reside near the intracellular entrance to the ion conduction pore. In the Shaker Kv channel the gate is closed at negative membrane voltages, but can be opened with membrane depolarization. In a previous study of the S6 activation gate in Shaker (Hackos, D.H., T.H. Chang, and K.J. Swartz. 2002. J. Gen. Physiol. 119:521–532.), we found that mutation of Pro 475 to Asp results in a channel that displays a large macroscopic conductance at negative membrane voltages, with only small increases in conductance with membrane depolarization. In the present study we explore the mechanism underlying this constitutively conducting phenotype using both macroscopic and single-channel recordings, and probes that interact with the voltage sensors or the intracellular entrance to the ion conduction pore. Our results suggest that constitutive conduction results from a dramatic perturbation of the closed-open equilibrium, enabling opening of the activation gate without voltage-sensor activation. This mechanism is discussed in the context of allosteric models for activation of Kv channels and what is known about the structure of this critical region in K+ channels. PMID:14557403

  7. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique.

    PubMed

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-12-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C exhibit a low leakage current of 2.5 × 10(-13)A, I on/I off ratio of 1.4 × 10(7), subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  8. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  9. Active dendrites, potassium channels and synaptic plasticity.

    PubMed Central

    Johnston, Daniel; Christie, Brian R; Frick, Andreas; Gray, Richard; Hoffman, Dax A; Schexnayder, Lalania K; Watanabe, Shigeo; Yuan, Li-Lian

    2003-01-01

    The dendrites of CA1 pyramidal neurons in the hippocampus express numerous types of voltage-gated ion channel, but the distributions or densities of many of these channels are very non-uniform. Sodium channels in the dendrites are responsible for action potential (AP) propagation from the axon into the dendrites (back-propagation); calcium channels are responsible for local changes in dendritic calcium concentrations following back-propagating APs and synaptic potentials; and potassium channels help regulate overall dendritic excitability. Several lines of evidence are presented here to suggest that back-propagating APs, when coincident with excitatory synaptic input, can lead to the induction of either long-term depression (LTD) or long-term potentiation (LTP). The induction of LTD or LTP is correlated with the magnitude of the rise in intracellular calcium. When brief bursts of synaptic potentials are paired with postsynaptic APs in a theta-burst pairing paradigm, the induction of LTP is dependent on the invasion of the AP into the dendritic tree. The amplitude of the AP in the dendrites is dependent, in part, on the activity of a transient, A-type potassium channel that is expressed at high density in the dendrites and correlates with the induction of the LTP. Furthermore, during the expression phase of the LTP, there are local changes in dendritic excitability that may result from modulation of the functioning of this transient potassium channel. The results support the view that the active properties of dendrites play important roles in synaptic integration and synaptic plasticity of these neurons. PMID:12740112

  10. Regulation of TRPM8 channel activity

    PubMed Central

    Yudin, Yevgen; Rohacs, Tibor

    2011-01-01

    Transient Receptor Potential Melastatin 8 (TRPM8) is a Ca2+ permeable non-selective cation channel directly activated by cold temperatures and chemical agonists such as menthol. It is a well established sensor of environmental cold temperatures, found in peripheral sensory neurons, where its activation evokes depolarization and action potentials. The activity of TRPM8 is regulated by a number of cellular signaling pathways, most notably by phosphoinositides and the activation of phospholipase C. This review will summarize current knowledge on the physiological and pathophysiological roles of TRPM8 and its regulation by various intracellular messenger molecules and signaling pathways. PMID:22061619

  11. Optical activity of transparent polymer layers characterized by spectral means

    NASA Astrophysics Data System (ADS)

    Cosutchi, Andreea Irina; Dimitriu, Dan Gheorghe; Zelinschi, Carmen Beatrice; Breaban, Iuliana; Dorohoi, Dana Ortansa

    2015-06-01

    The method based on the channeled spectrum, validated for inorganic optical active layers, is used now to determine the optical activity of some transparent polymer solutions in different solvents. The circular birefringence, the dispersion parameter and the specific rotation were estimated in the visible range by using the measurements of wavelengths in the channeled spectra of Hydroxypropyl cellulose in water, methanol and acetic acid. The experiments showed the specific rotation dependence on the polymer concentration and also on the solvent nature. The decrease of the specific rotation in the visible range with the increase in wavelength was evidenced. The method has some advantages as the rapidity of the experiments and the large spectral range in which it can be applied. One disadvantage is the fact that the channeled spectrum does not allow to establish the rotation sense of the electric field intensity.

  12. TRP channels activated by extracellular hypo-osmoticity in epithelia.

    PubMed

    Harteneck, C; Reiter, B

    2007-02-01

    TRP (transient receptor potential) channels comprise a superfamily of non-selective cation channels with at least seven subfamilies. The variety of subfamilies corresponds to the differences in the activation mechanisms and functions. TRPM3 (TRP melastatin 3) and TRPV4 (TRP vanilloid 3) have been characterized as cation channels activated by extracellular hypo-osmoticity. In addition, TRPV4 is activated by metabolites of arachidonic acid as well as alpha-isomers of phorbol esters known to be ineffective in stimulating proteins of the protein kinase C family. TRPM3 is responsive to sphingosine derivatives. The detection of splice variants with probably different activation mechanisms supports the idea that TRPM3 may have diverse cellular functions depending on the expression of a particular variant. The expression of TRPV4 in many epithelial cell types raised the question of the role of TRPV4 in epithelial physiology. Single-cell experiments as well as approaches using epithelial layers show that multiple cellular responses are triggered by TRPV4 activation and subsequent elevation of intracellular calcium. The TRPV4-induced responses increasing transcellular ion flux as well as paracellular permeability may allow the cells to adjust to changes in extracellular osmolarity. In summary, TRPV4 plays a central role in epithelial homoeostasis by modulating epithelial barrier function.

  13. Reduction of channel resistance in amorphous oxide thin-film transistors with buried layer

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Kim, Bosul; Lee, Sang Yeol

    2012-04-01

    A silicon-indium-zinc-oxide (SIZO) thin film transistor (TFT) with low channel-resistance (RCH) indium-zinc-oxide (In2O3:ZnO = 9:1) buried layer annealed at low temperature of 200°C exhibited high field-effect mobility (μFE) over 55.8 cm2/V·s which is 5 times higher than that of the conventional TFTs due to small threshold voltage (Vth) change of 1.8 V under bias-temperature stress (BTS) condition for 420 minutes. The low-RCH buried-layer allows more strong current-path formed in channel layer well within relatively high-RCH channel-layer since it is less affected by the channel bulk and/or back interface trap with high carrier concentration.

  14. Ca2+-activated K channels in parotid acinar cells

    PubMed Central

    Romanenko, Victor G; Thompson, Jill

    2010-01-01

    Fluid secretion relies on a close interplay between Ca2+-activated Cl and K channels. Salivary acinar cells contain both large conductance, BK, and intermediate conductance, IK1, K channels. Physiological fluid secretion occurs with only modest (<500 nM) increases in intracellular Ca2+ levels but BK channels in many cell types and in heterologous expression systems require very high concentrations for significant activation. We report here our efforts to understand this apparent contradiction. We determined the Ca2+ dependence of IK1 and BK channels in mouse parotid acinar cells. IK1 channels activated with an apparent Ca2+ affinity of about 350 nM and a hill coefficient near 3. Native parotid BK channels activated at similar Ca2+ levels unlike the BK channels in other cell types. Since the parotid BK channel is encoded by an uncommon splice variant, we examined this clone in a heterologous expression system. In contrast to the native parotid channel, activation of this expressed “parslo” channel required very high levels of Ca2+. In order to understand the functional basis for the special properties of the native channels, we analyzed the parotid BK channel in the context of the horrigan-Aldrich model of BK channel gating. We found that the shifted activation of parotid BK channels resulted from a hyperpolarizing shift of the voltage dependence of voltage sensor activation and channel opening and included a large change in the coupling of these two processes. PMID:20519930

  15. Hydrothermal regimes of the dry active layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mamoru; Zhang, Yinsheng; Kadota, Tsutomu; Ohata, Tetsuo

    2006-04-01

    Evaporation and condensation in the soil column clearly influence year-round nonconductive heat transfer dynamics in the dry active layer underlying semiarid permafrost regions. We deduced this from heat flux components quantified using state-of-the-art micrometeorological data sets obtained in dry and moist summers and in winters with various snow cover depths. Vapor moves easily through large pores, some of which connect to the atmosphere, allowing (1) considerable active layer warming driven by pipe-like snowmelt infiltration, and (2) direct vapor linkage between atmosphere and deeper soils. Because of strong adhesive forces, water in the dry active layer evaporates with great difficulty. The fraction of latent heat to total soil heat storage ranged from 26 to 45% in dry and moist summers, respectively. These values are not negligible, despite being smaller than those of arctic wet active layer, in which only freezing and thawing were considered.

  16. Impact of Volcanic Activity on AMC Channel Operations

    DTIC Science & Technology

    2014-06-13

    IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Matthew D... VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational Sciences...AFIT-ENS-GRP-14-J-11 IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS Matthew D. Meshanko, BS, MA Major, USAF

  17. Layered Wyner-Ziv video coding for transmission over unreliable channels

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Stankovic, Vladimir; Xiong, Zixiang

    2005-07-01

    Based on recent works on Wyner-Ziv coding (or lossy source coding with decoder side information), we consider the case with noisy channel and addresses distributed joint source-channel coding, while targeting at the impor- tant application of scalable video transmission over wireless networks. In Wyner-Ziv coding, after quantization, Slepian-Wolf coding (SWC) is used to reduce the rate. SWC is traditionally realized by sending syndromes of a linear channel code. Since syndromes of the channel code can only compress but cannot protect, for transmission over noisy channels, additional error protection is needed. However, instead of using one channel code for SWC and one for error protection, our idea is to use a single channel code to achieve both compression and protection. We replace the traditional syndrome-based SWC scheme by the parity-based one, where only parity bits of the Slepian-Wolf channel code are sent. If the amount of transmitted parity bits increases above the Slepian-Wolf limit, the added redundancy is exploited to cope against the noise in the transmission channel. Using IRA codes for practical parity-based SWC, we design a novel layered Wyner-Ziv video coder which is robust to channel failures and thus very suitable for wireless communications. Our simulation results show great advantages of the proposed solution based on joint source-channel coding compared to the traditional approach where source and channel coding are performed separately.

  18. An insolation activated dust layer on Mars

    NASA Astrophysics Data System (ADS)

    de Beule, Caroline; Wurm, Gerhard; Kelling, Thorben; Koester, Marc; Kocifaj, Miroslav

    2015-11-01

    The illuminated dusty surface of Mars acts like a gas pump. It is driven by thermal creep at low pressure within the soil. In the top soil layer this gas flow has to be sustained by a pressure gradient. This is equivalent to a lifting force on the dust grains. The top layer is therefore under tension which reduces the threshold wind speed for saltation. We carried out laboratory experiments to quantify the thickness of this activated layer. We use basalt with an average particle size of 67 μm. We find a depth of the active layer of 100-200 μm. Scaled to Mars the activation will reduce threshold wind speeds for saltation by about 10%.

  19. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    NASA Astrophysics Data System (ADS)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin

    2017-02-01

    This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm2/V·s) compared with the ITZO-only TFTs (∼34 cm2/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and -2.39 V compared with 6.10 and -6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of EA were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO2 reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  20. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  1. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms.

    PubMed

    Tang, Qiong-Yao; Zhang, Fei-Fei; Xu, Jie; Wang, Ran; Chen, Jian; Logothetis, Diomedes E; Zhang, Zhe

    2016-01-05

    Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects.

  2. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan

    2012-09-01

    In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

  3. Direct determination of the thickness of stratospheric layers from single-channel satellite radiance measurements.

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.; Gelman, M. E.

    1972-01-01

    The direct use of measured radiances for determining the thickness of stratospheric layers is investigated. Layers based at 100-10 mb, with upper boundaries at 10-0.5 mb, are investigated using a carefully selected family of stratospheric temperature profiles and computed radiances. On the basis of physical reasoning, a high correlation of thickness with radiance is anticipated for deep layers, such as the 100- to 2-mb layer (from about 15 to 43 km), that emit a substantial part of the infrared energy reaching a satellite radiometer in a particular channel. Empirical regression curves relating thickness and radiance are developed and are compared with blackbody curves obtained by substituting the blackbody temperature in the hydrostatic equation. Maximum thickness-radiance correlation is found, for each infrared channel, for the layer having the best agreement of empirical and blackbody curves.

  4. Bisandrographolide from Andrographis paniculata activates TRPV4 channels.

    PubMed

    Smith, Paula L; Maloney, Katherine N; Pothen, Randy G; Clardy, Jon; Clapham, David E

    2006-10-06

    Many transient receptor potential (TRP) channels are activated or blocked by various compounds found in plants; two prominent examples include the activation of TRPV1 channels by capsaicin and the activation of TRPM8 channels by menthol. We sought to identify additional plant compounds that are active on other types of TRP channels. We screened a library of extracts from 50 Chinese herbal plants using a calcium-imaging assay to find compounds active on TRPV3 and TRPV4 channels. An extract from the plant Andrographis paniculata potently activated TRPV4 channels. The extract was fractionated further, and the active compound was identified as bisandrographolide A (BAA). We used purified compound to characterize the activity of BAA on certain TRPV channel subtypes. Although BAA activated TRPV4 channels with an EC(50) of 790-950 nm, it did not activate or block activation of TRPV1, TRPV2, or TRPV3 channels. BAA activated a large TRPV4-like current in immortalized mouse keratinocytes (308 cells) that have been shown to express TRPV4 protein endogenously. This compound also activated TRPV4 currents in cell-free outside-out patches from HEK293T cells overexpressing TRPV4 cDNA, suggesting that BAA can activate the channel in a membrane-delimited manner. Another related compound, andrographolide, found in abundance in the plant Andrographis was unable to activate or block activation of TRPV4 channels. These experiments show that BAA activates TRPV4 channels, and we discuss the possibility that activation of TRPV4 by BAA could play a role in some of the effects of Andrographis extract described in traditional medicine.

  5. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  6. A quantized mechanism for activation of pannexin channels

    PubMed Central

    Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B.; Leonhardt, Susan A.; Kiessling, Volker; Bennett, Brad C.; Shu, Shaofang; Tamm, Lukas K.; Yeager, Mark; Ravichandran, Kodi S.; Bayliss, Douglas A.

    2017-01-01

    Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. PMID:28134257

  7. Multichannel carbon nanotube field-effect transistors with compound channel layer

    NASA Astrophysics Data System (ADS)

    Chen, Changxin; Zhang, Wei; Zhang, Yafei

    2009-11-01

    A multichannel carbon nanotube field-effect transistor (MC-CNTFET) with compound channel layer has been built. In this MC-CNTFET, a dispersedly directed array of long single-walled carbon nanotubes (SWCNTs) is used as primary channel layer and a randomly aligned monolayer network of short SWCNTs acts as secondary set of "bridge" channel layer, which causes large numbers of short semiconducting percolation paths formed. The device exhibits a large on-state current of 2.01 mA and simultaneously retains a high current on/off ratio of 103-104. The function dependency of the on-state current on the density of long SWCNTs and length of short SWCNTs is also presented.

  8. Copper and protons directly activate the zinc-activated channel.

    PubMed

    Trattnig, Sarah M; Gasiorek, Agnes; Deeb, Tarek Z; Ortiz, Eydith J Comenencia; Moss, Stephen J; Jensen, Anders A; Davies, Paul A

    2016-03-01

    The zinc-activated channel (ZAC) is a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC is the least understood member of this family so in the present study we sought to characterize the properties of this channel further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively. The responses elicited by Zn(2+), Cu(2+) and H(+) through ZAC are all characterized by low degrees of desensitization. In contrast, currents evoked by high concentrations of the three agonists comprise distinctly different activation and decay components, with transitions to and from an open state being significantly faster for H(+) than for the two metal ions. The permeabilities of ZAC for Na(+) and K(+) relative to Cs(+) are indistinguishable, whereas replacing all of extracellular Na(+) and K(+) with the divalent cations Ca(2+) or Mg(2+) results in complete elimination of Zn(2+)-activated currents at both negative and positive holding potentials. This indicates that ZAC is non-selectively permeable to monovalent cations, whereas Ca(2+) and Mg(2+) inhibit the channel. In conclusion, this is the first report of a Cys-loop receptor being gated by Zn(2+), Cu(2+) and H(+). ZAC could be an important mediator of some of the wide range of physiological functions regulated by or involving Zn(2+), Cu(2+) and H(+).

  9. Roofed grooves: rapid layer engineering of perfusion channels in collagen tissue models.

    PubMed

    Tan, Noah S; Alekseeva, Tijna; Brown, Robert A

    2014-10-01

    Surface patterning (micro-moulding) of dense, biomimetic collagen is a simple tool to produce complex tissues using layer-by-layer assembly. The aim here was to channelise three-dimensional constructs for improved perfusion. Firstly, collagen fibril accumulation was measured by comparative image analysis to understand the mechanisms of structure formation in plastically compressed collagen during µ-moulding. This showed that shape (circular or rectangular) and dimensions of the template affected collagen distribution around moulded grooves and consequently their stability. In the second part, this was used for effective fabrication of multi-layered plastically compressed collagen constructs with internal channels by roofing the grooves with a second layer. Using rectangular templates of 25/50/100 µm widths and 75 µm depth, grooves were µ-moulded into the fluid-leaving surface of collagen layers with predictable width/depth fidelities. These grooves were then roofed by addition of a second plastically compressed collagen layer on top to produce µ-channels. Resulting µ-channels retained their dimensions and were stable over time in culture with fibroblasts and could be cell seeded with a lining layer by simple transfer of epithelial cells. The results of this study provide a valuable platform for rapid fabrication of complex collagen-based tissues in particular for provision of perfusing microchannels through the bulk material for improved core nutrient supply.

  10. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    PubMed

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  11. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer

    PubMed Central

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-01-01

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates. PMID:27023560

  12. Three-dimensional boundary layers and secondary flows in cascade channels

    NASA Astrophysics Data System (ADS)

    Hackeschmidt, M.; Hilbrich, H.-D.; Krueger, N.

    Using the present analytical method for the calculation of three-dimensional boundary layers and secondary flows in a straight cascade channel, the influence of various phenomena on the spatial flow field of cascade channels is systematically investigated and the potential fields of the phenomena are computed exactly. The mathematical model distinguished between disturbed and undisturbed primary flow fields; collateral, bilateral, and multilateral boundary layers; and secondary flow fields with and without friction. More accurate details have been obtained for side wall streamlines and the formation of corner vortices.

  13. Temporal Lobe Epilepsy Induces Intrinsic Alterations in Na Channel Gating in Layer II Medial Entorhinal Cortex Neurons

    PubMed Central

    Hargus, Nicholas J.; Merrick, Ellen C.; Nigam, Aradhya; Kalmar, Christopher L.; Baheti, Aparna R.; Bertram, Edward H.; Patel, Manoj K.

    2010-01-01

    Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy involving the limbic structures of the temporal lobe. Layer II neurons of the entorhinal cortex (EC) form the major excitatory input into the hippocampus via the perforant path and consist of non-stellate and stellate neurons. These neurons are spared and hyper-excitable in TLE. The basis for the hyper-excitability is likely multifactorial and may include alterations in intrinsic properties. In a rat model of TLE, medial EC (mEC) non-stellate and stellate neurons had significantly higher action potential (AP) firing frequencies than in control. The increase remained in the presence of synaptic blockers, suggesting intrinsic mechanisms. Since sodium (Na) channels play a critical role in AP generation and conduction we sought to determine if Na channel gating parameters and expression levels were altered in TLE. Na channel currents recorded from isolated mEC TLE neurons revealed increased Na channel conductances, depolarizing shifts in inactivation parameters and larger persistent (INaP) and resurgent (INaR) Na currents. Immunofluorescence experiments revealed increased staining of Nav1.6 within the axon initial segment and Nav1.2 within the cell bodies of mEC TLE neurons. These studies provide support for additional intrinsic alterations within mEC layer II neurons in TLE and implicate alterations in Na channel activity and expression, in part, for establishing the profound increase in intrinsic membrane excitability of mEC layer II neurons in TLE. These intrinsic changes, together with changes in the synaptic network, could support seizure activity in TLE. PMID:20946956

  14. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons.

    PubMed

    Shah, Mala M; Anderson, Anne E; Leung, Victor; Lin, Xiaodi; Johnston, Daniel

    2004-10-28

    The entorhinal cortex (EC) provides the predominant excitatory drive to the hippocampal CA1 and subicular neurons in chronic epilepsy. Discerning the mechanisms underlying signal integration within EC neurons is essential for understanding network excitability alterations involving the hippocampus during epilepsy. Twenty-four hours following a single seizure episode when there were no behavioral or electrographic seizures, we found enhanced spontaneous activity still present in the rat EC in vivo and in vitro. The increased excitability was accompanied by a profound reduction in I(h) in EC layer III neurons and a significant decline in HCN1 and HCN2 subunits that encode for h channels. Consequently, dendritic excitability was enhanced, resulting in increased neuronal firing despite hyperpolarized membrane potentials. The loss of I(h) and the increased neuronal excitability persisted for 1 week following seizures. Our results suggest that dendritic I(h) plays an important role in determining the excitability of EC layer III neurons and their associated neural networks.

  15. Mixing layer development in compound channel flows with submerged and emergent rigid vegetation over the floodplains

    NASA Astrophysics Data System (ADS)

    Dupuis, Victor; Proust, Sébastien; Berni, Céline; Paquier, André

    2017-04-01

    This laboratory study aims at investigating the longitudinal development of a mixing layer in a compound open-channel (two-stage geometry with a main channel and adjacent floodplains). The floodplains are covered with two roughness types: either a bed roughness representing a submerged dense meadow or emergent roughness elements (cylinders) representing an alluvial forest. The theoretical background used for plane mixing layers is adapted to the highly three-dimensional mixing layer that develops at the main channel/floodplain interface. The mixing layer width is divided into two parts on either side of the interface. For the wooded floodplain, the mixing layer width on the floodplain side levels off downstream much more rapidly than for the grassed floodplain. The lateral profiles of normalised velocity and turbulence quantities are found to be self-similar in the longitudinal direction for a fixed elevation. However, shallowness effects prevented the normalised lateral profiles of velocity and turbulence quantities from coinciding at different elevations. The respective contributions of lateral Reynolds stresses and secondary currents to the lateral exchange of momentum are estimated. At the main channel/floodplain interface, the momentum exchange is driven by Reynolds stresses. In the main channel, both Reynolds stresses and secondary currents contribute to the lateral flux of momentum. Secondary currents are stronger with emergent macro-roughness elements than with bed-roughness only on the floodplains. Large-scale turbulent coherent structures are investigated based on two-point space-time correlations of velocity. These structures are found to span the entire floodplain flow depth, and their convection velocity is close to the depth-averaged longitudinal velocity at the interface. The coherent fluctuations of the longitudinal and lateral velocities have different Strouhal number values, similar to those found in plane mixing layers.

  16. Single Na+ channels activated by veratridine and batrachotoxin

    PubMed Central

    1987-01-01

    Voltage-sensitive Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers in the presence of either of the alkaloid toxins veratridine (VT) or batrachotoxin (BTX). Both of these toxins are known to cause persistent activation of Na+ channels. With BTX as the channel activator, single channels remain open nearly all the time. Channels activated with VT open and close on a time scale of 1-10 s. Increasing the VT concentration enhances the probability of channel opening, primarily by increasing the rate constant of opening. The kinetics and voltage dependence of channel block by 21-sulfo-11-alpha-hydroxysaxitoxin are identical for VT and BTX, as is the ionic selectivity sequence determined by bi-ionic reversal potential (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). However, there are striking quantitative differences in open channel conduction for channels in the presence of the two activators. Under symmetrical solution conditions, the single channel conductance for Na+ is about twice as high with BTX as with VT. Furthermore, the symmetrical solution single channel conductances show a different selectivity for BTX (Na+ greater than Li+ greater than K+) than for VT (Na+ greater than K+ greater than Li+). Open channel current-voltage curves in symmetrical Na+ and Li+ are roughly linear, while those in symmetrical K+ are inwardly rectifying. Na+ currents are blocked asymmetrically by K+ with both BTX and VT, but the voltage dependence of K+ block is stronger with BTX than with VT. The results show that the alkaloid neurotoxins not only alter the gating process of the Na+ channel, but also affect the structure of the open channel. We further conclude that the rate-determining step for conduction by Na+ does not occur at the channel's "selectivity filter," where poorly permeating ions like K+ are excluded. PMID:2435846

  17. Laser Patterning of Optically Reconfigurable Transistor Channels in a Photochromic Diarylethene Layer.

    PubMed

    Tsuruoka, Tohru; Hayakawa, Ryoma; Kobashi, Kazuyoshi; Higashiguchi, Kenji; Matsuda, Kenji; Wakayama, Yutaka

    2016-12-14

    Optical switching organic field-effect transistors (OFETs) provide a new direction for optoelectronics based on photochromic molecules. However, the patterning of OFETs is difficult because conventional fabrication processes, including lithography and ion etching, inevitably cause severe damage to organic molecules. Here, we demonstrate laser patterning of one-dimensional (1D) channels on an OFET with a photochromic diarylethene (DAE) layer. The main findings are (i) a number of 1D channels can be repeatedly written and erased in the DAE layer by scanning focused ultraviolet and visible light laser beams alternately between the source and drain electrodes, (ii) the conductivity (or resistivity) of the 1D channel can be controlled by the illumination conditions, such as the laser power density and the scan speed, and (iii) it is possible to draw an analogue adder circuit by optically writing 1D channels so that a portion of the channels overlaps and to perform optical summing operations by local laser illumination of the respective channels. These findings will open new possibilities for realizing various optically reconfigurable, low-dimensional organic transistor circuits, which are not possible with conventional thin film OFETs.

  18. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.

    PubMed

    Davidson, Christian; Xuan, Xiangchun

    2008-03-01

    A thermo-electro-hydro-dynamic model is developed to analytically account for the effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. The optimum electrokinetic devices performance is dependent on a figure of merit, in which the Stern layer conductance appears as a nondimensional Dukhin number. Such surface conductance is found to significantly reduce the figure of merit and thus the efficiency and power output. This finding may explain why the recently measured electrokinetic devices performances are far below the theoretical predictions where the effects of Stern layer conductance have been ignored.

  19. Two-dimensional coupled fluid and electrodynamic calculations for a MHD DCW channel with slag layers

    NASA Astrophysics Data System (ADS)

    Liu, B. L.

    1982-01-01

    A fully coupled, two dimensional numerical method of modeling linear, coal-fired MHD generators is developed for the case of a plasma flow bounded by a slag layer on the channel walls. The governing partial differential equations for the plasma flow, slag layer and electrodynamics are presented and their coupling discussed. An iterative, numerical procedure employing non-uniform computational meshes and appropriate tridiagonal matrix solution schemes for the equations is presented. The method permits the investigation of the mutual plasma flow-slag layer development for prescribed wall temperatures, electrode geometry, slag properties and channel loading. In particular, the slag layer-plasma interface properties which require prior specification in an uncoupled analysis comprise part of the solution in the present approach. Results are presented for a short diagonally connected generator channel and include contour plots of the electric potential and current stream function as well as transverse and axial profiles of pertinent plasma properties. The results indicate that a thin electrode slag layer can be maintained in the presence of reasonable current density levels.

  20. Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica.

    PubMed

    Stanton, T P; Shaw, W J; Truffer, M; Corr, H F J; Peters, L E; Riverman, K L; Bindschadler, R; Holland, D M; Anandakrishnan, S

    2013-09-13

    Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.

  1. Regulation of Sodium Channel Activity by Capping of Actin Filaments

    PubMed Central

    Shumilina, Ekaterina V.; Negulyaev, Yuri A.; Morachevskaya, Elena A.; Hinssen, Horst; Khaitlina, Sofia Yu

    2003-01-01

    Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells. PMID:12686620

  2. A method for calculating turbulent boundary layers and losses in the flow channels of turbomachines

    NASA Technical Reports Server (NTRS)

    Schumann, Lawrence F.

    1987-01-01

    An interactive inviscid core flow-boundary layer method is presented for the calculation of turbomachine channel flows. For this method, a one-dimensional inviscid core flow is assumed. The end-wall and blade surface boundary layers are calculated using an integral entrainment method. The boundary layers are assumed to be collateral and thus are two-dimensional. The boundary layer equations are written in a streamline coordinate system. The streamwise velocity profiles are approximated by power law profiles. Compressibility is accounted for in the streamwise direction but not in the normal direction. Equations are derived for the special cases of conical and two-dimensional rectangular diffusers. For these cases, the assumptions of a one-dimensional core flow and collateral boundary layers are valid. Results using the method are compared with experiment and good quantitative agreement is obtained.

  3. Mechanisms of Activation of Voltage-Gated Potassium Channels

    PubMed Central

    Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S.

    2014-01-01

    Voltage-gated potassium ion channels (Kv) play an important role in a variety of cellular processes, including the functioning of excitable cells, regulation of apoptosis, cell growth and differentiation, the release of neurotransmitters and hormones, maintenance of cardiac activity, etc. Failure in the functioning of Kv channels leads to severe genetic disorders and the development of tumors, including malignant ones. Understanding the mechanisms underlying Kv channels functioning is a key factor in determining the cause of the diseases associated with mutations in the channels, and in the search for new drugs. The mechanism of activation of the channels is a topic of ongoing debate, and a consensus on the issue has not yet been reached. This review discusses the key stages in studying the mechanisms of functioning of Kv channels and describes the basic models of their activation known to date. PMID:25558391

  4. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating

    PubMed Central

    1996-01-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is

  5. Molecular mechanism of pharmacological activation of BK channels

    PubMed Central

    Gessner, Guido; Cui, Yong-Mei; Otani, Yuko; Ohwada, Tomohiko; Soom, Malle; Hoshi, Toshinori; Heinemann, Stefan H.

    2012-01-01

    Large-conductance voltage- and Ca2+-activated K+ (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabietic acid derivative Cym04 activates BK channels. As a representative of NS1619-like BK openers, Cym04 reversibly left-shifts the half-activation voltage of Slo1 BK channels. Using an established allosteric BK gating model, the Cym04 effect can be simulated by a shift of the voltage sensor and the ion conduction gate equilibria toward the activated and open state, respectively. BK activation by Cym04 occurs in a splice variant-specific manner; it does not occur in such Slo1 BK channels using an alternative neuronal exon 9, which codes for the linker connecting the transmembrane segment S6 and the cytosolic RCK1 domain—the S6/RCK linker. In addition, Cym04 does not affect Slo1 BK channels with a two-residue deletion within this linker. Mutagenesis and model-based gating analysis revealed that BK openers, such as Cym04 and NS1619 but not mallotoxin, activate BK channels by functionally interacting with the S6/RCK linker, mimicking site-specific shortening of this purported passive spring, which transmits force from the cytosolic gating ring structure to open the channel's gate. PMID:22331907

  6. N-channel field-effect transistors with an organic-inorganic layered perovskite semiconductor

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshinori; Mathevet, Fabrice; Heinrich, Benoît; Terakawa, Shinobu; Fujihara, Takashi; Qin, Chuanjiang; Sandanayaka, Atula S. D.; Ribierre, Jean-Charles; Adachi, Chihaya

    2016-12-01

    Large electron injection barriers and electrode degradation are serious issues that need to be overcome to obtain n-channel operation in field-effect transistors with an organic-inorganic layered perovskite (C6H5C2H4NH3)2SnI4 semiconductor. By employing low-work-function Al source/drain electrodes and by inserting C60 layers between the perovskite semiconductor and the Al electrodes to reduce the injection barrier and to suppress the electrode degradation, we demonstrate n-channel perovskite transistors with electron mobilities of up to 2.1 cm2/V s, the highest value ever reported in spin-coated perovskite transistors. The n-channel transport properties of these transistors are relatively stable in vacuum but are very sensitive to oxygen, which works as electron traps in perovskite and C60 layers. In addition, grazing-incidence X-ray scattering and thermally stimulated current measurements revealed that crystallite size and electron traps largely affect the n-channel transport properties.

  7. Single layer, multi-channel band-gear system for rotary joint

    NASA Technical Reports Server (NTRS)

    Kong, Kin Yuen (Inventor)

    1998-01-01

    A multi-channel band-gear system for a rotary joint has a ring gear assembly with a conducting ring band in electrical contact with corresponding conducting bands of a set of intermediary planetary gears, which in turn are in electrical contact with a conducting sun band of a sun gear assembly. The ring band is formed with a plurality of conducting segments which are electrically insulated from each other and positioned angularly in a circumferential direction of the ring gear, such that separate electrical power/signal channels are formed across the rotary joint. In a preferred embodiment having continuously connected channels, the ring band has four conducting segments at 90.degree. intervals, the sun band has two conducting segments at 180.degree. intervals, and three planetary bands are in rolling electrical contact at 120.degree. intervals between the ring band segments and the sun band segments, forming two continuously connected channels in a single layer of the band-gear system. Multiple sets of ring gear, planetary gear, and sun gear assemblies may be used in a stacked configuration in a single axial layer to further increase the number of channels provided through the band-gear system.

  8. The design and preliminary calibration of a boundary-layer flow channel

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Kariya, Timmy T.

    1987-01-01

    Design procedures for a new low-speed boundary-layer research channel are described. The channel is an open-circuit wind tunnel for the study of two-dimensional boundary layers under controlled pressure gradients, and follows design guidelines from published literature on blower tunnels with wide-angle diffusers. The contraction was arranged in a modular fashion permitting two different test sections of square and high-aspect-ratio cross section. A radical type of wide-angle diffuser was employed, and a stream-tube computer code (GE Streamtube Curvature Code) was used to check the contraction designs. The alternate test sections have the following specifications: 2- by 2-foot cross section with a fixed velocity of 23 ft/sec, and a boundary-layer section with a 0.5- by 2-foot cross section at a fixed velocity of approximately 89 ft/sec. Experimental techniques and data are described for the evaluation of diffuser effectiveness, boundary-layer channel characteristics, and overall performance of the facility.

  9. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-05

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action.

  10. Seasonal changes on microbial metabolism and biomass in the euphotic layer of Sicilian Channel.

    PubMed

    Zaccone, R; Caruso, G; Leonardi, M; Maimone, G; Monticelli, L S; Azzaro, M; Cuttitta, A; Patti, B; La Ferla, R

    2015-12-01

    As a part of a wider project on fisheries ecology, several biological and environmental parameters were monitored during two oceanographic cruises (BANSIC 2012 and NOVESAR 2013) in the Sicily Channel, which connects the Western and Eastern Mediterranean basins. The prokaryotic abundances and biomass as well as hydrolysis rates on organic matter were investigated in the euphotic layer of a retention area for fish larval stages including anchovy (Engraulis encrasicolus, Linnaeus, 1758) with the aim to investigate the different biogeochemical signatures in two seasonal conditions. The environmental parameters, particulate organic carbon and nitrogen together with heterotrophic production were also measured. Results showed significant increases for most of the studied parameters with increasing temperature during summer. This had effects on the Carbon cycle and recycling of nutrients; in fact total prokaryotic abundance and biomass, as well as carbon hydrolyzed by two enzymes (Leucine aminopeptidase and β-glucosidase), increased significantly during summer. Conversely Alkaline phosphatase activity, Chlorophyll concentration and Oxygen increased during winter. The same environmental parameters affected also the presence of fish eggs. Moreover high percentages of free enzymes (i.e., enzymes not associated with cells) were measured, accounting for percentages variable from 12 to 95 % of the total enzymatic activity, with values generally higher in summer than in winter. In this oligotrophic environment, the prokaryotic biomass was supported by the C hydrolyzed by enzymatic activities. The ratio between the hydrolyzed C and prokaryotic biomass was higher in winter than in summer, indicating that alkaline phosphatase activity contribute to an efficient incorporation of C into biomass in winter.

  11. Hypoglycemia-activated K+ channels in hippocampal neurons.

    PubMed

    Tromba, C; Salvaggio, A; Racagni, G; Volterra, A

    1992-08-31

    Channels linking the electrical and metabolic activities of cells (KATP channels) have been described in various tissues, including some brain areas (hypothalamus, cerebral cortex and substantia nigra). Here we report the existence in hippocampal neurons of K+ permeant channels whose activity is regulated by extracellular glucose. They are open at the cell resting potential and respond to transient hypoglycemia with a reversible increase in activity. The one type so far characterized has a conductance of approximately 100 pS in isotonic K+, is inhibited by the sulphonylurea glibenclamide (1 microM), and is activated by the potassium channel opener lemakalim (0.1-1 microM). These data provide a direct demonstration of the presence, in hippocampal neurons, of glucose-sensitive channels that could belong to the KATP family.

  12. Three-dimensional turbulent boundary layer in a rotating helical channel

    NASA Technical Reports Server (NTRS)

    Anand, A. K.; Lakshminarayana, B.

    1974-01-01

    Analytical and experimental investigation of the characteristics of a three-dimensional turbulent boundary layer in a rotating helical channel. Expressions are developed for the velocity profiles in the inner layer, where viscous effects dominate, and the outer layer, where viscous effects are small. The velocity profiles, wall shear stress, and limiting streamline angles are measured inside the passages of a flat-plate inducer at various radial and chordwise locations using rotating probes. Flow near the blade tip is found to be highly complex, due to interaction of blade boundary layers and annulus wall, resulting in appreciable radial inward flow, as well as a defect in mainstream velocity near the mid-passage. A wall shear stress correlation, which includes the effect of both Reynolds number and rotation parameter, is derived from the measured data.

  13. Two-layer flow of polymer melts in extruder die channel

    NASA Astrophysics Data System (ADS)

    Sharafutdinov, R. F.; Snigerev, B. A.; Galimov, E. R.; Galimova, N. Ya

    2016-06-01

    The paper discusses numerical modeling of two-layer flow of viscous non-Newtonian fluids in extruder die channels. Fluid motion is described by mass and momentum conservation equations supplemented by the rheological equation of state of a viscous non-Newtonian fluid according to the Carreau model. Technique of numerical solution of the problem based on the finite element method is presented. Distribution pattern of fluid velocities, pressure, stresses, positions of the interface in the two-layer flow depending on the rheological properties of a fluid and flow regimes is investigated.

  14. Flow-activated ion channels in vascular endothelium.

    PubMed

    Gautam, Mamta; Gojova, Andrea; Barakat, Abdul I

    2006-01-01

    The ability of vascular endothelial cells (ECs) to respond to fluid mechanical forces associated with blood flow is essential for flow-mediated vasoregulation and arterial wall remodeling. Abnormalities in endothelial responses to flow also play a role in the development of atherosclerosis. Although our understanding of the endothelial signaling pathways stimulated by flow has greatly increased over the past two decades, the mechanisms by which ECs sense flow remain largely unknown. Activation of flow-sensitive ion channels is among the fastest known endothelial responses to flow; therefore, these ion channels have been proposed as candidate flow sensors. This review focuses on: 1) describing the various types of flow-sensitive ion channels that have been reported in ECs, 2) discussing the implications of activation of these ion channels for endothelial function, and 3) proposing candidate mechanisms for activation of flow-sensitive ion channels.

  15. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  16. Small Conductance Ca2+-Activated K+ Channels and Cardiac Arrhythmias

    PubMed Central

    Zhang, Xiao-Dong; Lieu, Deborah K.; Chiamvimonvat, Nipavan

    2015-01-01

    Small conductance Ca2+-activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, SK channel as a possible novel therapeutic target in atrial arrhythmias and up-regulation of SK channels in heart failure (HF) in animal models and human HF. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both anti-arrhythmic and proarrhythmic. This contemporary review will provide an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and to serve as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic target in the treatment of atrial fibrillation and the possible pro-arrhythmic effects merit further considerations and investigations. PMID:25956967

  17. SLO2 Channels Are Inhibited by All Divalent Cations That Activate SLO1 K+ Channels.

    PubMed

    Budelli, Gonzalo; Sun, Qi; Ferreira, Juan; Butler, Alice; Santi, Celia M; Salkoff, Lawrence

    2016-04-01

    Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 μmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions.

  18. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  19. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels.

    PubMed

    Hermann, Anton; Sitdikova, Guzel F; Weiger, Thomas M

    2015-08-17

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  20. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  1. Heat transfer performance of a novel double-layer mini-channel heat sink

    NASA Astrophysics Data System (ADS)

    Tang, Biao; Zhou, Rui; Bai, Pengfei; Fu, Ting; Lu, Longsheng; Zhou, Guofu

    2017-03-01

    High pressure drop and significant non-uniformity in temperature distribution along the streamwise direction are still challenges to the design of mini-channel heat sink. High density mini-channel arrays with high liquid-wall contact area are usually pursued in a conventional single-layer design of heat sink, which also inevitably brings high pressure drop. A novel double-layer structured heat sink is proposed in this paper. Four heat sinks with various designs in mini-channel density and flow direction were fabricated and studied experimentally on the heat transfer performance. The single factor of heat load does not show obvious effect on the overall thermal resistance of the heat sinks. On the other hand, slight decrease in thermal resistance was found with the increase in heat load at high flow rates. Moreover, a computational fluid dynamics modeling work was conducted. The results indicate that the parallel cross-flow field regulated by the double-layer structure enhances the heat exchange in both horizontal and vertical directions and consequently gives an uniform temperature distribution and high heat transfer efficiency.

  2. Chlorpromazine confers neuroprotection against brain ischemia by activating BKCa channel.

    PubMed

    Li, Hua-Juan; Zhang, Yu-Jiao; Zhou, Li; Han, Feng; Wang, Ming-Yan; Xue, Mao-Qiang; Qi, Zhi

    2014-07-15

    Chlorpromazine (CPZ) is a well-known antipsychotic drug, still widely being used to treat symptoms of schizophrenia, psychotic depression and organic psychoses. We have previously reported that CPZ activates the BKCa (KCa1.1) channel at whole cell level. In the present study, we demonstrated that CPZ increased the single channel open probability of the BKCa channels without changing its single channel amplitude. As BKCa channel is one of the molecular targets of brain ischemia, we explored a possible new use of this old drug on ischemic brain injury. In middle cerebral artery occlusion (MCAO) focal cerebral ischemia, a single intraperitoneal injection of CPZ at several dosages (5mg/kg, 10mg/kg and 20mg/kg) could exert a significant neuroprotective effect on the brain damage in a dose- and time-dependent manner. Furthermore, blockade of BKCa channels abolished the neuroprotective effect of CPZ on MCAO, suggesting that the effect of CPZ is mediated by activation of the BKCa channel. These results demonstrate that CPZ could reduce focal cerebral ischemic damage through activating BKCa channels and merits exploration as a potential therapeutic agent for treating ischemic stroke.

  3. Flow-induced activation of TRPV5 and TRPV6 channels stimulates Ca(2+)-activated K(+) channel causing membrane hyperpolarization.

    PubMed

    Cha, Seung-Kuy; Kim, Ji-Hee; Huang, Chou-Long

    2013-12-01

    TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca(2+) reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A and C, membrane phospholipid PIP2, protons, and divalent ions Ca(2+) and Mg(2+). Here, we report that fluid flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2min. Fluid flow stimulated TRPV5 and 6-mediated Ca(2+) entry and increased intracellular Ca(2+) concentration. N-glycosylation-deficient TRPV5 channel was relatively insensitive to fluid flow. In cells coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolarization, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La(3+). In contrast, fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel. These results reveal a new mechanism for the regulation of TRPV5 and TRPV6 channels. Activation of TRPV5 and TRPV6 by fluid flow may play a role in the regulation of flow-stimulated K(+) secretion via maxi-K channels in distal renal tubules and in the mechanism of pathogenesis of thiazide-induced hypocalciuria.

  4. Flow-Induced Activation of TRPV5 and TRPV6 Channel Stimulates Ca2+-Activated K+ Channel Causing Membrane Hyperpolarization

    PubMed Central

    Cha, Seung-Kuy; Kim, Ji-Hee; Huang, Chou-Long

    2014-01-01

    TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca2+ reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinase A and C, membrane phospholipid PIP2, protons, and divalent ions Ca2+ and Mg2+. Here, we report that fluid flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2 minutes. Fluid flow stimulated TRPV5 and 6-mediated Ca2+ entry and increased intracellular Ca2+ concentration. N-glycosylation-deficient TRPV5 channel was relatively insensitive to fluid flow. In cells coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolarization, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La3+. In contrast, fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channels. These results reveal a new mechanism for regulation of TRPV5 and TRPV6 channels. Activation of TRPV5 and TRPV6 by fluid flow may play a role in the regulation of flow-stimulated K+ secretion via maxi-K channels in distal renal tubules and in the mechanism of pathogenesis of thiazide-induced hypocalciuria. PMID:24001793

  5. Chloride dependence of hyperpolarization-activated chloride channel gates

    PubMed Central

    Pusch, Michael; Jordt, Sven-Eric; Stein, Valentin; Jentsch, Thomas J

    1999-01-01

    ClC proteins are a class of voltage-dependent Cl− channels with several members mutated in human diseases. The prototype ClC-0 Torpedo channel is a dimeric protein; each subunit forms a pore that can gate independently from the other one. A common slower gating mechanism acts on both pores simultaneously; slow gating activates ClC-0 at hyperpolarized voltages. The ClC-2 Cl− channel is also activated by hyperpolarization, as are some ClC-1 mutants (e.g. D136G) and wild-type (WT) ClC-1 at certain pH values.We studied the dependence on internal Cl− ([Cl−]i) of the hyperpolarization-activated gates of several ClC channels (WT ClC-0, ClC-0 mutant P522G, ClC-1 mutant D136G and an N-terminal deletion mutant of ClC-2), by patch clamping channels expressed in Xenopus oocytes.With all these channels, reducing [Cl−]i shifted activation to more negative voltages and reduced the maximal activation at most negative voltages.We also investigated the external halide dependence of WT ClC-2 using two-electrode voltage-clamp recording. Reducing external Cl− ([Cl−]o) activated ClC-2 currents. Replacing [Cl−]o by the less permeant Br− reduced channel activity and accelerated deactivation.Gating of the ClC-2 mutant K566Q in normal [Cl−]o resembled that of WT ClC-2 in low [Cl−]o, i.e. channels had a considerable open probability (Po) at resting membrane potential. Substituting external Cl− by Br− or I− led to a decrease in Po.The [Cl−]i dependence of the hyperpolarization-activated gates of various ClC channels suggests a similar gating mechanism, and raises the possibility that the gating charge for the hyperpolarization-activated gate is provided by Cl−.The external halide dependence of hyperpolarization-activated gating of ClC-2 suggests that it is mediated or modulated by anions as in other ClC channels. In contrast to the depolarization-activated fast gates of ClC-0 and ClC-1, the absence of Cl− favours channel opening. Lysine 556 may be important

  6. H.264 Layered Coded Video over Wireless Networks: Channel Coding and Modulation Constraints

    NASA Astrophysics Data System (ADS)

    Ghandi, M. M.; Barmada, B.; Jones, E. V.; Ghanbari, M.

    2006-12-01

    This paper considers the prioritised transmission of H.264 layered coded video over wireless channels. For appropriate protection of video data, methods such as prioritised forward error correction coding (FEC) or hierarchical quadrature amplitude modulation (HQAM) can be employed, but each imposes system constraints. FEC provides good protection but at the price of a high overhead and complexity. HQAM is less complex and does not introduce any overhead, but permits only fixed data ratios between the priority layers. Such constraints are analysed and practical solutions are proposed for layered transmission of data-partitioned and SNR-scalable coded video where combinations of HQAM and FEC are used to exploit the advantages of both coding methods. Simulation results show that the flexibility of SNR scalability and absence of picture drift imply that SNR scalability as modelled is superior to data partitioning in such applications.

  7. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    PubMed Central

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  8. Toward a unifying model of malaria-induced channel activity

    PubMed Central

    Bouyer, Guillaume; Egée, Stéphane; Thomas, Serge L. Y.

    2007-01-01

    Infection of RBC by the malaria parasite Plasmodium falciparum activates, at the trophozoite stage, a membrane current 100- to 150-fold larger than in uninfected RBC. This current is carried by small anion channels initially described in supraphysiological ion concentrations (1.115 M Cl−) and named plasmodial surface anion channels (PSAC), suggesting their plasmodial origin. Our results obtained with physiological ion concentrations (0.145 M Cl−) support the notion that the parasite-induced channels represent enhanced activity versions of anion channels already present in uninfected RBCs. Among them, an 18-pS inwardly rectifying anion channel (IRC) and a 4- to 5-pS small conductance anion channel (SCC) were present in most single-channel recordings of infected membranes. The aim of this study was to clarify disparities in the reported electrophysiological data and to investigate possible technical reasons why these discrepancies have arisen. We demonstrate that PSAC is the supraphysiological correlate of the SCC and is inhibited by Zn2+, suggesting that it is a ClC-2 channel. We show that in physiological solutions 80% of the membrane conductance in infected cells can be accounted for by IRC and 20% can be accounted for by SCC whereas in supraphysiological conditions the membrane conductance is almost exclusively carried by SCC (PSAC) because the IRC is functionally turned off. PMID:17576926

  9. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    PubMed

    Zhang, Weiping; Schmelzeisen, Steffen; Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  10. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

    PubMed Central

    Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  11. Effective contractile response to voltage-gated Na+ channels revealed by a channel activator.

    PubMed

    Ho, W-S Vanessa; Davis, Alison J; Chadha, Preet S; Greenwood, Iain A

    2013-04-15

    This study investigated the molecular identity and impact of enhancing voltage-gated Na(+) (Na(V)) channels in the control of vascular tone. In rat isolated mesenteric and femoral arteries mounted for isometric tension recording, the vascular actions of the Na(V) channel activator veratridine were examined. Na(V) channel expression was probed by molecular techniques and immunocytochemistry. In mesenteric arteries, veratridine induced potent contractions (pEC(50) = 5.19 ± 0.20, E(max) = 12.0 ± 2.7 mN), which were inhibited by 1 μM TTX (a blocker of all Na(V) channel isoforms, except Na(V)1.5, Na(V)1.8, and Na(V)1.9), but not by selective blockers of Na(V)1.7 (ProTx-II, 10 nM) or Na(V)1.8 (A-80347, 1 μM) channels. The responses were insensitive to endothelium removal but were partly (~60%) reduced by chemical destruction of sympathetic nerves by 6-hydroxydopamine (2 mM) or antagonism at the α1-adrenoceptor by prazosin (1 μM). KB-R7943, a blocker of the reverse mode of the Na(+)/Ca(2+) exchanger (3 μM), inhibited veratridine contractions in the absence or presence of prazosin. T16A(inh)-A01, a Ca(2+)-activated Cl(-) channel blocker (10 μM), also inhibited the prazosin-resistant contraction to veratridine. Na(V) channel immunoreactivity was detected in freshly isolated mesenteric myocytes, with apparent colocalization with the Na(+)/Ca(2+) exchanger. Veratridine induced similar contractile effects in the femoral artery, and mRNA transcripts for Na(V)1.2 and Na(V)1.3 channels were evident in both vessel types. We conclude that, in addition to sympathetic nerves, NaV channels are expressed in vascular myocytes, where they are functionally coupled to the reverse mode of Na(+)/Ca(2+) exchanger and subsequent activation of Ca(2+)-activated Cl(-) channels, causing contraction. The TTX-sensitive Na(V)1.2 and Na(V)1.3 channels are likely involved in vascular control.

  12. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    PubMed

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  13. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  14. An anion channel in Arabidopsis hypocotyls activated by blue light.

    PubMed Central

    Cho, M H; Spalding, E P

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition. PMID:8755616

  15. Deterministic and stochastic channel models implemented in a physical layer simulator for Car-to-X communications

    NASA Astrophysics Data System (ADS)

    Nuckelt, J.; Schack, M.; Kürner, T.

    2011-08-01

    This paper presents a physical (PHY) layer simulator of the IEEE 802.11p standard for Wireless Access in Vehicular Environments (WAVE). This simulator allows the emulation of data transmission via different radio channels as well as the analysis of the resulting system behavior. The PHY layer simulator is part of an integrated simulation platform including a traffic model to generate realistic mobility of vehicles and a 3D ray-optical model to calculate the multipath propagation channel between transmitter and receiver. Besides deterministic channel modeling by means of ray-optical modeling, the simulator can also be used with stochastic channel models of typical vehicular scenarios. With the aid of this PHY layer simulator and the integrated channel models, the resulting performance of the system in terms of bit and packet error rates of different receiver designs can be analyzed in order to achieve a robust data transmission.

  16. Collateral response to activation of potassium channels in vivo.

    PubMed

    Lamping, K G

    1998-04-01

    Activation of ATP-sensitive K+ channels is involved in the coronary vascular response to decreases in perfusion pressure and ischemia. Since activation of ATP-sensitive K+ channels in collateral vessels may be important in determining flow to collateral-dependent myocardium, the ability of collaterals to respond to activation of the channel was tested. In the beating heart of dogs, we compared responses of non-collaterals less than 100 microns in diameter to collaterals of similar size using computer-controlled stroboscopic epi-illumination of the left ventricle coupled to a microscope-video system. Aprikalim, a selective activator of ATP-sensitive K+ channels (0.1-10 microM) produced similar dose-dependent dilation of non-collaterals and collaterals. Relaxation was decreased by inhibition of ATP-sensitive K+ channels with glibenclamide, but not by inhibition of nitric oxide synthase with nitro-L-arginine. Bradykinin (10-100 microM) produced similar dilation of non-collaterals and collaterals which was decreased by nitro-L-arginine but not glibenclamide. Thus, in microvascular collaterals, relaxation to both nitric oxide and activation of ATP-sensitive K+ channels is similar to non-collaterals.

  17. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed Central

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. Images PMID:7522329

  18. Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers

    NASA Astrophysics Data System (ADS)

    Xie, Haiting; Wu, Qi; Xu, Ling; Zhang, Lei; Liu, Guochao; Dong, Chengyuan

    2016-11-01

    The amorphous oxide semiconductor (AOS) thin film transistors (TFTs) with the double-stacked channel layers (DSCL) combing the amorphous InZnO (a-IZO) films and the nitrogen-doped amorphous InGaZnO (a-IGZO:N) films were proposed and fabricated, which showed the excellent performance with the field-effect mobility of 49.6 cm2 V-1 s-1 and the subthreshold swing of 0.5 V/dec. More interestingly, very stable properties were observed in the bias stress and light illumination tests for these a-IZO/a-IGZO:N TFTs, as seemed to be the evident improvements over the prior arts. The improved performance and stability might be mainly due to the hetero-junctions in the channel layers and less interface/bulk trap density from the in situ nitrogen doping process in the a-IGZO layers. In addition, the passivation effect of the a-IGZO:N films also made some contributions to the stable properties exhibited in these novel DSCL TFTs.

  19. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    DTIC Science & Technology

    2015-02-25

    Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends Xinge Yu , Li Zeng , Nanjia Zhou , Peijun Guo , Fengyuan Shi , Donald B...chemical vapor deposition processes. Thus, a key issue for inexpensive large-scale roll-to-roll production is to enable MO TFT manu- facturing with...4. TITLE AND SUBTITLE Ultra-Flexible, ’Invisible’ Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends 5a. CONTRACT

  20. Active integrated filters for RF-photonic channelizers.

    PubMed

    El Nagdi, Amr; Liu, Ke; LaFave, Tim P; Hunt, Louis R; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L; Christensen, Marc P

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1-5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain.

  1. Multi-channel fiber photometry for population neuronal activity recording.

    PubMed

    Guo, Qingchun; Zhou, Jingfeng; Feng, Qiru; Lin, Rui; Gong, Hui; Luo, Qingming; Zeng, Shaoqun; Luo, Minmin; Fu, Ling

    2015-10-01

    Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals.

  2. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  3. Effect of Cytoskeletal Reagents on Stretch Activated Ion Channels

    DTIC Science & Technology

    1992-11-12

    transduction. Biophys J59: 1143-1145, 1991. 23. SACHS, F., W. SIGURDSON, A. RUKNUDIN, AND C. BOWMAN. Single- channel mechanosensitive currents. Science 253: 800... mechanosensitive ion channels . In: Advances in Comparative and Environmental Physiology, v0C, edited by F. Ito. Berlin: Springer-Verlag, 1992, p. 55-77. Report of Inventions: None 4 ...EFFECT OF CYTOSKELETAL REAGENTS ON STRETCH ACTIVATED ION CHANNELS b lfli..3-f-I’- o0*’t 6. AUTHOR(S) Dr.-Frederick Sachs DI 7. PERFORMING ORGANIZATION NAME

  4. ROMK1 channel activity is regulated by monoubiquitination.

    PubMed

    Lin, Dao-Hong; Sterling, Hyacinth; Wang, Zhijian; Babilonia, Elisa; Yang, Baofeng; Dong, Ke; Hebert, Steven C; Giebisch, Gerhard; Wang, Wen-Hui

    2005-03-22

    The ubiquitination of proteins can signal their degradation, modify their activity or target them to specific membranes or cellular organelles. Here, we show that monoubiquitination regulates the plasma membrane abundance and function of the potassium channel, ROMK. Immunoprecipitation of proteins obtained from renal cortex and outer medulla with ROMK antibody revealed that this channel was monoubiquitinated. To determine the ubiquitin binding site on ROMK1, all intracellular lysine (Lys) residues of ROMK1 were individually mutated to arginine (Arg), and a two-electrode voltage clamp was used to measure the ROMK1 channel activity in Xenopus oocytes. ROMK1 channel activity increased from 8.1 to 27.2 microA only when Lys-22 was mutated to Arg. Furthermore, Western blotting failed to detect the ubiquitinated ROMK1 in oocytes injected with R1K22R. Patch-clamp experiments showed that biophysical properties of R1K22R were identical to those of wild-type ROMK1. Although total protein expression levels of GFP-ROMK1 and GFP-R1K22R in oocytes were similar, confocal microscopy showed that the surface fluorescence intensity in oocytes injected with GFP-R1K22R was higher than that of GFP-ROMK1. In addition, biotin labeling of ROMK1 and R1K22R proteins expressed in HEK293 cells showed increased surface expression of the Lys-22 mutant channel. Finally, expression of R1K22R in COS7 cells significantly stimulated the surface expression of ROMK1. We conclude that ROMK1 can be monoubiquitinated and that Lys-22 is an ubiquitin-binding site. Thus, monoubiquitination of ROMK1 regulates channel activity by reducing the surface expression of channel protein. This finding implicates the linking of a single ubiquitin molecule to channels as an important posttranslational regulatory signal.

  5. ROMK1 channel activity is regulated by monoubiquitination

    PubMed Central

    Lin, Dao-Hong; Sterling, Hyacinth; Wang, Zhijian; Babilonia, Elisa; Yang, Baofeng; Dong, Ke; Hebert, Steven C.; Giebisch, Gerhard; Wang, Wen-Hui

    2005-01-01

    The ubiquitination of proteins can signal their degradation, modify their activity or target them to specific membranes or cellular organelles. Here, we show that monoubiquitination regulates the plasma membrane abundance and function of the potassium channel, ROMK. Immunoprecipitation of proteins obtained from renal cortex and outer medulla with ROMK antibody revealed that this channel was monoubiquitinated. To determine the ubiquitin binding site on ROMK1, all intracellular lysine (Lys) residues of ROMK1 were individually mutated to arginine (Arg), and a two-electrode voltage clamp was used to measure the ROMK1 channel activity in Xenopus oocytes. ROMK1 channel activity increased from 8.1 to 27.2 μA only when Lys-22 was mutated to Arg. Furthermore, Western blotting failed to detect the ubiquitinated ROMK1 in oocytes injected with R1K22R. Patch-clamp experiments showed that biophysical properties of R1K22R were identical to those of wild-type ROMK1. Although total protein expression levels of GFP-ROMK1 and GFP-R1K22R in oocytes were similar, confocal microscopy showed that the surface fluorescence intensity in oocytes injected with GFP-R1K22R was higher than that of GFP-ROMK1. In addition, biotin labeling of ROMK1 and R1K22R proteins expressed in HEK293 cells showed increased surface expression of the Lys-22 mutant channel. Finally, expression of R1K22R in COS7 cells significantly stimulated the surface expression of ROMK1. We conclude that ROMK1 can be monoubiquitinated and that Lys-22 is an ubiquitin-binding site. Thus, monoubiquitination of ROMK1 regulates channel activity by reducing the surface expression of channel protein. This finding implicates the linking of a single ubiquitin molecule to channels as an important posttranslational regulatory signal. PMID:15767585

  6. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex

    PubMed Central

    McDougal, Robert A.; Bulanova, Anna S.; Zeki, Mustafa; Lakatos, Peter; Terman, David; Hines, Michael L.; Lytton, William W.

    2016-01-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused release of Ca2+ from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca2+-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca2+ influx via NMDA and voltage-gated Ca2+ channels (VGCCs). After a delay, mGluR activation led to ER Ca2+ release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ~1 minute. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, calcium levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca2+ at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca2+ could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in this case providing

  7. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.

    PubMed

    Neymotin, S A; McDougal, R A; Bulanova, A S; Zeki, M; Lakatos, P; Terman, D; Hines, M L; Lytton, W W

    2016-03-01

    Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in

  8. Trapped modes around freely floating bodies in a two-layer fluid channel

    PubMed Central

    Cal, Filipe S.; Dias, Gonçalo A. S.; Videman, Juha H.

    2014-01-01

    Unlike the trapping of time-harmonic water waves by fixed obstacles, the oscillation of freely floating structures gives rise to a complex nonlinear spectral problem. Still, through a convenient elimination scheme the system simplifies to a linear spectral problem for a self-adjoint operator in a Hilbert space. Under symmetry assumptions on the geometry of the fluid domain, we present conditions guaranteeing the existence of trapped modes in a two-layer fluid channel. Numerous examples of floating bodies supporting trapped modes are given. PMID:25294970

  9. Activation of purified calcium channels by stoichiometric protein phosphorylation

    SciTech Connect

    Nunoki, K.; Florio, V.; Catterall, W.A. )

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  10. A microscopic scenario for s-channel superconductivity in layered cuprates

    NASA Astrophysics Data System (ADS)

    Eschrig, H.; Drechsler, S.-L.

    1991-01-01

    Two anionic complexes within a cationic lattice frame are the common structural element in all layered cuprate superconductors. One is the extensively investigated current carrying CuO 2 layer. It is assumed that the second one creates states near the Fermi level, too, and it is probably quasi-one-dimentional in nature not only for the 1-2-3 and 1-2-4 Y-Ba-Cu phases, but in all hole-doped cuprates, a fact not sufficiently appreciated up to now. The low dimensionality of the doping complex in connection with a strong electron deformation potential at the bridging oxygen may lead to a bipolaronic resonance which is capable of producing s-channel superconductivity as proposed by Friedberg and Lee [1] phenomenologically. Consequences for the temperature dependence of thermodynamic properties as the gap and the upper critical field resulting from a closely related Peierls transition in the chain subsystem are briefly discussed.

  11. Stretch-activated cation channel from larval bullfrog skin

    PubMed Central

    Hillyard, Stanley D.; Willumsen, Niels J.; Marrero, Mario B.

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (−1 kPa to −4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed a variable pattern of opening and closing with continuing suction. Current–voltage plots demonstrated linear or inward rectification and single channel conductances of 44–56 pS with NaCl or KCl Ringer's solution as the pipette solution, and a reversal potential (−Vp) of 20–40 mV. The conductance was markedly reduced with N-methyl-D-glucamide (NMDG)-Cl Ringer's solution in the pipette. Neither amiloride nor ATP, which are known to stimulate an apical cation channel in Ussing chamber preparations of larval frog skin, produced channel activation nor did these compounds affect the response to suction. Stretch activation was not affected by varying the pipette concentrations of Ca2+ between 0 mmol l−1 and 4 mmol l−1 or by varying pH between 6.8 and 8.0. However, conductance was reduced with 4 mmol l−1 Ca2+. Western blot analysis of membrane homogenates from larval bullfrog and larval toad skin identified proteins that were immunoreactive with mammalian TRPC1 and TRPC5 (TRPC, canonical transient receptor potential channel) antibodies while homogenates of skin from newly metamorphosed bullfrogs were positive for TRPC1 and TRPC3/6/7 antibodies. The electrophysiological response of larval bullfrog skin resembles that of a stretch-activated cation channel characterized in Xenopus oocytes and proposed to be TRPC1. These results indicate this channel persists in all life stages of anurans and that TRP isoforms may be important for sensory functions of their skin. PMID:20435829

  12. Block of a Ca(2+)-activated potassium channel by cocaine.

    PubMed

    Premkumar, L S

    2005-04-01

    The primary target for cocaine is believed to be monoamine transporters because of cocaine's high-affinity binding that prevents re-uptake of released neurotransmitter. However, direct interaction with ion channels has been shown to be important for certain pharmacological/toxicological effects of cocaine. Here I show that cocaine selectively blocks a calcium-dependent K(+) channel in hippocampal neurons grown in culture (IC(50)=approximately 30 microM). Single-channel recordings show that in the presence of cocaine, the channel openings are interrupted with brief closures (flicker block). As the concentration of cocaine is increased the open-time is reduced, whereas the duration of brief closures is independent of concentration. The association and dissociation rate constants of cocaine for the neuronal Ca(2+)-activated K(+ )channels are 261+/-37 microM: (-1)s(-1) and 11451+/-1467 s(-1). The equilibrium dissociation constant (K(B)) for cocaine, determined from single-channel parameters, is 43 microM. The lack of voltage dependence of block suggests that cocaine probably binds to a site at the mouth of the pore. Block of Ca(2+)-dependent K(+) channels by cocaine may be involved in functions that include broadening of the action potential, which would facilitate transmitter release, enhancement of smooth muscle contraction particularly in blood vessels, and modulation of repetitive neuronal firing by altering the repolarization and afterhyperpolarization phases of the action potential.

  13. A Chaos MIMO Transmission Scheme for Channel Coding and Physical-Layer Security

    NASA Astrophysics Data System (ADS)

    Okamoto, Eiji

    In recent wireless communication systems, security is ensured mainly in the upper-layer techniques such as a password or a cryptography processing. However, security needs not be restricted to the upper-layer and the addition of physical-layer security also would yield a much more robust system. Therefore, in this paper, we exploit chaos communication and propose a chaos multiple-input multiple-output (MIMO) transmission scheme which achieves physical-layer security and additional channel-coding gain. A chaotic modulation symbol is multiplied to the data to be transmitted at each MIMO antenna to exploit the MIMO antenna diversity, and at the receiver, the joint MIMO detection and chaos decoding is done by maximum likelihood decoding (MLD). The conventional chaos modulation suffers from bit error rate (BER) performance degradation, while the coding gain is obtained in the proposed scheme by the chaos modulation in MIMO. We evaluate the performances of the proposed scheme by an analysis and computer simulations.

  14. Melanin as an active layer in biosensors

    SciTech Connect

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi Biziak de Figueiredo, Natália Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  15. Activation of peripheral KCNQ channels relieves gout pain

    PubMed Central

    Zheng, Yueming; Xu, Haiyan; Zhan, Li; Zhou, Xindi; Chen, Xueqin; Gao, Zhaobing

    2015-01-01

    Abstract Intense inflammatory pain caused by urate crystals in joints and other tissues is a major symptom of gout. Among therapy drugs that lower urate, benzbromarone (BBR), an inhibitor of urate transporters, is widely used because it is well tolerated and highly effective. We demonstrate that BBR is also an activator of voltage-gated KCNQ potassium channels. In cultured recombinant cells, BBR exhibited significant potentiation effects on KCNQ channels comparable to previously reported classical activators. In native dorsal root ganglion neurons, BBR effectively overcame the suppression of KCNQ currents, and the resultant neuronal hyperexcitability caused by inflammatory mediators, such as bradykinin (BK). Benzbromarone consistently attenuates BK-, formalin-, or monosodium urate–induced inflammatory pain in rat and mouse models. Notably, the analgesic effects of BBR are largely mediated through peripheral and not through central KCNQ channels, an observation supported both by pharmacokinetic studies and in vivo experiments. Moreover, multiple residues in the superficial part of the voltage sensing domain of KCNQ channels were identified critical for the potentiation activity of BBR by a molecular determinant investigation. Our data indicate that activation of peripheral KCNQ channels mediates the pain relief effects of BBR, potentially providing a new strategy for the development of more effective therapies for gout. PMID:25735002

  16. Intracellular calcium strongly potentiates agonist-activated TRPC5 channels

    PubMed Central

    Blair, Nathaniel T.; Kaczmarek, J. Stefan

    2009-01-01

    TRPC5 is a calcium (Ca2+)-permeable nonselective cation channel expressed in several brain regions, including the hippocampus, cerebellum, and amygdala. Although TRPC5 is activated by receptors coupled to phospholipase C, the precise signaling pathway and modulatory signals remain poorly defined. We find that during continuous agonist activation, heterologously expressed TRPC5 currents are potentiated in a voltage-dependent manner (∼5-fold at positive potentials and ∼25-fold at negative potentials). The reversal potential, doubly rectifying current–voltage relation, and permeability to large cations such as N-methyl-d-glucamine remain unchanged during this potentiation. The TRPC5 current potentiation depends on extracellular Ca2+: replacement by Ba2+ or Mg2+ abolishes it, whereas the addition of 10 mM Ca2+ accelerates it. The site of action for Ca2+ is intracellular, as simultaneous fura-2 imaging and patch clamp recordings indicate that potentiation is triggered at ∼1 µM [Ca2+]. This potentiation is prevented when intracellular Ca2+ is tightly buffered, but it is promoted when recording with internal solutions containing elevated [Ca2+]. In cell-attached and excised inside-out single-channel recordings, increases in internal [Ca2+] led to an ∼10–20-fold increase in channel open probability, whereas single-channel conductance was unchanged. Ca2+-dependent potentiation should result in TRPC5 channel activation preferentially during periods of repetitive firing or coincident neurotransmitter receptor activation. PMID:19398778

  17. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  18. Performance improvement of tin-doped zinc oxide thin-film transistor by novel channel modulation layer of indium tin oxide/tin zinc oxide

    NASA Astrophysics Data System (ADS)

    Chen, Zhuofa; Han, Dedong; Zhao, Nannan; Wu, Jing; Cong, Yingying; Dong, Junchen; Zhao, Feilong; Zhang, Shengdong; Zhang, Xing; Wang, Yi; Liu, Lifeng

    2015-04-01

    By applying a novel active modulation layer of indium tin oxide/tin zinc oxide (ITO/TZO), we have successfully fabricated high-performance bottom-gate-type dual-active-layer thin-film transistors (TFTs) on a glass substrate at a low temperature by a simple process. The as-fabricated dual-active-layer ITO/TZO TFTs exhibited excellent electrical properties compared with single-active-layer TZO TFTs. We found that the dual-layer ITO/TZO TFT with an optimized stack structure of ITO (5 nm)/TZO (45 nm) as the channel layer exhibits excellent properties, namely, a high saturation mobility of 204 cm2 V-1 s-1, a steep subthreshold slope of 219 mV/dec, a low threshold voltage of 0.8 V, and a high on-off current ratio of 4.3 × 107. A physical mechanism for the electrical improvement is also deduced. Owing to its advantages, namely, a low processing temperature, a high electrical performance, a simple process, and a low cost, this novel active modulation layer is highly promising for the manufacture of oxide semiconductor TFT and transparent displays.

  19. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels

    PubMed Central

    Nagatomo, Katsuhiro; Kubo, Yoshihiro

    2008-01-01

    Caffeine has various well-characterized pharmacological effects, but in mammals there are no known plasma membrane receptors or ion channels activated by caffeine. We observed that caffeine activates mouse transient receptor potential A1 (TRPA1) in heterologous expression systems by Cai2+ imaging and electrophysiological analyses. These responses to caffeine were confirmed in acutely dissociated dorsal root ganglion sensory neurons from WT mice, which are known to express TRPA1, but were not seen in neurons from TRPA1 KO mice. Expression of TRPA1 was detected immunohistochemically in nerve fibers and bundles in the mouse tongue. Moreover, WT mice, but not KO mice, showed a remarkable aversion to caffeine-containing water. These results demonstrate that mouse TRPA1 channels expressed in sensory neurons cause an aversion to drinking caffeine-containing water, suggesting they mediate the perception of caffeine. Finally, we observed that caffeine does not activate human TRPA1; instead, it suppresses its activity. PMID:18988737

  20. Activation of Slo2.1 channels by niflumic acid

    PubMed Central

    Dai, Li; Garg, Vivek

    2010-01-01

    Slo2.1 channels conduct an outwardly rectifying K+ current when activated by high [Na+]i. Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na+. In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC50 = 2.1 mM) or flufenamic acid (EC50 = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K+]e, the conductance–voltage (G-V) relationship had a V1/2 of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V1/2 to more negative potentials (EC50 = 2.1 mM) and increased the minimum value of G/Gmax (EC50 = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V1/2 of the G-V relationship was shifted to more positive potentials when [K+]e was elevated from 1 to 300 mM (EC50 = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K+]e dependency (EC50 = 23.5 mM). Conductance was also [Na+]e dependent. Outward currents were reduced when Na+ was replaced with choline or mannitol, but unaffected by substitution with Rb+ or Li+. Neutralization of charged residues in the S1–S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1–S4 segments. In contrast, mutation of R190 located in the adjacent S4–S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K+]e. Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K+]e and [Na+]e, and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na+. PMID:20176855

  1. Activation of Slo2.1 channels by niflumic acid.

    PubMed

    Dai, Li; Garg, Vivek; Sanguinetti, Michael C

    2010-03-01

    Slo2.1 channels conduct an outwardly rectifying K(+) current when activated by high [Na(+)](i). Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na(+). In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC(50) = 2.1 mM) or flufenamic acid (EC(50) = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K(+)](e), the conductance-voltage (G-V) relationship had a V(1/2) of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V(1/2) to more negative potentials (EC(50) = 2.1 mM) and increased the minimum value of G/G(max) (EC(50) = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V(1/2) of the G-V relationship was shifted to more positive potentials when [K(+)](e) was elevated from 1 to 300 mM (EC(50) = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K(+)](e) dependency (EC(50) = 23.5 mM). Conductance was also [Na(+)](e) dependent. Outward currents were reduced when Na(+) was replaced with choline or mannitol, but unaffected by substitution with Rb(+) or Li(+). Neutralization of charged residues in the S1-S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1-S4 segments. In contrast, mutation of R190 located in the adjacent S4-S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K(+)](e). Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K(+)](e) and [Na(+)](e), and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na(+).

  2. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Guo, Lingzi; Zhu, Xin; Ran, Qiushi; Dutton, Robert

    2016-08-01

    This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF) interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  3. Enhancing cell-free layer thickness by bypass channels in a wall.

    PubMed

    Saadatmand, M; Shimogonya, Y; Yamaguchi, T; Ishikawa, T

    2016-07-26

    When blood flows near a wall, red blood cells (RBCs) drift away from the wall and a cell-free layer (CFL) is formed adjacent to the wall. Controlling the CFL thickness is important for preventing adhesion of cells in the design of biomedical devices. In this study, a novel wall configuration with stenoses and bypass channels is proposed to increase the CFL thickness. We found that the presence of bypass channels modified the spatial distribution of cells and substantially increased the CFL downstream of the stenosis. A single-bypass geometry with 5% hematocrit (Hct) blood flow showed a 1.7μm increase in CFL thickness compared to without the bypass. In the case of three bypass channels, a 3μm increase in CFL thickness was observed. The CFL enhancement was observed up to 10% Hct, but no significant enhancement of CFL was indicated for 20% Hct blood flow. The mechanism of the CFL enhancement was investigated using a numerical simulation of the flow field. The results showed that the distance between each streamline and the corner of the stenosis compared with size of RBC was important parameter in regulating CFL thickness. These results show the potential of the proposed mechanism to prevent adhesion of cells to biomedical devices.

  4. Characterization of three novel mechanosensitive channel activities in Escherichia coli.

    PubMed

    Edwards, Michelle D; Black, Susan; Rasmussen, Tim; Rasmussen, Akiko; Stokes, Neil R; Stephen, Terri-Leigh; Miller, Samantha; Booth, Ian R

    2012-01-01

    Mechanosensitive channels sense elevated membrane tension that arises from rapid water influx occurring when cells move from high to low osmolarity environments (hypoosmotic shock). These non-specific channels in the cytoplasmic membrane release osmotically-active solutes and ions. The two major mechanosensitive channels in Escherichia coli are MscL and MscS. Deletion of both proteins severely compromises survival of hypoosmotic shock. However, like many bacteria, E. coli cells possess other MscS-type genes (kefA, ybdG, ybiO, yjeP and ynaI). Two homologs, MscK (kefA) and YbdG, have been characterized as mechanosensitive channels that play minor roles in maintaining cell integrity. Additional channel openings are occasionally observed in patches derived from mutants lacking MscS, MscK and MscL. Due to their rare occurrence, little is known about these extra pressure-induced currents or their genetic origins. Here we complete the identification of the remaining E. coli mechanosensitive channels YnaI, YbiO and YjeP. The latter is the major component of the previously described MscM activity (~300 pS), while YnaI (~100 pS) and YbiO (~1000 pS) were previously unknown. Expression of native YbiO is NaCl-specific and RpoS-dependent. A Δ7 strain was created with all seven E. coli mechanosensitive channel genes deleted. High level expression of YnaI, YbiO or YjeP proteins from a multicopy plasmid in the Δ7 strain (MJFGH) leads to substantial protection against hypoosmotic shock. Purified homologs exhibit high molecular masses that are consistent with heptameric assemblies. This work reveals novel mechanosensitive channels and discusses the regulation of their expression in the context of possible additional functions.

  5. Linear stability of optimal streaks in the log-layer of turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Alizard, Frédéric

    2015-10-01

    The importance of secondary instability of streaks for the generation of vortical structures attached to the wall in the logarithmic region of turbulent channels is studied. The streaks and their linear instability are computed by solving equations associated with the organized motion that include an eddy-viscosity modeling the effect of incoherent fluctuations. Three friction Reynolds numbers, Reτ = 2000, 3000, and 5000, are investigated. For all flow cases, optimal streamwise vortices (i.e., having the highest potential for linear transient energy amplification) are used as initial conditions. Due to the lift-up mechanism, these optimal perturbations lead to the nonlinear growth of streaks. Based on a Floquet theory along the spanwise direction, we observe the onset of streak secondary instability for a wide range of spanwise wavelengths when the streak amplitude exceeds a critical value. Under neutral conditions, it is shown that streak instability modes have their energy mainly concentrated in the overlap layer and propagate with a phase velocity equal to the mean streamwise velocity of the log-layer. These neutral log-layer modes exhibit a sinuous pattern and have characteristic sizes that are proportional to the wall distance in both streamwise and spanwise directions, in agreement with the Townsend's attached eddy hypothesis (A. Townsend, the structure of turbulent shear flow, Cambridge university press, 1976 2nd edition). In particular, for a distance from the wall varying from y+ ≈ 100 (in wall units) to y ≈ 0.3h, where h is half the height of the channel, the neutral log-layer modes are self-similar with a spanwise width of λz ≈ y/0.3 and a streamwise length of λx ≈ 3λz, independently of the Reynolds number. Based on this observation, it is suggested that compact vortical structures attached to the wall can be ascribed to streak secondary instabilities. In addition, spatial distributions of fluctuating vorticity components show that the onset

  6. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2

    PubMed Central

    Ponissery Saidu, Samsudeen; Stephan, Aaron B.; Talaga, Anna K.

    2013-01-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca2+-activated Cl− channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5′ rapid amplification of cDNA ends analysis was conducted to characterize the 5′ end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5′ end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca2+ sensitivity and that the exon 4–encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties. PMID:23669718

  7. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  8. Bacteria-Based Analysis of HIV-1 Vpu Channel Activity

    PubMed Central

    Taube, Robert; Alhadeff, Raphael; Assa, Dror; Krugliak, Miriam; Arkin, Isaiah T.

    2014-01-01

    HIV-1 Vpu is a small, single-span membrane protein with two attributed functions that increase the virus' pathogenicity: degradation of CD4 and inactivation of BST-2. Vpu has also been shown to posses ion channel activity, yet no correlation has been found between this attribute and Vpu's role in viral release. In order to gain further insight into the channel activity of Vpu we devised two bacteria-based assays that can examine this function in detail. In the first assay Vpu was over-expressed, such that it was deleterious to bacterial growth due to membrane permeabilization. In the second and more sensitive assay, the channel was expressed at low levels in K+ transport deficient bacteria. Consequently, Vpu expression enabled the bacteria to grow at otherwise non permissive low K+ concentrations. Hence, Vpu had the opposite impact on bacterial growth in the two assays: detrimental in the former and beneficial in the latter. Furthermore, we show that channel blockers also behave reciprocally in the two assays, promoting growth in the first assay and hindering it in the second assay. Taken together, we investigated Vpu's channel activity in a rapid and quantitative approach that is amenable to high-throughput screening, in search of novel blockers. PMID:25272035

  9. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  10. Small-conductance calcium-activated potassium type 2 channels (SK2, KCa2.2) in human brain.

    PubMed

    Willis, Michael; Trieb, Maria; Leitner, Irmgard; Wietzorrek, Georg; Marksteiner, Josef; Knaus, Hans-Günther

    2017-03-01

    SK2 (KCa2.2) channels are voltage-independent Ca(2+)-activated K(+) channels that regulate neuronal excitability in brain regions important for memory formation. In this study, we investigated the distribution and expression of SK2 channels in human brain by Western blot analysis and immunohistochemistry. Immunoblot analysis of human brain indicated expression of four distinct SK2 channel isoforms: the standard, the long and two short isoforms. Immunohistochemistry in paraffin-embedded post-mortem brain sections was performed in the hippocampal formation, amygdala and neocortex. In hippocampus, SK2-like immunoreactivity could be detected in strata oriens and radiatum of area CA1-CA2 and in the molecular layer. In the amygdala, SK2-like immunoreactivity was highest in the basolateral nuclei, while in neocortex, staining was mainly found enriched in layer V. Activation of SK2 channels is thought to regulate neuronal excitability in brain by contributing to the medium afterhyperpolarization. However, SK2 channels are blocked by apamin with a sensitivity that suggests heteromeric channels. The herein first shown expression of SK2 human isoform b in brain could explain the variability of electrophysiological findings observed with SK2 channels.

  11. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells

    PubMed Central

    Rudolph, Stephanie; Hull, Court

    2015-01-01

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. SIGNIFICANCE STATEMENT Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries

  12. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  13. Ion channel activity in lobster skeletal muscle membrane.

    PubMed

    Worden, M K; Rahamimoff, R; Kravitz, E A

    1993-09-01

    Ion channel activity in the sarcolemmal membrane of muscle fibers is critical for regulating the excitability, and therefore the contractility, of muscle. To begin the characterization of the biophysical properties of the sarcolemmal membrane of lobster exoskeletal muscle fibers, recordings were made from excised patches of membrane from enzymatically induced muscle fiber blebs. Blebs formed as evaginations of the muscle sarcolemmal membrane and were sufficiently free of extracellular debris to allow the formation of gigaohm seals. Under simple experimental conditions using bi-ionic symmetrical recording solutions and maintained holding potentials, a variety of single channel types with conductances in the range 32-380 pS were detected. Two of these ion channel species are described in detail, both are cation channels selective for potassium. They can be distinguished from each other on the basis of their single-channel conductance and gating properties. The results suggest that current flows through a large number of ion channels that open spontaneously in bleb membranes in the absence of exogenous metabolites or hormones.

  14. Ligand-Gated Ion Channels: Permeation and Activation1

    NASA Astrophysics Data System (ADS)

    Lynch, Joseph W.; Barry, Peter H.

    Ligand-gated ion channels (LGICs) are fast-responding channels in which the receptor, which binds the activating molecule (the ligand), and the ion channel are part of the same nanomolecular protein complex. This chapter will describe the properties and functions of the nicotinic acetylcholine LGIC superfamily, which play a critical role in the fast chemical transmission of electrical signals between nerve cells at synapses and between nerve and muscle cells at endplates. All the processing functions of the brain and the resulting behavioral output depend on chemical transmission across such neuronal interconnections. To describe the properties of the channels of this LGIC superfamily,we will mainly use two examples of this family of channels: the excitatory nicotinic acetylcholine receptor (nAChR) and the inhibitory glycine receptor (GlyR) channels. In the chemical transmission of electrical signals, the arrival of an electrical signal at the synaptic terminal of a nerve causes the release of a chemical signal—a neurotransmitter molecule (the ligand, also referred to as the agonist). The neurotransmitter rapidly diffuses across the very narrow 20-40 nm synaptic gap between the cells and binds to the LGIC receptors in the membrane of the target (postsynaptic) cell and generates a new electrical signal in that cell (e.g., Kandel et al., 2000). How this chemical signal is converted into an electrical one depends on the fundamental properties of LGICs and the ionic composition of the postsynaptic cell and its external solution.

  15. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP.

    PubMed

    DiFrancesco, D; Tortora, P

    1991-05-09

    Cyclic AMP acts as a second messenger in the modulation of several ion channels that are typically controlled by a phosphorylation process. In cardiac pacemaker cells, adrenaline and acetylcholine regulate the hyperpolarization-activated current (if), but in opposite ways; this current is involved in the generation and modulation of pacemaker activity. These actions are mediated by cAMP and underlie control of spontaneous rate by neurotransmitters. Whether the cAMP modulation of if is mediated by channel phosphorylation is, however, still unknown. Here we investigate the action of cAMP on if in excised patches of cardiac pacemaker cells and find that cAMP activates if by a mechanism independent of phosphorylation, involving a direct interaction with the channels at their cytoplasmic side. Cyclic AMP activates if by shifting its activation curve to more positive voltages, in agreement with whole-cell results. This is the first evidence of an ion channel whose gating is dually regulated by voltage and direct cAMP binding.

  16. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin.

    PubMed

    Yang, Fan; Zheng, Jie

    2017-03-01

    Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel's transmembrane segments, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.

  17. Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch.

    PubMed

    Morris, Catherine E; Juranka, Peter F

    2007-08-01

    Voltage-gated sodium channels (Nav) are modulated by many bilayer mechanical amphiphiles, but whether, like other voltage-gated channels (Kv, HCN, Cav), they respond to physical bilayer deformations is unknown. We expressed human heart Nav1.5 pore alpha-subunit in oocytes (where, unlike alphaNav1.4, alphaNav1.5 exhibits normal kinetics) and measured small macroscopic currents in cell-attached patches. Pipette pressure was used to reversibly stretch the membrane for comparison of I(Na)(t) before, during, and after stretch. At all voltages, and in a dose-dependent fashion, stretch accelerated the I(Na)(t) time course. The sign of membrane curvature was not relevant. Typical stretch stimuli reversibly accelerated both activation and inactivation by approximately 1.4-fold; normalization of peak I(Na)(t) followed by temporal scaling ( approximately 1.30- to 1.85-fold) resulted in full overlap of the stretch/no-stretch traces. Evidently the rate-limiting outward voltage sensor motion in the Nav1.5 activation path (as in Kv1) accelerated with stretch. Stretch-accelerated inactivation occurred even with activation saturated, so an independently stretch-modulated inactivation transition is also a possibility. Since Nav1.5 channel-stretch modulation was both reliable and reversible, and required stretch stimuli no more intense than what typically activates putative mechanotransducer channels (e.g., stretch-activated TRPC1-based currents), Nav channels join the ranks of putative mechanotransducers. It is noteworthy that at voltages near the activation threshold, moderate stretch increased the peak I(Na) amplitude approximately 1.5-fold. It will be important to determine whether stretch-modulated Nav current contributes to cardiac arrhythmias, to mechanosensory responses in interstitial cells of Cajal, to touch receptor responses, and to neuropathic (i.e., hypermechanosensitive) and/or normal pain reception.

  18. The Antibacterial Activity of Human Neutrophils and Eosinophils Requires Proton Channels but Not BK Channels

    PubMed Central

    Femling, Jon K.; Cherny, Vladimir V.; Morgan, Deri; Rada, Balázs; Davis, A. Paige; Czirják, Gabor; Enyedi, Peter; England, Sarah K.; Moreland, Jessica G.; Ligeti, Erzsébet; Nauseef, William M.; DeCoursey, Thomas E.

    2006-01-01

    Electrophysiological events are of central importance during the phagocyte respiratory burst, because NADPH oxidase is electrogenic and voltage sensitive. We investigated the recent suggestion that large-conductance, calcium-activated K+ (BK) channels, rather than proton channels, play an essential role in innate immunity (Ahluwalia, J., A. Tinker, L.H. Clapp, M.R. Duchen, A.Y. Abramov, S. Page, M. Nobles, and A.W. Segal. 2004. Nature. 427:853–858). In PMA-stimulated human neutrophils or eosinophils, we did not detect BK currents, and neither of the BK channel inhibitors iberiotoxin or paxilline nor DPI inhibited any component of outward current. BK inhibitors did not inhibit the killing of bacteria, nor did they affect NADPH oxidase-dependent degradation of bacterial phospholipids by extracellular gIIA-PLA2 or the production of superoxide anion (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2^{.}}^{-}\\end{equation*}\\end{document}). Moreover, an antibody against the BK channel did not detect immunoreactive protein in human neutrophils. A required role for voltage-gated proton channels is demonstrated by Zn2+ inhibition of NADPH oxidase activity assessed by H2O2 production, thus validating previous studies showing that Zn2+ inhibited \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2^{.}}^{-}\\end{equation*}\\end{document} production when assessed by cytochrome c reduction. In conclusion, BK channels were not detected in human neutrophils or eosinophils, and

  19. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  20. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation.

  1. The impact of plasma induced flow on the boundary layer in a narrow channel

    NASA Astrophysics Data System (ADS)

    Procházka, P.; Uruba, V.

    2015-05-01

    The induced flow generated by dielectric barrier discharge (DBD) actuator working in steady and unsteady regime will be used to modify properties of naturally developed boundary layer (BL) in short and long rectangular perspex channel which is connected to the blow-down wind tunnel. The actuator is placed in spanwise configuration and the inlet velocities will range between 5 and 20 m•s-1. Previously, mean flow field and statistical quantities were subjugated to investigation. In this paper, there will be presented dynamical features of the BL. Oscillation pattern decomposition (OPD) of influenced flow field and frequency analysis will be presented. These results should be taken into account regarding to use in the flow around a bluff body.

  2. Three-dimensional convective and absolute instabilities in pressure-driven two-layer channel flow

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Matar, Omar

    2011-11-01

    A generalized linear stability analysis of three-dimensional disturbance in a pressure-driven two-layer channel flow, focusing on the range of parameters for which Squire's theorem does not exist is considered. Three-dimensional linear stability equations, in which both the spatial wavenumber and temporal frequency are complex, are derived and solved using an efficient spectral collocation method. A Briggs-type analysis is then carried out to delineate the boundaries between convective and absolute instabilities in m-Re space. We find that although three-dimensional disturbances are temporally more unstable than the two-dimensional disturbances, absolute modes of instability are most unstable for two-dimensional disturbances. An energy ``budget'' analysis also shows that the most dangerous modes are ``interfacial'' ones.

  3. Hydrodynamic behavior in the outer shear layer of partly obstructed open channels

    NASA Astrophysics Data System (ADS)

    Ben Meftah, Mouldi; De Serio, Francesca; Mossa, Michele

    2014-06-01

    Despite the many studies on flow in partly obstructed open channels, this issue remains of fundamental importance in order to better understand the interaction between flow behavior and the canopy structure. In the first part of this study we suggest a new theoretical approach able to model the flow pattern within the shear layer in the unobstructed domain, adjacent to the canopy area. Differently from previous studies, the new analytical solution of flow momentum equations takes into account the transversal velocity component of the flow, which is modelled as a linear function of the streamwise velocity. The proposed theoretical model is validated by different experiments carried out on a physical model of a very large rectangular channel by the research group of the Department of Civil, Environmental, Building Engineering and Chemistry of the Technical University of Bari. An array of vertical, rigid, and circular steel cylinders was partially mounted on the bottom in the central part of the flume, leaving two lateral areas of free flow circulation near the walls. The three-dimensional flow velocity components were measured using a 3D Acoustic Doppler Velocimeter. A comparison of the measured and predicted data of the present study with those obtained in other previous studies, carried out with different canopy density, show a non-dependence of this analytical solution on the array density and the Reynolds number. In the second part of the paper, detailed observations of turbulent intensities and spanwise Reynolds stresses in the unobstructed flow are analyzed and discussed. Differently from some earlier studies, it was observed that the peak of the turbulence intensity and that of the spanwise Reynolds stress are significantly shifted toward the center of the shear layer.

  4. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  5. A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce.

    PubMed

    Delgado, R; Hidalgo, P; Diaz, F; Latorre, R; Labarca, P

    1991-01-15

    Single-channel recording from longitudinal ventrolateral Drosophila larval muscle reveals the presence of a potassium-selective channel that is directly and reversibly activated by cAMP in a dose-dependent fashion. Activation is specific and it cannot be mimicked by a series of agents that include AMP, cGMP, ATP, inositol trisphosphate, and Ca2+. Channel current records obtained from larval muscle in different dunce mutants possessing abnormally high levels of cAMP show that, in the mutants, the channel displays an increased probability of opening.

  6. A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce.

    PubMed Central

    Delgado, R; Hidalgo, P; Diaz, F; Latorre, R; Labarca, P

    1991-01-01

    Single-channel recording from longitudinal ventrolateral Drosophila larval muscle reveals the presence of a potassium-selective channel that is directly and reversibly activated by cAMP in a dose-dependent fashion. Activation is specific and it cannot be mimicked by a series of agents that include AMP, cGMP, ATP, inositol trisphosphate, and Ca2+. Channel current records obtained from larval muscle in different dunce mutants possessing abnormally high levels of cAMP show that, in the mutants, the channel displays an increased probability of opening. PMID:1846445

  7. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    PubMed

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  8. Cholecystokinin facilitates neuronal excitability in the entorhinal cortex via activation of TRPC-like channels.

    PubMed

    Wang, Shouping; Zhang, An-Ping; Kurada, Lalitha; Matsui, Toshimitsu; Lei, Saobo

    2011-09-01

    Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain, where it interacts with two G protein-coupled receptors (CCK-1 and CCK-2). Activation of both CCK receptors increases the activity of PLC, resulting in increases in intracellular calcium ion (Ca(2+)) release and activation of PKC. Whereas high density of CCK receptors has been detected in the superficial layers of the entorhinal cortex (EC), the functions of CCK in this brain region have not been determined. Here, we studied the effects of CCK on neuronal excitability of layer III pyramidal neurons in the EC. Our results showed that CCK remarkably increased the firing frequency of action potentials (APs). The effects of CCK on neuronal excitability were mediated via activation of CCK-2 receptors and required the functions of G proteins and PLC. However, CCK-mediated facilitation of neuronal excitability was independent of inositol trisphosphate receptors and PKC. CCK facilitated neuronal excitability by activating a cationic channel to generate membrane depolarization. The effects of CCK were suppressed by the generic, nonselective cationic channel blockers, 2-aminoethyldiphenyl borate and flufenamic acid, but potentiated by gadolinium ion and lanthanum ion at 100 μM. Depletion of extracellular Ca(2+) also counteracted CCK-induced increases in AC firing frequency. Moreover, CCK-induced enhancement of neuronal excitability was inhibited significantly by intracellular application of the antibody to transient receptor potential channel 5 (TRPC5), suggesting the involvement of TRPC5 channels. Our results provide a cellular and molecular mechanism to help explain the functions of CCK in vivo.

  9. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    PubMed

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.

  10. Activation and Inhibition of TMEM16A Calcium-Activated Chloride Channels

    PubMed Central

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca2+-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca2+, Sr2+, and Ba2+, and discovered that Mg2+ competes with Ca2+ in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore–as revealed by the permeability ratios of these anions–appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1. PMID:24489780

  11. Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons

    PubMed Central

    Dibattista, Michele; Amjad, Asma; Maurya, Devendra Kumar; Sagheddu, Claudia; Montani, Giorgia; Tirindelli, Roberto

    2012-01-01

    The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of −261 pA was measured at −50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction. PMID:22732308

  12. Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons.

    PubMed

    Dibattista, Michele; Amjad, Asma; Maurya, Devendra Kumar; Sagheddu, Claudia; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna

    2012-07-01

    The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the apical region of these neurons, we produced localized, rapid, and reproducible increases in calcium concentration with flash photolysis of caged calcium and measured calcium-activated currents with the whole cell voltage-clamp technique. On average, a large inward calcium-activated current of -261 pA was measured at -50 mV, rising with a time constant of 13 ms. Ion substitution experiments showed that this current is anion selective. Moreover, the chloride channel blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid partially inhibited the calcium-activated current. These results directly demonstrate that a large chloride current can be activated by calcium in the apical region of mouse vomeronasal sensory neurons. Furthermore, we showed by immunohistochemistry that the calcium-activated chloride channels TMEM16A/anoctamin1 and TMEM16B/anoctamin2 are present in the apical layer of the vomeronasal epithelium, where they largely colocalize with the TRPC2 transduction channel. Immunocytochemistry on isolated vomeronasal sensory neurons showed that TMEM16A and TMEM16B coexpress in the neuronal microvilli. Therefore, we conclude that microvilli of mouse vomeronasal sensory neurons have a high density of calcium-activated chloride channels that may play an important role in vomeronasal transduction.

  13. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  14. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard

    USGS Publications Warehouse

    Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.

    2002-01-01

    Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Atomic basis for therapeutic activation of neuronal potassium channels

    PubMed Central

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2–5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators. PMID:26333338

  16. Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture.

    PubMed

    Cohen, Lior; Ilan, Nitza; Gur, Maya; Stühmer, Walter; Gordon, Dalia; Gurevitz, Michael

    2007-10-05

    Gating modifiers of voltage-gated sodium channels (Na(v)s) are important tools in neuroscience research and may have therapeutic potential in medicinal disorders. Analysis of the bioactive surface of the scorpion beta-toxin Css4 (from Centruroides suffusus suffusus) toward rat brain (rNa(v)1.2a) and skeletal muscle (rNa(v)1.4) channels using binding studies revealed commonality but also substantial differences, which were used to design a specific activator, Css4(F14A/E15A/E28R), of rNa(v)1.4 expressed in Xenopus oocytes. The therapeutic potential of Css4(F14A/E15A/E28R) was tested using an rNa(v)1.4 mutant carrying the same mutation present in the genetic disorder hypokalemic periodic paralysis. The activator restored the impaired gating properties of the mutant channel expressed in oocytes, thus offering a tentative new means for treatment of neuromuscular disorders with reduced muscle excitability. Mutant double cycle analysis employing toxin residues involved in the construction of Css4(F14A/E15A/E28R) and residues whose equivalents in the rat brain channel rNa(v)1.2a were shown to affect Css4 binding revealed significant coupling energy (>1.3 kcal/mol) between F14A and E592A at Domain-2/voltage sensor segments 1-2 (D2/S1-S2), R27Q and E1251N at D3/SS2-S6, and E28R with both E650A at D2/S3-S4 and E1251N at D3/SS2-S6. These results show that despite the differences in interactions with the rat brain and skeletal muscle Na(v)s, Css4 recognizes a similar region on both channel subtypes. Moreover, our data indicate that the S3-S4 loop of the voltage sensor module in Domain-2 is in very close proximity to the SS2-S6 segment of the pore module of Domain-3 in rNa(v)1.4. This is the first experimental evidence that the inter-domain spatial organization of mammalian Na(v)s resembles that of voltage-gated potassium channels.

  17. Cilostazol induces vasodilation through the activation of Ca(2+)-activated K(+) channels in aortic smooth muscle.

    PubMed

    Li, Hongliang; Hong, Da Hye; Son, Youn Kyoung; Na, Sung Hun; Jung, Won-Kyo; Bae, Young Min; Seo, Eun Young; Kim, Sung Joon; Choi, Il-Whan; Park, Won Sun

    2015-07-01

    We investigated the vasorelaxant effect of cilostazol and related signaling pathways in phenylephrine (Phe)-induced pre-contracted aortic rings. Cilostazol induced vasorelaxation in a concentration-dependent manner when aortic rings were pre-contracted with Phe. Application of the voltage-dependent K(+) (Kv) channel inhibitor 4-AP, the ATP-sensitive K(+) (K(ATP)) channel inhibitor glibenclamide, and the inwardly rectifying K(+) (Kir) channel inhibitor Ba(2+) did not alter the vasorelaxant effect of cilostazol; however, pre- and post-treatment with the big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel inhibitor paxilline inhibited the vasorelaxant effect of cilostazol. This vasorelaxant effect of cilostazol was reduced in the presence of an adenylyl cyclase or a protein kinase A (PKA) inhibitor, but not a protein kinase G inhibitor. Inside-out single channel recordings revealed that cilostazol induced the activation of BK(Ca) channel activity. The vasorelaxant effect of cilostazol was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor and a small-conductance Ca(2+)-activated K(+) (SK(Ca)) channel inhibitor did not affect cilostazol-induced vasorelaxation. We conclude that cilostazol induced vasorelaxation of the aorta through activation of BK(Ca) channel via a PKA-dependent signaling mechanism independent of endothelium.

  18. Differential effects of quercetin glycosides on GABAC receptor channel activity.

    PubMed

    Kim, Hyeon-Joong; Lee, Byung-Hwan; Choi, Sun-Hye; Jung, Seok-Won; Kim, Hyun-Sook; Lee, Joon-Hee; Hwang, Sung-Hee; Pyo, Mi-Kyung; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2015-01-01

    Quercetin, a representative flavonoid, is a compound of low molecular weight found in various colored plants and vegetables. Quercetin shows a wide range of neuropharmacological activities. In fact, quercetin naturally exists as monomer-(quercetin-3-O-rhamnoside) (Rham1), dimer-(Rutin), or trimer-glycosides [quercetin-3-(2(G)-rhamnosylrutinoside)] (Rham2) at carbon-3 in fruits and vegetables. The carbohydrate components are removed after ingestion into gastrointestinal systems. The role of the glycosides attached to quercetin in the regulation of γ-aminobutyric acid class C (GABAC) receptor channel activity has not been determined. In the present study, we examined the effects of quercetin glycosides on GABAC receptor channel activity by expressing human GABAC alone in Xenopus oocytes using a two-electrode voltage clamp technique and also compared the effects of quercetin glycosides with quercetin. We found that GABA-induced inward current (I GABA ) was inhibited by quercetin or quercetin glycosides. The inhibitory effects of quercetin and its glycosides on I GABA were concentration-dependent and reversible in the order of Rutin ≈ quercetin ≈ Rham 1 > Rham 2. The inhibitory effects of quercetin and its glycosides on I GABA were noncompetitive and membrane voltage-insensitive. These results indicate that quercetin and its glycosides regulate GABAC receptor channel activity through interaction with a different site from that of GABA, and that the number of carbohydrate attached to quercetin might play an important role in the regulation of GABAC receptor channel activity.

  19. The complete structure of an activated open sodium channel

    PubMed Central

    Sula, Altin; Booker, Jennifer; Ng, Leo C. T.; Naylor, Claire E.; DeCaen, Paul G.; Wallace, B. A.

    2017-01-01

    Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4–S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate. PMID:28205548

  20. Swell activated chloride channel function in human neutrophils

    SciTech Connect

    Salmon, Michael D.; Ahluwalia, Jatinder

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  1. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  2. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  3. Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells.

    PubMed Central

    Shipston, M J; Armstrong, D L

    1996-01-01

    1. The regulation of large-conductance, calcium- and voltage-dependent potassium (BK) channels by protein kinase C (PKC) was investigated in clonal rat anterior pituitary cells (GH4C1), which were voltage clamped at -40 mV in a physiological potassium gradient through amphotericin-perforated patches. 2. Maximal activation of PKC by 100 nM phorbol 12, 13-dibutyrate (PdBu) almost completely inhibited the voltage-activated outward current through BK channels. In contrast PdBu had no significant effect on the residual outward current after block of BK channels with 2 mM TEA or 30 nM charybdotoxin. In single-channel recordings from cell-attached patches, PdBu reduced the open probability of BK channels more than eightfold with no significant effect on mean open lifetime or unitary conductance. 3. The effects of PdBu on BK channels were not mimicked by the 4 alpha-isomer, which does not activate PKC, and were blocked almost completely by 25 microM chelerythrine, a specific, noncompetitive PKC inhibitor. 4. PdBu had no significant effect on the amplitude of the pharmacologically isolated, high voltage-activated calcium current. 5. Inhibition of BK channel activity by PKC provides the first molecular mechanism linking hormonal activation of phospholipase C to sustained excitability in pituitary cells. PMID:8799890

  4. Increasing SK2 channel activity impairs associative learning

    PubMed Central

    McKay, Bridget M.; Oh, M. Matthew; Galvez, Roberto; Burgdorf, Jeffrey; Kroes, Roger A.; Weiss, Craig; Adelman, John P.; Moskal, Joseph R.

    2012-01-01

    Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuronal excitability restricted to the hippocampus can retard acquisition of a hippocampus-dependent task. Thus, the present study was designed to address this latter point using a small conductance potassium (SK) channel activator NS309 focally applied to the dorsal hippocampus. SK channels are important contributors to intrinsic excitability, as measured by the medium postburst AHP. NS309 increased the medium AHP and reduced excitatory postsynaptic potential width of CA1 neurons in vitro. In vivo, NS309 reduced the spontaneous firing rate of CA1 pyramidal neurons and impaired trace eyeblink conditioning in rats. Conversely, trace eyeblink conditioning reduced levels of SK2 channel mRNA and protein in the hippocampus. Therefore, the present findings indicate that modulation of SK channels is an important cellular mechanism for associative learning and further support postburst AHP reductions in hippocampal pyramidal neurons as a biomarker of successful learning. PMID:22552186

  5. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.

  6. A fast timing calorimetric layer using micro-channel plates in ionisation mode

    NASA Astrophysics Data System (ADS)

    Barnyakov, A.; Barnyakov, M.; Brianza, L.; Cavallari, F.; Ciriolo, V.; Del Re, D.; Gelli, S.; Ghezzi, A.; Gotti, C.; Martelli, A.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Pigazzini, S.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Tabarelli De Fatis, T.

    2017-03-01

    Future high rate hadron colliders are expected to have hundreds of concurrent proton-proton interactions in the same bunch crossing, deteriorating the energy resolution and identification capabilities of calorimeters. The possibility to distinguish neutral particles coming from different interaction vertices is being pursued as a tool to reduce pile-up contamination in calorimeters, and restore optimal performance. A time of flight resolution of the order of 20 ps will be able to reduce neutral particles pile-up contamination at the calorimeter level by about one order of magnitude, restoring pile-up conditions similar to what is routinely sustained in the current run of the LHC . Micro-channel plates (MCP) can be used in PMT configuration as fast charged particles detector (resolution of better then 30 ps can be achieved with commercial devices). However they are not particularly radiation tolerant, mostly due to the ion feedback on the photocathode. The possibility of using micro-channel plates without a photocathode (i-MCP) has been studied in several test beams. Different MCP geometries are compared with the goal to identify the optimal configuration. Efficiency of more than 70% with a time resolution of better than 40 ps are achieved for single charged particles, leading to an efficiency close to 100% for EM shower after few radiation lengths. This opens the possibility to use i-MCPs as a timing layer in a sampling calorimeter or to use it in a pre-shower device independent from the calorimeter technology. Preliminary results on the radiation hardness of the i-MCP configuration will be also presented.

  7. Active Boundary Layer Trip for Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Schloegel, F.; Panigua, G.; Tirtey, S.

    2009-01-01

    The last decade has been full of excitement and success for the hypersonic community thanks to various Scramjet ground tests and launches. These studies have shown promising potentials but the viability to perform commercial flights at Mach 8 is still to be demonstrated. An ideal Scramjet is one which is capable of self- starting over a wide range of angles of attack and Mach number. The Scramjet designer has to ensure that the boundary layer over the inlet ramp is fully turbulent where shocks impact, hence reducing the risks of chocked flow conditions. Most studies have issued the efficiency of roughness trip to trigger the boundary layer transition. At hypersonic speed, heat transfer and drag dramatically increase resulting in skin friction averaging at 40% of the overall drag. This study investigates the possibility of triggering transition using perpendicular air jets on a flat plate place in a hypersonic cross-flow. Experiments were conducted in the von Karman Institute hypersonic blow down wind tunnel H3. This facility is mounted with a Mach 6 contoured nozzles and provides flows with Reynolds number in the range of 10x106/m to 30x106/m. The model consist of a flat plate manufactured with a built -in settling chamber, equipped with a pressure tap and a thermocouple to monitor the jet conditions. A first flat plate was manufactured with a black-coated Plexiglas top, for surface heat transfer measurement using an infrared camera. On the second model, a Upilex sheet equipped with 32 thin film gages was glued, time dependent heat transfer measurements up to 60kHz. The jet injection conditions have been varied and a Mach number of 5.5 kept constant. The flow topology was investigated using fast schlieren techniques and oil flow, in order to gain a better understanding.

  8. Leptin excites POMC neurons via activation of TRPC channels

    PubMed Central

    Qiu, Jian; Fang, Yuan; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    Leptin can exert its potent appetite-suppressing effects via activation of hypothalamic proopiomelanocortin (POMC) neurons. It depolarizes POMC neurons via activation of a yet unidentified non-selective cation current. Therefore, we sought to identify the conductance activated by leptin using whole cell recording in EGFP-POMC neurons from transgenic mice. The TRPC channel blockers SKF96365, FFA and 2-APB potently inhibited the leptin-induced current. Also, lanthanum (La3+) and intracellular Ca2+ potentiated the effects of leptin. Moreover, the DAG permeable analog OAG failed to activate any TRPC current. Using a Cs+-gluconate-based internal solution, leptin-activated current reversed near -20 mV. After replacement of external Na+ and K+ with Cs+, the reversal shifted to near 0 mV, and the I/V curve exhibited a negative slope conductance at voltages more negative than –40 mV. Based on scRT-PCR, TRPC1 and TRPC4-7 mRNA were expressed in POMC neurons with TRPC5 being the most prevalent. The leptin-induced current was blocked by Jak2 inhibitor AG490, the PI3 Kinase inhibitor wortmannin and the phospholipase C inhibitors, U73122 and ET-18-OCH3. Notably, we identified PLCγ1 transcripts in the majority of POMC neurons. Therefore, leptin through a Jak2-PI3 kinase-PLCγ pathway activates TRPC channels, and TRPC1, 4 and 5 appear to be the key channels mediating the depolarizing effects of leptin in POMC neurons. PMID:20107083

  9. Understanding Coulomb Scattering Mechanism in Monolayer MoS2 Channel in the Presence of h-BN Buffer Layer.

    PubMed

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2017-02-08

    As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (T) noise measurements to understand the Coulomb scattering mechanism in the MoS2 channel in the presence of h-BN buffer layer on the silicon dioxide (SiO2) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (αSC) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of h-BN on SiO2 provides the suppression of αSC twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO2 at T = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping-detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal-MoS2 contact region.

  10. Vibration control through passive constrained layer damping and active control

    NASA Astrophysics Data System (ADS)

    Lam, Margaretha J.; Inman, Daniel J.; Saunders, William R.

    1997-05-01

    To add damping to systems, viscoelastic materials (VEM) are added to structures. In order to enhance the damping effects of the VEM, a constraining layer is attached. When this constraining layer is an active element, the treatment is called active constrained layer damping (ACLD). Recently, the investigation of ACLD treatments has shown it to be an effective method of vibration suppression. In this paper, the treatment of a beam with a separate active element and passive constrained layer (PCLD) element is investigated. A Ritz- Galerkin approach is used to obtain discretized equations of motion. The damping is modeled using the GHM method and the system is analyzed in the time domain. By optimizing on the performance and control effort for both the active and passive case, it is shown that this treatment is capable of lower control effort with more inherent damping, and is therefore a better approach to damp vibration.

  11. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    PubMed Central

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-01-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on. PMID:24500376

  12. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  13. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery.

    PubMed

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-06

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  14. Location of Release Sites and Calcium-Activated Chloride Channels Relative to Calcium Channels at the Photoreceptor Ribbon Synapse

    PubMed Central

    Mercer, A. J.; Rabl, K.; Riccardi, G. E.; Brecha, N. C.; Stella, S. L.

    2011-01-01

    Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca2+ channels, which are in turn regulated by Cl− moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca2+ channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca2+ buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca2+ channels. Comparing Cl(Ca) currents with predicted Ca2+ diffusion profiles suggested that Cl(Ca) and Ca2+ channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca2+ channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration ([Ca2+]i) elevation through flash photolysis of DM-nitrophen exhibited EC50 values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane [Ca2+]i in photoreceptor terminals. Consistent with control of exocytosis by [Ca2+] nanodomains near Ca2+ channels, average submembrane [Ca2+]i remained below the vesicle release threshold (∼400 nM) over much of the physiological voltage range for cones. Positioning Ca2+ channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca2+ influx at one site to influence relatively distant Ca2+ channels. PMID:21084687

  15. A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter

    PubMed Central

    Smith, Benjamin E.; Markham, Michael R.

    2015-01-01

    The bioelectrical properties and resulting metabolic demands of electrogenic cells are determined by their morphology and the subcellular localization of ion channels. The electric organ cells (electrocytes) of the electric fish Eigenmannia virescens generate action potentials (APs) with Na+ currents >10 μA and repolarize the AP with Na+-activated K+ (KNa) channels. To better understand the role of morphology and ion channel localization in determining the metabolic cost of electrocyte APs, we used two-photon three-dimensional imaging to determine the fine cellular morphology and immunohistochemistry to localize the electrocytes' ion channels, ionotropic receptors, and Na+-K+-ATPases. We found that electrocytes are highly polarized cells ∼1.5 mm in anterior-posterior length and ∼0.6 mm in diameter, containing ∼30,000 nuclei along the cell periphery. The cell's innervated posterior region is deeply invaginated and vascularized with complex ultrastructural features, whereas the anterior region is relatively smooth. Cholinergic receptors and Na+ channels are restricted to the innervated posterior region, whereas inward rectifier K+ channels and the KNa channels that terminate the electrocyte AP are localized to the anterior region, separated by >1 mm from the only sources of Na+ influx. In other systems, submicrometer spatial coupling of Na+ and KNa channels is necessary for KNa channel activation. However, our computational simulations showed that KNa channels at a great distance from Na+ influx can still terminate the AP, suggesting that KNa channels can be activated by distant sources of Na+ influx and overturning a long-standing assumption that AP-generating ion channels are restricted to the electrocyte's posterior face. PMID:25925327

  16. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  17. Interfacial dynamics in pressure-driven two-layer laminar channel flow with high viscosity ratios.

    PubMed

    Matar, O K; Lawrence, C J; Sisoev, G M

    2007-05-01

    The large-scale dynamics of an interface separating two immiscible fluids in a channel is studied in the case of large viscosity contrasts. A long-wave analysis in conjunction with the Kármán-Polhausen method to approximate the velocity profile in the less viscous fluid is used to derive a single equation for the interface. This equation accounts for the presence of interfacial stress, capillarity, and viscous retardation as well as inertia in the less viscous fluid layer where the flow is considered to be quasistatic; the equation is shown to reduce to a Benney-type equation and the Kuramoto-Sivashinskiy equation in the relevant limits. The solutions of this equation are parametrized by an initial thickness ratio h0 and a dimensionless parameter S , which measures the relative significance of inertial to capillary forces. A parametric continuation technique is employed, which reveals that nonuniqueness of periodic solutions is possible in certain regions of (h0,S) space. Transient numerical simulations are also reported, whose results demonstrate good agreement with the bifurcation structure obtained from the parametric continuation results.

  18. Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone

    PubMed Central

    Bagher, Pooneh; Beleznai, Timea; Kansui, Yasuo; Mitchell, Ray; Garland, Christopher J.; Dora, Kim A.

    2012-01-01

    Endothelial cell (EC) Ca2+-activated K channels (SKCa and IKCa channels) generate hyperpolarization that passes to the adjacent smooth muscle cells causing vasodilation. IKCa channels focused within EC projections toward the smooth muscle cells are activated by spontaneous Ca2+ events (Ca2+ puffs/pulsars). We now show that transient receptor potential, vanilloid 4 channels (TRPV4 channels) also cluster within this microdomain and are selectively activated at low intravascular pressure. In arterioles pressurized to 80 mmHg, ECs generated low-frequency (∼2 min−1) inositol 1,4,5-trisphosphate receptor-based Ca2+ events. Decreasing intraluminal pressure below 50 mmHg increased the frequency of EC Ca2+ events twofold to threefold, an effect blocked with the TRPV4 antagonist RN1734. These discrete events represent both TRPV4-sparklet- and nonsparklet-evoked Ca2+ increases, which on occasion led to intracellular Ca2+ waves. The concurrent vasodilation associated with increases in Ca2+ event frequency was inhibited, and basal myogenic tone was increased, by either RN1734 or TRAM-34 (IKCa channel blocker), but not by apamin (SKCa channel blocker). These data show that intraluminal pressure influences an endothelial microdomain inversely to alter Ca2+ event frequency; at low pressures the consequence is activation of EC IKCa channels and vasodilation, reducing the myogenic tone that underpins tissue blood-flow autoregulation. PMID:23071308

  19. Sporadic Layer es and Siesmic Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid; Blokhin, Alexandr; Kalashnikova, Tatyana

    2016-07-01

    To determine the influence of seismogenic disturbances on the calm state of the iono-sphere and assess the impact of turbulence development in sporadic-E during earthquake prepa-ration period we calculated the variation in the range of semitransparency ∆fES = f0ES - fbES. The study was based primarily on the ionograms obtained by vertical sounding of the ionosphere at Dushanbe at nighttime station from 15 to 29 August 1986. In this time period four successive earthquakes took place, which serves the purpose of this study of the impact of seis-mogenic processes on the intensity of the continuous generation of ionospheric turbulence. Analysis of the results obtained for seismic-ionospheric effects of 1986 earthquakes at station Dushanbe has shown that disturbance of ionospheric parameters during earthquake prepa-ration period displays a pronounced maximum with a duration of t = 1-6 hours. Ionospheric effects associated with the processes of earthquake preparation emerge quite predictably, which verifies seismogenic disturbances in the ionosphere. During the preparation of strong earthquakes, ionograms of vertical sounding produced at station Dushanbe - near the epicenter area - often shown the phenomenon of spreading traces of sporadic Es. It is assumed that the duration of manifestation of seismic ionospheric precursors in Du-shanbe τ = 1 - 6 hours may be associated with deformation processes in the Earth's crust and var-ious faults, as well as dissimilar properties of the environment of the epicentral area. It has been shown that for earthquakes with 4.5 ≤ M ≤ 5.5 1-2 days prior to the event iono-spheric perturbations in the parameters of the sporadic layer Es and an increase in the value of the range of semitransparency Es - ΔfEs were observed, which could lead to turbulence at altitudes of 100-130 km.

  20. Ca(2+)-activated K(+) channels as therapeutic targets for myocardial and vascular protection.

    PubMed

    Clements, Richard T; Terentyev, Dmitry; Sellke, Frank W

    2015-01-01

    Small- and large-conductance Ca(2+)-activated K(+)channels (SKCa and BKCa, respectively) may be important targets for therapeutic interventions in a variety of cardiac conditions. In cardiomyocytes, BKCa channels are localized to mitochondria where they beneficially modulate reactive oxygen species, mitochondrial Ca(2+), and respiration. In vascular smooth muscle cells, BKCa channels regulate vascular tone and promote vasodilation. Activation of BKCa channels has demonstrated significant cardioprotection following ischemic injury, including improved function and reduced infarct size. SKCa channels are expressed in both the membrane and mitochondria of cardiomyocytes. Modulation of cardiomyocyte SKCa channels may be beneficial for arrhythmia, heart failure, and ischemia. Mitochondrial SKCa channels may provide similar benefit to BKCa channels. In addition, activation of SKCa channels on the endothelium promotes vasodilation. This mini-review focuses on the modulation of cardiomyocyte BKCa and SKCa channels for cardioprotection and briefly address associated potential therapeutic benefits in the coronary circulation.

  1. Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker

    PubMed Central

    Ta, Chau M; Adomaviciene, Aiste; Rorsman, Nils J G; Garnett, Hannah

    2016-01-01

    Background and Purpose Calcium‐activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene‐9‐carboxylic acid (A9C), an inhibitor of various chloride channel types, exhibits complex effects on native CaCCs and cloned TMEM16A channels providing both activation and inhibition. The mechanisms underlying these effects are not fully defined. Experimental Approach Patch‐clamp electrophysiology in conjunction with concentration jump experiments was employed to define the mode of interaction of A9C with TMEM16A channels. Key Results In the presence of high intracellular Ca2+, A9C inhibited TMEM16A currents in a voltage‐dependent manner by entering the channel from the outside. A9C activation, revealed in the presence of submaximal intracellular Ca2+ concentrations, was also voltage‐dependent. The electric distance of A9C inhibiting and activating binding site was ~0.6 in each case. Inhibition occurred according to an open‐channel block mechanism. Activation was due to a dramatic leftward shift in the steady‐state activation curve and slowed deactivation kinetics. Extracellular A9C competed with extracellular Cl−, suggesting that A9C binds deep in the channel's pore to exert both inhibiting and activating effects. Conclusions and Implications A9C is an open TMEM16A channel blocker and gating modifier. These effects require A9C to bind to a region within the pore that is accessible from the extracellular side of the membrane. These data will aid the future drug design of compounds that selectively activate or inhibit TMEM16A channels. PMID:26562072

  2. Phosphoinositide interacting regulator of TRP (Pirt) enhances TRPM8 channel activity in vitro via increasing channel conductance

    PubMed Central

    Tang, Min; Wu, Guang-yi; Dong, Xin-zhong; Tang, Zong-xiang

    2016-01-01

    Aim: Pirt is a two-transmembrane domain protein that regulates the function of a variety of ion channels. Our previous study indicated that Pirt acts as a positive endogenous regulator of the TRPM8 channel. The aim of this study was to investigate the mechanism underlying the regulation of TRPM8 channel by Pirt. Methods: HEK293 cells were transfected with TRPM8+Pirt or TRPM8 alone. Menthol (1 mmol/L) was applied through perfusion to induce TRPM8-mediated voltage-dependent currents, which were recorded using a whole-cell recording technique. PIP2 (10 μmol/L) was added into the electrode pipettes (PI was taken as a control). Additionally, cell-attached single-channel recordings were conducted in CHO cells transfected with TRPM8+Pirt or TRPM8 alone, and menthol (1 mmol/L) was added into the pipette solution. Results: Either co-transfection with Pirt or intracellular application of PIP2 (but not PI) significantly enhanced menthol-induced TRPM8 currents. Furthermore, Pirt and PIP2 synergistically modulated menthol-induced TRPM8 currents. Single-channel recordings revealed that co-transfection with Pirt significantly increased the single channel conductance. Conclusion: Pirt and PIP2 synergistically enhance TRPM8 channel activity, and Pirt regulates TRPM8 channel activity by increasing the single channel conductance. PMID:26657057

  3. Tissue kallikrein activation of the epithelial Na channel

    PubMed Central

    Patel, Ankit B.; Chao, Julie

    2012-01-01

    Epithelial Na Channels (ENaC) are responsible for the apical entry of Na+ in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K+ or low-Na+ diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (INa) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity. PMID:22622459

  4. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  5. A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons

    PubMed Central

    Shruti, Sonal; Clem, Roger L.; Barth, Alison L.

    2009-01-01

    SUMMARY A heritable gain-of-function in BK channel activity has been associated with spontaneous seizures in both rodents and humans. We find that chemoconvulsant-induced seizures induce a gain-of-function in BK channel current that is associated with abnormal, elevated network excitability. Action potential half-width, evoked firing rate, and spontaneous network activity in vitro were all altered 24 hrs following picrotoxin-induced seizures in layer 2/3 pyramidal cells in the neocortex of young mice (P13-P16). Action potential half-width and firing output could be normalized to control values by application of BK channel antagonists in vitro. Thus, both inherited and acquired BK channel gain-of-functions are linked to abnormal excitability. Because BK channel antagonists can reduce elevated firing activity in neocortical neurons, BK channels might serve as a new target for anticonvulsant therapy. PMID:18387812

  6. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition.

    PubMed

    Sobel, Nicolas; Hess, Christian; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Toimil-Molares, M E; Trautmann, Christina

    2015-01-01

    Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7-1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced.

  7. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    PubMed Central

    Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y.

    2015-01-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  8. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    PubMed

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  9. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    PubMed

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  10. Control of trap density in channel layer for the higher stability of oxide thin film transistors under gate bias stress

    NASA Astrophysics Data System (ADS)

    Moon, Y. K.; Kim, W. S.; Kim, K. T.; Han, D. S.; Shin, S. Y.; Park, J. W.

    2011-12-01

    In this study, we investigated turn-on voltage (VON) stability of oxide-based TFTs under constant voltage stress for the TFTs including intrinsic ZnO, Hf-doped ZnO, and Hf-Zn-Sn-O channel layer. Also, to verify the effects of interfacial trap density on the TFTs stability, we employed SiNX and SiO2/SiNX as gate insulator, respectively. We found that the low trap density of the TFTs, including the interfacial trap density between channel and gate insulator, and oxide semiconductor bulk trap density is intimately related to excellent gate bias and temperature stability.

  11. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  12. Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal

    PubMed Central

    Sun, Xiao-Ping; Schlichter, Lyanne C; Stanley, Elis F

    1999-01-01

    A high-conductance calcium-activated potassium channel (BK KCa) was characterized at a cholinergic presynaptic nerve terminal using the calyx synapse isolated from the chick ciliary ganglion.The channel had a conductance of 210 pS in a 150 mM:150 mM K+ gradient, was highly selective for K+ over Na+, and was sensitive to block by external charybdotoxin or tetraethylammonium (TEA) and by internal Ba2+. At +60 mV it was activated by cytoplasmic calcium [Ca2+]i with a Kd of ≈0.5 μM and a Hill coefficient of ≈2.0. At 10 μM [Ca2+]i the channel was 50 % activated (V½) at -8.0 mV with a voltage dependence (Boltzmann slope-factor) of 32.7 mV. The V½ values hyperpolarized with an increase in [Ca2+]i while the slope factors decreased. There were no overt differences in conductance or [Ca2+]i sensitivity between BK channels from the transmitter release face and the non-release face.Open and closed times were fitted by two and three exponentials, respectively. The slow time constants were strongly affected by both [Ca2+]i and membrane potential changes.In cell-attached patch recordings BK channel opening was enhanced by a prepulse permissive for calcium influx through the patch, suggesting that the channel can be activated by calcium ion influx through neighbouring calcium channels.The properties of the presynaptic BK channel are well suited for rapid activation during the presynaptic depolarization and Ca2+ influx that are associated with transmitter release. This channel may play an important role in terminating release by rapid repolarization of the action potential. PMID:10420003

  13. Synchronization of active atomic clocks via quantum and classical channels

    NASA Astrophysics Data System (ADS)

    Roth, Alexander; Hammerer, Klemens

    2016-10-01

    Superradiant lasers based on atomic ensembles exhibiting ultranarrow optical transitions can emit light of unprecedented spectral purity and may serve as active atomic clocks. We consider two frequency-detuned active atomic clocks, which are coupled in a cascaded setup, i.e., as master and slave lasers, and study the synchronization of the slave to the master clock. In a setup where both atomic ensembles are coupled to a common cavity mode, such synchronization phenomena have been predicted by Xu et al. [M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Phys. Rev. Lett. 113, 154101 (2014)., 10.1103/PhysRevLett.113.154101] and experimentally observed by Weiner et al. (J. M. Weiner et al., arXiv:1503.06464). Here we demonstrate that synchronization still occurs in cascaded setups but exhibits distinctly different phase diagrams. We study the characteristics of synchronization in comparison to the case of coupling through a common cavity. We also consider synchronization through a classical channel where light of the master laser is measured phase sensitively and the slave laser is injection locked by feedback and compare to the results achievable by coupling through quantum channels.

  14. Nicotine activates the chemosensory cation channel TRPA1.

    PubMed

    Talavera, Karel; Gees, Maarten; Karashima, Yuji; Meseguer, Víctor M; Vanoirbeek, Jeroen A J; Damann, Nils; Everaerts, Wouter; Benoit, Melissa; Janssens, Annelies; Vennekens, Rudi; Viana, Félix; Nemery, Benoit; Nilius, Bernd; Voets, Thomas

    2009-10-01

    Topical application of nicotine, as used in nicotine replacement therapies, causes irritation of the mucosa and skin. This reaction has been attributed to activation of nicotinic acetylcholine receptors (nAChRs) in chemosensory neurons. In contrast with this view, we found that the chemosensory cation channel transient receptor potential A1 (TRPA1) is crucially involved in nicotine-induced irritation. We found that micromolar concentrations of nicotine activated heterologously expressed mouse and human TRPA1. Nicotine acted in a membrane-delimited manner, stabilizing the open state(s) and destabilizing the closed state(s) of the channel. In the presence of the general nAChR blocker hexamethonium, nociceptive neurons showed nicotine-induced responses that were strongly reduced in TRPA1-deficient mice. Finally, TRPA1 mediated the mouse airway constriction reflex to nasal instillation of nicotine. The identification of TRPA1 as a nicotine target suggests that existing models of nicotine-induced irritation should be revised and may facilitate the development of smoking cessation therapies with less adverse effects.

  15. Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2016-12-01

    The electron mobility in depletion-mode lateral β-Ga2O3(010) metal-oxide-semiconductor field-effect transistors (MOSFETs) with an n-channel formed by Si-ion (Si+) implantation doping was extracted using low-field electrical measurements on FET structures. An undoped Ga2O3 buffer layer protected the channel against charge compensation by suppressing outdiffusion of deep Fe acceptors from the semi-insulating substrate. The molecular beam epitaxy growth temperature was identified as a key process parameter for eliminating parasitic conduction at the buffer/substrate growth interface. Devices with a resistive buffer showed room temperature channel mobilities of 90-100 cm2 V-1 s-1 at carrier concentrations of low- to mid-1017 cm-3, with small in-plane mobility anisotropy of 10-15% ascribable to anisotropic carrier scattering.

  16. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  17. Src Tyrosine Kinase Alters Gating of Hyperpolarization-Activated HCN4 Pacemaker Channel through Tyr531

    PubMed Central

    Li, Chen-Hong; Zhang, Qi; Teng, Bunyen; Mustafa, S. Jamal; Huang, Jian-Ying; Yu, Han-Gang

    2009-01-01

    We recently discovered that the constitutively active Src tyrosine kinase can enhance the HCN4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, PP2, on HCN4 and its mutant channels ex pressed in HEK293 cells using whole-cell patch clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole-cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr531 and Tyr554. Substituting HCN4-Tyr531 with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr554 by phenylalanine did not abolish the effects of PP2 on voltage-dependent activation, but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole-cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src actions on HCN4 channels is Tyr531. PMID:17977941

  18. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  19. Effects of microgravity on liposome-reconstituted cardiac gap junction channeling activity

    NASA Technical Reports Server (NTRS)

    Claassen, D. E.; Spooner, B. S.

    1989-01-01

    Effects of microgravity on cardiac gap junction channeling activity were investigated aboard NASA zero-gravity aircraft. Liposome-reconstituted gap junctions were assayed for channel function during free-fall, and the data were compared with channeling at 1 g. Control experiments tested for 0 g effects on the structural stability of liposomes, and on the enzyme-substrate signalling system of the assay. The results demonstrate that short periods of microgravity do not perturb reconstituted cardiac gap junction channeling activity.

  20. Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities

    SciTech Connect

    Carlson, Thomas J.; Ploskey, Gene R.; Johnson, R. L.; Mueller, Robert P.; Weiland, Mark A.; Johnson, P. N.

    2001-10-19

    This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas.

  1. Planetary-Scale Flow on a Two-Layer Beta-Plane Channel Model with Topography

    NASA Astrophysics Data System (ADS)

    Shin, Won-Tae Kwon

    A two-layer low-order spectral model on a beta-plane channel with topographic, thermal and frictional forcing is designed as a compromise to resolve the relative importance and interaction of several relevant processes. The model is truncated at three zonal modes and three meridional modes. Topography forces the largest scale; the intermediate scale may be destabilized by zonal thermal forcing; the smallest scale permits barotropic scale-interaction and a rudimentary energy cascade. Multiple steady states of the simple one zonal mode and one wave mode (the 1 x 1 model) have been found. There are seven possible steady states: a zonally symmetric state, a topographically resonant state, and five baroclinic and equivalent barotropic wave states. New results emphasize relevance of the barotropic and baroclinic zonal flows; most significantly, multiple steady states exist only for a restricted range of zonal wind and vertical shear in the vicinity of the topographically resonant values. The time-dependent behavior for the 3 x 3 model is classified into six different types: zonally symmetric, steady wave state, steady propagating (Rossby wave), periodic, quasi-periodic and chaotic solutions. The regimes of the solutions for three parameters (thermal forcing, topography and friction) are investigated. The amplitude of zonal flow in wave solutions is weaker with moderate topography and is stronger with larger friction, smaller thermal forcing and higher topography or no topography. The characteristics of solutions are related to the strength of the resultant zonal flow with small or moderate topography. When the intermediate scale wave with largest meridional scale (MODE 12) is baroclinically unstable, this wave maintains the topographic wave ridge upstream of the mountain through the wave-wave interaction and also maintains other waves through form-drag; then, other modes are maintained by various mechanisms. When the topographic wave (MODE 11) becomes unstable with

  2. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel.

    PubMed

    Posson, David J; Rusinova, Radda; Andersen, Olaf S; Nimigean, Crina M

    2015-09-23

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K(+) channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca(2+)-activated K(+) channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K(+). Thus, Ca(2+)-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  3. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel

    NASA Astrophysics Data System (ADS)

    Posson, David J.; Rusinova, Radda; Andersen, Olaf S.; Nimigean, Crina M.

    2015-09-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K+ channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca2+-activated K+ channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K+. Thus, Ca2+-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  4. Hippocampal hypoglycaemia-activated K+ channels: single-channel analysis of glucose and voltage dependence.

    PubMed

    Tromba, C; Salvaggio, A; Racagni, G; Volterra, A

    1994-11-01

    The effect of glucose on kinetics and the voltage-dependent characteristics of glucose-sensitive channels in hippocampal neurons were examined with the cell-attached mode of the patch-clamp technique. Recordings of a 100-pS K+ channel in the presence or absence of glucose demonstrate that the increase in channel open state probability (Po) induced by glucose deprivation (40- to 400-times the control in high-glucose medium) was largely due to a decrease in the global amount of time spent by the channel in a long-lived closed state. The Po value of the same 100-pS channel was also found to increase (by approx. 80-times) following a depolarization of 40 mV from rest, the main factor responsible for this being a dramatic shortening of the long closed-times on depolarization. Another glucose-sensitive channel of smaller conductance (approx. 10 pS) showed a similar dependence of Po on glucose, but different dependence on voltage, with long openings at the same hyperpolarized potentials where the 100-pS channel was almost always closed. Our results indicate that the action of glucose on the kinetics of hippocampal channels closely resembles that of ATP-sensitive channels in pancreatic beta-cells. Furthermore, they indicate that the two types of glucose-sensitive channels found in hippocampal neurons, differing not only in their single-channel conductance but also in the dependence on voltage, could play different roles in the responses of these cells to modified energetic supply.

  5. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane

    PubMed Central

    1988-01-01

    Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(- 7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites. PMID:3171535

  6. Diacylglycerols Activate Mitochondrial Cationic Channel(s) and Release Sequestered Ca2+

    PubMed Central

    Chinopoulos, Christos; Starkov, Anatoly A.; Grigoriev, Sergey; Dejean, Laurent M.; Kinnally, Kathleen W.; Liu, Xibao; Ambudkar, Indu S.; Fiskum, Gary

    2008-01-01

    Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slowreuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGsinduced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brainmitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis. PMID:16167179

  7. MHD electrical boundary layer theory and applications to the performance of channels with partial wraparound electrodes

    NASA Astrophysics Data System (ADS)

    Zwick, S. A.; Doss, E. D.; Pan, Y. C.; Shamma, S. E.

    1981-06-01

    Analytical methods are developed for calculating the potential and currents near boundary singularities caused by electrode edges or abrupt drops in conductivity or in the induction field. A three-dimensional control volume (finite-difference) model for solving the MHD electrical problems in oblique coordinates has been developed, which accounts for the near-wall singular behavior accurately and can be used with relatively sparse grids. Analyses based on the model indicate that, for practical generator design where the electrode pitch is in the order of 1 to 5 cm and the wall temperature less than 2100 K, the performance of diagonal conducting wall (DCW) channels is always superior to that of channels with insulating sidewalls, although the performance of insulating sidewall channel is better at higher wall temperatures. Sidewall electrode extensions up to a wraparound of about 20% of the channel height are shown to cause an increase in power output. The output of diagonally connected channels remains approximately the same for more than 20% wraparound; whereas the power output of Faraday channels drops off with further extensions of the sidewall conductors.

  8. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  9. Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons

    PubMed Central

    Kim, SangSeong; Ma, Limei; Yu, C. Ron

    2011-01-01

    In terrestrial vertebrates, the vomeronasal organ (VNO) detects and transduces pheromone signals. VNO activation is thought to be mediated by the transient receptor potential C2 (TRPC2) channel. The aberrant behavioural phenotypes observed in TRPC2−/− mice are generally attributed to the lost VNO function. Recently, calcium-activated chloride channels have been shown to contribute to VNO activation. Here we show that CACCs can be activated in VNO slice preparations from the TRPC2−/− mice and this activation is blocked by pharmacological agents that inhibit intracellular Ca2+ release. Urine-evoked Cl− current is sufficient to drive spiking changes in VNO neurons from both wild-type (WT) and TRPC2−/− mice. Moreover, blocking Cl− conductance essentially abolishes VNO activation in WT neurons. These results suggest a TRPC2-independent signalling pathway in the VNO and the requirement of calcium-activated chloride channels currents to mediate pheromone activation. Our data further suggest that TRPC2−/− mice retain partial VNO function. PMID:21694713

  10. Purinergic regulation of CFTR and Ca(2+)-activated Cl(-) channels and K(+) channels in human pancreatic duct epithelium.

    PubMed

    Wang, Jing; Haanes, Kristian A; Novak, Ivana

    2013-04-01

    Purinergic agonists have been considered for the treatment of respiratory epithelia in cystic fibrosis (CF) patients. The pancreas, one of the most seriously affected organs in CF, expresses various purinergic receptors. Studies on the rodent pancreas show that purinergic signaling regulates pancreatic secretion. In the present study we aim to identify Cl(-) and K(+) channels in human pancreatic ducts and their regulation by purinergic receptors. Human pancreatic duct epithelia formed by Capan-1 or CFPAC-1 cells were studied in open-circuit Ussing chambers. In Capan-1 cells, ATP/UTP effects were dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3.1). The apical effects of ATP/UTP were greatly potentiated by the IK channel opener DC-EBIO. Determination of RNA and protein levels revealed that Capan-1 cells have high expression of TMEM16A (ANO1), a likely CaCC candidate. We conclude that in human pancreatic duct cells ATP/UTP regulates via purinergic receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct function should consider sidedness of purinergic signaling and the essential role of K(+) channels.

  11. Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals.

    PubMed

    Jin, Xin; Shah, Sihab; Du, Xiaona; Zhang, Hailin; Gamper, Nikita

    2016-01-01

    Ca(2+)-activated chloride channels (CaCCs) regulate numerous physiological processes including epithelial transport, smooth muscle contraction and sensory processing. Anoctamin-1 (ANO1, TMEM16A) is a principal CaCC subunit in many cell types, yet our understanding of the mechanisms of ANO1 activation and regulation are only beginning to emerge. Ca(2+) sensitivity of ANO1 is rather low and at negative membrane potentials the channel requires several micromoles of intracellular Ca(2+) for activation. However, global Ca(2+) levels in cells rarely reach such levels and, therefore, there must be mechanisms that focus intracellular Ca(2+) transients towards the ANO1 channels. Recent findings indeed indicate that ANO1 channels often co-localize with sources of intracellular Ca(2+) signals. Interestingly, it appears that in many cell types ANO1 is particularly tightly coupled to the Ca(2+) release sites of the intracellular Ca(2+) stores. Such preferential coupling may represent a general mechanism of ANO1 activation in native tissues.

  12. A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus

    PubMed Central

    Scott, L. L.; Brecht, E. J.; Philpo, A.; Iyer, S.; Wu, N. S.; Mihic, S. J.; Aldrich, R. W.; Pierce, J.; Walton, J. P.

    2017-01-01

    Large conductance calcium-activated (BK) channels are broadly expressed in neurons and muscle where they modulate cellular activity. Decades of research support an interest in pharmaceutical applications for modulating BK channel function. Here we report a novel BK channel-targeted peptide with functional activity in vitro and in vivo. This 9-amino acid peptide, LS3, has a unique action, suppressing channel gating rather than blocking the pore of heterologously expressed human BK channels. With an IC50 in the high picomolar range, the apparent affinity is higher than known high affinity BK channel toxins. LS3 suppresses locomotor activity via a BK channel-specific mechanism in wild-type or BK channel-humanized Caenorhabditis elegans. Topical application on the dural surface of the auditory midbrain in mouse suppresses sound evoked neural activity, similar to a well-characterized pore blocker of the BK channel. Moreover, this novel ion channel-targeted peptide rapidly crosses the BBB after systemic delivery to modulate auditory processing. Thus, a potent BK channel peptide modulator is open to neurological applications, such as preventing audiogenic seizures that originate in the auditory midbrain. PMID:28195225

  13. Functional Reconstitution and Channel Activity Measurements of Purified Wildtype and Mutant CFTR Protein

    PubMed Central

    Eckford, Paul D. W.; Li, Canhui; Bear, Christine E.

    2015-01-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates. PMID:25867140

  14. Voltage-dependent potassium channels in activated rat microglia.

    PubMed Central

    Nörenberg, W; Gebicke-Haerter, P J; Illes, P

    1994-01-01

    equimolar concentration of Cs+, and the extracellular application of tetraethylammonium and quinine inhibited both currents. 7. An increase of extracellular Ca2+ from 2 to 20 mM resulted in outwardly rectifying K+ channels activating at more positive potentials. Omission of Ca2+ from the extracellular medium had the opposite effect. When the intracellular free Ca2+ was increased from 0.01 to 1 microM, the outward current amplitudes were depressed. The Ca2+ ionophore A23187 had a similar effect. 8. LPS-treated microglial cells possess inwardly and outwardly rectifying K+ channels. The physiological and pharmacological characteristics of these two channel populations are markedly different.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7514664

  15. Glycosylation-dependent activation of epithelial sodium channel by solnatide.

    PubMed

    Shabbir, Waheed; Tzotzos, Susan; Bedak, Minela; Aufy, Mohammad; Willam, Anita; Kraihammer, Martin; Holzner, Alexander; Czikora, Istvan; Scherbaum-Hazemi, Parastoo; Fischer, Hendrik; Pietschmann, Helmut; Fischer, Bernhard; Lucas, Rudolf; Lemmens-Gruber, Rosa

    2015-12-15

    Dysfunction of the epithelial sodium channel (ENaC), which regulates salt and water homeostasis in epithelia, causes several human pathological conditions, including pulmonary oedema. This is a potentially lethal complication of acute lung injury at least partially caused by dysfunctional alveolar liquid clearance, which in turn impairs alveolar gas exchange. Solnatide (named TIP-peptide, AP301), a 17 residue peptide mimicking the lectin-like domain of TNF has been shown to activate ENaC in several experimental animal models of acute lung injury and is being evaluated as a potential therapy for pulmonary oedema. The peptide has recently completed phase 1 and 2a clinical trials. In this study, we identify a glycosylation-dependent mechanism that preserves ENaC function and expression. Since our previous data suggested that the pore-forming subunits of ENaC are essential for maximal current activation by solnatide, we performed single- and multi-N-glycosylation site mutations in αN232,293,312,397,511Q- and δN166,211,384Q-subunits, in order to identify crucial residues for interaction with solnatide within the extracellular loop of the channel. Additionally, we generated αL576X and αN232,293,312,397,511Q,L576X deletion mutants of ENaC-α, since we have previously demonstrated that the carboxy terminal domain of this subunit is also involved in its interaction with solnatide. In cells expressing αN232,293,312,397,511Q,L576Xβγ-hENaC or δN166,311,384Q,D552Xβγ-hENaC activation by solnatide, as measured in whole cell patch clamp mode, was completely abolished, whereas it was attenuated in αL576Xβγ-hENaC- and δD552Xβγ-hENaC-expressing cells. Taken together, our findings delineate an N-glycan dependent interaction between the TIP-peptide and ENaC leading to normalization of both sodium and fluid absorption in oedematous alveoli to non-oedematous levels.

  16. Effects of N-glycosylation on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels.

    PubMed

    Li, Mo; Tonggu, Lige; Tang, Lan; Wang, Liguo

    2015-02-15

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization and conduct an inward cation current, which contributes to rhythmic electrical activity of neural and cardiac pacemaker cells. HCN channels have been shown to undergo N-linked glycosylation, and the N-glycosylation has been shown to be required for membrane trafficking and possibly function. In this study, recombinant wild-type (WT) and glycosylation-defective N380Q HCN2 channels were individually or co-expressed in HEK-293 cells. We demonstrate that glycosylation is required for trafficking to the plasma membrane and for the stability of HCN channels in the cell. Interestingly, the heteromeric HCN2 channels of WT and glycosylation-defective N380Q have been observed on cell membranes, indicating that not all four subunits of a tetrameric HCN2 channel need to be glycosylated for HCN2 channels to traffic to plasma membranes. Subsequently, we investigate the effect of N-glycosylation on the function of HCN2 channels. We developed a fluorescence-based flux assay, which makes it possible to establish a negative potential inside liposomes to open HCN2 channels. Using this flux assay, we demonstrate that glycosylation-defective N380Q HCN2 channels reconstituted into liposomes function similarly to WT HCN2 channels. This suggests that N-glycosylation is not required for HCN2 channels to function.

  17. A Leucine Zipper Motif Essential for Gating of Hyperpolarization-activated Channels*

    PubMed Central

    Wemhöner, Konstantin; Silbernagel, Nicole; Marzian, Stefanie; Netter, Michael F.; Rinné, Susanne; Stansfeld, Phillip J.; Decher, Niels

    2012-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pacemakers in cardiac myocytes and neurons. Although their membrane topology closely resembles that of voltage-gated K+ channels, the mechanism of their unique gating behavior in response to hyperpolarization is still poorly understood. We have identified a highly conserved leucine zipper motif in the S5 segment of HCN family members. In order to study the role of this motif for channel function, the leucine residues of the zipper were individually mutated to alanine, arginine, or glutamine residues. Leucine zipper mutants traffic to the plasma membrane, but the channels lose their sensitivity to open upon hyperpolarization. Thus, our data indicate that the leucine zipper is an important molecular determinant for hyperpolarization-activated channel gating. Residues of the leucine zipper interact with the adjacent S6 segment of the channel. This interaction is essential for voltage-dependent gating of the channel. The lower part of the leucine zipper, at the intracellular mouth of the channel, is important for stabilizing the closed state. Mutations at these sites increase current amplitudes or result in channels with deficient closing and increased min-Po. Our data are further supported by homology models of the open and closed state of the HCN2 channel pore. Thus, we conclude that the leucine zipper of HCN channels is a major determinant for hyperpolarization-activated channel gating. PMID:23048023

  18. Activation and deactivation of vibronic channels in intact phycocyanin rods.

    PubMed

    Nganou, C; David, L; Meinke, R; Adir, N; Maultzsch, J; Mkandawire, M; Pouhè, D; Thomsen, C

    2014-02-28

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm(-1) is assigned to the C-C stretching vibration while the mode at 454 cm(-1) is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm(-1) does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm(-1) rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  19. Activation and deactivation of vibronic channels in intact phycocyanin rods

    NASA Astrophysics Data System (ADS)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  20. Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Dong, Junchen; Cong, Yingying; Zhang, Xiaomi; Li, Huijin; Yu, Wen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-04-01

    By applying a novel active layer comprising ZnO/Al2O3 multilayers, we have successfully fabricated fully transparent high-performance thin-film transistors (TFTs) with a bottom gate structure by atomic layer deposition (ALD) at low temperature. The effects of various ZnO/Al2O3 multilayers were studied to improve the morphological and electrical properties of the devices. We found that the ZnO/Al2O3 multilayers have a significant impact on the performance of the TFTs, and that the TFTs with the ZnO/15-cycle Al2O3/ZnO structure exhibit superior performance with a low threshold voltage (V TH) of 0.9 V, a high saturation mobility (μsat) of 145 cm2 V‑1 s‑1, a steep subthreshold swing (SS) of 162 mV/decade, and a high I on/I off ratio of 3.15 × 108. The enhanced electrical properties were explained by the improved crystalline nature of the channel layer and the passivation effect of the Al2O3 layer.

  1. Nitric Oxide Regulates Neuronal Activity via Calcium-Activated Potassium Channels

    PubMed Central

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-01-01

    Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons. PMID:24236040

  2. Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity.

    PubMed

    Ader, Christian; Schneider, Robert; Hornig, Sönke; Velisetty, Phanindra; Vardanyan, Vitya; Giller, Karin; Ohmert, Iris; Becker, Stefan; Pongs, Olaf; Baldus, Marc

    2009-09-16

    Potassium (K(+))-channel gating is choreographed by a complex interplay between external stimuli, K(+) concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA-Kv1.3 channel to delineate K(+), pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K(+) and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K(+) ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K(+)-channel pore.

  3. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels.

    PubMed

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-09-02

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl(-) channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction.

  4. Ca2+ influx through L-type Ca2+ channels and transient receptor potential channels activate pathological hypertrophy signaling

    PubMed Central

    Gao, Hui; Wang, Fang; Wang, Wei; Makarewich, Catherine A.; Zhang, Hongyu; Kubo, Hajime; Berretta, Remus M.; Barr, Larry A.; Molkentin, Jeffrey D.; Houser, Steven R.

    2012-01-01

    Common cardiovascular diseases such as hypertension and myocardial infarction require that myocytes develop greater than normal force to maintain cardiac pump function. This requires increases in [Ca2+]. These diseases induce cardiac hypertrophy and increases in [Ca2+] are known to be an essential proximal signal for activation of hypertrophic genes. However, the source of “hypertrophic” [Ca2+] is not known and is the topic of this study. The role of Ca2+ influx through L-type Ca2+ channels (LTCC), T-type Ca2+ channels (TTCC) and transient receptor potential (TRP) channels on the activation of Calcineurin (Cn) – Nuclear Factor of Activated T cells (NFAT) signaling and myocyte hypertrophy was studied. Neonatal rat (NRVMs) and adult feline (AFVM) ventricular myocytes were infected with an adenovirus containing NFAT-GFP, to determine factors that could induce NFAT nuclear translocation. Four millimolar Ca2+ or pacing induced NFAT nuclear translocation. This effect was blocked by Cn inhibitors. In NRVMs Nifedipine (Nif, LTCC antagonist) blocked high Ca2+-induced NFAT nuclear translocation while SKF-96365 (TRP channel antagonist) and Nickel (Ni, TTCC antagonist) were less effective. The relative potency of these antagonists against Ca2+ induced NFAT nuclear translocation (Nif>SKF-96365>Ni) was similar to their effects on Ca2+ transients and the LTCC current. Infection of NRVM with viruses containing TRP channels also activated NFAT-GFP nuclear translocation and caused myocyte hypertrophy. TRP effects were reduced by SKF-96365, but were more effectively antagonized by Nif. These experiments suggest that Ca2+ influx through LTCCs is the primary source of Ca2+ to activate Cn-NFAT signaling in NRVMs and AFVMs. While TRP channels cause hypertrophy, they appear to do so through a mechanism involving Ca2+ entry via LTCCs. PMID:22921230

  5. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.

    PubMed

    Lin, Shiang-Chi; Yen, Pei-Wen; Peng, Chien-Chung; Tung, Yi-Chung

    2012-09-07

    Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic

  6. Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma.

    PubMed

    Gaurav, Rohit; Bewtra, Againdra K; Agrawal, Devendra K

    2015-08-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is responsible for respiratory burst in immune cells. Chloride channel 3 (CLC3) has been linked to the respiratory burst in eosinophils and neutrophils. The effect of cytokines and the involvement of CLC3 in the regulation of NADPH-dependent oxidative stress and on cytokine-mediated migration of eosinophils are not known. Human peripheral blood eosinophils were isolated from healthy individuals and from individuals with asthma by negative selection. Real-time PCR was used to detect the expression of NADPH oxidases in eosinophils. Intracellular reactive oxygen species (ROS) measurement was done with flow cytometry. Superoxide generation was measured with transforming growth factor (TGF)-β, eotaxin, and CLC3 blockers. CLC3 dependence of eosinophils in TGF-β- and eotaxin-induced migration was also examined. The messenger RNA (mRNA) transcripts of NADPH oxidase (NOX) 2, dual oxidase (DUOX) 1, and DUOX2 were detected in blood eosinophils, with very low expression of NOX1, NOX3, and NOX5 and no NOX4 mRNA. The level of NOX2 mRNA transcripts increased with disease severity in the eosinophils of subjects with asthma compared with healthy nonatopic volunteers. Change in granularity and size in eosinophils, but no change in intracellular ROS, was observed with phorbol myristate acetate (PMA). PMA, TGF-β, and eotaxin used the CLC3-dependent pathway to increase superoxide radicals. TGF-β and eotaxin induced CLC3-dependent chemotaxis of eosinophils. These findings support the requirement of CLC3 in the activation and migration of human blood eosinophils and may provide a potential novel therapeutic target to regulate eosinophil hyperactivity in allergic airway inflammation in asthma.

  7. Local and Sustained Activity of Doxycycline Delivered with Layer-by-Layer Microcapsules.

    PubMed

    Luo, Dong; Gould, David J; Sukhorukov, Gleb B

    2016-04-11

    Achieving localized delivery of small molecule drugs has the potential to increase efficacy and reduce off target and side effects associated with systemic distribution. Herein, we explore the potential use of layer-by-layer (LbL) assembled microcapsules for the delivery of doxycycline. Absorbance of doxycycline onto core dextran sulfate of preassembled microcapsules provides an efficient method to load both synthetic and biodegradable microcapsules with the drug. Application of an outer layer lipid coat enhances the sustained in vitro release of doxycycline from both microcapsule types. To monitor doxycycline delivery in a biological system, C2C12 mouse myoblasts are engineered to express EGFP under the control of the optimized components of the tetracycline regulated gene expression system. Microcapsules are not toxic to these cells, and upon delivery to the cells, EGFP is more efficiently induced in those cells that contain engulfed microcapsules and monitored EGFP expression clearly demonstrates that synthetic microcapsules with a DPPC coat are the most efficient for sustain intracellular delivery. Doxycycline released from microcapsules also displayed sustained activity in an antimicrobial growth inhibition assay compared with doxycycline solution. This study reveals the potential for LbL microcapsules in small molecule drug delivery and their feasible use for achieving prolonged doxycycline activity.

  8. Mutating three residues in the bovine rod cyclic nucleotide-activated channel can switch a nucleotide from inactive to active.

    PubMed Central

    Scott, S P; Cummings, J; Joe, J C; Tanaka, J C

    2000-01-01

    Cyclic nucleotide-gated (CNG) channels, which were initially studied in retina and olfactory neurons, are activated by cytoplasmic cGMP or cAMP. Detailed comparisons of nucleotide-activated currents using nucleotide analogs and mutagenesis revealed channel-specific residues in the nucleotide-binding domain that regulate the binding and channel-activation properties. Of particular interest are N(1)-oxide cAMP, which does not activate bovine rod channels, and Rp-cGMPS, which activates bovine rod, but not catfish, olfactory channels. Previously, we showed that four residues coordinate the purine interactions in the binding domain and that three of these residues vary in the alpha subunits of the bovine rod, catfish, and rat olfactory channels. Here we show that both N(1)-oxide cAMP and Rp-cGMPS activate rat olfactory channels. A mutant of the bovine rod alpha subunit, substituted with residues from the rat olfactory channel at the three variable positions, was weakly activated by N(1)-oxide cAMP, and a catfish olfactory-like bovine rod mutant lost activation by Rp-cGMPS. These experiments underscore the functional importance of purine contacts with three residues in the cyclic nucleotide-binding domain. Molecular models of nucleotide analogs in the binding domains, constructed with AMMP, showed differences in the purine contacts among the channels that might account for activation differences. PMID:10777730

  9. Selectivity filter gating in large-conductance Ca(2+)-activated K+ channels.

    PubMed

    Thompson, Jill; Begenisich, Ted

    2012-03-01

    Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of K(v) channels is well established, it is not clear if such a cytoplasmic gate exists in all K(+) channels. Some studies on large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker "ball" peptide (BP) on BK channels with either K(+) or Rb(+) as the permeant ion. When tested in K(+) solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb(+) replaced K(+) as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these K(v) channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating.

  10. Selectivity filter gating in large-conductance Ca2+-activated K+ channels

    PubMed Central

    Thompson, Jill

    2012-01-01

    Membrane voltage controls the passage of ions through voltage-gated K (Kv) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of Kv channels is well established, it is not clear if such a cytoplasmic gate exists in all K+ channels. Some studies on large-conductance, voltage- and Ca2+-activated K+ (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker “ball” peptide (BP) on BK channels with either K+ or Rb+ as the permeant ion. When tested in K+ solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb+ replaced K+ as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these Kv channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating. PMID:22371364

  11. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation

    PubMed Central

    Baranovic, Jelena; Chebli, Miriam; Salazar, Hector; Carbone, Anna L.; Faelber, Katja; Lau, Albert Y.; Daumke, Oliver; Plested, Andrew J.R.

    2016-01-01

    Ionotropic glutamate receptors are postsynaptic tetrameric ligand-gated channels whose activity mediates fast excitatory transmission. Glutamate binding to clamshell-shaped ligand binding domains (LBDs) triggers opening of the integral ion channel, but how the four LBDs orchestrate receptor activation is unknown. Here, we present a high-resolution x-ray crystal structure displaying two tetrameric LBD arrangements fully bound to glutamate. Using a series of engineered metal ion trapping mutants, we showed that the more compact of the two assemblies corresponds to an arrangement populated during activation of full-length receptors. State-dependent cross-linking of the mutants identified zinc bridges between the canonical active LBD dimers that formed when the tetramer was either fully or partially bound by glutamate. These bridges also stabilized the resting state, consistent with the recently published full-length apo structure. Our results provide insight into the activation mechanism of glutamate receptors and the complex conformational space that the LBD layer can sample. PMID:26910426

  12. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Kane, D.L.

    1986-01-01

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  13. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  14. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    NASA Astrophysics Data System (ADS)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  15. Voltage-induced slow activation and deactivation of mechanosensitive channels in Xenopus oocytes.

    PubMed Central

    Silberberg, S D; Magleby, K L

    1997-01-01

    1. The relationship between stretch and voltage activation of mechanosensitive (MS) channels from Xenopus oocytes was studied in excised patches of membrane using the patch clamp technique. 2. As is characteristic of MS channels to oocytes, stretching the membrane by applying negative pressure to the patch pipette at -50 mV activated the MS channels rapidly. The channels then deactivated rapidly when the stretch was removed. The stretch-activated MS channels entered a main conductance level (45 pS) and one or more subconductance levels in the range of about 75-90% of the main conductance level. 3. In the absence of stretch, a depolarizing step from -50 to +50 mV activated apparent MS channels after long delays of typically 1-20 s (range, 100 ms to 6 min). Upon repolarization, the channels deactivated slowly with a single exponential (mean time constant of 4 s) or double exponential (mean time constants of 0.8 and 3 s) time course. 4. Delayed activation with depolarization and slow deactivation upon repolarization were also observed for apparent MS channels in on-cell patches. 5. The voltage-activated channels were cation selective and had the same selectivity and conductance levels as the stretch activated MS channels. Applying stretch during voltage-induced channel activity did not activate any additional channels, and the same maximal number of channels were typically activated by either stretch or by voltage. These observations suggest that voltage activates the same MS channels that are activated by stretch. 6. The opening of MS channels following steps to +50 mV occurred in an apparently co-operative manner in 70% of the excised patches containing multiple MS channels. 7. In the absence of stretch, the opening frequency and open probability of MS channels increased with depolarization in the examined voltage range of -60 to -20 mV. 8. Applying a brief stretch during the delay to activation at +50 mV activated the MS channels rapidly, which then remained active

  16. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells.

    PubMed

    Hu, Xiang-Qun; Zhang, Lubo

    2012-09-01

    Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.

  17. Spatio-temporal modeling of Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Apanasovich, T. V.; Streletskiy, D. A.; Shiklomanov, N. I.

    2015-12-01

    Arctic Regions are experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climate and environmental changes and plays an important role in the functioning of Arctic ecosystems, planning, and economic activities. Knowledge about spatio-temporal variability of ALT is crucial for environmental and engineering applications. The objective of this study is to provide the methodology to model and estimate spatio-temporal variation in the active layer thickness (ALT) at several sites located in the Circumpolar region spanning the Alaska North Slope, and to demonstrate its use in spatio-temporal interpolation as well as time-forward prediction. In our data analysis we estimate a parametric trend and examine residuals for the presence of spatial and temporal dependence. We propose models that provide a description of residual space-time variability in ALT. Formulations that take into account interaction among spatial and temporal components are also developed. Moreover, we compare our models to naive models in which residual spatio-temporal and temporal correlations are not considered. The predicted root mean squared and absolute errors are significantly reduced when our approach is employed. While the methodology is developed in the context of ALT, it can also be applied to model and predict other environmental variables which use similar spatio-temporal sampling designs.

  18. Characterization, performance modeling, and design of an active capping remediation project in a heavily polluted urban channel.

    PubMed

    Yin, Ke; Viana, Priscilla; Zhao, Xiuhong; Rockne, Karl

    2010-07-15

    Collateral Channel is a heavily polluted former navigation slip to the Chicago Sanitary and Ship Canal (Illinois, USA). Characterization of sediment cores taken in the channel show high levels of heavy metals, polycyclic aromatic hydrocarbons (PAHs) and other contaminants in deposited sediment dating back to the 1800's. Of these, PAHs were the contaminants of greatest concern based upon exceedance of sediment contamination criteria (Sigma(16) PAHs up to 1500mg/kg). Benthic animal counts revealed a lack of biodiversity, with relatively low levels of small tubificid oligochaetes (generally <3000/m(2)) in surficial sediments. Comparison of surficial sediment contaminant levels between 1995 and 2005 showed few decreases in contaminant levels, indicating a lack of "natural recovery" processes occurring in the channel. These results led to an analysis of sediment amendments for an active capping demonstration project in the channel using transport models developed in our previous work (Viana et al., 2008). Based on the sediment characterization and modeling results, the active capping design will be focused on organic contaminant sequestration through the use of organoclay. A site-specific difficulty is the substantial rates of gas ebullition from anaerobic organic matter biodegradation in the sediments, particularly in the summer months. These gases can open advective channels that may result in substantial pollution release and compromise cap effectiveness, and thus the capping scenario must control for such releases. The active capping layer will underlay a sloped sand layer and a high permeability gas venting system to allow biogenically-produced gas migration to shoreline collectors through an innovative support grid. The cap will include an overlaying wetland to remove nutrients from the adjoining Chicago River and provide a public recreational space.

  19. Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531.

    PubMed

    Li, Chen-Hong; Zhang, Qi; Teng, Bunyen; Mustafa, S Jamal; Huang, Jian-Ying; Yu, Han-Gang

    2008-01-01

    We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).

  20. Vibration control of cylindrical shells using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  1. Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter.

    PubMed

    Tilegenova, Cholpon; Cortes, D Marien; Cuello, Luis G

    2017-03-21

    Mode-shift or hysteresis has been reported in ion channels. Voltage-shift for gating currents is well documented for voltage-gated cation channels (VGCC), and it is considered a voltage-sensing domain's (VSD) intrinsic property. However, uncoupling the Shaker K(+) channel's pore domain (PD) from the VSD prevented the mode-shift of the gating currents. Consequently, it was proposed that an open-state stabilization of the PD imposes a mechanical load on the VSD, which causes its mode-shift. Furthermore, the mode-shift displayed by hyperpolarization-gated cation channels is likely caused by structural changes at the channel's PD similar to those underlying C-type inactivation. To demonstrate that the PD of VGCC undergoes hysteresis, it is imperative to study its gating process in the absence of the VSD. A back-door strategy is to use KcsA (a K(+) channel from the bacteria Streptomyces lividans) as a surrogate because it lacks a VSD and exhibits an activation coupled to C-type inactivation. By directly measuring KcsA's activation gate opening and closing in conditions that promote or halt C-type inactivation, we have found (i) that KcsA undergoes mode-shift of gating when having K(+) as the permeant ion; (ii) that Cs(+) or Rb(+), known to halt C-inactivation, prevented mode-shift of gating; and (iii) that, in the total absence of C-type inactivation, KcsA's mode-shift was prevented. Finally, our results demonstrate that an allosteric communication causes KcsA's activation gate to "remember" the conformation of the selectivity filter, and hence KcsA requires a different amount of energy for opening than for closing.

  2. Typology of nonlinear activity waves in a layered neural continuum.

    PubMed

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  3. A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria.

    PubMed

    Koszela-Piotrowska, Izabela; Matkovic, Karolina; Szewczyk, Adam; Jarmuszkiewicz, Wieslawa

    2009-11-11

    In the present study, we describe the existence of a novel potassium channel in the plant [potato (Solanum tuberosum) tuber] mitochondrial inner membrane. We found that substances known to modulate large-conductance calcium-activated potassium channel activity influenced the bioenergetics of potato tuber mitochondria. In isolated mitochondria, Ca2+ and NS1619 {1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-ben-zimidazole-2-one; a potassium channel opener} were found to depolarize the mitochondrial membrane potential and to stimulate resting respiration. These effects were blocked by iberiotoxin (a potassium channel inhibitor) in a potassium-dependent manner. Additionally, the electrophysiological properties of the large-conductance potassium channel present in the potato tuber inner mitochondrial membrane are described in a reconstituted system, using planar lipid bilayers. After incorporation in 50/450 mM KCl gradient solutions, we recorded large-conductance potassium channel activity with conductance from 502+/-15 to 615+/-12 pS. The probability of channel opening was increased by Ca2+ and reduced by iberiotoxin. Immunological analysis with antibodies raised against the mammalian plasma-membrane large-conductance Ca2+-dependent K+ channel identified a pore-forming alpha subunit and an auxiliary beta2 subunit of the channel in potato tuber mitochondrial inner membrane. These results suggest that a large-conductance calcium-activated potassium channel similar to that of mammalian mitochondria is present in potato tuber mitochondria.

  4. Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative

    PubMed Central

    Nache, Vasilica; Schulz, Eckhard; Zimmer, Thomas; Kusch, Jana; Biskup, Christoph; Koopmann, Rolf; Hagen, Volker; Benndorf, Klaus

    2005-01-01

    Cyclic nucleotide-gated (CNG) ion channels play a key role in the sensory transduction of vision and olfaction. The channels are opened by the binding of cyclic nucleotides. Native olfactory CNG channels are heterotetramers of CNGA2, CNGA4, and CNGB1b subunits. Upon heterologous expression, only CNGA2 subunits can form functional homotetrameric channels. It is presently not known how the binding of the ligands to the four subunits is translated to channel opening. We studied activation of olfactory CNG channels by photolysis-induced jumps of cGMP or cAMP, two cyclic nucleotides with markedly different apparent affinity. It is shown that at equal degree of activation, the activation time course of homotetrameric channels is similar with cGMP and cAMP and it is also similar in homo- and heterotetrameric channels with the same cyclic nucleotide. Kinetic models were globally fitted to activation time courses of homotetrameric channels. While all models containing equivalent binding sites failed, a model containing three binding sites with a ligand affinity high–low–high described the data adequately. Only the second binding step switches from a very low to a very high open probability. We propose a unique gating mechanism for homotetrameric and heterotetrameric channels that involves only three highly cooperative binding steps. PMID:16081488

  5. Simulation study of 14-nm-gate III-V trigate field effect transistor devices with In1-xGaxAs channel capping layer

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Hao; Li, Yiming

    2015-06-01

    In this work, we study characteristics of 14-nm-gate InGaAs-based trigate MOSFET (metal-oxide-semiconductor field effect transistor) devices with a channel capping layer. The impacts of thickness and gallium (Ga) concentration of the channel capping layer on the device characteristic are firstly simulated and optimized by using three-dimensional quantum-mechanically corrected device simulation. Devices with In1-xGaxAs/In0.53Ga0.47As channels have the large driving current owing to small energy band gap and low alloy scattering at the channel surface. By simultaneously considering various physical and switching properties, a 4-nm-thick In0.68Ga0.32As channel capping layer can be adopted for advanced applications. Under the optimized channel parameters, we further examine the effects of channel fin angle and the work-function fluctuation (WKF) resulting from nano-sized metal grains of NiSi gate on the characteristic degradation and variability. To maintain the device characteristics and achieve the minimal variation induced by WKF, the physical findings of this study indicate a critical channel fin angle of 85o is needed for the device with an averaged grain size of NiSi below 4x4 nm2.

  6. Cell membrane stretch activates intermediate-conductance Ca2+-activated K+ channels in arterial smooth muscle cells.

    PubMed

    Hayabuchi, Yasunobu; Nakaya, Yutaka; Mawatari, Kazuaki; Inoue, Miki; Sakata, Miho; Kagami, Shoji

    2011-01-01

    The aim of this study is to determine the signal transduction of membrane stretch on intermediate-conductance Ca(2+)-activated K(+) (IKca) channels in rat aorta smooth muscle cells using the patch-clamp technique. To stretch the cell membrane, both suction to the rear end of patch pipette and hypotonic shock were used. In cell-attached and inside-out patch configurations, the open probability of IKca channels increased when 20- to 45-mmHg suction was applied. Hyposmotic swelling efficiently increased IKca channel current. When the Ca(2+)-free solution was superfused, the activation of IKca current by the hyposmotic swelling was reduced. Furthermore, gadolinium (Gd(3+)) attenuated the activation of IKca channels induced by hyposmotic swelling, whereas nicardipine did not. In the experiments with Ca(2+)-free bath solution, pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, completely abolished the stretch-induced activation of IKca currents. The stretch-induced activation of IKca channels was strongly inhibited by cytochalasin D, indicating a role for the F-actin in modulation of IKca channels by changes in cell stretching. These data suggest that cell membrane stretch activates IKca channels. In addition, the activation is associated with extracellular Ca(2+) influx through stretch-activated nonselective cation channels, and is also modulated by the F-actin cytoskeleton and the activation of PKC.

  7. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  8. Error-resilient low-delay H.264/802.11 transmission via cross-layer coding with feedback channel

    NASA Astrophysics Data System (ADS)

    Chiew, Tuan-Kiang; Hill, Paul; Ferre, Pierre; Agrafiotis, Dimitris; Chung-How, James T. H.; Nix, Andy; Bull, David R.

    2005-07-01

    We propose a method of providing error resilient H.264 video over 802.11 wireless channels by using a feedback mechanism which does not incur an additional delay typically found in ARQ-type feedback. Our system uses the TCP/IP and UDP/IP protocols, located between the medium access control (MAC) layer of 802.11, and the H.264 video application layer. The UDP protocol is used to transfer time sensitive video data without delay; however, packet losses introduce excessive artifacts which propagate to subsequent frames. Error resilience is achieved by a feedback mechanism-the decoder conveys the packet-loss information as small TCP packets to the video source as negative acknowledgements. By using multiple reference frames, slice-based coding and timely intra-refresh, the encoder makes use of this feedback information to perform subsequent temporal prediction without propagating the error to future frames. We take static measurements of the actual channel and use the packet loss and delay patterns to test our algorithms. Simulations show an improvement of 0.5~5 dB in PSNR over plain UDP-based video transmission. Our method improves the overall quality of service of interactive video transmission over wireless LAN; it can be used as a model for future media-aware wireless network protocol designs.

  9. Transcainide causes two modes of open-channel block with different voltage sensitivities in batrachotoxin-activated sodium channels.

    PubMed Central

    Zamponi, G W; French, R J

    1994-01-01

    Transcainide, a complex derivative of lidocaine, blocks the open state of BTX-activated sodium channels from bovine heart and rat skeletal muscle in two distinct ways. When applied to either side of the membrane, transcainide caused discrete blocking events a few hundred milliseconds in duration (slow block), and a concomitant reduction in apparent single-channel amplitude, presumably because of rapid block beyond the temporal resolution of our recordings (fast block). We quantitatively analyzed block from the cytoplasmic side. Both modes of block occurred via binding of the drug to the open channel, approximately followed 1:1 stoichiometry, and were similar for both channel subtypes. For slow block, the blocking rate increased, and the unblocking rate decreased with depolarization, yielding an overall enhancement of block at positive potentials, and suggesting a blocking site at an apparent electrical distance about 45% of the way from the cytoplasmic end of the channel (z delta approximately 0.45). In contrast, the fast blocking mode was only slightly enhanced by depolarization (z delta approximately 0.15). Phenomenologically, the bulky and complex transcainide molecule combines the almost voltage-insensitive blocking action of phenylhydrazine (Zamponi and French, 1994a (companion paper)) with a slow open-channel blocking action that shows a voltage dependence typical of simpler amines. Only the slower blocking mode was sensitive to the removal of external sodium ions, suggesting that the two types of block occur at distinct sites. Dose-response relations were also consistent with independent binding of transcainide to two separate sites on the channel. PMID:7811913

  10. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal

    PubMed Central

    Gibbons, Simon J.; Farrugia, Gianrico; Sneyd, James; Cheng, Leo K.

    2014-01-01

    Interstitial cells of Cajal (ICC) act as pacemaker cells in the gastrointestinal tract by generating electrical slow waves to regulate rhythmic smooth muscle contractions. Intrinsic Ca2+ oscillations in ICC appear to produce the slow waves by activating pacemaker currents, currently thought to be carried by the Ca2+-activated Cl− channel anoctamin 1 (Ano1). In this article we present a novel model of small intestinal ICC pacemaker activity that incorporates store-operated Ca2+ entry and a new model of Ano1 current. A series of simulations were carried out with the ICC model to investigate current controversies about the reversal potential of the Ano1 Cl− current in ICC and to predict the characteristics of the other ion channels that are necessary to generate slow waves. The model results show that Ano1 is a plausible pacemaker channel when coupled to a store-operated Ca2+ channel but suggest that small cyclical depolarizations may still occur in ICC in Ano1 knockout mice. The results predict that voltage-dependent Ca2+ current is likely to be negligible during the slow wave plateau phase. The model shows that the Cl− equilibrium potential is an important modulator of slow wave morphology, highlighting the need for a better understanding of Cl− dynamics in ICC. PMID:24481603

  11. Entropy Generation In The Viscous Layer Of A Turbulent Channel Flow

    SciTech Connect

    D. M. McEligot; E. J. Walsh; E. Laurien; James R. Wolf

    2006-09-01

    The local (pointwise) entropy generation rate per unit volume S''' is a key to improving many energy processes and applications. Entropy generation due to friction occurs from viscous dissipation of mean-flow kinetic energy (called "direct dissipation") and dissipation of turbulent kinetic energy into thermal energy ("indirect" or turbulent dissipation). The objective of the present study is to compare two approaches for the prediction of S''' for the viscous layer in near asymptotic (high Reynolds number) turbulent flows. By employing available direct numerical simulations (DNS) it was found that about two-thirds of the entropy generation occurs in this layer. A popular approximate approach does not agree with the result from the more exact evaluation of S''' but its integral falls within about four per cent at the edge of the viscous layer.

  12. A cyclic model for bimodal activation of calcium activated potassium channels in radish vacuoles.

    PubMed

    Carpaneto, A

    2001-01-01

    This paper presents the mathematical framework of a cyclic model proposed for describing the transition between a fast and a slow mode (fast-slow effect) induced by the application of step membrane potentials to ion channels from radish vacuoles. A voltage stimulation pulse with frequency in the range of 2 Hz or higher increased the activation time (slow mode) of the recorded currents. When the frequency of the stimulation pattern was restored to 0.1 Hz the activation time decreased twofold (fast mode). This experimental result cannot be explained by classical kinetic theory. The model, based on a simple extension of the Hodgkin and Huxley chain, describes the whole current experimental data and provides hints on the structural conformation of ion channels.

  13. Catalytically active single-atom niobium in graphitic layers

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J.; Chisholm, Matthew F.

    2013-05-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability.

  14. Activation of the human, intermediate-conductance, Ca2+-activated K+ channel by methylxanthines.

    PubMed

    Schrøder, R L; Jensen, B S; Strøbaek, D; Olesen, S P; Christophersen, P

    2000-10-01

    This study demonstrated that the methylxanthines, theophylline, IBMX and caffeine, activate the human, intermediate-conductance, Ca2+-activated K+ channel (hIK) stably expressed in HEK-293 cells. Whole-cell voltage-clamp experiments showed that the hIK current increased reversibly and voltage independently after the addition of methylxanthines. In current-clamp experiments, theophylline dose-dependently hyperpolarised the cell membrane from a resting potential of -18 mV to -56 mV. The methylxanthines did not affect large-conductance (BK) or small-conductance (SK2), Ca2+-activated K+ channels, demonstrating that the effects were not secondary to a rise in intracellular Ca2+. However, the activation of hIK by theophylline required an intracellular [Ca2+] above 30 nM. The hIK current was insensitive to 8-bromoadenosine cyclic 3',5'-monophosphate (8-bromo-cAMP), forskolin, 8-bromoguanosine cyclic 3',5'-monophosphate (8-bromo-cGMP) and sodium nitroprusside. Moreover, in the presence of inhibitors of protein kinase A (PKA) or protein kinase G (PKG) theophylline still activated the current. Finally, mutation of the putative PKA/PKG consensus phosphorylation site (Ser334) had no effect on the theophylline-induced activation of hIK. Since the observed activation is independent of changes in PKA/PKG-phosphorylation and of fluctuations in intracellular Ca2+, we suggest that the methylxanthines interact directly with the hIK protein.

  15. Tamoxifen does not inhibit the swell activated chloride channel in human neutrophils during the respiratory burst

    SciTech Connect

    Ahluwalia, Jatinder

    2008-10-31

    Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase I{sub e}. In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 {mu}M), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.

  16. Dual effects of microwaves on single Ca(2+)-activated K+ channels in cultured kidney cells Vero.

    PubMed

    Geletyuk, V I; Kazachenko, V N; Chemeris, N K; Fesenko, E E

    1995-02-06

    Using the patch voltage-clamp method, possible effects of millimetre microwaves (42.25 GHz) on single Ca(2+)-activated K+ channels in cultured kidney cells (Vero) were investigated. It was found that exposure to the field of non-thermal power (about 100 microW/cm2) for 20-30 min greatly modifies both the Hill coefficient and an apparent affinity of the channels for Ca2+(i). The data suggest that the field alters both cooperativity and binding characteristics of the channel activation by internal Ca2+. The effects depend on initial sensitivity of the channels to Ca2+ and the Ca2+ concentration applied.

  17. A plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel.

    PubMed

    Thompson, Jill L; Shuttleworth, Trevor J

    2012-01-01

    The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.

  18. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis.

    PubMed

    Bao, Huimin; Chen, Qiwen; Zhang, Luyan; Chen, Gang

    2011-12-21

    In this report, trypsin was immobilized in the layer-by-layer (LBL) coating of graphene oxide (GO) and chitosan on a piece of glass fiber to fabricate microchip bioreactor for efficient proteolysis. LBL deposition driven by electrostatic forces easily took place on the surface of the glass fiber, providing mild environmental conditions so that the denaturation and autolysis of the immobilized trypsin was minimized. Prior to use, a piece of the prepared trypsin-immobilized glass fiber was inserted into the channel of a microchip to form a core-changeable bioreactor. The novel GO-based bioreactor can be regenerated by changing its fiber core. The feasibility and performance of the unique bioreactor were demonstrated by the tryptic digestion of bovine serum albumin, myoglobin, cytochrome c, and hemoglobin and the digestion time was significantly reduced to less than 10 s. The obtained digests were identified by MALDI-TOF MS. The digestion performance of the core-changeable GO-based microchip bioreactor was comparable to that of 12-h in-solution tryptic digestion. The novel microchip bioreactor is simple and efficient, offering great promise for high-throughput protein identification.

  19. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy

    PubMed Central

    Diness, Jonas G.; Bentzen, Bo H.; Sørensen, Ulrik S.

    2015-01-01

    Abstract: Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle. PMID:25830485

  20. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations.

    PubMed

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir; Wang, KeWei; Zheng, Jie

    2012-04-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.

  1. Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+.

    PubMed Central

    Györke, S; Vélez, P; Suárez-Isla, B; Fill, M

    1994-01-01

    Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+ (DM-nitrophen) in a small volume directly in front of the bilayer. The free [Ca2+] in this small volume and in the bulk solution was monitored with Ca2+ electrodes. This setup allowed fast, calibrated free [Ca2+] stimuli to be applied repetitively to single SR Ca2+ release channels. A standard photolytically induced free [Ca2+] step (pCa 7-->6) was applied to both the cardiac and skeletal release channels. The rate of channel activation was determined by fitting a single exponential to ensemble currents generated from at least 50 single channel sweeps. The time constants of activation were 1.43 +/- 0.65 ms (mean +/- SD; n = 5) and 1.28 +/- 0.61 ms (n = 5) for cardiac and skeletal channels, respectively. This study presents a method for defining the fast Ca2+ regulation kinetics of single SR Ca2+ release channels and shows that the activation rate of skeletal SR Ca2+ release channels is consistent with a role for CICR in skeletal muscle excitation-contraction coupling. PMID:8075325

  2. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.

    PubMed

    Trela, Zenon; Burdach, Zbigniew; Przestalski, Stanisław; Karcz, Waldemar

    2012-12-01

    The patch-clamp technique was used to examine the effect of trimethyllead chloride (Met(3)PbCl) on SV channel activity in red beet (Beta vulgaris L.) taproot vacuoles. It was found that in the control bath the macroscopic currents showed the typical slow activation and a strong outward rectification of the steady-state currents. An addition of Met(3)PbCl to the bath solution blocked, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant τ increased several times in the presence of 100 μM trimethyllead chloride at all voltages tested. When single channel properties were analyzed, only little channel activity could be recorded in the presence of 100 μM Met(3)PbCl. Trimethyllead chloride decreased significantly (by about one order of magnitude) the open probability of single channels. The recordings of single channel activity obtained in the presence and absence of Met(3)PbCl showed that organolead only slightly (by ca. 10%) decreased the unitary conductance of single channels. It was also found that Met(3)PbCl diminished significantly the number of SV channel openings, whereas it did not change the opening times of the channels. Taken together, these results suggest that Met(3)PbCl binding site is located outside the channel selectivity filter.

  3. Lime-mud layers in high-energy tidal channels: a record of hurricane deposition

    USGS Publications Warehouse

    Shinn, E.A.; Steinen, R.P.; Dill, R.F.; Major, R.

    1993-01-01

    During or immediately following the transit of Hurricane Andrew (August 23-24, 1992) across the northern part of the Great Bahama Bank, thin laminated beds of carbonate mud were deposited in high-energy subtidal channels (4 m depth) through the ooid shoals of south Cat Cay and Joulters Cays. Thicker, more cohesive (and therefore older) mud beds and angular mud fragments associated with ooids from Joulters Cays have similar characteristics but lack fresh plant fragments. We infer that these older beds were similarly deposited and thus record the passage of previous hurricanes or tropical storms. -from Authors

  4. Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris.

    PubMed

    Carpaneto, A; Cantù, A M; Gambale, F

    2001-07-01

    The slow vacuolar (SV) channel can mediate a large part of the ionic current in plant tonoplasts, but its actual physiological role is still unclear. We demonstrate that in vacuoles from the taproots of sugar beet (Beta vulgaris L.), besides Ca2+, cytoplasmic Mg2+ also plays an important role in promoting the activation of the SV channel. An increase in Mg2+ concentration decreases the time constants of channel activation and deactivation, and determines a consistent shift, towards negative voltages, of the conductance characteristic; as an example, when the free concentration of Mg2+ was increased from the micromolar range up to 10 mM the activation shifted by about -60 mV. The experimental results obtained, which are based on a fast perfusion procedure allowing us to change the solution bathing the vacuole in a few milliseconds, suggest that magnesium-binding is a faster process than the voltage-activation gating of the channel, which constitutes the rate-limiting step controlling channel opening. Interestingly, the activation of the channel mediated by Mg2+ depends on the cooperative binding of at least three magnesium ions. We verified that cytoplasmic magnesium favours the activation of SV channels in the presence of nanomolar cytoplasmic calcium concentrations. A critical discussion on the Calcium Induced Calcium Release (CICR) mechanism proposed for the SV channel is presented.

  5. Ion Channel Activity of Vpu Proteins Is Conserved throughout Evolution of HIV-1 and SIV

    PubMed Central

    Greiner, Timo; Bolduan, Sebastian; Hertel, Brigitte; Groß, Christine; Hamacher, Kay; Schubert, Ulrich; Moroni, Anna; Thiel, Gerhard

    2016-01-01

    The human immunodeficiency virus type 1 (HIV-1) protein Vpu is encoded exclusively by HIV-1 and related simian immunodeficiency viruses (SIVs). The transmembrane domain of the protein has dual functions: it counteracts the human restriction factor tetherin and forms a cation channel. Since these two functions are causally unrelated it remains unclear whether the channel activity has any relevance for viral release and replication. Here we examine structure and function correlates of different Vpu homologs from HIV-1 and SIV to understand if ion channel activity is an evolutionary conserved property of Vpu proteins. An electrophysiological testing of Vpus from different HIV-1 groups (N and P) and SIVs from chimpanzees (SIVcpz), and greater spot-nosed monkeys (SIVgsn) showed that they all generate channel activity in HEK293T cells. This implies a robust and evolutionary conserved channel activity and suggests that cation conductance may also have a conserved functional significance. PMID:27916968

  6. Cross talk between activation and slow inactivation gates of Shaker potassium channels.

    PubMed

    Panyi, Gyorgy; Deutsch, Carol

    2006-11-01

    This study addresses the energetic coupling between the activation and slow inactivation gates of Shaker potassium channels. To track the status of the activation gate in inactivated channels that are nonconducting, we used two functional assays: the accessibility of a cysteine residue engineered into the protein lining the pore cavity (V474C) and the liberation by depolarization of a Cs(+) ion trapped behind the closed activation gate. We determined that the rate of activation gate movement depends on the state of the inactivation gate. A closed inactivation gate favors faster opening and slower closing of the activation gate. We also show that hyperpolarization closes the activation gate long before a channel recovers from inactivation. Because activation and slow inactivation are ubiquitous gating processes in potassium channels, the cross talk between them is likely to be a fundamental factor in controlling ion flux across membranes.

  7. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  8. Control of the dipole layer of polar organic molecules adsorbed on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Su, Kai-Jun; Wang, Chin-Yung; Pi, Tun-Wen; Metz, Sebastian; Papadopoulos, Theodoros A.; Chiang, T.-C.; Ishii, Hisao; Tang, S.-J.

    2017-02-01

    Organic molecules with a permanent electric dipole moment have been widely used as a template for further growth of molecular layers in device structures. Key properties of the resulting organic films such as energy level alignment (ELA), work function, and injection/collection barrier are linked to the magnitude and direction of the dipole moment at the interface. Using angle-resolved photoemission spectroscopy (ARPES), we have systematically investigated the coverage-dependent work function and spectral line shapes of occupied molecular energy states (MESs) of chloroaluminium-phthalocyanine (ClAlPc) grown on Ag(111). We demonstrate that the dipole orientation of the first ClAlPc layer can be controlled by adjusting the deposition rate and postannealing conditions, and we find that the ELA at the interface differs by ˜0.4 eV between the Cl up and down configurations of the adsorbed ClAlPc molecules. These observations are rationalized by density functional theory (DFT) calculations based on a realistic model of the ClAlPc/Ag(111) interface, which reveal that the different orientations of the ClAlPc dipole layer lead to different charge-transfer channels between the adsorbed ClAlPc and Ag(111) substrate. Our findings provide a useful framework toward method development for ELA tuning.

  9. Active Constrained Layer Damping of Thin Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    RAY, M. C.; OH, J.; BAZ, A.

    2001-03-01

    The effectiveness of the active constrained layer damping (ACLD) treatments in enhancing the damping characteristics of thin cylindrical shells is presented. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. Experiments are performed to verify the numerical predictions. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  10. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    PubMed

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p < 0.05). CNTF-ACM produced a significant increase in BKα1 and BKβ3 expression (p < 0.05) but had no significant effect upon SK2 or SK3 expression (p > 0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons.

  11. Mechanosensitive channel activation by diffusio-osmotic force.

    PubMed

    Bonthuis, Douwe Jan; Golestanian, Ramin

    2014-10-03

    For ion channel gating, the appearance of two distinct conformational states and the discrete transitions between them are essential, and therefore of crucial importance to all living organisms. We show that the physical interplay between two structural elements that are commonly present in bacterial mechanosensitive channels--namely, a charged vestibule and a hydrophobic constriction--creates two distinct conformational states, open and closed, as well as the gating between them. We solve the nonequilibrium Stokes-Poisson-Nernst-Planck equations, extended to include a molecular potential of mean force, and show that a first order transition between the closed and open states arises naturally from the diffusio-osmotic stress caused by the ions and the water inside the channel and the elastic restoring force from the membrane.

  12. Three-dimensional flow dynamics of an active submarine channel

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Dorrell, R. M.; Peakall, J.; Darby, S. E.; Parsons, D. R.; Wynn, R.

    2012-12-01

    Field scale submarine channel gravity currents are notoriously difficult to measure and thus directly investigate due to their inaccessible location and infrequent nature, which is compounded by present sea-level high-stand. An exception to this is the almost continuous density-driven current that results from the inflow of saline Mediterranean water, via the Bosporus strait, into the Black Sea. This flow has carved a sinuous channel system in water depths of 70 to 120 m. The relatively shallow depths of the channel and the continuous nature of this current provide a rare opportunity to study three-dimensional flow dynamics and the interaction of the flow with a seafloor channel network. Thus, it provides a rare analogue for channelized dilute sediment-laden turbidity currents. Sediment erosion, transport and deposition within submarine channel bends is primarily controlled by the magnitude and direction of near bed flow. Flow around channel bends is characterized by a helical or spiralling structure. In rivers this helical flow is characterized by near-surface fluid moving toward the outer bank and near-bed fluid moving toward the inner bank. Following fierce debate over the last decade, it is now accepted that helical flow in submarine channel bends can display a variety of complex structures. Most importantly for understanding sediment transport, near bed flow can be directed towards the outer bank, which is in the opposite sense to in a river. The next challenge is to understand what the exact controls on the orientation of helical flow cells within submarine flows are, and their spatial evolution around bends. We present data from the Black Sea showing how the three-dimensional velocity and density of a submarine gravity current evolves at multiple cross sections as the flow travels around a bend. We use this data to calculate the magnitude, relative importance and interaction of centrifugal, coriolis and pressure gradients in controlling the structure of

  13. Ferroelectric active models of ion channels in biomembranes.

    PubMed

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  14. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis.

    PubMed

    Liu, Jiye; Ye, Jia; Zou, Xiaolong; Xu, Zhenghao; Feng, Yan; Zou, Xianxian; Chen, Zhong; Li, Yuezhou; Cang, Yong

    2014-05-21

    Ion channels regulate membrane excitation, and mutations of ion channels often cause serious neurological disorders including epilepsy. Compared with extensive analyses of channel protein structure and function, much less is known about the fine tuning of channel activity by post-translational modification. Here we report that the large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are targeted by the E3 ubiquitin ligase CRL4A(CRBN) for polyubiquitination and retained in the endoplasmic reticulum (ER). Inactivation of CRL4A(CRBN) releases deubiquitinated BK channels from the ER to the plasma membrane, leading to markedly enhanced channel activity. Mice with CRL4A(CRBN) mutation in the brain or treated with a CRL4A(CRBN) inhibitor are very sensitive to seizure induction, which can be attenuated by blocking BK channels. Finally, the mutant mice develop spontaneous epilepsy when aged. Therefore, ubiquitination of BK channels before their cell surface expression is an important step to prevent systemic neuronal excitability and epileptogenesis.

  15. Room-temperature field effect transistors with metallic ultrathin TiN-based channel prepared by atomic layer delta doping and deposition.

    PubMed

    Cheng, Po-Hsien; Wang, Chun-Yuan; Chang, Teng-Jan; Shen, Tsung-Han; Cai, Yu-Syuan; Chen, Miin-Jang

    2017-04-13

    Metallic channel transistors have been proposed as the candidate for sub-10 nm technology node. However, the conductivity modulation in metallic channels can only be observed at low temperatures usually below 100 K. In this study, room-temperature field effect and modulation of the channel resistance was achieved in the metallic channel transistors, in which the oxygen-doped TiN ultrathin-body channels were prepared by the atomic layer delta doping and deposition (AL3D) with precise control of the channel thickness and electron concentration. The decrease of channel thickness leads to the reduction in electron concentration and the blue shift of absorption spectrum, which can be explained by the onset of quantum confinement effect. The increase of oxygen incorporation results in the increase of interband gap energy, also giving rise to the decrease in electron concentration and the blue shift of absorption spectrum. Because of the significant decrease in electron concentration, the screening effect was greatly suppressed in the metallic channel. Therefore, the channel modulation by the gate electric field was achieved at room temperature due to the quantum confinement and suppressed screening effect with the thickness down to 4.8 nm and the oxygen content up to 35% in the oxygen-doped TiN ultrathin-body channel.

  16. The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells.

    PubMed

    Zhang, Haifeng; Deng, Zhiqin; Yang, Lili; Luo, Hai; Liu, Shanwen; Li, Yuan; Wei, Yan; Peng, Shuang; Zhu, Linyan; Wang, Liwei; Chen, Lixin

    2016-03-01

    Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.

  17. Endogenous chloride channels of insect sf9 cells. Evidence for coordinated activity of small elementary channel units

    PubMed Central

    Larsen, EH; Gabriei, SE; Stutts, MJ; Fullton, J; Price, EM; Boucher, RC

    1996-01-01

    The endogenous Cl- conductance of Spodoptera frugiperda (Sf9) cells was studied 20-35 h after plating out of either uninfected cells or cells infected by a baculovirus vector carrying the cloned beta-galactosidase gene (beta-Gal cells). With the cation Tris+ in the pipette and Na+ in the bath, the reversal potential of whole-cell currents was governed by the prevailing Cl- equilibrium potential and could be fitted by the Goldman-Hodgkin-Katz equation with similar permeabilities for uninfected and beta-Gal cells. In the frequency range 0.12 < f < 300 Hz, the power density spectrum of whole-cell Cl- currents could be fitted by three Lorentzians. Independent of membrane potential, >50% of the total variance of whole-cell current fluctuations was accounted for by the low frequency Lorentzian (fc = 0.40 +/- 0.03 Hz, n = 6). Single-Cl- channels showed complex gating kinetics with long lasting (seconds) openings interrupted by similar long closures. In the open state, channels exhibited fast burst-like closures. Since the patches normally contained more than a single channel, it was not possible to measure open and closed dwell-time distributions for comparing single-Cl- channel activity with the kinetic features of whole-cell currents. However, the power density spectrum of Cl- currents of cell-attached and excised outside-out patches contained both high and low frequency Lorentzian components, with the corner frequency of the slow component (fc = 0.40 +/- 0.02 Hz, n = 4) similar to that of whole-cell current fluctuations. Chloride channels exhibited multiple conductance states with similar Goldman-Hodgkin-Katz-type rectification. Single-channel permeabilities covered the range from approximately 0.6.10(-14) cm5/s to approximately 6.10(-14) cm3/s, corresponding to a limiting conductance (gamma 150/150) of approximately 3.5 pS and approximately 35 pS, respectively. All states reversed near the same membrane potential, and they exhibited similar halide ion selectivity, P1

  18. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.

    PubMed Central

    Gil, Z; Magleby, K L; Silberberg, S D

    1999-01-01

    To investigate the mechanism for the delayed activation by voltage of the predominant mechanosensitive (MS) channel in Xenopus oocytes, currents were recorded from on-cell and excised patches of membrane with the patch clamp technique and from intact oocytes with the two-electrode voltage clamp technique. MS channels could be activated by stretch in inside-out, on-cell, and outside-out patch configurations, using pipettes formed of either borosilicate or soft glass. In inside-out patches formed with borosilicate glass pipettes, depolarizing voltage steps activated MS channels in a cooperative manner after delays of seconds. This voltage-dependent activation was not observed for outside-out patches. Voltage-dependent activation was also not observed when the borosilicate pipettes were either replaced with soft glass pipettes or coated with soft glass. When depolarizing voltage steps were applied to the whole oocyte with a two-electrode voltage clamp, currents that could be attributed to MS channels were not observed. Yet the same depolarizing steps activated MS channels in on-cell patches formed with borosilicate pipettes on the same oocyte. These observations suggest that the delayed cooperative activation of MS channels by depolarization is not an intrinsic property of the channels, but requires interaction between the membrane and patch pipette. PMID:10354436

  19. Thermodynamics of Activation Gating in Olfactory-Type Cyclic Nucleotide-Gated (CNGA2) Channels

    PubMed Central

    Nache, Vasilica; Kusch, Jana; Biskup, Christoph; Schulz, Eckhard; Zimmer, Thomas; Hagen, Volker; Benndorf, Klaus

    2008-01-01

    Olfactory-type cyclic nucleotide-gated (CNG) ion channels open by the binding of cyclic nucleotides to a binding domain in the C-terminus. Employing the Eyring rate theory, we performed a thermodynamic analysis of the activation gating in homotetrameric CNGA2 channels. Lowering the temperature shifted the concentration-response relationship to lower concentrations, resulting in a decrease of both the enthalpy ΔH and entropy ΔS upon channel opening, suggesting that the order of an open CNGA2 channel plus its environment is higher than that of the closed channel. Activation time courses induced by cGMP concentration jumps were used to study thermodynamics of the transition state. The activation enthalpies ΔH‡ were positive at all cGMP concentrations. In contrast, the activation entropy ΔS‡ was positive at low cGMP concentrations and became then negative at increasing cGMP concentrations. The enthalpic and entropic parts of the activation energies approximately balance each other at all cGMP concentrations, leaving the free enthalpy of activation in the range between 19 and 21 kcal/mol. We conclude that channel activation proceeds through different pathways at different cGMP concentrations. Compared to the unliganded channel, low cGMP concentrations generate a transitional state of lower order whereas high cGMP concentrations generate a transitional state of higher order. PMID:18567637

  20. High-stability transparent amorphous oxide TFT with a silicon-doped back-channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung-Rae; Park, Jea-Gun

    2014-10-01

    We significantly reduced various electrical instabilities of amorphous indium gallium zinc oxide thin-film transistors (TFTs) by using the co-deposition of silicon on an a-IGZO back channel. This process showed improved stability of the threshold voltage ( V th ) under high temperature and humidity and negative gate-bias illumination stress (NBIS) without any reduction of IDS. The enhanced stability was achieved with silicon, which has higher metal-oxide bonding strengths than gallium does. Additionally, SiO X distributed on the a-IGZO surface reduced the adsorption and the desorption of H2O and O2. This process is applicable to the TFT manufacturing process with a variable sputtering target.

  1. Features of a reattaching turbulent shear layer in divergent channel flow

    NASA Technical Reports Server (NTRS)

    Driver, D. M.; Seegmiller, H. L.

    1985-01-01

    Experimental data have been obtained in an incompressible turbulent flow over a rearward-facing step in a diverging channel flow. Mean velocities, Reynolds stresses, and triple products that were measured by a laser Doppler velocimeter are presented for two cases of tunnel wall divergence. Eddy viscosities, production, convection, turbulent diffusion, and dissipation (balance of kinetic energy equation) terms are extracted from the data. These data are compared with various eddy-viscosity turbulence models. Numerical calculations incorporating the k-epsilon and algebraic-stress turbulence models are compared with the data. When determining quantities of engineering interest, the modified algebraic-stress model (ASM) is a significant improvement over the unmodified ASM and the unmodified k-epsilon model; however, like the others, it dramatically overpredicts the experimentally determined dissipation rate.

  2. A pervasive mechanism for analgesia: activation of GIRK2 channels.

    PubMed

    Blednov, Y A; Stoffel, M; Alva, H; Harris, R A

    2003-01-07

    G protein-coupled inwardly rectifying potassium channels (GIRKs) provide a common link between numerous neurotransmitter receptors and the regulation of synaptic transmission. We asked whether GIRKs specify a single behavioral action that is produced by drugs acting on the diverse receptors coupled with GIRKs. By using GIRK2-null mutant mice, we found marked reduction or complete elimination of the antinociceptive (hot plate test) effects of ethanol, oxotremorine, nicotine, baclofen, clonidine, and the cannabinoid receptor agonist WIN 55,212. However, ketamine analgesia remained intact. For most drugs, there was a sex difference in antinociceptive action, and the impact of deletion of the GIRK2 channel was less in female mice. The deletion of the GIRK2 channel blocks the opioid-dependent component of stress-induced analgesia (SIA), whereas nonopioid SIA was not changed. We propose that opioid, alpha adrenergic, muscarinic cholinergic, gamma-aminobutyric acid-B, and cannabinoid receptors are coupled with postsynaptic GIRK2 channels in vivo. Furthermore, this pathway accounts for essentially all of the antinociceptive effects in males, although females appear to recruit additional signal transduction mechanisms for some analgesic drugs.

  3. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack

    PubMed Central

    Brown, Maile R.; Kronengold, Jack; Gazula, Valeswara-Rao; Chen, Yi; Strumbos, John G.; Sigworth, Fred J.; Navaratnam, Dhasakumar; Kaczmarek, Leonard K.

    2010-01-01

    In humans, absence of Fragile X mental retardation protein (FMRP), an RNA-binding protein, results in Fragile X syndrome (FXS), the most common inherited form of intellectual disability. Here we report through biochemical and electrophysiological studies that FMRP binds the C-terminus of the Slack sodium-activated potassium channel to activate the channel. The findings suggest that Slack activity may provide a link between patterns of neuronal firing and changes in protein translation. PMID:20512134

  4. Zinc pyrithione-mediated activation of voltage-gated KCNQ potassium channels rescues epileptogenic mutants.

    PubMed

    Xiong, Qiaojie; Sun, Haiyan; Li, Min

    2007-05-01

    KCNQ potassium channels are activated by changes in transmembrane voltage and play an important role in controlling electrical excitability. Human mutations of KCNQ2 and KCNQ3 potassium channel genes result in reduction or loss of channel activity and cause benign familial neonatal convulsions (BFNCs). Thus, small molecules capable of augmenting KCNQ currents are essential both for understanding the mechanism of channel activity and for developing therapeutics. We performed a high-throughput screen in search for agonistic compounds potentiating KCNQ potassium channels. Here we report identification of a new opener, zinc pyrithione (1), which activates both recombinant and native KCNQ M currents. Interactions with the channel protein cause an increase of single-channel open probability that could fully account for the overall conductance increase. Separate point mutations have been identified that either shift the concentration dependence or affect potentiation efficacy, thereby providing evidence for residues influencing ligand binding and downstream events. Furthermore, zinc pyrithione is capable of rescuing the mutant channels causal to BFNCs.

  5. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels.

    PubMed

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan; Möhrlen, Frank

    2013-10-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.

  6. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels

    PubMed Central

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan

    2013-01-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types. PMID:24081981

  7. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  8. Fragile X mental retardation protein controls ion channel expression and activity.

    PubMed

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.

  9. Activation of TRPM7 channels by small molecules under physiological conditions.

    PubMed

    Hofmann, T; Schäfer, S; Linseisen, M; Sytik, L; Gudermann, T; Chubanov, V

    2014-12-01

    Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.

  10. Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias.

    PubMed

    Zhang, Xiao-Dong; Lieu, Deborah K; Chiamvimonvat, Nipavan

    2015-08-01

    Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.

  11. Effect of self-stratification on sediment diffusivity in channel flows and boundary layers: a study using direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Cantero, M. I.; Garcia, M. H.

    2014-08-01

    Sediment transport in nature comprises of bedload and suspended load, and precise modelling of these processes is essential for accurate sediment flux estimation. Traditionally, non-cohesive suspended sediment has been modelled using the advection-diffusion equation (Garcia, 2008), where the success of the model is largely dependent on accurate approximation of the sediment diffusion coefficients. The current study explores the effect of self-stratification on sediment diffusivity using suspended sediment concentration data from direct numerical simulations (DNS) of flows subjected to different levels of stratification, where the level of stratification is dependent on the particle size (parameterized using particle fall velocity Ṽ and volume-averaged sediment concentration (parameterized using shear Richardson number Riτ. Two distinct configurations were explored, first the channel flow configuration (similar to flow in a pipe or a duct) and second, a boundary-layer configuration (similar to open-channel flow). Self-stratification was found to modulate the turbulence intensity (Cantero et al., 2009b), which in turn was found to reduce vertical sediment diffusivity in portions of the domain exposed to turbulence damping. The effect of particle size on vertical sediment diffusivity has been studied in the past by several authors (Rouse, 1937; Coleman, 1970; Nielsen and Teakle, 2004); so in addition to the effect of particle size, the current study also explores the effect of sediment concentration on vertical sediment diffusivity. The results from the DNS simulations were compared with experiments (Ismail, 1952; Coleman, 1986) and field measurements (Coleman, 1970), and were found to agree qualitatively, especially for the case of channel flows. The aim of the study is to understand the effect of stratification due to suspended sediment on vertical sediment diffusivity for different flow configurations, in order to gain insight of the underlying physics, which

  12. Optimal Policy of Cross-Layer Design for Channel Access and Transmission Rate Adaptation in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Jun; Zhu, Jiang; Li, Shaoqian

    2010-12-01

    In this paper, we investigate the cross-layer design of joint channel access and transmission rate adaptation in CR networks with multiple channels for both centralized and decentralized cases. Our target is to maximize the throughput of CR network under transmission power constraint by taking spectrum sensing errors into account. In centralized case, this problem is formulated as a special constrained Markov decision process (CMDP), which can be solved by standard linear programming (LP) method. As the complexity of finding the optimal policy by LP increases exponentially with the size of action space and state space, we further apply action set reduction and state aggregation to reduce the complexity without loss of optimality. Meanwhile, for the convenience of implementation, we also consider the pure policy design and analyze the corresponding characteristics. In decentralized case, where only local information is available and there is no coordination among the CR users, we prove the existence of the constrained Nash equilibrium and obtain the optimal decentralized policy. Finally, in the case that the traffic load parameters of the licensed users are unknown for the CR users, we propose two methods to estimate the parameters for two different cases. Numerical results validate the theoretic analysis.

  13. ZD7288 inhibits low-threshold Ca(2+) channel activity and regulates sperm function.

    PubMed

    Felix, Ricardo; Sandoval, Alejandro; Sánchez, Daniel; Gómora, Juan Carlos; De la Vega-Beltrán, José L; Treviño, Claudia L; Darszon, Alberto

    2003-11-07

    In this study, ZD7288, a blocker of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, has been found to inhibit the mouse sperm acrosome reaction (AR). HCN channels have not yet been either recorded or implicated in mouse sperm AR, but low-threshold (T-type) Ca(2+) channels have. Interestingly, ZD7288 blocked native T-type Ca(2+) currents in mouse spermatogenic cells with an IC(50) of about 100 microM. This blockade was more effective at voltages producing low levels of inactivation, suggesting a differential affinity of ZD7288 for different channel conformations. Furthermore, ZD7288 inhibited all cloned T-type but not high-threshold N-type channels heterologously expressed in HEK-293 cells. Our results further support the role of T-type Ca(2+) channels in the mouse sperm AR.

  14. The regulation of BK channel activity by pre- and post-translational modifications.

    PubMed

    Kyle, Barry D; Braun, Andrew P

    2014-01-01

    Large conductance, Ca(2+)-activated K(+) (BK) channels represent an important pathway for the outward flux of K(+) ions from the intracellular compartment in response to membrane depolarization, and/or an elevation in cytosolic free [Ca(2+)]. They are functionally expressed in a range of mammalian tissues (e.g., nerve and smooth muscles), where they can either enhance or dampen membrane excitability. The diversity of BK channel activity results from the considerable alternative mRNA splicing and post-translational modification (e.g., phosphorylation) of key domains within the pore-forming α subunit of the channel complex. Most of these modifications are regulated by distinct upstream cell signaling pathways that influence the structure and/or gating properties of the holo-channel and ultimately, cellular function. The channel complex may also contain auxiliary subunits that further affect channel gating and behavior, often in a tissue-specific manner. Recent studies in human and animal models have provided strong evidence that abnormal BK channel expression/function contributes to a range of pathologies in nerve and smooth muscle. By targeting the upstream regulatory events modulating BK channel behavior, it may be possible to therapeutically intervene and alter BK channel expression/function in a beneficial manner.

  15. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  16. The regulation of BK channel activity by pre- and post-translational modifications

    PubMed Central

    Kyle, Barry D.; Braun, Andrew P.

    2014-01-01

    Large conductance, Ca2+-activated K+ (BK) channels represent an important pathway for the outward flux of K+ ions from the intracellular compartment in response to membrane depolarization, and/or an elevation in cytosolic free [Ca2+]. They are functionally expressed in a range of mammalian tissues (e.g., nerve and smooth muscles), where they can either enhance or dampen membrane excitability. The diversity of BK channel activity results from the considerable alternative mRNA splicing and post-translational modification (e.g., phosphorylation) of key domains within the pore-forming α subunit of the channel complex. Most of these modifications are regulated by distinct upstream cell signaling pathways that influence the structure and/or gating properties of the holo-channel and ultimately, cellular function. The channel complex may also contain auxiliary subunits that further affect channel gating and behavior, often in a tissue-specific manner. Recent studies in human and animal models have provided strong evidence that abnormal BK channel expression/function contributes to a range of pathologies in nerve and smooth muscle. By targeting the upstream regulatory events modulating BK channel behavior, it may be possible to therapeutically intervene and alter BK channel expression/function in a beneficial manner. PMID:25202279

  17. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  18. Activation of inositol trisphosphate-sensitive Ca2+ channels of sarcoplasmic reticulum from frog skeletal muscle.

    PubMed Central

    Suárez-Isla, B A; Alcayaga, C; Marengo, J J; Bull, R

    1991-01-01

    1. The modulation by Ca2+ of the activation by inositol 1,4,5-trisphosphate (IP3) of Ca2+ channels present in native sarcoplasmic reticulum membranes from frog skeletal muscle was studied after channel incorporation into planar phospholipid bilayers in the presence of Ca2+ or Ba2+ as current carrier species. 2. Channel activity expressed as fractional open time (Po) was low (less than or equal to 0.15) in the presence of varying free Ca2+ concentrations bathing the myoplasmic face of the channel (cis side), and did not increase significantly between 0.01 and 30 microM-Ca2+. 3. Channel activation mediated by IP3 could be elicited from free Ca2+ levels similar to those of resting skeletal muscle (about 0.1 microM) and was found to be strongly regulated by the free Ca2+ concentration present at the myoplasmic moiety of the channel. 4. Channel activation by 10 microM-IP3 depended on the Ca2+ concentration on the cis side. Po reached a maximum between pCa 7.0 and 6.0, but decreased at higher concentrations of free Ca2+. Thus, Ca2+ exerted a modulatory influence on IP3-mediated activation in a concentration range where the channel was insensitive to Ca2+. 5. The results indicate that Ca2+ ions act as modulators of IP3 efficacy to open the channel. This could arise from an interaction of Ca2+ with the channel gating mechanism or with the agonist binding site. PMID:1667801

  19. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.

    PubMed

    Wagner, Larry E; Groom, Linda A; Dirksen, Robert T; Yule, David I

    2014-08-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.

  20. Inverse coupling in leak and voltage-activated K+ channel gates underlies distinct roles in electrical signaling.

    PubMed

    Ben-Abu, Yuval; Zhou, Yufeng; Zilberberg, Noam; Yifrach, Ofer

    2009-01-01

    Voltage-activated (Kv) and leak (K(2P)) K(+) channels have key, yet distinct, roles in electrical signaling in the nervous system. Here we examine how differences in the operation of the activation and slow inactivation pore gates of Kv and K(2P) channels underlie their unique roles in electrical signaling. We report that (i) leak K(+) channels possess a lower activation gate, (ii) the activation gate is an important determinant controlling the conformational stability of the K(+) channel pore, (iii) the lower activation and upper slow inactivation gates of leak channels cross-talk and (iv) unlike Kv channels, where the two gates are negatively coupled, these two gates are positively coupled in K(2P) channels. Our results demonstrate how basic thermodynamic properties of the K(+) channel pore, particularly conformational stability and coupling between gates, underlie the specialized roles of Kv and K(2P) channel families in electrical signaling.

  1. Dihydroxyeicosatrienoic acids are potent activators of Ca2+-activated K+ channels in isolated rat coronary arterial myocytes

    PubMed Central

    Lu, Tong; Katakam, Prasad V G; VanRollins, Mike; Weintraub, Neal L; Spector, Arthur A; Lee, Hon-Chi

    2001-01-01

    Dihydroxyeicosatrienoic acids (DHETs), which are metabolites of arachidonic acid (AA) and epoxyeicosatrienoic acids (EETs), have been identified as highly potent endogenous vasodilators, but the mechanisms by which DHETs induce relaxation of vascular smooth muscle are unknown. Using inside-out patch clamp techniques, we examined the effects of DHETs on the large conductance Ca2+-activated K+ (BK) channels in smooth muscle cells from rat small coronary arteries (150–300 μm diameter). 11,12-DHET potently activated BK channels with an EC50 of 1.87 ± 0.57 nm (n = 5). Moreover, the three other regioisomers 5,6-, 8,9- and 14,15-DHET were equipotent with 11,12-DHET in activating BK channels. The efficacy of 11,12-DHET in opening BK channels was much greater than that of its immediate precursor 11,12-EET. In contrast, AA did not significantly affect BK channel activity. The voltage dependence of BK channels was dramatically modulated by 11,12-DHET. With physiological concentrations of cytoplasmic Ca2+ (200 nm), the voltage at which the channel open probability was half-maximal (V1/2) was shifted from a baseline of 115.6 ± 6.5 mV to 95.0 ± 10.1 mV with 5 nm 11,12-DHET, and to 60.0 ± 8.4 mV with 50 nm 11,12-DHET. 11,12-DHET also enhanced the sensitivity of BK channels to Ca2+ but did not activate the channels in the absence of Ca2+. 11,12-DHET (50 nm) reduced the Ca2+ EC50 of BK channels from a baseline of 1.02 ± 0.07 μm to 0.42 ± 0.11 μm. Single channel kinetic analysis indicated that 11,12-DHET did not alter BK channel conductance but did reduce the first latency of BK channel openings in response to a voltage step. 11,12-DHET dose-dependently increased the open dwell times, abbreviated the closed dwell times, and decreased the transition rates from open to closed states. We conclude that DHETs hyperpolarize vascular smooth muscle cells through modulation of the BK channel gating behaviour, and by enhancing the channel sensitivities to Ca2+ and voltage. Hence

  2. Mechanosensitive Channel Activation by Diffusio-Osmotic Force

    NASA Astrophysics Data System (ADS)

    Bonthuis, Douwe Jan; Golestanian, Ramin

    2014-10-01

    For ion channel gating, the appearance of two distinct conformational states and the discrete transitions between them are essential, and therefore of crucial importance to all living organisms. We show that the physical interplay between two structural elements that are commonly present in bacterial mechanosensitive channels—namely, a charged vestibule and a hydrophobic constriction—creates two distinct conformational states, open and closed, as well as the gating between them. We solve the nonequilibrium Stokes-Poisson-Nernst-Planck equations, extended to include a molecular potential of mean force, and show that a first order transition between the closed and open states arises naturally from the diffusio-osmotic stress caused by the ions and the water inside the channel and the elastic restoring force from the membrane.

  3. Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating

    PubMed Central

    Tóth, Balázs; Iordanov, Iordan; Csanády, László

    2014-01-01

    Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable cation channel expressed in immune cells of phagocytic lineage, pancreatic β cells, and brain neurons and is activated under oxidative stress. TRPM2 activity is required for immune cell activation and insulin secretion and is responsible for postischemic neuronal cell death. TRPM2 is opened by binding of ADP ribose (ADPR) to its C-terminal cytosolic nudix-type motif 9 (NUDT9)-homology (NUDT9-H) domain, which, when expressed in isolation, cleaves ADPR into AMP and ribose-5-phosphate. A suggested coupling of this enzymatic activity to channel gating implied a potentially irreversible gating cycle, which is a unique feature of a small group of channel enzymes known to date. The significance of such a coupling lies in the conceptually distinct pharmacologic strategies for modulating the open probability of channels obeying equilibrium versus nonequilibrium gating mechanisms. Here we examine the potential coupling of TRPM2 enzymatic activity to pore gating. Mutation of several residues proposed to enhance or eliminate NUDT9-H catalytic activity all failed to affect channel gating kinetics. An ADPR analog, α-β-methylene-ADPR (AMPCPR), was shown to be entirely resistant to hydrolysis by NUDT9, but nevertheless supported TRPM2 channel gating, albeit with reduced apparent affinity. The rate of channel deactivation was not slowed but, rather, accelerated in AMPCPR. These findings, as well as detailed analyses of steady-state gating kinetics of single channels recorded in the presence of a range of concentrations of ADPR or AMPCPR, identify TRPM2 as a simple ligand-gated channel that obeys an equilibrium gating mechanism uncoupled from its enzymatic activity. PMID:25385633

  4. Structure-activity studies on 1,4-dihydropyridine calcium channel antagonists and activators

    SciTech Connect

    Joslyn, A.F.

    1986-01-01

    Four series of 1,4-dihydropyridine Ca{sup 2+} channel antagonists related to mifedipine were synthesized by a modified Hantzsch procedure to determine the effects of ester (C{sub 3} = CO{sub 2}Me, C{sub 5} = CO{sub 2}R) and phenyl (C{sub 4}) substituents on pharmacological and radioligand binding ((H)nitrendipine) activities in guinea pig ileal longitudinal smooth muscle. Two series of Ca{sup 2+} channel activator 1,4-dihydropyridines, BAY K 8644 (C{sub 3} = NO{sub 2}, C{sub 5} = CO{sub 2}Me) and CGP 28392 (C{sub 2,3} = lactone, C{sub 5} = CO{sub 2}Me) were biochemically evaluated by inhibition of ({sup 3}H)nitrendipine binding in guinea pig ileal longitudinal smooth muscle membranes to establish fundamental structure-activity requirements. A homologous series of bis-1,4-dihydropyridines were synthesized, pharmacologically and biochemically evaluated in an attempt to explore the distribution of the 1,4-dihydropyridine receptor in guinea pig ileal longitudinal smooth muscle membranes. Several potential affinity labels including ester substituted 3- and 4-fluorosulfonyl benzoyl and isothiocyanate derivatives were synthesized and evaluated by inhibition of ({sup 3}H)nitrendipine binding.

  5. Regulation of Voltage-Activated K(+) Channel Gating by Transmembrane β Subunits.

    PubMed

    Sun, Xiaohui; Zaydman, Mark A; Cui, Jianmin

    2012-01-01

    Voltage-activated K(+) (K(V)) channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. K(V) channels contain a central pore-gate domain (PGD) surrounded by four voltage-sensing domains (VSDs). The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many K(V) channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the K(V) β subunits that contain transmembrane (TM) segments including the KCNE family and the β subunits of large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels. These TM β subunits affect the voltage-dependent activation of K(V) α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening, and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into K(V) channel modulation by TM β subunits.

  6. Channel-forming activity in the venom of the cockroach-hunting wasp, Ampulex compressa.

    PubMed

    Gincel, Dan; Haspel, Gal; Libersat, Frederic

    2004-05-01

    The parasitoid solitary wasp Ampulex compressa uses the cockroach Periplaneta americana as a food supply for its larvae. To subdue its prey, the wasp injects a venom cocktail into the brain of the cockroach. We investigated channel activity of A. compressa venom by collecting venom and incorporating it into a planar lipid bilayer. The venom, reconstituted into the bilayer, showed ion channel activity, forming a fast-fluctuating channel with a small conductance of 20+/-0.1pS, with no voltage sensitivity. These channels were not observed when the venom was digested with proteases before application to the bilayer, but were not affected by exposure to protease after their incorporation into the bilayer, indicating that the active venom component is a peptide. The channels were found to be cation selective with similar selectivity for the monovalent cations K(+), Li(+) and Na(+), but showed high selectivity against anions (Cl(-)) and divalent cations (Ca(2+) and Mg(2+)). This study is the first demonstration and biophysical characterization of channel activity in the venom of A. compressa. The possible functional significance of this channel activity is discussed in light of the unusual nature of the effects of this wasp venom on the behavior of its prey.

  7. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity

    PubMed Central

    Hawkins, Virginia E.; Hawryluk, Joanna M.; Takakura, Ana C.; Tzingounis, Anastasios V.; Moreira, Thiago S.

    2014-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H+-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs+) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih. PMID:25429115

  8. III-V-semiconductor-on-insulator n-channel metal-insulator-semiconductor field-effect transistors with buried Al2O3 layers and sulfur passivation: Reduction in carrier scattering at the bottom interface

    NASA Astrophysics Data System (ADS)

    Yokoyama, Masafumi; Yasuda, Tetsuji; Takagi, Hideki; Miyata, Noriyuki; Urabe, Yuji; Ishii, Hiroyuki; Yamada, Hisashi; Fukuhara, Noboru; Hata, Masahiko; Sugiyama, Masakazu; Nakano, Yoshiaki; Takenaka, Mitsuru; Takagi, Shinichi

    2010-04-01

    We have developed III-V-semiconductor-on-insulator (III-V-OI) structures on Si wafers with excellent bottom interfaces between In0.53Ga0.47As-OI channel layers and atomic-layer-deposited Al2O3 (ALD-Al2O3) buried oxides (BOXs). A surface activated bonding process and the sulfur passivation pretreatment have realized the excellent In0.53Ga0.47As-OI/ALD-Al2O3 BOX bottom interface properties. As a result, the III-V-OI n-channel metal-insulator-semiconductor field-effect transistors under the back-gate configuration showed the peak mobility of 1800 cm2/V s and the higher electron mobility than the Si universal one even in the high effective electric field range because of the reduction in the surface roughness and fixed charges.

  9. Crizotinib Inhibits Hyperpolarization-activated Cyclic Nucleotide-Gated Channel 4 Activity

    PubMed Central

    Zhang, Zhushan; Huang, Tai-Qin; Nepliouev, Igor; Zhang, Hengtao; Barnett, Adam S.; Rosenberg, Paul B.; Ou, Sai-Hong I.; Stiber, Jonathan A.

    2017-01-01

    Background Sinus bradycardia is frequently observed in patients treated with crizotinib, a receptor tyrosine kinase inhibitor used for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC). We investigated whether crizotinib could influence heart rate (HR) through direct cardiac effects. Methods The direct effect of crizotinib on HR was studied using ECG analysis of Langendorff-perfused mouse hearts. The whole-cell patch clamp technique was used to measure the effects of crizotinib on the hyperpolarization-activated funny current, If, in mouse sinoatrial node cells (SANCs) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) activity in HEK-293 cells stably expressing human HCN4. Results Crizotinib resulted in a dose-dependent reduction in HR in isolated intact mouse hearts with a half maximal inhibitory concentration (IC50) of 1.7 ± 0.4 μmol/L. Because ECG analysis revealed that crizotinib (0–5 μmol/L) resulted in significant reductions in HR in isolated mouse hearts without changes in PR, QRS, or QT intervals, we performed whole-cell patch clamp recordings of SANCs which showed that crizotinib inhibited If which regulates cardiac pacemaker activity. Crizotinib resulted in diminished current density of HCN4, the major molecular determinant of If, with an IC50 of 1.4 ± 0.3 μmol/L. Crizotinib also slowed HCN4 activation and shifted the activation curve to the left towards more hyperpolarized potentials. Conclusions Our results suggest that crizotinib’s effects on HCN4 channels play a significant role in mediating its observed effects on HR. PMID:28217366

  10. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels.

    PubMed

    Huang, Guo N; Zeng, Weizhong; Kim, Joo Young; Yuan, Joseph P; Han, Linhuang; Muallem, Shmuel; Worley, Paul F

    2006-09-01

    Receptor-evoked Ca2+ signalling involves Ca2+ release from the endoplasmic reticulum, followed by Ca2+ influx across the plasma membrane. Ca2+ influx is essential for many cellular functions, from secretion to transcription, and is mediated by Ca2+-release activated Ca2+ (I(crac)) channels and store-operated calcium entry (SOC) channels. Although the molecular identity and regulation of I(crac) and SOC channels have not been precisely determined, notable recent findings are the identification of STIM1, which has been indicated to regulate SOC and I(crac) channels by functioning as an endoplasmic reticulum Ca2+ sensor, and ORAI1 (ref. 7) or CRACM1 (ref. 8)--both of which may function as I(crac) channels or as an I(crac) subunit. How STIM1 activates the Ca2+ influx channels and whether STIM1 contributes to the channel pore remains unknown. Here, we identify the structural features that are essential for STIM1-dependent activation of SOC and I(crac) channels, and demonstrate that they are identical to those involved in the binding and activation of TRPC1. Notably, the cytosolic carboxyl terminus of STIM1 is sufficient to activate SOC, I(crac) and TRPC1 channels even when native STIM1 is depleted by small interfering RNA. Activity of STIM1 requires an ERM domain, which mediates the selective binding of STIM1 to TRPC1, 2 and 4, but not to TRPC3, 6 or 7, and a cationic lysine-rich region, which is essential for gating of TRPC1. Deletion of either region in the constitutively active STIM1(D76A) yields dominant-negative mutants that block native SOC channels, expressed TRPC1 in HEK293 cells and I(crac) in Jurkat cells. These observations implicate STIM1 as a key regulator of activity rather than a channel component, and reveal similar regulation of SOC, I(crac) and TRPC channel activation by STIM1.

  11. Fast and slow activation of voltage-dependent ion channels in radish vacuoles.

    PubMed Central

    Gambale, F; Cantu, A M; Carpaneto, A; Keller, B U

    1993-01-01

    The molecular processes associated with voltage-dependent opening and closing (gating) of ion channels were investigated using a new preparation from plant cells, i.e., voltage and calcium-activated ion channels in radish root vacuoles. These channels display a main single channel conductance of approximately 90 pS and are characterized by long activation times lasting several hundreds of milliseconds. Here, we demonstrate that these channels have a second kinetically distinct activation mode which is characterized by even longer activation times. Different membrane potential protocols allowed to switch between the fast and the slow mode in a controlled and reversible manner. At transmembrane potentials of -100 mV, the ratio between the fast and slow activation time constant was around 1:5. Correspondingly, activation times lasting several seconds were observed in the slow mode. The molecular process controlling fast and slow activation may represent an effective modulator of voltage-dependent gating of ion channels in other plant and animal systems. PMID:7507716

  12. Upregulation of the large conductance voltage- and Ca2+-activated K+ channels by Janus kinase 2.

    PubMed

    Hosseinzadeh, Zohreh; Almilaji, Ahmad; Honisch, Sabina; Pakladok, Tatsiana; Liu, GuoXing; Bhavsar, Shefalee K; Ruth, Peter; Shumilina, Ekaterina; Lang, Florian

    2014-06-01

    The iberiotoxin-sensitive large conductance voltage- and Ca(2+)-activated potassium (BK) channels (maxi-K(+)-channels) hyperpolarize the cell membrane thus supporting Ca(2+) entry through Ca(2+)-release activated Ca(2+) channels. Janus kinase-2 (JAK2) has been identified as novel regulator of ion transport. To explore whether JAK2 participates in the regulation of BK channels, cRNA encoding Ca(2+)-insensitive BK channels (BK(M513I+Δ899-903)) was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, gain-of-function (V617F)JAK2, or inactive (K882E)JAK2. K(+) conductance was determined by dual electrode voltage clamp and BK-channel protein abundance by confocal microscopy. In A204 alveolar rhabdomyosarcoma cells, iberiotoxin-sensitive K(+) current was determined utilizing whole cell patch clamp. A204 cells were further transfected with JAK2 and BK-channel transcript, and protein abundance was quantified by RT-PCR and Western blotting, respectively. As a result, the K(+) current in BK(M513I+Δ899-903)-expressing oocytes was significantly increased following coexpression of JAK2 or (V617F)JAK2 but not (K882E)JAK2. Coexpression of the BK channel with (V617F)JAK2 but not (K882E)JAK2 enhanced BK-channel protein abundance in the oocyte cell membrane. Exposure of BK-channel and (V617F)JAK2-expressing oocytes to the JAK2 inhibitor AG490 (40 μM) significantly decreased K(+) current. Inhibition of channel insertion by brefeldin A (5 μM) decreased the K(+) current to a similar extent in oocytes expressing the BK channel alone and in oocytes expressing the BK channel and (V617F)JAK2. The iberiotoxin (50 nM)-sensitive K(+) current in rhabdomyosarcoma cells was significantly decreased by AG490 pretreatment (40 μM, 12 h). Moreover, overexpression of JAK2 in A204 cells significantly enhanced BK channel mRNA and protein abundance. In conclusion, JAK2 upregulates BK channels by increasing channel protein abundance in the cell membrane.

  13. Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity.

    PubMed

    Al Khamici, Heba; Brown, Louise J; Hossain, Khondker R; Hudson, Amanda L; Sinclair-Burton, Alxcia A; Ng, Jane Phui Mun; Daniel, Elizabeth L; Hare, Joanna E; Cornell, Bruce A; Curmi, Paul M G; Davey, Mary W; Valenzuela, Stella M

    2015-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. We demonstrate that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. Mutagenesis experiments identify cysteine 24 as the catalytic cysteine residue in CLIC1, which is consistent with its structure. CLIC1 was shown to reduce sodium selenite and dehydroascorbate in a glutathione-dependent manner. Previous electrophysiological studies have shown that the drugs IAA-94 and A9C specifically block CLIC channel activity. These same compounds inhibit CLIC1 oxidoreductase activity. This work for the first time assigns a functional activity to the soluble form of the CLIC proteins. Our results demonstrate that the soluble form of the CLIC proteins has an enzymatic activity that is distinct from the channel activity of their integral membrane form. This CLIC enzymatic activity may be important for protecting the intracellular environment against oxidation. It is also likely that this enzymatic activity regulates the CLIC ion channel function.

  14. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  15. Large-conductance Ca2+-activated potassium channels in secretory neurons.

    PubMed

    Lara, J; Acevedo, J J; Onetti, C G

    1999-09-01

    Large-conductance Ca2+-activated K+ channels (BK) are believed to underlie interburst intervals and contribute to the control of hormone release in several secretory cells. In crustacean neurosecretory cells, Ca2+ entry associated with electrical activity could act as a modulator of membrane K+ conductance. Therefore we studied the contribution of BK channels to the macroscopic outward current in the X-organ of crayfish, and their participation in electrophysiological activity, as well as their sensitivity toward intracellular Ca2+, ATP, and voltage, by using the patch-clamp technique. The BK channels had a conductance of 223 pS and rectified inwardly in symmetrical K+. These channels were highly selective to K+ ions; potassium permeability (PK) value was 2.3 x 10(-13) cm(3) s(-1). The BK channels were sensitive to internal Ca2+ concentration, voltage dependent, and activated by intracellular MgATP. Voltage sensitivity (k) was approximately 13 mV, and the half-activation membrane potentials depended on the internal Ca2+ concentration. Calcium ions (0.3-3 microM) applied to the internal membrane surface caused an enhancement of the channel activity. This activation of BK channels by internal calcium had a KD(0) of 0.22 microM and was probably due to the binding of only one or two Ca2+ ions to the channel. Addition of MgATP (0.01-3 mM) to the internal solution increased steady state-open probability. The dissociation constant for MgATP (KD) was 119 microM, and the Hill coefficient (h) was 0.6, according to the Hill analysis. Ca2+-activated K+ currents recorded from whole cells were suppressed by either adding Cd2+ (0.4 mM) or removing Ca2+ ions from the external solution. TEA (1 mM) or charybdotoxin (100 nM) blocked these currents. Our results showed that both BK and K(ATP) channels are present in the same cell. Even when BK and K(ATP) channels were voltage dependent and modulated by internal Ca2+ and ATP, the profile of sensitivity was quite different for each kind

  16. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    PubMed

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder.

  17. The membrane protein Pannexin1 forms two open channel conformations depending on the mode of activation

    PubMed Central

    Wang, Junjie; Ambrosi, Cinzia; Qiu, Feng; Jackson, David G.; Sosinsky, Gina; Dahl, Gerhard

    2014-01-01

    Pannexin1 (Panx1) participates in several signaling events that involve ATP release, including the innate immune response, ciliary beat in airway epithelia and oxygen supply in the vasculature. The view that Panx1 forms a large ATP-release channel has been challenged by the association of a low conductance, small anion-selective channel with the presence of Panx1. We showed that Panx1 membrane channels can function in two distinct modes with different conductances and permeabilities when heterologously expressed in Xenopus oocytes. When stimulated by potassium ions (K+), Panx1 formed a high conductance channel of ~500 pS that was permeable to ATP. Various physiological stimuli can induce this ATP-permeable conformation of the channel in several cell types. In contrast, the channel had a low conductance (~50 pS) with no detectable ATP permeability when activated by voltage in the absence of K+. The two channel states were associated with different reactivities of the terminal cysteine of Panx1 to thiol reagents, suggesting different conformations. Single particle electron microscopic analysis revealed that K+ stimulated the formation of channels with a larger pore diameter than those formed in the absence of K+. These data suggest that different stimuli lead to distinct channel structures with distinct biophysical properties. PMID:25056878

  18. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    PubMed

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  19. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    PubMed Central

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  20. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  1. Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid

    NASA Astrophysics Data System (ADS)

    Sahu, K. C.; Matar, O. K.

    2010-11-01

    The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. We focus on the parameter ranges for which Squire's theorem for the two-layer Newtonian problem does not exist. The modified Orr-Sommerfeld and Squire equations in each layer are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilizing. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.

  2. Dendrotoxins: structure-activity relationships and effects on potassium ion channels.

    PubMed

    Harvey, A L; Robertson, B

    2004-12-01

    Dendrotoxins are small proteins isolated from mamba (Dendroaspis) snakes. The original dendrotoxin was found in venom of the Eastern green mamba, Dendroaspis angusticeps, and related proteins were subsequently found in other mamba venoms. The dendrotoxins contain 57-60 amino acid residues cross-linked by three disulphide bridges, and they are homologous to Kunitz-type serine protease inhibitors, such as aprotinin (BPTI). The dendrotoxins have little or no anti-protease activity, but they block particular subtypes of voltage-dependent potassium channels of the Kv1 subfamily in neurones. Alpha-dendrotoxin from green mamba Dendroaspis angusticeps and toxin I from the black mamba Dendroaspis polylepis block cloned Kv1.1, Kv1.2 and Kv1.6 channels in the low nanomolar range; toxin K, also from the black mamba Dendroaspis polylepis, preferentially blocks Kv1.1 channels and is active at picomolar concentrations. Structural modifications and mutations to dendrotoxins have helped to define the molecular recognition properties of different types of K+ channels, although more work is needed to characterise the chemical features of the toxins that underlie their selectivity and potency at particular subtypes of channels. Dendrotoxins have been useful markers of subtypes of K+ channels in vivo, and dendrotoxins have become widely used as probes for studying the function of K+ channels in physiology and pathophysiology. With some pathological conditions being associated with voltage-gated K+ channels, analogues of dendrotoxins might have therapeutic potential.

  3. Physical basis of apparent pore-dilation of ATP-activated P2X receptor channels

    PubMed Central

    Li, Mufeng; Toombes, Gilman E S; Silberberg, Shai D; Swartz, Kenton J

    2016-01-01

    The selectivity of ion channels is fundamental for their roles in electrical and chemical signaling, and ion homeostasis. Although most ion channels exhibit stable ion selectivity, the prevailing view for purinergic P2X receptor channels, transient receptor potential V1 (TRPV1) channels and acid sensing ion channels (ASICs) is that their ion conduction pores dilate upon prolonged activation. We investigated this mechanism in P2X receptors and found that the hallmark shift in equilibrium potential observed with prolonged channel activation does not result from pore dilation, but from time-dependent alterations in the concentration of intracellular ions. We derived a physical model to calculate ion concentration changes during patch-clamp recordings, which validates our experimental findings and provides a quantitative guideline for effectively controlling ion concentration. Our results have fundamental implications for understanding ion permeation and gating in P2X receptor channels, and more broadly for using patch-clamp techniques to study ion channels and neuronal excitability. PMID:26389841

  4. Cryo-EM structure of the Slo2.2 Na+-activated K+ channel

    PubMed Central

    Hite, Richard; Yuan, Peng; Li, Zongli; Hsuing, Yichun; Walz, Thomas; MacKinnon, Roderick

    2015-01-01

    Na+-activated K+ channels are members of the Slo family of large conductance K+ channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels are fascinating for the biological roles they fulfill as well as for their intriguing biophysical properties, including conductance levels ten times most other K+ channels and gating sensitivity to intracellular Na+. Here we present the structure a complete Na+-activated K+ channel, Slo2.2, in the Na+-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 Å. The channel is composed of a large cytoplasmic gating ring within which resides the Na+-binding site and a transmembrane domain that closely resembles voltage-gated K+ channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure provides a first view of a member of the Slo K+ channel family, which reveals features explaining their high conductance and gating mechanism. PMID:26436452

  5. Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative

    PubMed Central

    Raphemot, Rene; Swale, Daniel R.; Dadi, Prasanna K.; Jacobson, David A.; Cooper, Paige; Wojtovich, Andrew P.; Banerjee, Sreedatta; Nichols, Colin G.

    2014-01-01

    ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry. PMID:24646456

  6. Multidimensional open-frameworks: combinations of one-dimensional channels and two-dimensional layers in novel BI/M oxo-chlorides.

    PubMed

    Lü, Minfeng; Aliev, Almaz; Olchowka, Jacob; Colmont, Marie; Huvé, Marielle; Wickleder, Claudia; Mentré, Olivier

    2014-01-06

    Here we discuss the synthesis and characterization of three novel bismuth oxo-chlorides ([Bi6Na0.5O7.5][Na0.5Cl3]channel[Cl]layer; [Bi17PbO22][Cl6]channel[Cl3]layer; [Bi9(Pb0.2Mn0.8)O12][Cl3]channel [Cl2]layer) which all show an original multidimensional crystal structure. It is formed of two-dimensional (2D)-layered blocks separated by Cl(-) layers. The blocks are porous with triangular one-dimensional (1D)-Cl(-) channels with various section sizes. This multidimensional feature is unique in the field of Bi and Pb oxo-halides, while so far only 1D or 2D halides units have been reported. The stability of the framework is allowed by Bi(3+)/M(n+) aliovalent substitution to balance charge neutrality. The channel and tunnel walls are formed by edge-sharing O(Bi,M)4 oxocentered tetrahedra, while the triangular tunnel junctions are achieved by O(Bi,M)5 pyramids. The three compounds are rather stable, but only [Bi6Na0.5O7.5][Na0.5Cl3]tunnel[Cl]layer was obtain as a single-phase material so that its photoluminecence properties have been investigated. It shows an unusual red bright luminescence with a maximum at 14150 cm(-1) at low temperatures due to Bi(3+) transitions that are well explained by the Bi-Cl bonding scheme.

  7. Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels.

    PubMed

    Yang, Huanghe; Hu, Lei; Shi, Jingyi; Delaloye, Kelli; Horrigan, Frank T; Cui, Jianmin

    2007-11-13

    The voltage-sensor domain (VSD) of voltage-dependent ion channels and enzymes is critical for cellular responses to membrane potential. The VSD can also be regulated by interaction with intracellular proteins and ligands, but how this occurs is poorly understood. Here, we show that the VSD of the BK-type K(+) channel is regulated by a state-dependent interaction with its own tethered cytosolic domain that depends on both intracellular Mg(2+) and the open state of the channel pore. Mg(2+) bound to the cytosolic RCK1 domain enhances VSD activation by electrostatic interaction with Arg-213 in transmembrane segment S4. Our results demonstrate that a cytosolic domain can come close enough to the VSD to regulate its activity electrostatically, thereby elucidating a mechanism of Mg(2+)-dependent activation in BK channels and suggesting a general pathway by which intracellular factors can modulate the function of voltage-dependent proteins.

  8. The Fungal Sexual Pheromone Sirenin Activates the Human CatSper Channel Complex.

    PubMed

    Syeda, Shameem Sultana; Carlson, Erick J; Miller, Melissa R; Francis, Rawle; Clapham, David E; Lishko, Polina V; Hawkinson, Jon E; Hook, Derek; Georg, Gunda I

    2016-02-19

    The basal fungus Allomyces macrogynus (A. macrogynus) produces motile male gametes displaying well-studied chemotaxis toward their female counterparts. This chemotaxis is driven by sirenin, a sexual pheromone released by the female gametes. The pheromone evokes a large calcium influx in the motile gametes, which could proceed through the cation channel of sperm (CatSper) complex. Herein, we report the total synthesis of sirenin in 10 steps and 8% overall yield and show that the synthetic pheromone activates the CatSper channel complex, indicated by a concentration-dependent increase in intracellular calcium in human sperm. Sirenin activation of the CatSper channel was confirmed using whole-cell patch clamp electrophysiology with human sperm. Based on this proficient synthetic route and confirmed activation of CatSper, analogues of sirenin can be designed as blockers of the CatSper channel that could provide male contraceptive agents.

  9. Transmission probability and active pumping ability of the channel with moving partition plane

    NASA Astrophysics Data System (ADS)

    Luo, X.; Day, Chr.

    2016-11-01

    In this paper we present Test Particle Monte Carlo (TPMC) simulations of the transmission probability and the active pumping ability of a rectangular channel of different physical parameters. The novel feature of this problem is that the channel has a partition plane in the middle which is moving up and down, which makes it to a dynamical system. The system was simulated by our TPMC code ProVac3D developed with a new subroutine considering the moving partition plane. In order to obtain precise simulation results, at least 1011 test particles were simulated in parallel on the supercomputer Helios in Japan. It is found that the amplitude and the frequency of the movement will affect both transmission probability and the active pumping ability of the channel. Moreover, it is also found that transmission probability and active pumping ability of the channel with the moving partition plane are no longer independent of the mass of the gas species.

  10. Activity-dependent regulation of T-type calcium channels by submembrane calcium ions

    PubMed Central

    Cazade, Magali; Bidaud, Isabelle; Lory, Philippe; Chemin, Jean

    2017-01-01

    Voltage-gated Ca2+ channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca2+ ion itself. This is well exemplified by the Ca2+-dependent inactivation of L-type Ca2+ channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca2+ channels, a long-held view is that they are not regulated by intracellular Ca2+. Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca2+ channels. We demonstrate that a rise in submembrane Ca2+ induces a large decrease in T-type current amplitude due to a hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca2+-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca2+ entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca2+ channels to their physiological roles. DOI: http://dx.doi.org/10.7554/eLife.22331.001 PMID:28109159

  11. Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels

    PubMed Central

    2017-01-01

    TMEM16A and TMEM16B encode for Ca2+-activated Cl− channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B. PMID:28046119

  12. Calmodulin regulation of TMEM16A and 16B Ca2+-activated chloride channels

    PubMed Central

    Yang, Tingting; Colecraft, Henry M

    2016-01-01

    Ca2+-activated chloride channels encoded by TMEM16A and 16B are important for regulating epithelial mucus secretion, cardiac and neuronal excitability, smooth muscle contraction, olfactory transduction, and cell proliferation. Whether and how the ubiquitous Ca2+ sensor calmodulin (CaM) regulates the activity of TMEM16A and 16B channels has been controversial and the subject of an ongoing debate. Recently, using a bioengineering approach termed ChIMP (Channel Inactivation induced by Membrane-tethering of an associated Protein) we argued that Ca2+-free CaM (apoCaM) is pre-associated with functioning TMEM16A and 16B channel complexes in live cells. Further, the pre-associated apoCaM mediates Ca2+-dependent sensitization of activation (CDSA) and Ca2+-dependent inactivation (CDI) of some TMEM16A splice variants. In this review, we discuss these findings in the context of previous and recent results relating to Ca2+-dependent regulation of TMEM16A/16B channels and the putative role of CaM. We further discuss potential future directions for these nascent ideas on apoCaM regulation of TMEM16A/16B channels, noting that such future efforts will benefit greatly from the pioneering work of Dr. David T. Yue and colleagues on CaM regulation of voltage-dependent calcium channels. PMID:26083059

  13. Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels.

    PubMed

    Pifferi, Simone

    2017-01-01

    TMEM16A and TMEM16B encode for Ca2+-activated Cl- channels (CaCC) and are expressed in many cell types and play a relevant role in many physiological processes. Here, I performed a site-directed mutagenesis study to understand the molecular mechanisms of ion permeation of TMEM16B. I mutated two positive charged residues R573 and K540, respectively located at the entrance and inside the putative channel pore and I measured the properties of wild-type and mutant TMEM16B channels expressed in HEK-293 cells using whole-cell and excised inside-out patch clamp experiments. I found evidence that R573 and K540 control the ion permeability of TMEM16B depending both on which side of the membrane the ion substitution occurs and on the level of channel activation. Moreover, these residues contribute to control blockage or activation by permeant anions. Finally, R573 mutation abolishes the anomalous mole fraction effect observed in the presence of a permeable anion and it alters the apparent Ca2+-sensitivity of the channel. These findings indicate that residues facing the putative channel pore are responsible both for controlling the ion selectivity and the gating of the channel, providing an initial understanding of molecular mechanism of ion permeation in TMEM16B.

  14. Activity-dependent regulation of T-type calcium channels by submembrane calcium ions.

    PubMed

    Cazade, Magali; Bidaud, Isabelle; Lory, Philippe; Chemin, Jean

    2017-01-21

    Voltage-gated Ca(2+) channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca(2+) ion itself. This is well exemplified by the Ca(2+)-dependent inactivation of L-type Ca(2+) channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca(2+) channels, a long-held view is that they are not regulated by intracellular Ca(2+). Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca(2+) channels. We demonstrate that a rise in submembrane Ca(2+) induces a large decrease in T-type current amplitude due to a hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca(2+)-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca(2+) entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca(2+) channels to their physiological roles.

  15. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  16. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    PubMed

    Wang, Wei; Hong, Jeong S; Rab, Andras; Sorscher, Eric J; Kirk, Kevin L

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein.

  17. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites.

    PubMed

    Gu, Yuanzheng; Barry, Joshua; Gu, Chen

    2013-05-15

    Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.

  18. Modulation of Ca2+ oscillation and melatonin secretion by BKCa channel activity in rat pinealocytes.

    PubMed

    Mizutani, Hiroya; Yamamura, Hisao; Muramatsu, Makoto; Hagihara, Yumiko; Suzuki, Yoshiaki; Imaizumi, Yuji

    2016-05-01

    The pineal glands regulate circadian rhythm through the synthesis and secretion of melatonin. The stimulation of nicotinic acetylcholine receptor due to parasympathetic nerve activity causes an increase in intracellular Ca(2+) concentration and eventually downregulates melatonin production. Our previous report shows that rat pinealocytes have spontaneous and nicotine-induced Ca(2+) oscillations that are evoked by membrane depolarization followed by Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs). These Ca(2+) oscillations are supposed to contribute to the inhibitory mechanism of melatonin secretion. Here we examined the involvement of large-conductance Ca(2+)-activated K(+) (BKCa) channel conductance on the regulation of Ca(2+) oscillation and melatonin production in rat pinealocytes. Spontaneous Ca(2+) oscillations were markedly enhanced by BKCa channel blockers (1 μM paxilline or 100 nM iberiotoxin). Nicotine (100 μM)-induced Ca(2+) oscillations were also augmented by paxilline. In contrast, spontaneous Ca(2+) oscillations were abolished by BKCa channel opener [3 μM 12,14-dichlorodehydroabietic acid (diCl-DHAA)]. Under whole cell voltage-clamp configurations, depolarization-elicited outward currents were significantly activated by diCl-DHAA and blocked by paxilline. Expression analyses revealed that the α and β3 subunits of BKCa channel were highly expressed in rat pinealocytes. Importantly, the activity of BKCa channels modulated melatonin secretion from whole pineal gland of the rat. Taken together, BKCa channel activation attenuates these Ca(2+) oscillations due to depolarization-synchronized Ca(2+) influx through VDCCs and results in a recovery of reduced melatonin secretion during parasympathetic nerve activity. BKCa channels may play a physiological role for melatonin production via a negative-feedback mechanism.

  19. Gating of Recombinant Small-Conductance Ca-activated K+ Channels by Calcium

    PubMed Central

    Hirschberg, Birgit; Maylie, James; Adelman, John P.; Marrion, Neil V.

    1998-01-01

    Small-conductance Ca-activated K+ channels play an important role in modulating excitability in many cell types. These channels are activated by submicromolar concentrations of intracellular Ca2+, but little is known about the gating kinetics upon activation by Ca2+. In this study, single channel currents were recorded from Xenopus oocytes expressing the apamin-sensitive clone rSK2. Channel activity was detectable in 0.2 μM Ca2+ and was maximal above 2 μM Ca2+. Analysis of stationary currents revealed two open times and three closed times, with only the longest closed time being Ca dependent, decreasing with increasing Ca2+ concentrations. In addition, elevated Ca2+ concentrations resulted in a larger percentage of long openings and short closures. Membrane voltage did not have significant effects on either open or closed times. The open probability was ∼0.6 in 1 μM free Ca2+. A lower open probability of ∼0.05 in 1 μM Ca2+ was also observed, and channels switched spontaneously between behaviors. The occurrence of these switches and the amount of time channels spent displaying high open probability behavior was Ca2+ dependent. The two behaviors shared many features including the open times and the short and intermediate closed times, but the low open probability behavior was characterized by a different, long Ca2+-dependent closed time in the range of hundreds of milliseconds to seconds. Small-conductance Ca- activated K+ channel gating was modeled by a gating scheme consisting of four closed and two open states. This model yielded a close representation of the single channel data and predicted a macroscopic activation time course similar to that observed upon fast application of Ca2+ to excised inside-out patches. PMID:9524139

  20. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor

    PubMed Central

    Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan

    2008-01-01

    SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638

  1. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor.

    PubMed

    Liedtke, W; Choe, Y; Martí-Renom, M A; Bell, A M; Denis, C S; Sali, A; Hudspeth, A J; Friedman, J M; Heller, S

    2000-10-27

    The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nervous system, the channel is expressed in neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells.

  2. PKA and phosphatases attached to the Ca(V)1.2 channel regulate channel activity in cell-free patches.

    PubMed

    Xu, Jianjun; Yu, Lifeng; Minobe, Etsuko; Lu, Liting; Lei, Ming; Kameyama, Masaki

    2016-01-15

    Calmodulin (CaM) + ATP can reprime voltage-gated L-type Ca(2+) channels (Ca(V)1.2) in inside-out patches for activation, but this effect decreases time dependently. This suggests that the Ca(V)1.2 channel activity is regulated by additional cytoplasmic factors. To test this hypothesis, we examined the role of cAMP-dependent protein kinase A (PKA) and protein phosphatases in the regulation of Ca(V)1.2 channel activity in the inside-out mode in guinea pig ventricular myocytes. Ca(V)1.2 channel activity quickly disappeared after the patch was excised from the cell and recovered to only 9% of that in the cell-attached mode on application of CaM + ATP at 10 min after the inside out. However, immediate exposure of the excised patch to the catalytic subunit of PKA + ATP or the nonspecific phosphatase inhibitor okadaic acid significantly increased the Ca(V)1.2 channel activity recovery by CaM + ATP (114 and 96%, respectively) at 10 min. Interestingly, incubation of the excised patches with cAMP + ATP also increased CaM/ATP-induced Ca(V)1.2 channel activity recovery (108%), and this effect was blocked by the nonspecific protein kinase inhibitor K252a. The channel activity in the inside-out mode was not maintained by either catalytic subunit of PKA or cAMP + ATP in the absence of CaM, but was stably maintained in the presence of CaM for more than 40 min. These results suggest that PKA and phosphatase(s) attached on or near the Ca(V)1.2 channel regulate the basal channel activity, presumably through modulation of the dynamic CaM interaction with the channel.

  3. Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity.

    PubMed

    Gonzalez-Perrett, Silvia; Batelli, Marisa; Kim, Keetae; Essafi, Makram; Timpanaro, Gustavo; Moltabetti, Nicolas; Reisin, Ignacio L; Arnaout, M Amin; Cantiello, Horacio F

    2002-07-12

    Polycystin-2, the product of the human PKD2 gene, whose mutations cause autosomal dominant polycystic kidney disease, is a large conductance, Ca(2+)-permeable non-selective cation channel. Polycystin-2 is functionally expressed in the apical membrane of the human syncytiotrophoblast, where it may play a role in the control of fetal electrolyte homeostasis. Little is known, however, about the mechanisms that regulate polycystin-2 channel function. In this study, the role of pH in the regulation of polycystin-2 was assessed by ion channel reconstitution of both apical membranes of human syncytiotrophoblast and the purified FLAG-tagged protein from in vitro transcribed/translated material. A kinetic analysis of single channel currents, including dwell time histograms, confirmed two open and two close states for spontaneous channel behavior and a strong voltage dependence of the open probability of the channel (P(o)). A reduction of cis pH (pH(cis)) decreased P(o) and shifted the voltage dependence of channel function but had no effect on the single channel conductance. An increase in pH(cis), in contrast, increased NP(o) (channel number times P(o)). Elimination of the H(+) chemical gradient did not reverse the low pH(cis) inhibition of polycystin-2. Similar findings confirmed the pH effect on the in vitro translated, FLAG-tagged purified polycystin-2. The data indicate the presence of an H(+) ion regulatory site in the channel protein, which is accessible from the cytoplasmic side of the protein. This protonation site controls polycystin-2 cation-selective channel activity.

  4. Activation of the ATP-sensitive K+ channel by decavanadate in guinea-pig ventricular myocytes.

    PubMed

    Nakashima, H; Kakei, M; Tanaka, H

    1993-03-23

    To evaluate the effects of decavanadate on the ATP-sensitive K+ (KATP) channel, we applied the inside-out membrane patch-clamp technique to ventricular myocytes isolated from guinea-pig hearts. Decavanadate increased the probability of the KATP channel being open in a dose-dependent manner over the range of 0.1 to 5 mM in the presence of 0.3 mM ATP. Half-maximal activation occurred at 540 microM decavanadate and a Hill coefficient of 1.3 was obtained when the Hill equation was used to fit the dose-dependent activation for the channel by decavanadate. The half-maximum inhibition for the channel by ATP (K1/2) in the presence of 2 mM Mg2+ was 19 and 74 microM in its absence. In the presence of decavanadate, both curves shifted toward the higher concentration of ATP without a change in steepness of the slope (Hill coefficient = 2). The effect of decavanadate could be expressed by a model in which its binding prevents ATP binding from closing the channel. The estimated dissociation constant of decavanadate was 1.5 microM in the presence and 22.8 microM in the absence of Mg2+. Decavanadate reactivated the rundown channel in the absence of Mg2+ and ATP. Neither the single channel slope conductance nor the mean open and closed lifetime within the bursts of channel openings were affected by decavanadate. We conclude that internal Mg2+ is not required for the modulation produced by decavanadate, but this ion influences the channel and changes the dissociation constant of both ATP and decavanadate to the channel.

  5. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.

    PubMed

    Linta, Leonhard; Boeckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2013-07-01

    The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis.

  6. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root.

    PubMed

    van den Wijngaard, Paul W J; Sinnige, Mark P; Roobeek, Ilja; Reumer, Annet; Schoonheim, Peter J; Mol, Jos N M; Wang, Mei; De Boer, Albertus H

    2005-01-01

    Germination of seeds proceeds in general in two phases, an initial imbibition phase and a subsequent growth phase. In grasses like barley, the latter phase is evident as the emergence of the embryonic root (radicle). The hormone abscisic acid (ABA) inhibits germination because it prevents the embryo from entering and completing the growth phase. Genetic and physiological studies have identified many steps in the ABA signal transduction cascade, but how it prevents radicle elongation is still not clear. For elongation growth to proceed, uptake of osmotically active substances (mainly K(+)) is essential. Therefore, we have addressed the question of how the activity of K(+) permeable ion channels in the plasma membrane of radicle cells is regulated under conditions of slow (+ABA) and rapid germination (+fusicoccin). We found that ABA arrests radicle growth, inhibits net K(+) uptake and reduces the activity of K(+) (in) channels as measured with the patch-clamp technique. In contrast, fusicoccin (FC), a well-known stimulator of germination, stimulates radicle growth, net K(+) uptake and reduces the activity of K(+) (out) channels. Both types of channels are under the control of 14-3-3 proteins, known as integral components of signal transduction pathways and instrumental in FC action. Intriguingly, 14-3-3 affected both channels in an opposite fashion: whereas K(+) (in) channel activity was fully dependent upon 14-3-3 proteins, K(+) (out) channel activity was reduced by 14-3-3 proteins by 60%. Together with previous data showing that 14-3-3 proteins control the activity of the plasma membrane H(+)-ATPase, this makes 14-3-3 a prime candidate for molecular master regulator of the cellular osmo-pump. Regulation of the osmo-pump activity by ABA and FC is an important mechanism in controlling the growth of the embryonic root during seed germination.

  7. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    PubMed

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  8. Calcium entry via TRPC1 channels activates chloride currents in human glioma cells

    PubMed Central

    Cuddapah, Vishnu Anand; Turner, Kathryn L.; Sontheimer, Harald

    2012-01-01

    Malignant gliomas are highly-invasive brain cancers that carry a dismal prognosis. Recent studies indicate that Cl− channels facilitate glioma cell invasion by promoting hydrodynamic cell shape and volume changes. Here we asked how Cl− channels are regulated in the context of migration. Using patch-clamp recordings we show Cl− currents are activated by physiological increases of [Ca2+]i to 65 and 180 nM. Cl− currents appear to be mediated by ClC-3, a voltage-gated, CaMKII-regulated Cl− channel highly expressed by glioma cells. ClC-3 channels colocalized with TRPC1 on caveolar lipid rafts on glioma cell processes. Using perforated-patch electrophysiological recordings, we demonstrate that inducible knockdown of TRPC1 expression with shRNA significantly inhibited glioma Cl− currents in a Ca2+-dependent fashion, placing Cl− channels under the regulation of Ca2+ entry via TRPC1. In chemotaxis assays epidermal growth factor (EGF)-induced invasion was inhibition by TRPC1 knockdown to the same extent as pharmacological block of Cl− channels. Thus endogenous glioma Cl− channels are regulated by TRPC1. Cl− channels could be an important downstream target of TRPC1 in many other cells types, coupling elevations in [Ca2+]i to the shape and volume changes associated with migrating cells. PMID:23261316

  9. Regulation of ion channels and transporters by AMP-activated kinase (AMPK)

    PubMed Central

    Lang, Florian; Föller, Michael

    2014-01-01

    The energy-sensing AMP-activated kinase AMPK ensures survival of energy-depleted cells by stimulating ATP production and limiting ATP utilization. Both energy production and energy consumption are profoundly influenced by transport processes across the cell membane including channels, carriers and pumps. Accordingly, AMPK is a powerful regulator of transport across the cell membrane. AMPK regulates diverse K+ channels, Na+ channels, Ca2+ release activated Ca2+ channels, Cl- channels, gap junctional channels, glucose carriers, Na+/H+-exchanger, monocarboxylate-, phosphate-, creatine-, amino acid-, peptide- and osmolyte-transporters, Na+/Ca2+-exchanger, H+-ATPase and Na+/K+-ATPase. AMPK activates ubiquitin ligase Nedd4–2, which labels several plasma membrane proteins for degradation. AMPK further regulates transport proteins by inhibition of Rab GTPase activating protein (GAP) TBC1D1. It stimulates phosphatidylinositol 3-phosphate 5-kinase PIKfyve and inhibits phosphatase and tensin homolog (PTEN) via glycogen synthase kinase 3β (GSK3β). Moreover, it stabilizes F-actin as well as downregulates transcription factor NF-κB. All those cellular effects serve to regulate transport proteins. PMID:24366036

  10. Coupling between Voltage Sensors and Activation Gate in Voltage-gated K+ Channels

    PubMed Central

    Lu, Zhe; Klem, Angela M.; Ramu, Yajamana

    2002-01-01

    Current through voltage-gated K+ channels underlies the action potential encoding the electrical signal in excitable cells. The four subunits of a voltage-gated K+ channel each have six transmembrane segments (S1–S6), whereas some other K+ channels, such as eukaryotic inward rectifier K+ channels and the prokaryotic KcsA channel, have only two transmembrane segments (M1 and M2). A voltage-gated K+ channel is formed by an ion-pore module (S5–S6, equivalent to M1–M2) and the surrounding voltage-sensing modules. The S4 segments are the primary voltage sensors while the intracellular activation gate is located near the COOH-terminal end of S6, although the coupling mechanism between them remains unknown. In the present study, we found that two short, complementary sequences in voltage-gated K+ channels are essential for coupling the voltage sensors to the intracellular activation gate. One sequence is the so called S4–S5 linker distal to the voltage-sensing S4, while the other is around the COOH-terminal end of S6, a region containing the actual gate-forming residues. PMID:12407078

  11. Satellite glial cells in situ within mammalian prevertebral ganglia express K+ channels active at rest potential.

    PubMed

    Gola, M; Niel, J P; Delmas, P; Jacquet, G

    1993-10-01

    Patch-clamp experiments were performed on satellite glial cells wrapped around sympathetic neurons in the rabbit coeliac ganglion. With the cleaning method used, the glial cells could be kept in place and were directly accessible to the patch-clamp pipettes. Whole-cell recordings showed that glial cells had almost ohmic properties. Their resting potential (-79.1 +/- 1.2 mV) was found to be very nearly the same as the K+ reversal potential and approximately 20 mV more negative than that of the neurons they encapsulated. Unitary currents from ionic channels present in the glial membrane were recorded in the cell-attached configuration with pipettes filled with various amounts of K+, Na+ and gluconate. Only K(+)-selective channels with slight inwardly rectifying properties (in the presence of 150 mM [K+]o) were detected. These channels were active (Po = 0.7-0.8) at the cell resting potential. The channel conductance, but not its opening probability, was dependent on the [K+] in the pipette. Cl(-)-selective channels (outwardly rectifying and large conductance channels) were detected in excised patches. The properties of the K+ channels (increased inward current with [K+] and detectable outward current at low [K+]) are well suited for siphoning the K+ released by active neurons.

  12. Modulation of channel activity and gadolinium block of MscL by static magnetic fields.

    PubMed

    Petrov, Evgeny; Martinac, Boris

    2007-02-01

    The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd(3+) ions from the membrane bilayer and thus remove the MscL channel block.

  13. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  14. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed Central

    Zhang, J; Loew, L M; Davidson, R M

    1996-01-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells. PMID:8913589

  15. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed

    Gommerat, I; Gola, M

    1996-09-15

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  16. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  17. Bisphenol A activates BK channels through effects on α and β1 subunits

    PubMed Central

    Rottgen, Trey S; Fancher, Ibra S; Asano, Shinichi; Widlanski, Theodore S; Dick, Gregory M

    2014-01-01

    We demonstrated previously that BK (KCa1.1) channel activity (NPo) increases in response to bisphenol A (BPA). Moreover, BK channels containing regulatory β1 subunits were more sensitive to the stimulatory effect of BPA. How BPA increases BK channel NPo remains mostly unknown. Estradiol activates BK channels by binding to an extracellular site, but neither the existence nor location of a BPA binding site has been demonstrated. We tested the hypothesis that an extracellular binding site is responsible for activation of BK channels by BPA. We synthesized membrane-impermeant BPA-monosulfate (BPA-MS) and used patch clamp electrophysiology to study channels composed of α or α + β1 subunits in cell-attached (C-A), whole-cell (W-C), and inside-out (I-O) patches. In C-A patches, bath application of BPA-MS (100 μM) had no effect on the NPo of BK channels, regardless of their subunit composition. Importantly, however, subsequent addition of membrane-permeant BPA (100 μM) increased the NPo of both α and α + β1 channels in C-A patches. The C-A data indicate that in order to alter BK channel NPo, BPA must interact with the channel itself (or some closely associated partner) and diffusible messengers are not involved. In W-C patches, 100 μM BPA-MS activated current in cells expressing α subunits, whereas cells expressing α + β1 subunits responded similarly to a log-order lower concentration (10 μM). The W-C data suggest that an extracellular activation site exists, but do not eliminate the possibility that an intracellular site may also be present. In I-O patches, where the cytoplasmic face was exposed to the bath, BPA-MS had no effect on the NPo of BK α subunits, but BPA increased it. BPA-MS increased the NPo of α + β1 channels in I-O patches, but not as much as BPA. We conclude that BPA activates BK α via an extracellular site and that BPA-sensitivity is increased by the β1 subunit, which may also constitute part of an intracellular binding site. PMID

  18. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling.

    PubMed

    House, Carrie D; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T; Annunziata, Christina M; Gutkind, J Silvio; Hales, Tim G; Lee, Norman H

    2015-06-22

    Functional expression of voltage-gated Na(+) channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  19. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  20. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    PubMed

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates.

  1. Activity-induced internalization and rapid degradation of sodium channels in cultured fetal neurons

    PubMed Central

    1996-01-01

    A regulatory mechanism for neuronal excitability consists in controlling sodium channel density at the plasma membrane. In cultured fetal neurons, activation of sodium channels by neurotoxins, e.g., veratridine and alpha-scorpion toxin (alpha-ScTx) that enhance the channel open state probability induced a rapid down-regulation of surface channels. Evidence that the initial step of activity-induced sodium channel down-regulation is mediated by internalization was provided by using 125I-alpha-ScTx as both a channel probe and activator. After its binding to surface channels, the distribution of 125I-alpha-ScTx into five subcellular compartments was quantitatively analyzed by EM autoradiography. 125I-alpha-ScTx was found to accumulate in tubulovesicular endosomes and disappear from the cell surface in a time-dependent manner. This specific distribution was prevented by addition of tetrodotoxin (TTX), a channel blocker. By using a photoreactive derivative to covalently label sodium channels at the surface of cultured neurons, we further demonstrated that they are degraded after veratridine-induced internalization. A time-dependent decrease in the amount of labeled sodium channel alpha subunit was observed after veratridine treatment. After 120 min of incubation, half of the alpha subunits were cleaved. This degradation was prevented totally by TTX addition and was accompanied by the appearance of an increasing amount of a 90-kD major proteolytic fragment that was already detected after 45-60 min of veratridine treatment. Exposure of the photoaffinity-labeled cells to amphotericin B, a sodium ionophore, gave similar results. In this case, degradation was prevented when Na+ ions were substituted by choline ions and not blocked by TTX. After veratridine- or amphotericin B-induced internalization of sodium channels, breakdown of the labeled alpha subunit was inhibited by leupeptin, while internalization was almost unaffected. Thus, cultured fetal neurons are capable of

  2. Non-selective voltage-activated cation channel in the human red blood cell membrane.

    PubMed

    Kaestner, L; Bollensdorff, C; Bernhardt, I

    1999-02-04

    Using the patch-clamp technique, a non-selective voltage-activated Na+ and K+ channel in the human red blood cell membrane was found. The channel operates only at positive membrane potentials from about +30 mV (inside positive) onwards. For sodium and potassium ions, similar conductances of about 21 pS were determined. Together with the recently described K+(Na+)/H+ exchanger, this channel is responsible for the increase of residual K+ and Na+ fluxes across the human red blood cell membrane when the cells are suspended in low ionic strength medium.

  3. Preliminary microwave irradiation of water solutions changes their channel-modifying activity.

    PubMed

    Fesenko, E E; Geletyuk, V I; Kazachenko, V N; Chemeris, N K

    1995-06-05

    Earlier we have shown that millimetre microwaves (42.25 GHz) of non-thermal power, upon direct admittance into an experiment bath, greatly influence activation characteristics of single Ca(2+)-dependent K+ channels (in particular, the channel open state probability, Po). Here we present new data showing that similar changes in Po arise due to the substitution of a control bath solution for a preliminary microwave irradiated one of the same composition (100 mmol/l KCl with Ca2+ added), with irradiation time being 20-30 min. Therefore, due to the exposure to the field the solution acquires some new properties that are important for the channel activity. The irradiation terminated, the solution retains a new state for at least 10-20 min (solution memory). The data suggest that the effects of the field on the channels are mediated, at least partially, by changes in the solution properties.

  4. Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia.

    PubMed

    Selga, Elisabet; Pérez-Serra, Alexandra; Moreno-Asso, Alba; Anderson, Seth; Thomas, Kristen; Desai, Mayurika; Brugada, Ramon; Pérez, Guillermo J; Scornik, Fabiana S

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels are widely expressed in the nervous system. We have recently shown that principal neurons from canine intracardiac ganglia (ICG) express a paxilline- and TEA-sensitive BK current, which increases neuronal excitability. In the present work, we further explore the molecular constituents of the BK current in canine ICG. We found that the β1 and β4 regulatory subunits are expressed in ICG. Single channel voltage-dependence at different calcium concentrations suggested that association of the BKα with a particular β subunit was not enough to explain the channel activity in this tissue. Indeed, we detected the presence of several splice variants of the BKα subunit. In conclusion, BK channels in canine ICG may result from the arrangement of different BKα splice variants, plus accessory β subunits. The particular combinations expressed in canine IC neurons likely rule the excitatory role of BK current in this tissue.

  5. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.

    PubMed

    Gründemann, Jan; Clark, Beverley A

    2015-09-22

    Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, K(Ca)3.1) by local, activity-dependent calcium (Ca(2+)) influx at nodes of Ranvier via a T-type voltage-gated Ca(2+) current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.

  6. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  7. Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid

    NASA Astrophysics Data System (ADS)

    Sahu, Kirti; Matar, Omar

    2010-11-01

    We investigate the three-dimensional linear characteristics of pressure-driven two-layer channel flow, focussing on the range of parameters for which Squire's theorem does not exist, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. The modified Orr-Sommerfeld and Squire equations in each layers are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilising. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.

  8. β1-Subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle

    PubMed Central

    Petkov, Georgi V; Bonev, Adrian D; Heppner, Thomas J; Brenner, Robert; Aldrich, Richard W; Nelson, Mark T

    2001-01-01

    The large-conductance calcium-activated potassium (BK) channel plays an important role in controlling membrane potential and contractility of urinary bladder smooth muscle (UBSM). These channels are composed of a pore-forming α-subunit and an accessory, smooth muscle-specific, β1-subunit. Our aim was to determine the functional role of the β1-subunit of the BK channel in controlling the contractions of UBSM by using BK channel β1-subunit ‘knock-out’ (KO) mice. The β-galactosidase reporter (lacZ gene) was targeted to the β1 locus, which provided the opportunity to examine the expression of the β1-subunit in UBSM. Based on this approach, the β1-subunit is highly expressed in UBSM. BK channels lacking β1-subunits have reduced activity, consistent with a shift in BK channel voltage/Ca2+ sensitivity. Iberiotoxin, an inhibitor of BK channels, increased the amplitude and decreased the frequency of phasic contractions of UBSM strips from control mice. The effects of the β1-subunit deletion on contractions were similar to the effect of iberiotoxin on control mice. The UBSM strips from β1-subunit KO mice had elevated phasic contraction amplitude and decreased frequency when compared to control UBSM strips. Iberiotoxin increased the amplitude and frequency of phasic contractions, and UBSM tone of UBSM strips from β1-subunit KO mice, suggesting that BK channels still regulate contractions in the absence of the β1-subunit. The results indicate that the β1-subunit, by modulating BK channel activity, plays a significant role in the regulation of phasic contractions of the urinary bladder. PMID:11731577

  9. Downregulation of Purkinje Cell Activity by Modulators of Small Conductance Calcium-Activated Potassium Channels In Rat Cerebellum

    PubMed Central

    Karelina, T. V.; Stepanenko, Yu. D.; Abushik, P. A.; Sibarov, D. A.; Antonov, S. M.

    2016-01-01

    Small-conductance calcium-activated potassium channels (SK channels) are widely expressed in CNS tissues. Their functions, however, have not been well studied. Participation of SK channels in Purkinje cell (PC) pacemaker activity has been studied predominantly in vitro. Here we studied for the first time the effects of SK channel activation by NS309 or CyPPA on the PC simple spike frequency in vivo in adult (3 – 6 months) and aged (22 – 28 months) rats using extracellular microelectrode recordings. Both pharmacological agents caused a statistically significant decrease in the PC simple spike frequency. The maximum value of the decrease in the simple spike frequency did not depend on age, whereas a statistically significant inhibition of the spike frequency was achieved faster in aged animals than in adult ones. In experiments on cultured neurons PCs were identified by the expression of calbindin as the PC-specific marker. Registration of transmembrane currents in cerebellar neurons revealed the direct action of NS309 and CyPPA on the SK channels of PC consisted in the enhancement of outward potassium currents and action potential after-hyperpolarization. Thus, SK channel activators can compensate for age-related changes of the autorhythmic functions of the cerebellum. PMID:28050270

  10. Microbial diversity in European alpine permafrost and active layers.

    PubMed

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world.

  11. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  12. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil`s physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  13. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil's physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  14. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    PubMed

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  15. sigma Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons.

    PubMed

    Zhang, Hongling; Cuevas, Javier

    2005-06-01

    The sigma receptors have been implicated in the regulation of the cardiovascular system, and sigma-1 receptor transcripts have been found in parasympathetic intracardiac neurons. However, the cellular function of sigma-1 receptors in these cells remains to be determined. Effects of sigma receptor activation on voltage-activated K(+) channels and action potential firing were studied in isolated intracardiac neurons using whole-cell patch-clamp recording techniques. Activation of sigma receptors reversibly blocked delayed outwardly rectifying potassium channels, large conductance Ca(2+)-sensitive K(+) channels, and the M-current with maximal inhibition >80%. The inhibition of K(+) channels by sigma ligands was dose-dependent, and the rank order potency of (+)-pentazocine > ibogaine > 1,3-di-O-tolyguanidin (DTG) suggests that the effect is mediated by sigma-1 receptor activation. Preincubation of neurons with the irreversible sigma receptor antagonist metaphit blocked DTG-induced inhibition of K(+) channels, confirming that the effect is mediated by sigma receptor activation. Although bath application of sigma ligands depolarized intracardiac neurons, the number of action potentials fired by the cells in response to depolarizing current pulses was decreased in the presence of these drugs. Neither dialysis of the neurons nor application of intracellular 5'-O-(2-thiodiphosphate) trilithium salt inhibited the effect of sigma receptors on K(+) channels, which suggests that the signal transduction pathway does not involve a diffusible cytosolic second messenger or a G protein. Together, these data suggest that sigma-1 receptors are directly coupled to K(+) channels in intracardiac neurons. Furthermore, activation of sigma-1 receptors depresses the excitability of intracardiac neurons and is thus likely to block parasympathetic input to the heart.

  16. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-05

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel.

  17. Glucose deprivation activates diversity of potassium channels in cultured rat hippocampal neurons.

    PubMed

    Velasco, Myrian; García, Esperanza; Onetti, Carlos G

    2006-05-01

    1. Glucose is one of the most important substrates for generating metabolic energy required for the maintenance of cellular functions. Glucose-mediated changes in neuronal firing pattern have been observed in the central nervous system of mammals. K(+) channels directly regulated by intracellular ATP have been postulated as a linkage between cellular energetic metabolism and excitability; the functional roles ascribed to these channels include glucose-sensing to regulate energy homeostasis and neuroprotection under energy depletion conditions. The hippocampus is highly sensitive to metabolic insults and is the brain region most sensitive to ischemic damage. Because the identity of metabolically regulated potassium channels present in hippocampal neurons is obscure, we decided to study the biophysical properties of glucose-sensitive potassium channels in hippocampal neurons. 2. The dependence of membrane potential and the sensitivity of potassium channels to glucose and ATP in rat hippocampal neurons were studied in cell-attached and excised inside-out membrane patches. 3. We found that under hypoglycemic conditions, at least three types of potassium channels were activated; their unitary conductance values were 37, 147, and 241 pS in symmetrical K(+), and they were sensitive to ATP. For K(+) channels with unitary conductance of 37 and 241, when the membrane potential was depolarized the longer closed time constant diminished and this produced an increase in the open-state probability; nevertheless, the 147-pS channels were not voltage-dependent. 4. We propose that neuronal glucose-sensitive K(+) channels in rat hippocampus include subtypes of ATP-sensitive channels with a potential role in neuroprotection during short-term or prolonged metabolic stress.

  18. Allosteric Gating of a Large Conductance Ca-activated K+ Channel

    PubMed Central

    Cox, D.H.; Cui, J.; Aldrich, R.W.

    1997-01-01

    Large-conductance Ca-activated potassium channels (BK channels) are uniquely sensitive to both membrane potential and intracellular Ca2+. Recent work has demonstrated that in the gating of these channels there are voltage-sensitive steps that are separate from Ca2+ binding steps. Based on this result and the macroscopic steady state and kinetic properties of the cloned BK channel mslo, we have recently proposed a general kinetic scheme to describe the interaction between voltage and Ca2+ in the gating of the mslo channel (Cui, J., D.H. Cox, and R.W. Aldrich. 1997. J. Gen. Physiol. In press.). This scheme supposes that the channel exists in two main conformations, closed and open. The conformational change between closed and open is voltage dependent. Ca2+ binds to both the closed and open conformations, but on average binds more tightly to the open conformation and thereby promotes channel opening. Here we describe the basic properties of models of this form and test their ability to mimic mslo macroscopic steady state and kinetic behavior. The simplest form of this scheme corresponds to a voltage-dependent version of the Monod-Wyman-Changeux (MWC) model of allosteric proteins. The success of voltage-dependent MWC models in describing many aspects of mslo gating suggests that these channels may share a common molecular mechanism with other allosteric proteins whose behaviors have been modeled using the MWC formalism. We also demonstrate how this scheme can arise as a simplification of a more complex scheme that is based on the premise that the channel is a homotetramer with a single Ca2+ binding site and a single voltage sensor in each subunit. Aspects of the mslo data not well fitted by the simplified scheme will likely be better accounted for by this more general scheme. The kinetic schemes discussed in this paper may be useful in interpreting the effects of BK channel modifications or mutations. PMID:9276753

  19. Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels.

    PubMed

    Koide, Masayo; Syed, Arsalan U; Braas, Karen M; May, Victor; Wellman, George C

    2014-11-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K(+) channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K(+) (KATP) and large-conductance Ca(2+)-activated K(+) (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca(2+) release events termed Ca(2+) sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50 % in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca(2+) spark frequency.

  20. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  1. Variomics screen identifies the re-entrant loop of the calcium-activated chloride channel ANO1 that facilitates channel activation.

    PubMed

    Bill, Anke; Popa, M Oana; van Diepen, Michiel T; Gutierrez, Abraham; Lilley, Sarah; Velkova, Maria; Acheson, Kathryn; Choudhury, Hedaythul; Renaud, Nicole A; Auld, Douglas S; Gosling, Martin; Groot-Kormelink, Paul J; Gaither, L Alex

    2015-01-09

    The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases.

  2. Variomics Screen Identifies the Re-entrant Loop of the Calcium-activated Chloride Channel ANO1 That Facilitates Channel Activation*

    PubMed Central

    Bill, Anke; Popa, M. Oana; van Diepen, Michiel T.; Gutierrez, Abraham; Lilley, Sarah; Velkova, Maria; Acheson, Kathryn; Choudhury, Hedaythul; Renaud, Nicole A.; Auld, Douglas S.; Gosling, Martin; Groot-Kormelink, Paul J.; Gaither, L. Alex

    2015-01-01

    The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases. PMID:25425649

  3. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception.

    PubMed

    Noël, Jacques; Zimmermann, Katharina; Busserolles, Jérome; Deval, Emanuel; Alloui, Abdelkrim; Diochot, Sylvie; Guy, Nicolas; Borsotto, Marc; Reeh, Peter; Eschalier, Alain; Lazdunski, Michel

    2009-05-06

    The sensation of cold or heat depends on the activation of specific nerve endings in the skin. This involves heat- and cold-sensitive excitatory transient receptor potential (TRP) channels. However, we show here that the mechano-gated and highly temperature-sensitive potassium channels of the TREK/TRAAK family, which normally work as silencers of the excitatory channels, are also implicated. They are important for the definition of temperature thresholds and temperature ranges in which excitation of nociceptor takes place and for the intensity of excitation when it occurs. They are expressed with thermo-TRP channels in sensory neurons. TRAAK and TREK-1 channels control pain produced by mechanical stimulation and both heat and cold pain perception in mice. Expression of TRAAK alone or in association with TREK-1 controls heat responses of both capsaicin-sensitive and capsaicin-insensitive sensory neurons. Together TREK-1 and TRAAK channels are important regulators of nociceptor activation by cold, particularly in the nociceptor population that is not activated by menthol.

  4. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone

    PubMed Central

    Han, Yunyun; Kaeser, Pascal S.; Südhof, Thomas C.; Schneggenburger, Ralf

    2012-01-01

    At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca2+ channels close to docked vesicles. The mechanisms that enrich Ca2+ channels at active zones are, however, largely unknown, possibly because of the limited presynaptic accessibility of most synapses. Here, we have established a Cre-lox based conditional knock-out approach at a presynaptically accessible CNS synapse, the calyx of Held, to directly study the functions of RIM proteins. Removal of all RIM1/2 isoforms strongly reduced the presynaptic Ca2+ channel density, revealing a new role of RIM proteins in Ca2+ channel targeting. Removal of RIMs also reduced the readily-releasable pool, paralleled by a similar reduction of the number of docked vesicles, and the Ca2+ channel - vesicle coupling was decreased. Thus, RIM proteins co-ordinately regulate key functions for fast transmitter release: enabling a high presynaptic Ca2+ channel density, and vesicle docking at the active zone. PMID:21262468

  5. STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate

    PubMed Central

    Yamashita, Megumi; Yeung, Priscilla S.-W.; Ing, Christopher E.; McNally, Beth A.; Pomès, Régis; Prakriya, Murali

    2017-01-01

    Store-operated Ca2+ release-activated Ca2+ (CRAC) channels constitute a major pathway for Ca2+ influx and mediate many essential signalling functions in animal cells, yet how they open remains elusive. Here, we investigate the gating mechanism of the human CRAC channel Orai1 by its activator, stromal interacting molecule 1 (STIM1). We find that two rings of pore-lining residues, V102 and F99, work together to form a hydrophobic gate. Mutations of these residues to polar amino acids produce channels with leaky gates that conduct ions in the resting state. STIM1-mediated channel activation occurs through rotation of the pore helix, which displaces the F99 residues away from the pore axis to increase pore hydration, allowing ions to flow through the V102-F99 hydrophobic band. Pore helix rotation by STIM1 also explains the dynamic coupling between CRAC channel gating and ion selectivity. This hydrophobic gating mechanism has implications for CRAC channel function, pharmacology and disease-causing mutations. PMID:28220789

  6. STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate

    NASA Astrophysics Data System (ADS)

    Yamashita, Megumi; Yeung, Priscilla S.-W.; Ing, Christopher E.; McNally, Beth A.; Pomès, Régis; Prakriya, Murali

    2017-02-01

    Store-operated Ca2+ release-activated Ca2+ (CRAC) channels constitute a major pathway for Ca2+ influx and mediate many essential signalling functions in animal cells, yet how they open remains elusive. Here, we investigate the gating mechanism of the human CRAC channel Orai1 by its activator, stromal interacting molecule 1 (STIM1). We find that two rings of pore-lining residues, V102 and F99, work together to form a hydrophobic gate. Mutations of these residues to polar amino acids produce channels with leaky gates that conduct ions in the resting state. STIM1-mediated channel activation occurs through rotation of the pore helix, which displaces the F99 residues away from the pore axis to increase pore hydration, allowing ions to flow through the V102-F99 hydrophobic band. Pore helix rotation by STIM1 also explains the dynamic coupling between CRAC channel gating and ion selectivity. This hydrophobic gating mechanism has implications for CRAC channel function, pharmacology and disease-causing mutations.

  7. Gating charges per channel of Ca(V)2.2 channels are modified by G protein activation in rat sympathetic neurons.

    PubMed

    Rebolledo-Antúnez, Santiago; Farías, José M; Arenas, Isabel; García, David E

    2009-06-01

    It has been suggested that voltage-dependent G protein modulation of Ca(V)2.2 channels is carried out at closed states of the channel. Our purpose was to estimate the number of gating charges of Ca(V)2.2 channel in control and G protein-modulated conditions. By using a Cole-Moore protocol we observed a significant delay in Ca(V)2.2 channel activation according to a transit of the channel through a series of closed states before channel opening. If G protein voltage-dependent modulation were carried out at these closed states, then we would have expected a greater Cole-Moore lag in the presence of a neurotransmitter. This prediction was confirmed for noradrenaline, while no change was observed in the presence of angiotensin II, a voltage-insensitive G protein modulator. We used the limiting slope method for calculation of the gating charge per channel. Effective charge z was 6.32+/-0.65 for Ca(V)2.2 channels in unregulated conditions, while GTPgammaS reduced elementary charge by approximately 4 e(0). Accordingly, increased concentration of noradrenaline induced a gradual decrease on z, indicating that this decrement was due to a G protein voltage-sensitive modulation. This paper shows for the first time a significant and reversible decrease in charge transfer of Ca(V)2.2 channels under G protein modulation, which might depend on the activated G protein inhibitory pathway.

  8. Neuronal Ca2+-Activated K+ Channels Limit Brain Infarction and Promote Survival

    PubMed Central

    Liao, Yiliu; Gu, Ning; Rundén-Pran, Elise; Ruth, Peter; Sausbier, Matthias; Storm, Johan F.

    2010-01-01

    Neuronal calcium-activated potassium channels of the BK type are activated by membrane depolarization and intracellular Ca2+ ions. It has been suggested that these channels may play a key neuroprotective role during and after brain ischemia, but this hypothesis has so far not been tested by selective BK-channel manipulations in vivo. To elucidate the in vivo contribution of neuronal BK channels in acute focal cerebral ischemia, we performed middle cerebral artery occlusion (MCAO) in mice lacking BK channels (homozygous mice lacking the BK channel alpha subunit, BK−/−). MCAO was performed in BK−/− and WT mice for 90 minutes followed by a 7-hour-reperfusion period. Coronal 1 mm thick sections were stained with 2,3,5-triphenyltetrazolium chloride to reveal the infarction area. We found that transient focal cerebral ischemia by MCAO produced larger infarct volume, more severe neurological deficits, and higher post-ischemic mortality in BK−/− mice compared to WT littermates. However, the regional cerebral blood flow was not significantly different between genotypes as measured by Laser Doppler (LD) flowmetry pre-ischemically, intra-ischemically, and post-ischemically, suggesting that the different impact of MCAO in BK−/− vs. WT was not due to vascular BK channels. Furthermore, when NMDA was injected intracerebrally in non-ischemic mice, NMDA-induced neurotoxicity was found to be larger in BK−/− mice compared to WT. Whole-cell patch clamp recordings from CA1 pyramidal cells in organotypic hippocampal slice cultures revealed that BK channels contribute to rapid action potential repolarization, as previously found in acute slices. When these cultures were exposed to ischemia-like conditions this induced significantly more neuronal death in BK−/− than in WT cultures. These results indicate that neuronal BK channels are important for protection against ischemic brain damage. PMID:21209897

  9. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism

    PubMed Central

    Friedman, Allyson K.; Juarez, Barbara; Ku, Stacy M.; Zhang, Hongxing; Calizo, Rhodora C.; Walsh, Jessica J.; Chaudhury, Dipesh; Zhang, Song; Hawkins, Angel; Dietz, David M.; Murrough, James W.; Ribadeneira, Maria; Wong, Erik H.; Neve, Rachael L.; Han, Ming-Hu

    2016-01-01

    Less than half of patients suffering from major depressive disorder, a leading cause of disability worldwide, achieve remission with current antidepressants, making it imperative to develop more effective treatment. A new therapeutic direction is emerging from the increased understanding of natural resilience as an active stress-coping process. It is known that potassium (K+) channels in the ventral tegmental area (VTA) are an active mediator of resilience. However, no druggable targets have been identified to potentiate active resilience mechanisms. In the chronic social defeat stress model of depression, we report that KCNQ-type K+ channel openers, including FDA-approved drug retigabine (ezogabine), show antidepressant efficacy. We demonstrate that overexpression of KCNQ channels in the VTA dopaminergic neurons and either local infusion or systemic administration of retigabine normalized neuronal hyperactivity and depressive behaviours. These findings identify KCNQ as a target for conceptually novel antidepressants that function through the potentiation of active resilience mechanisms. PMID:27216573

  10. Magnesium Excretion in C. elegans Requires the Activity of the GTL-2 TRPM Channel

    PubMed Central

    Teramoto, Takayuki; Sternick, Laura A.; Kage-Nakadai, Eriko; Sajjadi, Shirine; Siembida, Jakub; Mitani, Shohei; Iwasaki, Kouichi; Lambie, Eric J.

    2010-01-01

    Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous TRPM channel proteins, GON-2 and GTL-1. PMID:20221407

  11. MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions

    PubMed Central

    Maksaev, Grigory; Haswell, Elizabeth S.

    2012-01-01

    Like many other organisms, plants are capable of sensing and responding to mechanical stimuli such as touch, osmotic pressure, and gravity. One mechanism for the perception of force is the activation of mechanosensitive (or stretch-activated) ion channels, and a number of mechanosensitive channel activities have been described in plant membranes. Based on their homology to the bacterial mechanosensitive channel MscS, the 10 MscS-Like (MSL) proteins of Arabidopsis thaliana have been hypothesized to form mechanosensitive channels in plant cell and organelle membranes. However, definitive proof that MSLs form mechanosensitive channels has been lacking. Here we used single-channel patch clamp electrophysiology to show that MSL10 is capable of providing a MS channel activity when heterologously expressed in Xenopus laevis oocytes. This channel had a conductance of ∼100 pS, consistent with the hypothesis that it underlies an activity previously observed in the plasma membrane of plant root cells. We found that MSL10 formed a channel with a moderate preference for anions, which was modulated by strongly positive and negative membrane potentials, and was reversibly inhibited by gadolinium, a known inhibitor of mechanosensitive channels. MSL10 demonstrated asymmetric activation/inactivation kinetics, with the channel closing at substantially lower tensions than channel opening. The electrophysiological characterization of MSL10 reported here provides insight into the evolution of structure and function of this important family of proteins. PMID:23112188

  12. PKC-dependent activation of human K2P18.1 K+ channels

    PubMed Central

    Rahm, Ann-Kathrin; Gierten, Jakob; Kisselbach, Jana; Staudacher, Ingo; Staudacher, Kathrin; Schweizer, Patrick A; Becker, Rüdiger; Katus, Hugo A; Thomas, Dierk

    2012-01-01

    BACKGROUND AND PURPOSE Two-pore-domain K+ channels (K2P) mediate K+ background currents that modulate the membrane potential of excitable cells. K2P18.1 (TWIK-related spinal cord K+ channel) provides hyperpolarizing background currents in neurons. Recently, a dominant-negative loss-of-function mutation in K2P18.1 has been implicated in migraine, and activation of K2P18.1 channels was proposed as a therapeutic strategy. Here we elucidated the molecular mechanisms underlying PKC-dependent activation of K2P18.1 currents. EXPERIMENTAL APPROACH Human K2P18.1 channels were heterologously expressed in Xenopus laevis oocytes, and currents were recorded with the two-electrode voltage clamp technique. KEY RESULTS Stimulation of PKC using phorbol 12-myristate-13-acetate (PMA) activated the hK2P18.1 current by 3.1-fold in a concentration-dependent fashion. The inactive analogue 4α-PMA had no effect on channel activity. The specific PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and chelerythrine reduced PMA-induced channel activation indicating that PKC is involved in this effect of PMA. Selective activation of conventional PKC isoforms with thymeleatoxin (100 nM) did not reproduce K2P18.1 channel activation. Current activation by PMA was not affected by pretreatment with CsA (calcineurin inhibitor) or KT 5720 (PKA inhibitor), ruling out a significant contribution of calcineurin or cross-talk with PKA to the PKC-dependent hK2P18.1 activation. Finally, mutation of putative PKC phosphorylation sites did not prevent PMA-induced K2P18.1 channel activation. CONCLUSIONS AND IMPLICATIONS We demonstrated that activation of hK2P18.1 (TRESK) by PMA is mediated by PKC stimulation. Hence, PKC-mediated activation of K2P18.1 background currents may serve as a novel molecular target for migraine treatment. PMID:22168364

  13. Presynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina

    PubMed Central

    Chun, Myung-Hoon; Oh, Uhtaek; Kim, In-Beom

    2013-01-01

    Calcium (Ca2+)-activated chloride (Cl−) channels (CaCCs) play a role in the modulation of action potentials and synaptic responses in the somatodendritic regions of central neurons. In the vertebrate retina, large Ca2+-activated Cl− currents (ICl(Ca)) regulate synaptic transmission at photoreceptor terminals; however, the molecular identity of CaCCs that mediate ICl(Ca) remains unclear. The transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), has been recently validated as a CaCC and is widely expressed in various secretory epithelia and nervous tissues. Despite the fact that tmem16a was first cloned in the retina, there is little information on its cellular localization and function in the mammalian retina. In this study, we found that ANO1 was abundantly expressed as puncta in 2 synaptic layers. More specifically, ANO1 immunoreactivity was observed in the presynaptic terminals of various retinal neurons, including photoreceptors. ICl(Ca) was first detected in dissociated rod bipolar cells expressing ANO1. ICl(Ca) was abolished by treatment with the Ca2+ channel blocker Co2+, the L-type Ca2+ channel blocker nifedipine, and the Cl− channel blockers 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and niflumic acid (NFA). More specifically, a recently discovered ANO1-selective inhibitor, T16Ainh-A01, and a neutralizing antibody against ANO1 inhibited ICl(Ca) in rod bipolar cells. Under a current-clamping mode, the suppression of ICl(Ca) by using NPPB and T16Ainh-A01 caused a prolonged Ca2+ spike-like depolarization evoked by current injection in dissociated rod bipolar cells. These results suggest that ANO1 confers ICl(Ca) in retinal neurons and acts as an intrinsic regulator of the presynaptic membrane potential during synaptic transmission. PMID:23840801

  14. Discovery, structure-activity relationship study, and oral analgesic efficacy of cyproheptadine derivatives possessing N-type calcium channel inhibitory activity.

    PubMed

    Yamamoto, Takashi; Niwa, Seiji; Iwayama, Satoshi; Koganei, Hajime; Fujita, Shin-ichi; Takeda, Tomoko; Kito, Morikazu; Ono, Yukitsugu; Saitou, Yuki; Takahara, Akira; Iwata, Seinosuke; Yamamoto, Hiroshi; Shoji, Masataka

    2006-08-01

    Antiallergic drug cyproheptadine (Cyp) is known to have inhibitory activities for L-type calcium channels in addition to histamine and serotonin receptors. Since we found that Cyp had an inhibitory activity against N-type calcium channel, Cyp was optimized to obtain more selective N-type calcium channel blocker with analgesic action. As a consequence of the optimization, we found 13 with potent N-type calcium channel inhibitory activity which had lower inhibitory activities against L-type calcium channel, histamine (H1), and serotonin (5-HT2A) receptors than those of Cyp. 13 showed an oral analgesic activity in rat formalin-induced pain model.

  15. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons.

    PubMed

    Chen, Xixi; Johnston, Daniel

    2005-04-13

    A diversity of ion channels contributes to the active properties of neuronal dendrites. From the apical dendrites of hippocampal CA1 pyramidal neurons, we recorded inwardly rectifying K+ channels with a single-channel conductance of 33 pS. The inwardly rectifying K+ channels were constitutively active at the resting membrane potential. The amount of constitutive channel activity was significantly larger in the apical dendrites than in the soma. Activities of these inwardly rectifying K+ channels were inhibited by Ba2+ (200 microM) and tertiapin (10 nM), both of which are believed to block G-protein-coupled inwardly rectifying K+ (GIRK) channels. Intracellularly applied GTPgammaS (20 microM) during dual dendritic recordings significantly increased constitutive channel activity. Baclofen (20 microM), an agonist for the G-protein-coupled GABA(B) receptor, also significantly increased the level of channel activity. Therefore, these channels are GIRK channels, which are constitutively active at rest in the apical dendrites of CA1 pyramidal neurons and can be further activated via G-protein-coupled neurotransmitter receptors.

  16. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice

    PubMed Central

    Sachse, Gregor; Faulhaber, Jörg; Seniuk, Anika; Ehmke, Heimo; Pongs, Olaf

    2014-01-01

    The large conductance voltage- and Ca2+-activated K+ (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKβ1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKβ1 knockout (BKβ1−/−) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKβ1−/− mice independent of genetic background, BKβ1−/− strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKβ1+/+ controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKβ1−/− strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKβ1+/+ strain A level. In contrast, loss of BKβ1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKβ1 expression increased blood pressure in BKβ1−/− strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways. PMID:24687584

  17. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea

    PubMed Central

    Jiang, Yu; Yu, Bo; Yang, Hong; Ma, Tonghui

    2016-01-01

    Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl- current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl- currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K+ channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea. PMID:27601995

  18. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea.

    PubMed

    Jiang, Yu; Yu, Bo; Yang, Hong; Ma, Tonghui

    2016-01-01

    Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  19. The Activation Effect of Hainantoxin-I, a Peptide Toxin from the Chinese Spider, Ornithoctonus hainana, on Intermediate-Conductance Ca2+-Activated K+ Channels

    PubMed Central

    Huang, Pengfei; Zhang, Yiya; Chen, Xinyi; Zhu, Li; Yin, Dazhong; Zeng, Xiongzhi; Liang, Songping

    2014-01-01

    Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I) as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG) in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases. PMID:25153257

  20. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes.

    PubMed

    Chraïbi, A; Vallet, V; Firsov, D; Hess, S K; Horisberger, J D

    1998-01-01

    We have investigated the effect of extracellular proteases on the amiloride-sensitive Na+ current (INa) in Xenopus oocytes expressing the three subunits alpha, beta, and gamma of the rat or Xenopus epithelial Na+ channel (ENaC). Low concentrations of trypsin (2 microg/ml) induced a large increase of INa within a few minutes, an effect that was fully prevented by soybean trypsin inhibitor, but not by amiloride. A similar effect was observed with chymotrypsin, but not with kallikrein. The trypsin-induced increase of INa was observed with Xenopus and rat ENaC, and was very large (approximately 20-fold) with the channel obtained by coexpression of the alpha subunit of Xenopus ENaC with the beta and gamma subunits of rat ENaC. The effect of trypsin was selective for ENaC, as shown by the absence of effect on the current due to expression of the K+ channel ROMK2. The effect of trypsin was not prevented by intracellular injection of EGTA nor by pretreatment with GTP-gammaS, suggesting that this effect was not mediated by G proteins. Measurement of the channel protein expression at the oocyte surface by antibody binding to a FLAG epitope showed that the effect of trypsin was not accompanied by an increase in the channel protein density, indicating that proteolysis modified the activity of the channel present at the oocyte surface rather than the cell surface expression. At the single channel level, in the cell-attached mode, more active channels were observed in the patch when trypsin was present in the pipette, while no change in channel activity could be detected when trypsin was added to the bath solution around the patch pipette. We conclude that extracellular proteases are able to increase the open probability of the epithelial sodium channel by an effect that does not occur through activation of a G protein-coupled receptor, but rather through proteolysis of a protein that is either a constitutive part of the channel itself or closely associated with it.

  1. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers.

    PubMed

    Rosholm, Kadla R; Baker, Matthew A B; Ridone, Pietro; Nakayama, Yoshitaka; Rohde, Paul R; Cuello, Luis G; Lee, Lawrence K; Martinac, Boris

    2017-03-27

    The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform.

  2. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers

    PubMed Central

    Rosholm, Kadla R.; Baker, Matthew A. B.; Ridone, Pietro; Nakayama, Yoshitaka; Rohde, Paul R.; Cuello, Luis G.; Lee, Lawrence K.; Martinac, Boris

    2017-01-01

    The droplet on hydrogel bilayer (DHB) is a novel platform for investigating the function of ion channels. Advantages of this setup include tight control of all bilayer components, which is compelling for the investigation of mechanosensitive (MS) ion channels, since they are highly sensitive to their lipid environment. However, the activation of MS ion channels in planar supported lipid bilayers, such as the DHB, has not yet been established. Here we present the activation of the large conductance MS channel of E. coli, (MscL), in DHBs. By selectively stretching the droplet monolayer with nanolitre injections of buffer, we induced quantifiable DHB tension, which could be related to channel activity. The MscL activity response revealed that the droplet monolayer tension equilibrated over time, likely by insertion of lipid from solution. Our study thus establishes a method to controllably activate MS channels in DHBs and thereby advances studies of MS channels in this novel platform. PMID:28345591

  3. Chronic social isolation reduces 5-HT neuronal activity via upregulated SK3 calcium-activated potassium channels

    PubMed Central

    Sargin, Derya; Oliver, David K; Lambe, Evelyn K

    2016-01-01

    The activity of serotonin (5-HT) neurons is critical for mood regulation. In a mouse model of chronic social isolation, a known risk factor for depressive illness, we show that 5-HT neurons in the dorsal raphe nucleus are less responsive to stimulation. Probing the responsible cellular mechanisms pinpoints a disturbance in the expression and function of small-conductance Ca2+-activated K+ (SK) channels and reveals an important role for both SK2 and SK3 channels in normal regulation of 5-HT neuronal excitability. Chronic social isolation renders 5-HT neurons insensitive to SK2 blockade, however inhibition of the upregulated SK3 channels restores normal excitability. In vivo, we demonstrate that inhibiting SK channels normalizes chronic social isolation-induced anxiety/depressive-like behaviors. Our experiments reveal a causal link for the first time between SK channel dysregulation and 5-HT neuron activity in a lifelong stress paradigm, suggesting these channels as targets for the development of novel therapies for mood disorders. DOI: http://dx.doi.org/10.7554/eLife.21416.001 PMID:27874831

  4. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  5. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  6. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation

    PubMed Central

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries. PMID:26599698

  7. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation.

    PubMed

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries.

  8. Structure-activity relationship study of 1,4-dihydropyridine derivatives blocking N-type calcium channels.

    PubMed

    Yamamoto, Takashi; Niwa, Seiji; Ohno, Seiji; Onishi, Tomoyuki; Matsueda, Hiroyuki; Koganei, Hajime; Uneyama, Hisayuki; Fujita, Shin-ichi; Takeda, Tomoko; Kito, Morikazu; Ono, Yukitsugu; Saitou, Yuki; Takahara, Akira; Iwata, Seinosuke; Shoji, Masataka

    2006-02-15

    Cilnidipine is a 1,4-dihydropyridine derived L/N-type calcium channel dual blocker possessing neuroprotective and analgesic effects which are related to its N-type calcium channel inhibitory activity. In order to find specific N-type calcium channel blockers with the least effects on cardiovascular system, we performed structure-activity relationship study on APJ2708, which is a derivative of cilnidipine, and found a promising N-type calcium channel blocker 21b possessing analgesic effect in vivo with a 1600-fold lower activity against L-type calcium channels than that of cilnidipine.

  9. Guanosine 5'-monophosphate modulates gating of high-conductance Ca2+-activated K+ channels in vascular smooth muscle cells.

    PubMed Central

    Williams, D L; Katz, G M; Roy-Contancin, L; Reuben, J P

    1988-01-01

    Ca2+-activated K+ channels (PKCa channels) account for the predominant K+ permeability of many types of smooth muscle cells. When activated, they oppose depolarization due to Na+ and Ca2+ channel activity. Several vasodilatory agents that increase intracellular cGMP levels (e.g., nitroprusside, adenosine, and atrial natriuretic factor) enhance the activity of these high-conductance PKCa channels in on-cell patches of bovine aortic smooth muscle cells. In addition, dibutyryl-cGMP (1.0 mM) causes a similar increase in channel activity. To pursue the mechanism of channel modulation by these agents, a series of guanine and adenine nucleotides were evaluated by using inside-out excised patches. Whereas cAMP, AMP, ADP, and ATP were ineffective, all of the corresponding guanine nucleotides potentiated PKCa channel activity when tested at a high concentration (500 microM). However, only GMP consistently enhanced channel activity in the 1-100 microM range by increasing the percent open time and frequency of opening of these channels over a wide range of potentials and Ca2+ levels without affecting single-channel conductance. Thus, GMP is a potent modulator of PKCa channels and it, rather than cGMP, may mediate the action of the vasodilators examined in this study. PMID:2848262

  10. Up-Regulation of Pressure-activated Ca2+-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Kohler, R.; Haase, W.; Distler, A.

    1996-10-01

    In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2+-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

  11. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels

    PubMed Central

    1991-01-01

    In this study, single-channel recordings of high-conductance Ca(2+)- activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)- blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed- blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening. PMID:2056305

  12. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice.

    PubMed

    Bausch, Anne E; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K; Ruth, Peter; Lukowski, Robert

    2015-07-01

    Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels.

  13. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice

    PubMed Central

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.

    2015-01-01

    Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels. PMID:26077685

  14. The Large Conductance, Calcium-activated K+ (BK) Channel is regulated by Cysteine String Protein

    PubMed Central

    Kyle, Barry D.; Ahrendt, Eva; Braun, Andrew P.; Braun, Janice E. A.

    2013-01-01

    Large-conductance, calcium-activated-K+ (BK) channels are widely distributed throughout the nervous system, where they regulate action potential duration and firing frequency, along with presynaptic neurotransmitter release. Our recent efforts to identify chaperones that target neuronal ion channels have revealed cysteine string protein (CSPα) as a key regulator of BK channel expression and current density. CSPα is a vesicle-associated protein and mutations in CSPα cause the hereditary neurodegenerative disorder, adult-onset autosomal dominant neuronal ceroid lipofuscinosis (ANCL). CSPα null mice show 2.5 fold higher BK channel expression compared to wild type mice, which is not seen with other neuronal channels (i.e. Cav2.2, Kv1.1 and Kv1.2). Furthermore, mutations in either CSPα's J domain or cysteine string region markedly increase BK expression and current amplitude. We conclude that CSPα acts to regulate BK channel expression, and consequently CSPα-associated changes in BK activity may contribute to the pathogenesis of neurodegenerative disorders, such as ANCL. PMID:23945775

  15. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    PubMed Central

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-01-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl− channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl− transport. PMID:27929144

  16. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    NASA Astrophysics Data System (ADS)

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-12-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl‑ channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl‑ transport.

  17. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity.

    PubMed

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J V

    2016-12-08

    TMEM16A and TMEM16B are plasma membrane proteins with Ca(2+)-dependent Cl(-) channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the "activating domain" to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca(2+) concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl(-) transport.

  18. Barium ions selectively activate BK channels via the Ca2+-bowl site.

    PubMed

    Zhou, Yu; Zeng, Xu-Hui; Lingle, Christopher J

    2012-07-10

    Activation of Ca(2+)-dependent BK channels is increased via binding of micromolar Ca(2+) to two distinct high-affinity sites per BK α-subunit. One site, termed the Ca(2+) bowl, is embedded within the second RCK domain (RCK2; regulator of conductance for potassium) of each α-subunit, while oxygen-containing residues in the first RCK domain (RCK1) have been linked to a separate Ca(2+) ligation site. Although both sites are activated by Ca(2+) and Sr(2+), Cd(2+) selectively favors activation via the RCK1 site. Divalent cations of larger ionic radius than Sr(2+) are thought to be ineffective at activating BK channels. Here we show that Ba(2+), better known as a blocker of K(+) channels, activates BK channels and that this effect arises exclusively from binding at the Ca(2+)-bowl site. Compared with previous estimates for Ca(2+) bowl-mediated activation by Ca(2+), the affinity of Ba(2+) to the Ca(2+) bowl is reduced about fivefold, and coupling of binding to activation is reduced from ∼3.6 for Ca(2+) to about ∼2.8 for Ba(2+). These results support the idea that ionic radius is an important determinant of selectivity differences among different divalent cations observed for each Ca(2+)-binding site.

  19. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola

    PubMed Central

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-01-01

    The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel. PMID:27678077

  20. Redox-sensitive extracellular gates formed by auxiliary beta subunits of calcium-activated potassium channels.

    PubMed

    Zeng, Xu-Hui; Xia, Xiao-Ming; Lingle, Christopher J

    2003-06-01

    An important step to understanding ion channels is identifying the structural components that act as the gates to ion movement. Here we describe a new channel gating mechanism, produced by the beta3 auxiliary subunits of Ca2+-activated, large-conductance BK-type K+ channels when expressed with their pore-forming alpha subunits. BK beta subunits have a cysteine-rich extracellular segment connecting two transmembrane segments, with small cytosolic N and C termini. The extracellular segments of the beta3 subunits form gates to block ion permeation, providing a mechanism by which current can be rapidly diminished upon cellular repolarization. Furthermore, this gating mechanism is abolished by reduction of extracellular disulfide linkages, suggesting that endogenous mechanisms may regulate this gating behavior. The results indicate that auxiliary beta subunits of BK channels reside sufficiently close to the ion permeation pathway defined by the alpha subunits to influence or block access of small molecules to the permeation pathway.

  1. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola

    NASA Astrophysics Data System (ADS)

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-09-01

    The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.

  2. Voltage-gated calcium channels function as Ca2+-activated signaling receptors.

    PubMed

    Atlas, Daphne

    2014-02-01

    Voltage-gated calcium channels (VGCCs) are transmembrane cell surface proteins responsible for multifunctional signals. In response to voltage, VGCCs trigger synaptic transmission, drive muscle contraction, and regulate gene expression. Voltage perturbations open VGCCs enabling Ca(2+) binding to the low affinity Ca(2+) binding site of the channel pore. Subsequent to permeation, Ca(2+) targets selective proteins to activate diverse signaling pathways. It is becoming apparent that the Ca(2+)-bound channel triggers secretion in excitable cells and drives contraction in cardiomyocytes prior to Ca(2+) permeation. Here, I highlight recent data implicating receptor-like function of the Ca(2+)-bound channel in converting external Ca(2+) into an intracellular signal. The two sequential mechanistic perspectives of VGCC function are discussed in the context of the prevailing and long-standing current models of depolarization-evoked secretion and cardiac contraction.

  3. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  4. Cell-cycle-dependent regulation of Ca2+-activated K+ channel in Jurkat T-lymphocyte.

    PubMed

    Morimoto, Takashi; Ohya, Susumu; Hayashi, Hidetoshi; Onozaki, Kikuo; Imaizumi, Yuji

    2007-05-01

    Small-conductance Ca2+-activated K+ (SK2) channel plays an important role in the activation of Jurkat T-lymphocytes by maintaining electrical gradients for the sustained Ca2+ influx. Apamin-sensitive K+ current was significantly decreased with cell-cycle progression from G0/G1 into G2/M phases, and protein expression of SK2 channels showed parallel down-regulation, with its highest expression at early G0/G1 phase. In the G0/G1 phase, the apamin-sensitive component of thapsigargin-induced Ca2+ influx was significantly larger than that in the G2/M phase. These observations suggest that SK2-channel activation may largely contribute to the sustained Ca2+ influx in the G0/G1 phase in comparison of that in the G2/M phase in Jurkat T-lymphocytes.

  5. Arginine-rich peptides are blockers of VR-1 channels with analgesic activity.

    PubMed

    Planells-Cases, R; Aracil, A; Merino, J M; Gallar, J; Pérez-Payá, E; Belmonte, C; González-Ros, J M; Ferrer-Montiel, A V

    2000-09-15

    Vanilloid receptors (VRs) play a fundamental role in the transduction of peripheral tissue injury and/or inflammation responses. Molecules that antagonize VR channel activity may act as selective and potent analgesics. We report that synthetic arginine-rich hexapeptides block heterologously expressed VR-1 channels with submicromolar efficacy in a weak voltage-dependent manner, consistent with a binding site located near/at the entryway of the aqueous pore. Dynorphins, natural arginine-rich peptides, also blocked VR-1 activity with micromolar affinity. Notably, synthetic and natural arginine-rich peptides attenuated the ocular irritation produced by topical capsaicin application onto the eyes of experimental animals. Taken together, our results imply that arginine-rich peptides are VR-1 channel blockers with analgesic activity. These findings may expand the development of novel analgesics by targeting receptor sites distinct from the capsaicin binding site.

  6. The secret life of CFTR as a calcium-activated chloride channel

    PubMed Central

    Billet, Arnaud; Hanrahan, John W

    2013-01-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of <200 amino acids). Thus it is not surprising that CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca2+-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca2+-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations. PMID:23959675

  7. The presence of arachidonic acid-activated K+ channel, TREK-1, in human periodontal ligament fibroblasts.

    PubMed

    Saeki, Yukikazu; Ohara, Akito; Nishikawa, Masanori; Yamamoto, Takahiro; Yamamoto, Gaku

    2007-01-01

    Human periodontal ligament (PDL) fibroblasts expressed following two-pore-domain K(+) channels, TWIK-2 > TREK-1 > TWIK-1 > TASK-1 > TRAAK > TASK-2. TREK-2 message was not detectable. We found the presence of arachidonic acid-activated and mechanical stress-sensitive K(+) channel, TREK-1, in the PDL fibroblasts by patch-clamp technique. It was also found the significant increase of intracellular concentration of arachidonic acid upon the application of cyclic stretch. Therefore, we suppose that the mechanical stretch due to the mastication activates phospholipase A(2) to release arachidonic acid (AA) from membrane, then, the released AA activates TREK-1. Thus, TREK-1 K(+) channels may play a protective role to maintain the negative membrane potential of PDL fibroblasts against the environmental stimuli.

  8. The secret life of CFTR as a calcium-activated chloride channel.

    PubMed

    Billet, Arnaud; Hanrahan, John W

    2013-11-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of <200 amino acids). Thus it is not surprising that CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations.

  9. Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels

    PubMed Central

    Ye, Zu-Cheng; Oberheim, NancyAnn; Kettenmann, Helmut; Ransom, Bruce R.

    2009-01-01

    The study of ion channels has relied heavily on the use of pharmacological blocking agents. However, many of these agents have multiple effects, which may compromise interpretation of results when the affected mechanisms/pathways mediate similar functions. Volume regulated anion channels (VRAC) and connexin hemichannels can both mediate the release of glutamate and taurine, although these channels have distinct activation stimuli and hemichannels, but not VRAC, are permeable to Lucifer yellow (LY). It has been reported that some anion channel blockers may inhibit connexin hemichannels. We further examined the effects of classic gap junction/hemichannel blockers and anion channel blockers on these channels. The typical VRAC blockers NPPB, IAA-94 and tamoxifen blocked low divalent cation-induced glutamate and taurine release and LY loading, presumed due to hemichannel opening. The blocking action of these compounds on hemichannels was concentration dependent and fell within the same range where the drugs classically block VRACs. Conversely, carbenoxolone (CBX), the most widely used gap junction/hemichannel blocker, was an effective blocker of VRAC mediated glutamate and taurine release, and blocked these channels at similar concentrations at which it blocked hemichannels. The CBX effect on VRACs was verified using astrocytes from connexin 43 knock out (Cx43 KO) animals. In these cells, the hypotonic induced amino acid flux was retained while the low divalent cation solution flux was lost. These results extend our knowledge about ‘cross-inhibition’ of VRACs and gap junctions/hemichannels by certain pharmacological agents. Given the overlap in function of these two types of channels, great care must be exerted in using pharmacological blockers to identify one channel from the other. PMID:18837047

  10. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  11. Modeling active constrained-layer damping using Golla-Hughes-McTavish approach

    NASA Astrophysics Data System (ADS)

    Lam, Margaretha J.; Saunders, William R.; Inman, Daniel J.

    1995-05-01

    Viscoelastic material (VEM) adds damping to structures. In order to enhance the damping effects of the viscoelastic material, a constraining layer is attached. If this constraining layer is a piezoelectric patch, the system is said to have active constrained layer damping (ACLD). In this paper, the damping effects due to viscoelastic material which has an active constraining layer is modeled using the Golla-Hughes-McTavish (GHM) damping method. The piezoelectric patch and structure are modeled using a Galerkin approach in order to account for the effect of the constraining layer on the beam.

  12. Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.

    PubMed

    Zhang, Hongkang; Zou, Beiyan; Du, Fang; Xu, Kaiping; Li, Min

    2015-02-01

    Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manifesting such pharmacological promiscuity. We thus investigate the pharmacological profile of Nav1.5 through systemic analysis of its sensitivity to diverse compound collections. Here, we report a dual-color fluorescent method that exploits a customized Nav1.5 [calcium permeable Nav channel, subtype 5 (SoCal5)] with engineered-enhanced calcium permeability. SoCal5 retains wild-type (WT) Nav1.5 pharmacological profiles. WT SoCal5 and SoCal5 with the local anesthetics binding site mutated (F1760A) could be expressed in separate cells, each with a different-colored genetically encoded calcium sensor, which allows a simultaneous report of compound activity and site dependence. The pharmacological profile of SoCal5 reveals a hit rate (>50% inhibition) of around 13% at 10 μM, comparable to that of hERG. The channel activity is susceptible to blockage by known drugs and structurally diverse compounds. The broad inhibition profile is highly dependent on the F1760 residue in the inner cavity, which is a residue conserved among all nine subtypes of Nav channels. Both promiscuity and dependence on F1760 seen in Nav1.5 were replicated in Nav1.4. Our evidence of a broad inhibition profile of Nav channels suggests a need to consider off-target effects on Nav channels. The site-dependent promiscuity forms a foundation to better understand Nav channels and compound interactions.

  13. Thalamic Kv7 channels: pharmacological properties and activity control during noxious signal processing

    PubMed Central

    Cerina, Manuela; Szkudlarek, Hanna J; Coulon, Philippe; Meuth, Patrick; Kanyshkova, Tatyana; Nguyen, Xuan Vinh; Göbel, Kerstin; Seidenbecher, Thomas; Meuth, Sven G; Pape, Hans-Christian; Budde, Thomas

    2015-01-01

    Background and Purpose The existence of functional Kv7 channels in thalamocortical (TC) relay neurons and the effects of the K+-current termed M-current (IM) on thalamic signal processing have long been debated. Immunocytochemical evidence suggests their presence in this brain region. Therefore, we aimed to verify their existence, pharmacological properties and function in regulating activity in neurons of the ventrobasal thalamus (VB). Experimental Approach Characterization of Kv7 channels was performed by combining in vitro, in vivo and in silico techniques with a pharmacological approach. Retigabine (30 μM) and XE991 (20 μM), a specific Kv7 channel enhancer and blocker, respectively, were applied in acute brain slices during electrophysiological recordings. The effects of intrathalamic injection of retigabine (3 mM, 300 nL) and/or XE991 (2 mM, 300 nL) were investigated in freely moving animals during hot-plate tests by recording behaviour and neuronal activity. Key Results Kv7.2 and Kv7.3 subunits were found to be abundantly expressed in TC neurons of mouse VB. A slow K+-current with properties of IM was activated by retigabine and inhibited by XE991. Kv7 channel activation evoked membrane hyperpolarization, a reduction in tonic action potential firing, and increased burst firing in vitro and in computational models. Single-unit recordings and pharmacological intervention demonstrated a specific burst-firing increase upon IM activation in vivo. A Kv7 channel-mediated increase in pain threshold was associated with fewer VB units responding to noxious stimuli, and increased burst firing in responsive neurons. Conclusions and Implications Kv7 channel enhancement alters somatosensory activity and may reflect an anti-nociceptive mechanism during acute pain processing. PMID:25684311

  14. Rundown of the hyperpolarization-activated KAT1 channel involves slowing of the opening transitions regulated by phosphorylation.

    PubMed Central

    Tang, X D; Hoshi, T

    1999-01-01

    Disappearance of the functional activity or rundown of ion channels upon patch excision in many cells involves a decrease in the number of channels available to open. A variety of cellular and biophysical mechanisms have been shown to be involved in the rundown of different ion channels. We examined the rundown process of the plant hyperpolarization-activated KAT1 K+ channel expressed in Xenopus oocytes. The decrease in the KAT1 channel activity on patch excision was accompanied by progressive slowing of the activation time course, and it was caused by a shift in the voltage dependence of the channel without any change in the single-channel amplitude. The single-channel analysis showed that patch excision alters only the transitions leading up to the burst states of the channel. Patch cramming or concurrent application of protein kinase A (PKA) and ATP restored the channel activity. In contrast, nonspecific alkaline phosphatase (ALP) accelerated the rundown time course. Low internal pH, which inhibits ALP activity, slowed the KAT1 rundown time course. The results show that the opening transitions of the KAT1 channel are enhanced not only by hyperpolarization but also by PKA-mediated phosphorylation. PMID:10354434

  15. Intermediate-Conductance-Ca2-Activated K Channel Intermediate-Conductance Calcium-Activated Potassium Channel (IKCa1) is Upregulated and Promotes Cell Proliferation in Cervical Cancer

    PubMed Central

    Liu, Ling; Zhan, Ping; Nie, Dan; Fan, Lingye; Lin, Hairui; Gao, Lanyang; Mao, Xiguang

    2017-01-01

    Background Accumulating data point to intermediate-conductance calcium-activated potassium channel (IKCa1) as a key player in controlling cell cycle progression and proliferation of human cancer cells. However, the role that IKCa1 plays in the growth of human cervical cancer cells is largely unexplored. Material/Methods In this study, Western blot analysis, immunohistochemical staining, and RT-PCR were first used for IKCa1protein and gene expression assays in cervical cancer tissues and HeLa cells. Then, IKCa1 channel blocker and siRNA were employed to inhibit the functionality of IKCa1 and downregulate gene expression in HeLa cells, respectively. After these treatments, we examined the level of cell proliferation by MTT method and measured IKCa1 currents by conventional whole-cell patch clamp technique. Cell apoptosis was assessed using the Annexin V-FITC/Propidium Iodide (PI) double-staining apoptosis detection kit. Results We demonstrated that IKCa1 mRNA and protein are preferentially expressed in cervical cancer tissues and HeLa cells. We also showed that the IKCa1 channel blocker, clotrimazole, and IKCa1 channel siRNA can be used to suppress cervical cancer cell proliferation and decrease IKCa1 channel current. IKCa1 downregulation by specific siRNAs induced a significant increase in the proportion of apoptotic cells in HeLa cells. Conclusions IKCa1 is overexpressed in cervical cancer tissues, and IKCa1 upregulation in cervical cancer cell linea enhances cell proliferation, partly by reducing the proportion of apoptotic cells. PMID:28280257

  16. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  17. Dissection of the components for PIP2 activation and thermosensation in TRP channels

    PubMed Central

    Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815

  18. Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels

    PubMed Central

    Maertens, Chantal; Wei, Lin; Tytgat, Jan; Droogmans, Guy; Nilius, Bernd

    2000-01-01

    It was the aim of this study to look for a high-affinity and selective polypeptide toxin, which could serve as a probe for the volume-regulated anion channel (VRAC) or the calcium-activated chloride channel (CaCC). We have partially purified chlorotoxin, including new and homologous short chain insectotoxins, from the crude venom of Leiurus quinquestriatus quinquestriatus (Lqq) by means of gel filtration chromatography. Material eluting between 280 and 420 min, corresponding to fractions 15–21, was lyophilized and tested on VRAC and CaCC, using the whole-cell patch-clamp technique. We have also tested the commercially available chlorotoxin on VRAC, CaCC, the cystic fibrosis transmembrane conductance regulator (CFTR) and on the glioma specific chloride channel (GCC). VRAC and the correspondent current, ICl,swell, was activated in Cultured Pulmonary Artery Endothelial (CPAE) cells by a 25% hypotonic solution. Neither of the fractions 16–21 significantly inhibited ICl,swell (n=4–5). Ca2+-activated Cl− currents, ICl,Ca, activated by loading T84 cells via the patch pipette with 1 μM free Ca2+, were not inhibited by any of the tested fractions (15–21), (n=2–5). Chlorotoxin (625 nM) did neither effect ICl,swell nor ICl,Ca (n=4–5). The CFTR channel, transiently transfected in COS cells and activated by a cocktail containing IBMX and forskolin, was not affected by 1.2 μM chlorotoxin (n=5). In addition, it did not affect currents through GCC. We conclude that submicromolar concentrations of chlorotoxin do not block volume-regulated, Ca2+-activated and CFTR chloride channels and that it can not be classified as a general chloride channel toxin. PMID:10683204

  19. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain

    PubMed Central

    Moussaieff, Arieh; Rimmerman, Neta; Bregman, Tatiana; Straiker, Alex; Felder, Christian C.; Shoham, Shai; Kashman, Yoel; Huang, Susan M.; Lee, Hyosang; Shohami, Esther; Mackie, Ken; Caterina, Michael J.; Walker, J. Michael; Fride, Ester; Mechoulam, Raphael

    2008-01-01

    Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3−/− mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3+/+ mice. It had no effect on keratinocytes from TRPV3−/− mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.—Moussaieff, A., Rimmerman, N., Bregman, T., Straiker, A., Felder, C. C., Shoham, S., Kashman, Y., Huang, S. M., Lee, H., Shohami, E., Mackie, K., Caterina, M. J., Walker, J. M., Fride, E., Mechoulam, R. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. PMID:18492727

  20. Regional expression of the anesthetic-activated potassium channel TRESK in the rat nervous system

    PubMed Central

    Yoo, SieHyeon; Liu, Jia; Sabbadini, Marta; Au, Paul; Xie, Guo-xi; Yost, C. Spencer

    2009-01-01

    The two-pore-domain potassium (K2P) channels contribute to background (leak) potassium currents maintaining the resting membrane potential to play an important role in regulating neuronal excitability. As such they may contribute to nociception and the mechanism of action of volatile anesthetics. In the present study, we examined the protein expression pattern of the K2P channel TRESK in the rat central nervous system (CNS) and peripheral nervous system (PNS) by immunohistochemistry. The regional distribution expression pattern of TRESK has both similarities and significant differences from that of other K2P channels expressed in the CNS. TRESK expression is broadly found in the brain, spinal cord and dorsal root ganglia (DRG). TRESK expression is highest in important CNS structures, such as specific cortical layers, periaqueductal gray (PAG), granule cell layer of the cerebellum, and dorsal horn of the spinal cord. TRESK expression is also high in small and medium sized DRG neurons. These results provide an anatomic basis for identifying functional roles of TRESK in the rat nervous system. PMID:19716403