Sample records for active charge exchange

  1. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  2. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  3. Charge and Exchange

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Even though comets are basically giant dirty snowballs, a few years ago they surprised astronomers by emitting X-radiation. These X-rays are not produced by multi-million degree gas (as is often the case) but rather by a process called 'charge exchange'. In this process, ionized atoms (which have lost one or more electrons) which are carried within the solar wind collide with neutral atoms in the comet's coma. The solar wind ion can collide with and capture an electron from the neutral comet atom, and in doing so some of the energy of the collision is observed in the form of X-rays. This produces a glow of X-rays on the sunward side of the comet's atmosphere. Charge exchange can occur in a variety of astrophysical settings, and cometary charge exchange provides astronomers a means to study this process up close. The image above is a pretty picture of comet 73P/Schwassmann-Wachmann 3 passing by the Ring Nebula. This image was obtained by the ultraviolet and optical telescope (UVOT) on the Swift gamma-ray burst hunter. The UVOT observations help astronomers to study the structure and chemistry of the comet, while Swift's X-ray Telescope (XRT) simultaneously monitors the charge exchange process. Comet 73P/Schwassmann-Wachmann 3 is currently in the process of breaking up, and the UVOT observations show important details of how this breakup is occurring.

  4. Excited State Atom-Ion Charge-Exchange

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  5. Charge exchange in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; de Plaa, Jelle; Raassen, A. J. J.; Shah, Chintan; Kaastra, Jelle S.

    2018-03-01

    Context. Though theoretically expected, the charge exchange emission from galaxy clusters has never been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As previously suggested, a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. Aim. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM-Newton. Methods: We introduce a sample of 21 clusters observed with the RGS. In order to search for O VIII charge exchange, the sample selection criterion is a >35σ detection of the O VIII Lyα line in the archival RGS spectra. The dominating thermal plasma emission is modeled and subtracted with a two-temperature thermal component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. Results: By the residual stacking, we do find a hint of a line-like feature at 14.82 Å, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8σ, and the average equivalent width is 2.5 × 10-4 keV. We further demonstrate that the putative feature can be barely affected by the systematic errors from continuum modeling and instrumental effects, or the atomic uncertainties of the neighboring thermal lines. Conclusions: Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we expect that the oxygen abundance could have been overestimated by 8-22% in previous X

  6. Charge exchange in solar wind-cometary interactions

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.

    1983-01-01

    A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.

  7. High Performance Non-Dispersive X-Ray Spectrometers for Charge Exchange Measurements

    NASA Technical Reports Server (NTRS)

    Porter Frederick; Adams, J.; Beiersdorfer, P.; Brown, G. V.; Karkatoua, D.; Kelley, R. L.; Kilbourne, C. A.; Lautenagger, M.

    2010-01-01

    Currently, the only measurements of cosmological charge exchange have been made using low resolution, non-dispersive spectrometers like the PSPC on ROSAT and the CCD instruments on Chandra and XMM/Newton. However, upcoming cryogenic spectrometers on Astro-H and IXO will add vast new capabilities to investigate charge exchange in local objects such as comets and planetary atmospheres. They may also allow us to observe charge exchange in extra-solar objects such as galactic supernova remnants. With low spectral resolution instruments such as CCDs, x-ray emission due to charge exchange recombination really only provides information on the acceptor species, such as the solar wind. With the new breed of x-ray calorimeter instruments, emission from charge exchange becomes highly diagnostic allowing one to uniquely determine the acceptor species, ionization state, donor species and ionization state, and the relative velocity of the interaction. We will describe x-ray calorimeter instrumentation and its potential for charge exchange measurements in the near term. We will also touch on the instrumentation behind a decade of high resolution measurements of charge exchange using an x-ray calorimeter at the Lawrence Livermore National Laboratory.

  8. Anatomy of charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Osmani, O.; Schinner, A.

    2014-11-01

    We have studied charge-exchange straggling theoretically for swift krypton and silicon ions and five target gases in the MeV/u energy regime. We find a pronounced two-peak structure for all ion-target combinations. The peak at the highest energy appears around the velocity where the bare ion and the one-electron ion are equally abundant in the equilibrium charge distribution. Correspondingly, the low-energy peak appears near the cross-over between the charge fractions of the two- and the three-electron ion. The possibility of further peaks at lower energies is discussed. Our findings are compared with recent experimental results on straggling of krypton beams.

  9. Carbon charge exchange analysis in the ITER-like wall environment.

    PubMed

    Menmuir, S; Giroud, C; Biewer, T M; Coffey, I H; Delabie, E; Hawkes, N C; Sertoli, M

    2014-11-01

    Charge exchange spectroscopy has long been a key diagnostic tool for fusion plasmas and is well developed in devices with Carbon Plasma-Facing Components. Operation with the ITER-like wall at JET has resulted in changes to the spectrum in the region of the Carbon charge exchange line at 529.06 nm and demonstrates the need to revise the core charge exchange analysis for this line. An investigation has been made of this spectral region in different plasma conditions and the revised description of the spectral lines to be included in the analysis is presented.

  10. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  11. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  12. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; hide

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  13. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  14. Evidence of charge exchange pumping in calcium-xenon system

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.

    1973-01-01

    Charge exchange between xenon ions and calcium atoms may produce an inversion between the 5s or 4d and 4p energy levels of the calcium ions. A low power flowing xenon plasma seeded with calcium was utilized to determine if charge exchange or electron collisions populate the 5s and 4d levels Ca(+). Line intensity ratios proportional to the density ratios n5s/n4p and n4d/n4p were measured. From the dependence of these intensity ratios on power input to the xenon plasma it was concluded that charge exchange pumping of the 5s and 4d levels predominates over electron collisional pumping of these levels. Also, by comparing intensity ratios obtained using argon and krypton in place of xenon with those obtained in xenon the same conclusion was made.

  15. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  16. Characterization of an atomic hydrogen source for charge exchange experiments

    DOE PAGES

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; ...

    2016-07-02

    Here, we characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  17. Pion single and double charge exchange in the resonance region: Dynamical corrections

    NASA Astrophysics Data System (ADS)

    Johnson, Mikkel B.; Siciliano, E. R.

    1983-04-01

    We consider pion-nucleus elastic scattering and single- and double-charge-exchange scattering to isobaric analog states near the (3,3) resonance within an isospin invariant framework. We extend previous theories by introducing terms into the optical potential U that are quadratic in density and consistent with isospin invariance of the strong interaction. We study the sensitivity of single and double charge exchange angular distributions to parameters of the second-order potential both numerically, by integrating the Klein-Gordon equation, and analytically, by using semiclassical approximations that explicate the dependence of the exact numerical results to the parameters of U. The magnitude and shape of double charge exchange angular distributions are more sensitive to the isotensor term in U than has been hitherto appreciated. An examination of recent experimental data shows that puzzles in the shape of the 18O(π+, π-)18Ne angular distribution at 164 MeV and in the A dependence of the forward double charge exchange scattering on 18O, 26Mg, 42Ca, and 48Ca at the same energy may be resolved by adding an isotensor term in U. NUCLEAR REACTIONS Scattering theory for elastic, single-, and double-charge-exchange scattering to IAS in the region of the P33 resonance. Second-order effects on charge-exchange calculations of σ(A, θ).

  18. Gain measurements of the Ca-Xe charge exchange system. [for UV lasers

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Chubb, D. L.

    1978-01-01

    Charge-exchange-pumped Ca(+) was studied for possible positive laser gain at 370.6 and 315.9 nm using an Xe MPD arc as the Xe(+) source. The present paper describes the MPD arc, the calcium injection system, the diagnostics for gain, and spontaneous emission measurements and results. No positive gain measurements were observed. A small Xe-Ca charge exchange cross section compared to He-metal laser systems charge exchange cross sections is the most probable reason why the result was negative.

  19. Charge exchange of solar wind ions in the Comet Halley coma

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Ing-H. afgoldstein, B. E. AGGOLDSTEIN, R.; Ing-H. afgoldstein, B. E. AGGOLDSTEIN, R.

    1986-01-01

    The He(2+) and He(+) radial profiles measured by the Giotto mass spectrometer on the inbound trajectory to comet Halley are compared to a simple 1-dimensional charge exchange model. Results indicate that charge exchange alone cannot account for the observed radial profiles of He(2+) and He(+).

  20. Ion-ion charge exchange processes. Final technical report, June 1, 1977-May 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, R.T.; Choi, B.H.

    Under the auspices of ERDA, we have undertaken a vigorous study of ion-ion charge exchange process pertinent to the storage-ring configurations in the heavy-ion fusion program. One particular reaction, singly charged helium charge exchange, was investigated in detail. General trend of the singly charged heavy-ion charge exchange reaction can be inferred from the present study. Some of our results were presented at Proceedings of the Heavy-Ion Fusion Workshop, Argonne National Laboratory (September 1978) as a paper entitled Charge Exchange Between Singly Ionized Helium Ions, by B.H. Choi, R.T. Poe and K.T. Tang. Here, we briefly describe our method and reportmore » the results.« less

  1. Charge exchange of highly charged argon ions as a function of projectile energy

    NASA Astrophysics Data System (ADS)

    Allen, F. I.; Biedermann, C.; Radtke, R.; Fussmann, G.

    2007-03-01

    X-ray emission of highly charged argon ions following charge exchange collisions with argon atoms has been measured as a function of projectile energy. The ions are extracted from the Electron Beam Ion Trap (EBIT) in Berlin and selected according to their massto-charge ratios. Experiments focussed on hydrogen-like and bare argon ions which were decelerated from 125q eV/amu to below 0.25q eV/amu prior to interaction with an argon gas target. The x-ray spectra recorded probe the cascading transitions resulting from electron capture into Rydberg states and are found to vary significantly with collision velocity. This indicates a shift in the orbital angular momentum of the capture state. Hardness ratios are observed to increase with decreasing projectile energy though at a rate which differs from the results of simulations. For comparison, measurements of the x-ray emission following charge exchange within the trap were carried out and are in agreement with the findings of the EBIT group at LLNL. Both of these in situ measurements, however, are in discrepancy with the results of the experiments using extracted ions.

  2. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    PubMed

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  3. Measuring power loss due to radiation and charge exchange in MST

    NASA Astrophysics Data System (ADS)

    Waksman, Jeff; Chapman, Brett; Fiksel, Gennady; Nonn, Paul

    2008-11-01

    An array of photodiode-pyrobolometer pairs will be placed on MST to measure the spatial structure of the radiated power and charge exchange. Photodiodes (XUV detectors) measure photonic radiated power from about 10eV to 10keV, while pyrobolometers (thermal detectors) measure both photonic radiated power and power carried by charge-exchange neutrals. Compared to other thermal detectors, pyrobolometers have very good time resolution. To accurately calibrate the individual detectors, an electron gun producing a modulated square wave output has been set up to carefully calibrate each new pyrobolometer to be placed on MST. When viewing the MST plasma, subtraction of the data from the photodiode-pyrobolometer pairs allows one to determine the net power loss due to charge-exchange neutrals. These measurements are important in the calculation of ion energy balance, and it is potentially important in understanding the difference in the temperatures reached by majority and impurity ions during magnetic-reconnection ion-heating events. Since toroidal and poloidal asymmetries in charge exchange are possible, a distributed array of detector pairs will facilitate a better estimate of global power loss. Work supported by the U.S.D.O.E. .

  4. Charge exchange avalanche at the cometopause

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.

    1987-11-01

    A sharp transition from a solar wind proton dominated flow to a plasma population primarily consisting of relatively cold cometary heavy ions has been observed at a cometocentric distance of about 160,000 km by the VEGA and GIOTTO missions. This boundary (the cometopause) was thought to be related to charge transfer processes, but its location and thickness are inconsistent with conventionally estimated ion - neutral coupling boundaries. In this paper a two-fluid model is used to investigate the major physical processes at the cometopause. By adopting observed comet Halley parameters the model is able to reproduce the location and the thickness of this charge exchange boundary.

  5. Solar Wind Charge Exchange During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  6. Spin structure of the 'Forward' nucleon charge-exchange reaction n + p {yields} p + n and the deuteron charge-exchange breakup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyuboshitz, V. L., E-mail: Valery.Lyuboshitz@jinr.ru; Lyuboshitz, V. V.

    2011-02-15

    The structure of the nucleon charge-exchange process n + p {yields} p + n is investigated basing on the isotopic invariance of the nucleon-nucleon scattering. Using the operator of permutation of the spin projections of the neutron and proton, the connection between the spin matrices, describing the amplitude of the nucleon charge-exchange process at zero angle and the amplitude of the elastic scattering of the neutron on the proton in the 'backward' direction, has been considered. Due to the optical theorem, the spin-independent part of the differential cross section of the process n + p {yields} p + n atmore » zero angle for unpolarized particles is expressed through the difference of total cross sections of unpolarized proton-proton and neutron-proton scattering. Meantime, the spin-dependent part of this cross section is proportional to the differential cross section of the deuteron charge-exchange breakup d + p {yields} (pp) + n at zero angle at the deuteron momentum k{sub d} = 2 k{sub n} (k{sub n} is the initial neutron momentum). Analysis shows that, assuming the real part of the spin-independent term of the 'forward' amplitude of the process n + p {yields} p + n to be smaller or of the same order as compared with the imaginary part, in the wide range of neutron laboratory momenta k{sub n} > 700 MeV/c the main contribution into the differential cross section of the process n + p {yields} p + n at zero angle is provided namely by the spin-dependent term.« less

  7. Population inversion calculations using near resonant charge exchange as a pumping mechanism

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Rose, J. R.

    1972-01-01

    Near resonance charge exchange between ions of a large ionization potential gas such as helium or neon and vapors of metals such as zinc, cadmium, selenium, or tellurium has produced laser action in the metal ion gas. The possibility of obtaining population inversions in near resonant charge exchange systems (Xe-Ca, Xe-Mg, Xe-Sr, Xe-Ba, Ar-Mg, N-Ca) was investigated. The analysis is an initial value problem that utilizes rate equations for the densities of relevant levels of the laser gas (Ca, Ba, Mg, or Sr) and an electron energy equation. Electron excitation rates are calculated using the Bohr-Thomson approximation for the cross section. Approximations to experimental values of the electron ionization cross section and the ion-atom charge exchange cross section are used. Preliminary results have been obtained for the Ca-Xe system and show that it is possible to obtain gains greater than 10 to the 14th power/m with inversion times up to 8x10 to the minus 7th power second. A possible charge exchange laser system using a MPD arc plasma accelerator is also described.

  8. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOEpatents

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  9. A Charge-Exchange Neutral Particle Analyzer for an Inertial Electrostatic Confinement Fusion Device

    NASA Astrophysics Data System (ADS)

    Becerra, Gabriel; Kulcinski, Gerald; Santarius, John; Emmert, Gilbert

    2013-10-01

    An electrostatic energy analyzer for outgoing charge-exchange neutral particles has been designed and constructed for application on HELIOS, an inertial electrostatic confinement (IEC) fusion device designed for advanced fuel studies. Ions are extracted from an external helicon plasma source and subsequently accelerated radially into an electrostatic potential well set up by a semi-transparent cathode grid inside the HELIOS spherical chamber. Analysis of fast neutrals produced by charge exchange between energetic ions and background gas yields information on primary ion energy spectra, as well as a quantitative measure of charge exchange as an energy loss mechanism in IEC devices. Preliminary data with helium is used to benchmark the two-charge-state helium formalism of VICTER, a numerical code on spherically convergent ion flow, as it relates to IEC operation with helium-3 fuel. Research supported by the Greatbatch Foundation.

  10. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  11. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  12. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    NASA Astrophysics Data System (ADS)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  13. Apparent violation of the sum rule for exchange-correlation charges by generalized gradient approximations.

    PubMed

    Kohut, Sviataslau V; Staroverov, Viktor N

    2013-10-28

    The exchange-correlation potential of Kohn-Sham density-functional theory, vXC(r), can be thought of as an electrostatic potential produced by the static charge distribution qXC(r) = -(1∕4π)∇(2)vXC(r). The total exchange-correlation charge, QXC = ∫qXC(r) dr, determines the rate of the asymptotic decay of vXC(r). If QXC ≠ 0, the potential falls off as QXC∕r; if QXC = 0, the decay is faster than coulombic. According to this rule, exchange-correlation potentials derived from standard generalized gradient approximations (GGAs) should have QXC = 0, but accurate numerical calculations give QXC ≠ 0. We resolve this paradox by showing that the charge density qXC(r) associated with every GGA consists of two types of contributions: a continuous distribution and point charges arising from the singularities of vXC(r) at each nucleus. Numerical integration of qXC(r) accounts for the continuous charge but misses the point charges. When the point-charge contributions are included, one obtains the correct QXC value. These findings provide an important caveat for attempts to devise asymptotically correct Kohn-Sham potentials by modeling the distribution qXC(r).

  14. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  15. Moving Towards a State of the Art Charge-Exchange Reaction Code

    NASA Astrophysics Data System (ADS)

    Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory

    2017-09-01

    Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.

  16. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  17. Observed Limits on Charge Exchange Contributions to the Diffuse X-Ray Background

    NASA Astrophysics Data System (ADS)

    Crowder, S. G.; Barger, K. A.; Brandl, D. E.; Eckart, M. E.; Galeazzi, M.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Pfendner, C. G.; Porter, F. S.; Rocks, L.; Szymkowiak, A. E.; Teplin, I. M.

    2012-10-01

    We present a high-resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for a ~1 sr region of the sky centered at l = 90°, b = +60° using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum's observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568+2 - 3 eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV and for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex. The dominance of thermal emission is consistent with much of the high-latitude O VII emission originating in 2-3 × 106 K gas in the Galactic halo. On the other hand, the observed ratio of C VI Lyγ to Lyα is 0.3 ± 0.2. The expected ratios are 0.04 for thermal emission and 0.24 for charge exchange, indicating that charge exchange must contribute strongly to this line and therefore potentially to the rest of the ROSAT R12 band usually associated with 106 K emission from the Local Hot Bubble. The limited statistics of this experiment and systematic uncertainties due to the contamination require only >32% thermal emission for O VII and >20% from charge exchange for C VI at the 90% confidence level. An experimental gold coating on the silicon substrate of the array greatly reduced extraneous signals induced on nearby pixels from cosmic rays passing through the substrate, reducing the triggered event rate by a factor of 15 from a previous flight of the instrument.

  18. Charge Exchange: Velocity Dependent X-ray Emission Modeling

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2017-06-01

    Atomic collisions play a fundamental role in astrophysics, plasma physics, and fusion physics. Here, we focus on charge exchange (CX) between hot ions and neutral atoms and molecules. Even though charge exchange calculations can provide vital information, including neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in the environments considered, both theoretical calculations and laboratory studies of these processes lack the necessary reliability and/or coverage. In order to better understand the spectra we observe in astrophysical environments in which both hot plasma and neutral gas are present, including comets, the heliosphere, supernova remnants, galaxy clusters, star forming galaxies, the outflows of starburst galaxies, and cooling flows of hot gas in the intracluster medium, a thorough CX X-ray model is needed. Included in this model should be a complete set of X-ray line ratios for relevant ion and neutral interactions for a range of energies.In this work, theoretical charge exchange emission spectra are produced using cross sections calculated with widely applied approaches including the quantum mechanical molecular orbital close coupling (QMOCC), atomic orbital close coupling (AOCC), classical trajectory Monte Carlo (CTMC), and the multichannel Landau-Zener (MCLZ) methods. When possible, theoretical data are benchmarked to experiments. Using a comprehensive, but still far from complete, CX database, new models are performed for a variety of X-ray emitting environments. In an attempt to describe the excess emission in X-rays of the starburst galaxy M82, Ne X CX line ratios are compared to line ratios observed in the region. A more complete XSPEC X-ray emission model is produced for H-like and He-like C-Al ions colliding with H and He for a range of energies; 200 to 5000 eV/u. This model is applied to the northeast rim of the Cygnus Loop supernova remnant in an attempt to determine the

  19. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  20. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-01

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.

  1. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion andmore » dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM

  2. Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.

    PubMed

    Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D

    2017-02-01

    This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.

  3. Double Charge Exchange Reactions and Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Auerbach, N.

    2018-05-01

    The subject of this presentation is at the forefront of nuclear physics, namely double beta decay. In particular one is most interested in the neutrinoless process of double beta decay, when the decay proceeds without the emission of two neutrinos. The observation of such decay would mean that the lepton conservation symmetry is violated and that the neutrinos are of Majorana type, meaning that they are their own anti-particles. The life time of this process has two unknowns, the mass of the neutrino and the nuclear matrix element. Determining the nuclear matrix element and knowing the cross-section well will set limits on the neutrino mass. There is a concentrated effort among the nuclear physics community to calculate this matrix element. Usually these matrix elements are a very small part of the total strength of the transition operators involved in the process. There is no simple way to “calibrate” the nuclear double beta decay matrix element. The double beta decay is a double charge exchange process, therefore it is proposed that double charge exchange reactions using ion projectiles on nuclei that are candidates for double beta decay, will provide additional necessary information about the nuclear matrix elements.

  4. Computer code for charge-exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.

    1981-01-01

    The propagation of the charge-exchange plasma from an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ASNI Standard FORTRAN.

  5. Modulation of terrestrial ion escape flux composition /by low-altitude acceleration and charge exchange chemistry/

    NASA Technical Reports Server (NTRS)

    Moore, T. E.

    1980-01-01

    Motivated by recent observations of highly variable hot plasma composition in the magnetosphere, control of the ionospheric escape flux composition by low-altitude particle dynamics and ion chemistry has been investigated for an e(-), H(+), O(+) ionosphere. It is found that the fraction of the steady state escape flux which is O(+) can be controlled very sensitively by the occurrence of parallel or transverse ion acceleration at altitudes below the altitude where the neutral oxygen density falls rapidly below the neutral hydrogen density and the ionospheric source of O(+) tends to be rapidly converted by charge exchange to H(+). The acceleration is required both to overcome the gravitational confinement of O(+) and to violate charge exchange equilibrium so that the neutral hydrogen atmosphere appears 'optically' thin to escaping O(+). Constraints are placed on the acceleration processes, and it is shown that O(+) escape is facilitated by observed ionospheric responses to magnetic activity.

  6. Observed Limits on Charge Exchange Contributions to the Diffuse X-Ray Background

    NASA Technical Reports Server (NTRS)

    Crowder, S. G.; Barger, K. A.; Brandl, D. E.; Eckart, M. E.; Galeazzi, M.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Pfendner, C. G.; Porter, F. S.; hide

    2012-01-01

    We present a high-resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for an approximately 1 sr region of the sky centered at l = 90 degrees b = +60 degrees using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum s observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568 (sup +2 (sub -3) eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV and for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex. The dominance of thermal emission is consistent with much of the high-latitude O VII emission originating in 2-3 x 10(exp 6) K gas in the Galactic halo. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3 plus or minus 0.2. The expected ratios are 0.04 for thermal emission and 0.24 for charge exchange, indicating that charge exchange must contribute strongly to this line and therefore potentially to the rest of the ROSAT R12 band usually associated with 10(sup 6) K emission from the Local Hot Bubble. The limited statistics of this experiment and systematic uncertainties due to the contamination require only greater than 32% thermal emission for O VII and greater than 20% from charge exchange for C VI at the 90% confidence level. An experimental gold coating on the silicon substrate of the array greatly reduced extraneous signals induced on nearby pixels from cosmic rays passing through the substrate, reducing the triggered event rate by a factor of 15 from a previous flight of the instrument.

  7. 76 FR 17027 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... DEPARTMENT OF STATE 22 CFR Part 62 [Public Notice: 7346] RIN 1400-AC67 Exchange Visitor Program--Fees and Charges Correction In rule document 2011-4276, appearing on pages 10498-10500 in the issue of Friday, February 25, 2011, make the following correction: On page 10498, in the second column, in the...

  8. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER.

    PubMed

    Jaspers, R J E; Scheffer, M; Kappatou, A; van der Valk, N C J; Durkut, M; Snijders, B; Marchuk, O; Biel, W; Pokol, G I; Erdei, G; Zoletnik, S; Dunai, D

    2012-10-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm(2)sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  9. Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Winder, D. R.

    1981-01-01

    A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.

  10. Charge-exchange plasma environment for an ion drive spacecraft. [a model for describing mercury ion engines and its effect on spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1979-01-01

    The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.

  11. Observations of solar wind ion charge exchange in the comet Halley coma

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet.

  12. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  13. Electron capture rates in stars studied with heavy ion charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  14. Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Lauver, M. R.

    1976-01-01

    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.

  15. Solar wind charge exchange in laboratory - Observation of forbidden X-ray transitions

    NASA Astrophysics Data System (ADS)

    Numadate, Naoki; Shimaya, Hirofumi; Ishida, Takuya; Okada, Kunihiro; Nakamura, Nobuyuki; Tanuma, Hajime

    2017-10-01

    We have reproduced solar wind charge exchange collisions of hydrogen-like O7+ ions with He gas at collision energies of 42 keV in the laboratory and observed the forbidden transition of 1s21S0 -1s2s 3S1 in helium-like O6+ ions produced by single electron capture. The measured soft X-ray spectrum had a peak at 560 eV which corresponds to the energy of the forbidden 1s21S0 -1s2s 3S1 transition in the O6+ ion, and a reasonable energy difference between peak positions of the forbidden and resonance lines was found, which ensured that we succeeded in observing the forbidden transition of O6+ ions. The dominant electron capture level in the collision of O7+ ions with He can be estimated to be a principal quantum number n = 4 by the classical over barrier model and the two-center atomic orbital close coupling method. After the charge exchange, the population of the 1s2s state becomes large due to cascade transitions from the higher excited states, so the long-lived forbidden transition to the 1s21S0 ground state is one of main features observed in the charge exchange spectra.

  16. Resonant charge exchange for H-H+ in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Laricchiuta, Annarita; Colonna, Gianpiero; Capitelli, Mario; Kosarim, Alexander; Smirnov, Boris M.

    2017-11-01

    The dynamics of resonant charge exchange in proton-hydrogen collisions embedded in plasma is investigated in the framework of the asymptotic approach, modified to account for the effect of Debye-Hückel screening in particle interactions. The cross sections exhibit a marked dependence on the Debye length in regimes of severe plasma confinement. Processes involving excited states H( n)-H+ are also discussed.

  17. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  18. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  19. The loss rates of O+ in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Shen, C.

    2014-03-01

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  20. Charge exchange collisions of slow C6 + with atomic and molecular H

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve

    2016-04-01

    Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.

  1. Charge Exchange Recombination Spectroscopy Based on Diagnostic Neutral Beam in HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Shi, Yuejiang; Fu, Jia; Li, Yingying; William, Rowan; Huang, He; Wang, Fudi; Gao, Huixian; Huang, Juann; Zhou, Qian; Liu, Sheng; Zhang, Jian; Li, Jun; Xie, Yuanlai; Liu, Zhimin; Huang, Yiyun; Hu, Chundong; Wan, Baonian

    2010-02-01

    Charge exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam (DNB) installed in the HT-7 tokamak is introduced. DNB can provide a 6 A extracted current at 50 kV for 0.1 s in hydrogen. It can penetrate into the core plasma in HT-7. The CXRS system is designed to observe charge exchange (CX) transitions in the visible spectrum. CX light from the beam is focused onto 10 optical fibers, which view the plasma from -5 cm to 20 cm. The CXRS system can measure the ion temperature as low as 0.1 keV. With CXRS, the local ion temperature profile in HT-7 was obtained for the first time.

  2. ROSAT Observations of Solar Wind Charge Exchange with the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Benna, M.; Carter, J. A.; Cravens, T. E.; Hills, H. Kent; Hodges, R. R.; Kuntz, K. D.; Porter, F. Scott; Read, A.; hide

    2012-01-01

    We analyze the ROSAT PSPC soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the count rate in three wedges, two wedges (one north and one south) 13-32 degrees off (19 degrees wide) the terminator towards the dark side and one wedge 38 degrees wide centered on the anti-solar direction. The radial profiles of both the north and the south wedges show substantial limb brightening that is absent in the 38 degree wide antisolar wedge. An analysis of the count rate increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere. Along with Mars, Venus, and Earth, the Moon represents another solar system body at which solar wind charge exchange has been observed. This technique can be used to explore the solar wind-lunar interaction.

  3. Interaction of a solar array with an ion thruster due to the charge-exchange plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    The generation of a charge exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma is described accurately from thruster geometry and operating conditions. The transport of the charge exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.

  4. Exciting baryon resonances in isobar charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodriguez-Sanchez, J. L.; Vargas, J.; Alavarez-Pol, H.; Aumann, T.; Atkinson, J.; Ayyad, Y.; Beceiro, S.; Boretzky, K.; Chatillon, A.; Cortina, D.; Diaz, P.; Estrade, A.; Geissel, H.; Lenske, H.; Litvinov, Y.; Mostazo, M.; Paradela, C.; Pietri, S.; Prochazka, A.; Takechi, M.; Vidaña, I.; Weick, H.; Winfield, J.

    2017-11-01

    Isobaric charge-exchange reactions induced by different tin isotopes have been investigated at GSI. The high-resolving power of the FRS spectrometer made it possible to separate elastic and inelastic components in the missing-energy spectra of the ejectiles. The inelastic component was associated to the in-medium excitation of nucleon resonances such as the Delta and Roper resonances. These data are expected to contribute to better understand the in-medium properties of baryon resonances but also to investigate the abundance of protons and neutrons at the nuclear periphery.

  5. Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen

    NASA Technical Reports Server (NTRS)

    Pauls, H. Louis; Zank, Gary P.

    1995-01-01

    We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.

  6. Signatures of the electron saddle swaps mechanism in the photon spectra following charge-exchange collisions

    NASA Astrophysics Data System (ADS)

    Otranto, Sebastian

    2014-10-01

    During the last few years, several experimental and theoretical studies have focused on state selective charge exchange processes between charged ions and alkali metals. These data are of particular importance for the tokamak nuclear fusion reactor program, since diagnostics on the plasma usually rely on charge-exchange spectroscopy. In this sense, alkali metals, have been proposed as potential alternatives to excited hydrogen/deuterium for which laboratory experiments are not feasible at present. In this talk, we present our recent work involving ion collisions with alkali metals. Oscillatory structures in the angular differential charge-exchange cross sections obtained using the MOTRIMS technique are correctly described by classical trajectory Monte Carlo simulations. These oscillations are found to originate from the number of swaps the electron undergoes around the projectile-target potential saddle before capture takes place and are very prominent at impact energies below 10 keV/amu. Moreover, cross sections of higher order of differentiability also indicate that the swaps leave distinctive signatures in the (n,l)-state selective cross sections and in the photon line emission cross sections. Oscillatory structures for the x-ray hardness ratio parameter are also predicted. In collaboration with Ronnie Hoekstra, Zernike Institute for Advanced Materials, University of Groningen and Ronald Olson, Department of Physics, Missouri University of Science and Technology.

  7. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  8. Cooling of trapped ions by resonant charge exchange

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Rangwala, S. A.

    2018-04-01

    The two most widely used ion cooling methods are laser cooling and sympathetic cooling by elastic collisions (ECs). Here, we demonstrate another method of cooling ions that is based on resonant charge exchange (RCE) between the trapped ion and the ultracold parent atom. Specifically, trapped C s+ ions are cooled by collisions with cotrapped, ultracold Cs atoms and, separately, by collisions with cotrapped, ultracold Rb atoms. We observe that the cooling of C s+ ions by Cs atoms is more efficient than the cooling of C s+ ions by Rb atoms. This signals the presence of a cooling mechanism apart from the elastic ion-atom collision channel for the Cs-C s+ case, which is cooling by RCE. The efficiency of cooling by RCE is experimentally determined and the per-collision cooling is found to be two orders of magnitude higher than cooling by EC. The result provides the experimental basis for future studies on charge transport by electron hopping in atom-ion hybrid systems.

  9. Configuration interaction in charge exchange spectra of tin and xenon

    NASA Astrophysics Data System (ADS)

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  10. Absolute Charge Exchange Cross Sections for ^3He^2+ Collisions with ^4He and H_2

    NASA Astrophysics Data System (ADS)

    Mawhorter, R. J.; Greenwood, J.; Smith, S. J.; Chutjian, A.

    2002-05-01

    The JPL charge exchange beam-line(J.B. Greenwood, et al., Phys. Rev A 63), 062707 (2001) was modified to increase the forward acceptance angle and enable the measurement of total charge-exchange cross sections for slow, light, highly-charged ion collisions with neutral targets(R. E. Olson and M. Kimura, J. Phys. B 15), 4231 (1982). Data are presented for single charge exchange cross sections for ^3He^2+ nuclei scattered by ^4He and H2 in the energy range 0.33-4.67 keV/amu. For both targets there is good agreement with Kusakabe, et al.(T. Kusakabe, et al., J. Phys. Soc. Japan 59), 1218 (1990). Angular collection is studied by a comparison with differential measurements(D. Bordenave-Montesquieu and R. Dagnac, J. Phys. B 27), 543 (1994), as well as with earlier JPL results(J.B. Greenwood, et al., Ap. J. 533), L175 (2000), ibid. 529, 605 (2000) using heavier projectiles and targets. This work was carried out at JPL/Caltech, and was supported through contract with NASA. RJM thanks the NRC for a Senior Associateship at JPL.

  11. Charge exchange, ENAs and the loss of planetary ions at Mars

    NASA Astrophysics Data System (ADS)

    Kallio, E.; Janhunen, P.; Säles, T.

    Neither Mars nor Venus has a strong global intrinsic magnetic field and therefore the solar wind can flow close to the planets in high neutral density regions. Because of the formed direct interaction between the atmosphere/exosphere and the solar wind, the ionized atmospheric neutrals can be picked up by the solar wind. Charge exchange between solar wind protons and planetary neutrals, instead, produce energetic neutral hydrogen atoms (H-ENA) which are the manifestation of the direct interaction between the solar wind and planetary neutrals. Picked-up planetary O+ ions in turn form energetic neutral oxygen atoms (O-ENA) via charge exchange process. The ion escape, H-ENAs, O-ENAs and electrons will be investigated at Mars and Venus by two identical instruments: ASPERA-3 on MarsExpress (measurements started in Jan. 2004) and ASPERA-4 on VenusExpress (2006). We present a self-consistent, three-dimensional quasi-neutral hybrid (ions are particles, electrons a fluid) simulation to study Mars/Venus-solar wind interaction in general and ASPERA-3/4 measurements in particular. Our model includes three ion species (H+, O+, O2+), and contains charge exchange, ion-neutral and chemical reactions. We show results of quasi-neutral hybrid model runs that we have used to study the escape of planetary ions, the effects of planetary ions on the Martian plasma environment and the production and properties of fast hydrogen(H) and oxygen(O) ENAs near Mars. We also compare these hydrogen ENA images with the hydrogen ENA images that has been derived from an empirical flow model by line-of-sight integration. The advantage of the analytical gas dynamic like flow model is that it is computationally so fast that it provides a possibility to perform an ENA inversion, that is, to derive global plasma parameters from the measured ENA image.

  12. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2003-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.

  13. Charge exchange in slow collisions of Si3+ with H

    NASA Astrophysics Data System (ADS)

    Joseph, D. C.; Saha, B. C.

    2010-10-01

    Low energy electron capture from atomic hydrogen by multi-charged ions continues to be of interest and has wide applications including both magnetically confined^ fusion and astrophysical plasmas. The charge exchange process reported here, Si^3+ + H -- Si^2+ + H^+ is an important destruction mechanism of Si^3+ in photo-ionized gas. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si^3+, with neutrals in the cometary gas vapor. The state selective cross sections are evaluated using the semi-classical molecular orbital close coupling (MOCC) [1] methods. Adiabatic potentials and wave functions for a number of low-lying singlet and triplet states are calculated using the MRD-CI package [2]. Details will be presented at the conference. [1] M. Kimura and N. F. Lane, At. Mol. Opt. Phys 26, 79 (1990). [3] R. J. Buenker, ``Current Aspects of Quantum Chemistry'' 1981, Vol 21, edited by R. Carbo (Elsevier, Amsterdam) p 17.

  14. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  15. A Systematic Search for Solar Wind Charge Exchange Emission from the Earth's Exosphere with Suzaku

    NASA Astrophysics Data System (ADS)

    Ishi, D.; Ishikawa, K.; Ezoe, Y.; Ohashi, T.; Miyoshi, Y.; Terada, N.

    2017-10-01

    We report on a systematic search of all the Suzaku archival data covering from 2005 August to 2015 May for geocoronal Solar Wind Charge eXchange (SWCX). In the vicinity of Earth, solar wind ions strip an electron from Earth's exospheric neutrals, emitting X-ray photons (e.g., Snowden et al. 1997). The X-ray flux of this geocoronal SWCX can change depending on solar wind condition and line of sight direction. Although it is an immediate background for all the X-ray astronomy observations, the X-ray flux prediction and the dependence on the observational conditions are not clear. Using the X-ray Imaging Spectrometer onboard Suzaku which has one of the highest sensitivities to the geocoronal SWCX, we searched the data for time variation of soft X-ray background. We then checked the solar wind proton flux taken with the WIND satellite and compared it with X-ray light curve. We also analyzed X-ray spectra and fitted them with a charge exchange emission line model constructed by Bodewits et al. (2007). Among 3055 data sets, 90 data showed SWCX features. The event rate seems to correlate with solar activity, while the distribution of SWCX events plotted in the solar magnetic coordinate system was relatively uniform.

  16. Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.

    2002-01-01

    The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.

  17. Design and operation of the pellet charge exchange diagnostic for measurement of energetic confined alphas and tritons on TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.; Duong, H.H.; Fisher, R.K.

    1996-05-01

    Radially-resolved energy and density distributions of the energetic confined alpha particles in D-T experiments on TFTR are being measured by active neutral particle analysis using low-Z impurity pellet injection. When injected into a high temperature plasma, an impurity pellet (e.g. Lithium or Boron) rapidly ablates forming an elongated cloud which is aligned with the magnetic field and moves with the pellet. This ablation cloud provides a dense target with which the alpha particles produced in D-T fusion reactions can charge exchange. A small fraction of the alpha particles incident on the pellet ablation cloud will be converted to helium neutralsmore » whose energy is essentially unchanged by the charge transfer process. By measuring the resultant helium neutrals escaping from the plasma using a mass and energy resolving charge exchange analyzer, this technique offers a direct measurement of the energy distribution of the incident high-energy alpha particles. Other energetic ion species can be detected as well, such as tritons generated in D-D plasmas and H or He{sup 3} RF-driven minority ion tails. The diagnostic technique and its application on TFTR are described in detail.« less

  18. Charge exchange in a planetary corona - Its effect on the distribution and escape of hydrogen

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1977-01-01

    The theory for a spherical collisionless planetary corona is extended to include charge-exchange collisions between H(+) and H, which are assumed to constitute intermingled gases with different kinetic temperatures. The treatment is based on the conventional concept of a critical level (or exobase) above which the only collisions considered in the Boltzmann equation are those that resonantly exchange charge. Although the geometry treated is an oversimplification for a real planet, numerical examples are given for an idealized earth and Venus. For earth, an ion temperature of 4 times the neutral temperature, an ion density at the exobase of 14,000 per cu cm, and a plasmapause at 1.5 earth radii will raise the escape flux of H by a factor of 6. The total H above the exobase is changed by less than 1%. For Venus, conditions are examined that would account for the peculiar H distribution observed from Mariner 5. The plasma conditions required are not obviously outrageous by terrestrial standards, but the Mariner 5 ionosphere measurements did not show a high plasmapause at, say, 1.25 or 1.5 planetary radii, a fact that might argue against a charge-exchange model.

  19. Charge exchange contamination of CRIT-II barium CIV experiment. [critical ionization velocity in ionosphere

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Meyerott, R. E.; Rairden, R. L.

    1991-01-01

    Experiments have been recently performed which attempted to confirm critical ionization velocity (CIV) ionization by deploying chemicals at high velocity in the ionosphere. Specifically, the CRIT-II rocket performed a barium release in the ionosphere, where observations of Ba(+) resonant emissions following the release are believed to have resulted from the CIV process. Calculations are presented which suggest a significant fraction (if not all) of the Ba(+) observed likely resulted from charge exchange with the thermosphere ions and not through CIV processes. The results presented here are pertinent to other CIV experiments performed in the ionosphere. It is recommended that laboratory measurements should be made of the charge exchange cross section between O(+) and Ba as well as other metal vapors used in CIV experiments.

  20. A forward model for the helium plume effect and the interpretation of helium charge exchange measurements at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kappatou, A.; McDermott, R. M.; Pütterich, T.; Dux, R.; Geiger, B.; Jaspers, R. J. E.; Donné, A. J. H.; Viezzer, E.; Cavedon, M.; the ASDEX Upgrade Team

    2018-05-01

    The analysis of the charge exchange measurements of helium is hindered by an additional emission contributing to the spectra, the helium ‘plume’ emission (Fonck et al 1984 Phys. Rev. A 29 3288), which complicates the interpretation of the measurements. The plume emission is indistinguishable from the active charge exchange signal when standard analysis of the spectra is applied and its intensity is of comparable magnitude for ASDEX Upgrade conditions, leading to a significant overestimation of the He2+ densities if not properly treated. Furthermore, the spectral line shape of the plume emission is non-Gaussian and leads to wrong ion temperature and flow measurements when not taken into account. A kinetic model for the helium plume emission has been developed for ASDEX Upgrade. The model is benchmarked against experimental measurements and is shown to capture the underlying physics mechanisms of the plume effect, as it can reproduce the experimental spectra and provides consistent values for the ion temperature, plasma rotation, and He2+ density.

  1. On charge exchange effect in the vicinity of the cometopause of Comet Halley

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    1989-08-01

    In order to explore the physical nature of the cometopause observed at Comet Halley by the Vega spacecraft and by the Giotto probe, the chemical compositional changes and variations of the thermal-energy distributions of the water-group ions are examined, adopting a two-dimensional cometary-plasma flowfield model based on three-dimensional MHD simulations of Fedder et al. (1986). The charge-exchange loss of hot cometary ions and the solar-wind protons could be used to explain the observed number-density profiles quantitatively. The resulting exponential depletion of the hot-ion populations with a scale length of about 10,000 km occurs near 60,000-80,000 km along the trajectory of Giotto, as indicated by both theoretical computations and the ion-mass-spectrometer measurements. The formation of the cometopause located at about 140,000 km is therefore not necessarily as closely related to the charge-exchange process.

  2. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; hide

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  3. Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.

    PubMed

    Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E

    2015-12-01

    Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Analysis of the charge exchange between the human body and ground: evaluation of "earthing" from an electrical perspective.

    PubMed

    Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul

    2014-12-01

    The purpose of this study was to investigate "earthing" from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion.

  5. The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath

    NASA Astrophysics Data System (ADS)

    Chalov, S. V.

    2018-06-01

    The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.

  6. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  7. PLASIM: A computer code for simulating charge exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Deininger, W. D.; Winder, D. R.; Kaufman, H. R.

    1982-01-01

    The propagation of the charge exchange plasma for an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ANSI Standard FORTRAN.

  8. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.

  9. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  10. A comparison of experimental and computer model results on the charge-exchange plasma flow from a 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Gabriel, S. B.; Kaufman, H. R.

    1982-01-01

    Ion thrusters can be used in a variety of primary and auxiliary space-propulsion applications. A thruster produces a charge-exchange plasma which can interact with various systems on the spacecraft. The propagation of the charge-exchange plasma is crucial in determining the interaction of that plasma with the spacecraft. This paper compares experimental measurements with computer model predictions of the propagation of the charge-exchange plasma from a 30 cm mercury ion thruster. The plasma potentials, and ion densities, and directed energies are discussed. Good agreement is found in a region upstream of, and close to, the ion thruster optics. Outside of this region the agreement is reasonable in view of the modeling difficulties.

  11. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  12. Upper-limit charge exchange cross sections for mercury (plus) on molybdenum and cesium (plus) on aluminum

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.

    1972-01-01

    Upper-limit charge exchange cross sections are calculated for Hg(+) on Mo and Cs(+) on Al. The cross sections are calculated from the polarization interaction at low ion energies (1 to 500 eV) and by assuming favorable curve crossings with a hard-core reaction radius at higher energies (500 eV to 10 keV). The cross sections for Hg(+) on Mo becomes greater than corresponding Hg Hg(+) resonance values at ion energies below 2 eV, whereas the Cs(+) Al values remain considerably lower than the Cs(+)Cs resonance value at all ion energies. It is also shown that charge exchange of slow Hg(+) with Mo may be important for spacecraft with electron bombardment thrusters.

  13. Analysis of the Charge Exchange Between the Human Body and Ground: Evaluation of “Earthing” From an Electrical Perspective

    PubMed Central

    Chamberlin, Kent; Smith, Wayne; Chirgwin, Christopher; Appasani, Seshank; Rioux, Paul

    2014-01-01

    Objective The purpose of this study was to investigate “earthing” from an electrical perspective through measurement and analysis of the naturally occurring electron flow between the human body or a control and ground as this relates to the magnitude of the charge exchange, the relationship between the charge exchange and body functions (respiration and heart rate), and the detection of other information that might be contained in the charge exchange. Methods Sensitive, low-noise instrumentation was designed and fabricated to measure low-level current flow at low frequencies. This instrumentation was used to record current flow between human subjects or a control and ground, and these measurements were performed approximately 40 times under varied circumstances. The results of these measurements were analyzed to determine if information was contained in the current exchange. Results The currents flowing between the human body and ground were small (nanoamperes), and they correlated with subject motion. There did not appear to be any information contained in this exchange except for information about subject motion. Conclusions This study showed that currents flow between the environment (earth) and a grounded human body; however, these currents are small (nanoamperes) and do not appear to contain information other than information about subject motion. PMID:25435837

  14. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.

    PubMed

    Li, Jiuyu; Xu, Renkou

    2007-02-01

    Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect

  15. Line Ratios for Solar Wind Charge Exchange with Comets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, P. D.; Cumbee, R. S.; Lyons, D.

    Charge exchange (CX) has emerged in X-ray emission modeling as a significant process that must be considered in many astrophysical environments—particularly comets. Comets host an interaction between solar wind ions and cometary neutrals to promote solar wind charge exchange (SWCX). X-ray observatories provide astronomers and astrophysicists with data for many X-ray emitting comets that are impossible to accurately model without reliable CX data. Here, we utilize a streamlined set of computer programs that incorporate the multi-channel Landau–Zener theory and a cascade model for X-ray emission to generate cross sections and X-ray line ratios for a variety of bare and non-baremore » ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent bare and H-like ions of C, N, O, Ne, Na, Mg, Al, and Si and the cometary neutrals H{sub 2}O, CO, CO{sub 2}, OH, and O. To exemplify the application of this data, we model the X-ray emission of Comet C/2000 WM1 (linear) using the CX package in SPEX and find excellent agreement with observations made with the XMM-Newton RGS detector. Our analyses show that the X-ray intensity is dominated by SWCX with H, while H{sub 2}O plays a secondary role. This is the first time, to our knowledge, that CX cross sections have been implemented into a X-ray spectral fitting package to determine the H to H{sub 2}O ratio in cometary atmospheres. The CX data sets are incorporated into the modeling packages SPEX and Kronos .« less

  16. Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, B.

    2002-01-01

    The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory (LLNL) to study X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae. Progress made during the first year of the grant is described, as is work planned for the second year.

  17. Charge-exchange coupling between pickup ions across the heliopause and its effect on energetic neutral hydrogen flux

    DOE PAGES

    Zirnstein, Eric J.; Heerikhuisen, J.; Zank, G. P.; ...

    2014-02-24

    Pickup ions (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent energetic neutral atom (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First,more » we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, "freshly injected" PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen atoms and energetic PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Lastly, our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ~0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.« less

  18. Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.

    The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less

  19. Solution of the Fokker-Planck equation with mixing of angular harmonics by beam-beam charge exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelsen, D.R.

    1989-09-01

    A method for solving the linear Fokker-Planck equation with anisotropic beam-beam charge exchange loss is presented. The 2-D equation is transformed to a system of coupled 1-D equations which are solved iteratively as independent equations. Although isotropic approximations to the beam-beam losses lead to inaccurate fast ion distributions, typically only a few angular harmonics are needed to include accurately the effect of the beam-beam charge exchange loss on the usual integrals of the fast ion distribution. Consequently, the algorithm converges very rapidly and is much more efficient than a 2-D finite difference method. A convenient recursion formula for the couplingmore » coefficients is given and generalization of the method is discussed. 13 refs., 2 figs.« less

  20. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of thismore » spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.« less

  1. The formation of excited atoms during charge exchange between hydrogen ions and alkali atoms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nieman, R. A.

    1971-01-01

    The charge exchange cross sections for protons and various alkali atoms are calculated using the classical approximation of Gryzinski. It is assumed that the hydrogen atoms resulting from charge exchange exist in all possible excited states. Charge transfer collisions between protons and potassium as well as protons and sodium atoms are studied. The energy range investigated is between 4 and 30 keV. The theoretical calculations of the capture cross section and the cross section for the creation of metastable 2S hydrogen are compared to experimental values. Good quantitative agreement is found for the capture cross section but only qualitative agreement for the metastable cross section. Analysis of the Lyman alpha window in molecular oxygen suggests that measured values of the metastable cross section may be in error. Thick alkali target data are also presented. This allows the determination of the total electron loss cross section. Finally, some work was done with H2(+).

  2. κ -distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen

    DOE PAGES

    Heerikhuisen, J.; Zirnstein, Eric; Pogorelov, Nikolai

    2015-03-16

    The interaction between the solar wind and the interstellar medium represents a collision between two plasma flows, resulting in a heliosphere with an extended tail. While the solar wind is mostly ionized material from the corona, the interstellar medium is only partially ionized. The ion and neutral populations are coupled through charge-exchange collisions that operate on length scales of tens to hundreds of astronomical units. About half the interstellar hydrogen flows into the heliosphere where it may charge-exchange with solar wind protons. This process gives rise to a nonthermal proton, known as a pickup ion, which joins the plasma. Inmore » this paper we investigate the effects of approximating the total ion distribution of the subsonic solar wind as a generalized Lorentzian, or κ distribution, using an MHD neutral code. We illustrate the effect different values of the κ parameter have on both the structure of the heliosphere and the energetic neutral atom flux at 1 AU. We find that using a κ distribution in our simulations yields levels of energetic neutral atom flux that are within a factor of about 2 or 3 over the IBEX-Hi range of energies from 0.5 to 6 keV. In conclusion, while the presence of a suprathermal tail in the proton distribution leads to the production of high-energy neutrals, the sharp decline in the charge-exchange cross section around 10 keV mitigates the enhanced transfer of energy from the ions to the neutrals that might otherwise be expected.« less

  3. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  4. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  5. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  6. Multichordal charge exchange recombination spectroscopy on Doublet III (abstract)

    NASA Astrophysics Data System (ADS)

    Seraydarian, R. P.; Burrell, K. H.; Kahn, C.

    1985-05-01

    Single shot, multipoint ion temperature and plasma rotation profiles have been routinely obtained on the Doublet III tokamak for 32 consecutive time slices with 20-ms resolution. A six-chord tangentially viewing spectroscopic diagnostic has been built to look at radiation emitted by fully stripped low-Z impurity ions (He, C, O) that have undergone charge exchange recombination with hydrogen atoms from a 3-MW heating beam. The main components of the instrument are a single monochromator for wavelength dispersion, a single image intensifier tube for photon gain, and a pair of 1024-element linear photodiode arrays for detection. A special arrangement of fiber optics allows simultaneous data acquisition from all chords without the use of scanning mirrors or other moving parts. Ion temperature profiles taken under a variety of plasma conditions will be presented.

  7. 32 CFR 643.112 - Army exchange activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Army exchange activities. 643.112 Section 643.112 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders § 643.112 Army exchange activities. Use of space and structures by the Army Exchange and its...

  8. Modeling the double charge exchange response function for a tetraneutron system

    NASA Astrophysics Data System (ADS)

    Lazauskas, R.; Carbonell, J.; Hiyama, E.

    2017-07-01

    This work is an attempt to model the 4 n response function of a recent RIKEN experimental study of the double charge exchange  4 He( 8 He, 8 Be) 4n reaction in order to put in evidence an eventual enhancement mechanism of the zero-energy cross section, including a near-threshold resonance. This resonance can indeed be reproduced only by adding to the standard nuclear Hamiltonian an unphysically large T =3/2 attractive 3 n -force that destroys the neighboring nuclear chart. No other mechanisms, like cusps or related structures, were found.

  9. Measurements of 2νββ decay-matrix elements for mass A=64,76 and A=96 through charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Grewe, E.-W.; Frekers, D.

    2006-07-01

    We have used the (d,He2) charge-exchange reaction to obtain GT +-strength distributions in the nuclei 64Cu, 76As and 96Nb. These nuclei are the intermediate nuclei in the second-order perturbative description of the 64Zn double-beta plus ( β+β+) and the 76Ge and 96Zr double-beta minus ( β-β-) decays. By means of charge-exchange reactions on parent and daughter nucleus the double-beta decay matrix element can be deduced. In this contribution the measured excitation energy spectra are presented.

  10. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  11. Scrape-off layer modeling with kinetic or diffusion description of charge-exchange atoms

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.

    2016-12-01

    Hydrogen isotope atoms, generated by charge-exchange (c-x) of neutral particles recycling from the first wall of a fusion reactor, are described either kinetically or in a diffusion approximation. In a one-dimensional (1-D) geometry, kinetic calculations are accelerated enormously by applying an approximate pass method for the assessment of integrals in the velocity space. This permits to perform an exhaustive comparison of calculations done with both approaches. The diffusion approximation is deduced directly from the velocity distribution function of c-x atoms in the limit of charge-exchanges with ions occurring much more frequently than ionization by electrons. The profiles across the flux surfaces of the plasma parameters averaged along the main part of the scrape-off layer (SOL), beyond the X-point and divertor regions, are calculated from the one-dimensional equations where parallel flows of charged particles and energy towards the divertor are taken into account as additional loss terms. It is demonstrated that the heat losses can be firmly estimated from the SOL averaged parameters only; for the particle loss the conditions in the divertor are of importance and the sensitivity of the results to the so-called "divertor impact factor" is investigated. The coupled 1-D models for neutral and charged species, with c-x atoms described either kinetically or in the diffusion approximation, are applied to assess the SOL conditions in a fusion reactor, with the input parameters from the European DEMO project. It is shown that the diffusion approximation provides practically the same profiles across the flux surfaces for the plasma density, electron, and ion temperatures, as those obtained with the kinetic description for c-x atoms. The main difference between the two approaches is observed in the characteristics of these species themselves. In particular, their energy flux onto the wall is underestimated in calculations with the diffusion approximation by 20 % - 30

  12. First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y. Y., E-mail: liyy@ipp.ac.cn; Fu, J.; Jiang, D.

    2016-11-15

    An edge toroidal charge exchange recombination spectroscopy (eCXRS) diagnostic, based on a heating neutral beam injection (NBI), has been deployed recently on the Experimental Advanced Superconducting Tokamak (EAST). The eCXRS, which aims to measure the plasma ion temperature and toroidal rotation velocity in the edge region simultaneously, is a complement to the exiting core CXRS (cCXRS). Two rows with 32 fiber channels each cover a radial range from ∼2.15 m to ∼2.32 m with a high spatial resolution of ∼5-7 mm. Charge exchange emission of Carbon VI CVI at 529.059 nm induced by the NBI is routinely observed, but canmore » be tuned to any interested wavelength in the spectral range from 400 to 700 nm. Double-slit fiber bundles increase the number of channels, the fibers viewing the same radial position are binned on the CCD detector to improve the signal-to-noise ratio, enabling shorter exposure time down to 5 ms. One channel is connected to a neon lamp, which provides the real-time wavelength calibration on a shot-to-shot basis. In this paper, an overview of the eCXRS diagnostic on EAST is presented and the first results from the 2015 experimental campaign will be shown. Good agreements in ion temperature and toroidal rotation are obtained between the eCXRS and cCXRS systems.« less

  13. Improved edge charge exchange recombination spectroscopy in DIII-D

    NASA Astrophysics Data System (ADS)

    Chrystal, C.; Burrell, K. H.; Grierson, B. A.; Haskey, S. R.; Groebner, R. J.; Kaplan, D. H.; Briesemeister, A.

    2016-11-01

    The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.

  14. Improved edge charge exchange recombination spectroscopy in DIII-D.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Haskey, S R; Groebner, R J; Kaplan, D H; Briesemeister, A

    2016-11-01

    The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.

  15. Laboratory Measurements Of Charge-exchange Produced X-ray Emission From K-shell Transitions In Hydrogenic And Helium-like Fe

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, P.; Boyce, K. R.; Chen, H.; Gu, M. F.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Thorn, D.; Wargelin, B.

    2006-09-01

    We have used a microcalorimeter and solid state detectors to measure x-ray emission produced by charge exchange reactions between bare and hydrogenic Fe colliding with neutral helium, hydrogen, and nitrogen gas. We show the measured spectral signature produced by different neutral donors and compare our results to theory where available. We also compare our results to measurements of the Fe K line emission from the Galactic Center measured by the XIS on the Suzaku x-ray observatory. This comparison shows that charge exchange recombination between highly charged ions (either cosmic rays or thermal ions) and neutral gas is probably not the dominant source of diffuse line emission in the Galactic Center. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and is also supported by NASA APRA grants to LLNL, GSFC, Harvard-Smithsonian CfA, and Stanford University.

  16. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  17. Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

    USGS Publications Warehouse

    Chiou, Cary T.; Rutherford, David W.

    1997-01-01

    The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.

  18. Improved edge charge exchange recombination spectroscopy in DIII-D

    DOE PAGES

    Chrystal, Colin; Burrell, K. H.; Grierson, Brian A.; ...

    2016-08-02

    The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma ( r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased frommore » 16 to 38.As a result, new fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas.« less

  19. An ion exchange strategy to BiOI/CH3COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Han, Qiaofeng; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    It is very significant to develop CH3COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  20. Numerical modeling of field-assisted ion-exchanged channel waveguides by the explicit consideration of space-charge buildup.

    PubMed

    Mrozek, Piotr

    2011-08-01

    A numerical model explicitly considering the space-charge density evolved both under the mask and in the region of optical structure formation was used to predict the profiles of Ag concentration during field-assisted Ag(+)-Na(+) ion exchange channel waveguide fabrication. The influence of the unequal values of diffusion constants and mobilities of incoming and outgoing ions, the value of a correlation factor (Haven ratio), and particularly space-charge density induced during the ion exchange, on the resulting profiles of Ag concentration was analyzed and discussed. It was shown that the incorporation into the numerical model of a small quantity of highly mobile ions other than exclusively Ag(+) and Na(+) may considerably affect the range and shape of calculated Ag profiles in the multicomponent glass. The Poisson equation was used to predict the electric field spread evolution in the glass substrate. The results of the numerical analysis were verified by the experimental data of Ag concentration in a channel waveguide fabricated using a field-assisted process.

  1. 75 FR 60674 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    .... In 2006, the Department examined its current Exchange Visitor Program fee structure for compliance.... Deloitte and Touche was awarded a contract. The new proposed fee structure was conducted under the... Standards No. 4 (SFFAS 4). In accordance with SFFAS 4, the Department used an ``activity-based costing...

  2. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  3. 17 CFR 204.56 - Administrative charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Administrative charges. 204.56 Section 204.56 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES RELATING TO DEBT COLLECTION Tax Refund Offset § 204.56 Administrative charges. To the extent permitted by law, all...

  4. 17 CFR 204.56 - Administrative charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Administrative charges. 204.56 Section 204.56 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES RELATING TO DEBT COLLECTION Tax Refund Offset § 204.56 Administrative charges. To the extent permitted by law, all...

  5. Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises

    NASA Astrophysics Data System (ADS)

    Ferraro, E.; Fanciulli, M.; De Michielis, M.

    2018-06-01

    The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.

  6. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    PubMed

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  7. Electrostatic Potential Energy within a Protein Monitored by Metal Charge-Dependent Hydrogen Exchange

    PubMed Central

    Anderson, Janet S.; LeMaster, David M.; Hernández, Griselda

    2006-01-01

    Hydrogen exchange measurements on Zn(II)-, Ga(III)-, and Ge(IV)-substituted Pyrococcus furiosus rubredoxin demonstrate that the log ratio of the base-catalyzed rate constants (Δ log kex) varies inversely with the distance out to at least 12 Å from the metal. This pattern is consistent with the variation of the amide nitrogen pK values with the metal charge-dependent changes in the electrostatic potential. Fifteen monitored amides lie within this range, providing an opportunity to assess the strength of electrostatic interactions simultaneously at numerous positions within the structure. Poisson-Boltzmann calculations predict an optimal effective internal dielectric constant of 6. The largest deviations between the experimentally estimated and the predicted ΔpK values appear to result from the conformationally mobile charged side chains of Lys-7 and Glu-48 and from differential shielding of the peptide units arising from their orientation relative to the metal site. PMID:17012322

  8. X-ray Magnetosheath Emission from Solar Wind Charge Exchange During Two CME Events in 2001

    NASA Astrophysics Data System (ADS)

    Sembay, S.; Whittaker, I. C.; Read, A.; Carter, J. A.; Milan, S. E.; Palmroth, M.

    2016-12-01

    Using a combination of the GUMICS-4 MHD model and observed solar wind heavy ion abundances from ACE, we produce case studies looking at X-ray emission from charge exchange in the Earth's magnetosheath. We specifically look in the 0.5-0.7 keV range, which is dominated by highly ionised oxygen emission. Previous studies looking at solar wind charge exchange (SWCX) emission have verified our modelling process via comparison to the XMM-Newton X-ray observatory, and we use the same simulation process here. This study investigates the emission magnitude changes that occur during two coronal mass ejection (CME) events (31 March 2001 and 21 October 2001). As part of this work we also provide a novel masking technique to exclude the plasma of terrestrial origin in the MHD model. As expected the two CME cases examined provide an increased dynamic pressure which pushes the magnetopause closer to the Earth, with a high temporal variation. We show how these changes cause an increase in the peak SWCX emission signature by over an order of magnitude from the quiescent solar wind case. Imaging of this SWCX emission allows a global view of the magnetopause shape and position, a technique planned for future missions such as SMILE (Solar wind Magnetosphere Ionosphere Link Explorer).

  9. Vacuum system design and tritium inventory for the charge exchange diagnostic on the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.

    The application of charge exchange analyzers for the measurement of ion temperature in fusion plasma experiments requires a direct connection between the diagnostic and plasma-discharge vacuum chambers. Differential pumping of the gas load from the diagnostic stripping cell operated at > or approx. = 10/sup -3/ Torr is required to maintain the analyzer chamber at a pressure of < or approx. = 10/sup -6/ Torr. The migration of gases between the diagnostic and plasma vacuum chambers must be minimized. In particular, introduction of the analyzer stripping cell gas into the plasma chamber having a base pressure of < or approx.more » = 10/sup -8/ Torr must be suppressed. The charge exchange diagnostic for the Tokamak Fusion Test Reactor (TFTR) is comprised of two analyzer systems designed to contain a total of 18 independent mass/energy analyzers and one diagnostic neutral beam rated at 80 keV, 15 A. The associated arrays of multiple, interconnected vacuum systems were analyzed using the Vacuum System Transient Simulator (Vsts) computer program which models the transient transport of multigas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced costs, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and of the diagnostic working gases to the torus.« less

  10. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  11. Nuclear structure properties of the double-charge-exchange transition amplitudes

    NASA Astrophysics Data System (ADS)

    Auerbach, N.; Zheng, D. C.

    1992-03-01

    Nuclear structure aspects of the double-charge-exchange (DCX) reaction on nuclei are studied. Using a variety of DCX-type two-body transition operators, we explore the influence of two-body correlations among valence nucleons on the DCX transition amplitudes to the isobaric analog state and to other nonanalog J π=0+ states. In particular, the question of the spin dependence and of the range of the DCX transition operators is explored and the behavior of the transition amplitudes as a function of the valence nucleon number is studied. It is shown that the two-amplitude DCX formula derived by Auerbach, Gibbs, and Piasetzky for a single j n configuration holds also in some cases when configuration mixing is strong. DCX-type transitions from the Ca and Ni isotopes to the Ti and Zn isotopes and from 56Fe to 56Ni are the subject of this study.

  12. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  13. Using magnetic charge to understand soft-magnetic materials

    NASA Astrophysics Data System (ADS)

    Arrott, Anthony S.; Templeton, Terry L.

    2018-04-01

    This is an overview of what the Landau-Lifshitz-Gilbert equations are doing in soft-magnetic materials with dimensions large compared to the exchange length. The surface magnetic charges try to cancel applied magnetic fields inside the soft magnetic material. The exchange energy tries to reach a minimum while meeting the boundary conditions set by the magnetic charges by using magnetization patterns that have a curl but no divergence. It can almost do this, but it still pays to add some divergence to further lower the exchange energy. There are then both positively and negatively charged regions in the bulk. The unlike charges attract one another, but do not annihilate because they are paid for by the reduction in exchange energy. The micromagnetics of soft magnetic materials is about how those charges rearrange themselves. The topology of magnetic charge distributions presents challenges for mathematicians. No one guessed that they like to form helical patterns of extended multiples of charge density.

  14. Investigation of Anion-Exchange and Immunoaffinity Particle-Loaded Membranes for the Isolation of Charged Organic Analytes from Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.

    1998-01-01

    Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.

  15. Characterization of cross-section correction to charge exchange recombination spectroscopy rotation measurements using co- and counter-neutral-beam views.

    PubMed

    Solomon, W M; Burrell, K H; Feder, R; Nagy, A; Gohil, P; Groebner, R J

    2008-10-01

    Measurements of rotation using charge exchange recombination spectroscopy can be affected by the energy dependence of the charge exchange cross section. On DIII-D, the associated correction to the rotation can exceed 100 kms at high temperatures. In reactor-relevant low rotation conditions, the correction can be several times larger than the actual plasma rotation and therefore must be carefully validated. New chords have been added to the DIII-D CER diagnostic to view the counter-neutral-beam line. The addition of these views allows determination of the toroidal rotation without depending on detailed atomic physics calculations, while also allowing experimental characterization of the atomic physics. A database of rotation comparisons from the two views shows that the calculated cross-section correction can adequately describe the measurements, although there is a tendency for "overcorrection." In cases where accuracy better than about 15% is desired, relying on calculation of the cross-section correction may be insufficient.

  16. High Resolution X-ray Measurements Following Charge Exchange with Atomic H: Data for a New Observational Window on Diffuse Astrophysical Sources

    NASA Astrophysics Data System (ADS)

    Havener, Charles

    It is rapidly being realized that many X-ray astronomical investigations are being affected in one way or another by charge exchange emission. Metal abundance measurements in supernova remnants and in outflows from star-forming galaxies need to be corrected for this additional process, and all X-ray observations of low surface brightness objects, such as the outskirts of clusters, galactic halos, the intergalactic medium, and plasma emission from hot interstellar gas are seriously compromised by a highly variable and largely unpredictable foreground from the exchange of solar wind ions on interstellar neutrals within the Solar system. At the same time, charge exchange provides a new sensitivity to mixing at interfaces between hot and cold gas, including direct measurements of relative velocities. The new generation of facilities with microcalorimeter detectors, starting with Astro-H in 2015, will provide the energy resolution and throughput for extended sources required to take advantage of this process. But analysis requires accurate partial cross sections for the production of individual lines, and even the most sophisticated of current charge exchange models do not do this with adequate precision. We propose an inexpensive modification of the Wisconsin high-throughput XQC microcalorimeter instrument so that it can be used on the merged beam facility at Oak Ridge to make direct measurement of lines of interest from collisions between an assortment of heavy ions with neutral atomic hydrogen. In this beam-beam system, the entire range of astrophysically interesting relative velocities can be investigated. We will work closely with modelers to use these results to tune their models to give accurate results for additional ions.

  17. Contemporary instrumentation and application of charge exchange neutral particle diagnostics in magnetic fusion energy experiments.

    PubMed

    Medley, S S; Donné, A J H; Kaita, R; Kislyakov, A I; Petrov, M P; Roquemore, A L

    2008-01-01

    An overview of the developments postcirca 1980s in the instrumentation and application of charge exchange neutral particle diagnostics on magnetic fusion energy experiments is presented. First, spectrometers that employ only electric fields and hence provide ion energy resolution but not mass resolution are discussed. Next, spectrometers that use various geometrical combinations of both electric and magnetic fields to provide both energy and mass resolutions are reviewed. Finally, neutral particle diagnostics based on utilization of time-of-flight techniques are presented.

  18. STRUCTURE OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM SECONDARY CHARGE-EXCHANGE AT THE SOLAR–INTERSTELLAR INTERFACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; McComas, D. J.; Heerikhuisen, J., E-mail: ezirnstein@swri.edu, E-mail: dmccomas@swri.edu, E-mail: jacob.heerikhuisen@uah.edu

    2015-05-01

    In 2009, the Interstellar Boundary Explorer discovered a bright “ribbon” of energetic neutral atom (ENA) flux in the energy range ≤0.4–6 keV, encircling a large portion of the sky. This observation was not previously predicted by any models or theories, and since its discovery, it has been the subject of numerous studies of its origin and properties. One of the most studied mechanisms for its creation is the “secondary ENA” process. Here, solar wind ions, neutralized by charge-exchange with interstellar atoms, propagate outside the heliopause; experience two charge-exchange events in the dense outer heliosheath; and then propagate back inside themore » heliosphere, preferentially in the direction perpendicular to the local interstellar magnetic field. This process has been extensively analyzed using state-of-the-art modeling and simulation techniques, but it has been difficult to visualize. In this Letter, we show the three-dimensional structure of the source of the ribbon, providing a physical picture of the spatial and energy scales over which the secondary ENA process occurs. These results help us understand how the ribbon is generated and further supports a secondary ENA process as the leading ribbon source mechanism.« less

  19. The origin of the local 1/4-keV X-ray flux in both charge exchange and a hot bubble.

    PubMed

    Galeazzi, M; Chiao, M; Collier, M R; Cravens, T; Koutroumpa, D; Kuntz, K D; Lallement, R; Lepri, S T; McCammon, D; Morgan, K; Porter, F S; Robertson, I P; Snowden, S L; Thomas, N E; Uprety, Y; Ursino, E; Walsh, B M

    2014-08-14

    The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays, coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar-wind charge-exchange contribution is approximately 40 per cent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.

  20. High efficiency laser-assisted H - charge exchange for microsecond duration beams

    DOE PAGES

    Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin; ...

    2017-12-26

    Laser-assisted stripping is a novel approach to H - charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. In conclusion,more » the experiment was performed on the Spallation Neutron Source 1 GeV H - beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.« less

  1. High efficiency laser-assisted H - charge exchange for microsecond duration beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin

    Laser-assisted stripping is a novel approach to H - charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. In conclusion,more » the experiment was performed on the Spallation Neutron Source 1 GeV H - beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.« less

  2. Na+/H+ exchange activity in the plasma membrane of Arabidopsis.

    PubMed

    Qiu, Quan-Sheng; Barkla, Bronwyn J; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S

    2003-06-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt.

  3. Inference of the ring current ion composition by means of charge exchange decay

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.; Hoffman, R. A.

    1978-01-01

    The analysis of the measured ion fluxes during the several day storm recovery period and the assumption that beside hydrogen other ions were present and that the decays were exponential in nature, it was possible to establish three separate lifetimes for the ions. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+), and He(+) in the energy and L-value range of the data. This inference technique, thus, establishes the presence of measurable and appreciable quantities of oxygen and helium ions as well as protons in the storm-time ring current. Indications that He(+) may also be present under these same conditions were found.

  4. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  5. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Astrophysics Data System (ADS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-02-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  6. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Balliou, A.; Douvas, A. M.; Normand, P.; Tsikritzis, D.; Kennou, S.; Argitis, P.; Glezos, N.

    2014-10-01

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW12O403-, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  7. Experimental challenges for the measurement of the 116Cd(20Ne,20O)116Sn double charge exchange reaction at 15 AMeV

    NASA Astrophysics Data System (ADS)

    Carbone, D.; Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Acosta, L.; Bonanno, D.; Bongiovanni, D.; Borello, T.; Boztosun, I.; Calabrese, S.; Calvo, D.; Chávez Lomelí, E. R.; Deshmukh, N.; de Faria, P. N.; Finocchiaro, P.; Fisichella, M.; Foti, A.; Gallo, G.; Hacisalihoglu, A.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Linares, R.; Longhitano, F.; Lo Presti, D.; Medina, N.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Pinna, F.; Reito, S.; Russo, G.; Santagati, G.; Sgouros, O.; Solakcı, S. O.; Soukeras, V.; Souliotis, G.; Spatafora, A.; Torresi, D.; Tudisco, S.; Yildirim, A.; Zagatto, V. A. B.;

    2018-05-01

    The knowledge of the nuclear matrix elements (NME) entering in the expression of the half-life of the neutrinoless double beta decay is fundamental for neutrino physics. Information on the nuclear matrix elements can be obtained by measuring the absolute cross section of double charge exchange nuclear reactions. The two processes present some similarities, the initial and final-state wave functions are the same and the transition operators are similar. The experimental measurements of double charge exchange reactions induced by heavy ions present a number of challenging aspects, since such reactions are characterized by very low cross sections. Such difficulties are discussed for the measurement of the 116Cd(20Ne,20O)116Sn reaction at 15 AMeV.

  8. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.

    2018-01-01

    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  9. LABORATORY MEASUREMENTS COMPELLINGLY SUPPORT A CHARGE-EXCHANGE MECHANISM FOR THE “DARK MATTER” ∼3.5 keV X-Ray LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Chintan; Dobrodey, Stepan; Bernitt, Sven

    2016-12-10

    The reported observations of an unidentified X-ray line feature at ∼3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the K-shell X-ray spectra of highly ionized bare sulfur ions following charge exchange with gaseous molecules in an electron beam ion trap, as a source of or a contributor to this X-ray line. We produced S{sup 16+} and S{sup 15+} ions and let them capture electrons in collision with those molecules with the electron beam turned off while recording X-ray spectra. We observed a charge-exchange-induced X-ray feature at the Lyman seriesmore » limit (3.47 ± 0.06 keV). The inferred X-ray energy is in full agreement with the reported astrophysical observations and supports the novel scenario proposed by Gu et al.« less

  10. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  11. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  12. Inference of the ring current ion composition by means of charge exchange decay

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1981-01-01

    The analysis of data from the Explorer 45 (S3-A) electrostatic analyzer in the energy range 5-30 keV has provided some new results on the ring current ion composition. It has been well established that the storm time ring current has a decay time of several days, during which the particle fluxes decrease nearly monotonically. By analyzing the measured ion fluxes during the several day storm recovery period and assuming that beside hydrogen other ions were present and that the decays were exponential in nature, three separate lifetimes for the ions were established. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+) and He(+) in the energy and L value range of the data.

  13. Effects of Charge State on Fragmentation Pathways, Dynamics, and Activation Energies of Ubiquitin Ions Measured by Blackbody Infrared Radiative Dissociation

    PubMed Central

    Jockusch, Rebecca A.; Schnier, Paul D.; Price, William D.; Strittmatter, Eric. F.; Demirev, Plamen A.; Williams*, Evan R.

    2005-01-01

    Blackbody infrared radiative dissociation spectra of the (M + 5H)5+ through (M + 11H)11+ ions of the protein ubiquitin (8.6 kDa) formed by electrospray ionization were measured in a Fourier-transform mass spectrometer. The 5+ ion dissociates exclusively by loss of water and/or ammonia, whereas the 11+ charge state dissociates only by formation of complementary y and b ions. These two processes are competitive for intermediate charge state ions, with the formation of y and b ions increasingly favored for the higher charge states. The y and b ions are formed by cleavage of the backbone amide bond on the C-terminal side of acidic residues exclusively, with cleavage adjacent to aspartic acid favored. Thermal unimolecular dissociation rate constants for the dissociation of each of these charge states were measured. From the temperature dependence of these rates, Arrhenius activation parameters in the rapid energy exchange limit are obtained. The activation energies (Ea) and preexponential factors (A) for the 5+, 8+, and 9+ ions are 1.2 eV and 1012 s−1, respectively. These values for the 6+ and 7+ ions are 0.9–1.0 eV and 109 s−1, and those for the 10+ and 11+ ions are 1.6 eV and 1016–1017 s−1. Thus, with the exception of the 5+ ion, the higher charge states of ubiquitin have larger dissociation activation energies than the lower charge states. The different A factors observed for production of y and b ions from different precursor charge states indicate that they are formed by different mechanisms, ranging from relatively complex rearrangements to direct bond cleavages. These results clearly demonstrate that the relative dissociation rates of large biomolecule ions by themselves are not necessarily a reliable indicator of their relative dissociation energies, even when similar fragment ions are formed. PMID:9075403

  14. Effects of charge state on fragmentation pathways, dynamics, and activation energies of ubiquitin ions measured by blackbody infrared radiative dissociation.

    PubMed

    Jockusch, R A; Schnier, P D; Price, W D; Strittmatter, E F; Demirev, P A; Williams, E R

    1997-03-15

    Blackbody infrared radiative dissociation spectra of the (M + 5H)5+ through (M + 11H)11+ ions of the protein ubiquitin (8.6 kDa) formed by electrospray ionization were measured in a Fourier-transform mass spectrometer. The 5+ ion dissociates exclusively by loss of water and/or ammonia, whereas the 11+ charge state dissociates only by formation of complementary y and b ions. These two processes are competitive for intermediate charge state ions, with the formation of y and b ions increasingly favored for the higher charge states. The y and b ions are formed by cleavage of the backbone amide bond on the C-terminal side of acidic residues exclusively, with cleavage adjacent to aspartic acid favored. Thermal unimolecular dissociation rate constants for the dissociation of each of these charge states were measured. From the temperature dependence of these rates, Arrhenius activation parameters in the rapid energy exchange limit are obtained. The activation energies (Ea) and preexponential factors (A) for the 5+, 8+, and 9+ ions are 1.2 eV and 10(12) s-1, respectively. These values for the 6+ and 7+ ions are 0.9-1.0 eV and 10(9) s-1, and those for the 10+ and 11+ ions are 1.6 eV and 10(16)-10(17) s-1. Thus, with the exception of the 5+ ion, the higher charge states of ubiquitin have larger dissociation activation energies than the lower charge states. The different A factors observed for production of y and b ions from different precursor charge states indicate that they are formed by different mechanisms, ranging from relatively complex rearrangements to direct bond cleavages. These results clearly demonstrate that the relative dissociation rates of large biomolecule ions by themselves are not necessarily a reliable indicator of their relative dissociation energies, even when similar fragment ions are formed.

  15. Design of charge exchange recombination spectroscopy for the joint Texas experimental tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Zhuang, G., E-mail: ge-zhuang@hust.edu.cn; Cheng, Z. F.

    The old diagnostic neutral beam injector first operated at the University of Texas at Austin is ready for rejoining the joint Texas experimental tokamak (J-TEXT). A new set of high voltage power supplies has been equipped and there is no limitation for beam modulation or beam pulse duration henceforth. Based on the spectra of fully striped impurity ions induced by the diagnostic beam the design work for toroidal charge exchange recombination spectroscopy (CXRS) system is presented. The 529 nm carbon VI (n = 8 − 7 transition) line seems to be the best choice for ion temperature and plasma rotationmore » measurements and the considered hardware is listed. The design work of the toroidal CXRS system is guided by essential simulation of expected spectral results under the J-TEXT tokamak operation conditions.« less

  16. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  17. Polyoxometalate active charge-transfer material for mediated redox flow battery

    DOEpatents

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  18. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  19. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase.

    PubMed

    Zakim, D; Eibl, H

    1992-07-05

    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do

  20. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  1. An integrated charge exchange recombination spectroscopy/beam emission spectroscopy diagnostic for Alcator C-Mod tokamak.

    PubMed

    Bespamyatnov, I O; Rowan, W L; Liao, K T; Granetz, R S

    2010-10-01

    A novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels. A dichroic filter splits the light between two spectrometers operating at different wavelengths for impurity ion and beam neutrals emission. In this arrangement, the impurity density is inferred from the electron density, measured BES and CXRS spectral radiances, and atomic emission rates.

  2. Modeling the Magnetospheric X-ray Emission from Solar Wind Charge Exchange with Verification from XMM-Newton Observations

    DTIC Science & Technology

    2016-08-26

    Journal of Geophysical Research: Space Physics Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM...Newton observations Ian C. Whittaker1, Steve Sembay1, Jennifer A. Carter1, AndrewM. Read1, Steve E. Milan1, andMinna Palmroth2 1Department of Physics ...observations, J. Geophys. Res. Space Physics , 121, 4158–4179, doi:10.1002/2015JA022292. Received 21 DEC 2015 Accepted 26 FEB 2016 Accepted article online 29

  3. The effect of the charge exchange source on the velocity and 'temperature' distributions and their anisotropies in the earth's exosphere

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Rohrbaugh, R. P.; Tinsley, B. A.

    1981-01-01

    The velocity distribution of atomic hydrogen in the earth's exosphere is calculated as a function of altitude and direction taking into account both the classic exobase source and the higher-altitude plasmaspheric charge exchange source. Calculations are performed on the basis of a Monte Carlo technique in which random ballistic trajectories of individual atoms are traced through a three-dimensional grid of audit zones, at which relative concentrations and momentum or energy fluxes are obtained. In the case of the classical exobase source alone, the slope of the velocity distribution is constant only for the upward radial velocity component and increases dramatically with altitude for the incoming radial and transverse velocity components, resulting in a temperature decrease. The charge exchange source, which produces the satellite hydrogen component and the hot ballistic and escape components of the exosphere, is found to enhance the wings of the velocity distributions, however this effect is not sufficient to overcome the temperature decreases at altitudes above one earth radius. The resulting global model of the hydrogen exosphere may be used as a realistic basis for radiative transfer calculations.

  4. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity

    PubMed Central

    Stratton, Margaret; Lee, Il-Hyung; Bhattacharyya, Moitrayee; Christensen, Sune M; Chao, Luke H; Schulman, Howard; Groves, Jay T; Kuriyan, John

    2014-01-01

    The activation of the dodecameric Ca2+/calmodulin dependent kinase II (CaMKII) holoenzyme is critical for memory formation. We now report that CaMKII has a remarkable property, which is that activation of the holoenzyme triggers the exchange of subunits between holoenzymes, including unactivated ones, enabling the calcium-independent phosphorylation of new subunits. We show, using a single-molecule TIRF microscopy technique, that the exchange process is triggered by the activation of CaMKII, and that exchange is modulated by phosphorylation of two residues in the calmodulin-binding segment, Thr 305 and Thr 306. Based on these results, and on the analysis of molecular dynamics simulations, we suggest that the phosphorylated regulatory segment of CaMKII interacts with the central hub of the holoenzyme and weakens its integrity, thereby promoting exchange. Our results have implications for an earlier idea that subunit exchange in CaMKII may have relevance for information storage resulting from brief coincident stimuli during neuronal signaling. DOI: http://dx.doi.org/10.7554/eLife.01610.001 PMID:24473075

  5. Effect of azathioprine on Na(+)/H(+) exchanger activity in dendritic cells.

    PubMed

    Bhandaru, Madhuri; Pasham, Venkanna; Yang, Wenting; Bobbala, Diwakar; Rotte, Anand; Lang, Florian

    2012-01-01

    Azathioprine is a powerful immunosuppressive drug, which is partially effective by interfering with the maturation and function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs are stimulated by bacterial lipopolysaccharides (LPS), which trigger the formation of reactive oxygen species (ROS), paralleled by activation of the Na(+)/H(+) exchanger. The carrier is involved in the regulation of cytosolic pH, cell volume and migration. The present study explored whether azathioprine influences Na(+)/H(+) exchanger activity in DCs. DCs were isolated from murine bone marrow, cytosolic pH (pH(i)) was estimated utilizing 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF-AM) fluorescence, Na(+)/H(+) exchanger activity from the Na(+)-dependent realkalinization following an ammonium pulse, cell volume from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, TNFα release utilizing ELISA, and migration utilizing transwell migration assays. Exposure of DCs to lipopolysaccharide (LPS, 1 μg/ml) led to a transient increase of Na(+)/H(+) exchanger activity, an effect paralleled by ROS formation, increased cell volume, TNFα production and stimulated migration. Azathioprine (10 μM) did not significantly alter the Na(+)/H(+) exchanger activity, cell volume and ROS formation prior to LPS exposure but significantly blunted the LPS-induced stimulation of Na(+)/H(+) exchanger activity, ROS formation, cell swelling, TNFα production and cell migration. In conclusion, azathioprine interferes with the activation of dendritic cell Na(+)/H(+) exchanger by bacterial lipopolysaccharides, an effect likely participating in the anti-inflammatory action of the drug. Copyright © 2012 S. Karger AG, Basel.

  6. Relating saturation capacity to charge density in strong cation exchangers.

    PubMed

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Exchange bias effect in Au-Fe 3O 4 dumbbell nanoparticles induced by the charge transfer from gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feygenson, Mikhail; Bauer, John C; Gai, Zheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe 3O 4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe 3O 4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe 3O 4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe 3O 4 is giving rise to the exchange bias effect. The strength of the exchange bias fieldsmore » depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe 3O 4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.« less

  8. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch betweenmore » both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite« less

  9. Charge transfer in ultracold gases via Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-06-01

    We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.

  10. Soft x-ray emission from solar wind charge exchange in the laboratory

    NASA Astrophysics Data System (ADS)

    Shimaya, H.; Ishida, T.; Ishikawa, S.; Suda, S.; Tanuma, H.; Akamatsu, H.; Ohashi, H.; Ijima, N.; Inoue, M.; Ezoe, Y.; Ishisaki, Y.; Ohashi, T.; Shinozaki, K.; Mitsuda, K.; Liu, L.; Wang, J.

    2013-09-01

    We have observed the emission spectra in collisions of bare oxygen ions with a helium gas target in the soft x-ray region with a window-less silicon drift detector at the collision energy range of 48-80 keV. The dominant soft x-ray emission corresponds to the 1s-2p transition of hydrogen-like oxygen O7+ produced by the single-electron charge exchange reaction. Other emission lines are the 1s-3p, 1s-4p and 1s-5p transitions of O7+, and also the 1s2-1s2p transition of O6+ produced by the true double-electron capture. The cascades from the upper states result in a large population of the 2p state, even though the direct capture into the 2p state is extremely scarcer than those into the 3p, 4p and 5p states.

  11. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  12. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lefrois, R. T.; Mathur, A. K.

    1980-04-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  13. Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals

    NASA Astrophysics Data System (ADS)

    Sibeck, David G.; Allen, R.; Aryan, H.; Bodewits, D.; Brandt, P.; Branduardi-Raymont, G.; Brown, G.; Carter, J. A.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Ezoe, Y.; Fok, M.-C.; Galeazzi, M.; Gutynska, O.; Holmström, M.; Hsieh, S.-Y.; Ishikawa, K.; Koutroumpa, D.; Kuntz, K. D.; Leutenegger, M.; Miyoshi, Y.; Porter, F. S.; Purucker, M. E.; Read, A. M.; Raeder, J.; Robertson, I. P.; Samsonov, A. A.; Sembay, S.; Snowden, S. L.; Thomas, N. E.; von Steiger, R.; Walsh, B. M.; Wing, S.

    2018-06-01

    Both heliophysics and planetary physics seek to understand the complex nature of the solar wind's interaction with solar system obstacles like Earth's magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1-2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles. The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ

  14. Active charge trapping control in dielectrics under ionizing radiation

    NASA Astrophysics Data System (ADS)

    Dominguez-Pumar, M.; Bheesayagari, C.; Gorreta, S.; Pons-Nin, J.

    2017-12-01

    Charge trapping is is a design and reliability factor in plasma sensors. Examples can be found in microchannel plate detectors in plasma analyzers, where multiple layers have been devised to ensure filled trapped electrons for enhanced secondary emission [1]. Charge trap mapping is used to recover distortion in telescope CCDs [2]. Specific technologies are designed to mitigate the effect of ionizing radiation in monolithic Active Pixel Sensors [3]. We report in this paper a control loop designed to control charge in Metal-Oxide-Semiconductor capacitors. We find that the net trapped charge in the device can be set within some limits to arbitrary values that can be changed with time. The control loop periodically senses the net trapped charge by detecting shifts in the capacitance vs voltage characteristic, and generates adequate waveform sequences to keep the trapped charge at the desired level [4]. The waveforms continuously applied have been chosen to provide different levels of charge injection into the dielectric. The control generates the adequate average charge injection to reach and maintain the desired level of trapped charge, compensating external disturbances. We also report that this control can compensate charge generated by ionizing radiation. Experiments will be shown in which this compensation is obtained with X-rays and gamma radiation. The presented results open the possibility of applying active compensation techniques for the first time in a wide number of devices such as radiation sensors, MOS transistors and other devices. The continuous drive towards integration may allow the implementation of this type of controls in devices needing to reject external disturbances, or needing to optimize their response to radiation or ion fluxes. References: [1] patent US 2009/0212680 A1. [2] A&A 534, A20 (2011). [3] Hemperek, Nucl. Instr. and Meth. in Phys. Res. Sect. A.796, pp 8-12, 2015. [4] Dominguez, IEEE Trans. Ind. Electr, 64 (4), 3023-3029, 2017.

  15. 17 CFR 8.11 - Notice of charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Notice of charges. 8.11 Section 8.11 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION EXCHANGE PROCEDURES FOR DISCIPLINARY, SUMMARY, AND MEMBERSHIP DENIAL ACTIONS Disciplinary Procedure § 8.11 Notice of...

  16. 17 CFR 8.13 - Answer to charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Answer to charges. 8.13 Section 8.13 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION EXCHANGE PROCEDURES FOR DISCIPLINARY, SUMMARY, AND MEMBERSHIP DENIAL ACTIONS Disciplinary Procedure § 8.13 Answer to...

  17. Charging/discharging stability of a metal hydride battery electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, M.; Han, J.; Feng, F.

    1999-07-01

    The metal hydride (MH) alloy powder for the negative electrode of the Ni/MH battery was first pulverized and oxidized by electrochemically charging and discharging for a number of cycles. The plate of the negative electrode of an experimental cell in this study was made from a mixture of a multicomponent AB{sub 5}-based alloy powder, nickel powder, and polytetra fluoroethylene (PTFE). The characteristics of the negative electrode, including discharge capacity, exchange current density, and hydrogen diffusivity, were studied by means of the electrochemical experiments and analysis in an experimental cell. The exchange current density of a Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{submore » 0.35}Al{sub 0.35} alloy electrode increases with increasing number of charge/discharge cycles and then remains almost constant after 20 cycles. A microcracking activation, resulting from an increase in reaction surface area and an improvement in the electrode surface activation, increases the hydrogen exchange current densities. Measurement of hydrogen diffusivities for Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} alloy powder shows that the ratio of D/a{sup 2} (D = hydrogen diffusivity; a = sphere radius) increases with increasing number of cycles but remains constant after 20 cycles.« less

  18. Ion exchange phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourg, I.C.; Sposito, G.

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less

  19. Semi-empirical scaling for ion-atom single charge exchange cross sections in the intermediate velocity regime

    NASA Astrophysics Data System (ADS)

    Friedman, B.; DuCharme, G.

    2017-06-01

    We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.

  20. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors

    PubMed Central

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    2016-01-01

    ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765

  1. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors.

    PubMed

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials. 1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.

  2. Charge Profile Analysis Reveals That Activation of Pro-apoptotic Regulators Bax and Bak Relies on Charge Transfer Mediated Allosteric Regulation

    PubMed Central

    Ionescu, Crina-Maria; Svobodová Vařeková, Radka; Prehn, Jochen H. M.; Huber, Heinrich J.; Koča, Jaroslav

    2012-01-01

    The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure. PMID:22719244

  3. Charged particle measurements on a 30-CM diameter mercury ion engine thrust beam

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Komatsu, G. K.; Hoffmaster, D. K.; Kemp, R. F.

    1974-01-01

    Measurements of both thrust ions and charge exchange ions were made in the beam of a 30 centimeter diameter electron bombardment mercury ion thruster. A qualitative model is presented which describes magnitudes of charge exchange ion formation and motions of these ions in the weak electric field structure of the neutralized thrust beam plasma. Areas of agreement and discrepancy between observed and modeled charge exchange properties are discussed.

  4. Interaction of highly charged ions with carbon nano membranes

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Wilhelm, Richard A.; Smejkal, Valerie; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Charge state and energy loss measurements of slow highly charged ions (HCIs) after transmission through nanometer and sub-nanometer thin membranes are presented. Direct transmission measurements through carbon nano membranes (CNMs) show an unexpected bimodal exit charge state distribution, accompanied by charge exchange dependent energy loss. The energy loss of ions in CNMs with large charge loss shows a quadratic dependency on the incident charge state, indicating charge state dependent stopping force values. Another access to the exit charge state distribution is given by irradiating stacks of CNMs and investigating each layer of the stack with high resolution imaging techniques like transmission electron microscopy (TEM) and helium ion microscopy (HIM) independently. The observation of pores created in all of the layers confirms the assumption derived from the transmission measurements that the two separated charge state distributions reflect two different impact parameter regimes, i.e. close collision with large charge exchange and distant collisions with weak ion-target interaction.

  5. Charge Exchange of Highly Charged Ne and Mg Ions with H and He

    NASA Astrophysics Data System (ADS)

    Lyons, D.; Cumbee, R. S.; Stancil, P. C.

    2017-10-01

    Cross sections for single electron capture (SEC), or charge exchange (CX), in collisions of Ne(8-10)+ and Mg(8-12)+ with H and He, are computed using an approximate multichannel Landau-Zener (MCLZ) formalism. Final-state-resolved cross sections for the principal (n), orbital angular momentum (ℓ), and where appropriate, total spin angular momentum (S) quantum numbers are explicitly computed, except for the incident bare ions Ne10+ and Mg12+. In the latter two cases, n{\\ell }-resolution is obtained from analytical ℓ-distribution functions applied to n-resolved MCLZ cross sections. In all cases, the cross sections are computed over the collision energy range 1 meV/u to 50 keV/u with LZ parameters estimated from atomic energies obtained from experiment, theory, or, in the case of high-lying Rydberg levels, estimated with a quantum defect approach. Errors in the energy differences in the adiabatic potentials at the avoided crossing distances give the largest contribution to the uncertainties in the cross sections, which are expected to increase with decreasing cross section magnitude. The energy differences are deduced here with the Olson-Salop-Tauljberg radial coupling model. Proper selection of an ℓ-distribution function for bare ion collisions introduces another level of uncertainty into the results. Comparison is made to existing experimental or theoretical results when available, but such data are absent for most considered collision systems. The n{\\ell }S-resolved SEC cross sections are used in an optically thin cascade simulation to predict X-ray spectra and line ratios that will aid in modeling the X-ray emission in environments where CX is an important mechanism. Details on a MCLZ computational package, Stueckelberg, are also provided.

  6. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  7. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    PubMed

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  8. 47 CFR 69.158 - Universal service end user charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) ACCESS CHARGES Computation of Charges for Price Cap Local Exchange Carriers § 69.158 Universal... price cap baskets, and the charge to recover these contributions is not part of any other element...

  9. Spin properties of charged Mn-doped quantum dota)

    NASA Astrophysics Data System (ADS)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  10. Observation of Solar Wind Charge Exchange Emission from Exospheric Material in and Outside Earth's Magnetosheath

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.

    2008-01-01

    A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth s magnetosheath. The light curve of the O VII (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.36). The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.

  11. Doubly charged coronene clusters—Much smaller than previously observed

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Raggl, Stefan; Renzler, Michael; Goulart, Marcelo; Huber, Stefan E.; Mauracher, Andreas; Scheier, Paul; Echt, Olof

    2018-05-01

    The smallest doubly charged coronene cluster ions reported so far, Cor152+, were produced by charge exchange between bare coronene clusters and He2+ [H. A. B. Johansson et al., Phys. Rev. A 84, 043201 (2011)]. These dications are at least five times larger than the estimated Rayleigh limit, i.e., the size at which the activation barrier for charge separation vanishes. Such a large discrepancy is unheard of for doubly charged atomic or molecular clusters. Here we report the mass spectrometric observation of doubly charged coronene trimers, produced by electron ionization of helium nanodroplets doped with coronene. The observation implies that Cor32+ features a non-zero fission barrier too large to overcome under the present experimental conditions. The height of the barriers for the dimer and trimer has been estimated by means of density functional theory calculations. A sizeable barrier for the trimer has been revealed in agreement with the experimental findings.

  12. Active Space Debris Charging for Contactless Electrostatic Disposal Maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, H.; Sternovsky, Z.

    2013-08-01

    We assess the feasibility of removing large space debris from geosynchronous orbit (GEO) by means of a tug spacecraft that uses electrostatic forces to pull the debris without touching. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. Further, the debris does not have to be detumbled first to engage the re-orbit maneuver. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam and an auxiliary ion bleeder. Our simple charging model takes into account the primary electron beam current, UV induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that by active charging high potentials can be both achieved and maintained. The resulting mN level electrostatic force is sufficient for the safe re-orbiting of debris objects over an acceptable period of a few months. The capability of debris removal is becoming a pressing need as the increasing population of dysfunctional satellites poses a threat to the future of satellite operations at GEO.

  13. Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in TiSe2

    NASA Astrophysics Data System (ADS)

    Hellgren, Maria; Baima, Jacopo; Bianco, Raffaello; Calandra, Matteo; Mauri, Francesco; Wirtz, Ludger

    2017-10-01

    We show that the inclusion of screened exchange via hybrid functionals provides a unified description of the electronic and vibrational properties of TiSe2 . In contrast to local approximations in density functional theory, the explicit inclusion of exact, nonlocal exchange captures the effects of the electron-electron interaction needed to both separate the Ti -d states from the Se -p states and stabilize the charge-density-wave (CDW) (or low-T ) phase through the formation of a p -d hybridized state. We further show that this leads to an enhanced electron-phonon coupling that can drive the transition even if a small gap opens in the high-T phase. Finally, we demonstrate that the hybrid functionals can generate a CDW phase where the electronic bands, the geometry, and the phonon frequencies are in agreement with experiments.

  14. Instability of the heliopause driven by charge exchange interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avinash, K.; Zank, G. P.; Dasgupta, B.

    2014-08-20

    The stability of the heliopause that separates the tenuous hot magnetized heliosheath plasma from the dense cool local interstellar magnetized plasma is examined using a fully general model that includes all the essential physical processes. Charge exchange coupling between plasma protons and primary interstellar neutral atoms provides an effective gravity that drives Rayleigh-Taylor (RT)-like instabilities. The velocity difference or shear between the heliosheath and interstellar flows, when coupled to energetic neutral atoms (ENAs), drives a Kelvin-Helmholtz (KH)-like instability on the heliopause. The shoulder region of the heliopause is unstable to a new instability that has characteristics of a mixed RT-KH-likemore » mode. The instabilities are not stabilized by typical values of the magnetic fields in the inner and outer heliosheath (OHS). ENAs play an essential role in driving the KH-like instability, which is fully stabilized in their absence by magnetic fields. The nonlinear phase of these instabilities is briefly discussed. We also discuss the possibility that RT-like or mixed KH-RT-like instabilities drag outer heliosheath/very local interstellar medium (OHS/VLISM) magnetic field lines into the inner heliosheath (IHS) with the VLISM flow, and the possibility that IHS and VLISM magnetic field lines experience reconnection. Such reconnection may (1) greatly enhance the mixing of plasmas across the heliopause and (2) provide open magnetic field lines that allow easy ingress of galactic cosmic rays into the heliosphere and corresponding easy loss of anomalous cosmic rays from the heliosphere.« less

  15. On the exchange-hole model of London dispersion forces

    NASA Astrophysics Data System (ADS)

    Ángyán, János G.

    2007-07-01

    First-principles derivation is given for the heuristic exchange-hole model of London dispersion forces by Becke and Johnson [J. Chem. Phys. 122, 154104 (2005)]. A one-term approximation is used for the dynamic charge density response function, and it is shown that a central nonempirical ingredient of the approximate nonexpanded dispersion energy is the charge density autocorrelation function, a two-particle property, related to the exchange-correlation hole. In the framework of a dipolar approximation of the Coulomb interaction around the molecular origin, one obtains the so-called Salem-Tang-Karplus approximation to the C6 dispersion coefficient. Alternatively, by expanding the Coulomb interaction around the center of charge (centroid) of the exchange-correlation hole associated with each point in the molecular volume, a multicenter expansion is obtained around the centroids of electron localization domains, always in terms of the exchange-correlation hole. In order to get a formula analogous to that of Becke and Johnson, which involves the exchange-hole only, further assumptions are needed, related to the difficulties of obtaining the expectation value of a two-electron operator from a single determinant. Thus a connection could be established between the conventional fluctuating charge density model of London dispersion forces and the notion of the "exchange-hole dipole moment" shedding some light on the true nature of the approximations implicit in the Becke-Johnson model.

  16. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  17. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  18. Semi-empirical scaling for ion–atom single charge exchange cross sections in the intermediate velocity regime

    DOE PAGES

    Friedman, B.; DuCharme, G.

    2017-05-11

    We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less

  19. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    NASA Astrophysics Data System (ADS)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  20. 75 FR 39319 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... US (``NYSE Alternext,'' formerly the American Stock Exchange); and (C) the NASDAQ Stock Market... fees charged by other market centers. (iii) Routing Charges The Exchange proposes to charge the routing... administrative costs. Destination-specific fees are also based, in part, on fees charged by other market centers...

  1. Direct charge radioisotope activation and power generation

    DOEpatents

    Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  2. 47 CFR 69.155 - Per-minute residual interconnection charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Per-minute residual interconnection charge. 69.155 Section 69.155 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges for Price Cap Local Exchange Carriers § 69.155...

  3. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  4. Cation Exchange in the Presence of Oil in Porous Media

    PubMed Central

    2017-01-01

    Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media. PMID:28580442

  5. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  6. Monte Carlo simulation of ion-neutral charge exchange collisions and grid erosion in an ion thruster

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1991-01-01

    A combined particle-in-cell (PIC)/Monte Carlo simulation model has been developed in which the PIC method is used to simulate the charge exchange collisions. It is noted that a number of features were reproduced correctly by this code, but that its assumption of two-dimensional axisymmetry for a single set of grid apertures precluded the reproduction of the most characteristic feature of actual test data; namely, the concentrated grid erosion at the geometric center of the hexagonal aperture array. The first results of a three-dimensional code, which takes into account the hexagonal symmetry of the grid, are presented. It is shown that, with this code, the experimentally observed erosion patterns are reproduced correctly, demonstrating explicitly the concentration of sputtering between apertures.

  7. Contact Activation of Blood Plasma and Factor XII by Ion-exchange Resins

    PubMed Central

    Yeh, Chyi-Huey Josh; Dimachkie, Ziad O.; Golas, Avantika; Cheng, Alice; Parhi, Purnendu; Vogler, Erwin A.

    2011-01-01

    Sepharose ion-exchange particles bearing strong Lewis acid/base functional groups (sulfopropyl, carboxymethyl, quarternary ammonium, dimethyl aminoethyl, and iminodiacetic acid) exhibiting high plasma protein adsorbent capacities are shown to be more efficient activators of blood factor XII in neat-buffer solution than either hydrophilic clean-glass particles or hydrophobic octyl sepharose particles ( FXII→surfaceactivatorFXIIa; a.k.a autoactivation, where FXII is the zymogen and FXIIa is a procoagulant protease). In sharp contrast to the clean-glass standard of comparison, ion-exchange activators are shown to be inefficient activators of blood plasma coagulation. These contrasting activation properties are proposed to be due to the moderating effect of plasma-protein adsorption on plasma coagulation. Efficient adsorption of blood plasma proteins unrelated to the coagulation cascade impedes FXII contacts with ion-exchange particles immersed in plasma, reducing autoactivation, and causing sluggish plasma coagulation. By contrast, plasma proteins do not adsorb to hydrophilic clean glass and efficient autoactivation leads directly to efficient activation of plasma coagulation. It is also shown that competitive-protein adsorption can displace FXIIa adsorbed to the surface of ion-exchange resins. As a consequence of highly-efficient autoactivation and FXIIa displacement by plasma proteins, ion-exchange particles are slightly more efficient activators of plasma coagulation than hydrophobic octyl sepharose particles that do not bear strong Lewis acid/base surface functionalities but to which plasma proteins adsorb efficiently. Plasma proteins thus play a dual role in moderating contact activation of the plasma coagulation cascade. The principal role is impeding FXII contact with activating surfaces but this same effect can displace FXIIa from an activating surface into solution where the protease can potentiate subsequent steps of the plasma coagulation cascade. PMID

  8. Characterization of an Atomic Hydrogen Source for Charge Exchange Experiments

    NASA Technical Reports Server (NTRS)

    Leutenegger, M. A.; Beierdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-01-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source byinjecting the mixed atomic and molecular output of the source into an electron beam ion trapcontaining highly charged ions and recording the x-ray spectrum generated by charge exchangeusing a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchangestate-selective capture cross sections are very different for atomic and molecular hydrogen incidenton the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  9. Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaniol, B.; Isler, R. C.; Brooks, N. H.

    2001-10-01

    Certain transitions of C IV (C{sup 3+}) from n=7 to n=6 ({approx}7226 {angstrom}) and from n=6 to n=5 ({approx}4660 {angstrom}) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C{sup 4+}) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II--C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling ofmore » the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].« less

  10. Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas

    NASA Astrophysics Data System (ADS)

    Zaniol, B.; Isler, R. C.; Brooks, N. H.; West, W. P.; Olson, R. E.

    2001-10-01

    Certain transitions of C IV (C3+) from n=7 to n=6 (≈7226 Å) and from n=6 to n=5 (≈4660 Å) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C4+) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II-C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling of the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].

  11. 47 CFR 69.153 - Presubscribed interexchange carrier charge (PICC).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges for Price Cap Local Exchange Carriers... to recover revenues totaling Average Price Cap CMT Revenues per Line month times the number of base...

  12. Measurements of confined alphas and tritons in the MHD quiescent core of TFTR plasmas using the pellet charge exchange diagnostic

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Budny, R. V.; Mansfield, D. K.; Redi, M. H.; Roquemore, A. L.; Fisher, R. K.; Duong, H. H.; McChesney, J. M.; Parks, P. B.; Petrov, M. P.; Gorelenkov, N. N.

    1996-10-01

    The energy distributions and radial density profiles of the fast confined trapped alpha particles in DT experiments on TFTR are being measured in the energy range 0.5 - 3.5 MeV using the pellet charge exchange (PCX) diagnostic. A brief description of the measurement technique which involves active neutral particle analysis using the ablation cloud surrounding an injected impurity pellet as the neutralizer is presented. This paper focuses on alpha and triton measurements in the core of MHD quiescent TFTR discharges where the expected classical slowing-down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. In particular, the first measurement of the alpha slowing-down distribution up to the birth energy, obtained using boron pellet injection, is presented. The measurements are compared with predictions using either the TRANSP Monte Carlo code and/or a Fokker - Planck Post-TRANSP processor code, which assumes that the alphas and tritons are well confined and slow down classically. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with the code calculations. We can conclude that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons.

  13. 47 CFR 69.152 - End user common line for price cap local exchange carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false End user common line for price cap local...) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges for Price Cap Local Exchange Carriers § 69.152 End user common line for price cap local exchange carriers. (a) A charge that is...

  14. Highly charged ion beams and their applications

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2018-01-01

    While much previous work with highly charged ions has been performed with the ions in the plasma state in which they were formed, beams of highly charged ions hold promise for exciting new experiments. Specifically low energy beams with a high degree of charge state purity are a prerequisite for momentum resolved cross section measurements and for efficient loading of highly charged ions into UHV traps for spectroscopy. The Clemson University facility is optimized for the delivery of such beams of highly charged ions with low kinetic energies. Near term experiments include energy resolved charge exchange with neutral targets.

  15. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    DOE PAGES

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-09-23

    The Ultra Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ~0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528-530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermoelectrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronicmore » noise. Due to the low incident photon power (≤ 1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs’ gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs’ gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. Here, a gain of ~100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the Edge Harmonic Oscillation (EHO) in Quiescent H-mode (QH) plasmas are presented to demonstrate UF-CHERS’ capabilities.« less

  16. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    PubMed

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  17. Experimental evidence for importance of Hund's exchange interaction for incoherence of charge carriers in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Fink, J.; Rienks, E. D. L.; Thirupathaiah, S.; Nayak, J.; van Roekeghem, A.; Biermann, S.; Wolf, T.; Adelmann, P.; Jeevan, H. S.; Gegenwart, P.; Wurmehl, S.; Felser, C.; Büchner, B.

    2017-04-01

    Angle-resolved photoemission spectroscopy is used to study the scattering rates of charge carriers from the hole pockets near Γ in the iron-based high-Tc hole-doped superconductors KxBa1 -xFe2As2 , x =0.4 , and KxEu1 -xFe2As2 , x =0.55 , and the electron-doped compound Ba (Fe1-xCox) 2As2 , x =0.075 . The scattering rate for any given band is found to depend linearly on the energy, indicating a non-Fermi-liquid regime. The scattering rates in the hole-doped compound are considerably higher than those in the electron-doped compounds. In the hole-doped systems the scattering rate of the charge carriers of the inner hole pocket is about three times higher than the binding energy, indicating that the spectral weight is heavily incoherent. The strength of the scattering rates and the difference between electron- and hole-doped compounds signals the importance of Hund's exchange coupling for correlation effects in these iron-based high-Tc superconductors. The experimental results are in qualitative agreement with theoretical calculations in the framework of combined density functional dynamical mean-field theory.

  18. Determination of the “NiOOH” charge and discharge mechanisms at ideal activity

    DOE PAGES

    Merrill, Matthew; Worsley, Marcus; Wittstock, Arne; ...

    2014-01-24

    Here, optimization of electrodeposition conditions produced Ni(OH) 2 deposits chargeable up to 1.84 ± 0.02 e – per Ni on and the resulting nickel oxide/hydroxide active material could subsequently deliver 1.58 ± 0.02 e – per Ni ion (462 mA h/g) over a potential range <0.2 V. The ability of the “NiOOH” active material to deliver an approximately ideal charge and discharge facilitated a coulometric and thermodynamic analysis through which the charge/discharge mechanisms were determined from known enthalpies of formation. The (dis)charge states were confirmed with in situ Raman spectroscopy. The mechanisms were additionally evaluated with respect to pH andmore » potential dependence, charge quantities, hysteresis, and fluoride ion partial inhibition of the charge mechanism. The results indicate that the “NiOOH” (dis)charges as a solid-state system with mechanisms consistent with known nickel and oxygen redox reactions. A defect chemistry mechanism known for the LiNiO 2 system also occurs for “NiOOH” to cause both high activity and hysteresis. Similar to other cation insertion nickel oxides, the activity of the “NiOOH” mechanism is predominantly due to oxygen redox activity and does not involve the Ni4 + oxidation state. The “NiOOH” was produced from cathodic electrodeposition of Ni(OH) 2 from nickel nitrate solutions onto highly oriented pyrolytic graphite at ideal electrodeposition current efficiencies and the deposition mechanism was also characterized.« less

  19. Flow stagnation at Enceladus: The effects of neutral gas and charged dust

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Tokar, R. L.; Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.

    2012-06-01

    Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of ˜109 cm-3 result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus.

  20. 75 FR 7646 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... charged by the Exchange for its ``CYCLE'' and ``RECYCLE'' routing strategies from $0.0026 per share to $0...'' and ``RECYCLE'' Routing Based on increased fees at various market centers to remove liquidity, the Exchange proposes to modify the fee charged by the Exchange for its ``CYCLE'' and ``RECYCLE'' routing...

  1. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  2. Charge exchange in cometary coma: Discovery of H− ions in the solar wind close to comet 67P/Churyumov‐Gerasimenko

    PubMed Central

    Cravens, T. E.; Llera, K.; Goldstein, R.; Mokashi, P.; Tzou, C.‐Y.; Broiles, T.

    2015-01-01

    Abstract As Rosetta was orbiting comet 67P/Churyumov‐Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well‐known cross sections and energy‐loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H− ions in the solar wind by double charge exchange with molecules in the coma. PMID:27656008

  3. Charge exchange in cometary coma: Discovery of H- ions in the solar wind close to comet 67P/Churyumov-Gerasimenko.

    PubMed

    Burch, J L; Cravens, T E; Llera, K; Goldstein, R; Mokashi, P; Tzou, C-Y; Broiles, T

    2015-07-16

    As Rosetta was orbiting comet 67P/Churyumov-Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well-known cross sections and energy-loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H - ions in the solar wind by double charge exchange with molecules in the coma.

  4. Anion-exchange behavior of several alkylsilica reversed-phase columns.

    PubMed

    Marchand, D H; Snyder, L R

    2008-10-31

    Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.

  5. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    PubMed

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  6. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  7. Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.

    PubMed

    Hong, Seunghyun; Constans, Charlotte; Surmani Martins, Marcos Vinicius; Seow, Yong Chin; Guevara Carrió, Juan Alfredo; Garaj, Slaven

    2017-02-08

    Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.

  8. 47 CFR 69.154 - Per-minute carrier common line charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Per-minute carrier common line charge. 69.154 Section 69.154 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges for Price Cap Local Exchange Carriers § 69.154 Per-minute...

  9. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid.

    PubMed

    Kwon, Ojin; Kim, Pilkee; Yoon, Yong-Jin

    2016-12-26

    Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs). When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC) operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved.

  10. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid

    PubMed Central

    Kwon, Ojin; Kim, Pilkee; Yoon, Yong-Jin

    2016-01-01

    Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs). When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC) operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved. PMID:28035963

  11. Evidence for Sequence Scrambling and Divergent H/D Exchange Reactions of Doubly-Charged Isobaric b-Type Fragment Ions

    NASA Astrophysics Data System (ADS)

    Zekavat, Behrooz; Miladi, Mahsan; Al-Fdeilat, Abdullah H.; Somogyi, Arpad; Solouki, Touradj

    2014-02-01

    To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10 2+ that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10 2+ and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10 2+, suggesting that b10 2+ may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10 2+; over 30 % of the observed SORI-CID fragment ions from substance P b10 2+ had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10 2+, whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10 2+.

  12. Evidence for sequence scrambling and divergent H/D exchange reactions of doubly-charged isobaric b-type fragment ions.

    PubMed

    Zekavat, Behrooz; Miladi, Mahsan; Al-Fdeilat, Abdullah H; Somogyi, Arpad; Solouki, Touradj

    2014-02-01

    To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10(2+) that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10(2+) and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10(2+), suggesting that b10(2+) may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10(2+); over 30% of the observed SORI-CID fragment ions from substance P b10(2+) had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10(2+), whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10(2+).

  13. Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange

    NASA Astrophysics Data System (ADS)

    Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.

    1989-02-01

    Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.

  14. Effects of carboxypeptidase B treatment and elevated temperature on recombinant monoclonal antibody charge variants in cation-exchange chromatography analysis.

    PubMed

    Kim, Do Gyun; Kim, Hyoung Jin; Kim, Hong-Jin

    2016-10-01

    Charge variants (acidic and basic) of recombinant monoclonal antibodies (Mabs) have received much attention due to their potential biological effects. C-terminal lysine variants are common in Mabs and their proportion is affected by the manufacturing process. In the present study, changes of trastuzumab charge variants brought about by carboxypeptidase B treatment and subsequent storage at 8 or 37 °C for up to 24 h were monitored by cation-exchange chromatography analysis to investigate the effects of C-terminal lysine cleavage and its subsequent reaction at 8 or 37 °C. C-terminal lysine cleavage at 8 °C reduced the fraction of basic species and had little effect on the fraction of acidic species. Analysis of individual peaks demonstrated that C-terminal lysine cleavage induced both increases and decreases in individual acidic variants, with the result that there was little overall change in the overall proportion of acidic species. It appeared that most of the basic variant Mab molecules but only a fraction of the acidic variant molecules had C-terminal lysines. Increasing the temperature to 37 °C appeared to increase the fraction of acidic species and decrease main species significantly, without a similar change in basic species. These results indicate that length of exposure to elevated temperature is a critical consideration in charge variant analysis.

  15. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  16. Fluctuation scaling of quotation activities in the foreign exchange market

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro; Nishimura, Maiko; Hołyst, Janusz A.

    2010-07-01

    We study the scaling behavior of quotation activities for various currency pairs in the foreign exchange market. The components’ centrality is estimated from multiple time series and visualized as a currency pair network. The power-law relationship between a mean of quotation activity and its standard deviation for each currency pair is found. The scaling exponent α and the ratio between common and specific fluctuations η increase with the length of the observation time window Δt. The result means that although for Δt=1 (min), the market dynamics are governed by specific processes, and at a longer time scale Δt>100 (min) the common information flow becomes more important. We point out that quotation activities are not independently Poissonian for Δt=1 (min), and temporally or mutually correlated activities of quotations can happen even at this time scale. A stochastic model for the foreign exchange market based on a bipartite graph representation is proposed.

  17. Quasielastic charge-exchange reaction p/sup 3/ He. -->. n/sub F/ ppp at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blinov, A.V.; Vanyushin, I.A.; Grechko, V.E.

    1988-04-01

    The principal characteristics of the quasielastic-charge-exchange reaction p/sup 3/He..-->..n/sub F/ppp are investigated by means of the liquid-hydrogen bubble chamber at our institute of diameter 80 cm, exposed in beams of /sup 3/He nuclei with momenta 2.5 and 5 GeV/c (the kinetic energy of the primary protons T/sub p/ in the rest system of the nucleus is respectively 0.318 and 0.978 GeV). The experimental data are compared with the predictions of the Glauber-Sitenko multiple-scattering theory and with the pole model taking into account the interaction of spectator nucleons in the final state. In the mass spectrum of the 3p system atmore » 3.05 GeV a well expressed structure is observed which is not described in the framework of the pole model. A possible resonance occurrence of this structure is discussed.« less

  18. DXL: A Sounding Rocket Mission for the Study of Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Prasai, K.; Uprety, Y.; Chiao, M.; Collier, M. R.; Koutroumpa, D.; Porter, F. S.; Snowden, S.; Cravens, T.; Robertson, I.; hide

    2011-01-01

    The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 square centimeters proportional counters and grasp of about 10 square centimeters sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-minute flight what cannot be achieved by current and future X-ray satellites.

  19. A comparison of empirical and experimental O7+, O8+, and O/H values, with applications to terrestrial solar wind charge exchange

    NASA Astrophysics Data System (ADS)

    Whittaker, Ian C.; Sembay, Steve

    2016-07-01

    Solar wind charge exchange occurs at Earth between the neutral planetary exosphere and highly charged ions of the solar wind. The main challenge in predicting the resultant photon flux in the X-ray energy bands is due to the interaction efficiency, known as the α value. This study produces experimental α values at the Earth, for oxygen emission in the range of 0.5-0.7 keV. Thirteen years of data from the Advanced Composition Explorer are examined, comparing O7+ and O8+ abundances, as well as O/H to other solar wind parameters allowing all parameters in the αO7,8+ calculation to be estimated based on solar wind velocity. Finally, a table is produced for a range of solar wind speeds giving average O7+ and O8+ abundances, O/H, and αO7,8+ values.

  20. Ion-Exchange Chromatography: Basic Principles and Application.

    PubMed

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  1. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization andmore » conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.« less

  2. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    NASA Astrophysics Data System (ADS)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  3. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  4. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes.

    PubMed

    Longuinhos, R; Lúcio, A D; Chacham, H; Alexandre, S S

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag_{4}. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag_{4} or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag_{4} to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag_{4} hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  5. On charge exchange and knock-on processes in the exosphere of Io

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1982-01-01

    One direct consequence of magnetospheric interaction of Io is the strong dynamical coupling of its neutral atmosphere with the corotating plasma. The absorption of the thermal ions and the associated neutral injection is an improtant issue not yet explored. As far as nonthermal escape of the neutral atmosphere is concerned, three processes stand out. That is, apart from sputtering, exospheric interactions like atom-ion knock-on collision and charge exchange recombination could be a significant source of the neutral clouds in the Jovian system. Using a current electrodynamic model of Io, both the absorption rate of the corotating thermal plasma and the production rates of new exospheric ions and the fast neutrals are considered. It is found that the source strength of the neutral atoms and molecules with speeds of about 100 km/sec could amount to 10 to the 26th/sec whereas exospheric neutrals emitted at lower speed (of about 10 km/sec) amounts to 4 x 10 to the 25th/sec. The generation of the new ions in connection with the streaming of the magnetospheric plasma around Io could also produce an asymmetric sputtering with a neutral flux of about 10 to the 27th/sec emitted from the region of Io which faces Jupiter. These results may be related to a number of sodium observations.

  6. Functionally charged nanosize particles differentially activate BV2 microglia.

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Nanosize (860-950 nm) spherical polystyrene microparticles (SPM) were coated with carboxyl (COOH-) or dimethyl amino (CH3)2-N- groups to give a net negative or p...

  7. Charge-exchange x-ray spectra: Evidence for significant contributions from radiative decays of doubly excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, R.; Beiersdorfer, P.; Harris, C. L.

    2016-01-21

    Charge-exchange collisions of slow Ne 10+ ions with He, Ne, and Ar targets were studied with simultaneous x-ray and cold-target recoil-ion-momentum spectroscopy proving the contribution of several mechanisms to the radiative stabilization of apparent (4,4) doubly excited states for He and Ne targets and of (5,6) states for Ar. In particular, the stabilization efficiency of the mechanism of dynamic auto-transfer to Rydberg states is confirmed. Moreover, we present evidence for direct radiative decays of (4,4) states populated in collisions with He, which is an experimental indication of the population of so-called unnatural-parity states in such collisions. Lastly, these mechanisms leadmore » to the emission of x-rays that have considerably higher energies than those predicted by current spectral models and may explain recent observations of anomalously large x-ray emission from Rydberg levels.« less

  8. Studying Electron-Capture on ^64Zn in Supernovae with the (t,^3He) Charge-Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Hitt, G. W.; Austin, Sam M.; Bazin, D.; Gade, A.; Guess, C. J.; Galaviz-Redondo, D.; Shimbara, Y.; Tur, C.; Zegers, R. G. T.; Horoi, M.; Howard, M. E.; Smith, E. E.

    2008-10-01

    A secondary, 115 MeV/u triton beam has been developed at NSCL for use in (t,^3He) charge-exchange(CE) reaction studies. This (n,p)-type CE reaction is useful for extracting the full Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in conventional beta-decay studies. The strength (B(GT)) in ^64Cu has been determined from the absolute cross section measurement of ^64Zn(t,^3He) near zero-degrees, exploiting an empirical proportionality between cross section and B(GT). The detailed features of the B(GT) distribution in a nucleus has an important impact on electron-capture (EC) rates in Type Ia and Core-Collapse supernovae. The measured B(GT) in ^64Cu is directly compared with the results of modern shell model interactions which are used to calculate the GT contribution to EC on nuclei in supernova simulations.

  9. Pre-Steady-State Kinetics of Ba-Ca Exchange Reveals a Second Electrogenic Step Involved in Ca2+ Translocation by the Na-Ca Exchanger

    PubMed Central

    Haase, Andreas; Hartung, Klaus

    2009-01-01

    Kinetic properties of the Na-Ca exchanger (guinea pig NCX1) expressed in Xenopus oocytes were investigated with excised membrane patches in the inside-out configuration and photolytic Ca2+ concentration jumps with either 5 mM extracellular Sr2+ or Ba2+. After a Ca2+ concentration jump on the cytoplasmic side, the exchanger performed Sr-Ca or Ba-Ca exchange. In the Sr-Ca mode, currents are transient and decay in a monoexponential manner similar to that of currents in the Ca-Ca exchange mode described before. Currents recorded in the Ba-Ca mode are also transient, but the decay is biphasic. In the Sr-Ca mode the amount of charge translocated increases at negative potentials in agreement with experiments performed in the Ca-Ca mode. In the Ba-Ca mode the total amount of charge translocated after a Ca2+ concentration jump is ∼4 to 5 times that in Ca-Ca or Sr-Ca mode. In the Ba-Ca mode the voltage dependence of charge translocation depends on the Ca2+ concentration on the cytosolic side before the Ca2+ concentration jump. At low initial Ca2+ levels (∼0.5 μM), charge translocation is voltage independent. At a higher initial concentration (1 μM Ca2+), the amount of charge translocated increases at positive potentials. Biphasic relaxation of the current was also observed in the Ca-Ca mode if the external Ca2+ concentration was reduced to ≤0.5 mM. The results reported here and in previous publications can be described by using a 6-state model with two voltage-dependent conformational transitions. PMID:19486679

  10. Chandra Observations of Comet 2P/Encke 2003: First Detection of a Collisionally Thin, Fast Solar Wind Charge Exchange System

    NASA Technical Reports Server (NTRS)

    Lisse, C. M.; Christian, D. J.; Deneri, K.; Wolk, S. J.; Bodewits, D.; Hoekstra, R.; Combi, M. R.; Makinen, T.; Dryer, M.; Fry, C. D.; hide

    2005-01-01

    We report the results of 15 hr of Chandra observations of comet 2P/Encke 2003 on November 24. X-ray emission from comet Encke was resolved on scales of 500-40,000 km, with unusual morphology due to the presence of a low-density, collisionally thin (to charge exchange) coma. A light curve with peak-to-peak amplitude of 20% consistent with a nucleus rotational period of 11.1 hr was found, further evidence for a collisionally thin coma. We confirm emission lines due to oxygen and neon in the 800-1000 eV range but find very unusual oxygen and carbon line ratios in the 200-700 eV range, evidence for low-density, high effective temperature solar wind composition. We compare the X-ray spectral observation results to contemporaneous measurements of the coma and solar wind made by other means and find good evidence for the dominance of a postshock bubble of expanding solar wind plasma, moving at 600 km/s with charge state composition between that of the "fast" and "slow" solar winds.

  11. Long-Term Percutaneous Nephrostomy Management of Malignant Urinary Obstruction: Estimation of Optimal Exchange Frequency and Estimation of the Financial Impact of Patient Compliance.

    PubMed

    McDevitt, Joseph L; Acosta-Torres, Stefany; Zhang, Ning; Hu, Tianshen; Odu, Ayobami; Wang, Jijia; Xi, Yin; Lamus, Daniel; Miller, David S; Pillai, Anil K

    2017-07-01

    To estimate the least costly routine exchange frequency for percutaneous nephrostomies (PCNs) placed for malignant urinary obstruction, as measured by annual hospital charges, and to estimate the financial impact of patient compliance. Patients with PCNs placed for malignant urinary obstruction were studied from 2011 to 2013. Exchanges were classified as routine or due to 1 of 3 complication types: mechanical (tube dislodgment), obstruction, or infection. Representative cases were identified, and median representative charges were used as inputs for the model. Accelerated failure time and Markov chain Monte Carlo models were used to estimate distribution of exchange types and annual hospital charges under different routine exchange frequency and compliance scenarios. Long-term PCN management was required in 57 patients, with 87 total exchange encounters. Median representative hospital charges for pyelonephritis and obstruction were 11.8 and 9.3 times greater, respectively, than a routine exchange. The projected proportion of routine exchanges increased and the projected proportion of infection-related exchanges decreased when moving from a 90-day exchange with 50% compliance to a 60-day exchange with 75% compliance, and this was associated with a projected reduction in annual charges. Projected cost reductions resulting from increased compliance were generally greater than reductions resulting from changes in exchange frequency. This simulation model suggests that the optimal routine exchange interval for PCN exchange in patients with malignant urinary obstruction is approximately 60 days and that the degree of reduction in charges likely depends more on patient compliance than exact exchange interval. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  12. Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C

    PubMed Central

    Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su

    2015-01-01

    Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically. PMID:26658739

  13. Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.

    PubMed

    Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su

    2015-01-01

    Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.

  14. Direct Effects on the Membrane Potential due to "Pumps" that Transfer No Net Charge

    PubMed Central

    Schwartz, Tobias L.

    1971-01-01

    The effects of active ionic transport are included in the derivation of a general expression for the zero current membrane potential. It is demonstrated that an active transport system that transfers no net charge (nonrheogenic) may, nevertheless, directly alter the membrane potential. This effect depends upon the exchange of matter within the membrane between the active and passive diffusion regimes. Furthermore, in the presence of such exchange, the transmembrane active fluxes measured by the usual techniques and the local pumped fluxes are not identical. Several common uses of the term “electrogenic pump” are thus shown to be inconsistent with each other. These inconsistencies persist when the derivation is extended to produce a Goldman equation modified to account for active transport; however, that equation is shown to be limited by less narrow constraints on membrane heterogeneity and internal electric field than those previously required. In particular, it is applicable to idealized mosaic membranes limited by these requirements. PMID:5113004

  15. Bayesian Inference of Physics Parameters in the DIII-D Charge-Exchange Recombination Spectroscopy System

    NASA Astrophysics Data System (ADS)

    Bowman, C.; Gibson, K. J.; La Haye, R. J.; Groebner, R. J.; Taylor, N. Z.; Grierson, B. A.

    2014-10-01

    A Bayesian inference framework has been developed for the DIII-D charge-exchange recombination (CER) system, capable of computing probability distribution functions (PDFs) for desired parameters. CER is a key diagnostic system at DIII-D, measuring important physics parameters such as plasma rotation and impurity ion temperature. This work is motivated by a case in which the CER system was used to probe the plasma rotation radial profile around an m/n = 2/1 tearing mode island rotating at ~ 1 kHz. Due to limited resolution in the tearing mode phase and short integration time, it has proven challenging to observe the structure of the rotation profile across the island. We seek to solve this problem by using the Bayesian framework to improve the estimation accuracy of the plasma rotation, helping to reveal details of how it is perturbed in the magnetic island vicinity. Examples of the PDFs obtained through the Bayesian framework will be presented, and compared with results from a conventional least-squares analysis of the CER data. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.

  16. Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge densities

    USGS Publications Warehouse

    Lee, Jiunn-Fwu; Mortland, Max M.; Chiou, Cary T.; Kite, Daniel E.; Boyd, Stephen A.

    1990-01-01

    A high-charge smectite from Arizona [cation-exchange capacity (CEC) = 120 meq/100 g] and a low-charge smectite from Wyoming (CEC = 90 meq/100 g) were used to prepare homoionic tetramethylammonium (TMA)-clay complexes. The adsorption of benzene, toluene, and o-xylene as vapors by the dry TMA-clays and as solutes from water by the wet TMA-clays was studied. The adsorption of the organic vapors by the dry TMA-smectite samples was strong and apparently consisted of interactions with both the aluminosilicate mineral surfaces and the TMA exchange ions in the interlayers. In the adsorption of organic vapors, the closer packing of TMA ions in the dry high-charge TMA-smectite, compared with the dry low-charge TMA-smectite, resulted in a somewhat higher degree of shape-selective adsorption of benzene, toluene, and xylene. In the presence of water, the adsorption capacities of both samples for the aromatic compounds were significantly reduced, although the uptake of benzene from water by the low-charge TMA-smectite was still substantial. This lower sorption capacity was accompanied by increased shape-selectivity for the aromatic compounds. The reduction in uptake and increased selectivity was much more pronounced for the water-saturated, high-charge TMA-smectite than for the low-charge TMA-smectite. Hydration of the TMA exchange ions and/or the mineral surfaces apparently reduced the accessibility of the aromatic molecules to interlamellar regions. The resulting water-induced sieving effect was greater for the high-charge TMA-smectite due to the higher density of exchanged TMA-ions. The low-charge Wyoming TMA-smectite was a highly effective adsorbent for removing benzene from water and may be useful for purifying benzene-contaminated water.

  17. Earthquake lights and the stress-activation of positive hole charge carriers in rocks

    USGS Publications Warehouse

    St-Laurent, F.; Derr, J.S.; Freund, F.T.

    2006-01-01

    Earthquake-related luminous phenomena (also known as earthquake lights) may arise from (1) the stress-activation of positive hole (p-hole) charge carriers in igneous rocks and (2) the accumulation of high charge carrier concentrations at asperities in the crust where the stress rates increase very rapidly as an earthquake approaches. It is proposed that, when a critical charge carrier concentration is reached, the p-holes form a degenerated solid state plasma that can break out of the confined rock volume and propagate as a rapidly expanding charge cloud. Upon reaching the surface the charge cloud causes dielectric breakdown at the air-rock interface, i.e. corona discharges, accompanied by the emission of light and high frequency electromagnetic radiation. ?? 2006 Elsevier Ltd. All rights reserved.

  18. 76 FR 77881 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... login fees. The text of the proposed rule change is available on the Exchange's Web site ( http://www... Schedule of Fees regarding the Exchange's API or login fees. ISE currently charges its Members a fee for each login that a Member utilizes for quoting or order entry, with a lesser charge for logins used for...

  19. 76 FR 20752 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... login fees. The text of the proposed rule change is available on the Exchange's Web site ( http://www... Schedule of Fees regarding the Exchange's API or login fees. ISE currently charges its members a fee for each login that a Member utilizes for quoting or order entry, with a lesser charge for logins used for...

  20. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  1. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of themore » essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.« less

  2. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  3. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  4. 17 CFR 8.14 - Admission or failure to deny charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EXCHANGE PROCEDURES FOR DISCIPLINARY, SUMMARY, AND MEMBERSHIP DENIAL ACTIONS Disciplinary Procedure § 8.14... or fails to deny any of the charges the disciplinary committee may find that the rule violation... has been committed. If the exchange rules so provide, then: (1) The disciplinary committee shall...

  5. Expected charge states of energetic ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1979-01-01

    Major developments in magnetospheric heavy ion physics during the period 1974-1977 are reviewed with emphasis on charge state aspects. Particular attention is given to the high energy component at energies above tens of keV per ion. Also considered are charge exchange processes with application to the inner magnetosphere, a comparison between theory and measurements, and a survey of heavy ion and charge state observations in the outer magnetosphere, magnetosheath and the surrounding space.

  6. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    PubMed

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  7. 78 FR 4502 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Exchange currently charges $0.11 per contract for Customer orders executed at NYSE MKT LLC (``AMEX''), BOX... Customer orders executed at MIAX and $0.57 per contract for Professional, Firm, and Market Maker orders executed at MIAX. As noted above, the Exchange currently charges $0.11 per contract for Customer orders and...

  8. The isolation and characterisation of jacalin [Artocarpus heterophyllus (jackfruit) lectin] based on its charge properties.

    PubMed

    Kabir, S

    1995-02-01

    Jackfruit extracts contain a protein termed jacalin which possesses diverse biological properties. A detailed analysis of its charge properties has been lacking. The present investigation was initiated to study isoelectric properties of jacalin in detail and to isolate a single isoform of jacalin. Jacalin was isolated from jackfruit extracts by affinity chromatography on immunoglobulin-A immobilised to Sepharose 4B. Various techniques such as ion-exchange chromatography, isoelectric focusing (IEF) on polyacrylamide gels and preparative liquid IEF with the Rotofor cell were used. When analysed by IEF on thin layer polyacrylamide gels, jacalin was resolved into 35 bands over a pH range of 5.0-8.5. Upon SDS-PAGE in the second dimension all these charge species gave rise to only two-bands at 12 and 15.4 kDa. The lectin was mostly eluted with 50 and 100 mM sodium chloride when jackfruit extracts were fractionated on an anion-exchange column of DEAE-cellulose. In a single 6 hour run by preparative IEF with the Rotofor cell in the pH range of 3-9.5, it has been possible to isolate pure jacalin fractions containing fewer number of charged isomers. A single jacalin isoform was isolated by subjecting a Rotofor fraction containing fewer charged species to preparative IEF on thin layer polyacrylamide gel and eluting the band of interest from the gel. The isolated jacalin isoform was biologically active as it agglutinated erythrocytes. The study reveals the complexity of jacalin as it exists as multiple charge isomers over a broad pH range. By performing preparative IEF in solution as well as in thin layer polyacrylamide gels, it was possible to isolate a single jacalin isoform with the retention of biological activity.

  9. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  10. Hybrid Quantum Systems with Trapped Charged Particles

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Leibfried, Dietrich; Simmonds, Raymond; Wineland, Dave

    We will review a joint effort by the Ion Storage Group and the Advanced Microwave Photonics Group at NIST (Boulder, CO) to design a hybrid system that interfaces charged particles with macroscopic high-Q resonators. We specifically consider coupling trapped charges to superconducting LC resonators, the mechanical modes of Silicon-Nitride membranes, and piezo-electric materials. We aim to achieve the strong coupling regime, where a single quantum of motion of the trapped charge can be coherently exchanged with harmonic motion of the macroscopic entity (electrical and/or mechanical). These kind of devices could potentially take advantage of both macroscopic control techniques and the long quantum coherence of its trapped charged particles.

  11. 47 CFR 69.124 - Interconnection charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES..., facilities-based rate elements in the future, from the part 69 transport revenue requirement, and dividing by... local exchange carrier anticipates will be reassigned to other, facilities-based rate elements in the...

  12. The effect of N2/+/ recombination on the aeronomic determination of the charge exchange rate coefficient of O/+//2D/ with N2

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Orsini, N.

    1978-01-01

    The Atmosphere Explorer (AE) data are reexamined in the light of new laboratory measurements of the N2(+) recombination rate coefficient alpha. The new measurements support earlier measurements which yielded values of alpha significantly lower than the AE values. It is found that the values for alpha determined from the satellite data can be reconciled with the laboratory measurements, if the charge exchange rate coefficient for O(+)(2D) with N2 is less than one-quarter of that derived in the laboratory by Rutherford and Vroom (1971).

  13. Rapid analysis of charge variants of monoclonal antibodies using non-linear salt gradient in cation-exchange high performance liquid chromatography.

    PubMed

    Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S

    2015-08-07

    A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory.

    PubMed

    Schulthess, Cristian P; Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl- ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl- ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl- ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl- reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH.

  15. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory

    PubMed Central

    Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl− ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl− ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl− ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl− reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH. PMID:28464020

  16. Oscillatory wake potential with exchange-correlation in plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  17. 78 FR 6263 - Exchange Visitor Program-Fees and Charges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... following methods: Persons with access to the Internet will be able to view and comment on the rule and... update the Student and Exchange Visitor Information System (SEVIS) status, and similar requests). The... Designation on behalf of program sponsors and other program stakeholders. ABC is a method of identifying the...

  18. 17 CFR 256.457-2 - Indirect costs charged to associate companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... charged to associate companies. This account shall include recovery of those indirect costs which cannot... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Indirect costs charged to... COMMISSION (CONTINUED) UNIFORM SYSTEM OF ACCOUNTS FOR MUTUAL SERVICE COMPANIES AND SUBSIDIARY SERVICE...

  19. The mechanisms of brush border Na+/H+ exchanger activation by corticosteroids.

    PubMed

    Zallocchi, Marisa; Igarreta, Pilar; Calvo, Juan Carlos; Reboucas, Nancy Amaral; Damasco, María Christina

    2003-02-01

    Previously we showed that corticosterone and aldosterone increased proton fluxes in proximal tubule, by micropuncture and stationary microperfusion. Since the Na+/H+ exchanger is responsible for the main proximal proton secretion, we have now evaluated the effects aldosterone on Na+/H+ exchange activity in brush border vesicles. In order to evaluate the mechanism of action of glucocorticoids and mineralocorticoids, we studied the comparative effects of corticosterone and aldosterone on the abundance of NHE3 and NHE2 isoforms. We isolated renal brush border vesicles from rats by differential centrifugation in sham-operated, adrenalectomized, and adrenalectomized-aldosterone treated (ADX + aldosterone) animals. We measured the kinetics of H+ transport in response to increasing concentrations of Sodium Gluconate by fluorimetry using acridine orange. For Na+/H+ exchanger abundance we used Western blot analysis of brush border proteins in the above groups and in adrenalectomized-corticosterone treated rats. The Vmax in adrenalectomized animals was 22,162+/-1828 fluorescence units/min; in sham animals, 37,020+/-2722; and in ADX + aldosterone, 42,344+/-3044 (p<0.01 adrenalectomized vs others). No differences in Km were observed. Adrenalectomy decreased NHE3 abundance over Sham by 32% without modifying NHE2. Corticosterone-replacement enhanced NHE3 abundance by 76% and failed to increase NHE2. Aldosterone enhanced NHE2 abundance by 75% and did not increase NHE3. Mineralocorticoids enhance Na+/H+ exchange activity by increasing NHE2 abundance; glucocorticoids, by increasing NHE3 abundance.

  20. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  1. A 50 AH nickel cadmium battery activation and charge retention parametric study for LANDSAT-D

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    An alternate nickel-cadmium cell activation scheme was developed which significantly reduces battery dissipation while maintaining the cell active material in the proper electrochemical state. The new procedure of charging at C/20 for 8 hours, C/10 for 6 hours and followed by C/5 to a voltage limit of 1.430 volt/cell significantly reduces the heat dissipation and charge period when compared to the standard activation practice of charging at C/20 for 48 hours. In addition, subsequent discharge voltage profiles using the new scheme are higher when compared to the standard practice. The effects of extended open-circuit periods on nickel-cadmium cell results in a capacity loss of approximately 0.7 percent and 1.4 percent per day at 23 and 35 degrees Celsius, respectively.

  2. Solar Wind Charge Exchange Contribution to the ROSAT All Sky Survey Maps

    NASA Astrophysics Data System (ADS)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; McCammon, D.; Morgan, K.; Porter, F. S.; Prasai, K.; Snowden, S. L.; Thomas, N. E.; Ursino, E.; Walsh, B. M.

    2016-10-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l=140^\\circ ,b=0^\\circ , where the DXL path crosses the Galactic plane, is 33 % +/- 6 % ({statistical})+/- 12 % ({systematic}) for R1, 44 % +/- 6 % +/- 5 % for R2, 18 % +/- 12 % +/- 11 % for R4, 14 % +/- 11 % +/- 9 % for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 % +/- 6 % +/- 13 % for R1, 30 % +/- 4 % +/- 4 % for R2, 8 % +/- 5 % +/- 5 % for R4, 6 % +/- 4 % +/- 4 % for R5, and negligible for R6 and R7.

  3. High Capacity Na+/H+ Exchange Activity in Mineralizing Osteoblasts

    PubMed Central

    Liu, Li; Schlesinger, Paul H.; Slack, Nicole M.; Friedman, Peter A.; Blair, Harry C.

    2015-01-01

    Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non-transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ∼7.3 and decreased by ∼ 1.4 units upon replacing extracellular Na+ with N-methyl-d-glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na+, caused only mild cytosolic acidification. In contrast, in Na+-free solutions, weak acids reduced pHi dramatically. After Na+ reintroduction, pHi recovered rapidly, in keeping with Na+/H+exchanger (NHE) activity. Sodium-dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO3- alkalinized osteoblasts, and pH recovered in medium containing CI-, with or without Na+, in keeping with Na+-independent CI-/HCO3- exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with CI-/HCO3- exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high-capacity Na+/H+ exchange via NHE1 and NHE6. PMID:21413028

  4. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  5. ^10B analysis using Charged Particle Activation Analysis

    NASA Astrophysics Data System (ADS)

    Guo, B. N.; Jin, J. Y.; Duggan, J. D.; McDaniel, F. D.

    1997-10-01

    Charged Particle Activation analysis (CPAA) is an analytic technique that is used to determine trace quantities of an element usually on the surface of a substrate. The beam from the accelerator is used to make the required nuclear reaction that leaves the residual activity with a measurable half life. Gamma rays from the residual activity are measured to determine the trace quantities of the elements being studied. We have used this technique to study re-entry cloth coatings for space and aircraft vehicles. The clothes made of 20μ m SiC fibers are coated with Boron Nitride. CPAA was used to determine the relative thicknesses of the boron coatings. In particular the ^10B(p,γ)^11C reaction was used. A fast coincidence set up was used to measure the 0.511 MeV annihilation radiation from the 20.38 minute ^11C activity. Rutherford Back Scattering (RBS) results will be presented as a comparison. Details of the process and the experiment will be discussed.

  6. Electron Transfer Dissociation with Supplemental Activation to Differentiate Aspartic and Isoaspartic Residues in Doubly Charged Peptide Cations

    PubMed Central

    Chan, Wai Yi Kelly; Chan, T. W. Dominic; O’Connor, Peter B.

    2011-01-01

    Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using c + 57 or z• − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues. PMID:20304674

  7. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    NASA Astrophysics Data System (ADS)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  8. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps

  9. Observation of Solar Wind Charge Exchange Emission From Exospheric Material in and Outside Earth's Magnetosheath 2008 September 25

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.

    2009-01-01

    A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth's magnetosheath. The light curve of the O vii (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.5). In addition, an average value of the SWCX O vii emission from the magnetosheath over the observation of 2.6 +/- 0.5 LU is derived. The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.

  10. Thermally activated charge transport in microbial protein nanowires

    PubMed Central

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  11. Thermally activated charge transport in microbial protein nanowires

    NASA Astrophysics Data System (ADS)

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-03-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  12. Thermally activated charge transport in microbial protein nanowires.

    PubMed

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-03-24

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.

  13. Free-bound electron exchange contribution to l-split atomic structure in dense plasmas

    NASA Astrophysics Data System (ADS)

    Bennadji, K.; Rosmej, F.; Lisitsa, V. S.

    2013-11-01

    An analytical expression for the exchange energy between the bound electron in hydrogen-like ions and the free electrons of plasma is proposed. Two limiting cases are identified: 1) the low temperature limit where the energy depends linearly on density and on the ion charge as 1/Z2 but does not depend on the temperature itself, 2) the high temperature limit where the energy depends on temperature as 1/T but does not depend on the ion charge. These two regimes are separated by a characteristic temperature (T∗ = 4Z2Ry) which is a universal parameter depending only on the charge Z of the ions. We presented numerical results for aluminum: the exchange energy contributes about 15% to the total plasma energy and can reach an order of 10-4 of the total transition energy. Comparison to the Local-density Approximation (Kohn-Sham) exchange energy shows a good agreement.

  14. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites

    USGS Publications Warehouse

    Christidis, G.E.; Blum, A.E.; Eberl, D.D.

    2006-01-01

    The influence of layer charge and charge distribution of dioctahedral smectites on the rheological and swelling properties of bentonites is examined. Layer charge and charge distribution were determined by XRD using the LayerCharge program [Christidis, G.E., Eberl, D.D., 2003. Determination of layer charge characteristics of smectites. Clays Clay Miner. 51, 644-655.]. The rheological properties were determined, after sodium exchange using the optimum amount of Na2CO3, from free swelling tests. Rheological properties were determined using 6.42% suspensions according to industrial practice. In smectites with layer charges of - 0.425 to - 0.470 per half formula unit (phfu), layer charge is inversely correlated with free swelling, viscosity, gel strength, yield strength and thixotropic behaviour. In these smectites, the rheological properties are directly associated with the proportion of low charge layers. By contrast, in low charge and high charge smectites there is no systematic relation between layer charge or the proportion of low charge layers and rheological properties. However, low charge smectites yield more viscous suspensions and swell more than high charge smectites. The rheological properties of bentonites also are affected by the proportion of tetrahedral charge (i.e. beidellitic charge), by the existence of fine-grained minerals having clay size, such as opal-CT and to a lesser degree by the ionic strength and the pH of the suspension. A new method for classification of smectites according to the layer charge based on the XRD characteristics of smecites is proposed, that also is consistent with variations in rheological properties. In this classification scheme the term smectites with intermediate layer charge is proposed. ?? 2006 Elsevier B.V. All rights reserved.

  15. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.

    PubMed

    Bate, Paul; Warwicker, Jim

    2004-07-02

    Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.

  16. Active control of spacecraft potentials at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Deforest, S. E.

    1976-01-01

    Tests have been conducted concerning the active control of the potentials of the geosynchronous satellites ATS-5 and ATS-6. The ATS-5 tests show that a simple electron emitter can be used to reduce the magnitude of the potential of a spacecraft which has been charged negatively by the environment. The ATS-6 ion thruster had also a pronounced effect on the potential barrier. In this case, the flux of high-energy primary ions and of low-charge exchange ions produces a space-charge neutralization effect which the electron gun alone cannot achieve.

  17. Ion-exchange chromatography purification of extracellular vesicles.

    PubMed

    Kosanović, Maja; Milutinović, Bojana; Goč, Sanja; Mitić, Ninoslav; Janković, Miroslava

    2017-08-01

    Despite numerous studies, isolating pure preparations of extracellular vesicles (EVs) has proven challenging. Here, we compared ion-exchange chromatography (IEC) to the widely used sucrose density gradient (SDG) centrifugation method for the purification of EVs. EVs in bulk were isolated from pooled normal human amniotic fluid (AF) by differential centrifugation followed by IEC or sucrose density gradient separation. The purity of the isolated EVs was evaluated by electrophoresis and lectin blotting/immuno blotting to monitor the distribution of total proteins, different EVs markers, and selected N-glycans. Our data showed efficient separation of negatively charged EVs from other differently charged molecules, while comparative profiling of EVs using SDG centrifugation confirmed anion-exchange chromatography is advantageous for EV purification. Finally, although this IEC-based method was validated using AF, the approach should be readily applicable to isolation of EVs from other sources as well.

  18. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhen; Bai Jing; Xu Yuhong

    2008-07-11

    Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M{sub 412} were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR's Mmore » intermediate kinetics, especially the slow component in M intermediate decay. The half-life M{sub 412s} increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes.« less

  19. 75 FR 50015 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Solar, Inc. (``FSLR''), Market Vectors ETF Gold Miners (``GDX''), SPDR Gold Trust (``GLD''), iShares DJ... still lower than fees charged by other options exchanges. PHLX, For example, currently charges Broker...

  20. Charge Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Dennerl, Konrad

    2010-12-01

    Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.

  1. Modelling charge transfer reactions with the frozen density embedding formalism.

    PubMed

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  2. Spectral Modeling of the Charge-exchange X-Ray Emission from M82

    NASA Astrophysics Data System (ADS)

    Zhang, Shuinai; Wang, Q. Daniel; Ji, Li; Smith, Randall K.; Foster, Adam R.; Zhou, Xin

    2014-10-01

    It has been proposed that the charge-exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star-forming galaxies. We analyze the XMM-Newton/reflection grating spectrometer (RGS) spectrum of M82 using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the Kα triplets of various He-like ions but also good fractions of the Lyα transitions of C VI (~87%), O VIII, and N VII (gsim50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 Å band originates in the CX. We infer an ion incident rate of 3 × 1051 s-1 undergoing CX at the hot and cool gas interface and an effective area of the interface of ~2 × 1045 cm2 that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best-fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.

  3. 75 FR 77931 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Exchange, Inc. (``CBOE'') currently charges a marketing fee of up to $0.65 per contract for customer orders... a Public Customer Order in the Exchange's Price Improvement Mechanism (``PIM''). For competitive reasons, the Exchange now proposes to apply its PFOF fee for Public Customer Orders executed in the...

  4. Coulomb replica-exchange method: handling electrostatic attractive and repulsive forces for biomolecules.

    PubMed

    Itoh, Satoru G; Okumura, Hisashi

    2013-03-30

    We propose a new type of the Hamiltonian replica-exchange method (REM) for molecular dynamics (MD) and Monte Carlo simulations, which we refer to as the Coulomb REM (CREM). In this method, electrostatic charge parameters in the Coulomb interactions are exchanged among replicas while temperatures are exchanged in the usual REM. By varying the atom charges, the CREM overcomes free-energy barriers and realizes more efficient sampling in the conformational space than the REM. Furthermore, this method requires only a smaller number of replicas because only the atom charges of solute molecules are used as exchanged parameters. We performed Coulomb replica-exchange MD simulations of an alanine dipeptide in explicit water solvent and compared the results with those of the conventional canonical, replica exchange, and van der Waals REMs. Two force fields of AMBER parm99 and AMBER parm99SB were used. As a result, the CREM sampled all local-minimum free-energy states more frequently than the other methods for both force fields. Moreover, the Coulomb, van der Waals, and usual REMs were applied to a fragment of an amyloid-β peptide (Aβ) in explicit water solvent to compare the sampling efficiency of these methods for a larger system. The CREM sampled structures of the Aβ fragment more efficiently than the other methods. We obtained β-helix, α-helix, 3(10)-helix, β-hairpin, and β-sheet structures as stable structures and deduced pathways of conformational transitions among these structures from a free-energy landscape. Copyright © 2012 Wiley Periodicals, Inc.

  5. Ion Exchange Polymeric Coatings for Selective Capacitive Deionization

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Kim, Jun; Li, Qilin; Verduzco, Rafael

    Capacitive deionization (CDI) is an energy-efficient technology for adsorbing and removing scalants and foulants from water by utilizing electric potential between porous carbon electrodes. Currently, industrial application of CDI is limited to low salinity waters due to the limited absorption capacities of carbon electrodes. However, CDI can potentially be used as a low-cost approach to selectively remove divalent ions from high salinity water. Divalent ions such as sulfonates and carbonates cause scaling and thus performance deterioration of membrane-based desalination systems. In this work, we investigated ion-exchange polymer coatings for use in a membrane capacitive deionization (MCDI) process for selective removal of divalent ions. Poly-Vinyl Alcohol (PVA) base polymer was crosslinked and charged using sulfo-succinic acid (SSA) to give a cation exchange layer. 50 um thick standalone polymer films had a permeability of 4.25*10-7 cm2/s for 10mM NaCl feed. Experiments on electrodes with as low as 10 υm thick coating of cation exchange polymer are under progress and will be evaluated on the basis of their selective salt removal efficiency and charge efficiency, and in future we will extend this work to sulfonated block copolymers and anion exchange polymers.

  6. Involvement of mitochondrial Na+–Ca2+ exchange in intestinal pacemaking activity

    PubMed Central

    Kim, Byung Joo; Jun, Jae Yeoul; So, Insuk; Kim, Ki Whan

    2006-01-01

    AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na+-Ca2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 µmol/L and CGP37157 from 10 to 30 µmol/L effectively inhibited Ca2+ efflux from mitochondria in pacemaking activity of ICCs. The IC50s of clonazepam and CGP37157 were 37.1 and 18.2 µmol/L, respectively. The addition of 20 µmol/L NiCl2 to the internal solution caused a “wax and wane” phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondrial Na+-Ca2+ exchange has an important role in intestinal pacemaking activity. PMID:16521198

  7. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  8. 75 FR 1667 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... recovering the costs of the license. However, because of competitive pressures in the industry, the Exchange... transactions is $0.45 per contract.\\6\\ For competitive reasons, the Exchange does not charge an execution fee...

  9. ARSENIC REMOVAL BY FULL SCALE ION EXCHANGE AND ACTIVATED ALUMINA TREATMENT

    EPA Science Inventory

    This presentation discusses the results of a one year performance evaluation study of two ion exchange plants and two activated alumina plants that were designed and operated for the removal of arsenic from well water. All the plants were shown to be capable of reducing arsenic l...

  10. 77 FR 48576 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... the Exchange's ``TRIM'' routing strategy; and (ii) commence charging for certain physical ports used... described in further detail below. (i) TRIM Routing Strategy The Exchange proposes to modify its fee schedule in order to remove a specific venue from the Exchange's ``TRIM'' routing strategy. As defined in...

  11. Dual structure in the charge excitation spectrum of electron-doped cuprates

    NASA Astrophysics Data System (ADS)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  12. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  13. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  14. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  15. Total Charge Movement per Channel

    PubMed Central

    Sigg, Daniel; Bezanilla, Francisco

    1997-01-01

    One measure of the voltage dependence of ion channel conductance is the amount of gating charge that moves during activation and vice versa. The limiting slope method, introduced by Almers (Almers, W. 1978. Rev. Physiol. Biochem. Pharmacol. 82:96–190), exploits the relationship of charge movement and voltage sensitivity, yielding a lower limit to the range of single channel gating charge displacement. In practice, the technique is plagued by low experimental resolution due to the requirement that the logarithmic voltage sensitivity of activation be measured at very low probabilities of opening. In addition, the linear sequential models to which the original theory was restricted needed to be expanded to accommodate the complexity of mechanisms available for the activation of channels. In this communication, we refine the theory by developing a relationship between the mean activation charge displacement (a measure of the voltage sensitivity of activation) and the gating charge displacement (the integral of gating current). We demonstrate that recording the equilibrium gating charge displacement as an adjunct to the limiting slope technique greatly improves accuracy under conditions where the plots of mean activation charge displacement and gross gating charge displacement versus voltage can be superimposed. We explore this relationship for a wide variety of channel models, which include those having a continuous density of states, nonsequential activation pathways, and subconductance states. We introduce new criteria for the appropriate use of the limiting slope procedure and provide a practical example of the theory applied to low resolution simulation data. PMID:8997663

  16. Modelling charge transfer reactions with the frozen density embedding formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionalsmore » are used the electronic couplings are grossly overestimated.« less

  17. 77 FR 74533 - Self-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... ``Fee Schedule'') issued pursuant to Exchange Rule 16.1(a) to: (1) Modify the Quotation Update Fee charged for each quotation update \\3\\ transmitted to the Exchange by an Equity Trading Permit (``ETP'') \\4\\ Holder using the Exchange's Order Delivery mode (``Order Delivery Mode''); and (2) cap the Quotation...

  18. Solar Wind Charge Exchange Contribution To The ROSAT Sky Survey Maps

    NASA Technical Reports Server (NTRS)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; hide

    2016-01-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC (Position Sensitive Proportional Counters) used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l = 140 degrees, b = 0 degrees, where the DXL path crosses the Galactic plane, is 33 percent plus or minus 6 percent (statistical) plus or minus 12 percent (systematic) for R1, 44 percent plus or minus 6 percent plus or minus 5 percent for R2, 18 percent plus or minus 12 percent plus or minus 11 percent for R4, 14 percent plus or minus 11 percent plus or minus 9 percent for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 percent plus or minus 6 percent plus or minus 13 percent for R1, 30 percent plus or minus 4 percent plus or minus 4 percent for R2, 8 percent plus or minus 5 percent plus or minus 5 percent for R4, 6 percent plus or minus 4 percent plus or minus 4 percent for R5, and negligible for R6 and R7.

  19. 3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure.

    PubMed

    Chakraborty, Chitraleema; Qiu, Liangyu; Konthasinghe, Kumarasiri; Mukherjee, Arunabh; Dhara, Sajal; Vamivakas, Nick

    2018-05-09

    Monolayer transition metal dichalcogenides (TMDCs) have recently emerged as a host material for localized optically active quantum emitters that generate single photons. (1-5) Here, we investigate fully localized excitons and trions from such TMDC quantum emitters embedded in a van der Waals heterostructure. We use direct electrostatic doping through the vertical heterostructure device assembly to generate quantum confined trions. Distinct spectral jumps as a function of applied voltage bias, and excitation power-dependent charging, demonstrate the observation of the two different excitonic complexes. We also observe a reduction of the intervalley electron-hole exchange interaction in the confined trion due to the addition of an extra electron, which is manifested by a decrease in its fine structure splitting. We further confirm this decrease of exchange interaction for the case of the charged states by a comparative study of the circular polarization resolved photoluminescence from individual excitonic states. The valley polarization selection rules inherited by the localized trions will provide a pathway toward realizing a localized spin-valley-photon interface.

  20. The Helium Warm Breeze in IBEX Observations As a Result of Charge-exchange Collisions in the Outer Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzowski, Maciej; Kubiak, Marzena A.; Czechowski, Andrzej

    2017-08-10

    We simulated the signal due to neutral He atoms, observed by the Interstellar Boundary Explorer ( IBEX ), assuming that charge-exchange collisions between neutral He atoms and He{sup +} ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud, where the neutral and charged components are in thermal equilibrium. We simulated several test cases of the plasma flow within the outer heliosheath (OHS) and investigated the signal generation for plasma flows both in the absence and in the presence of the interstellar magnetic field (ISMF). We found that a signal in the portion ofmore » IBEX data identified as being due to the Warm Breeze (WB) does not arise when a homogeneous plasma flow in front of the heliopause is assumed, but it appears immediately when any reasonable disturbance in its flow due to the presence of the heliosphere is assumed. We obtained a good qualitative agreement between the data selected for comparison and the simulations for a model flow with the velocity vector of the unperturbed gas and the direction and intensity of magnetic field adopted from recent determinations. We conclude that direct-sampling observations of neutral He atoms at 1 au from the Sun are a sensitive tool for investigating the flow of interstellar matter in the OHS, that the WB is indeed the secondary population of interstellar helium, which was hypothesized earlier, and that the WB signal is consistent with the heliosphere distorted from axial symmetry by the ISMF.« less

  1. Astrophysical Applications for Charge-Exchange with H, He, and H2 Targets

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata S.; Mullen, Patrick D.; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.

    2018-01-01

    When a hot plasma collides with a cold neutral gas, interactions occur between the constituents at the interface of the collision, including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.As the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models in regions in which CX might be significant so that the ion abundance and plasma velocities can be estimated most accurately. Here, a set of CX X-ray line ratios and spectra will be shown for a variety of collision velocities for C-Cl ions colliding with H, He, and H2. An X-ray emission model including these line ratios performed in XSPEC will be presented for a region of the Cygnus Loop supernova remnant and the starburst galaxy M82 in order to highlight the variation in CX spectral models with collision energy and neutral target species.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.

  2. Environmental Exchange Box

    ERIC Educational Resources Information Center

    Moseley, Christine

    2003-01-01

    In this activity, teachers in one state create and share an "exchange box" of environmental and cultural items with students of another state. The Environmental Exchange Box activity enables teachers to improve students' skills in scientific inquiry and develop attitudes and values conducive to science learning such as wonder, curiosity,…

  3. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1996-01-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  4. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  5. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system

    NASA Astrophysics Data System (ADS)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno

    2017-12-01

    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  6. 78 FR 3064 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Proposed Rule Change Increasing the Fees Paid by Participants in the Exchange's Medallion Signature Program... The Exchange proposes to increase the fees paid by participants in the Exchange's medallion signature... change the application and annual charge to be paid by participants in the medallion signature program...

  7. 75 FR 6764 - Self-Regulatory Organizations; Chicago Board Options Exchange, Inc.; Notice of Filing of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Relating to Co-location Service Fees February 4, 2010. Pursuant to Section 19(b)(1) of the Securities... Exchange, Inc. (``CBOE'' or ``Exchange'') proposes to amend its Fees Schedule relating to co-location... charge. This ``co-location service'' provides members with close physical proximity to the Exchange's...

  8. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    PubMed

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  9. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  10. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  11. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  12. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.

    1980-01-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  13. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lefrois, R. T.

    1980-03-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  14. Charge density distribution and the electrostatic moments of CTPB in the active site of p300 enzyme: a DFT and charge density study.

    PubMed

    Devipriya, B; Kumaradhas, P

    2013-10-21

    A molecular docking and charge density analysis have been carried out to understand the conformational change, charge distribution and electrostatic properties of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) in the active site of p300. The nearest neighbors, shortest intermolecular contacts between CTPB-p300 and the lowest binding energy of CTPB have been analyzed from the docking analysis. Further, a charge density analysis has been carried out for the molecule in gas phase and for the corresponding molecule lifted from the active site of p300. Due to the intermolecular interaction between CTPB and the amino acids of active site, the conformation of the CTPB has been significantly altered (particularly the pentadecyl chain). CTPB forms strong interaction with the amino acid residues Tyr1397 and Trp1436 at the distance 2.12 and 2.72Å, respectively. However, the long pentadecyl alkyl chain of CTPB produces a barrier and reducing the chance of forming hydrogen bonding with p300. The electron density ρbcp(r) of the polar bonds (C-O, C-N, C-F and C-Cl) of CTPB are increased when it present in the active site. The dipole moment of CTPB in the active site is significantly less (5.73D) when compared with the gas phase (8.16D) form. In the gas phase structure, a large region of negative electrostatic potential (ESP) is found at the vicinity of O(2) and CF3 group, which is less around the O(1) atom. Whereas, in the active site, the negative ESP around the CF3 group is decreased and increased at the O(1) and O(2)-atoms. The ESP modifications of CTPB in the active site are mainly attributed to the effect of intermolecular interaction. The gas phase and active site study insights the molecular flexibility and the electrostatic properties of CTPB in the active site. © 2013 Elsevier Ltd. All rights reserved.

  15. 76 FR 45626 - Self-Regulatory Organizations; Chicago Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... executions submitted through an Institutional Broker.\\7\\ The Exchange is also lowering the rate of the... remainders would be charged the fee rate set forth in Section E.1. of the Fee Schedule. The Exchange is... Schedule. The Exchange is also modifying the types of transactions subject to the Trade Processing Fee to...

  16. Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-like Phosphorus Following Charge Exchange with Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Leutenegger, M. A.; Beiersdorfer, P.; Brown, G. V.; Kelley, R. L.; Porter, F. S.

    2010-01-01

    We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with approx.6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of two for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.

  17. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our

  18. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  19. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  20. Molecular mechanism of activation-triggered subunit exchange in Ca 2+ /calmodulin-dependent protein kinase II

    DOE PAGES

    Bhattacharyya, Moitrayee; Stratton, Margaret M.; Going, Catherine C.; ...

    2016-03-07

    Activation triggers the exchange of subunits in Ca 2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This convertsmore » the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.« less

  1. Molecular mechanism of activation-triggered subunit exchange in Ca 2+ /calmodulin-dependent protein kinase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Moitrayee; Stratton, Margaret M.; Going, Catherine C.

    Activation triggers the exchange of subunits in Ca 2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This convertsmore » the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.« less

  2. Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II

    PubMed Central

    Bhattacharyya, Moitrayee; Stratton, Margaret M; Going, Catherine C; McSpadden, Ethan D; Huang, Yongjian; Susa, Anna C; Elleman, Anna; Cao, Yumeng Melody; Pappireddi, Nishant; Burkhardt, Pawel; Gee, Christine L; Barros, Tiago; Schulman, Howard; Williams, Evan R; Kuriyan, John

    2016-01-01

    Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones. DOI: http://dx.doi.org/10.7554/eLife.13405.001 PMID:26949248

  3. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  4. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites

    DOE PAGES

    Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...

    2016-08-17

    Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [Cu IIOH] + species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [Cu IIOH] + active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu] 2+ and Cu 3O 3 motifs.« less

  5. 77 FR 5595 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... from $225 per month (per login ID) to $350 per month (per login ID). The Exchange's vendor that provides the FBW charges the Exchange more than $225 per month (per login ID) for the FBW (actually, more than $350 per month (per login ID)), and the Exchange had been subsidizing those costs for FBW users...

  6. 75 FR 48734 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ...) ISE FIX Session Fees The Exchange proposes to charge for legacy ISE \\4\\ Financial Information Exchange...-79). \\5\\ As stated in SR-ISE-2007-79, the ISE used the Financial Information Exchange (FIX) protocol... will provide Members a $0.0031 rebate per share for liquidity added on EDGX if the Member on a daily...

  7. ARSENIC REMOVAL FROM DRINKING WATER BY ION EXCHANGE AND ACTIVATED ALUMINA PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two ion exchange (IE) and two activated alumina (AA) treatment plants to remove arsenic from drinking water. Performance information was collected on these systems that are located in the northeast for one full year. The stud...

  8. A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens

    PubMed Central

    Lacroix, Jérôme; Poët, Mallorie; Maehrel, Céline; Counillon, Laurent

    2004-01-01

    Eukaryotic cells constantly have to fight against internal acidification. In mammals, this task is mainly performed by the ubiquitously expressed electroneutral Na+/H+ exchanger NHE-1, which activates in a cooperative manner when cells become acidic. Despite its biological importance, the mechanism of this activation is still poorly understood, the most commonly accepted hypothesis being the existence of a proton-sensor site on the internal face of the transporter. This work uncovers mutations that lead to a nonallosteric form of the exchanger and demonstrates that NHE-1 activation is best described by a Monod–Wyman–Changeux concerted mechanism for a dimeric transporter. During intracellular acidification, a low-affinity form of NHE-1 is converted into a form possessing a higher affinity for intracellular protons, with no requirement for an additional proton-sensor site on the protein. This new mechanism also explains the activation of the exchanger by growth signals, which shift the equilibrium towards the high-affinity form. PMID:14710192

  9. Communication: Correct charge transfer in CT complexes from the Becke'05 density functional

    NASA Astrophysics Data System (ADS)

    Becke, Axel D.; Dale, Stephen G.; Johnson, Erin R.

    2018-06-01

    It has been known for over twenty years that density functionals of the generalized-gradient approximation (GGA) type and exact-exchange-GGA hybrids with low exact-exchange mixing fraction yield enormous errors in the properties of charge-transfer (CT) complexes. Manifestations of this error have also plagued computations of CT excitation energies. GGAs transfer far too much charge in CT complexes. This error has therefore come to be called "delocalization" error. It remains, to this day, a vexing unsolved problem in density-functional theory (DFT). Here we report that a 100% exact-exchange-based density functional known as Becke'05 or "B05" [A. D. Becke, J. Chem. Phys. 119, 2972 (2003); 122, 064101 (2005)] predicts excellent charge transfers in classic CT complexes involving the electron donors NH3, C2H4, HCN, and C2H2 and electron acceptors F2 and Cl2. Our approach is variational, as in our recent "B05min" dipole moments paper [Dale et al., J. Chem. Phys. 147, 154103 (2017)]. Therefore B05 is not only an accurate DFT for thermochemistry but is promising as a solution to the delocalization problem as well.

  10. Theoretical studies of the nitrogen containing compounds adsorption behavior on Na(I)Y and rare earth exchanged RE(III)Y zeolites.

    PubMed

    Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Zan, Wenyan; Gao, Xionghou; Yao, Xiaojun

    2015-01-01

    In this work, the adsorption behavior of nitrogen containing compounds including NH3, pyridine, quinoline, and carbazole on Na(I)Y and rare earth exchanged La(III)Y, Pr(III)Y, Nd(III)Y zeolites was investigated by density functional theory (DFT) calculations. The calculation results demonstrate that rare earth exchanged zeolites have stronger adsorption ability for nitrogen containing compounds than Na(I)Y. Rare earth exchanged zeolites exhibit strongest interaction with quinoline while weakest with carbazole. Nd(III)Y zeolites are found to have strongest adsorption to all the studied nitrogen containing compounds. The analysis of the electronic total charge density and electron orbital overlaps show that nitrogen containing compounds interact with zeolites by π-electrons of the compounds and the exchanged metal atom. Mulliken charge population analysis also proves that adsorption energies are strongly dependent on the charge transfer between the nitrogen containing molecules and exchanged metal atom in the zeolites.

  11. Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mucciolo, Eduardo R.; Calle, Carlos I.

    2006-01-01

    Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces.

  12. Charge migration and charge transfer in molecular systems

    PubMed Central

    Wörner, Hans Jakob; Arrell, Christopher A.; Banerji, Natalie; Cannizzo, Andrea; Chergui, Majed; Das, Akshaya K.; Hamm, Peter; Keller, Ursula; Kraus, Peter M.; Liberatore, Elisa; Lopez-Tarifa, Pablo; Lucchini, Matteo; Meuwly, Markus; Milne, Chris; Moser, Jacques-E.; Rothlisberger, Ursula; Smolentsev, Grigory; Teuscher, Joël; van Bokhoven, Jeroen A.; Wenger, Oliver

    2017-01-01

    The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review. PMID:29333473

  13. Ion selection of charge-modified large nanopores in a graphene sheet

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  14. 77 FR 69688 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Items I, II and III below, which Items have been prepared by the Exchange. The Commission is publishing... Management Gateway service (``RMG'') would not be charged for order/ quote entry ports if such ports are... for order/quote entry ports that connect to the Exchange via the DMM Gateway.\\7\\ \\5\\ The Exchange...

  15. Thermal dissociation of ions limits the degree of the gas-phase H/D exchange at the atmospheric pressure.

    PubMed

    Kostyukevich, Y; Kononikhin, A; Popov, I; Nikolaev, E

    2017-04-01

    We present the application of the extended desolvating capillaries for increasing the degree of the gas-phase hydrogen/deuterium exchange reaction at atmospheric pressure. The use of the extended capillaries results in the increase of the time that ions spend in the high pressure region, what leads to the significant improvement of the efficiency of the reaction. For the small protein ubiquitin, it was observed that for the same temperature, the number of exchanges increases with the decrease of the charge state so that the lowest charge state can exchange twice the number of hydrogen than the highest one. With the increase of the temperature, the difference decreases, and eventually, the number of exchanges equalizes for all charge states. The value of this temperature and the corresponding number of exchanges depend on the geometric parameters of the capillary. Further increase of the temperature leads to the thermal dissociation of the protein ion. The observed b/y fragments are identical to those produced by collision-induced dissociation performed in the ion trap. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Function of the nucleotide exchange activity of vav1 in T cell development and activation.

    PubMed

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J; Rittinger, Katrin; Tybulewicz, Victor L J

    2009-12-15

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal-regulated kinase and protein kinase D1, and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions.

  17. Function of the Nucleotide Exchange Activity of Vav1 in T cell Development and Activation*

    PubMed Central

    Saveliev, Alexander; Vanes, Lesley; Ksionda, Olga; Rapley, Jonathan; Smerdon, Stephen J.; Rittinger, Katrin; Tybulewicz, Victor L. J.

    2012-01-01

    The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal–regulated kinase (ERK) and protein kinase D1 (PKD1), and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions. PMID:20009105

  18. 75 FR 42801 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Organizations; International Securities Exchange, LLC; Notice of Filing and Immediate Effectiveness of Proposed... at or under the threshold are charged the constituent's prescribed execution fee. This waiver applies... members to execute large-sized FX options orders on the Exchange in a manner that is cost effective. The...

  19. Nongeminate Radiative Recombination of Free Charges in Cation-Exchanged PbS Quantum Dot Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.

    2016-06-01

    Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films.more » We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.« less

  20. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.

    2016-06-01

    Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films.more » We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.« less

  1. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.

  2. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2009-03-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble’s pressure more in line with that of the adjacent material. Suggestions for future work are made.

  3. The impact of loading approach and biological activity on NOM removal by ion exchange resins.

    PubMed

    Winter, Joerg; Wray, Heather E; Schulz, Martin; Vortisch, Roman; Barbeau, Benoit; Bérubé, Pierre R

    2018-05-01

    The present study investigated the impact of different loading approaches and microbial activity on the Natural Organic Matter (NOM) removal efficiency and capacity of ion exchange resins. Gaining further knowledge on the impact of loading approaches is of relevance because laboratory-scale multiple loading tests (MLTs) have been introduced as a simpler and faster alternative to column tests for predicting the performance of IEX, but only anecdotal evidence exists to support their ability to forecast contaminant removal and runtime until breakthrough of IEX systems. The overall trends observed for the removal and the time to breakthrough of organic material estimated using MLTs differed from those estimated using column tests. The results nonetheless suggest that MLTs could best be used as an effective tool to screen different ion exchange resins in terms of their ability to remove various contaminants of interest from different raw waters. The microbial activity was also observed to impact the removal and time to breakthrough. In the absence of regeneration, a microbial community rapidly established itself in ion exchange columns and contributed to the removal of organic material. Biological ion exchange (BIEX) removed more organic material and enabled operation beyond the point when the resin capacity would have otherwise been exhausted using conventional (i.e. in the absence of a microbial community) ion exchange. Furthermore, significantly greater removal of organic matter could be achieved with BIEX than biological activated carbon (BAC) (i.e. 56 ± 7% vs. 15 ± 5%, respectively) when operated at similar loading rates. The results suggest that for some raw waters, BIEX could replace BAC as the technology of choice for the removal of organic material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Strain-engineered inverse charge-funnelling in layered semiconductors.

    PubMed

    De Sanctis, Adolfo; Amit, Iddo; Hepplestone, Steven P; Craciun, Monica F; Russo, Saverio

    2018-04-25

    The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS 2 . We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.

  5. Dissociation of diatomic molecules and the exact-exchange Kohn-Sham potential: the case of LiF

    NASA Astrophysics Data System (ADS)

    Makmal, Adi; Kuemmel, Stephan; Kronik, Leeor

    2011-03-01

    The incorrect fractional-charge dissociation of stretched diatomic molecules, predicted by semi-local exchange-correlation functionals, is revisited. This difficulty can be overcome with asymptotically correct non-local potential operators, but should also be absent in exact Kohn-Sham theory, where the potential is local. Here, we show, for the illustrative case of the LiF dimer, that the exact-exchange local Kohn-Sham potential, constructed within the Krieger, Li, and Iafrate (KLI) approximation, can lead to binding energy and charge dissociation curves that are qualitatively correct. This correct behavior is traced back to a characteristic ``step'' structure in the local exchange potential and its relation to the Kohn-Sham eigenvalues is analyzed.

  6. Space charge in nanostructure resonances

    NASA Astrophysics Data System (ADS)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  7. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  8. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  9. Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes

    PubMed Central

    Ito, Yusuke; Kato, Akira; Hirata, Taku; Hirose, Shigehisa

    2014-01-01

    Zebrafish Na+/H+ exchanger 3b (zNHE3b) is highly expressed in the apical membrane of ionocytes where Na+ is absorbed from ion-poor fresh water against a concentration gradient. Much in vivo data indicated that zNHE3b is involved in Na+ absorption but not leakage. However, zNHE3b-mediated Na+ absorption has not been thermodynamically explained, and zNHE3b activity has not been measured. To address this issue, we overexpressed zNHE3b in Xenopus oocytes and characterized its activity by electrophysiology. Exposure of zNHE3b oocytes to Na+-free media resulted in significant decrease in intracellular pH (pHi) and intracellular Na+ activity (aNai). aNai increased significantly when the cytoplasm was acidified by media containing CO2-HCO3− or butyrate. Activity of zNHE3b was inhibited by amiloride or 5-ethylisopropyl amiloride (EIPA). Although the activity was accompanied by a large hyperpolarization of ∼50 mV, voltage-clamp experiments showed that Na+/H+ exchange activity of zNHE3b is electroneutral. Exposure of zNHE3b oocytes to medium containing NH3/NH4+ resulted in significant decreases in pHi and aNai and significant increase in intracellular NH4+ activity, indicating that zNHE3b mediates the Na+/NH4+ exchange. In low-Na+ (0.5 mM) media, zNHE3b oocytes maintained aNai of 1.3 mM, and Na+-influx was observed when pHi was decreased by media containing CO2-HCO3− or butyrate. These results provide thermodynamic evidence that zNHE3b mediates Na+ absorption from ion-poor fresh water by its Na+/H+ and Na+/NH4+ exchange activities. PMID:24401990

  10. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    DOE PAGES

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; ...

    2016-09-26

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less

  11. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    PubMed

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  12. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less

  13. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  14. Thiophenic compounds adsorption on Na(I)Y and rare earth exchanged Y zeolites: a density functional theory study.

    PubMed

    Gao, Xionghou; Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Yao, Xiaojun

    2013-11-01

    We have theoretically investigated the adsorption of thiophene, benzothiophene, dibenzothiophene on Na(I)Y and rare earth exchanged La(III)Y, Ce(III)Y, Pr(III)Y Nd(III)Y zeolites by density functional theory calculations. The calculated results show that except benzothiophene adsorbed on Na(I)Y with a stand configuration, the stable adsorption structures of other thiophenic compounds on zeolites exhibit lying configurations. Adsorption energies of thiophenic compounds on the Na(I)Y are very low, and decrease with the increase of the number of benzene rings in thiophenic compounds. All rare earth exchanged zeolites exhibit strong interaction with thiophene. La(III)Y and Nd(III)Y zeolites are found to show enhanced adsorption energies to benzothiophene and Pr(III)Y zeolites are favorable for dibenzothiophene adsorption. The analysis of the electronic total charge density and electron orbital overlaps show that the thiophenic compounds interact with zeolites by π-electrons of thiophene ring and exchanged metal atom. Mulliken charge populations analysis reveals that adsorption energies are strongly dependent on the charge transfer of thiophenic molecule and exchanged metal atom.

  15. 25 CFR 143.4 - Charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Charges. 143.4 Section 143.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES CHARGES FOR GOODS AND SERVICES PROVIDED TO NON-FEDERAL USERS § 143.4 Charges. (a) Charges shall be established by the Assistant Secretary and shall be...

  16. The physics of charge separation preceding lightning strokes in thunderclouds

    NASA Technical Reports Server (NTRS)

    Kyrala, Ali

    1987-01-01

    The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.

  17. Charge transport kinetics in a robust radical-substituted polymer/nanocarbon composite electrode

    NASA Astrophysics Data System (ADS)

    Sato, Kan; Oyaizu, Kenichi; Nishide, Hiroyuki

    We have reported a series of organic radical-substituted polymers as new-type charge storage and transport materials which could be used for energy related devices such as batteries and solar cells. Redox-active radical moieties introduced to the non-conjugated polymer backbones enable the rapid electron transfer among the adjacent radical sites, and thus large diffusive flux of electrical charge at a bulk scale. Here we present the elucidated charge transport kinetics in a radical polymer/single-walled carbon nanotube (SWNT) composite electrode. The synergetic effect of electrical conduction by a three-dimensional SWNT network and electron self-exchange reaction by radical polymers contributed to the 105-fold (per 1 g of added SWNT) boosting of electrochemical reactions and exceptionally large current density (greater than 1 A/cm2) as a rechargeable electrode. A totally organic-based secondary battery with a submicron thickness was fabricated to demonstrate the splendid electrochemical performances. Grants-in-Aid for Scientific Research (No. 24225003, 15J00888) and the Leading Graduate Program in Science and Engineering, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  18. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  19. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  20. Failures and anomalies attributed to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Leach, R. D.; Alexander, M. B. (Editor)

    1995-01-01

    The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  1. Frenkel versus charge-transfer exciton dispersion in molecular crystals

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco

    2013-11-01

    By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.

  2. Pre-departure preparation and co-curricular activities for Students' intercultural exchange: A mixed-methods study.

    PubMed

    Chan, E Angela; Liu, Justina Yat Wa; Fung, Keith Hin Kee; Tsang, Pak Lik; Yuen, John

    2018-04-01

    Nurses are required to be culturally competent to provide quality care to an increasingly diverse and ageing population. International exchange programmes were developed to support the traditional nursing curriculum. These programmes have often overlooked the importance of pre-departure preparation and co-curricular activities to the development of intercultural competency. To explore the influence of pre-departure and co-curricular activities on the intercultural learning experiences of both exchange and host students in a short-term international summer programme. A mixed-methods study. Students were recruited from international and mainland exchange partners, with host students as ambassadors. The international summer programme involved a week of online pre-departure activities and two weeks of face-to-face meetings. A convenience sample of 62 students from diverse cultural backgrounds was recruited on a voluntary basis. The participants were aged between 19 and 27. Data were collected from students' pre- and post-visit questionnaires, discussions within the workshops, their online discussion threads, and focus group discussions. The quantitative findings suggested that students' cultural intelligence improved significantly after the exchange programme. Qualitatively, three themes emerged as: 1) Students' motivation to engage in intercultural learning; 2) Barriers to intercultural communication; 3) Enablers of intercultural communication. Pre-departure preparation enabled students to discuss their common goals and expectations, while exploring differences, asked for practical living information, and used the basic intercultural concepts in their discussion on the care of elderly. This virtual encounter has lay the foundation for students' subsequent discussions about the why and how the differences that inform their own practices and about global ageing and poverty issues during their co-curricular activities. While the pre-departure preparation could serve as a

  3. 76 FR 13252 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... Rule Change Relating to Access Fees for Foreign Currency Options March 4, 2011. Pursuant to Section 19... fee charged to foreign currency (``FX'') options market makers. The text of the proposed rule change... this proposed rule change is to terminate an access fee charged by the Exchange to foreign currency...

  4. 75 FR 1109 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    .... \\5\\ A ``pair'' of ports refers to one port at the site of the Exchange's primary data center... for physical ports used to connect to the Exchange's system for order entry and receipt of data from... receipt of Exchange data,\\4\\ but does not currently charge for the ``physical'' ports needed to connect to...

  5. 75 FR 2901 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ..., transaction fees applicable to Professionals. In accordance with that representation, the Exchange now... orders, regardless of the exchange on which the transaction occurs. Professional orders, which will use..., Professional orders will be charged a $0.20 per contract transaction fee in all equity options and options on...

  6. 78 FR 4180 - Self-Regulatory Organizations; Chicago Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... reasons described above, the Exchange believes that the proposed rule change reflects this competitive... Change To Alter Fee Schedule Relating to Port Charges January 15, 2013. Pursuant to Section 19(b)(1) \\1... the Securities and Exchange Commission (the ``Commission'') the proposed rule change as described in...

  7. Calculation of low-Z impurity pellet induced fluxes of charge exchange neutral particles escaping from magnetically confined toroidal plasmas.

    PubMed

    Goncharov, P R; Ozaki, T; Sudo, S; Tamura, N; Tolstikhina, I Yu; Sergeev, V Yu

    2008-10-01

    Measurements of energy- and time-resolved neutral hydrogen and helium fluxes from an impurity pellet ablation cloud, referred to as pellet charge exchange or PCX experiments, can be used to study local fast ion energy distributions in fusion plasmas. The estimation of the local distribution function f(i)(E) of fast ions entering the cloud requires knowledge of both the fraction F(0)(E) of incident ions exiting the cloud as neutral atoms and the attenuation factor A(E,rho) describing the loss of fast atoms in the plasma. Determination of A(E,rho), in turn, requires the total stopping cross section sigma(loss) of neutral atoms in the plasma and the Jacobian reflecting the measurement geometry and the magnetic surface shape. The obtained functions F(0)(E) and A(E,rho) enter multiplicatively into the probability density for escaping neutral particle kinetic energy. A general calculation scheme has been developed and realized as a FORTRAN code, which is to be applied for the calculation of f(i)(E) from PCX experimental results obtained with low-Z impurity pellets.

  8. 47 CFR 69.131 - Universal service end user charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 69.131 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... is not part of any other element established pursuant to part 69. Such a charge may be assessed on a... exchange carrier it may be combined for billing purposes with other end user retail rate elements. A non...

  9. Calculation of total cross sections for charge exchange in molecular collisions

    NASA Technical Reports Server (NTRS)

    Ioup, J.

    1979-01-01

    Areas of investigation summarized include nitrogen ion-nitrogen molecule collisions; molecular collisions with surfaces; molecular identification from analysis of cracking patterns of selected gases; computer modelling of a quadrupole mass spectrometer; study of space charge in a quadrupole; transmission of the 127 deg cylindrical electrostatic analyzer; and mass spectrometer data deconvolution.

  10. Ionic charge state measurements during He(+)-rich solar particle events

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.

    1984-01-01

    Ionic charge state measurements of carbon, oxygen, and iron in He(+)-rich energetic particle events are presented. The data have been obtained with the Max-Planck-Institut/University of Maryland sensor system on the ISEE 3 spacecraft. The ionic charge states cannot be explained in terms of a model in which the coronal temperature determines a charge equilibrium which is subsequently frozen-in nor in terms of charge exchange during transition through coronal matter after acceleration. It is concluded that the acceleration and probably also the injection process is biased against particles with high mass-to-charge ratios. The plasma injected into the acceleration process must consist of material of cold (not greater than 8.5 x 10 to the 4th K) as well as hot (2.5 x 10 to the 6th K) origin. The cold material must be more abundant than the hot material.

  11. Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola

    2012-02-01

    We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.

  12. Charging of multiple interacting particles by contact electrification.

    PubMed

    Soh, Siowling; Liu, Helena; Cademartiri, Rebecca; Yoon, Hyo Jae; Whitesides, George M

    2014-09-24

    Many processes involve the movement of a disordered collection of small particles (e.g., powders, grain, dust, and granular foods). These particles move chaotically, interact randomly among themselves, and gain electrical charge by contact electrification. Understanding the mechanisms of contact electrification of multiple interacting particles has been challenging, in part due to the complex movement and interactions of the particles. To examine the processes contributing to contact electrification at the level of single particles, a system was constructed in which an array of millimeter-sized polymeric beads of different materials were agitated on a dish. The dish was filled almost completely with beads, such that beads did not exchange positions. At the same time, during agitation, there was sufficient space for collisions with neighboring beads. The charge of the beads was measured individually after agitation. Results of systematic variations in the organization and composition of the interacting beads showed that three mechanisms determined the steady-state charge of the beads: (i) contact electrification (charging of beads of different materials), (ii) contact de-electrification (discharging of beads of the same charge polarity to the atmosphere), and (iii) a long-range influence across beads not in contact with one another (occurring, plausibly, by diffusion of charge from a bead with a higher charge to a bead with a lower charge of the same polarity).

  13. Origin of Non-Gaussian Spectra Observed via the Charge Exchange Recombination Spectroscopy Diagnostic in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Sulyman, Alex; Chrystal, Colin; Haskey, Shaun; Burrell, Keith; Grierson, Brian

    2017-10-01

    The possible observation of non-Maxwellian ion distribution functions in the pedestal of DIII-D will be investigated with a synthetic diagnostic that accounts for the effect of finite neutral beam size. Ion distribution functions in tokamak plasmas are typically assumed to be Maxwellian, however non-Gaussian features observed in impurity charge exchange spectra have challenged this concept. Two possible explanations for these observations are spatial averaging over a finite beam size and a local ion distribution that is non-Maxwellian. Non-Maxwellian ion distribution functions could be driven by orbit loss effects in the edge of the plasma, and this has implications for momentum transport and intrinsic rotation. To investigate the potential effect of finite beam size on the observed spectra, a synthetic diagnostic has been created that uses FIDAsim to model beam and halo neutral density. Finite beam size effects are investigated for vertical and tangential views in the core and pedestal region with varying gradient scale lengths. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program, DE-FC02-04ER54698, and DE-AC02-09CH11466.

  14. Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-Induced In Situ Forming Gels for Periodontitis Treatment.

    PubMed

    Phaechamud, Thawatchai; Jantadee, Takron; Mahadlek, Jongjan; Charoensuksai, Purin; Pichayakorn, Wiwat

    2017-02-01

    Eudragit RS (ERS), a quaternary polyacrylate positively charged polymer, exhibits a very low permeability and swells in aqueous media independently of pH without dissolving. Owing to its high solubility in N-methyl pyrrolidone (NMP), it was interesting to apply as polymer matrix for solvent-exchanged in situ forming gel. The aim of this research was to prepare in situ forming gels from ERS to deliver the antimicrobial agents (doxycycline hyclate, metronidazole, and benzoyl peroxide) for periodontitis treatment. They were evaluated for viscosity and rheology, gel formation, syringeability, drug release, and antimicrobial activities. The solvent exchange between NMP and an external aqueous simulated gingival crevicular fluid stimulated the dissolved ERS transforming into the opaque rigid gel. Antimicrobial agent loaded ERS systems exhibited Newtonian flow with acceptable syringeability. The higher-loaded ERS promoted the more prolongation of drug release because of the retardation of water diffusion into the precipitated matrix. Antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis depended on type of drugs and test microorganisms. Doxycycline hyclate loaded ERS systems showed these activities greater than the others; however, all of them could inhibit all test microorganisms. Thus, the solvent exchange-induced in situ forming gels comprising ERS-antimicrobial drugs exhibited potential use as localized delivery systems for periodontitis treatment.

  15. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography.

    PubMed

    Sadavarte, Rahul; Madadkar, Pedram; Filipe, Carlos Dm; Ghosh, Raja

    2018-01-15

    Monoclonal antibodies undergo various forms of chemical transformation which have been shown to cause loss in efficacy and alteration in pharmacokinetic properties of these molecules. Such modified antibody molecules are known as variants. They also display physical properties such as charge that are different from intact antibody molecules. However, the difference in charge is very subtle and separation based on it is quite challenging. Charge variants are usually separated using ion-exchange column chromatography or isoelectric focusing. In this paper, we report a rapid and scalable method for fractionating monoclonal antibody charge variants, based on the use of cation exchange laterally-fed membrane chromatography (LFMC). Starting with a sample of monoclonal antibody hIgG1-CD4, three well-resolved fractions were obtained using either pH or salt gradient. These fractions were identified as acidic, neutral and basic variants. Each of these fractions contained intact heavy and light chains and so antibody fragmentation had no role in variant generation. The separation was comparable to that using column chromatography but was an order of magnitude faster. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 76 FR 7620 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... levels at a particular venue to be excessive. The proposed rule change reflects a competitive pricing... increased rate, effective January 3, 2011. The Exchange notes that it operates in a highly competitive.... The Exchange believes the fees and credits remain competitive with those charged by other venues and...

  17. Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon.

    PubMed

    de Ridder, D J; Verliefde, A R D; Heijman, S G J; Verberk, J Q J C; Rietveld, L C; van der Aa, L T J; Amy, G L; van Dijk, J C

    2011-01-01

    Natural organic matter (NOM) can influence pharmaceutical adsorption onto granular activated carbon (GAC) by direct adsorption competition and pore blocking. However, in the literature there is limited information on which of these mechanisms is more important and how this is related to NOM and pharmaceutical properties. Adsorption batch experiments were carried out in ultrapure, waste- and surface water and fresh and NOM preloaded GAC was used. Twenty-one pharmaceuticals were selected with varying hydrophobicity and with neutral, negative or positive charge. The influence of NOM competition and pore blocking could not be separated. However, while reduction in surface area was similar for both preloaded GACs, up to 50% lower pharmaceutical removal was observed on wastewater preloaded GAC. This was attributed to higher hydrophobicity of wastewater NOM, indicating that NOM competition may influence pharmaceutical removal more than pore blocking. Preloaded GAC was negatively charged, which influenced removal of charged pharmaceuticals significantly. At a GAC dose of 6.7 mg/L, negatively charged pharmaceuticals were removed for 0-58%, while removal of positively charged pharmaceuticals was between 32-98%. Charge effects were more pronounced in ultrapure water, as it contained no ions to shield the surface charge. Solutes with higher log D could compete better with NOM, resulting in higher removal.

  18. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The

  19. Jak2 and Ca2+/calmodulin are key intermediates for bradykinin B2 receptor-mediated activation of Na+/H+ exchange in KNRK and CHO cells.

    PubMed

    Lefler, David; Mukhin, Yurii V; Pettus, Tobiah; Leeb-Lundberg, L M Fredrik; Garnovskaya, Maria N; Raymond, John R

    2003-04-01

    Na(+)/H(+) exchangers are ubiquitous in mammalian cells, carrying out key functions, such as cell volume defense, acid-base homeostasis, and regulation of the cytoskeleton. We used two screening technologies (FLIPR and microphysiometry) to characterize the signal transduction pathway used by the bradykinin B(2) receptor to activate Na(+)/H(+) exchange in two cell lines, KNRK and CHO. In both cell types, B(2) receptor activation resulted in rapid increases in the rate of proton extrusion that were sodium-dependent and could be blocked by the Na(+)/H(+) exchange inhibitors EIPA and MIA or by replacing extracellular sodium with TMA. Activation of Na(+)/H(+) exchange by bradykinin was concentration-dependent and could be blocked by the selective B(2) receptor antagonist HOE140, but not by the B(1) receptor antagonist des-Arg10-HOE140. Inhibitors of Jak2 tyrosine kinase (genistein and AG490) and of CAM (W-7 and calmidazolium) attenuated bradykinin-induced activation of Na(+)/H(+) exchange. Bradykinin induced formation of a complex between CAM and Jak2, supporting a regulatory role for Jak2 and CAM in the activation of Na(+)/H(+) exchange in KNRK and CHO cells. We propose that this pathway (B(2) receptor --> Jak2 --> CAM --> Na(+)/H(+) exchanger) is a fundamental regulator of Na(+)/H(+) exchange activity.

  20. Barrier versus tilt exchange gate operations in spin-based quantum computing

    NASA Astrophysics Data System (ADS)

    Shim, Yun-Pil; Tahan, Charles

    2018-04-01

    We present a theory for understanding the exchange interaction between electron spins in neighboring quantum dots, either by changing the detuning of the two quantum dots or independently tuning the tunneling barrier between quantum dots. The Hubbard model and a more realistic confining-potential model are used to investigate how the tilting and barrier control affect the effective exchange coupling and thus the gate fidelity in both the detuning and symmetric regimes. We show that the exchange coupling is less sensitive to the charge noise through tunnel barrier control (while allowing for exchange coupling operations on a sweet spot where the exchange interaction has zero derivative with respect to the detuning). Both GaAs and Si quantum dots are considered, and we compare our results with experimental data showing qualitative agreements. Our results answer the open question of why barrier gates are preferable to tilt gates for exchange-based gate operations.

  1. 77 FR 2581 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... particular venue to be excessive. The proposed rule change reflects a competitive pricing structure designed..._marketplace_fees_12_1_2011.pdf The Exchange also notes that it operates in a highly competitive market in.... The Exchange believes the fees and credits remain competitive with those charged by other venues and...

  2. Flywheel-Based Fast Charging Station - FFCS for Electric Vehicles and Public Transportation

    NASA Astrophysics Data System (ADS)

    Gabbar, Hossam A.; Othman, Ahmed M.

    2017-08-01

    This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”

  3. 18 CFR 284.266 - Rates and charges for interstate pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale, Transportation, and Exchange Transactions... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Rates and charges for interstate pipelines. 284.266 Section 284.266 Conservation of Power and Water Resources FEDERAL ENERGY...

  4. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling.

    PubMed

    Abbott, Jason R; Hodges, Timothy R; Daniels, R Nathan; Patel, Pratiq A; Kennedy, Jack Phillip; Howes, Jennifer E; Akan, Denis T; Burns, Michael C; Sai, Jiqing; Sobolik, Tammy; Beesetty, Yugandhar; Lee, Taekyu; Rossanese, Olivia W; Phan, Jason; Waterson, Alex G; Fesik, Stephen W

    2018-06-01

    Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at sub-micromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway, resulting in a decrease in pERK1/2 T202/Y204 protein levels at higher compound concentrations.

  5. 77 FR 16287 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... of the Proposed Rule Change The ISE is proposing to amend its API or login fees. The text of the... Exchange's API or login fees. ISE currently charges its Members a fee for each login that a Member uses for... sessions. The Exchange now proposes to lower the quote allowance for each login session from 1.8 million...

  6. Compact, accurate description of diagnostic neutral beam propagation and attenuation in a high temperature plasma for charge exchange recombination spectroscopy analysis.

    PubMed

    Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S

    2008-10-01

    Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

  7. Functionally Charged Polystyrene Particles Activate Immortalized Mouse Microglia (BV2): Cellular and Genomic Response

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2

  8. Components of gating charge movement and S4 voltage-sensor exposure during activation of hERG channels.

    PubMed

    Wang, Zhuren; Dou, Ying; Goodchild, Samuel J; Es-Salah-Lamoureux, Zeineb; Fedida, David

    2013-04-01

    The human ether-á-go-go-related gene (hERG) K(+) channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q(1) and Q(2), with V(1/2)'s of -55.7 (equivalent charge, z = 1.60) and -54.2 mV (z = 1.30), respectively, with the Q(2) charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q(1) and Q(2), decreasing to 4.3 ms for Q(2) at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V(1/2) of -64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q(1) and Q(2) charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.

  9. Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.

    2014-07-01

    We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less

  10. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    PubMed

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  11. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  12. Pressure Dependence of Insulator-Insulator Contact Charging

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.

    2005-01-01

    The mechanism of insulator-insulator triboelectric (contact) charging is being studied by the Electrostatics and Surface Physics Laboratory at KSC. The hypothesis that surface ion exchange is the primary mechanism is being tested experimentally. A two-phase model based on a small partial pressure of singly charged ions in an ambient ideal gas in equilibrium with a submonolayer adsorbed film will provide predictions about charging as a function Of ion mass, pressure, temperature, and surface adsorption energy. Interactions between ions will be considered in terms of coulombic and screened potential energies. This work is yielding better understanding of the triboelectrification of insulators, which is an important problem in. space exploration technology. The work is also relevant to important industrial processes such as xerography and the application of paints and coatings. Determining a better understanding of the fundamental mechanism of insulator-insulator triboelectrification will hopefully lead to better means of eliminating or at least mitigating its hazards and enhancing its useful applications.

  13. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps

    PubMed Central

    Mei, Yaochuan; Diemer, Peter J.; Niazi, Muhammad R.; Hallani, Rawad K.; Jarolimek, Karol; Day, Cynthia S.; Risko, Chad; Anthony, John E.; Amassian, Aram

    2017-01-01

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms. PMID:28739934

  14. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps.

    PubMed

    Mei, Yaochuan; Diemer, Peter J; Niazi, Muhammad R; Hallani, Rawad K; Jarolimek, Karol; Day, Cynthia S; Risko, Chad; Anthony, John E; Amassian, Aram; Jurchescu, Oana D

    2017-08-15

    The temperature dependence of the charge-carrier mobility provides essential insight into the charge transport mechanisms in organic semiconductors. Such knowledge imparts critical understanding of the electrical properties of these materials, leading to better design of high-performance materials for consumer applications. Here, we present experimental results that suggest that the inhomogeneous strain induced in organic semiconductor layers by the mismatch between the coefficients of thermal expansion (CTE) of the consecutive device layers of field-effect transistors generates trapping states that localize charge carriers. We observe a universal scaling between the activation energy of the transistors and the interfacial thermal expansion mismatch, in which band-like transport is observed for similar CTEs, and activated transport otherwise. Our results provide evidence that a high-quality semiconductor layer is necessary, but not sufficient, to obtain efficient charge-carrier transport in devices, and underline the importance of holistic device design to achieve the intrinsic performance limits of a given organic semiconductor. We go on to show that insertion of an ultrathin CTE buffer layer mitigates this problem and can help achieve band-like transport on a wide range of substrate platforms.

  15. Active osmotic exchanger for advanced filtration at the nano scale

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Bocquet, Lyderic

    2015-11-01

    One of the main functions of the kidney is to remove the waste products of an organism, mostly by excreting concentrated urea while reabsorbing water and other molecules. The human kidney is capable of recycling about 200 liters of water per day, at the relatively low cost of 0.5 kJ/L (standard dialysis requiring at least 150 kJ/L). Kidneys are constituted of millions of parallel filtration networks called nephrons. The nephrons of all mammalian kidneys present a specific loop geometry, the Loop of Henle, that is believed to play a key role in the urinary concentrating mechanism. One limb of the loop is permeable to water and the other contains sodium pumps that exchange with a common interstitium. In this work, we take inspiration from this osmotic exchanger design to propose new nanofiltration principles. We first establish simple analytical results to derive general operating principles, based on coupled water permeable pores and osmotic pumps. The best filtration geometry, in terms of power required for a given water recycling ratio, is comparable in many ways to the mammalian nephron. It is not only more efficient than traditional reverse osmosis systems, but can also work at much smaller pressures (of the order of the blood pressure, 0.13 bar, as compared to more than 30 bars for pressure-retarded osmosis systems). We anticipate that our proof of principle will be a starting point for the development of new filtration systems relying on the active osmotic exchanger principle.

  16. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  17. Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites.

    PubMed

    Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio

    2018-03-04

    Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.

  18. Failure of the Nernst-Einstein equation to correlate electrical resistances and rates of ionic self-exchange across certain fixed charge membranes.

    PubMed

    Gottlieb, M H; Sollner, K

    1968-05-01

    The electrical resistances and rates of self-exchange of univalent critical ions across several types of collodion matrix membranes of high ionic selectivity were studied over a wide range of conditions. The relationship which was observed between these quantities with membranes of a certain type, namely those activated with poly-2-vinyl-N-methyl pyridinium bromide, cannot be explained on the basis of current concepts of the movement of ions across ion exchange membranes. Rates of self-exchange across these membranes were several times greater than those calculated from the electrical resistances of the membranes on the basis of an expression derived by the use of the Nernst-Einstein equation. The magnitude of the discrepancy was greatest at low concentrations of the ambient electrolyte solution and was independent of the species of both critical and noncritical ions. The data obtained with other types of collodion matrix membranes were, at least approximately, in agreement with the predictions based on the Nernst-Einstein equation. Self-exchange rates across the anion permeable protamine collodion membranes, and across the cation permeable polystyrene sulfonic acid collodion membranes, were about 20% less than those calculated from the electrical resistances. The direction and magnitude of these differences, also observed by other investigators, are qualitatively understood as an electroosmotic effect. With cation permeable membranes prepared by the oxidation of preformed collodion membranes, almost exact agreement was obtained between measured and calculated self-exchange rates; the cause of the apparent absence of an electroosmotic effect with these membranes is unknown.

  19. Failure of the Nernst-Einstein Equation to Correlate Electrical Resistances and Rates of Ionic Self-Exchange across Certain Fixed Charge Membranes

    PubMed Central

    Gottlieb, Melvin H.; Sollner, Karl

    1968-01-01

    The electrical resistances and rates of self-exchange of univalent critical ions across several types of collodion matrix membranes of high ionic selectivity were studied over a wide range of conditions. The relationship which was observed between these quantities with membranes of a certain type, namely those activated with poly-2-vinyl-N-methyl pyridinium bromide, cannot be explained on the basis of current concepts of the movement of ions across ion exchange membranes. Rates of self-exchange across these membranes were several times greater than those calculated from the electrical resistances of the membranes on the basis of an expression derived by the use of the Nernst-Einstein equation. The magnitude of the discrepancy was greatest at low concentrations of the ambient electrolyte solution and was independent of the species of both critical and noncritical ions. The data obtained with other types of collodion matrix membranes were, at least approximately, in agreement with the predictions based on the Nernst-Einstein equation. Self-exchange rates across the anion permeable protamine collodion membranes, and across the cation permeable polystyrene sulfonic acid collodion membranes, were about 20% less than those calculated from the electrical resistances. The direction and magnitude of these differences, also observed by other investigators, are qualitatively understood as an electroosmotic effect. With cation permeable membranes prepared by the oxidation of preformed collodion membranes, almost exact agreement was obtained between measured and calculated self-exchange rates; the cause of the apparent absence of an electroosmotic effect with these membranes is unknown. PMID:5699793

  20. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. 78 FR 42811 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    .... The Commission is publishing this notice to solicit comments on the proposed rule change from... implement the fee changes on July 1, 2013.\\4\\ \\3\\ The Exchange has a Common Customer Gateway (``CCG'') that... of the Exchange's Risk Management Gateway service (``RMG'') are not charged for order/ quote entry...

  2. Investigation of the phenomenon of electrostatic compromise of a plastic fiber heat exchanger.

    PubMed

    Elgas, R J

    1999-03-01

    The use of a new generation of blood oxygenator design using plastic fibers for the heat exchange material is growing. The benefits of a plastic heat exchange material are improved biocompatibility and performance over some of the traditional metals used. During the initial period of clinical use of one of these new oxygenators, there were reports of four blood-to-water leaks. No patient complications were associated with these leaks, but the product was withdrawn from the market. After a thorough evaluation, the cause of the leaks was found to be an electrostatic discharge that occurred within the heat exchanger during priming of the extracorporeal circuit. It was found that an electrostatic potential between the blood path and the water path of the heat exchanger is generated as the prime solution is recirculated by a roller pump with polyvinyl chloride (PVC) pumphead tubing. The magnitude of the potential generated was found to vary with the make and model of the roller pump. If this voltage exceeds the dielectric strength of the fiber, a discharge through the wall of a single heat exchange fiber will occur and produce a hole. Several solutions to this problem of roller pumps generating an electrostatic charge when used with PVC pumphead tubing were identified. Centrifugal blood pumps and roller pumps using silicone rubber pumphead tubing were found to generate no significant electrostatic potential between the blood path and the water path. Another solution, a charge equalization line (CEL), was designed to provide a conductive path for the charge to equilibrate across the fiber wall. The CEL can be either external or internal to the oxygenator. Each of these solutions was validated and the product has been reintroduced for clinical use.

  3. High-performance cation-exchange chromatofocusing of proteins.

    PubMed

    Kang, Xuezhen; Frey, Douglas D

    2003-03-28

    Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.

  4. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations

    PubMed Central

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.

    2014-01-01

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally. PMID:24459184

  5. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations.

    PubMed

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C; Landes, Christy F

    2014-02-11

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.

  6. Charge requirements of lipid II flippase activity in Escherichia coli.

    PubMed

    Butler, Emily K; Tan, Wee Boon; Joseph, Hildy; Ruiz, Natividad

    2014-12-01

    Peptidoglycan (PG) is an extracytoplasmic glycopeptide matrix essential for the integrity of the envelope of most bacteria. The PG building block is a disaccharide-pentapeptide that is synthesized as a lipid-linked precursor called lipid II. The translocation of the amphipathic lipid II across the cytoplasmic membrane is required for subsequent incorporation of the disaccharide-pentapeptide into PG. In Escherichia coli, the essential inner membrane protein MurJ is the lipid II flippase. Previous studies showed that 8 charged residues in the central cavity region of MurJ are crucial for function. Here, we completed the functional analysis of all 57 charged residues in MurJ and demonstrated that the respective positive or negative charge of the 8 aforementioned residues is required for proper MurJ function. Loss of the negative charge in one of these residues, D39, causes a severe defect in MurJ biogenesis; by engineering an intragenic suppressor mutation that restores MurJ biogenesis, we found that this charge is also essential for MurJ function. Because of the low level of homology between MurJ and putative orthologs from Gram-positive bacteria, we explored the conservation of these 8 charged residues in YtgP, a homolog from Streptococcus pyogenes. We found that only 3 positive charges are similarly positioned and essential in YtgP; YtgP possesses additional charged residues within its predicted cavity that are essential for function and conserved among Gram-positive bacteria. From these data, we hypothesize that some charged residues in the cavity region of MurJ homologs are required for interaction with lipid II and/or energy coupling during transport. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Early-stage aggregation in three-dimensional charged granular gas.

    PubMed

    Singh, Chamkor; Mazza, Marco G

    2018-02-01

    Neutral grains made of the same dielectric material can attain considerable charges due to collisions and generate long-range interactions. We perform molecular dynamic simulations in three dimensions for a dilute, freely cooling granular gas of viscoelastic particles that exchange charges during collisions. As compared to the case of clustering of viscoelastic particles solely due to dissipation, we find that the electrostatic interactions due to collisional charging alter the characteristic size, morphology, and growth rate of the clusters. The average cluster size grows with time as a power law, whose exponent is relatively larger in the charged gas than the neutral case. The growth of the average cluster size is found to be independent of the ratio of characteristic Coulomb to kinetic energy, or equivalently, of the typical Bjerrum length. However, this ratio alters the crossover time of the growth. Both simulations and mean-field calculations based on Smoluchowski's equation suggest that a suppression of particle diffusion due to the electrostatic interactions helps in the aggregation process.

  8. Early-stage aggregation in three-dimensional charged granular gas

    NASA Astrophysics Data System (ADS)

    Singh, Chamkor; Mazza, Marco G.

    2018-02-01

    Neutral grains made of the same dielectric material can attain considerable charges due to collisions and generate long-range interactions. We perform molecular dynamic simulations in three dimensions for a dilute, freely cooling granular gas of viscoelastic particles that exchange charges during collisions. As compared to the case of clustering of viscoelastic particles solely due to dissipation, we find that the electrostatic interactions due to collisional charging alter the characteristic size, morphology, and growth rate of the clusters. The average cluster size grows with time as a power law, whose exponent is relatively larger in the charged gas than the neutral case. The growth of the average cluster size is found to be independent of the ratio of characteristic Coulomb to kinetic energy, or equivalently, of the typical Bjerrum length. However, this ratio alters the crossover time of the growth. Both simulations and mean-field calculations based on Smoluchowski's equation suggest that a suppression of particle diffusion due to the electrostatic interactions helps in the aggregation process.

  9. The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin

    2014-12-01

    The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.

  10. Expression of cardiac sarcolemmal Na sup + -Ca sup 2+ exchange activity in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longoni, S.; Coady, M.J.; Ikeda, T.

    1988-12-01

    Injection of Xenopus laevis oocytes with rabbit heart poly(A){sup +}RNA results in expression of Na{sup +} inside (Na{sub i}{sup +})-dependent Ca{sup 2+} uptake activity. The activity was measured by first loading the oocytes with Na{sup +} using nystatin and then incubating the oocytes in K{sup +} or Na{sup +} medium containing {sup 45}Ca. The expressed Na{sup +} gradient-dependent Ca{sup 2+} uptake was five to eight times that observed with water-injected oocytes or with poly(A){sup +}RNA-injected oocytes for which the Na{sup +} load step had been omitted. Induced activity was related to the amount of RNA injected and was insensitive tomore » nifedipine. Fractionation of the poly(A){sup +}RNA on a sucrose gradient determined that the active message had a size range between 3 and 8 kb. The properties of the Na{sup +} gradient-dependent Ca{sup 2+} uptake indicated that Na{sup +}-Ca{sup 2+} exchange activity had been expressed in X. laevis oocytes. The result may be useful for cloning and identifying the molecular component responsible for Na{sup +}-Ca{sup 2+} exchange.« less

  11. 77 FR 22053 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... reference to orders routed to the PSX to include the ROUE \\7\\ routing strategy in addition to the ROUC routing strategy. The Exchange proposes to continue to assess a charge of $0.0025 per share. \\7\\ See... to orders routed to the BATS BYX Exchange to include the ROUE routing strategy in addition to the...

  12. 76 FR 21076 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... on the Exchange's Internet Web site at http://www.directedge.com . \\3\\ A Member is any registered... Parallel D or Parallel 2D with the DRT (Dark routing technique) option on BZX. BZX charges $0.0020 per... the DRT (Dark routing technique) option on BZX or SCAN/STGY on Nasdaq OMX Exchange (``Nasdaq.'') BATS...

  13. Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.

    2016-09-15

    In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) wemore » show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.« less

  14. Note on the photoproduction of the charged A1

    NASA Astrophysics Data System (ADS)

    Condo, G. T.; Handler, T.

    1987-05-01

    Arguments made nearly 15 years ago by Fox and Hey are updated in the light of recent experimental findings. These indicate that the charge-exchange photoproduction of the A1 should dominate that of the A2. Consistency with the experimental data demands an A1 mass of 1335+/-20 MeV and width of 180+/-55 MeV.

  15. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.

  16. Hidden crossing theory of charge exchange in H+ + He+(1 s) collisions in vicinity of maximum of cross section

    NASA Astrophysics Data System (ADS)

    Grozdanov, Tasko P.; Solov'ev, Evgeni A.

    2018-04-01

    Within the framework of dynamical adiabatic approach the hidden crossing theory of inelastic transitions is applied to charge exchange in H+ + He+(1 s) collisions in the wide range of center of mass collision energies E cm = (1.6 -70) keV. The good agreement with experiment and molecular close coupling calculations is obtained. At low energies our 4-state results are closest to the experiment and correctly reproduce the shoulder in energy dependence of the cross section around E cm = 6 keV. The 2-state results correctly predict the position of the maximum of the cross section at E cm ≈ 40 keV, whereas 4-state results fail to correctly describe the region around the maximum. The reason for this is the fact that adiabatic approximation for a given two-state hidden crossing is applicable for values of the Schtueckelberg parameter >1. But with increase of principal quantum number N the Schtueckelberg parameter decreases as N -3. That is why the 4-state approach involving higher excited states fails at smaller collision energies E cm ≈ 15 keV, while the 2-state approximation which involves low lying states can be extended to higher collision energies.

  17. 12 CFR 614.4900 - Foreign exchange.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Cooperatives and Agricultural Credit Banks Financing International Trade § 614.4900 Foreign exchange. (a... international financial activities. The bank's policies should include established guidelines for: (1) Net... Department of the Treasury pertaining to currency exchange activities and international transfers of monetary...

  18. NMR detection of pH-dependent histidine-water proton exchange reveals the conduction mechanism of a transmembrane proton channel.

    PubMed

    Hu, Fanghao; Schmidt-Rohr, Klaus; Hong, Mei

    2012-02-29

    The acid-activated proton channel formed by the influenza M2 protein is important for the life cycle of the virus. A single histidine, His37, in the M2 transmembrane domain (M2TM) is responsible for pH activation and proton selectivity of the channel. Recent studies suggested three models for how His37 mediates proton transport: a shuttle mechanism involving His37 protonation and deprotonation, a H-bonded imidazole-imidazolium dimer model, and a transporter model involving large protein conformational changes in synchrony with proton conduction. Using magic-angle-spinning (MAS) solid-state NMR spectroscopy, we examined the proton exchange and backbone conformational dynamics of M2TM in a virus-envelope-mimetic membrane. At physiological temperature and pH, (15)N NMR spectra show fast exchange of the imidazole (15)N between protonated and unprotonated states. To quantify the proton exchange rates, we measured the (15)N T(2) relaxation times and simulated them for chemical-shift exchange and fluctuating N-H dipolar fields under (1)H decoupling and MAS. The exchange rate is 4.5 × 10(5) s(-1) for Nδ1 and 1.0 × 10(5) s(-1) for Nε2, which are approximately synchronized with the recently reported imidazole reorientation. Binding of the antiviral drug amantadine suppressed both proton exchange and ring motion, thus interfering with the proton transfer mechanism. By measuring the relative concentrations of neutral and cationic His as a function of pH, we determined the four pK(a) values of the His37 tetrad in the viral membrane. Fitting the proton current curve using the charge-state populations from these pK(a)'s, we obtained the relative conductance of the five charge states, which showed that the +3 channel has the highest time-averaged unitary conductance. At physiologically relevant pH, 2D correlation spectra indicated that the neutral and cationic histidines do not have close contacts, ruling out the H-bonded dimer model. Moreover, a narrowly distributed nonideal

  19. Activation energy of negative fixed charges in thermal ALD Al{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühnhold-Pospischil, S.; Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg; Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg

    2016-08-08

    A study of the thermally activated negative fixed charges Q{sub tot} and the interface trap densities D{sub it} at the interface between Si and thermal atomic-layer-deposited amorphous Al{sub 2}O{sub 3} layers is presented. The thermal activation of Q{sub tot} and D{sub it} was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Q{sub tot} and D{sub it} were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of E{sub A} = (2.2 ± 0.2) eV and E{submore » A} = (2.3 ± 0.7) eV for Q{sub tot} and D{sub it}, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Q{sub tot} and D{sub it} were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Q{sub tot} based on an electron hopping process between the silicon and Al{sub 2}O{sub 3} through defects is proposed.« less

  20. Charge Exchange in Slow Collisions of O+ with He

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Lebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study is reported for the charge transfer in collisions of O^+ with He using the fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. The electron capture processes O^+(^4S^o, ^2D^o, ^2P^o) + He -> O(^3P) + He^+ are recalculated. The semiclassical MOCC approach was examined by a detailed comparision of cross sections and transition probabilities from both the fully quantal and semiclassical MOCC approaches. The discrepancies reported previously between the semiclassical and the quantal MOCC cross sections may be attributed due to the insufficient step-size resolution of the semiclassical calculations. Our results are also compared with the experimental cross sections and found good agreements. This work is supported by NSF, CREST program (Grant#0630370).

  1. Nitrate determination using anion exchange membrane and mid-infrared spectroscopy.

    PubMed

    Linker, Raphael; Shaviv, Avi

    2006-09-01

    This study investigates the combined use of an anion exchange membrane and transmittance mid-infrared spectroscopy for determining nitrate concentration in aqueous solutions and soil pastes. The method is based on immersing a small piece (2 cm(2)) of anion exchange membrane into 5 mL of solution or soil paste for 30 minutes, after which the membrane is removed, rinsed, and wiped dry. The absorbance spectrum of the charged membrane is then used to determine the amount of nitrate sorbed on the membrane. At the levels tested, the presence of carbonate or phosphate does not affect the nitrate sorption or the spectrum of the charged membrane in the vicinity of the nitrate band. Sulfate affects the spectrum of the charged membrane but does not prevent nitrate determination. For soil pastes, nitrate sorption is remarkably independent of the soil composition and is not affected by the level of soil constituents such as organic matter, clay, and calcium carbonate. Partial least squares analysis of the membrane spectra shows that there exists a strong correlation between the nitrate charge and the absorbance in the 1000-1070 cm(-1) interval, which includes the v(1) nitrate band located around 1040 cm(-1). The prediction errors range from 0.8 to 2.1 mueq, which, under the specific experimental conditions, corresponds to approximately 2 to 6 ppm N-NO(3)(-) on a solution basis or 2 to 5 mg [N]/kg [dry soil] on a dry soil basis.

  2. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images.

    PubMed

    Brown, Rachael; James, Cheree; Henderson, Luke A; Macefield, Vaughan G

    2012-01-01

    The sympathetic innervation of the skin primarily subserves thermoregulation, but the system has also been commandeered as a means of expressing emotion. While it is known that the level of skin sympathetic nerve activity (SSNA) is affected by anxiety, the majority of emotional studies have utilized the galvanic skin response as a means of inferring increases in SSNA. The purpose of the present study was to characterize the changes in SSNA when showing subjects neutral or emotionally charged images from the International Affective Picture System (IAPS). SSNA was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in ten subjects. Neutral images, positively charged images (erotica) or negatively charged images (mutilation) were presented in blocks of fifteen images of a specific type, each block lasting 2 min. Images of erotica or mutilation were presented in a quasi-random fashion, each block following a block of neutral images. Both images of erotica or images of mutilation caused significant increases in SSNA, but the increases in SSNA were greater for mutilation. The increases in SSNA were often coupled with sweat release and cutaneous vasoconstriction; however, these markers were not always consistent with the SSNA increases. We conclude that SSNA, comprising cutaneous vasoconstrictor and sudomotor activity, increases with both positively charged and negatively charged emotional images. Measurement of SSNA provides a more comprehensive assessment of sympathetic outflow to the skin than does the use of sweat release alone as a marker of emotional processing.

  3. Ion-exchange and iontophoresis-controlled delivery of apomorphine.

    PubMed

    Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni

    2013-04-01

    The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Water Sorption and Vapor-Phase Deuterium Exchange Studies on Methemoglobin CC, SC, SS, AS, and AA

    PubMed Central

    Killion, Philip J.; Cameron, Bruce F.

    1972-01-01

    Five hemoglobins whose genetic relationship to one another involves one set of alleles, hemoglobins CC, SC, SS, AS, and AA, were studied in the Met form. Two different investigations were conducted at 28°C on these methemoglobins within a McBain gravimetric sorption system: sorption of H2O vapor and vapor-phase deuterium-hydrogen exchange. For each of the five samples there was close agreement between the per cent hydration of polar sites as determined from sorption studies and the maximum per cent of labile hydrogens that were exchanged during the vapor-phase deuterium exchange study. Both studies measured a slight increase in the number of polar sites accessible to H2O or D2O vapor for those samples in which the substituent in the sixth position from the N-terminus of the two β-chains had a positively charged side chain and a slight decrease for those in which the substituent had a negatively charged side chain. The in-exchange of deuterium for hydrogen occurred at a faster observed rate than the out-exchange of hydrogen for deuterium. PMID:5030563

  5. 76 FR 39944 - Self-Regulatory Organizations; EDGX Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Change To Make Available Without Charge the EDGX Book Feed and To Add a Description of the EDGX Book Feed... make available without charge the EDGX book feed (``EDGX Book Feed''), an EDGX data feed that displays depth of book information. The Exchange also proposes to add a description of the EDGX Book Feed to new...

  6. 76 FR 39959 - Self-Regulatory Organizations; EDGA Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Change To Make Available Without Charge the EDGA Book Feed and To Add a Description of the EDGA Book Feed... make available without charge the EDGA book feed (``EDGA Book Feed''), an EDGA data feed that displays depth of book information. The Exchange also proposes to add a description of the EDGA Book Feed to new...

  7. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.

    PubMed

    Liang, Peng; Yuan, Lulu; Yang, Xufei; Zhou, Shaoji; Huang, Xia

    2013-05-01

    A capacitive deionization (CDI) cell was built with electrodes made of an inexpensive commercial activated carbon fiber (ACF), and then modified by incorporating ion-exchangers into the cell compartment. Three modified CDI designs were tested: MCDI - a CDI with electrodes covered by ion-exchange membranes (IEMs) of the same polarity, FCDI - a CDI with electrodes covered by ion-exchange felts (IEFs), and R-MCDI - an MCDI with cell chamber packed with ion-exchange resin (IER) granules. The cell was operated in the batch reactor mode with an initial salt concentration of 1000 mg/L NaCl, a typical level of domestic wastewater. The desalination tests involved investigations of two consecutive operation stages of CDIs: electrical adsorption (at an applied voltage of 1.2 V) and desorption [including short circuit (SC) desorption and discharge (DC) desorption]. The R-MCDI showed the highest electric adsorption as measured in the present study by desalination rate [670 ± 20 mg/(L h)] and salt removal efficiency (90 ± 1%) at 60 min, followed by the MCDI [440 ± 15 mg/(L h) and 60 ± 2%, respectively]. The superior desalination performance of the R-MCDI over other designs was also affirmed by its highest charge efficiency (110 ± 7%) and fastest desorption rates at both the SC [1960 ± 15 mg/(L·h)] and DC [3000 ± 20 mg/(L·h)] modes. The desalination rate and salt removal efficiency of the R-MCDI increased from ∼270 mg/(L h) and 83% to ∼650 mg/(L h) and 98% respectively when the applied voltage increased from 0.6 V to 1.4 V, while decreased slightly when lowering the salt water flow rate that fed into the cell. The packing of IER granules in the R-MCDI provided additional surface area for ions transfer; meanwhile, according to the results of electrochemical impedance spectroscopy (EIS) analysis, it substantially lower down the R-MCDI's ohmic resistance, resulting in improved desalination performance. Copyright © 2013 Elsevier Ltd. All

  8. Warm Breeze due to Charge Exchange Collisions Between Neutral He Atoms and He+ Ions in the Outer Heliosheath.

    NASA Astrophysics Data System (ADS)

    Kubiak, M. A.; Bzowski, M.; Czechowski, A.; Grygorczuk, J.

    2017-12-01

    We simulated the signal due to neutral He atoms, observed by Interstellar Boundary Explorer (IBEX), assuming that charge exchange collisions between neutral He atoms and He+ ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud (LIC). We chose the limiting distance of calculations at 5000 AU, where the neutral and charged components are in thermal equilibrium. From that distance we integrated the signal for test particles that we know they reach the IBEX detector, calculating for each particle the balance of losses and gains in the LIC, the ionization losses inside the HP, and the distribution function at 5000 AU. The resulting statistical weights were integrated over speed, inflow direction, collimator transmission, observation times, and IBEX spin angle bins to simulate the count rate actually observed by IBEX. We simulated several test cases of the plasma flow within the outer heliosheath and investigated the signal generation for plasma flows both in the presence and in the absence of the interstellar magnetic field. We found that a signal in the portion of IBEX data identified as due to the Warm Breeze does not arise when a homogeneous plasma flow in front of the heliopause is assumed. However, it appears immediately when any reasonable disturbance in the plasma flow due to the presence of the heliosphere is assumed. We obtained a good qualitative agreement between the data and the simulations for a model flow with the velocity vector of the unperturbed gas and the direction and intensity of magnetic field adopted from recent determinations. We conclude that direct-sampling observations of neutral He atoms at 1 AU from the Sun are a sensitive tool for investigating the flow of interstellar matter in the outer heliosheath; the Warm Breeze is indeed the secondary population of interstellar helium, as it was hypothesized earlier; the WB signal is consistent with that predicted by comet-like models of the

  9. Neural Activation Underlying Cognitive Control in the Context of Neutral and Affectively Charged Pictures in Children

    ERIC Educational Resources Information Center

    Lamm, Connie; White, Lauren K.; McDermott, Jennifer Martin; Fox, Nathan A.

    2012-01-01

    The neural correlates of cognitive control for typically developing 9-year-old children were examined using dense-array ERPs and estimates of cortical activation (LORETA) during a go/no-go task with two conditions: a neutral picture condition and an affectively charged picture condition. Activation was estimated for the entire cortex after which…

  10. New Perspectives on the Charging Mechanisms of Supercapacitors

    PubMed Central

    2016-01-01

    Supercapacitors (or electric double-layer capacitors) are high-power energy storage devices that store charge at the interface between porous carbon electrodes and an electrolyte solution. These devices are already employed in heavy electric vehicles and electronic devices, and can complement batteries in a more sustainable future. Their widespread application could be facilitated by the development of devices that can store more energy, without compromising their fast charging and discharging times. In situ characterization methods and computational modeling techniques have recently been developed to study the molecular mechanisms of charge storage, with the hope that better devices can be rationally designed. In this Perspective, we bring together recent findings from a range of experimental and computational studies to give a detailed picture of the charging mechanisms of supercapacitors. Nuclear magnetic resonance experiments and molecular dynamics simulations have revealed that the electrode pores contain a considerable number of ions in the absence of an applied charging potential. Experiments and computer simulations have shown that different charging mechanisms can then operate when a potential is applied, going beyond the traditional view of charging by counter-ion adsorption. It is shown that charging almost always involves ion exchange (swapping of co-ions for counter-ions), and rarely occurs by counter-ion adsorption alone. We introduce a charging mechanism parameter that quantifies the mechanism and allows comparisons between different systems. The mechanism is found to depend strongly on the polarization of the electrode, and the choice of the electrolyte and electrode materials. In light of these advances we identify new directions for supercapacitor research. Further experimental and computational work is needed to explain the factors that control supercapacitor charging mechanisms, and to establish the links between mechanisms and performance

  11. Removing Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charged Exchange Recombination

    NASA Technical Reports Server (NTRS)

    Wargelin, Brad

    2004-01-01

    Our research uses the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory to study X-ray emission from the charge exchange (CX) of highly charged ions with neutral gases. The resulting data help to fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center and Galactic Ridge, supernova ejecta, and photoionized nebulae. Appreciation of the astrophysical relevance of our work continues to grow with the publication of roughly a dozen papers in the past four years describing Chandra and XMM observations of geocoronal and heliospheric CX emission, the temporal variation of such emission and correlation with X-ray emission enhancements observed by ROSAT, the theoretical spatial distribution of that emission, and CX emission around other stars. A similar number of papers were also published during that time describing CX emission from planets and comets. We expect that the launch of ASTRSE2, with its second-generation XRS microcalo- (with 6-eV resolution), will reveal even more clearly the contributions of CX to astrophysical emission. In our EBIT work we collected CX spectra from such ions as H-like and He-like Ne, Ar, and Fe. Our early measurements were made with a high-purity Ge detector, but during the second year we began operation of the first-generation XRS microcalorimeter (a twin of the XRS on ASTRO-E) and greatly improved the resolution of our measurements from roughly 150 eV (FWHM) with the Ge detectors to 10 eV with the XRS. We found that saturation of the XRS counting apparatus, which we described in our proposal as a potential concern, is not a problem for studying CX. During the course of our research, we expanded the number of injection gases permitted by the LLNL safety team, purchased and eventually operated an atomic H source, and clearly demonstrated the

  12. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    NASA Technical Reports Server (NTRS)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  13. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    PubMed

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Pionic retardation effects in two-pion-exchange three-nucleon forces

    NASA Astrophysics Data System (ADS)

    Coon, S. A.; Friar, J. L.

    1986-09-01

    Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v/c)2 relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and in the specification of the choice of ambiguity parameters in the latter potential.

  15. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  16. The mechanics of motorised momentum exchange tethers when applied to active debris removal from LEO

    NASA Astrophysics Data System (ADS)

    Caldecott, Ralph; Kamarulzaman, Dayangku N. S.; Kirrane, James P.; Cartmell, Matthew P.; Ganilova, Olga A.

    2014-12-01

    The concept of momentum exchange when applied to space tethers for propulsion is well established, and a considerable body of literature now exists on the on-orbit modelling, the dynamics, and also the control of a large range of tether system applications. The authors consider here a new application for the Motorised Momentum Exchange Tether by highlighting three key stages of development leading to a conceptualisation that can subsequently be developed into a technology for Active Debris Removal. The paper starts with a study of the on-orbit mechanics of a full sized motorised tether in which it is shown that a laden and therefore highly massasymmetrical tether can still be forced to spin, and certainly to librate, thereby confirming its possible usefulness for active debris removal (ADR). The second part of the paper concentrates on the modelling of the centripetal deployment of a symmetrical MMET in order to get it initialized for debris removal operations, and the third and final part of the paper provides an entry into scale modelling for low cost mission design and testing. It is shown that the motorised momentum exchange tether offers a potential solution to the removal of large pieces of orbital debris, and that dynamic methodologies can be implemented to in order to optimise the emergent design.

  17. The PDZ domain of the guanine nucleotide exchange factor PDZGEF directs binding to phosphatidic acid during brush border formation.

    PubMed

    Consonni, Sarah V; Brouwer, Patricia M; van Slobbe, Eleonora S; Bos, Johannes L

    2014-01-01

    PDZGEF is a guanine nucleotide exchange factor for the small G protein Rap. It was recently found that PDZGEF contributes to establishment of intestinal epithelial polarity downstream of the kinase Lkb1. By binding to phosphatidic acid enriched at the apical membrane, PDZGEF locally activates Rap2a resulting in induction of brush border formation via a pathway that includes the polarity players TNIK, Mst4 and Ezrin. Here we show that the PDZ domain of PDZGEF is essential and sufficient for targeting PDZGEF to the apical membrane of polarized intestinal epithelial cells. Inhibition of PLD and consequently production of phosphatidic acid inhibitis targeting of PDZGEF to the plasma membrane. Furthermore, localization requires specific positively charged residues within the PDZ domain. We conclude that local accumulation of PDZGEF at the apical membrane during establishment of epithelial polarity is mediated by electrostatic interactions between positively charged side chains in the PDZ domain and negatively charged phosphatidic acid.

  18. The PDZ Domain of the Guanine Nucleotide Exchange Factor PDZGEF Directs Binding to Phosphatidic Acid during Brush Border Formation

    PubMed Central

    Consonni, Sarah V.; Brouwer, Patricia M.; van Slobbe, Eleonora S.; Bos, Johannes L.

    2014-01-01

    PDZGEF is a guanine nucleotide exchange factor for the small G protein Rap. It was recently found that PDZGEF contributes to establishment of intestinal epithelial polarity downstream of the kinase Lkb1. By binding to phosphatidic acid enriched at the apical membrane, PDZGEF locally activates Rap2a resulting in induction of brush border formation via a pathway that includes the polarity players TNIK, Mst4 and Ezrin. Here we show that the PDZ domain of PDZGEF is essential and sufficient for targeting PDZGEF to the apical membrane of polarized intestinal epithelial cells. Inhibition of PLD and consequently production of phosphatidic acid inhibitis targeting of PDZGEF to the plasma membrane. Furthermore, localization requires specific positively charged residues within the PDZ domain. We conclude that local accumulation of PDZGEF at the apical membrane during establishment of epithelial polarity is mediated by electrostatic interactions between positively charged side chains in the PDZ domain and negatively charged phosphatidic acid. PMID:24858808

  19. Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory

    PubMed Central

    Maroudas, Alice

    1968-01-01

    Ion exchange theory has been applied to articular cartilage. Relationships were derived between permeability, diffusivity, electrical conductivity, and streaming potential. Systematic measurements were undertaken on these properties. Experimental techniques are described and data tabulated. Theoretical correlations were found to hold within the experimental error. The concentration of fixed negatively-charged groups in cartilage was shown to be the most important parameter. Fixed charge density was found to increase with distance from the articular surface and this variation was reflected in the other properties. PMID:5699797

  20. 78 FR 51251 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... described below apply to transactions in stocks with a per share stock price of $1.00 or more. The Exchange... from the Exchange) that are not otherwise specified in the Price List are charged $0.0024 per share per... otherwise specified on the Price List (i.e., the proposed $.0022 and $0.0020 per share rates) because d...

  1. 76 FR 12386 - Self-Regulatory Organizations; C2 Options Exchange, Incorporated; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Change to Codify a Fee Schedule for the Sale by Market Data Express, LLC, of a BBO Data Feed for C2... C2 Options Exchange, Incorporated (``C2'' or ``Exchange'') is to codify a fee schedule for the sale... establish fees that MDX will charge for the sale of certain market data with respect to the trading of...

  2. Theoretical investigation of two-particle two-hole effects on spin-isospin excitations through charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Fukui, Tokuro; Minato, Futoshi

    2017-11-01

    Background: Coherent one-particle one-hole (1p1h) excitations have given us effective insights into general nuclear excitations. However, the two-particle two-hole (2p2h) excitation beyond 1p1h is now recognized as critical for the proper description of experimental data of various nuclear responses. Purpose: The spin-flip charge-exchange reactions 48Ca(p ,n )48Sc are investigated to clarify the role of the 2p2h effect on their cross sections. The Fermi transition of 48Ca via the (p ,n ) reaction is also investigated in order to demonstrate our framework. Methods: The transition density is calculated microscopically with the second Tamm-Dancoff approximation, and the distorted-wave Born approximation is employed to describe the reaction process. A phenomenological one-range Gaussian interaction is used to prepare the form factor. Results: For the Fermi transition, our approach describes the experimental behavior of the cross section better than the Lane model, which is the conventional method. For spin-flip excitations including the GT transition, the 2p2h effect decreases the magnitude of the cross section and does not change the shape of the angular distribution. The Δ l =2 transition of the present reaction is found to play a negligible role. Conclusions: The 2p2h effect will not change the angular-distributed cross section of spin-flip responses. This is because the transition density of the Gamow-Teller response, the leading contribution to the cross section, is not significantly varied by the 2p2h effect.

  3. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenstein, Bruce R.; Bialas, Chris; Cerda, José F.

    2015-09-14

    The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal–tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids inmore » protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.« less

  4. Nucleotide Binding by Lhs1p Is Essential for Its Nucleotide Exchange Activity and for Function in Vivo*

    PubMed Central

    de Keyzer, Jeanine; Steel, Gregor J.; Hale, Sarah J.; Humphries, Daniel; Stirling, Colin J.

    2009-01-01

    Protein translocation and folding in the endoplasmic reticulum of Saccharomyces cerevisiae involves two distinct Hsp70 chaperones, Lhs1p and Kar2p. Both proteins have the characteristic domain structure of the Hsp70 family consisting of a conserved N-terminal nucleotide binding domain and a C-terminal substrate binding domain. Kar2p is a canonical Hsp70 whose substrate binding activity is regulated by cochaperones that promote either ATP hydrolysis or nucleotide exchange. Lhs1p is a member of the Grp170/Lhs1p subfamily of Hsp70s and was previously shown to function as a nucleotide exchange factor (NEF) for Kar2p. Here we show that in addition to this NEF activity, Lhs1p can function as a holdase that prevents protein aggregation in vitro. Analysis of the nucleotide requirement of these functions demonstrates that nucleotide binding to Lhs1p stimulates the interaction with Kar2p and is essential for NEF activity. In contrast, Lhs1p holdase activity is nucleotide-independent and unaffected by mutations that interfere with ATP binding and NEF activity. In vivo, these mutants show severe protein translocation defects and are unable to support growth despite the presence of a second Kar2p-specific NEF, Sil1p. Thus, Lhs1p-dependent nucleotide exchange activity is vital for ER protein biogenesis in vivo. PMID:19759005

  5. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  6. Indoor Levels of Formaldehyde and Other Pollutants and Relationship to Air Exchange Rates and Human Activities

    NASA Astrophysics Data System (ADS)

    Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.

    2017-12-01

    This paper reports results on an indoor air quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. Air exchange rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor air pollution. From our study, averaged air exchange rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between air exchange rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower air exchange rates, will be unacceptable levels of air toxics, notably formaldehyde.

  7. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  8. Aluminum toxicity in tomato. Part 2.Leaf gas exchange, chlorophyll content, and invertase activity

    Treesearch

    L. Simon; M. Kieger; Shi-Jean S. Sung; T.J. Smalley

    1994-01-01

    The effect of aluminum (Al) toxicity on leaf gas exchange, leaf chlorophyll content, and sucrose metabolizing enzyme activity of two tomato cultivars (Lycopersicon esculentum Mill. 'Mountain Pride' and 'Floramerica') was studied to determine the mechanism of growth reduction observed in a related study (Simon et al., 1994, Part 1).Plants were grown...

  9. Particle transport through hydrogels is charge asymmetric.

    PubMed

    Zhang, Xiaolu; Hansing, Johann; Netz, Roland R; DeRouchey, Jason E

    2015-02-03

    Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Quantifying TEMPO Redox Polymer Charge Transport toward the Organic Radical Battery.

    PubMed

    Karlsson, Christoffer; Suga, Takeo; Nishide, Hiroyuki

    2017-03-29

    To design new and better organic active battery materials in a rational fashion, fundamental parameters of the charge transport must be studied. Herein we report on the electronic conductivity by electron diffusion in a TEMPO-containing redox polymer, and the reorganization energy of the TEMPO self-exchange in an organic solvent is determined for the first time. The electronic conductivity was 8.5 μS/cm at E 0 and corresponded to a redox hopping mechanism. The apparent electron diffusion coefficient was 1.9 × 10 -9 cm 2 /s at room temperature, and at short times the ion diffusion was limiting with a diffusion coefficient of 6.5 × 10 -10 cm 2 /s. The reorganization energy was determined to be 1.01 eV, indicating a rather polar chemical environment for the TEMPO groups. The implications for the usage of this type of materials in organic energy storage are discussed. As conductivity through 10 μm was demonstrated, we show that, if sufficient swellability can be ensured, charge can be transported through several micrometer thick layers in a battery electrode without any conducting additive.

  11. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2.

    PubMed Central

    Bickle, M; Delley, P A; Schmidt, A; Hall, M N

    1998-01-01

    The essential phosphatidylinositol kinase homologue TOR2 of Saccharomyces cerevisiae controls the actin cytoskeleton by activating a GTPase switch consisting of RHO1 (GTPase), ROM2 (GEF) and SAC7 (GAP). We have identified two mutations, rot1-1 and rot2-1, that suppress the loss of TOR2 and are synthetic-lethal. The wild-type ROT1 and ROT2 genes and a multicopy suppressor, BIG1, were isolated by their ability to rescue the rot1-1 rot2-1 double mutant. ROT2 encodes glucosidase II, and ROT1 and BIG1 encode novel proteins. We present evidence that cell wall defects activate RHO1. First, rot1, rot2, big1, cwh41, gas1 and fks1 mutations all confer cell wall defects and suppress tor2(ts). Second, destabilizing the cell wall by supplementing the growth medium with 0.005% SDS also suppresses a tor2(ts) mutation. Third, disturbing the cell wall with SDS or a rot1, rot2, big1, cwh41, gas1 or fks1 mutation increases GDP/GTP exchange activity toward RHO1. These results suggest that cell wall defects suppress a tor2 mutation by activating RHO1 independently of TOR2, thereby inducing TOR2-independent polarization of the actin cytoskeleton and cell wall synthesis. Activation of RHO1, a subunit of the cell wall synthesis enzyme glucan synthase, by a cell wall alteration would ensure that cell wall synthesis occurs only when and where needed. The mechanism of RHO1 activation by a cell wall alteration is via the exchange factor ROM2 and could be analogous to signalling by integrin receptors in mammalian cells. PMID:9545237

  12. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  13. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.

    PubMed

    Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

    2011-08-24

    The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well.

  14. Metal-Free Multiple Carbon-Carbon and Carbon-Hydrogen Bond Activations via Charge-Switching Mechanism in Unstrained Diindolylmethanes.

    PubMed

    Challa, Chandrasekhar; Varughese, Sunil; Suresh, Cherumuttathu H; Lankalapalli, Ravi S

    2017-08-18

    A transformation of the unstrained phenol substituted 3,3'-diindolylmethanes (DIPMs) to 2,3'-diindolylketones (DIKs) by double C-C single bond cleavage with associated rearrangements, triggered by phenyliodine(III) diacetate (PIDA), is reported. Density functional theory studies reveal a mechanism involving multiple "charge-switching" steps by synergistic involvement of the two indole units with overall low activation energy. The indole 'charge-switching' mechanism in DIPMs was further extended toward synthesis of a natural product motif cyclohepta[b]indole from biaryl appended DIBM.

  15. The competition of charge remote and charge directed fragmentation mechanisms in quaternary ammonium salt derivatized peptides--an isotopic exchange study.

    PubMed

    Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2011-12-01

    Derivatization of peptides as quaternary ammonium salts (QAS) is a promising method for sensitive detection by electrospray ionization tandem mass spectrometry (Cydzik et al. J. Pept. Sci. 2011, 17, 445-453). The peptides derivatized by QAS at their N-termini undergo fragmentation according to the two competing mechanisms - charge remote (ChR) and charge directed (ChD). The absence of mobile proton in the quaternary salt ion results in ChR dissociation of a peptide bond. However, Hofmann elimination of quaternary salt creates an ion with one mobile proton leading to the ChD fragmentation. The experiments on the quaternary ammonium salts with deuterated N-alkyl groups or amide NH bonds revealed that QAS derivatized peptides dissociate according to the mixed ChR-ChD mechanism. The isotopic labeling allows differentiation of fragments formed according to ChR and ChD mechanisms. © The Author(s) 2011. This article is published with open access at Springerlink.com

  16. ATP Dependence of Na+/H+ Exchange

    PubMed Central

    Demaurex, Nicolas; Romanek, Robert R.; Orlowski, John; Grinstein, Sergio

    1997-01-01

    We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na+-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-d-glucose and oligomycin. In cells dialyzed in the presence of ATP, no “run-down” was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at ∼5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or “flippase.” The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATPγS were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In

  17. Pionic retardation effects in two-pion-exchange three-nucleon forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, S.A.; Friar, J.L.

    1986-09-01

    Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v-italic/c-italic)/sup 2/ relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and inmore » the specification of the choice of ambiguity parameters in the latter potential.« less

  18. Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment

    NASA Technical Reports Server (NTRS)

    Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)

    2002-01-01

    Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.

  19. H(+)/solute-induced intracellular acidification leads to selective activation of apical Na(+)/H(+) exchange in human intestinal epithelial cells.

    PubMed

    Thwaites, D T; Ford, D; Glanville, M; Simmons, N L

    1999-09-01

    The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H(+)-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na(+)/H(+) exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na(+)/H(+) exchange was determined by a combination of pH(i), (22)Na(+) influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H(+)/solute-induced acidification (using glycylsarcosine or beta-alanine) led to Na(+)-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable (22)Na(+) influx at the apical membrane only. Selective activation of apical (but not basolateral) Na(+)/H(+) exchange by H(+)/solute cotransport demonstrates that coordinated activity of H(+)/solute symport with apical Na(+)/H(+) exchange optimizes the efficient absorption of nutrients and Na(+), while maintaining pH(i) and the ion gradients involved in driving transport.

  20. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    PubMed

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHexchange capacity to precursor was 4. The exchange order was obtained as follows: Ca 2+ >Mg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  1. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  2. Preparations of an inorganic-framework proton exchange nanochannel membrane

    NASA Astrophysics Data System (ADS)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  3. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki

    Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destructionmore » reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.« less

  4. Estimation of the outer-sphere contribution to the activation volume for electron exchange reactions using the mean spherical approximation

    NASA Astrophysics Data System (ADS)

    Takagi, Hideo D.; Swaddle, Thomas W.

    1996-01-01

    The outer-sphere contribution to the volume of activation of homogeneous electron exchange reactions is estimated for selected solvents on the basis of the mean spherical approximation (MSA), and the calculated values are compared with those estimated by the Strank-Hush-Marcus (SHM) theory and with activation volumes obtained experimentally for the electron exchange reaction between tris(hexafluoroacetylacetonato)ruthenium(III) and -(II) in acetone, acetonitrile, methanol and chloroform. The MSA treatment, which recognizes the molecular nature of the solvent, does not improve significantly upon the continuous-dielectric SHM theory, which represents the experimental data adequately for the more polar solvents.

  5. Power and Dependence in Intimate Exchange

    ERIC Educational Resources Information Center

    van de Rijt, Arnout; Macy, Michael W.

    2006-01-01

    A division of labor is mediated by exchange of valued goods and services. We use social exchange theory to extend this principal to "labors of love." Sexual activity in a close personal relationship seems outside the domain of bargaining and exchange. Nevertheless, we explore the possibility that this most intimate of human relations is influenced…

  6. Note on the photoproduction of the charged A/sub 1/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condo, G.T.; Handler, T.

    Arguments made nearly 15 years ago by Fox and Hey are updated in the light of recent experimental findings. These indicate that the charge-exchange photoproduction of the A/sub 1/ should dominate that of the A/sub 2/. Consistency with the experimental data demands an A/sub 1/ mass of 1335 +- 20 MeV and width of 180 +- 55 MeV.

  7. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  8. Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states.

    PubMed

    Mahdavifar, Maryam; Khoeini, Farhad

    2018-08-10

    We report peculiar charge and spin transport properties in S-shaped silicene junctions with the Kane-Mele tight-binding model. In this work, we investigate the effects of electric and exchange fields on the charge and spin transport properties. Our results show that by applying a perpendicular electric field, metal-semiconductor and also semimetal-semiconductor phase transitions occur in our systems. Furthermore, full spin current can be obtained in the structures, so the half-metallic states are observable. Our results enable us to control charge and spin currents and provide new opportunities and applications in silicene-based electronics, optoelectronics, and spintronics.

  9. Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption.

    PubMed

    Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao

    2017-12-18

    We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.

  10. Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seed, Ian; James, Paula; Mathieson, John

    2013-07-01

    With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchangemore » through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple

  11. Origin of the charge gap in LaMnPO

    DOE PAGES

    McNally, D. E.; Simonson, Jack W.; Post, K. W.; ...

    2014-11-18

    In this paper, we present high temperature inelastic neutron scattering and magnetic susceptibility measurements of the antiferromagnetic insulator LaMnPO that are consistent with the presence of two-dimensional magnetic correlations up to a temperature T max≈700K»T N=375 K, the Néel temperature. Optical transmission measurements show the T=300 K direct charge gap Δ=1 eV has decreased only marginally by 500 K and suggest it decreases by only 10% at T max. Density functional theory and dynamical mean-field theory calculations reproduce a direct charge gap in paramagnetic LaMnPO only when a strong Hund's coupling J H=0.9 eV is included, as well as on-sitemore » Hubbard U=8 eV. In conclusion, our results show that LaMnPO is a Mott-Hund's insulator, in which the charge gap is rather insensitive to antiferromagnetic exchange coupling.« less

  12. Improving nanoparticle dispersion and charge transfer in cadmium telluride tetrapod and conjugated polymer blends.

    PubMed

    Monson, Todd C; Hollars, Christopher W; Orme, Christine A; Huser, Thomas

    2011-04-01

    The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. © 2011 American Chemical Society

  13. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A.

    PubMed

    Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Morbidelli, Massimo

    2010-08-27

    A model for the adsorption equilibrium of proteins in ion-exchange chromatography explicitly accounting for the effect of pH and salt concentration in the limit of highly diluted systems was developed. It is based on the use of DLVO theory to estimate the electrostatic interactions between the charged surface of the ion-exchanger and the proteins. The corresponding charge distributions were evaluated as a function of pH and salt concentration using a molecular approach. The model was verified for the adsorption equilibrium of lysozyme, chymotrypsinogen A and four industrial monoclonal antibodies on two strong cation-exchangers. The adsorption equilibrium constants of these proteins were determined experimentally at various pH values and salt concentrations and the model was fitted with a good agreement using three adjustable parameters for each protein in the whole range of experimental conditions. Despite the simplifications of the model regarding the geometry of the protein-ion-exchanger system, the physical meaning of the parameters was retained. 2010 Elsevier B.V. All rights reserved.

  14. Dissection of the components for PIP2 activation and thermosensation in TRP channels

    PubMed Central

    Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815

  15. 17 CFR 8.15 - Denial of charges and right to hearing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EXCHANGE PROCEDURES FOR DISCIPLINARY, SUMMARY, AND MEMBERSHIP DENIAL ACTIONS Disciplinary Procedure § 8.15... a charge which is denied, or on a penalty set by the disciplinary committee under § 8.14(a)(2), he... denied and/or penalties set by the disciplinary committee under § 8.14(a)(2) for which a hearing has been...

  16. Na+/H+ exchange activity during phagocytosis in human neutrophils: role of Fcgamma receptors and tyrosine kinases

    PubMed Central

    1996-01-01

    In neutrophils, binding and phagocytosis facilitate subsequent intracellular killing of microorganisms. Activity of Na+/H+ exchangers (NHEs) participates in these events, especially in regulation of intracellular pH (pHi) by compensating for the H+ load generated by the respiratory burst. Despite the importance of these functions, comparatively little is known regarding the nature and regulation of NHE(s) in neutrophils. The purpose of this study was to identify which NHE(s) are expressed in neutrophils and to elucidate the mechanisms regulating their activity during phagocytosis. Exposure of cells to the phagocytic stimulus opsonized zymosan (OpZ) induced a transient cytosolic acidification followed by a prolonged alkalinization. The latter was inhibited in Na+-free medium and by amiloride analogues and therefore was due to activation of Na+/H+ exchange. Reverse transcriptase PCR and cDNA sequencing demonstrated that mRNA for the NHE-1 but not for NHE-2, 3, or 4 isoforms of the exchanger was expressed. Immunoblotting of purified plasma membranes with isoform- specific antibodies confirmed the presence of NHE-1 protein in neutrophils. Since phagocytosis involves Fcgamma (FcgammaR) and complement receptors such as CR3 (a beta2 integrin) which are linked to pathways involving alterations in intracellular [Ca2+]i and tyrosine phosphorylation, we studied these pathways in relation to activation of NHE-1. Cross-linking of surface bound antibodies (mAb) directed against FcgammaRs (FcgammaRII > FcgammaRIII) but not beta2 integrins induced an amiloride-sensitive cytosolic alkalinization. However, anti-beta2 integrin mAb diminished OpZ-induced alkalinization suggesting that NHE- 1 activation involved cooperation between integrins and FcgammaRs. The tyrosine kinase inhibitors genistein and herbimycin blocked cytosolic alkalinization after OpZ or FcgammaR cross-linking suggesting that tyrosine phosphorylation was involved in NHE-I activation. An increase in [Ca2+]i was not

  17. Strong electron-hole exchange in coherently coupled quantum dots.

    PubMed

    Fält, Stefan; Atatüre, Mete; Türeci, Hakan E; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac

    2008-03-14

    We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.

  18. Furfural to Furfuryl Alcohol: Computational Study of the Hydrogen Transfer on Lewis Acidic BEA Zeolites and Effects of Cation Exchange and Tetravalent Metal Substitution.

    PubMed

    Prasertsab, Anittha; Maihom, Thana; Probst, Michael; Wattanakit, Chularat; Limtrakul, Jumras

    2018-06-04

    The hydrogen transfer of furfural to furfuryl alcohol with i-propanol as the hydrogen source over cation-exchanged Lewis acidic BEA zeolite has been investigated by means of density functional calculations. The reaction proceeds in three steps. First the O-H bond of i-propanol is broken to form a propoxide intermediate. After that, the furylmethoxy intermediate is formed via hydrogen transfer process, and finally furylmethoxy abstracts the proton to form the furfuryl alcohol product. The second step is rate-determining by requiring the highest activation energy (23.8 kcal/mol) if the reaction takes place on Li-Sn-BEA zeolite. We find that the catalytic activity of various cation-exchanged Sn-BEA zeolites is in the order Li-Sn-BEA > Na-Sn-BEA > K-Sn-BEA. The lower activation energy for Li-Sn-BEA compared to Na-Sn-BEA and K-Sn-BEA can be explained by the larger charge transfer from the carbonyl bond to the catalyst, leading to its activation and to the attraction of the hydrogen being transferred. The larger charge transfer in turn is due to the smaller gap between the energies of furfural HOMO and the zeolite LUMO in Li-Sn-BEA, compared to both Na-Sn-BEA and K-Sn-BEA. In a similar way, we also compare the catalytic activity of tetravalent metal centers (Sn, Zr, and Hf) substituted into BEA and find in the order Zr ≥ Hf > Sn, based on activation energies. Finally we investigate statistically which property of the reactants is a suitable descriptor for an approximative prediction of the reaction rate in order to be able to quickly screen promising catalytic materials for this reaction.

  19. Radiation and the classical double copy for color charges

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Ridgway, Alexander K.

    2017-06-01

    We construct perturbative classical solutions of the Yang-Mills equations coupled to dynamical point particles carrying color charge. By applying a set of color to kinematics replacement rules first introduced by Bern, Carrasco and Johansson, these are shown to generate solutions of d -dimensional dilaton gravity, which we also explicitly construct. Agreement between the gravity result and the gauge theory double copy implies a correspondence between non-Abelian particles and gravitating sources with dilaton charge. When the color sources are highly relativistic, dilaton exchange decouples, and the solutions we obtain match those of pure gravity. We comment on possible implications of our findings to the calculation of gravitational waveforms in astrophysical black hole collisions, directly from computationally simpler gluon radiation in Yang-Mills theory.

  20. Kinetics of photo-activated charge carriers in Sn:CdS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gorli, V. R.; Gangrade, Mohan

    2016-05-23

    Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd{sub 1-x}Sn{sub x}S (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject holemore » carriers. The two fold increase in τ{sub 1}, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.« less