Science.gov

Sample records for active chemical components

  1. Chemical Components and Cardiovascular Activities of Valeriana spp.

    PubMed Central

    Chen, Heng-Wen; Wei, Ben-Jun; He, Xuan-Hui; Liu, Yan; Wang, Jie

    2015-01-01

    Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp. PMID:26788113

  2. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components.

    PubMed

    Escobar, Patricia; Milena Leal, Sandra; Herrera, Laura Viviana; Martinez, Jairo Rene; Stashenko, Elena

    2010-03-01

    The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, gamma-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 microg/mL and 12.2 microg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 microg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 +/- 0.4 microg/mL) and S-carvone (IC50 6.1 +/- 2.2 microg/mL), two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.

  3. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  4. Chemically active components of a bromine-ethanol etchant for semidconductor materials

    SciTech Connect

    Pinyacheva, T.M.; Komisarchik, M.Sh.; Orlov, Yu.F.

    1986-05-10

    The purpose of the present work was to determine the degree of chemical interaction between bromine and ethanol in the etchant, and to investigate the influence of this interaction on etching of cadmium selenide single crystals.

  5. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    NASA Astrophysics Data System (ADS)

    Soloshenko, I. A.; Tsiolko, V. V.; Pogulay, S. S.; Terent'yeva, A. G.; Bazhenov, V. Yu; Shchedrin, A. I.; Ryabtsev, A. V.; Kuzmichev, A. I.

    2007-02-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O3, HNO3, HNO2, N2 O5 and NO3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm-3. It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O3, HNO3, HNO2, N2O5 and NO3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values.

  6. Characterization of the antibacterial activity and the chemical components of the volatile oil of the leaves of Rubus parvifolius L.

    PubMed

    Cai, Yongqing; Hu, Xiaogang; Huang, Mingchun; Sun, Fengjun; Yang, Bo; He, Juying; Wang, Xianfeng; Xia, Peiyuan; Chen, Jianhong

    2012-06-25

    Rubus parvifolius L. (Rp) is a medicinal herb that possesses antibacterial activity. In this study, we extracted the volatile oil from the leaves of Rp to assess its antibacterial activity and analyze its chemical composition. A uniform distribution design was used to optimize the extraction procedure, which yielded 0.36% (w/w) of light yellowish oil from the water extract of Rp leaves. We found that the extracted oil effectively inhibited the growth of a wide range of Gram positive and negative bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae, and Klebsiella pneumoniae. We further analyzed the components contained in the hydro-distillated Rp volatile oil by gas chromatography-mass spectroscopy. Twenty nine compounds were identified, including 4-hydroxy-3-methoxystyrene (66%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (10%) and 4-tert-butylbenzoic acid (2%). Our results suggest that one or multiple constituents contained in Rp volatile oil may account for its antibacterial activity.

  7. In Vivo Evaluation of the Antiasthmatic, Antitussive, and Expectorant Activities and Chemical Components of Three Elaeagnus Leaves

    PubMed Central

    Ge, Yuebin; Zhang, Fei; Qin, Qin; Shang, Yingying; Wan, Dingrong

    2015-01-01

    The leaf of Elaeagnus lanceolata and Elaeagnus henryi as well as Elaeagnus pungens has been documented as an effective herb for the treatment of asthma and chronic bronchitis in traditional clinical medicine. This study was aimed at evaluating the antiasthmatic, antitussive, and expectorant activities of the water extracts from the three plants in vivo and analyzing their chemical components by HPLC-DAD. At the medium and high doses, the water extracts of three Elaeagnus leaves significantly prolonged the preconvulsive time (P < 0.01) in guinea pigs, lengthened the latent period of cough (P < 0.01) and decreased the cough frequency caused by aqueous ammonia in mice (P < 0.01), and enhanced tracheal phenol red output in mice (P < 0.01). There were no significant differences in the pharmacological actions between the three Elaeagnus leaves. Moreover, there was more similarity on overlap peaks in the range of retention time from 10 to 40 min by HPLC and many peaks that belonged to flavonoids compounds. It suggested that the main constituents of the three Elaeagnus leaves were flavonoid for the pharmacological activities. These effects were the important evidence for the traditional use of E. henryi leaf and E. lanceolata leaf as well as E. pungens to treat asthma and chronic bronchitis. PMID:26576193

  8. Antioxidant activity and chemical components as potential anticancer agents in the olive leaf (Olea europaea L. cv Leccino.) decoction.

    PubMed

    De Marino, Simona; Festa, Carmen; Zollo, Franco; Nini, Antonella; Antenucci, Lina; Raimo, Gennaro; Iorizzi, Maria

    2014-01-01

    Epidemiological studies have shown that a reduced risk of chronic diseases such as cancer and cardiovascular diseases is correlated with a regular consumption of fruits and vegetable, many of which are rich in polyphenols. The additive and synergistic effect of phytochemicals in fruits and vegetables may reduce chronic diseases related to oxidative stress in human body. Olea europaea L. leaf are rich in phenolic components, which have been proposed to play a role in cancer prevention. The purpose of this study was to identify the main components in the Olea europaea L. leaf (cv. Leccino) preserved during the decoction preparation, in order to delineate the antioxidant activities of the crude extracts and its isolated compounds by using different in vitro assays including DPPH radicalscavenging capacity, total antioxidant capacity (TAC), xanthine oxidase (XO) inhibitory effect and the ability to delay the linoleic acid peroxidation process (ALP). The aqueous decoction was partitioned obtaining four extracts and the n-butanol extract showed the highest antioxidant activity and the highest total phenolic content. Phytochemical investigation leads to the isolation of thirteen secondary metabolites including simple phenolics, flavonoids, secoiridoids whose structures were elucidated by spectroscopic data (1D and 2D NMR) and spectrometric techniques. A significant free radical scavenging effect against DPPH has been evidenced in fraxamoside (1) (EC50 62.6 µM) and taxifolin (5) (EC50 50.0 µM), isolated for the first time from the water decoction. The most active compound in the TAC evaluation, was the 3,4 dihydro-phenyl glycol (8) (0.90 caffeic acid equiv.) while taxifolin and fraxamoside resulted as the most efficient inhibitors of XO activity (IC50 2.7 and 5.2 µM, respectively). Secoxyloganin (4), oleuropein (2) and tyrosol (6) showed the highest ALP activity. This study adds to the growing body of data supporting the bioactivities of phytochemicals and their

  9. The Difference of Chemical Components and Biological Activities of the Crude Products and the Salt-Processed Product from Semen Cuscutae

    PubMed Central

    Yang, Song; Xu, Hefang; Zhao, Baosheng; Li, Shasha; Li, Tingting; Xu, Xinfang; Zhang, Tianjiao; Lin, Ruichao

    2016-01-01

    Semen Cuscutae is a well-known Chinese medicine which has been used to nourish kidney in China for thousands of years. The crude product of semen Cuscutae (CP) and its salt-processed product (SPP) are separately used in clinic for their different effects. The study was designed to investigate the influence of processing from semen Cuscutae on chemical components and biological effects. The principal component analysis and quantitative analysis were used to study the differences of the chemical components. The effects of nourishing kidney were detected to compare the differences between the CP and SPP. The PCA results showed that the obvious separation was achieved in the CP and SPP samples. The results of quantitative analysis showed that quercetin and total flavonoids had significantly increased after salt processing while hyperoside had decreased. The comparison of CP and SPP on biological activities showed that both of them could ameliorate the kidney-yang deficiency syndrome by restoring the level of sex hormone, improving the immune function and antioxidant effect. However, SPP was better in increasing the level of T and the viscera weight of testicle and epididymis, improving the antioxidant effect. The results suggested that salt processing changed its chemical profile, which in turn enhanced its biological activities. PMID:27610186

  10. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  11. [Studies on chemical components of Cirsium segestum].

    PubMed

    Zhou, Qing; Chen, Lin; Liu, Zhi-peng; Deng, Qin-ying

    2007-01-01

    Six chemical components were got from the alcohol extract of Cirsium segestum, their structures were identified by UV, IR, NMR, MS and EA. They were 5,7-dihydroxyflavone, baicalin, oleanolic acid, cholesterol, methyl ursolate and rutin. The first to the fifth of which were got from Cirsium segestum for the first time.

  12. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in northeastern Brazil.

    PubMed

    Mota, Magaly L; Lobo, Lis Tavares Coelho; Costa, José M Galberto da; Costa, Leandro S; Rocha, Hugo A O; Rocha e Silva, Luiz F; Pohlit, Adrian M; Neto, Valter F de Andrade

    2012-05-01

    The prophylactic and therapeutic arsenal against malaria is quite restricted and all the antimalarials currently in use have limitations. Thus, there is a need to investigate medicinal plants in the search for phytochemicals which can be developed into drugs. In our investigation, essential oils (EOs) were obtained from Vanillosmopsis arborea (Gardner) Baker, Lippia sidoides Cham. and Croton zehntneri Pax & K. Hoffm., aromatic plants abundant in northeastern Brazil, which are found in the caatinga region and are used in traditional medicine. The chemical composition of these EOs was characterized by GC-MS, and monoterpenes and sesquiterpenes were well represented. We assessed the in vitro activity of these EOs and also individual EO chemical components against the human malaria parasite Plasmodium falciparum (K1 strain) and the in vivo activity of EOs in mice infected with Plasmodium berghei. The acute toxicity of these oils was assessed in healthy mice and in vitro cytotoxicity was determined at different concentrations against HeLa cells and mice macrophages. The EO of V. Arborea was partially active only when using the subcutaneous route (inhibited from 33 up to 47 %). In relation to the EOs, L. sidoides and C. zehntneri were active only by the oral route (per gavage) and partially inhibited the growth of P. berghei from 43 up to 55 % and showed good activity against P. falciparum in vitro (IC (50) = 7.00, 10.50, and 15.20 µg/mL, respectively). Individual EO constituents α-bisabolol, estragole, and thymol also exhibited good activity against P. falciparum (IC (50) = 5.00, 30.70, and 4.50 µg/mL, respectively). This is the first study showing evidence for the antimalarial activity of these species from northeastern Brazil and the low toxicity of their EOs.

  13. Chemical separation of disc components using RAVE

    NASA Astrophysics Data System (ADS)

    Wojno, Jennifer; Kordopatis, Georges; Steinmetz, Matthias; McMillan, Paul; Matijevič, Gal; Binney, James; Wyse, Rosemary F. G.; Boeche, Corrado; Just, Andreas; Grebel, Eva K.; Siebert, Arnaud; Bienaymé, Olivier; Gibson, Brad K.; Zwitter, Tomaž; Bland-Hawthorn, Joss; Navarro, Julio F.; Parker, Quentin A.; Reid, Warren; Seabroke, George; Watson, Fred

    2016-10-01

    We present evidence from the RAdial Velocity Experiment (RAVE) survey of chemically separated, kinematically distinct disc components in the solar neighbourhood. We apply probabilistic chemical selection criteria to separate our sample into α-low (`thin disc') and α-high (`thick disc') sequences. Using newly derived distances, which will be utilized in the upcoming RAVE DR5, we explore the kinematic trends as a function of metallicity for each of the disc components. For our α-low disc, we find a negative trend in the mean rotational velocity (Vφ) as a function of iron abundance ([Fe/H]). We measure a positive gradient ∂Vφ/∂[Fe/H] for the α-high disc, consistent with results from high-resolution surveys. We also find differences between the α-low and α-high discs in all three components of velocity dispersion. We discuss the implications of an α-low, metal-rich population originating from the inner Galaxy, where the orbits of these stars have been significantly altered by radial mixing mechanisms in order to bring them into the solar neighbourhood. The probabilistic separation we propose can be extended to other data sets for which the accuracy in [α/Fe] is not sufficient to disentangle the chemical disc components a priori. For such data sets which will also have significant overlap with Gaia DR1, we can therefore make full use of the improved parallax and proper motion data as it becomes available to investigate kinematic trends in these chemical disc components.

  14. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC

    PubMed Central

    Tan, Chay-Hoon

    2014-01-01

    Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds. PMID:24987426

  15. A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC.

    PubMed

    Zareisedehizadeh, Sogand; Tan, Chay-Hoon; Koh, Hwee-Ling

    2014-01-01

    Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bleo. A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full-Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted. The following keywords were used: Pereskia bleo, Pereskia panamensis, Pereskia corrugata, Rhodocacus corrugatus, Rhodocacus bleo, Cactus panamensis, Cactus bleo, Spinach cactus, wax rose, Perescia, and Chinese rose. This review revealed the association between the traditional usage of P. bleo and reported pharmacological properties in the literature. Further investigation on the pharmacological properties and phytoconstituents of P. bleo is warranted to further exploit its potentials as a source of novel therapeutic agents or lead compounds.

  16. A novel near-infrared spectroscopy and chemometrics method for rapid analysis of several chemical components and antioxidant activity of mint (Mentha haplocalyx Briq.) samples.

    PubMed

    Dong, Wenjiang; Ni, Yongnian; Kokot, Serge

    2014-01-01

    A novel near-infrared spectroscopy (NIRS) method has been researched and developed for the simultaneous analyses of the chemical components and associated properties of mint (Mentha haplocalyx Briq.) tea samples. The common analytes were: total polysaccharide content, total flavonoid content, total phenolic content, and total antioxidant activity. To resolve the NIRS data matrix for such analyses, least squares support vector machines was found to be the best chemometrics method for prediction, although it was closely followed by the radial basis function/partial least squares model. Interestingly, the commonly used partial least squares was unsatisfactory in this case. Additionally, principal component analysis and hierarchical cluster analysis were able to distinguish the mint samples according to their four geographical provinces of origin, and this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors, linear discriminant analysis, and partial least squares discriminant analysis. In general, given the potential savings with sampling and analysis time as well as with the costs of special analytical reagents required for the standard individual methods, NIRS offered a very attractive alternative for the simultaneous analysis of mint samples.

  17. Chemical characterization of components in fingerprints

    SciTech Connect

    Jarboe, S.G.; Asano, K.G.; Buchanan, M.V.; Bohanan, A.

    1997-12-31

    Investigations into the chemical composition of fingerprints were initiated after it was observed that the latent fingerprints of children disappear more rapidly from surfaces than those of adults. Initial work included the use of GUMS for the identification of compounds present in fingerprints. The relative concentrations of fatty acids and alkyl esters in children and adults appear to contribute to the higher rate of disappearance of prints from the younger subjects. The presence of alkyl esters is linked to sebaceous excretions originating from the face, which increase markedly after puberty. This work has been expanded to include characterization of other classes of components, including amino acids and triacylglycerols. This research is part of an ongoing project to identify various components of fingerprints and explore possible clinical and forensic applications. Through large sampling pools, trends that can indicate personal characteristics (i.e., gender, age), habits (smoking, drug use), and health-related issues (diabetes) are being investigated.

  18. Principal component analysis on chemical abundances spaces

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Freeman, Kenneth C.; Kobayashi, Chiaki; De Silva, Gayandhi M.; Bland-Hawthorn, Joss

    2012-04-01

    In preparation for the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. This leads to a way to study the origin of elements from observed chemical abundances using principal component analysis. We explore abundances in several environments, including solar neighbourhood thin/thick disc stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. By studying solar-neighbourhood stars, we confirm the universality of the r-process that tends to produce [neutron-capture elements/Fe] in a constant ratio. We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of α-elements. This may support the core-collapse supernovae as the r-process site. We also verify the overabundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. We also verify the contribution from the s-process in low-mass asymptotic giant branch (AGB) stars at high metallicity. Our analysis reveals two types of core-collapse supernovae: one produces mainly α-elements, the other produces both α-elements and Fe-peak elements with a large enhancement of heavy Fe-peak elements which may be the contribution from hypernovae. Excluding light elements that may be subject to internal mixing, K and Cu, we find that the [X/Fe] chemical abundance space in the solar neighbourhood has about six independent dimensions both at low metallicity (-3.5 ≲ [Fe/H] ≲-2) and high metallicity ([Fe/H] ≳-1). However the dimensions come from very different origins in these two cases. The extra contribution from low-mass AGB

  19. Mixed waste chemical compatibility with packaging components

    SciTech Connect

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-05-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals.

  20. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  1. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  2. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  3. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  4. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  5. Chemical Blistering: Cellular and Macromolecular Components

    DTIC Science & Technology

    1985-12-15

    animals and appears to be a reaction primarily seen in humans in vhom it may arise as a component cf various cutaneous diseases and as a result of...calls appeared at the surface. Characteristic desmosomal attachment plaques were seen scattered throughout the cell layers. In older lifted cultures...resembling the cornified cells of the normal epidermis had formed. Several epidermal morphological markers were observed, e.g., desmosomes , keratohyalin

  6. PHYSICAL PROCESSES IN LASER MEDIA: Influence of the chemical composition of the hydrogen-containing component in an RH active medium and of the initiation method on the parameters of a pulsed chemical SF6-RH laser

    NASA Astrophysics Data System (ADS)

    Gal', A. V.; Dodonov, A. A.; Rusanov, V. D.; Shiryaevskiĭ, V. L.; Sholin, G. V.

    1992-02-01

    The influence of the composition of the active medium on the lasing characteristics and energy deposition efficiency was studied under conditions of electron-beam and electric-discharge initiation in SF6-H2 and SF6-HI pulsed hydrogen fluoride chemical lasers.The best radiation energy characteristics were achieved for an SF6-HI active medium using electron-beam initiation and for an SF6-H2 active medium when the pump reaction was initiated by a self-sustained volume discharge. The following pulse parameters were obtained for an SF6-HI laser:energy 1.5 J, half-height pulse duration 60 ns,and leading edge duration 20 ns.

  7. Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method.

    PubMed

    Miura, Kayoko; Kikuzaki, Hiroe; Nakatani, Nobuji

    2002-03-27

    A new abietane diterpenoid, 12-O-methyl carnosol (2), was isolated from the leaves of sage (Salvia officinalis L.), together with 11 abietane diterpenoids, 3 apianane terpenoids, 1 anthraquinone, and 8 flavonoids. Antioxidant activity of these compounds along with 4 flavonoids isolated from thyme (Thymus vulgaris L.) was evaluated by the oil stability index method using a model substrate oil including methyl linoleate in silicone oil at 90 degrees C. Carnosol, rosmanol, epirosmanol, isorosmanol, galdosol, and carnosic acid exhibited remarkably strong activity, which was comparable to that of alpha-tocopherol. The activity of miltirone, atuntzensin A, luteolin, 7-O-methyl luteolin, and eupafolin was comparable to that of butylated hydroxytoluene. The activity of these compounds was mainly due to the presence of ortho-dihydroxy groups. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of these compounds showed the similar result.

  8. A four-component organogel based on orthogonal chemical interactions.

    PubMed

    Luisier, Nicolas; Schenk, Kurt; Severin, Kay

    2014-09-14

    A thermoresponsive organogel was obtained by orthogonal assembly of four compounds using dynamic covalent boronate ester and imine bonds, as well as dative boron-nitrogen bonds. It is shown that the gel state can be disrupted or reinforced by chemicals which undergo exchange reactions with the gel components.

  9. Characteristic Chemical Components and Aroma-active Compounds of the Essential Oils from Ranunculus nipponicus var. submersus Used in Japanese Traditional Food.

    PubMed

    Nakaya, Satoshi; Usami, Atsushi; Yorimoto, Tomohito; Miyazawa, Mitsuo

    2015-01-01

    Ranunculus nipponicus var. submersus is an aquatic macrophyte; it is known as a wild edible plant in Japan for a long time. In this study, the essential oils from the fresh and dried aerial parts of R. nipponicus var. submersus were extracted by hydrodistillation and analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). Moreover, important aroma-active compounds were also detected in the oil using GC-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). Thus, 98 compounds (accounting for 93.86%) of the oil were identified. The major compounds in fresh plant oil were phytol (41.94%), heptadecane (5.92%), and geranyl propionate (5.76%), while those of. Dried plant oil were β-ionone (23.54%), 2-hexenal (8.75%), and dihydrobovolide (4.81%). The fresh and dried oils had the green-floral and citrus-floral odor, respectively. The GC-O and AEDA results show that phenylacetaldehyde (green, floral odor, FD-factor = 8) and β-ionone (violet-floral odor, FD-factor = 8) were the most characteristic odor compounds of the fresh oils. β-Cyclocitral (citrus odor, FD-factor = 64) and β-ionone (violet-floral odor, FD-factor = 64) were the most characteristic odor compounds of the dried oil. These compounds are thought to contribute to the flavor of R. nipponicus var. submersus.

  10. Component pattern analysis of chemicals using multispectral THz imaging system

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuki

    2004-04-01

    We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  11. Polycyclic Aromatic Aerosol Components: Chemical Analysis and Reactivity

    NASA Astrophysics Data System (ADS)

    Schauer, C.; Niessner, R.; Pöschl, U.

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants in the atmosphere and originate primarily from incomplete combustion of organic matter and fossil fuels. Their main sources are anthropogenic (e.g. vehicle emissions, domes- tic heating or tobacco smoke), and PAHs consisting of more than four fused aromatic rings reside mostly on combustion aerosol particles, where they can react with atmo- spheric trace gases like O3, NOx or OH radicals leading to a wide variety of partially oxidized and nitrated derivatives. Such chemical transformations can strongly affect the activity of the aerosol particles as condensation nuclei, their atmospheric residence times, and consequently their direct and indirect climatic effects. Moreover some poly- cyclic aromatic compounds (PACs = PAHs + derivatives) are known to have a high carcinogenic, mutagenic and allergenic potential, and are thus of major importance in air pollution control. Furthermore PACs can be used as well defined soot model sub- stances, since the basic structure of soot can be regarded as an agglomerate of highly polymerized PAC-layers. For the chemical analysis of polycyclic aromatic aerosol components a new analyti- cal method based on LC-APCI-MS has been developed, and a data base comprising PAHs, Oxy-PAHs and Nitro-PAHs has been established. Together with a GC-HRMS method it will be applied to identify and quantify PAHs and Nitro-PAHs in atmo- spheric aerosol samples, diesel exhaust particle samples and model soot samples from laboratory reaction kinetics and product studies. As reported before, the adsorption and surface reaction rate of ozone on soot and PAH-like particle surfaces is reduced by competitive adsorption of water vapor at low relative humidity (< 25 %). Recent results at higher relative humidities (ca. 50 %), however, indicate re-enhanced gas phase ozone loss, which may be due to absorbtion of ozone into an aqueous surface layer. The interaction of ozone and nitrogen

  12. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1991-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six-inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. The experimental results for those component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials and extreme-infrared reflectivity of black paints show unexpected changes.

  13. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  14. Chemical Components of Four Essential Oils in Aromatherapy Recipe.

    PubMed

    Tadtong, Sarin; Kamkaen, Narisa; Watthanachaiyingcharoen, Rith; Ruangrungsi, Nijsiri

    2015-06-01

    This study focused on characterization of the chemical components of an aromatherapy recipe. The formulation consisted of four blended essential oils; rosemary oil, eucalyptus oil, pine oil and lime oil (volume ratio 6 : 2 : 1 : 1). The single and combination essential oils were identified by gas chromatography-mass spectrometry (GC-MS). The analysis of GC-MS data revealed that several components exist in the mixture. The five most important components of the blended essential oils were 1,8-cineole (35.6 %), α-pinene (11.1%), limonene (9.6%), camphor (8.4%), and camphene (6.6%). The main components of rosemary oil were 1,8-cineole (37.3%), α-pinene (19.3%), camphor (14.7%), camphene (8.8%), and β-pinene (5.5%); of eucalyptus oil 1,8-cineole (82.6%) followed by limonene (7.4%), o-cymene (4.3%), γ-terpinene (2.7%), and α-pinene (1.5%); of pine oil terpinolene (26.7%), α-terpineol (20.50%), 1-terpineol (10.8%), α-pinene (6.0%), and γ-terpineol (5.3%); and of lime oil limonene (62.9%), γ-terpinene (11.5%), α-terpineol (7.6%), terpinolene (6.0%), and α-terpinene (2.8%). The present study provided a theoretical basis for the potential application of blended essential oils to be used as an aromatherapy essential oil recipe. GC-MS serves as a suitable and reliable method for the quality control of the chemical markers.

  15. Current Chemical Risk Reduction Activities

    EPA Pesticide Factsheets

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  16. Pieces of the Puzzle: Tracking the Chemical Component of the ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the risk assessment conducted at the U.S. EPA, as well as some research examples related to the exposome concept. This presentation also provides the recommendation of using two organizational and predictive frameworks for tracking chemical components in the exposome. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  17. Laboratory Inquiry for Determining the Chemical Composition of a Component in a Daily Use Detergent: Sodium Sesquicarbonate

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Kimura, Tomoyasu; Shigedomi, Kana

    2011-01-01

    An inquiry-based laboratory activity to determine the chemical composition of a component in alkaline detergents, sodium sesquicarbonate (SSC), is proposed. On the basis of introductory demonstrations by the instructor on the chemical properties and reactions of SSC, students propose the hypothetical composition of SSC and possible quantitative…

  18. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  19. Antiplatelet effect of active components derived from Chinese herbal medicine.

    PubMed

    Zhang, Ying; Ma, Xiao-Juan; Shi, Da-Zhuo

    2015-10-10

    Atherothrombosis is the major cause of acute coronary syndromes and cardiovascular deaths. Platelets participate in the processes of forming and extending atherosclerotic plaques. Therefore, antiplatelet therapy is a milestone in the primary and second prevention of atherothrombotic diseases. Along with the longterm use of antiplatelet agents, the safety and drug resistance has become a big concern in clinic and new drugs possessing higher effectiveness and fewer adverse effects are needed. Abundant recent data support that traditional Chinese herbs may be a good alternative and complementary choice of new antiplatelet drugs. This review highlights the progress of antiplatelet effect of active components derived from traditional Chinese herbs based on their chemical structures.

  20. Chemical tools selectively target components of the PKA system

    PubMed Central

    Bertinetti, Daniela; Schweinsberg, Sonja; Hanke, Susanne E; Schwede, Frank; Bertinetti, Oliver; Drewianka, Stephan; Genieser, Hans-Gottfried; Herberg, Friedrich W

    2009-01-01

    Background In the eukaryotic cell the cAMP-dependent protein kinase (PKA) is a key enzyme in signal transduction and represents the main target of the second messenger cAMP. Here we describe the design, synthesis and characterisation of specifically tailored cAMP analogs which can be utilised as a tool for affinity enrichment and purification as well as for proteomics based analyses of cAMP binding proteins. Results Two sets of chemical binders were developed based on the phosphorothioate derivatives of cAMP, Sp-cAMPS and Rp-cAMPS acting as cAMP-agonists and -antagonists, respectively. These compounds were tested via direct surface plasmon resonance (SPR) analyses for their binding properties to PKA R-subunits and holoenzyme. Furthermore, these analogs were used in an affinity purification approach to analyse their binding and elution properties for the enrichment and improvement of cAMP binding proteins exemplified by the PKA R-subunits. As determined by SPR, all tested Sp-analogs provide valuable tools for affinity chromatography. However, Sp-8-AEA-cAMPS displayed (i) superior enrichment properties while maintaining low unspecific binding to other proteins in crude cell lysates, (ii) allowing mild elution conditions and (iii) providing the capability to efficiently purify all four isoforms of active PKA R-subunit in milligram quantities within 8 h. In a chemical proteomics approach both sets of binders, Rp- and Sp-cAMPS derivatives, can be employed. Whereas Sp-8-AEA-cAMPS preferentially binds free R-subunit, Rp-AHDAA-cAMPS, displaying antagonist properties, not only binds to the free PKA R-subunits but also to the intact PKA holoenzyme both from recombinant and endogenous sources. Conclusion In summary, all tested cAMP analogs were useful for their respective application as an affinity reagent which can enhance purification of cAMP binding proteins. Sp-8-AEA-cAMPS was considered the most efficient analog since Sp-8-AHA-cAMPS and Sp-2-AHA-cAMPS, demonstrated

  1. 21 CFR 201.120 - Prescription chemicals and other prescription components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Prescription chemicals and other prescription... Prescription chemicals and other prescription components. A drug prepared, packaged, and primarily sold as a prescription chemical or other component for use by registered pharmacists in compounding prescriptions or...

  2. 21 CFR 201.120 - Prescription chemicals and other prescription components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Prescription chemicals and other prescription... Prescription chemicals and other prescription components. A drug prepared, packaged, and primarily sold as a prescription chemical or other component for use by registered pharmacists in compounding prescriptions or...

  3. Burst and Principal Components Analyses of MEA Data Separates Chemicals by Class

    EPA Science Inventory

    Microelectrode arrays (MEAs) detect drug and chemical induced changes in action potential "spikes" in neuronal networks and can be used to screen chemicals for neurotoxicity. Analytical "fingerprinting," using Principal Components Analysis (PCA) on spike trains recorded from prim...

  4. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  5. Science Activities in Energy: Chemical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 15 activities relating to chemical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's…

  6. Chemical Potentials and Activities: An Electrochemical Introduction.

    ERIC Educational Resources Information Center

    Wetzel, T. L.; And Others

    1986-01-01

    Describes a laboratory experiment which explores the effects of adding inert salts to electrolytic cells and demonstrates the difference between concentration and chemical activity. Examines chemical potentials as the driving force of reactions. Provides five examples of cell potential and concentration change. (JM)

  7. Determination of tea components with antioxidant activity.

    PubMed

    Cabrera, Carmen; Giménez, Rafael; López, M Carmen

    2003-07-16

    Levels of essential elements with antioxidant activity, as well as catechins, gallic acid, and caffeine levels, in a total of 45 samples of different teas commercialized in Spain have been evaluated. Chromium, manganese, selenium, and zinc were determined in the samples mineralized with HNO(3) and V(2)O(5), using ETAAS as the analytical technique. The reliability of the procedure was checked by analysis of a certified reference material. Large variations in the trace element composition of teas were observed. The levels ranged from 50.6 to 371.4 ng/g for Cr, from 76.1 to 987.6 microg/g for Mn, from 48.5 to 114.6 ng/g for Se, and from 56.3 to 78.6 ng/g for Zn. The four major catechins [(-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC)], gallic acid (GA), and caffeine were simultaneously determined by a simple and fast HPLC method using a photodiode array detector. In all analyzed samples, EGCG ranged from 1.4 to 103.5 mg/g, EGC from 3.9 to 45.3 mg/g, ECG from 0.2 to 45.6 mg/g, and EC ranged from 0.6 to 21.2 mg/g. These results indicated that green tea has a higher content of catechins than both oolong and fermented teas (red and black teas); the fermentation process during tea manufacturing reduces the levels of catechins significantly. Gallic acid content ranged from 0.039 to 6.7 mg/g; the fermentation process also elevated remarkably gallic acid levels in black teas (mean level of 3.9 +/- 1.5 mg/g). The amount of caffeine in the analyzed samples ranged from 7.5 to 86.6 mg/g, and the lower values were detected in green and oolong teas. This study will be useful for the appraisal of trace elements and antioxidant components in various teas, and it will also be of interest for people who like drinking this beverage.

  8. Self-diffusiophoresis of chemically active colloids

    NASA Astrophysics Data System (ADS)

    Popescu, Mihail N.; Uspal, William E.; Dietrich, Siegfried

    2016-11-01

    Chemically active colloids locally change the chemical composition of their solvent via catalytic reactions which occur on parts of their surface. They achieve motility by converting the released chemical free energy into mechanical work through various mechanisms, such as phoresis. Here we discuss the theoretical aspects of self-diffusiophoresis, which - despite being one of the simplest motility mechanisms - captures many of the general features characterizing self-phoresis, such as self-generated and maintained hydrodynamic flows "driven" by surface activity induced inhomogeneities in solution. By studying simple examples, which provide physical insight, we highlight the complex phenomenology which can emerge from self-diffusiophoresis.

  9. Metabolic activation and inactivation of chemical carcinogens

    SciTech Connect

    Pelkonen, O.; Vaehaekangas, K.

    1980-09-01

    Chemical carcinogens are metabolized by numerous pathways catalyzed by enzymes in endoplasmic reticulum and other parts of the cell. Reactions in which functional groups are created are especially important in the activation of polycyclic hydrocarbon carcinogens to ultimate carcinogenic forms, although other enzymes may also participate in the activation of other chemical carcinogens. The reasons why carcinogens act on specific target tissues are incompletely understood, although differences in enzyme profiles between tissues certainly contribute to the target tissue variability. The concept of metabolic activation of carcinogens by body's own enzymes has led to the development of short-term assay systems, which essentially measure the production of biologically active metabolites from potential carcinogens.

  10. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the

  11. The Chemical Composition of the Active Stars

    NASA Astrophysics Data System (ADS)

    Glazunova, L. V.

    The comparison of the results of the studies of the active stars' chemical composition obtained by different authors has been performed. It was concluded that the difference between the abundances of some elements in active and inactive stars becomes significant (> 3σ) only for the active stars with high chromospheric activity (lgR'HK > -4). This is the case primarily for the light elements, namely Li, Na and Al, as well as heavy elements with Z > 30.

  12. Laser-machined components for microanalytical and chemical separation devices

    NASA Astrophysics Data System (ADS)

    Matson, Dean W.; Martin, Peter M.; Bennett, Wendy D.

    1998-10-01

    Excimer lasers have proven to be powerful tools for machining polymeric components used in microanalytical and microchemical separation devices. We report the use of laser machining methods to produce microfluidic channels and liquid/liquid contact membranes for a number of devices fabricated at our laboratory. Microchannels 50- to 100- micrometers -wide have been produced directly in bulk polycarbonate chips using a direct-write laser micromachining system. Wider microchannels have been produced by laser machining paths through sheets of polyimide film, then sandwiching the patterned piece between solid chips of polycarbonate stock. A comparison of direct-write and mask machining processes used to produce some of the microfluidic features is made. Examples of microanalytical devices produced using these methods are presented. Included are microdialysis units used to remove electrolytes from liquid samples and electrophoretic separation devices, both used for extremely low volume samples intended for mass spectrometric analysis. A multilayered microfluidic device designed to analyze low volume groundwater samples for hazardous metals and a fluidics motherboard are also described. Laser machining processes have also been explored for producing polymeric membranes suitable for use in liquid/liquid contactors used for removal of soluble hazardous components from waste streams. A step-and-repeat mask machining process was used to produce 0.5 X 8 cm membranes in 25- and 50-micrometers -thick polyimide. Pore diameters produced using this method were five and ten micrometers. The laser machined membranes were sputter coated with PTFE prior to use to improve fluid breakthrough characteristics.

  13. Cultural Components of Physically Active Schools

    ERIC Educational Resources Information Center

    Rickwood, Greg

    2015-01-01

    It is well known that a large majority of school-age children and adolescents are not active enough to gain the physical and psychological benefits associated with regular moderate-to-vigorous physical activity. Schools can play a pivotal role in reversing this trend due to the time students spend in this setting. The purpose of this article is to…

  14. Physical and Chemical Analytical Analysis: A key component of Bioforensics

    SciTech Connect

    Velsko, S P

    2005-02-15

    The anthrax letters event of 2001 has raised our awareness of the potential importance of non-biological measurements on samples of biological agents used in a terrorism incident. Such measurements include a variety of mass spectral, spectroscopic, and other instrumental techniques that are part of the current armamentarium of the modern materials analysis or analytical chemistry laboratory. They can provide morphological, trace element, isotopic, and other molecular ''fingerprints'' of the agent that may be key pieces of evidence, supplementing that obtained from genetic analysis or other biological properties. The generation and interpretation of such data represents a new domain of forensic science, closely aligned with other areas of ''microbial forensics''. This paper describes some major elements of the R&D agenda that will define this sub-field in the immediate future and provide the foundations for a coherent national capability. Data from chemical and physical analysis of BW materials can be useful to an investigation of a bio-terror event in two ways. First, it can be used to compare evidence samples collected at different locations where such incidents have occurred (e.g. between the powders in the New York and Washington letters in the Amerithrax investigation) or between the attack samples and those seized during the investigation of sites where it is suspected the material was manufactured (if such samples exist). Matching of sample properties can help establish the relatedness of disparate incidents, and mis-matches might exclude certain scenarios, or signify a more complex etiology of the events under investigation. Chemical and morphological analysis for sample matching has a long history in forensics, and is likely to be acceptable in principle in court, assuming that match criteria are well defined and derived from known limits of precision of the measurement techniques in question. Thus, apart from certain operational issues (such as how to

  15. Endocrine-active chemicals in mammary cancer causation and prevention.

    PubMed

    Jenkins, Sarah; Betancourt, Angela M; Wang, Jun; Lamartiniere, Coral A

    2012-04-01

    Endocrine-active chemicals alter or mimic physiological hormones. These compounds are reported to originate from a wide variety of sources, and recent studies have shown widespread human exposure to several of these compounds. Given the role of the sex steroid hormone, estradiol, in human breast cancer causation, endocrine-active chemicals which interfere with estrogen signaling constitute one potential factor contributing to the high incidence of breast cancer. Thus, the aim of this review is to examine several common endocrine-active chemicals and their respective roles in breast cancer causation or prevention. The plastic component, bisphenol A (BPA), the synthetic estrogen, diethylstilbestrol (DES), the by-product of organic combustion, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the soy component, genistein, and the red grape phytoalexin, resveratrol, have some degree of structural similarities to each other and estradiol. However, despite these structural similarities, the in vitro and in vivo properties of each of these chemicals vary greatly in terms of breast cancer causation and prevention. Early life exposure to BPA and DES increases rodent susceptibility to chemically induced mammary carcinogenesis, presumably through retardation of normal mammary gland maturation and/or disrupting the ratio of cell proliferation and apoptosis in the mammary gland. On the other hand, early exposures to genistein and resveratrol protect rodents against chemically induced and spontaneous mammary cancers. This is reported to occur through the ability of genistein and resveratrol to accelerate mammary gland maturation. Interestingly, TCDD, which is the most structurally dissimilar to the above chemicals and functions as an anti-estrogen, also increases chemically induced mammary carcinogenesis through retardation of mammary gland maturation. This article is part of a Special Issue entitled 'Endocrine disruptors'.

  16. [Study of the effect of surface-active agents on living cells, used as component parts in microemulsions, based on their chemical structures and critical micelle-formative concentration (CMC)].

    PubMed

    Ujhelyi, Zoltán; Vecsernyés, Miklós; Bácskay, Ildikó

    2013-01-01

    The aim of this study was to examine the cellular effects of two nonionic amphiphilic tenside groups and their mixtures on human Caco-2 cell monolayers as dependent upon their chemical structures and physicochemical properties. The first group of polyethylene glycol esters is represented by Polysorbates and Labrasol alone and in blends, while the members of the second group:Capryol 90, Capryol PGMC, Lauroglycol 90 and Lauroglycol FCC were used as propylene glycol esters. They are increasingly used in SMEDDS as recent tensides or co-tensides to increase the solubility of hydrophobic drug. Critical micelle concentration was measured by determination of surface tension. CMC refers to the ability of solubilization of surfactants. Cytotoxicity tests were performed on Caco-2 cell monolayers by MTT and LDH methods. Caco-2 cell monolayers are convenient and reliable in vitro models of the gastrointestinal tract. Paracellular permeability was examined with Lucifer yellow assays. The integrity of cell monolayers was observed by TransEpithelial Electrical Resistance (TEER) measurements. Tight junction alterations effected by the surfactants were also characterized as evidence for paracellular pathway. Changes in sub cellular localization of the tight junction proteins: ZO-1, Claudin-land beta-cathenin, were examined by confocal laser scanning microscopy.The results of cytotoxicity assays were in agreement and showed significant differences among the cytotoxic properties of surfactants in a concentration-dependent manner. Polysorbates 20, 60, 80 are the most toxic compounds. In the case of Labrasol, the degree of esterification and lack of sorbit component decreased cytotoxicity. If the hydrophyl head was changed from polyethylene glycol to propylene glycol, the main determined factor of cytotoxicity was the monoester content and the length of carbon chain. In our CMC experiments, we found that only Labrasol showed expressed cytotoxicity above the CMC. It refers to good

  17. Chemical components of shredded paper insulation: a preliminary study.

    PubMed

    Kelman, B J; Swenson, L J; Uppala, L V; Cohen, J M; Millette, J R; Mueller, W F

    1999-03-01

    We conducted an evaluation of shredded paper insulation to identify potentially toxic components. The study was to provide a preliminary characterization of a few samples of insulation currently in use. The following samples were analyzed: previously produced insulation (PPI) containing fire retardants, shredded recycled paper (PPI feedstock), freshly produced insulation (FPI), and insulation which had been installed in a residence (II). Volatile constituents were analyzed by GC-MS from headspace air of samples held at room temperature or heated to 90 degrees C. Extractable constituents were sampled by extracting with methylene chloride, and analyzing by GC-MS. Formaldehyde analysis was done according to EPA Method TO11. Headspace air at room temperature contained no detectable quantities of volatile constituents for any sample measured. In headspace air at 90 degrees C, only PPI contained traces of aliphatic and aromatic hydrocarbons and higher aldehydes, and FPI traces of toluene. Extracts of PPI contained traces of octadecadienoic acid methyl ester and aliphatic and aromatic hydrocarbons and higher aldehydes. Extracts of PPI feedstock contained traces of a substituted cyclohexenecarboxylic acid. FPI contained extractable diethyl phthalate (30-50 micrograms/g). Extracts of II contained traces of methyl palmitate, an octadecenoic acid methyl ester, and a phthalate plasticizer. No formaldehyde was detected. PPI was composed of approximately 98 percent paper fiber and 2 percent pre-gelatinized starch. PPI samples agglomerated together with less than 0.01 percent separating from clumps as fine dust. Boron and sodium were expected and confirmed because they were added to PPI and FPI as fire retardants. Chromium, copper, iron, potassium, magnesium, manganese, phosphorus, and silicon were present at detectable concentrations. Study calculations indicate that an occupant would have to completely consume all the fine particles produced from 3.3 kg of insulation per day to

  18. Vaccination in children with allergy to non active vaccine components.

    PubMed

    Franceschini, Fabrizio; Bottau, Paolo; Caimmi, Silvia; Crisafulli, Giuseppe; Lucia, Liotti; Peroni, Diego; Saretta, Francesca; Vernich, Mario; Povesi Dascola, Carlotta; Caffarelli, Carlo

    2015-01-01

    Childhood immunisation is one of the greatest public health successes of the last century. Vaccines contain an active component (the antigen) which induces the immune response. They may also contain additional components such as preservatives, additives, adjuvants and traces of other substances. This review provides information about risks of hypersensitivity reactions to components of vaccines. Furthermore, recommendations to avoid or reduce reactions to vaccine components have been detailed.

  19. Chemical activation of carbon mesophase pitches.

    PubMed

    Mora, E; Blanco, C; Pajares, J A; Santamaría, R; Menéndez, R

    2006-06-01

    This paper studies the chemical activation of mesophase pitches of different origins in order to obtain activated carbons suitable for use as electrodes in supercapacitors. The effect that the activating agent (NaOH, LiOH, and KOH), the alkaline hydroxide/pitch ratio, and the activation temperature had on the characteristics of the resultant activated carbons was studied. LiOH was found to be a noneffective activating agent, while activation with NaOH and KOH yielded activated carbons with high apparent surface areas and pore volumes. The increase of the KOH/pitch ratio caused an increase of the chemical attack on the carbon, producing higher burnoffs and development of porosity. Extremely high apparent surface areas were obtained when the petroleum pitch was activated with 5:1 KOH/carbon ratio. The increase of the activation temperature caused an increase of the burnoff, although the differences were not as significant as those derived from the use of different proportions of activating agent.

  20. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  1. Primary chemical and physical characterization of acute toxic components in wastewaters

    SciTech Connect

    Svenson, A.; Linlin, Z.; Kaj, L. )

    1992-10-01

    A chemical and physical primary characterization work sheet was developed based on the Microtox test, a bacterial bioluminescence system used as a rapid estimate of acute aquatic toxic effects. Measurements of the variation in light reduction upon different pretreatments provided information about the chemical and physical properties of the main toxic component(s) in test wastewater samples. This primary characterization of a wastewater sample was performed within 1 day. Tests of pure toxic chemical compounds and wastewaters with known and unknown primary toxicants are presented. Outlines to the chemical analysis and identification of toxic components may be deduced from the primary characterization. The provisional characterization may also provide information on wastewater treatment techniques.

  2. Antimicrobial activity of chemically modified dextran derivatives.

    PubMed

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C12H25 or C18H37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups.

  3. Quantitative genetic activity graphical profiles for use in chemical evaluation

    SciTech Connect

    Waters, M.D.; Stack, H.F.; Garrett, N.E.; Jackson, M.A.

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  4. Insight into hydroxides-activated coals: chemical or physical activation?

    SciTech Connect

    Alcaniz-Monge, J.; Illan-Gomez, M.J.

    2008-02-15

    The objective of this paper is to get an insight into the chemical activation mechanism using KOH and NaOH as activated agents. Three coals have been selected as carbon precursors. It was found that KOH and NaOH develop a similar narrow microporosity, independently of the coal rank, whereas only KOH generates supermicroporosity. Temperature-programmed desorption experiments, carried out with impregnated anthracite, show differences on the gas evolved during the activated carbon preparation using the two activating agents. Thus, whereas hydrogen profiles are quite similar for both activated agents, the CO and H{sub 2}O profiles are different. It is remarkable the high amount of H{sub 2}O evolved at the maximum treatment temperature for both activating agents. The results obtained to allow conclusion that the chemical activation is due to a combination of different process driving the development of material porosity.

  5. Burst and principal components analyses of MEA data for 16 chemicals describe at least three effects classes.

    PubMed

    Mack, Cina M; Lin, Bryant J; Turner, James D; Johnstone, Andrew F M; Burgoon, Lyle D; Shafer, Timothy J

    2014-01-01

    Microelectrode arrays (MEAs) can be used to detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-of-concept, the current study assessed the utility of analytical "fingerprinting" using principal components analysis (PCA) and chemical class prediction using support vector machines (SVMs) to classify chemical effects based on MEA data from 16 chemicals. Spontaneous firing rate in primary cortical cultures was increased by bicuculline (BIC), lindane (LND), RDX and picrotoxin (PTX); not changed by nicotine (NIC), acetaminophen (ACE), and glyphosate (GLY); and decreased by muscimol (MUS), verapamil (VER), fipronil (FIP), fluoxetine (FLU), chlorpyrifos oxon (CPO), domoic acid (DA), deltamethrin (DELT) and dimethyl phthalate (DMP). PCA was performed on mean firing rate, bursting parameters and synchrony data for concentrations above each chemical's EC50 for mean firing rate. The first three principal components accounted for 67.5, 19.7, and 6.9% of the data variability and were used to identify separation between chemical classes visually through spatial proximity. In the PCA, there was clear separation of GABAA antagonists BIC, LND, and RDX from other chemicals. For the SVM prediction model, the experiments were classified into the three chemical classes of increasing, decreasing or no change in activity with a mean accuracy of 83.8% under a radial kernel with 10-fold cross-validation. The separation of different chemical classes through PCA and high prediction accuracy in SVM of a small dataset indicates that MEA data may be useful for separating chemicals into effects classes using these or other related approaches.

  6. Semantic-Aware Components and Services of ActiveMath

    ERIC Educational Resources Information Center

    Melis, Erica; Goguadze, Giorgi; Homik, Martin; Libbrecht, Paul; Ullrich, Carsten; Winterstein, Stefan

    2006-01-01

    ActiveMath is a complex web-based adaptive learning environment with a number of components and interactive learning tools. The basis for handling semantics of learning content is provided by its semantic (mathematics) content markup, which is additionally annotated with educational metadata. Several components, tools and external services can…

  7. Collective surfing of chemically active particles.

    PubMed

    Masoud, Hassan; Shelley, Michael J

    2014-03-28

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  8. A Photoacoustic Study of Chemically Active Systems.

    DTIC Science & Technology

    1983-09-01

    unless so designated by other documentation IS. KEY WORDS (Continue w reverse aide If neceeairy wd Identify by block nmber) Photoacoustic, Spectroscopy ...CwcAhnm i, pwo If w M Idntitty by block nin1b9) -,xThe method of gas-microphone photoacoustic spectroscopy and the related photothermal deflection... spectroscopy have been developed for application to chemically active systems. Fourier Transform Infrared Photoacoustic Spectros- copy has been used to study

  9. Chemically activated manganese dioxide for dry batteries

    NASA Astrophysics Data System (ADS)

    Askar, M.; Abbas, H.

    1994-10-01

    The present investigation has enabled us to convert inactive beta-manganese dioxide to high electrochemically active types by chemical processes. Natural and chemically prepared beta-manganese dioxides were roasted at 1050 C to form Mn3O4. This compound was subjected to activation treatment using hydrochloric and sulfuric acid under various reaction conditions. The manganese dioxide so obtained was examined by x-ray diffraction, thermogravimetric, differential thermal, and chemical analyses. The structure of the dioxide obtained was found to be greatly dependent on the origin of MnO2 and type of acid used. Treatment with hydrochloric acid yielded the so-called gamma-variety while sulfuric acid tended to produce gamma- or alpha-MnO2. In addition, waste manganese sulfate obtained as by-product from sulfuric acid digestion treatment was recycled and electrolytically oxidized to gamma-MnO2. The discharge performance of the above-mentioned MnO2 samples as battery cathodic active material was evaluated and compared with the ordinary battery grade.

  10. Chemical inhibition of nitrification in activated sludge.

    PubMed

    Kelly, R T; Henriques, I D S; Love, N G

    2004-03-20

    Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.

  11. Differentiation of the Chemical Profile of Piper arboreum Tissues Using NIR Spectrometry and Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Duarte, M. S.; Pontes, M. J. C.; Ramos, C. S.

    2016-01-01

    The differentiation of chemical profiles from Piper arboreum tissues using near infrared (NIR) spectrometry and principal component analysis (PCA) was addressed. The NIR analyses were performed with a small quantity of dried and ground tissues. Differences in the chemical composition of leaf, stem, and root tissues were observed. The results obtained were compared to those produced by gas chromatography-mass spectrometry (GC-MS) as the reference method, confirming the NIR results.

  12. Influence of ingredients and chemical components on the quality of Chinese steamed bread.

    PubMed

    Zhu, Fan

    2014-11-15

    Chinese steamed bread (CSB) is a staple food in China since ancient time. The basic ingredients include wheat flour, yeast/sourdough, and water. Current consumer trends urge the production of CSB on a large scale as well as the formulation of healthier CSB with specific nutritional benefits. This requires a better definition of the relationship between the properties of ingredients/chemical components and CSB quality. This review summarises the recent advances in understanding the roles of basic and optional ingredients and their chemical components in the appearance, textural, sensory, and shelf-life properties of CSB, and provides suggestions for further research to match the current trends.

  13. Report of the Workshop on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H. (Editor); Herd, Christopher D. K. (Editor)

    2002-01-01

    Geochemical and petrologic studies of the Martian meteorites (nicknamed the SNCs) have proliferated in the past few years, from a wealth of new samples and the perfection of new analytical methods. An intriguing result from these studies is that the chemical and isotopic compositions of the Martian meteorites, all basalts or derived from basaltic magma, can be modeled as mixtures of a limited number of components. These mixing components were the focus of the workshop.

  14. Chemical activation through super energy transfer collisions.

    PubMed

    Smith, Jonathan M; Nikow, Matthew; Ma, Jianqiang; Wilhelm, Michael J; Han, Yong-Chang; Sharma, Amit R; Bowman, Joel M; Dai, Hai-Lung

    2014-02-05

    Can a molecule be efficiently activated with a large amount of energy in a single collision with a fast atom? If so, this type of collision will greatly affect molecular reactivity and equilibrium in systems where abundant hot atoms exist. Conventional expectation of molecular energy transfer (ET) is that the probability decreases exponentially with the amount of energy transferred, hence the probability of what we label "super energy transfer" is negligible. We show, however, that in collisions between an atom and a molecule for which chemical reactions may occur, such as those between a translationally hot H atom and an ambient acetylene (HCCH) or sulfur dioxide, ET of chemically significant amounts of energy commences with surprisingly high efficiency through chemical complex formation. Time-resolved infrared emission observations are supported by quasi-classical trajectory calculations on a global ab initio potential energy surface. Results show that ∼10% of collisions between H atoms moving with ∼60 kcal/mol energy and HCCH result in transfer of up to 70% of this energy to activate internal degrees of freedom.

  15. Chemical reactivity and antimicrobial activity of N-substituted maleimides.

    PubMed

    Salewska, Natalia; Boros-Majewska, Joanna; Lącka, Izabela; Chylińska, Katarzyna; Sabisz, Michał; Milewski, Sławomir; Milewska, Maria J

    2012-02-01

    Several N-substituted maleimides containing substituents of varying bulkiness and polarity were synthesised and tested for antimicrobial and cytostatic activity. Neutral maleimides displayed relatively strong antifungal effect minimum inhibitory concentrations (MICs in the 0.5-4 µg ml(-1) range); their antibacterial activity was structure dependent and all were highly cytostatic, with IC(50) values below 0.1 µg ml(-1). Low antimicrobial but high cytostatic activity was noted for basic maleimides containing tertiary aminoalkyl substituents. Chemical reactivity and lipophilicity influenced antibacterial activity of neutral maleimides but had little if any effect on their antifungal and cytostatic action. N-substituted maleimides affected biosynthesis of chitin and β(1,3)glucan, components of the fungal cell wall. The membrane enzyme, β(1,3)glucan synthase has been proposed as a putative primary target of N-ethylmaleimide and some of its analogues in Candida albicans cells.

  16. Laser-micromachined and laminated microfluidic components for miniaturized thermal, chemical, and biological systems

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Stewart, Donald C.; Lin, Yuehe

    1999-03-01

    Microchannel microfluidic components are being developed for heat transfer, chemical reactor, chemical analysis, and biological analytical applications. Specific applications include chemical sensing, DNA replication, blood analysis, capillary electrophoresis, fuel cell reactors, high temperature chemical reactors, heat pumps, combustors, and fuel processors. Two general types of component architectures have been developed and the fabrication processes defined. All involve a lamination scheme using plastic, ceramic, or metal laminates, as opposed to planar components. The first type is a stacked architecture that utilizes functionality built in each layer, with fluid flow interconnects between layers. Each layer of the laminate has specific microchannel geometry, and performs a specific function. Polymeric materials are used primarily. Fabrication processes used are laser micromachining, wet and dry etching, and coating deposition. the laminates can also be micromolded plastics. The second architecture employs laminates to form internal microchannels and interconnects. Materials include ceramic tapes and high temperature metals. Catalysts can be placed in the microchannels. Fabrication processes used are diffusion bonding, ceramic bonding and firing, photochemical etching, and electrochemical micromachining. Bonding, thus sealing, the laminates is an important issue. Process conditions have been develop to reduce distortion of the laminates and to hermetically seal the components.

  17. CHEMICAL STRUCTURES IN COAL: GEOCHEMICAL EVIDENCE FOR THE PRESENCE OF MIXED STRUCTURAL COMPONENTS.

    USGS Publications Warehouse

    Hatcher, P.G.; Breger, I.A.; Maciel, G.E.; Szeverenyi, N.M.

    1983-01-01

    The purpose of this paper is to summarize work on the chemical structural components of coal, comparing them with their possible plant precursors in modern peat. Solid-state **1**3C nuclear magnetic resonance (NMR), infrared spectroscopy (IR), elemental analysis and, in some cases, individual compound analyses formed the bases for these comparisons.

  18. Correlation between dynamic wetting behavior and chemical components of thermally modified wood

    NASA Astrophysics Data System (ADS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen; Sun, Wenjing

    2015-01-01

    In order to investigate the dynamic wetting behavior of thermally modified wood, Cathay poplar (Populus cathayana Rehd.) and Scots pine (Pinus sylvestris L.) samples were thermally modified in an oven at 160, 180, 200, 220 or 240 °C for 4 h in this study. The dynamic contact angles and droplet volumes of water droplets on modified and unmodified wood surfaces were measured by sessile drop method, and their changing rates (expression index: K value and wetting slope) calculated by wetting models were illustrated for mapping the dynamic wetting process. The surface chemical components were also measured by X-ray photoelectron spectroscopy analysis (XPS), thus the relationship between dynamic wetting behavior and chemical components of thermally modified wood were determined. The results indicated that thermal modification was capable of decreasing the dynamic wettability of wood, expressed in lowing spread and penetration speed of water droplets on wood surfaces. This change was more obvious with the increased heating temperature. The K values varied linearly with the chemical components parameter (mass loss, O/C ratio, and C1/C2 ratio), indicating a strong correlation between dynamic wetting behavior and chemical components of thermally modified wood.

  19. Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the conference on Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of Martian Meteorites, September 11-12, 2002, in Houston, Texas. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  20. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    PubMed Central

    Morakinyo, Oyewale Mayowa; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley; Hunter, Raymond Paul

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality. PMID:27314370

  1. Galangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1.

    PubMed

    Narukawa, Masataka; Koizumi, Kanako; Iwasaki, Yusaku; Kubota, Kikue; Watanabe, Tatsuo

    2010-01-01

    We investigated the activation of transient receptor potential cation channel (TRP) subfamily V, member 1 (TRPV1) and TRP subfamily A, member 1 (TRPA1) by 1'-acetoxychavicol acetate (ACA), the main pungent component in galangal. ACA did not activate TRPV1-expressing human embryonic kidney (HEK) cells, but strongly activated TRPA1-expressing HEK cells. ACA was more potent than allyl isothiocyanate, the typical TRPA1 agonist.

  2. ChemDoodle Web Components: HTML5 toolkit for chemical graphics, interfaces, and informatics.

    PubMed

    Burger, Melanie C

    2015-01-01

    ChemDoodle Web Components (abbreviated CWC, iChemLabs, LLC) is a light-weight (~340 KB) JavaScript/HTML5 toolkit for chemical graphics, structure editing, interfaces, and informatics based on the proprietary ChemDoodle desktop software. The library uses and WebGL technologies and other HTML5 features to provide solutions for creating chemistry-related applications for the web on desktop and mobile platforms. CWC can serve a broad range of scientific disciplines including crystallography, materials science, organic and inorganic chemistry, biochemistry and chemical biology. CWC is freely available for in-house use and is open source (GPL v3) for all other uses.Graphical abstractAdd interactive 2D and 3D chemical sketchers, graphics, and spectra to websites and apps with ChemDoodle Web Components.

  3. Active Chemical Thermodynamics promoted by activity of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Rao, Madan

    2011-03-01

    The spatial distribution and dynamics of formation and breakup of the nanoclusters of cell surface proteins is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we have proposed a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. We study the consequences of such active actin-based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that the active remodeling of cortical actin, can give rise to a dramatic increase in efficiency and extent of conformational spread, even at low levels of expression at the cell surface. We define a activity temperature (τa) arising due to actin activities which can be used to describe chemical thermodynamics of the system. We plot TTT (time-temparature-transformation) curves and compute the Arrhenius factors which depend on τa . With this, the active asters can be treated as enzymes whose enzymatic reaction rate can be related to the activity.

  4. Bioactive Components of Chinese Propolis Water Extract on Antitumor Activity and Quality Control

    PubMed Central

    Xuan, Hongzhuan; Wang, Yuehua; Li, Aifeng; Fu, Chongluo; Wang, Yuanjun; Peng, Wenjun

    2016-01-01

    To understand the material basis of antitumor activity of Chinese propolis water extract (CPWE), we developed a simple and efficient method using macroporous absorptive resin coupled with preparative high performance liquid chromatography and separated and purified eleven chemical components (caffeic acid, ferulic acid, isoferulic acid, 3,4-dimethoxycinnamic acid, pinobanksin, caffeic acid benzyl ester, caffeic acid phenethyl ester, apigenin, pinocembrin, chrysin, and galangin) from CPWE; then we tested the antitumor activities of these eleven components using different human tumor cell lines (MCF-7, MDA-MB-231, HeLa, and A549). Furthermore, cell migration, procaspase 3 level, and reactive oxygen species (ROS) of effective components from CPWE were investigated. Our data showed that antitumor activities of the eleven components from CPWE were different from each other. CPWE and its effective components induced apoptosis by inhibiting tumor cell migration, activating caspase 3, and promoting ROS production. It can be deduced that the antitumor effects of propolis did not depend on a single component, and there must exist “bioactive components,” which also provides a new idea for Chinese propolis quality control. PMID:27123037

  5. Chemesthesis and the chemical senses as components of a "chemofensor complex".

    PubMed

    Green, Barry G

    2012-03-01

    An important function of the chemical senses is to warn against dangerous biological and chemical agents in the environment. The discovery in recent years of "taste" receptor cells outside the oral cavity that appear to have protective functions has raised new questions about the nature and scope of the chemical senses in general and of chemesthesis in particular. The present paper briefly reviews these findings within the context of what is currently known about the body's chemically sensitive protective mechanisms, including nonsensory processes that help to expel or neutralize threatening agents once they have been encountered. It is proposed that this array of defense mechanisms constitutes a "chemofensor complex" in which chemesthesis is the most ubiquitous, functionally diverse, and interactive chemosensory component.

  6. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  7. Radiation stable, hybrid, chemical vapor infiltration/preceramic polymer joining of silicon carbide components

    NASA Astrophysics Data System (ADS)

    Khalifa, Hesham E.; Koyanagi, Takaaki; Jacobsen, George M.; Deck, Christian P.; Back, Christina A.

    2017-04-01

    This paper reports on a nuclear-grade joining material for bonding of silicon carbide-based components. The joint material is fabricated via a hybrid preceramic polymer, chemical vapor infiltration process. The joint is comprised entirely of β-SiC and results in excellent mechanical and permeability performance. The joint strength, composition, and microstructure have been characterized before and after irradiation to 4.5 dpa at 730 °C in the High Flux Isotope Reactor. The hybrid preceramic polymer-chemical vapor infiltrated joint exhibited complete retention of shear strength and no evidence of microstructural evolution or damage was detected following irradiation.

  8. Selective adsorption of flavor-active components on hydrophobic resins.

    PubMed

    Saffarionpour, Shima; Sevillano, David Mendez; Van der Wielen, Luuk A M; Noordman, T Reinoud; Brouwer, Eric; Ottens, Marcel

    2016-12-09

    This work aims to propose an optimum resin that can be used in industrial adsorption process for tuning flavor-active components or removal of ethanol for producing an alcohol-free beer. A procedure is reported for selective adsorption of volatile aroma components from water/ethanol mixtures on synthetic hydrophobic resins. High throughput 96-well microtiter-plates batch uptake experimentation is applied for screening resins for adsorption of esters (i.e. isoamyl acetate, and ethyl acetate), higher alcohols (i.e. isoamyl alcohol and isobutyl alcohol), a diketone (diacetyl) and ethanol. The miniaturized batch uptake method is adapted for adsorption of volatile components, and validated with column breakthrough analysis. The results of single-component adsorption tests on Sepabeads SP20-SS are expressed in single-component Langmuir, Freundlich, and Sips isotherm models and multi-component versions of Langmuir and Sips models are applied for expressing multi-component adsorption results obtained on several tested resins. The adsorption parameters are regressed and the selectivity over ethanol is calculated for each tested component and tested resin. Resin scores for four different scenarios of selective adsorption of esters, higher alcohols, diacetyl, and ethanol are obtained. The optimal resin for adsorption of esters is Sepabeads SP20-SS with resin score of 87% and for selective removal of higher alcohols, XAD16N, and XAD4 from Amberlite resin series are proposed with scores of 80 and 74% respectively. For adsorption of diacetyl, XAD16N and XAD4 resins with score of 86% are the optimum choice and Sepabeads SP2MGS and XAD761 resins showed the highest affinity towards ethanol.

  9. Functional Components of Carob Fruit: Linking the Chemical and Biological Space.

    PubMed

    Goulas, Vlasios; Stylos, Evgenios; Chatziathanasiadou, Maria V; Mavromoustakos, Thomas; Tzakos, Andreas G

    2016-11-10

    The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, including cancer and diabetes. Advances in high-throughput screening assays, assisted by the continuous development on the instrumentation's capabilities and omics, have resulted in charting a large chemical and biological space of drug-like compounds, originating from natural sources. Herein, we attempt to integrate the information on the chemical composition and the associated biological impact of carob fruit in regards to human health. The beneficial and health-promoting effects of carob along with the clinical trials and the drug formulations derived from carob's natural components are presented in this review.

  10. Functional Components of Carob Fruit: Linking the Chemical and Biological Space

    PubMed Central

    Goulas, Vlasios; Stylos, Evgenios; Chatziathanasiadou, Maria V.; Mavromoustakos, Thomas; Tzakos, Andreas G.

    2016-01-01

    The contribution of natural products to the drug-discovery pipeline has been remarkable since they have served as a rich source for drug development and discovery. Natural products have adapted, during the course of evolution, optimum chemical scaffolds against a wide variety of diseases, including cancer and diabetes. Advances in high-throughput screening assays, assisted by the continuous development on the instrumentation’s capabilities and omics, have resulted in charting a large chemical and biological space of drug-like compounds, originating from natural sources. Herein, we attempt to integrate the information on the chemical composition and the associated biological impact of carob fruit in regards to human health. The beneficial and health-promoting effects of carob along with the clinical trials and the drug formulations derived from carob’s natural components are presented in this review. PMID:27834921

  11. The biological exposure indices: a key component in protecting workers from toxic chemicals.

    PubMed Central

    Morgan, M S

    1997-01-01

    Biological monitoring of exposure to chemicals in the workplace is an important component of exposure assessment and prevention of adverse health effects. It should be employed in conjunction with ambient air monitoring to provide information on the absorbed dose of a chemical agent and the effect of all routes of exposure. Judgments regarding the acceptable level of a chemical or its metabolite in biological samples are facilitated by comparison to a reference value. The American Conference of Governmental Industrial Hygienists has established a series of recommended reference values called the Biological Exposure Indices (BEI). The history and characteristics of the BEI are reviewed, and their suitability for use by occupational health specialists is examined. A number of challenges and stimuli to the continued development and improvement of these reference values are described, and the impact of recent advances in macromolecular biology is assessed. PMID:9114280

  12. Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans.

    PubMed

    Sasaki, H; Matsumoto, M; Tanaka, T; Maeda, M; Nakai, M; Hamada, S; Ooshima, T

    2004-01-01

    The purpose of the present study was to determine the antibacterial activity of oolong tea extract on oral streptococci, including Streptococcus mutans and Streptococcus sobrinus, and to identify the response to its components. Antibacterial activity was found when the extract was added to S. mutans cells in chemically defined medium but not in complex broth media. Further, pretreatment with bovine serum albumin reduced the antibacterial activity. The extract showed antibacterial activity against all of the oral streptococci examined, with the highest activity against S. mutans MT8148R. This activity was found to originate from a monomeric polyphenol-rich fraction, and it was stronger than that of pure polyphenols. Moreover, some combinations of monomeric polyphenols showed the highest level of antibacterial activity. These results suggest that the antibacterial activity of oolong tea extract is caused by a synergistic effect of monomeric polyphenols, which can easily bind to proteins.

  13. Chemical elements diffusion in the stainless steel components brazed with Cu-Ag alloy

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Geanta, V.; Vasile, I. M.; Binchiciu, E. F.; Winestoock, R.

    2016-06-01

    The paper presents the study of diffusion of chemical elements through a brazing joint, between two thin components (0.5mm) made of stainless steel 304. An experimental brazing filler material has been used for brazing stainless steel component and then the diffusion phenomenon has been studied, in terms of chemical element displacement from the brazed separation interface. The filler material is in the form of a metal rod coated with ceramic slurry mixture of minerals, containing precursors and metallic powders, which can contribute to the formation of deposit brazed. In determining the distance of diffusion of chemical elements, on both sides of the fusion line, were performed measurements of the chemical composition using electron microscopy SEM and EDX spectrometry. Metallographic analysis of cross sections was performed with the aim of highlight the microstructural characteristics of brazed joints, for estimate the wetting capacity, adherence of filler metal and highlight any imperfections. Analyzes performed showed the penetration of alloying elements from the solder (Ag, Cu, Zn and Sn) towards the base material (stainless steel), over distances up to 60 microns.

  14. [Research on Chinese medicine pairs (III)--Their bio-active components].

    PubMed

    Li, Wei-Xia; Tang, Yu-Ping; Liu, Li; Liu, Pei; Su, Shu-Lan; Qian, Da-Wei; Duan, Jin-Ao

    2013-12-01

    The total effect of Chinese medicine pair (CMP) was not the simply addition of two single herbs, but the interaction of their different components. Therefore, the research on the bio-active components of CMP is the basis of CMP compatibility study, and has important significance for revealing the compatibility effect and action mechanism, and creating traditional Chinese medicine (TCM) new drugs. This paper summed up the latest research progress of CMP on the basis of the bio-active components variation regularity of CMP from chemical solutions and content changes in vitro and the actions of CMP on bodies in vivo, in order to further drive the modern basic and applied research of CMP, and to reveal the scientific essence of CMP compatibility.

  15. Space Invariant Independent Component Analysis and ENose for Detection of Selective Chemicals in an Unknown Environment

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Ryan, Margaret A.; Duong, Vu A.

    2007-01-01

    In this paper, we present a space invariant architecture to enable the Independent Component Analysis (ICA) to solve chemical detection from two unknown mixing chemical sources. The two sets of unknown paired mixture sources are collected via JPL 16-ENose sensor array in the unknown environment with, at most, 12 samples data collected. Our space invariant architecture along with the maximum entropy information technique by Bell and Sejnowski and natural gradient descent by Amari has demonstrated that it is effective to separate the two mixing unknown chemical sources with unknown mixing levels to the array of two original sources under insufficient sampled data. From separated sources, they can be identified by projecting them on the 11 known chemical sources to find the best match for detection. We also present the results of our simulations. These simulations have shown that 100% correct detection could be achieved under the two cases: a) under-completed case where the number of input (mixtures) is larger than number of original chemical sources; and b) regular case where the number of input is as the same as the number of sources while the time invariant architecture approach may face the obstacles: overcomplete case, insufficient data and cumbersome architecture.

  16. Active components and clinical applications of olive oil.

    PubMed

    Waterman, Emily; Lockwood, Brian

    2007-12-01

    The olive tree, Olea europaea, is native to the Mediterranean basin and parts of Asia Minor. The fruit and compression-extracted oil have a wide range of therapeutic and culinary applications. Olive oil also constitutes a major component of the "Mediterranean diet." The chief active components of olive oil include oleic acid, phenolic constituents, and squalene. The main phenolics include hydroxytyrosol, tyrosol, and oleuropein, which occur in highest levels in virgin olive oil and have demonstrated antioxidant activity. Antioxidants are believed to be responsible for a number of olive oil's biological activities. Oleic acid, a monounsaturated fatty acid, has shown activity in cancer prevention, while squalene has also been identified as having anticancer effects. Olive oil consumption has benefit for colon and breast cancer prevention. The oil has been widely studied for its effects on coronary heart disease (CHD), specifically for its ability to reduce blood pressure and low-density lipoprotein (LDL) cholesterol. Antimicrobial activity of hydroxytyrosol, tyrosol, and oleuropein has been demonstrated against several strains of bacteria implicated in intestinal and respiratory infections. Although the majority of research has been conducted on the oil, consumption of whole olives might also confer health benefits.

  17. Nitric oxide radical scavenging active components from Phyllanthus emblica L.

    PubMed

    Kumaran, A; Karunakaran, R Joel

    2006-03-01

    An activity-directed fractionation and purification process was used to identify the nitric oxide (NO) scavenging components of Phyllanthus emblica. Dried fruit rind of P. emblica was extracted with methanol and then separated into hexane, ethyl acetate, and water fractions. Among these only the ethyl acetate phase showed strong NO scavenging activity in vitro, when compared with water and hexane phases. The ethyl acetate fraction was then subjected to separation and purification using Sephadex LH-20 chromatography. Five compounds showing strong NO scavenging activity were identified by spectral methods (1H NMR, 13C NMR, and MS) and by comparison with literature values to be Gallic acid, Methyl gallate, Corilagin, Furosin, and Geraniin. In addition, HPLC identification and quantification of isolated compounds were also performed. Gallic acid was found to be a major compound in the ethyl acetate extract and Geraniin showed highest NO scavenging activity among the isolated compounds.

  18. The chemical effects of the Martian environment on power system component materials: A theoretical approach

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.

    1990-01-01

    In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the power source options being considered for such a mission are photovoltaics, regenerative fuel cells and nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars, in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate and solve potential problems. Space power systems components such as photovoltaic arrays, radiators, and solar concentrators may be vulnerable to degradation in the Martian environment. Natural characteristics of Mars which may pose a threat to surface power systems include high velocity winds, dust, ultraviolet radiation, large daily variation in temperature, reaction to components of the soil, atmosphere and atmospheric condensates as well as synergistic combinations. Most of the current knowledge of the characteristics of the Martian atmosphere and soil composition was obtained from the Viking 1 and 2 missions in 1976. A theoretical study is presented which was used to assess the effects of the Martian atmospheric conditions on the power systems components. A computer program written at NASA-Lewis for combustion research that uses a free energy minimization technique was used to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system component materials selected for this study include: silicon dioxide, silicon, carbon, copper, and titanium. Combinations of environments and materials considered include: (1) Mars atmosphere with power surface material, (2) Mars atmosphere and dust component with power surface material, and (3) Mars atmosphere and hydrogen peroxide or superoxide or superoxide with power system material. The chemical equilibrium calculations were performed at a composition ratio (oxidant to reactant) of 100. The temperature for the silicon dioxide material and silicon, which simulate

  19. Spatial Distribution of Selected Chemical Cell Wall Components in the Embryogenic Callus of Brachypodium distachyon

    PubMed Central

    Rojek, Magdalena; Milewska-Hendel, Anna; Gawecki, Robert; Karcz, Jagna; Kurczynska, Ewa; Hasterok, Robert

    2016-01-01

    Brachypodium distachyon L. Beauv. (Brachypodium) is a species that has become an excellent model system for gaining a better understanding of various areas of grass biology and improving plant breeding. Although there are some studies of an in vitro Brachypodium culture including somatic embryogenesis, detailed knowledge of the composition of the main cell wall components in the embryogenic callus in this species is missing. Therefore, using the immunocytochemical approach, we targeted 17 different antigens of which five were against the arabinogalactan proteins (AGP), three were against extensins, six recognised pectic epitopes and two recognised hemicelluloses. These studies were complemented by histological and scanning electron microscopy (SEM) analyses. We revealed that the characteristic cell wall components of Brachypodium embryogenic calli are AGP epitopes that are recognised by the JIM16 and LM2 antibodies, an extensin epitope that is recognised by the JIM11 antibody and a pectic epitopes that is recognised by the LM6 antibody. Furthermore, we demonstrated that AGPs and pectins are the components of the extracellular matrix network in Brachypodium embryogenic culture. Additionally, SEM analysis demonstrated the presence of an extracellular matrix on the surface of the calli cells. In conclusion, the chemical compositions of the cell walls and ECMSN of Brachypodium callus show spatial differences that correlate with the embryogenic character of the cells. Thus, the distribution of pectins, AGPs and hemicelluloses can be used as molecular markers of embryogenic cells. The presented data extends the knowledge about the chemical composition of the embryogenic callus cells of Brachypodium. PMID:27893856

  20. Chemical Components of Noncommercial Alcohol Beverage Samples: A Study With the Viewpoint of Toxic Components in Mashhad, Iran

    PubMed Central

    Dadpour, Bita; Hedjazi, Arya; Ghorbani, Hamideh; Khosrojerdi, Hamid; Vaziri, Seyed Mohsen; Malek Zadeh, Haleh; Habibi Tamijani, Amir

    2016-01-01

    Background Iran has one of the lowest alcoholic beverage use rates in comparison with other countries, because it is legally forbidden and because of religious beliefs. Even so, unrecorded and noncommercial alcohol remains a considerable concern, which needs special attention. Objectives In the current research, we have studied the general composition of noncommercial alcohol samples to identify potentially toxic components in the context of the city of Mashhad in IR Iran. Patients and Methods Using a descriptive study, chemical composition records of alcohol samples obtained from Mashhad and its suburbs (from March 2013 to March 2014) were evaluated in terms of ethanol percentage and methanol percentage using gas chromatography. Likewise, the pH of the alcohol and the location of the sample were also considered. Some substances, such as inorganic elements, were not included because there was no information about these substances in the records. Results Of 877 reports of alcohol samples, more than 50% were obtained from Mashhad and the rest were from the suburbs. Of the reports, 57.5% were in the spring and summer, followed by 42.5% in the fall and winter. The mean (min-max) of ethanol percentage was 30.04% (0 - 98.4). In four cases, methanol was detected. The mean (min-max) of methanol percentage was 23% (4 - 95).The majority of the samples had an acidic pH. Conclusions The composition of unrecorded samples did not raise major toxicological concern beyond ethanol in alcohol products. However, concentration levels of methanol in some unrecorded alcohol samples made these samples detrimental for human consumption. PMID:27622171

  1. CHEMICAL COMPOSITION OF THE COMPONENTS OF ECLIPSING BINARY STAR ZZ BOOTIS

    SciTech Connect

    Kang, Young-Woon; Yushchenko, Alexander; Hong, Kyengsoo; Kim, Sungeun; Yushchenko, Volodymyr E-mail: yua@sejong.ac.kr

    2012-08-15

    We investigated ZZ Boo using a high-resolution (R = 80,000) spectrum obtained at the BOES echelle spectrograph attached to a 1.8 m telescope at the Bohuynsan observatory in Korea. The atmospheric parameters of the components were found using the published photometrical observations and the abundance analysis of iron lines: the flux ratio of the components F{sub A} /F{sub B} = 1.12 {+-} 0.15, the effective temperatures of the components T{sub eff} = 6860 {+-} 20 K and 6930 {+-} 20 K, the surface gravities log g = 3.72 {+-} 0.10 and 3.84 {+-} 0.10, the metallicities [Fe/H] = -0.10 {+-} 0.08 and -0.03 {+-} 0.10, and the projected rotation velocities vsin i = 11.9 {+-} 0.4 km s{sup -1} and 19.3 {+-} 0.8 km s{sup -1} for the primary and secondary components, respectively. The pointed errors are the formal errors of the methods used; the systematic errors of the temperatures, gravities, metallicities, and projected rotational velocities can be as high as 250-300 K, 0.3 dex, 0.15 dex, and 4 km s{sup -1}, respectively. The abundances of 24 and 22 chemical elements were determined in the atmospheres of the components. The abundance pattern of the primary component shows the solar or slightly undersolar abundances of all elements. CNO abundances are close to solar values. The abundance pattern of this component resembles those of {lambda} Boo type stars. The abundances of light elements, except oxygen, in the atmosphere of the secondary component are practically solar. The abundances of barium and two detected lanthanides are close to the solar values; the overabundance of oxygen is 0.9 dex. The abundances of two components are evidently different. The comparison of relative abundances with the condensation temperatures and second ionization potentials of the elements confirms the difference in abundance patterns and allows discussion of the different accretion scenarios for two components of this binary system.

  2. The Influence of Chemical Chaperones on Enzymatic Activity under Thermal and Chemical Stresses: Common Features and Variation among Diverse Chemical Families

    PubMed Central

    Feibish, Nir; Sharon, Noa; Schnaider, Lee; Shmul, Guy; Amir, Yaniv; Buzhansky, Ludmila; Gazit, Ehud

    2014-01-01

    Molecular and chemical chaperones are key components of the two main mechanisms that ensure structural stability and activity under environmental stresses. Yet, chemical chaperones are often regarded only as osmolytes and their role beyond osmotic regulation is not fully understood. Here, we systematically studied a large group of chemical chaperones, representatives of diverse chemical families, for their protective influence under either thermal or chemical stresses. Consistent with previous studies, we observed that in spite of the structural similarity between sugars and sugar alcohols, they have an apparent difference in their protective potential. Our results support the notion that the protective activity is mediated by the solvent and the presence of water is essential. In the current work we revealed that i) polyols and sugars have a completely different profile of protective activity toward trifluoroethanol and thermal stress; ii) minor changes in solvent composition that do not affect enzyme activity, yet have a great effect on the ability of osmolytes to act as protectants and iii) increasing the number of active groups of carbohydrates makes them better protectants while increasing the number of active groups of methylamines does not, as revealed by attempts to synthesize de novo designed methylamines with multiple functional groups. PMID:24520396

  3. The influence of chemical chaperones on enzymatic activity under thermal and chemical stresses: common features and variation among diverse chemical families.

    PubMed

    Levy-Sakin, Michal; Berger, Or; Feibish, Nir; Sharon, Noa; Schnaider, Lee; Shmul, Guy; Amir, Yaniv; Buzhansky, Ludmila; Gazit, Ehud

    2014-01-01

    Molecular and chemical chaperones are key components of the two main mechanisms that ensure structural stability and activity under environmental stresses. Yet, chemical chaperones are often regarded only as osmolytes and their role beyond osmotic regulation is not fully understood. Here, we systematically studied a large group of chemical chaperones, representatives of diverse chemical families, for their protective influence under either thermal or chemical stresses. Consistent with previous studies, we observed that in spite of the structural similarity between sugars and sugar alcohols, they have an apparent difference in their protective potential. Our results support the notion that the protective activity is mediated by the solvent and the presence of water is essential. In the current work we revealed that i) polyols and sugars have a completely different profile of protective activity toward trifluoroethanol and thermal stress; ii) minor changes in solvent composition that do not affect enzyme activity, yet have a great effect on the ability of osmolytes to act as protectants and iii) increasing the number of active groups of carbohydrates makes them better protectants while increasing the number of active groups of methylamines does not, as revealed by attempts to synthesize de novo designed methylamines with multiple functional groups.

  4. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  5. [Synchronization of the activity of gamma oscillation and ERP components].

    PubMed

    Wang, Mingshi; Liu, Jin; Zhu, Qiang; Chen, Yun

    2005-10-01

    In the present study the activity of the gamma oscillation synchronized with the stimuli and ERP is investigated by means of unimodal and bimodal experiments. The multiresolution wavelet algorithm is used for signal extraction and Gabor transform is employed to represent the temporal evolution of the selected frequency components. The results show that the gamma oscillation is strongly phase-locked not only with the exogenous stimuli in the three experiments, but also with the endogenous components of ERPs (N2b, P300). And the ERP and the gamma oscillation induced by the bimodal stimuli show the audio-visual bisensory integration and relationship. In addition, the results from the experiments with the auditory stimuli show that the gamma oscillation may be closely related to the perception of auditory signals.

  6. Neuroprotective Activity of Hypericum perforatum and Its Major Components.

    PubMed

    Oliveira, Ana I; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C P

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John's wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out.

  7. Gating effects of component B on oxygen activation by the methane monooxygenase hydroxylase component.

    PubMed

    Liu, Y; Nesheim, J C; Lee, S K; Lipscomb, J D

    1995-10-20

    Component B (MMOB) of the soluble methane monooxygenase (MMO) system accelerates the initial velocity of methane oxidation by up to 150-fold by an unknown mechanism. The active site of MMO contains a diferric, hydroxo-bridged diiron cluster located on the hydroxylase component (MMOH). This cluster is reduced by the NAD(P)H-coupled reductase component to the diferrous state, which then reacts with O2 to yield two reaction cycle intermediates sequentially termed compounds P and Q. The rate of compound P formation is shown here to be independent of O2 concentration, suggesting that an MMOH-O2 complex (compound O) is (congruent to irreversibly) formed before compound P. Compound Q is capable of reacting with hydrocarbons to yield the MMOH-product complex, compound T. It is shown here that MMOB accelerates catalysis by increasing congruent to 1000-fold the rate of O2 association and reaction with diferrous MMOH leading to compound P. Modeling of the single turnover reaction in the presence of substoichiometric MMOB suggests that MMOB also accelerates the compound P to Q conversion by congruent to 40-fold. Due to this O2-gating effect of MMOB, either compound Q or T becomes the dominant species during turnover, depending upon the substrate concentration and type. Because these are the species that either react with substrate (Q) or release product (T), their buildup maximizes the turnover rate. This is the first direct role in catalysis to be recognized for MMOB and represents a novel method for oxygenase regulation.

  8. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice

    PubMed Central

    Seilkop, Steven K.; Campen, Matthew J.; Lund, Amie K.; McDonald, Jacob D.; Mauderly, Joe L.

    2012-01-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/−) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE−/− mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated “downwind” coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical–chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation. PMID:22486345

  9. Mineral components and anti-oxidant activities of tropical seaweeds

    NASA Astrophysics Data System (ADS)

    Takeshi, Suzuki; Yumiko, Yoshie-Stark; Joko, Santoso

    2005-07-01

    Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC); the antioxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest antioxidant activity. The highest chelation on ferrous ions is also found in the extract of this alga, which is significantly different from the other methanol extracts in both 3 and 24 h incubations.

  10. [Studies on acetylspiramycin. II. Biological activities of spiramycin components].

    PubMed

    Kondo, A; Sato, K; Shuto, K; Yamashita, K; Ichikawa, S; Takahashi, K; Kita, K; Nishiie, Y; Sano, H; Yamaguchi, K

    1990-09-01

    Acetylspiramycin (ASPM) was fractionated using high performance liquid chromatography (HPLC). The peak fractions were named F1 to F7 successively in order of increasing retention times (Rt), i.e., increasing hydrophobicity, and studied for 1) antibacterial activities (MIC), 2) antibacterial potency against Bacillus subtilis ATCC 6633, 3) therapeutic effect on mice infected with Streptococcus pneumoniae III, Staphylococcus aureus Smith, 4) acute toxicity by i.p. administration to mice (LD50) and 5) cytotoxicities to fibroblasts derived from Chinese-hamster lung (CHL), cow pulmonary artery endothelial cells (CPAE) and rat hepatic cells. The results obtained are summarized below. 1. Components F1 and 4'-acetylspiramycin F2 had significantly different biological activities from those of other components: F1 showed the lowest antibacterial potency of 492 micrograms (potency)/mg, F2 showed the highest antibacterial potency of 2,040 micrograms (potency)/mg and correspondingly the lowest LD50 value of 692 mg/kg (the highest toxicity). The therapeutic effect of F2 on infections in mice was found to be the second smallest and was superior only to that of F1. The LD50 value of F1 was 1,200 mg/kg and similar to that of ASPM. 2. Antibacterial potencies of F3, F4, F5 and F6 were 1,165, 1,266, 1,374 and 1,530 micrograms (potency)/mg, respectively; fraction with the higher antibacterial activities corresponded to the longer retention times, i.e., the greater hydrophobicities. The most hydrophobic component, F7, 3-propionyl-3",4"-diacetylspiramycin, however, showed a low antibacterial potency of 1,085 micrograms (potency)/mg, next to the lowest one, F1, a fact which was in contradiction to with the sequential relation between hydrophobicities and potencies from F3 to F6.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Through thick and thin: kinematic and chemical components in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Navarro, Julio F.; Abadi, Mario G.; Venn, Kim A.; Freeman, K. C.; Anguiano, Borja

    2011-04-01

    We search for chemically distinct stellar components in the solar neighbourhood using a compilation of published data. Extending earlier work, we show that when the abundances of Fe, α elements and the r-process element Eu are considered together, stars separate neatly into two groups that delineate the traditional thin and thick disc components of the Milky Way. The group akin to the thin disc is traced by stars with [Fe/H] > -0.7 and [α/Fe] < 0.2. The thick disc-like group overlaps the thin disc in [Fe/H] but has higher abundances of α elements and Eu. Stars in the range -1.5 < [Fe/H] < -0.7 with low [α/Fe] ratios, however, seem to belong to a separate, dynamically cold, non-rotating component that we associate with tidal debris. The kinematically hot stellar halo dominates the sample for [Fe/H] < -1.5. These results suggest that it may be possible to define the main dynamical components of the solar neighbourhood using only their chemistry, an approach with a number of interesting consequences. With such definition, the kinematics of thin disc stars is found to be independent of metallicity: their average rotation speed remains roughly constant in the range -0.7 < [Fe/H] < +0.4, a result that argues against radial migration having played a substantial role in the evolution of the thin disc. The velocity dispersion of the thin disc is also independent of [Fe/H], implying that the familiar increase in velocity dispersion with decreasing metallicity is the result of the increasing prevalence of the thick disc at lower metallicities, rather than of the sustained operation of a dynamical heating mechanism. The substantial overlap in [Fe/H] and, likely, stellar age, of the various components might affect other reported trends in the properties of stars in the solar neighbourhood. A purely chemical characterization of these components would enable us to scrutinize these trends critically in order to understand which result from accretion events and which result

  12. A New Strategy for Quality Evaluation and Identification of Representative Chemical Components in Polygonum multiflorum Thunb.

    PubMed Central

    Gong, Xiao-hong; Liu, Mei-chen

    2017-01-01

    Polygonum multiflorum Thunb. (HSW) is widely used as herb medicine and health food additive. Recently, a series of HSW-induced hepatotoxicities have been reported and many studies have been carried out to investigate it. But contradictory conclusions were drawn that might be caused by the inconsistent quality of market decoction pieces. Therefore, the HSW decoction pieces quality was evaluated with a developed novel method in the paper. 25 batches of raw HSW (RHSW) and 21 batches of processed HSW (PHSW) samples were purchased from different provinces of China. HPLC determination was performed to identify and detect the contents of 16 chemical compounds in herbal material. Fingerprint similarity was analyzed using chromatography information and the results showed that most herbs were in good similarity. Then, a comprehensive evaluation strategy based on principal component analysis with representative quality control indicators was developed to evaluate the quality of HSW samples. And the rationality of the developed method was verified by HCA analysis. The results showed that the herb from Dabashan, Sichuan Province, no matter RHSW or PHSW had the best quality. Different representative components were selected for RHSW or PHSW decoction pieces which might be caused by the chemical reaction during processing. And most PHSW were unqualified according to the requirement of Chinese Pharmacopeia which might take the responsibility for the toxicity of HSW. PMID:28243311

  13. Superheated steam pyrolysis of biomass elemental components and Sugi (Japanese cedar) for fuels and chemicals.

    PubMed

    Sagehashi, Masaki; Miyasaka, Noritaka; Shishido, Hiromu; Sakoda, Akiyoshi

    2006-07-01

    To develop a novel noncatalytic biomass refinery process that can be used as a portable process, superheated steam pyrolysis was investigated to produce both carbonized solid fuels and chemicals using a large-scale reactor. Individual biomass components and native biomass (Sugi, Japanese cedar) were pyrolyzed. Between 150 and 400 degrees C, the vaporizing fractions of cellulose, xylan, and kraft lignin were summarized using a numerical model. Cellulose was converted to glycolaldehyde, furfural, 5-hydroxymethyl furfural and levoglucosan, whereas xylan was converted to glycolaldehyde, furfural, and acetic acid. Kraft lignin produced a slight yield of phenol and guaiacol. The total vaporization fraction of Sugi and its vaporizing rate were explained sufficiently using a numerical model based on the weighted average of the vaporizing properties of the individual components. However, the yields of phenol, guaiacol, and acetic acid were underestimated, while the yields of furfurals and levoglucosan were overestimated. Possible synergetic effects among chemicals in the superheated steam pyrolysis of native biomass were also discussed.

  14. [Effects of abscisic acid on chemical components content and color of Glycyrrhiza uralensis].

    PubMed

    Xiang, Yu; Liu, Chun-sheng; Liu, Yong; Song, Xiao-na; Gu, Xuan

    2015-05-01

    An experiment was conducted using cultivated Glycyrrhiza uralensis in age of one year to study the effects of abscisic acid (ABA) on chemical components content and color of G. uralensis. By using different concentrations of ABA spraying on leaves, the change of the chemical component content was analyzed within 45 d after ABA stimulation, and the effects on quality were studied combined with colorimetric analysis data. It turned out that in some sense the content of glycyrrhizic acid and liquiritin had increased within 45 d, especially for liquiritin. After high concentrations of ABA (3.96 mg · L(-1)) stimulating, the content of glycyrrhizic acid rose 52% while liquiritin up 392% within 30 d. Then they both showed a decline in the content of glycyrrhizic acid and liquiritin on 45 d. Color index values of a* and b* were all significantly higher than that of the control group within 45 d, which meant the color of powders turned toward red and yellow. The conclusion was that ABA (3.96 mg · L(-1)) stimulating could not only improve the quality in the traditional sense through the color of G. uralensis, but also in the modern sense by improving the content of glycyrrhizic acid and liquiritin.

  15. Thermal and Chemical Analyses of Silicone Polymers for Component Engineering Lifetime Assessments

    SciTech Connect

    Balazs, B; Maxwell, R S

    2002-05-14

    Accurate predictions of a polymer component's functional lifetime at best arc tenuous when one has only relatively short term chemical or mechanical property data to extrapolate. We have analyzed a series of silica-filled siloxanes to determine the chemical and microstructural signatures of aging, and we are incorporating these data into rational methodologies for assessing a component's lifetime measured against as-designed engineering properties. We are monitoring changes in mechanical properties, crystallization kinetics, cross-link density changes, and motional dynamics with a variety of analysis methods: Modulated DSC, Dynamic Mechanical Analysis, and Solid-state Nuclear Magnetic Resonance. Previous work has shown that the addition of phenyl side groups to polydimethylsiloxane (PDMS) polymer chains reduces the rate and extent of crystallization of the co-polymer compared to that of pure PDMS. Crystallization has been observed in copolymer systems up to 6.5 mol % phenyl composition by DSC and up to 8 mol % phenyl by XRD. The PDMS-PDPS-silica composite materials studied here are silica reinforced random block copolymers consisting of dimethyl and diphenyl monomer units with 11.2 mol. % polydiphenylsiloxane. Based on this previous work, it is not expected that this material would exhibit crystallization in the polymer network; however, these silicones do, in fact, exhibit crystallization phenomena. This report focuses primarily on our efforts to assess the information content of the crystallization phenomena with respect to aging signatures and mechanisms that may be limiting the functional lifetime of the composite materials.

  16. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  17. The chemical effects of the Martian environment on power system component materials: A theoretical approach

    SciTech Connect

    Perez-Davis, M.E.; Gaier, J.R.

    1994-09-01

    In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the power source options being considered for such a mission are photovoltaics, regenerative fuel cells and nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars, in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate and solve potential problems. Space power systems components such as photovoltaic arrays, radiators, and solar concentrators may be vulnerable to degradation in the Martian environment. Natural characteristics of Mars which may pose a threat to surface power systems include high velocity winds, dust, ultraviolet radiation, large daily variations in temperature, reaction to components of the soil, atmosphere and atmospheric condensates as well as synergistic combinations. Most of the current knowledge of the characteristics of the Martian atmosphere and soil composition was obtained from the Viking 1 and 2 missions in 1976. This paper presents a theoretical study used to assess the effects of the Martian atmospheric conditions on the power systems components. A computer program written at NASA Lewis Research Center in 1961 to 1962 for combustion research that uses a free-energy minimization technique was used to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system component materials selected for this study include: Silicon dioxide, silicon, carbon, copper, and titanium. Combinations of environments and materials considered in this study include: (1) Mars atmosphere with power surface material, (2) Mars atmosphere and dust component with power surface material, (3) Mars atmosphere and hydrogen peroxide or superoxide with power system material.

  18. [Characteristics of Chemical Components in PM₂.₅ from the Coal Dust of Power Plants].

    PubMed

    Wang, Yu-xiu; Peng, Lin; Wang, Yan; Zhang, Teng; Liu, Hai-li; Mu, Ling

    2016-01-15

    The ashes under dust catcher of typical power plants in Yangquan was collected and the contents of elements, irons, EC (elemental carbon) and OC (organic carbon) were measured in PM₂. The characteristics of its chemical composition was studied and the degree of similarity of coal dust's source profiles of PM₂.₅ between Yangquan and other cities were compared using the coefficient of divergence method. The result indicated that the main chemical components of PM₂.₅ from the coal dust were SO₄²⁻,Ca, NO₃⁻, OC, EC, Al, Si, Na, Fe, Mg and Cl⁻, accounting for 57.22% of the total mass. The enrichment factor of Pb in PM₂.₅ of coal dust was the largest with a significant enrichment condition, reaching 10.66-15.91. The coefficient of divergence of source profiles of PM₂.₅ between blind coal and fault coal was 0.072, so it was believed that they must be similar. Compared with other cities, the chemical composition of coal dust in Yangquan had specificity, in particular, the content of Ca was obviously higher than those in other domestic cities.

  19. SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY

    EPA Science Inventory

    ABSTRACT

    In this paper some of the chemical properties of arsenicals (atomic
    and molecular orbitals, electronegativity, valence state, changes between
    valence state, nucleophilicity, the hard/soft acid/base principle) that may
    account for some of the b...

  20. Dose Response Data for Hormonally Active Chemicals ...

    EPA Pesticide Factsheets

    The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. For noncancer effects the default assumption is that noncancer effects generally display threshold rather than LNT responses. More recently, claims have arisen that the chemicals, like endocrine disrupters (EDS), which act via high affinity, low capacity nuclear receptors, may display LNT or nonmonotonic low dose responses: responses that could be missed in multigenerational guideline toxicity testing. This presentation will discuss LNT, threshold and nonmonotonic dose response relationships from case studies of chemicals that disrupt reproductive development and function via the ER, AR and AhR pathways and will include in vitro and in vivo multigenerational data. The in vivo studies in this discussion include only robust, well designed, comprehensive studies that administered the chemical via a relevant route(s) of exposure over a broad dose response range, including low dose(s) in the microgram/kg/d range. The chemicals include ethinyl estradiol, estradiol, genistein, bisphenol a, trenbolone, finasteride, flutamide, phthalate esters and 2,3,7,8 TCDD. The objective is to critically evaluate the data from well done studies in this field to address concerns that current multigenerational reproductive test gui

  1. Tumor necrosis factor-inducing activities of Cryptococcus neoformans components.

    PubMed Central

    Delfino, D; Cianci, L; Migliardo, M; Mancuso, G; Cusumano, V; Corradini, C; Teti, G

    1996-01-01

    Cryptococcus neoformans-induced tumor necrosis factor alpha (TNF-alpha) production may lead to increased human immunodeficiency virus replication in patients with AIDS. In order to identify cryptococcal components that are predominantly responsible for stimulating TNF production, various concentrations of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), mannoproteins (MP), and alpha(1-3) [corrected] glucan were added to whole-blood cultures. All of the cryptococcal components tested, as well as whole heat-killed cryptococci, were capable of inducing TNF-alpha release in a dose-dependent manner. MP were significantly more potent than any of the other cryptococcal components tested or heat-killed cryptococci in stimulating TNF-alpha production (P < 0.05). GXM, in contrast, was significantly less potent in this activity than either GalXM or MP (P < 0.05). As little as 0.5 microg of MP per ml was sufficient to produce moderate but significant elevations of TNF-alpha release. Maximal MP-induced TNF-alpha levels were similar to those induced by Salmonella enteritidis lipopolysaccharide, our positive control. Further experiments using isolated leukocytes suggested that monocytes were the cell population mainly responsible for TNF-alpha production, although the participation of other cell types could not be excluded. The presence of complement-sufficient plasma was a necessary requirement for TNF-alpha induction by GXM, GalXM, and low doses of MP. High MP concentrations (100 microg/ml) were also capable of stimulating TNF-alpha production in the absence of plasma. These data indicate that soluble products released by C. neoformans are capable of inducing TNF-alpha secretion in human leukocytes. This may be clinically relevant, since high concentrations of such products are frequently found in the body fluids of AIDS patients infected with C. neoformans. PMID:8945566

  2. Lifecycle Prognostics Architecture for Selected High-Cost Active Components

    SciTech Connect

    N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

    2011-08-01

    There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and

  3. Signaling Components of Redox Active Endosomes: The Redoxosomes

    PubMed Central

    Oakley, Fredrick D.; Abbott, Duane; Li, Qiang

    2009-01-01

    Abstract Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers. Antioxid. Redox Signal. 11, 1313–1333. PMID:19072143

  4. Neuroprotective Activity of Hypericum perforatum and Its Major Components

    PubMed Central

    Oliveira, Ana I.; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C. P.

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John’s wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out. PMID:27462333

  5. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  6. Reinvestigation of the proteolytically active components of Bromelia pinguin fruit.

    PubMed

    Payrol, Juan Abreu; Obregón, Walter D; Natalucci, Claudia L; Caffini, Néstor O

    2005-09-01

    Pinguinain is the name given to a proteolytic enzyme preparation obtained from Bromelia pinguin fruits that has been scarcely studied. The present paper deals on the reexamination of the proteases present in fruits of B. pinguin grown in Cienfuegos, Cuba. The preparation (partially purified pinguinain, PPP) showed the main characteristics of the cysteine proteases, i.e., optimum pH within alkaline range (pH 7.2-8.8), inhibition of proteolytic activity by thiol blocking reagents, which is usually reverted by addition of cysteine, a remarkable thermal stability and notable stability at high ionic strength values. Isoelectric focusing and zymogram of PPP revealed the presence of several proteolytic components between pI 4.6 and 8.1. Preliminary peptidase purification by cationic exchange chromatography showed the presence of two main proteolytic fractions with molecular masses of approximately 20.0 kDa, according to SDS-PAGE.

  7. ILO activities in the area of chemical safety.

    PubMed

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety.

  8. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis.

    PubMed

    Šamec, Dunja; Maretić, Marina; Lugarić, Ivana; Mešić, Aleksandar; Salopek-Sondi, Branka; Duralija, Boris

    2016-03-01

    The worldwide established strawberry cultivar 'Albion' and three recently introduced cultivars in Europe: 'Monterey', 'Capri', and 'Murano', grown hydroponically, were studied to ascertain the influence of cultivar and harvesting date on the physical, chemical, antioxidant and phytochemical properties of their fruits. Interrelationships of investigated parameters and these cultivars were investigated by the statistical approach of principal component analysis (PCA). Results indicated that cultivar had a more significant effect on the analyzed parameters than harvesting date. Thus grouping of the variables in a PCA plot indicated that each cultivar has specific characteristics important for consumer or industrial use. Cultivar 'Monterey' was the richest in phytochemical contents and consequently in antioxidant activity, 'Albion' showed the highest contents of total soluble solids, titratable acidity content and ascorbic acid, 'Capri' had the highest value of firmness, while 'Murano' had lighter color in comparison to others. Potential use of these cultivars has been assessed according to these important measured attributes.

  9. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    SciTech Connect

    Fox, K.; Edwards, T. B.

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  10. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars.

    PubMed

    He, Zhiyong; Zhu, Haidong; Li, Wangling; Zeng, Maomao; Wu, Shengfang; Chen, Shangwei; Qin, Fang; Chen, Jie

    2016-10-15

    The chemical compositions of cold pressed kernel oils of seven Torreya grandis cultivars from China were analyzed in this study. The contents of the chemical components of T. grandis kernels and kernel oils varied to different extents with the cultivar. The T. grandis kernels contained relatively high oil and protein content (45.80-53.16% and 10.34-14.29%, respectively). The kernel oils were rich in unsaturated fatty acids including linoleic (39.39-47.77%), oleic (30.47-37.54%) and eicosatrienoic acid (6.78-8.37%). The kernel oils contained some abundant bioactive substances such as tocopherols (0.64-1.77mg/g) consisting of α-, β-, γ- and δ-isomers; sterols including β-sitosterol (0.90-1.29mg/g), campesterol (0.06-0.32mg/g) and stigmasterol (0.04-0.18mg/g) in addition to polyphenols (9.22-22.16μgGAE/g). The results revealed that the T. grandis kernel oils possessed the potentially important nutrition and health benefits and could be used as oils in the human diet or functional ingredients in the food industry.

  11. Experimental evidence of chemical components in the bonding of helium and neon with neutral molecules.

    PubMed

    Cappelletti, David; Bartocci, Alessio; Grandinetti, Felice; Falcinelli, Stefano; Belpassi, Leonardo; Tarantelli, Francesco; Pirani, Fernando

    2015-04-13

    The complexes of helium and neon with gaseous neutral molecules are generally perceived to be van der Waals adducts held together by physical (non-covalent) forces, owing to the combination of size (exchange) repulsion with dispersion/induction attraction. Molecular beam experiments confirm that this is the case for He-CF4 , Ne-CF4 adducts, but revealed that the interaction of He and Ne with CCl4 features an appreciable contribution of chemical components that arise from the anisotropy of the electron density of CCl4 that enhances a charge transfer from Ng (Ng=He, Ne). These findings furnish a novel assay of the bonding capabilities of helium and neon, and invite to revisit the neutral complexes of these elements as systems of chemical relevance. The CCl4 -Ng are also peculiar examples of halogen bonds, a group of interactions of major current concern. Finally, this investigation is a prelude to the development of semi-empirical models for force fields aimed to the unified description of static and dynamical properties of systems of comparable or higher complexity.

  12. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils.

    PubMed

    Barbosa, Luiz Claudio Almeida; Filomeno, Claudinei Andrade; Teixeira, Robson Ricardo

    2016-12-07

    Many plant species produce mixtures of odorous and volatile compounds known as essential oils (EOs). These mixtures play important roles in Nature and have been utilized by mankind for different purposes, such as pharmaceuticals, agrochemicals, aromatherapy, and food flavorants. There are more than 3000 EOs reported in the literature, with approximately 300 in commercial use, including the EOs from Eucalyptus species. Most EOs from Eucalyptus species are rich in monoterpenes and many have found applications in pharmaceuticals, agrochemicals, food flavorants, and perfumes. Such applications are related to their diverse biological and organoleptic properties. In this study, we review the latest information concerning the chemical composition and biological activities of EOs from different species of Eucalyptus. Among the 900 species and subspecies of the Eucalyptus genus, we examined 68 species. The studies associated with these species were conducted in 27 countries. We have focused on the antimicrobial, acaricidal, insecticidal and herbicidal activities, hoping that such information will contribute to the development of research in this field. It is also intended that the information described in this study can be useful in the rationalization of the use of Eucalyptus EOs as components for pharmaceutical and agrochemical applications as well as food preservatives and flavorants.

  13. Activating secondary metabolism with stress and chemicals.

    PubMed

    Yoon, Vanessa; Nodwell, Justin R

    2014-02-01

    The available literature on the secondary or nonessential metabolites of the streptomycetes bacteria suggests that there may be poorly expressed or "cryptic" compounds that have yet to be identified and that may have significant medical utility. In addition, it is clear that there is a large and complex regulatory network that controls the production of these molecules in the laboratory and in nature. Two approaches that have been taken to manipulating the yields of secondary metabolites are the use of various stress responses and, more recently, the use of precision chemical probes. Here, we review the status of this work and outline the challenges and opportunities afforded by each of them.

  14. Analysis of the multiple system with chemically peculiar component φ Draconis

    NASA Astrophysics Data System (ADS)

    Liška, J.

    2016-09-01

    The star ϕ Dra comprises a spectroscopic binary and a third star that together form a visual triple system. It is one of the brightest chemically peculiar stars of the upper main sequence. Despite these facts, no comprehensive study of its multiplicity has been performed yet. In this work, we present a detailed analysis of the triple system based on available measurements. We use radial velocities taken from four sources in the literature in a re-analysis of the inner spectroscopic binary (Aab). An incorrect value of the orbital period of the inner system Aab about 27 d was accepted in literature more than 40 yr. A new solution of orbit with the 128-d period was determined. Relative position measurements of the outer visual binary system (AB) from Washington Double Star Catalog were compared with known orbital models. Furthermore, it was shown that astrometric motion in system AB is well described by the model of Andrade with a 308-yr orbital period. Parameters of A and B components were utilized to estimate individual brightness for all components and their masses from evolutionary tracks. Although we found several facts which support the gravitational bond between them, unbound solution cannot be fully excluded yet.

  15. Quality assessment of cortex cinnamomi by HPLC chemical fingerprint, principle component analysis and cluster analysis.

    PubMed

    Yang, Jie; Chen, Li-Hong; Zhang, Qin; Lai, Mao-Xiang; Wang, Qiang

    2007-06-01

    HPLC fingerprint analysis, principle component analysis (PCA), and cluster analysis were introduced for quality assessment of Cortex cinnamomi (CC). The fingerprint of CC was developed and validated by analyzing 30 samples of CC from different species and geographic locations. Seventeen chromatographic peaks were selected as characteristic peaks and their relative peak areas (RPA) were calculated for quantitative expression of the HPLC fingerprints. The correlation coefficients of similarity in chromatograms were higher than 0.95 for the same species while much lower than 0.6 for different species. Besides, two principal components (PCs) have been extracted by PCA. PC1 separated Cinnamomum cassia from other species, capturing 56.75% of variance while PC2 contributed for their further separation, capturing 19.08% variance. The scores of the samples showed that the samples could be clustered reasonably into different groups corresponding to different species and different regions. The scores and loading plots together revealed different chemical properties of each group clearly. The cluster analysis confirmed the results of PCA analysis. Therefore, HPLC fingerprint in combination with chemometric techniques provide a very flexible and reliable method for quality assessment of traditional Chinese medicines.

  16. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents.

  17. Spatial frequency components influence cell activity in the inferotemporal cortex.

    PubMed

    Bermudez, Maria A; Vicente, Ana F; Romero, Maria C; Perez, Rogelio; Gonzalez, Francisco

    2009-01-01

    We studied the correlation between the spatial frequency of complex stimuli and neuronal activity in the monkey inferotemporal (IT) cortex while performing a task that required visual recognition. Single-cell activity was recorded from the right IT cortex. The frequency components of the images used as stimuli were analyzed by using a fast Fourier transform, and a modulus was obtained for 40 spatial frequency ranges from 0.3 to 11.1 cycles/deg. We recorded 82 cells showing statistically significant responses (analysis of variance, P < 0.05) to at least one of the images used as a stimulus. Seventy-eight percent of these cells (n = 64) showed significant responses to at least three images, and in two thirds of them (n = 42), we found a statistically significant correlation (P < 0.05) between cell response and the modulus amplitude of at least one frequency range present in the images. Our results suggest that information about spatial frequency of the visual images is present in the IT cortex.

  18. Thermo-optically active planar polymeric components for telecommunication applications

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Beeson, Karl W.; Pant, Deepti; Blomquist, Robert; Shacklette, Lawrence W.; McFarland, Michael J.

    2000-05-01

    A key property that differentiates optical polymers from more conventional optical materials such as glass, is the rapid variation of the refractive index with temperature. This large difference in dn/dT can be leveraged to produce efficient thermo-optically active optical components. An advanced polymeric waveguide technology was developed for affordable thermo-optically active integrated optical devices that address the needs of the telecom industry. We engineered high-performance organic polymers that can be readily made into single-mode waveguide structures of controlled geometries and of modal profiles that closely match standard telecom glass fibers. These materials are formed from highly-crosslinked halogenated acrylate monomers with specific linkages that determined properties such as flexibility, toughness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values, suppressed polarization effects, and exceptional environmental stability. The devices we describe include thermally tunable Bragg-grating-based wavelength filters, thermally tunable arrayed-waveguide gratings, and digital optical switches.

  19. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    EPA Pesticide Factsheets

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  20. Chemically-related Groups of Active Ingredients

    EPA Pesticide Factsheets

    Many pesticide active ingredients affect pests in similar ways, and we re-evaluate them together as a group. Groups include carbamate insecticides, neonicotinoids, organochlorines, organophosphates, pyrethrins, and pyrethroids.

  1. Chemical Classification of Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Aladro, R.; Martín, S.; Kramer, C.

    2015-12-01

    We present an unbiased λ=3 mm survey done with the IRAM 30 telescope towards the central parts of eight galaxies considered as archetypes of nearby starbursts, galaxies with an active galactic nucleus (AGN) and ultra-luminous infrared galaxies (ULIRGs). The spatial resolution range from ˜200 pc to ˜1.6 kpc, depending on the galaxy. We compare the abundances of thirty-seven species among the sample, and highlight the molecules that characterise the gas in each of them. These results can be very useful to prepare future interferometric observations of active galaxies.

  2. Extraversion and behavioral activation: integrating the components of approach.

    PubMed

    Quilty, Lena C; DeYoung, Colin G; Oakman, Jonathan M; Bagby, R Michael

    2014-01-01

    This investigation evaluates the structure and correlates of lower order traits related to approach, specifically, facets of extraversion and behavioral activation system (BAS) sensitivity. A 3-factor structure of approach was derived in community and clinical samples: assertiveness, enthusiasm, and sensation seeking. All factors were positively associated with Openness/Intellect scores. Enthusiasm and assertiveness were both negatively associated with Neuroticism scores, but were distinguished by associations with Agreeableness and Conscientiousness. Sensation seeking was negatively associated with Conscientiousness scores. The 3 factors demonstrated a unique profile of association with components of impulsivity. Enthusiasm and assertiveness were negatively related to psychopathological symptoms, whereas sensation seeking was largely independent of psychopathology. Results suggest that approach is associated with 3 subfactors, which differ in their pattern or magnitude of associations with other variables, thus underscoring the importance of distinguishing among them. Further, results support the construct validity of the Assertiveness and Enthusiasm aspect scales of the Big Five Aspect Scales to assess traits at this level of the personality hierarchy.

  3. Aroma-active components of nonfat dry milk.

    PubMed

    Karagül-Yüceer, Y; Drake, M A; Cadwallader, K R

    2001-06-01

    Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.

  4. Joint Force Air Component Commander (JFACC) Active Technology

    DTIC Science & Technology

    2002-09-01

    8217NBC Chemical ’ | //Ground Ops ’NBC Smoke’ | //Ground Ops ’Personnel Land’ | //Ground Ops ’Personnel Airborne’ | //Ground Ops ’Forward Arming...8217 | //Naval Ops ’Minesweeper Ops Hunt’ | //Naval Ops ’Minesweeper Ops Sweep’ | //Naval Ops ’Minesweeper Ops EOD Divers’ //Naval Ops ’NBC Chemical

  5. Chemical Components from Aloe and their Inhibition of Indoleamine 2, 3-dioxygenase

    PubMed Central

    Sun, Ya Nan; Li, Lin Ying; Li, Wei; Kang, Jong Seong; Hwang, Inkyu; Kim, Young Ho

    2017-01-01

    Background: In Korea, Aloe is routinely ingested as a traditional medicine or as a component of health beverages. Objective: To research the inhibition of indoleamine 2, 3-dioxygenase (IDO) activities of components from Aloe. Materials and Methods: the compounds were isolated by a combination of silica gel and YMC Rp-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-NMR, and MS). All of the isolated compounds were examined for their ability to inhibit IDO, which actively suppresses immune functions by catalyzing the rate limiting reaction in the conversion of tryptophan to kynurenine. Results: In this phytochemical study, 18 known compounds were isolated from aqueous dissolved Aloe exudates. All of the isolated compounds were examined for their ability to inhibit IDO activities for a series of anthraquinone derivatives (1-7) isolated from the Aloe extract; the IC50 values of these compounds ranged from 39.41 to 53.93 µM. Enzyme kinetic studies of their modes of inhibition indicated that all of the compounds were uncompetitive inhibitors. Conclusion: The aqueous dissolved Aloe exudate can be used as a source of novel natural IDO inhibitors and merit testing as therapeutic agents in the treatments of cancer and immunopathologic diseases, such as autoimmune, inflammatory, and allergic disorders. SUMMARY In this study, 18 known compounds were isolated from aqueous dissolved Aloe exudates. All of the isolated compounds were examined for their ability to inhibit indoleamine 2, 3-dioxygenase (IDO) activities for a series of anthraquinone derivatives (1−7) isolated from the Aloe extract. Abbreviation used: IDO: inhibit indoleamine 2, 3-dioxygenase, TMS: tetramethylsilane, HMQC: heteronuclear multiple quantum correlation, HMBC: heteronuclear multiple bond correlation, COSY: 1H-1H correlation spectroscopy, ESI-MS: Electrospray ionization mass spectrometry, DMSO: dimethyl sulfoxide PMID:28216884

  6. Genetic and chemical components analysis of Papaver setigerum naturalized in Korea.

    PubMed

    Choe, Sanggil; Lee, Eunjung; Jin, Gang-nam; Lee, Yang Han; Kim, Soo Young; Choi, Hwakyung; Chung, Heesun; Hwang, Bang Yeon; Kim, Suncheun

    2012-10-10

    Of the 110 species of genus Papaver, only Papaver somniferum and P. setigerum are controlled poppies in Korea. All poppy samples share similar morphology therefore it is important to check if they contain controlled substances such as morphine and codeine for forensic purpose. Since the alkaloid content of Papaver plants varies according to their growing stage, chemical components analysis alone is not enough to identify exact species. In 2010, hundreds of poppy plants suspected to be P. somniferum were found in Jeju Island, South Korea. They had a slightly different but overall similar appearance to P. somniferum. Using GC-MS analysis, codeine, rhoeadine, papaverine, protopine, noscapine, setigeridine and trace amounts of morphine were detected in these samples. Although their chemical components were different from what has been described in literatures for P. setigerum, they could be assumed to be P. setigerum based on their morphological features and GC-MS results. Also, chromosome numbers using their seeds showed 2n=44 and the numbers were in accordance with those of P. setigerum. Nucleotide substitution or insertion/deletion of ITS (internal transcribed spacer), 18S rRNA (ribosomal RNA), rbcL (large subunit of ribulose 1,5-bisphosphate carboxylase), trnL-trnF IGS (intergenic spacer), trnL intron and psbA-trnH were assessed as universal genetic markers for P. setigerum. Also, genetic analysis using six target genes involved in the biosynthesis of benzylisoquinoline alkaloids, including TYDC (tyrosine/dopa decarboxylase), SAT (salutaridinol-7-O-acetyltransferase), BBE (berberine bridge enzyme), COR (codeinone reductase), CYP80B1 ((S)-N-methylcoclaurine 3'-hydroxylase) and NCS (norcoclaurine synthase) were tested as Papaver-specific genetic markers by the existence of their PCR products. From the results, the sequences of the 6 universal genetic markers and 6 Papaver-specific genetic markers for P. setigerum were identified and then Genbank accession numbers of

  7. Numerical investigation of oscillatory multiphase flow in porous medium with chemically active skeleton

    NASA Astrophysics Data System (ADS)

    Konyukhov, A. V.; Zavialov, I. N.

    2016-11-01

    Self-oscillating mode of reaction front propagation in multiphase flow in the porous medium with chemically active skeleton is investigated numerically. The considered flow represents an immiscible displacement process, such that the displacing fluid and the skeleton of the porous medium have chemically active components which react with production of gaseous phase. The calculations have demonstrated strong influence of the reaction kinetics on stability of the reactive flow. The presence of a time delay between the change of concentration of the reactants and the change of the reaction rate is shown to stimulate transition of the reaction front propagation to the oscillatory mode.

  8. Interactions among chemical components of Cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species.

    PubMed

    Lin, Xiaorong; Chen, Zhongzheng; Zhang, Yuanyuan; Gao, Xiong; Luo, Wei; Li, Bin

    2014-06-01

    In the 1980s, a novel tea species, Cocoa tea (Camellia ptilophylla Chang), was discovered in Southern China with surprisingly low caffeine content (0.2% by dry weight). Although its health promoting characteristics have been known for a while, a very limited amount of scientific research has been focused on Cocoa tea. Herein, a systematic study on Cocoa tea and its chemical components, interactions and bioactivities was performed. YD tea (Yunnan Daye tea, Camellia sinensis), a tea species with a high caffeine content (5.8% by dry weight), was used as a control. By UV-Vis spectrometry, High Performance Liquid Chromatography (HPLC), and Flame Atomic Absorption Spectrometry (FAAS) for chemical composition analysis, C-2 epimeric isomers of tea catechins and theobromine were found to be the major catechins and methylxanthine in Cocoa tea, respectively. More gallated catechins, methylxanthines, and proteins were detected in Cocoa tea compared with YD tea. Moreover, the tendency of major components in Cocoa tea for precipitation was significantly higher than that in YD tea. Catechins, methylxanthines, proteins, iron, calcium, and copper were presumed to be the origins of molecular interactions in Cocoa tea and YD tea. The interactions between catechins and methylxanthines were highly related to the galloyl moiety in catechins and methyl groups in methylxanthines. In vitro anti-inflammatory activity assays revealed that Cocoa tea was a more potent inhibitor of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated macrophage cells (RAW 264.7) than YD tea. This study constructs a solid phytochemical foundation for further research on the mechanisms of molecular interactions and the integrated functions of Cocoa tea.

  9. A physico-chemical assessment of the thermal stability of pneumococcal conjugate vaccine components

    PubMed Central

    Gao, Fang; Lockyer, Kay; Burkin, Karena; Crane, Dennis T; Bolgiano, Barbara

    2014-01-01

    Physico-chemical analysis of pneumococcal polysaccharide (PS)-protein conjugate vaccine components used for two commercially licensed vaccines was performed to compare the serotype- and carrier protein-specific stabilities of these vaccines. Nineteen different monovalent pneumococcal conjugates from commercial vaccines utilizing CRM197, diphtheria toxoid (DT), Protein D (PD) or tetanus toxoid (TT) as carrier proteins were incubated at temperatures up to 56°C for up to eight weeks or were subjected to freeze-thawing (F/T). Structural stability was evaluated by monitoring their size, integrity and carrier protein conformation. The molecular size of the vaccine components was well maintained for Protein D, TT and DT conjugates at -20°C, 4°C and F/T, and for CRM197 conjugates at 4°C and F/T. It was observed that four of the eight serotypes of Protein D conjugates tended to form high molecular weight complexes at 37°C or above. The other conjugated carrier proteins also appeared to form oligomers or ‘aggregates’ at elevated temperatures, but rarely when frozen and thawed. There was evidence of degradation in some of the conjugates as evidenced by the formation of lower molecular weight materials which correlated with measured free saccharide. In conclusion, pneumococcal-Protein D/TT/DT and most CRM197 bulk conjugate vaccines were stable when stored at 2–8°C, the recommended temperature. In common between the conjugates produced by the two manufacturers, serotypes 1, 5, and 19F were relatively less stable and 6B was the most stable, with types 7F and 23F also showing good stability. PMID:25483488

  10. Gas and Chemical Activation of Charcoal

    DTIC Science & Technology

    1945-06-29

    supplemented ’ by runs in the laboratory has shown that zinc chloride is by far the most suitable activating agent. 1. In the dehydration mixing of...istics with time of dehydration . 3. The physical appearance of the mixture during the impregnation pperation provides sufficient significant information...to enable the operator to predict .mechanical characteristics of the briquet. CONFIDENTIAL " • ’< i£: • CONFIDENTIAL -4- 4* In the dehydration

  11. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components.

    PubMed

    Jiang, Hongxia; Wang, Xiaohui; Xiao, Chengze; Wang, Weiyan; Zhao, Xu; Sui, Junkang; Sa, Rongbo; Guo, Tai L; Liu, Xunli

    2015-10-01

    The establishment of safe and effective methods for controlling fungal disease is an urgent issue in agriculture and forestry. Microbiological control of plant disease is expected to achieve better results than use of chemically derived fungicides. This study aimed to establish Brevibacillus laterosporus JX-5 as a potential microbiological control agent of poplar canker. The bacterium was isolated from the poplar rhizosphere and demonstrated significant growth inhibition of several pathogenic fungi in vitro. The antifungal components of Br. laterosporus JX-5 were isolated and identified. The fermentation broth of Br. laterosporus JX-5 and its main antifungal component, designated as component B, reduced Botryosphaeria dothidea associated canker of the excised poplar branch by 70 and 90%, respectively. Component B is considerably heat-stable, adaptable to a broad pH range, and UV-resistant. It could inhibit Bo. dothidea by permeating the fungal membrane, fracturing the nuclei, damaging the cell wall, and eventually killing the pathogenic fungus. The antifungal activity exhibited by Br. laterosporus JX-5 and its bioactive metabolic products indicate its feasibility as a potential biocontrol agent for plant diseases.

  12. 75 FR 69630 - Impact of Implementation of the Chemical Weapons Convention on Commercial Activities Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...-0543-02] Impact of Implementation of the Chemical Weapons Convention on Commercial Activities Involving... Chemical Weapons Convention (CWC), through the Chemical Weapons Convention Implementation Act (CWCIA) and the Chemical Weapons Convention Regulations (CWCR), has had on commercial activities...

  13. Second bioluminescence-activating component in the luminous fungus Mycena chlorophos.

    PubMed

    Teranishi, Katsunori

    2017-03-01

    Mycena chlorophos is an oxygen-dependent bioluminescent fungus. The mechanisms underlying its light emission are unknown. A component that increased the bioluminescence intensity of the immature living gills of M. chlorophos was isolated from mature M. chlorophos gills and chemically characterized. The bioluminescence-activating component was found to be trans-3,4-dihydroxycinnamic acid and its bioluminescence activation was highly structure-specific. (13) C- and (18) O-labelling studies using the immature living gills showed that trans-3,4-dihydroxycinnamic acid was synthesized from trans-4-hydroxycinnamic acid in the gills by hydroxylation with molecular oxygen as well as by the general metabolism, and trans-3,4-dihydroxycinnamic acid did not produce hispidin (detection-limit concentration: 10 pmol/1 g wet gill). Addition of 0.01 mM hispidin to the immature living gills generated no bioluminescence activation. These results suggested that the prompt bioluminescence activation resulting from addition of trans-3,4-dihydroxycinnamic acid could not be attributed to the generation of hispidin. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae.

    PubMed

    Araújo, Mário J C; Câmara, Cláudio A G; Born, Flávia S; Moraes, Marcílio M; Badji, César A

    2012-06-01

    The chemical composition of essential oil of leaves of Piper aduncum L., growing wild in a fragment of the Atlantic Rainforest biome in northeastern Brazil, was determined through gas chromatography-mass spectrometry. The acaricidal activity and repellency of the essential oil and its components [dillapiole (0.28 g/ml), α-humulene (0.016 g/ml), (E)-nerolidol (0.0007 g/ml) and β-caryophyllene (0.0021 g/ml)] were evaluated in the laboratory against adults of Tetranychus urticae Koch. The mites were more susceptible to the oil in fumigation tests (LC(50) = 0.01 μl/l of air) than in contact test with closed Petri dish (LC(50) = 7.17 μl/ml); mortality was reduced by approximately 50 % in the latter test. The repellent action of the oil and toxicity by fumigation and contact did not differ significantly from the positive control (eugenol). The repellent activity was attributed to the components (E)-nerolidol, α-humulene and β-caryophyllene, whereas toxicity by fumigation and contact was attributed to β-caryophyllene. The effect of Piper oil and the role of its components regarding host plant preference with a two-choice leaf disk test are also discussed.

  15. Relationship between the chemical components of taro rhizome mucilage and its emulsifying property.

    PubMed

    Andrade, Luan Alberto; Nunes, Cleiton Antônio; Pereira, Joelma

    2015-07-01

    The objective of this study was to determine the chemical composition of taro mucilage (TM) and explain its emulsification properties using different commercial emulsifiers and gums as benchmarks. The following analyses were performed: moisture, ether extract, protein, fiber, ash, sugar fraction, starch content, infrared spectroscopy and determination of monosaccharides and amino acids using HPLC. The analyses showed that TM has a high carbohydrate content and small protein fraction, similar to commercial gums. Commercial emulsifiers have a high content of lipids compared to TM. Therefore, it can be concluded that the emulsifying power of the studied mucilage is primarily caused by the protein content along with weakly polar amino acids, which occur in gums. The methyl group (CH3), which was observed in the infrared spectrum, and the lipid content may also contribute to the emulsifying activity by providing a hydrophobic moiety.

  16. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    SciTech Connect

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Toeroek, Tibor

    2012-10-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  17. Tetrapleura tetraptera: molluscicidal activity and chemical constituents.

    PubMed

    Aladesanmi, Adetunji J

    2006-08-28

    Tetrapleura tetraptera (Schumach. And Thonn) Taub, Mimosaceae, commonly known as Aridan (fruit), A single stemmed, robust, perennial tree of about 30 m. It has a grey/brown, smooth/rough bark with glabrous yound branchlets. The flower is yellow/pink and racemes white the fruit has dark brown, four winged pods 12-25 x 3.5-6.5 cm. It is generally found in the lowland forest of tropical Africa. The fruit consists of a fleshy pulp with small, brownish-black seeds. The fruit possesses a fragrant, characteristically pungent aromatic odour, which is attributed to its insect repellent property. It is used as spices and aroma (exotic tropical scents) and fish poisoning. It is one of the molluscicidal medicinal plants of Nigeria, also useful in the management of convulsions, leprosy, inflammation and/or rheumatoid pains. The documented biological and-or pharmacological activities are found to be molluscicidal, cardio-vascular, neuromuscular, hypotensive, anti-convulsant, trypanocidal, hirudinicidal, schistosomiasis control, anti-ulcerative, ectoxicity, anti-inflammatory, hypoglycaemic, anti-microbial, emulsifying property, birth control, food value and the control of intestinal parasites. Activity-guided fractionation of the methanol extract of the fruits of T. tetraptera led to the isolation of a saponin glycoside with an oleanolic acid aglycone, a monodesmosidic diglycoside of the rare sapogenin 27-hydroxyolean-12 (13)-en-28-oic acid; echinocystic acid-3-0-sodium sulfate from the stembark, umbelliferone and ferulic acid from the leaves and branches respectively. Also isolated from the fruits were aridanin and three of its olean-12-en-28-oic acid derivatives. All the compounds isolated either from the fruits or other parts were found to exhibit strong molluscicidal properties against the schistosomiasis-transmitting snails Biomphalaria glabrata.

  18. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components.

    PubMed

    Singh, Gurdip; Marimuthu, Palanisamy; de Heluani, Carola S; Catalan, Cesar A N

    2006-01-11

    In the present study, chemical constituents of the essential oil and oleoresin of the seed from Carum nigrum obtained by hydrodistillation and Soxhlet extraction using acetone, respectively, have been studied by GC and GC-MS techniques. The major component was dillapiole (29.9%) followed by germacrene B (21.4%), beta-caryophyllene (7.8%), beta-selinene (7.1%), and nothoapiole (5.8%) along with many other components in minor amounts. Seventeen components were identified in the oleoresin (Table 2) with dillapiole as a major component (30.7%). It also contains thymol (19.1%), nothoapiole (15.2.3%), and gamma-elemene (8.0%). The antioxidant activity of both the essential oil and oleoresin was evaluated in mustard oil by monitoring peroxide, thiobarbituric acid, and total carbonyl and p-anisidine values of the oil substrate. The results showed that both the essential oil and oleoresin were able to reduce the oxidation rate of the mustard oil in the accelerated condition at 60 degrees C in comparison with synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene at 0.02%. In addition, individual antioxidant assays such as linoleic acid assay, DPPH scavenging activity, reducing power, hydroxyl radical scavenging, and chelating effects have been used. The C. nigrum seed essential oil exhibited complete inhibition against Bacillus cereus and Pseudomonas aeruginosa at 2000 and 3000 ppm, respectively, by agar well diffusion method. Antifungal activity was determined against a panel of foodborne fungi such as Aspergillus niger, Penicillium purpurogenum, Penicillium madriti, Acrophialophora fusispora, Penicillium viridicatum, and Aspergillus flavus. The fruit essential oil showed 100% mycelial zone inhibition against P. purpurogenum and A. fusispora at 3000 ppm in the poison food method. Hence, both oil and oleoresin could be used as an additive in food and pharmaceutical preparations after screening.

  19. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  20. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  1. Spontaneous and specific activation of chemical bonds in macromolecular fluids.

    PubMed

    Park, Insun; Shirvanyants, David; Nese, Alper; Matyjaszewski, Krzysztof; Rubinstein, Michael; Sheiko, Sergei S

    2010-09-08

    Mechanical activation of chemical bonds typically involves the application of external forces, which implies a broad distribution of bond tensions. We demonstrate that controlling the flow profile of a macromolecular fluid generates and delineates mechanical force concentration, enabling a hierarchical activation of chemical bonds on different length scales from the macroscopic to the molecular. Bond tension is spontaneously generated within brushlike macromolecules as they spread on a solid substrate. The molecular architecture creates an uneven distribution of tension in the covalent bonds, leading to spatially controlled bond scission. By controlling the flow rate and the gradient of the film pressure, one can sever the flowing macromolecules with high precision. Specific chemical bonds are activated within distinct macromolecules located in a defined area of a thin film. Furthermore, the flow-controlled loading rate enables quantitative analysis of the bond activation parameters.

  2. Selection of independent components based on cortical mapping of electromagnetic activity

    NASA Astrophysics Data System (ADS)

    Chan, Hui-Ling; Chen, Yong-Sheng; Chen, Li-Fen

    2012-10-01

    Independent component analysis (ICA) has been widely used to attenuate interference caused by noise components from the electromagnetic recordings of brain activity. However, the scalp topographies and associated temporal waveforms provided by ICA may be insufficient to distinguish functional components from artifactual ones. In this work, we proposed two component selection methods, both of which first estimate the cortical distribution of the brain activity for each component, and then determine the functional components based on the parcellation of brain activity mapped onto the cortical surface. Among all independent components, the first method can identify the dominant components, which have strong activity in the selected dominant brain regions, whereas the second method can identify those inter-regional associating components, which have similar component spectra between a pair of regions. For a targeted region, its component spectrum enumerates the amplitudes of its parceled brain activity across all components. The selected functional components can be remixed to reconstruct the focused electromagnetic signals for further analysis, such as source estimation. Moreover, the inter-regional associating components can be used to estimate the functional brain network. The accuracy of the cortical activation estimation was evaluated on the data from simulation studies, whereas the usefulness and feasibility of the component selection methods were demonstrated on the magnetoencephalography data recorded from a gender discrimination study.

  3. Emodin is identified as the active component of ether extracts from Rhizoma Polygoni Cuspidati, for anti-MRSA activity.

    PubMed

    Cao, Feng; Peng, Wei; Li, Xiaoli; Liu, Ming; Li, Bin; Qin, Rongxin; Jiang, Weiwei; Cen, Yanyan; Pan, Xichun; Yan, Zifei; Xiao, Kangkang; Zhou, Hong

    2015-06-01

    This study investigated the anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity and chemical compositions of ether extracts from Rhizoma Polygoni Cuspidati (ET-RPC). Significant anti-MRSA activities of ET-RPC against MRSA252 and MRSA clinical strains were tested in in vitro antibacterial experiments, such as inhibition zone diameter test, minimal inhibitory concentration test, and dynamic bacterial growth assay. Subsequently, 7 major compounds of ET-RPC were purified and identified as polydatin, resveratrol-4-O-d-(6'-galloyl)-glucopyranoside, resveratrol, torachryson-8-O-glucoside, emodin-8-O-glucoside, 6-hydroxy-emodin, and emodin using liquid chromatography - electrospray ionization - tandem mass spectrometry. After investigation of anti-MRSA activities of the 7 major compounds, only emodin had significant anti-MRSA activity. Further, transmission electron microscopy was used to observe morphological changes in the cell wall of MRSA252, and the result revealed that emodin could damage the integrity of cell wall, leading to loss of intracellular components. In summary, our results showed ET-RPC could significantly inhibit bacterial growth of MRSA strains. Emodin was identified as the major compound with anti-MRSA activity; this activity was related to destruction of the integrity of the cell wall and cell membrane.

  4. Antifungal activity of chemically different essential oils from wild Tunisian Thymus spp.

    PubMed

    Maissa, Ben Jabeur; Walid, Hamada

    2015-01-01

    Essential oils isolated by using hydrodistillation from the aerial parts of Thymus algeriensis and Thymus capitatus Hoff. et Link. from different locations of Tunisia (Kef, Takelsa, Zaghouan, Fahs and Toukeber) were characterised. The chemical composition was analysed by using gas chromatography/mass spectrometry, the major component of T. capitatus from Kef and T. algeriensis was thymol while carvacrol was the main component of T. capitatus from Zaghouan, Fahs and Toukeber. The antifungal activity of the oils and some pure components was assessed by the in vitro assay against several fungi and oomycetes. T. capitatus (chemotype carvacrol) exhibited the strongest antifungal activity followed by T. capitatus (chemotype thymol) and T. algeriensis, indicating that carvacrol might have a stronger antifungal activity than thymol.

  5. Burst and Principal Components Analyses of MEA Data for 16 Chemicals Describe at Least Three Effects Classes.

    EPA Science Inventory

    Microelectrode arrays (MEAs) detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-•of-concept, the current study assessed the utility of analytical "fingerprinting" using Principal Components Analysis (P...

  6. Is the relation between ozone and mortality confounded by chemical components of particulate matter? Analysis of 7 components in 57 US communities.

    PubMed

    Anderson, G Brooke; Krall, Jenna R; Peng, Roger D; Bell, Michelle L

    2012-10-15

    Epidemiologic studies have linked tropospheric ozone pollution and human mortality. Although research has shown that this relation is not confounded by particulate matter when measured by mass, little scientific evidence exists on whether confounding exists by chemical components of the particle mixture. Using mortality and particulate matter with aerodynamic diameter ≤2.5 µm (PM(2.5)) component data from 57 US communities (2000-2005), the authors investigate whether the ozone-mortality relation is confounded by 7 components of PM(2.5): sulfate, nitrate, silicon, elemental carbon, organic carbon matter, sodium ion, and ammonium. Together, these components constitute most PM(2.5) mass in the United States. Estimates of the effect of ozone on mortality were almost identical before and after controlling for the 7 components of PM(2.5) considered (mortality increase/10-ppb ozone increase, before and after controlling: ammonium, 0.34% vs. 0.35%; elemental carbon, 0.36% vs. 0.37%; nitrate, 0.27% vs. 0.26%; organic carbon matter, 0.34% vs. 0.31%; silicon, 0.36% vs. 0.37%; sodium ion, 0.21% vs. 0.18%; and sulfate, 0.35% vs. 0.38%). Additionally, correlations were weak between ozone and each particulate component across all communities. Previous research found that the ozone-mortality relation is not confounded by particulate matter measured by mass; this national study indicates that the relation is also robust to control for specific components of PM(2.5).

  7. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-04

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation.

  8. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    SciTech Connect

    Carpenter, Michael; Oh, Sang-Hyun

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  9. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  10. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia.

    PubMed

    Magiatis, P; Melliou, E; Skaltsounis, A L; Chinou, I B; Mitaku, S

    1999-12-01

    The chemical composition of the three essential oils obtained by steam distillation of the mastic gum, leaves and twigs of Pistacia lentiscus var. chia, was studied by GC/MS. Sixty nine constituents were identified from the oils. alpha-Pinene, myrcene, trans-caryophyllene and germacrene D were found to be the major components. The in vitro antimicrobial activity of the three essential oils and of the resin (total, acid and neutral fraction) against six bacteria and three fungi is reported.

  11. Modeling Joint Effects of Mixtures of Chemicals on Microorganisms Using Quantitative Structure Activity Relationships

    DTIC Science & Technology

    1993-08-22

    toxicity results from the 40 chemicals placed in the testing set were used to develop QSAR models. Molecular connectivity indexes were calculated for...Toxic Unit, Additivity Index , and Mixture Toxicity Index . The validity of these concepts was further verified using the results of the 8-component testing...standard deviation of 22.6. These variations are comparable to those reported by Blum (1989) for activated sludge cultures and Microtox , and may be

  12. Fractionation and Composition Studies of Skin Test-Active Components of Sensitins from Coccidioides immitis

    PubMed Central

    Anderson, Kenneth L.; Wheat, Robert W.; Conant, Norman F.

    1971-01-01

    Coccidioidin skin-test activities from mycelial culture filtrates and autolysates were partially purified. Major chemical constituents included 3-O-methylmannose, mannose, and amino acids. PMID:5119201

  13. Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots.

    PubMed

    Xuan, Tran Dang; Fukuta, Masakazu; Wei, Ao Chang; Elzaawely, Abdelnaser Abdelghany; Khanh, Tran Dang; Tawata, Shinkichi

    2008-04-01

    The chemical composition of kava (Piper methysticum) lactones and various phytochemicals obtained following the sonication of ground kava roots extracted in the solvents hexane, chloroform, acetone, ethanol, methanol and water, respectively, was analyzed. Eighteen kava lactones, cinnamic acid bornyl ester and 5,7-dimethoxy-flavanone, known to be present in kava roots, were identified, and seven compounds, including 2,5,8-trimethyl-1-naphthol, 5-methyl-1-phenylhexen-3-yn-5-ol, 8,11-octadecadienoic acid-methyl ester, 5,7-(OH)(2)-4'-one-6,8-dimethylflavanone, pinostrobin chalcone and 7-dimethoxyflavanone-5-hydroxy-4', were identified for the first time. Glutathione (26.3 mg/g) was found in the water extract. Dihydro-5,6-dehydrokavain (DDK) was present at a higher level than methysticin and desmethoxyyagonin, indicating that DDK is also a major constituent of kava roots. Acetone was the most effective solvent in terms of maximum yield and types of kava lactones isolated, followed by water and chloroform, whereas hexane, methanol, and ethanol were less effective as solvents. Total phenolic and antioxidant activity varied among the extracting solvents, with acetone and chloroform producing the highest effects, followed by water, while methanol, ethanol and hexane were less effective.

  14. Near-infrared microscopy imaging for quantitative analysis of active component in counterfeit imidacloprid

    NASA Astrophysics Data System (ADS)

    Huang, Yue; Cao, Jinli; Ye, Shengfeng; Duan, Jia; Wu, Lijun; Li, Qianqian; Min, Shungeng

    2012-01-01

    Near-infrared (NIR) imaging systems simultaneously record spectral and spatial information. Near-infrared imaging was applied to the identification of imidacloprid in both artificially mixed samples and commercial formulation in this study. The distributions of technical imidacloprid and additive in the heterogeneous counterfeit were obtained by the relationship imaging (RI) mode. Furthermore a series of samples which consisted of different contents of uniformly distributed imidacloprid were prepared and three data cubes were generated at each content. Extracted spectra from those images were imported to establish the partial least squares model. The model's results were: R2 99.21%, RMSEC 0.0306, RMSECV 0.0183, RMSECV/mean value 0.0348 and RSEP 0.0784. The prediction relative error of commercial formulation is 0.0680, indicating the predicted value was correlated to the real content. Lastly the chemical value reconstruction image of imidacloprid formulation products was calculated by MATLAB program. NIR microscopy imaging manifests herein its potential in qualitatively identifying the active component in counterfeit pesticide and quantifying the active component in scanned image.

  15. Force-activated reactivity switch in a bimolecular chemical reaction.

    PubMed

    Garcia-Manyes, Sergi; Liang, Jian; Szoszkiewicz, Robert; Kuo, Tzu-Ling; Fernández, Julio M

    2009-06-01

    The effect of mechanical force on the free-energy surface that governs a chemical reaction is largely unknown. The combination of protein engineering with single-molecule force-clamp spectroscopy allows us to study the influence of mechanical force on the rate at which a protein disulfide bond is reduced by nucleophiles in a bimolecular substitution reaction (S(N)2). We found that cleavage of a protein disulfide bond by hydroxide anions exhibits an abrupt reactivity 'switch' at ∼500 pN, after which the accelerating effect of force on the rate of an S(N)2 chemical reaction greatly diminishes. We propose that an abrupt force-induced conformational change of the protein disulfide bond shifts its ground state, drastically changing its reactivity in S(N)2 chemical reactions. Our experiments directly demonstrate the action of a force-activated switch in the chemical reactivity of a single molecule.

  16. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms.

  17. C15078. Essential oil composition of Phagnalon sordidum (L.) from Corsica, chemical variability and antimicrobial activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-02-10

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography-mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and exhibited a notable activity on a large panel of clinically significant microorganisms. This article is protected by copyright. All rights reserved.

  18. Active colloids in the context of chemical kinetics

    NASA Astrophysics Data System (ADS)

    Oshanin, G.; Popescu, M. N.; Dietrich, S.

    2017-03-01

    We study a mesoscopic model of a chemically active colloidal particle which on certain parts of its surface promotes chemical reactions in the surrounding solution. For reasons of simplicity and conceptual clarity, we focus on the case in which only electrically neutral species are present in the solution and on chemical reactions which are described by first order kinetics. Within a self-consistent approach we explicitly determine the steady state product and reactant number density fields around the colloid as functionals of the interaction potentials of the various molecular species in solution with the colloid. By using a reciprocal theorem, this allows us to compute and to interpret—in a transparent way in terms of the classical Smoluchowski theory of chemical kinetics—the external force needed to keep such a catalytically active colloid at rest (stall force) or, equivalently, the corresponding velocity of the colloid if it is free to move. We use the particular case of triangular-well interaction potentials as a benchmark example for applying the general theoretical framework developed here. For this latter case, we derive explicit expressions for the dependences of the quantities of interest on the diffusion coefficients of the chemical species, the reaction rate constant, the coverage by catalyst, the size of the colloid, as well as on the parameters of the interaction potentials. These expressions provide a detailed picture of the phenomenology associated with catalytically-active colloids and self-diffusiophoresis.

  19. Active Component Support to Reserve Component Training, Changes to Training Support XXI

    DTIC Science & Technology

    2007-11-02

    provide support to reserve units in the Pacific Command area of responsibility. Training Support Mobilization Compliance MACA Hybrid Alternative eSB...mobilization, compliance, and Military Assistance to Civil Authorities ( MACA ).”16 The plan establishes and explains the command relationship between the CONUSA...CA TSBn TSB TSD CSS TSBn CONUSA OCAR USARC RPA Execution RSC Integrated Active Reserve l OMA l RPA RPA request MACA XXXX XXXX $ RPA Guidance

  20. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    SciTech Connect

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  1. Incident diagnoses of cancers in the active component and cancer-related deaths in the active and reserve components, U.S. Armed Forces, 2005-2014.

    PubMed

    Lee, Terrence; Williams, Valerie F; Clark, Leslie L

    2016-07-01

    Cancer is the second leading cause of death in the U.S., surpassed only by heart disease. It is estimated that approximately one of every four deaths in the U.S. is due to cancer. Between 2005 and 2014 among active component service members in the U.S. military, crude incidence rates of most cancer diagnoses have remained relatively stable. During this period, 8,973 active component members were diagnosed with at least one of the cancers of interest and no specific increasing or decreasing trends were evident. Cancers accounted for 1,054 deaths of service members on active duty during the 10-year surveillance period; this included 727 service members in the active component and 327 in the reserve component.

  2. Scalable Advanced Network Services Based on Coordinated Active Components

    DTIC Science & Technology

    2004-02-01

    as a means of customizing both high functionality and scalable communication components to meet the needs of specific services. • A service...considering both the service quality for the user and the efficient use of the infrastructure (cost). ( 4 ) Finally, the synthesizer needs to configure the...response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed , and completing

  3. Simultaneous determination of seven bioactive components in Oolong tea Camellia sinensis: quality control by chemical composition and HPLC fingerprints.

    PubMed

    Wang, Yixiang; Li, Qing; Wang, Qian; Li, Yujiao; Ling, Junhong; Liu, Lili; Chen, Xiaohui; Bi, Kaishun

    2012-01-11

    A simple and reliable method of high-performance liquid chromatography (HPLC) was developed for the quality control of oolong tea (the dry leaves of Camellia sinensis ): the quality control included the HPLC fingerprint and the quantitative determination of seven bioactive compounds chemicals, namely, (-)-gallocatechin, (-)-epigallocatechin, (-)-epigallocatechin gallate, caffeine, (-)-epicatechin, gallocatechin gallate, and (-)-epicatechin gallate. The developed analyses of the chemicals excelled in quantifying the chemicals in oolong tea. The chemical fingerprint of oolong tea was established using the raw materials of three main production sites in China, that is, Fujian (southern and northern parts), Taiwan, and Guangdong. The fingerprints from different cultivated sources were analyzed by hierarchical cluster analysis, similarity analysis, principal component analysis (PCA), analysis of variance (ANOVA), and discriminant analysis. The results indicated that the combination of chromatographic fingerprint and quantification analysEs could be used for the quality assessment of oolong tea and its derived products.

  4. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Ni, Yongnian; Kokot, Serge

    2016-01-01

    Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of spectra of the jujube (Zizyphus jujuba Mill.) fruit samples from four geographical regions. Prediction models were developed for the quantitative prediction of the contents of jujube fruit, i.e., total sugar, total acid, total phenolic content, and total antioxidant activity. Four pattern recognition methods, principal component analysis (PCA), linear discriminant analysis (LDA), least squares-support vector machines (LS-SVM), and back propagation-artificial neural networks (BP-ANN), were used for the geographical origin classification. Furthermore, three multivariate calibration models based on the standard normal variate (SNV) pretreated NIR spectroscopy, partial least squares (PLS), BP-ANN, and LS-SVM were constructed for quantitative analysis of the four analytes described above. PCA provided a useful qualitative plot of the four types of NIR spectra from the fruit. The LS-SVM model produced best quantitative prediction results. Thus, NIR spectroscopy in conjunction with chemometrics, is a very useful and rapid technique for the discrimination of jujube fruit.

  5. Exploring the Everyday Context of Chemical Elements: Discovering the Elements of Car Components

    ERIC Educational Resources Information Center

    Franco-Mariscal, Antonio Joaquín

    2015-01-01

    This paper presents a project about the chemical elements made by 15-year-old Spanish high school students of Chemistry. It focuses on context-based teaching combined with the advantages of creating a large mural which subsequently is exposed in the school. The project consisted of researching the chemical elements in the different materials that…

  6. Grazing-activated chemical defence in a unicellular marine alga

    NASA Astrophysics Data System (ADS)

    Wolfe, Gordon V.; Steinke, Michael; Kirst, Gunter O.

    1997-06-01

    Marine plankton use a variety of defences against predators, some of which affect trophic structure and biogeochemistry. We have previously shown that, during grazing by the protozoan Oxyrrhis marina on the alga Emiliania huxleyi, dimethylsulphoniopropionate (DMSP) from the prey is converted to dimethyl sulphide (DMS) when lysis of ingested prey cells initiates mixing of algal DMSP and the enzyme DMSP lyase. Such a mechanism is similar to macrophyte defence reactions,. Here we show that this reaction deters protozoan herbivores, presumably through the production of highly concentrated acrylate, which has antimicrobial activity. Protozoan predators differ in their ability to ingest and survive on prey with high-activity DMSP lyase, but all grazers preferentially select strains with low enzyme activity when offered prey mixtures. This defence system involves investment in a chemical precursor, DMSP, which is not self-toxic and has other useful metabolic functions. We believe this is the first report of grazing-activated chemical defence in unicellular microorganisms.

  7. The chemical component of the mixed GF-TTMn synapse in Drosophila melanogaster uses acetylcholine as its neurotransmitter

    PubMed Central

    Allen, Marcus J; Murphey, R K

    2007-01-01

    The largest central synapse in adult Drosophila is a mixed electro-chemical synapse whose gap junctions require the product of the shaking-B (shak-B) gene. Shak-B2 mutant flies lack gap junctions at this synapse, which is between the giant fibre (GF) and the tergotrochanteral motor neuron (TTMn), but it still exhibits a long latency response upon GF stimulation. We have targeted the expression of the light chain of tetanus toxin to the GF, to block chemical transmission, in shak-B2 flies. The long latency response in the tergotrochanteral muscle (TTM) was abolished indicating that the chemical component of the synapse mediates this response. Attenuation of GAL4-mediated labelling by a cha-GAL80 transgene, reveals the GF to be cholinergic. We have used a temperature-sensitive allele of the choline acetyltransferase gene (chats2) to block cholinergic synapses in adult flies and this also abolished the long latency response in shak-B2 flies. Taken together the data provide evidence that both components of this mixed synapse are functional and that the chemical neurotransmitter between the GF and the TTMn is acetylcholine. Our findings show that the two components of this synapse can be separated to allow further studies into the mechanisms by which mixed synapses are built and function. PMID:17650116

  8. Protect Minnesota's Agricultural Land: Components and Activities for Elementary Students.

    ERIC Educational Resources Information Center

    Noy, Laura

    An endeavor to alert elementary teachers and students to the need to protect and conserve one of Minnesota's basic resources, soil, these supplementary instructional activities are designed for easy integration into science, social studies, language arts, mathematics, and art subject and skill areas. Each activity includes a brief description of…

  9. Modeling injection molding of net-shape active ceramic components.

    SciTech Connect

    Baer, Tomas; Cote, Raymond O.; Grillet, Anne Mary; Yang, Pin; Hopkins, Matthew Morgan; Noble, David R.; Notz, Patrick K.; Rao, Rekha Ranjana; Halbleib, Laura L.; Castaneda, Jaime N.; Burns, George Robert; Mondy, Lisa Ann; Brooks, Carlton, F.

    2006-11-01

    To reduce costs and hazardous wastes associated with the production of lead-based active ceramic components, an injection molding process is being investigated to replace the current machining process. Here, lead zirconate titanate (PZT) ceramic particles are suspended in a thermoplastic resin and are injected into a mold and allowed to cool. The part is then bisque fired and sintered to complete the densification process. To help design this new process we use a finite element model to describe the injection molding of the ceramic paste. Flow solutions are obtained using a coupled, finite-element based, Newton-Raphson numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. Thermal, rheological, and wetting properties of the PZT paste are measured for use as input to the model. The viscosity of the PZT is highly dependent both on temperature and shear rate. One challenge in modeling the injection process is coming up with appropriate constitutive equations that capture relevant phenomenology without being too computationally complex. For this reason we model the material as a Carreau fluid and a WLF temperature dependence. Two-dimensional (2D) modeling is performed to explore the effects of the shear in isothermal conditions. Results indicate that very low viscosity regions exist near walls and that these results look similar in terms of meniscus shape and fill times to a simple Newtonian constitutive equation at the shear-thinned viscosity for the paste. These results allow us to pick a representative viscosity to use in fully three-dimensional (3D) simulation, which because of numerical complexities are restricted to using a Newtonian constitutive equation. Further 2D modeling at nonisothermal conditions shows that the choice of

  10. A new active solder for joining electronic components

    SciTech Connect

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.; LUGSCHEIDER,E.; RASS,I.; HILLEN,F.

    2000-05-11

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  11. Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs

    NASA Astrophysics Data System (ADS)

    Walter, William T.

    2004-03-01

    Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.

  12. Structure activity relationships to assess new chemicals under TSCA

    SciTech Connect

    Auletta, A.E.

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  13. Do energy drinks contain active components other than caffeine?

    PubMed

    McLellan, Tom M; Lieberman, Harris R

    2012-12-01

    Energy drinks (EDs) contain caffeine and are a new, popular category of beverage. It has been suggested that EDs enhance physical and cognitive performance; however, it is unclear whether the claimed benefits are attributable to components other than caffeine. A typical 235 mL ED provides between 40 and 250 mg of caffeine, equating to doses that improve cognitive and, at the higher levels, physical performance. EDs often contain taurine, guaraná, ginseng, glucuronolactone, B-vitamins, and other compounds. A literature search using PubMed, Psych Info, and Google Scholar identified 32 articles that examined the effects of ED ingredients alone and/or in combination with caffeine on physical or cognitive performance. A systematic evaluation of the evidence-based findings in these articles was then conducted. With the exception of some weak evidence for glucose and guaraná extract, there is an overwhelming lack of evidence to substantiate claims that components of EDs, other than caffeine, contribute to the enhancement of physical or cognitive performance. Additional well-designed, randomized, placebo-controlled studies replicated across laboratories are needed in order to assess claims made for these products.

  14. Transcriptional activation of hedgehog pathway components in aggressive hemangioma.

    PubMed

    Wendling-Keim, Danielle S; Wanie, Lynn; Grantzow, Rainer; Kappler, Roland

    2017-03-31

    Infantile hemangioma is a vascular neoplasm and is one of the most common tumors diagnosed in young children. Although most hemangiomas are harmless and involute spontaneously, some show severe progression, leading to serious complications, such as high output cardiac failure, ulcerations, compression of the trachea or deprivation amblyopia, depending on their size and localization. However, the pathogenesis and cause of hemangioma are largely unknown to date. The goal of this study was to identify markers that could predict hemangiomas with aggressive growth and severe progression that would benefit from early intervention. By using a PCR-based screening approach, we first confirmed that previously known markers of hemangioma, namely FGF2 and GLUT1, are highly expressed in hemangioma. Nevertheless, these genes did not show any differential expression between severely progressing tumors and mild tumors. However, transcriptional upregulation of several Hedgehog signaling components, comprising the ligand Sonic Hedgehog (SHH),the transcription factor GLI2 and its target gene FOXA2 were detected in extremely aggressive hemangioma specimens during the proliferation phase. Notably, GLI2 was even overexpressed in involuting hemangiomas if they showed an aggressive growth pattern. In conclusion, our data suggest that overexpression of the Hedgehog components SHH, GLI2 and FOXA2 might be used as markers of an aggressive hemangioma that would benefit from too early intervention, while FGF2 and GLUT1 are more general markers of hemangiomas. This article is protected by copyright. All rights reserved.

  15. Improved Convergence for Two-Component Activity Expansions

    SciTech Connect

    DeWitt, H E; Rogers, F J; Sonnad, V

    2007-03-06

    It is well known that an activity expansion of the grand canonical partition function works well for attractive interactions, but works poorly for repulsive interactions, such as occur between atoms and molecules. The virial expansion of the canonical partition function shows just the opposite behavior. This poses a problem for applications that involve both types of interactions, such as occur in the outer layers of low-mass stars. We show that it is possible to obtain expansions for repulsive systems that convert the poorly performing Mayer activity expansion into a series of rational polynomials that converge uniformly to the virial expansion. In the current work we limit our discussion to the second virial approximation. In contrast to the Mayer activity expansion the activity expansion presented herein converges for both attractive and repulsive systems.

  16. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  17. [Antitumor components screening of Stellera chamaejasme L. under the case of discrete distribution of active data].

    PubMed

    Yang, Qian-Xu; Cheng, Meng-Chun; Wang, Li; Kan, Xiao-Xi; Zhu, Xiao-Xin; Xiao, Hong-Bin

    2014-06-01

    This is to report the screening, extracting and validating antitumor components and compounds from Stellera chamaejasme L. under the case of discrete distribution of active data. In this work, different components from Stellera chamaejasme L. were collected by HPD macroporous resin and polyamide resin column, and their antitumor activity on A549 were tested by MTT assay. Activity results indicate that activity of components at 30-39 min is more potent than that of Stellera chamaejasme L. extract, and the activity of components at 33.97 min is equivalent to positive drug, cis-platinum at 100 microg x mL(-1), but with totally different mode of action. Under the case of discrete activity, the weight analysis is capable of screening active components and compounds from natural products.

  18. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    SciTech Connect

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  19. Chemical Protection Testing of Sorbent-Based Air Purification Components (APCs)

    DTIC Science & Technology

    2016-06-24

    using a GC equipped with a FID or nitrogen -phosphorus detector (NPD). Arsine may be detected using a GC equipped with a TCD, FTIR, or hydride detector...Environmental Policy Act (NEPA), the Department of Defense (DOD) requires that an environmental impact assessment for the life cycle be prepared and that...of all chemicals for flammability and explosive hazards. Reactive chemicals, such as arsine, phosphine, nitrogen dioxide, phosgene, chlorine

  20. Chemical composition and antimicrobial activity of Polish herbhoneys.

    PubMed

    Isidorov, V A; Bagan, R; Bakier, S; Swiecicka, I

    2015-03-15

    The present study focuses on samples of Polish herbhoneys (HHs), their chemical composition and antimicrobial activity. A gas chromatography-mass spectrometry (GC-MS) method was used to analyse eight samples of herbal honeys and three samples of nectar honeys. Their antimicrobial activities were tested on selected Gram-positive (Bacillus cereus, Staphylococcus aureus, Staphylococcus schleiferi) and Gram-negative (Escherichia coli) bacteria, as well as on pathogenic fungi Candida albicans. Ether extracts of HHs showed significant differences in composition but the principal groups found in the extracts were phenolics and aliphatic hydroxy acids typical of royal jelly and unsaturated dicarboxylic acids. In spite of the differences in chemical composition, antimicrobial activity of the extracts of HHs against all the tested microorganisms except E. coli was observed.

  1. Chemical transformations that yield compounds with distinct activity profiles.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2011-07-14

    We have systematically searched for chemical changes that generate compounds with distinct biological activity profiles. For this purpose, activity profiles were generated for ∼42000 compounds active against human targets. Unique activity profiles involving multiple target proteins were determined, and all possible matched molecular pairs (MMPs) were identified for compounds representing these profiles. An MMP is defined as a pair of compounds that are distinguished from each other only at a single site such as an R group or ring system. For example, in an MMP, a hydroxyl group might be replaced by a halogen atom or a benzene ring by an amide group. From ∼37500 MMPs, more than 300 nonredundant chemical transformations were isolated that yielded compounds with distinct activity profiles. None of these transformations was found in pairs of compounds with overlapping activity profiles. These transformations were ranked according to the number of MMPs, the number of activity profiles, and the total number of targets that they covered. In many instances, prioritized transformations involved ring systems of varying complexity. All transformations that were found to switch activity profiles are provided to enable further analysis and aid in compound design efforts.

  2. Phytochemical components and biological activities of Silene arenarioides Desf.

    PubMed

    Golea, Lynda; Benkhaled, Mohammed; Lavaud, Catherine; Long, Christophe; Haba, Hamada

    2017-02-24

    In this study, six known compounds 1-6 were isolated from the aerial parts of Silene arenarioides Desf. using different chromatographic methods. The structures of these compounds were identified as maltol glycoside (1), soyacerebroside I (2), chrysin (3), apigenin (4), quercetin (5) and stigmasterol glucoside (6). The compounds (1) and (2) are reported for the first time from this genus. The isolated compounds were determined using NMR techniques ((1)H NMR, (13)C NMR, COSY, HSQC and HMBC) and mass spectroscopy (ESI-MS). The antibacterial and antioxidant activities of extracts and of compound (1) have been evaluated. The antioxidant activity was performed by DPPH radical scavenging method, which showed that methanol extract possesses a good antioxidant activity with value of IC50 = 8.064 ± 0.005 μg/mL.

  3. Chemical composition and larvicidal activity of several essential oils from Hypericum species from Tunisia.

    PubMed

    Rouis, Zyed; Laamari, Ali; Abid, Nabil; Elaissi, Ameur; Cioni, Pier Luigi; Flamini, Guido; Aouni, Mahjoub

    2013-02-01

    The chemical composition of the essential oils extracted from some Tunisian Hypericum species and their larvicidal activity against Culex pipiens larvae were evaluated. The chemical compositions of the essential oils from the aerial plant parts were analyzed using gas chromatography-mass spectrometry. One hundred and thirty-four compounds were identified, ranging between 85.1 and 95.4 % of the oil's composition. The components were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, non-terpenic hydrocarbons, and others. The larvicidal activity of the essential oils was evaluated using a method recommended by WHO. Larvicidal tests revealed that essential oils from the Hypericum species have a significant larvicidal activity against C. pipiens, with LC(50) ranging between 102.82 and 194.70 ppm. The most powerful essential oils against these larvae were Hypericum tomentosum and Hypericum humifusum samples, followed by the essential oil of Hypericum perforatum.

  4. Early active sun - Radiation history of distinct components in fines

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Taylor, G. J.; Walker, R. M.; Seitz, M. G.

    1974-01-01

    Plagioclase feldspars were separated from lunar soil samples and their compositions were determined by electron-microprobe analysis followed by etching and track counting in an effort to find effects of early solar activity. The feldspars were assigned on this basis to three major lithologies: mare basalts, anorthositic rocks, and KREEP rock. The results are in sharp contrast to Poupeau et al.'s (1973) observations on track densities in plagioclase crystals in the Luna 16 soil: no evidence is found for an early active sun, although the evidence does not preclude this possibility, either.

  5. Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable

    NASA Astrophysics Data System (ADS)

    Werheit, Helmut

    2016-10-01

    The complex, highly distorted structure of boron carbide is composed of B12 and B11C icosahedra and CBC, CBB and B□B linear elements, whose concentration depends on the chemical composition each. These concentrations are shown to be consistent with lattice parameters, fine structure data and chemical composition. The respective impacts on lattice parameters are estimated and discussed. Considering the contributions of the different structural components to the energy of the overall structure makes the structure and its variation within the homogeneity range reasonable; in particular that of B4.3C representing the carbon-rich limit of the homogeneity range. Replacing in B4.3C virtually the B□B components by CBC yields the hypothetical moderately distorted B4.0C (structure formula (B11C)CBC). The reduction of lattice parameters related is compatible with recently reported uncommonly prepared single crystals, whose compositions deviate from B4.3C.

  6. Chemical peels in active acne and acne scars.

    PubMed

    Kontochristopoulos, Georgios; Platsidaki, Eftychia

    Chemical peeling is a widely used procedure in the management of acne and acne scars. It causes controlled destruction of a part of or the entire epidermis, with or without the dermis, leading to exfoliation and removal of superficial lesions, followed by regeneration of new epidermal and dermal tissues. The most frequently used peeling agents are salicylic acid, glycolic acid, pyruvic acid, lactic acid, mandelic acid, Jessner solution, trichloroacetic acid, and phenol. The appropriate peel is chosen based on the patient's skin type, acne activity, and type of acne scars. Combination peels minimize side effects. In acne scars, chemical peels may be combined with other procedures to achieve better clinical results. A series of chemical peels can lead to significant improvement over a short period, leading to patient satisfaction and maintenance of clinical results. © 2016 Elsevier Inc. All rights reserved.

  7. Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components.

    PubMed

    Gentile, Carla; Tesoriere, Luisa; Butera, Daniela; Fazzari, Marco; Monastero, Massimo; Allegra, Mario; Livrea, Maria A

    2007-02-07

    Pistacia vera L. is the only species of Pistacia genus producing edible nuts. This paper investigates the antioxidant potential of a Sicilian variety of pistachio nut by chemical as well as biological assays and measured antioxidant vitamins and a number of antioxidant polyphenols in either the hydrophilic and/or the lipophilic nut extract. In accordance with the majority of foods, the total antioxidant activity, measured as a TAA test, was much higher (50-fold) in the hydrophilic than in the lipophilic extract. Substantial amounts of total phenols were measured. The hydrophilic extract inhibited dose-dependently both the metal-dependent and -independent lipid oxidation of bovine liver microsomes, and the Cu+2-induced oxidation of human low-density lipoprotein (LDL). Peroxyl radical-scavenging as well as chelating activity of nut components may be suggested to explain the observed inhibition patterns. Among tocopherols, gamma-tocopherol was the only vitamin E isomer found in the lipophilic extract that did not contain any carotenoid. Vitamin C was found only in a modest amount. The hydrophilic extract was a source of polyphenol compounds among which trans-resveratrol, proanthocyanidins, and a remarkable amount of the isoflavones daidzein and genistein, 3.68 and 3.40 mg per 100 g of edible nut, respectively, were evaluated. With the exception of isoflavones that appeared unmodified, the amounts of other bioactive molecules were remarkably reduced in the pistachio nut after roasting, and the total antioxidant activity decreased by about 60%. Collectively, our findings provide evidence that the Sicilian pistachio nut may be considered for its bioactive components and can effectively contribute to a healthy status.

  8. Time-temperature-transformation curves in chemical reactions regulated by cytoskeletal activity

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Mayor, Satyajit; Rao, Madan

    2012-02-01

    Efficient and reproducible construction of signaling and sorting complexes, both on the surface and within the living cell, is contingent on local regulation of biochemical reactions by the cellular milieu with active components. We have recently proposed that in many cases this spatiotemporal regulation can be mediated by interaction with components of the dynamic cytoskeleton, where the interplay between active contractility and remodeling of the cytoskeleton results in transient focusing of passive molecules to form clusters, leading to a dramatic increase in the reaction efficiency and output levels. In this presentation, we discuss the implications of actin dynamics by introducing an ``effective temperature,'' which can work as a regulatory parameter for signaling replacing the details of actin dynamics. We show this in time-temperature-transformation plots, with the proposed ``effective temperature'' as a parameter, which paves way for discussion of active chemical thermodynamics.

  9. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata

    PubMed Central

    Dai, Jiali; Zhu, Liang; Yang, Li; Qiu, Jun

    2013-01-01

    The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of Wedelia prostrata and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components. PMID:26648809

  10. Effects of ion source operating parameters on direct analysis in real time of 18 active components from traditional Chinese medicine.

    PubMed

    Wang, Lu; Zeng, Shanshan; Qu, Haibin

    2016-03-20

    Direct analysis in real time mass spectrometry (DART-MS) provides a new analytical method for traditional Chinese medicine (TCM). The present study investigated the effects of key ion source operating parameters on DART-MS analysis of various TCM active components. A total of 18 active components, including phenylpropanoids, alkaloids, saponins, flavones, volatile oils, and glycosides, were examined. For each substance, the peak area and signal-to-noise of its characteristic ions under different reagent gases and heater temperatures were compared. Based on the comparison, the relationships among chemical structures, ion source parameters and instrument responses were revealed. Finally, some suggestions about choosing reagent gas and heater temperature were proposed for types of TCM active substance, which offered a reference for the application of DART-MS on TCM analysis.

  11. Dynamics of self-propelled nanomotors in chemically active media

    NASA Astrophysics Data System (ADS)

    Thakur, Snigdha; Kapral, Raymond

    2011-07-01

    Synthetic chemically powered nanomotors often rely on the environment for their fuel supply. The propulsion properties of such motors can be altered if the environment in which they move is chemically active. The dynamical properties of sphere dimer motors, composed of linked catalytic and noncatalytic monomers, are investigated in active media. Chemical reactions occur at the catalytic monomer and the reactant or product of this reaction is involved in cubic autocatalytic or linear reactions that take place in the bulk phase environment. For these reactions, as the bulk phase reaction rates increase, the motor propulsion velocity decreases. For the cubic autocatalytic reaction, this net effect arises from a competition between a reduction of the nonequilibrium concentration gradient that leads to smaller velocity and the generation of fuel in the environment that tends to increase the motor propulsion. The role played by detailed balance in determining the form of the concentration gradient in the motor vicinity in the active medium is studied. Simulations are carried out using reactive multiparticle collision dynamics and compared with theoretical models to obtain further insight into sphere dimer dynamics in active media.

  12. [Study on HPLC chromatograms of different processed Euphorbia ebracteolata products and content change of three chemical components].

    PubMed

    Zhuang, Guo; Li, Jun-Song; Cai, Bao-Chang

    2013-05-01

    To prepare processed products with different methods, in order to study the impact of auxiliary materials and temperature on chemical components of Euphorbia ebracteolata, and establish specific chromatograms of different processed products. Wel-chorm-C18 column (4.6 mm x 250 mm, 5 microm) was used and eluted with a gradient program, with acetonitrile (A)-water(B). The column temperature was 25 degrees C, and the detection wave length was set at 226 nm. The aim was to determine the content of effective components in different processed products--ebracteolata cpd B, ebracteolata cpd C and jolkinolide B and establish respective characteristic fingerprints to compare with similarity. The results showed that the content of ebracteolata cpd B, ebracteolata cpd C first increased and then decreased with the rise in temperature. Different processed products showed significant difference in HPLC spectrograms, with a low similarity. This study showed great impacts of auxiliary materials and temperature on chemical components of E. ebracteolata. As the vinegar processing method had higher attenuation and and synergistic effects than other methods, the auxiliary material vinegar cannot be replaced by chemical reagent acetic acid.

  13. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  14. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    PubMed

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  15. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.

    PubMed

    Aggarwal, Bharat B; Yuan, Wei; Li, Shiyou; Gupta, Subash C

    2013-09-01

    Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone.

  16. A review of DOE HEPA filter component test activities

    SciTech Connect

    Slawski, J.W.; Bresson, J.F.; Scripsick, R.C.

    1997-08-01

    All HEPA filters purchased for installation in DOE nuclear facilities are required to be tested at a Filter Test Facility (FTF) prior to installation. The number of HEPA filters purchased by DOE has been reduced so much that the Hanford FTF was closed. From Fiscal Year (FY) 1992 to 1994, funding was not provided to the FTF Technical Support Group (TSG) at the Los Alamos National Laboratory. As a consequence, Round Robin Tests (RRTs), performed twice each year by the FTFs to assess constituency of test results among the FTFs, were not performed in FY 1992 and FY 1993. The Annual Reports of FTF test activities were not prepared for FY 1992 - 1995. Technical support provided to the FTFs was minimal. There is talk of closing a second FTF, and ongoing discussions as to whether DOE will continue to fund operation of the FTFs. In FY 1994, DOE Defense Programs commenced funding the TSG. RRT data for FY 1994 and 1995 have been entered into the database; the FY 1994 RRT report has been issued; and the FY 1995 RRT report is in progress. Data from semiannual reports have been retrieved and entered into the database. Standards related to HEPA filter test and procurement activities are now scheduled for issuance by FY 1996. Continuation of these activities depends on whether DOE will continue to support the HEPA filter test program. The history and activities of the FTFs and the TSG at Los Alamos have been reported at previous Air Cleaning Conferences. Data from the FY 1991 Annual Report of FTF activities was presented at the 1992 Air Cleaning Conference. Preparation of the Annual Reports was temporarily suspended in 1992. However, all of the FTF Semiannual report data have been retrieved and entered into the data base. This paper focuses primarily on the results of HEPA filter tests conducted by FTFs during FY 1992 - FY 1995, and the possible effects of the DOE program uncertainties on the quality of HEPA filters for installation at the DOE sites. 15 refs., 13 tabs.

  17. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    PubMed

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  18. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    ERIC Educational Resources Information Center

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  19. Mixed waste chemical compatibility: A testing program for plastic packaging components

    SciTech Connect

    Nigrey, P.J.

    1995-12-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the United States have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation (DOT, 49 CFR 173) and the US Nuclear Regulatory Commission (NRC, 10 CFR 71). The design requirements for both hazardous [49 CFR 173.24 (e)(1)] and radioactive [49 CFR 173.412 (g)] materials packaging specify packaging compatibility, i.e., that the materials of the packaging @d any contents be chemically compatible with each other. Furthermore, Type A [49 CFR 173.412 (g)] and Type B (10 CFR 71.43) packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program attempts to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. This program has been described in considerable detail in an internal SNL document, the Chemical Compatibility Test Plan & Procedure Report (Nigrey 1993).

  20. Stachyose: One of the Active Fibroblast-proliferating Components in the Root of Rehmanniae Radix (地黃 dì huáng)

    PubMed Central

    Lai, Patrick Kwok-Kin; To, Ming-Ho; Lau, Kit-Man; Liu, Cheuk-Lun; Cheng, Ling; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2012-01-01

    This study aimed to investigate and compare the fibroblast-proliferating activities of different Rehmanniae Radix (RR) samples and its chemical components using human normal fibroblast cells Hs27. Those active components were quantified in differently treated RR samples using UPLC so as to correlate activity with component content. Our results showed that dried RR aqueous extract exhibited the most potent fibroblast-proliferating activity. Stronger effect was observed when ethanol with heating was applied in the extraction process. Stachyose and verbascoside were demonstrated for their first time to exhibit significant stimulatory effects on fibroblast proliferation. However, the proliferating effect of dried RR extract did not correlate with the stachyose content, and verbascoside was not responsible for the fibroblast proliferative effect of RR since it was undetectable in all samples. In conclusion, stachyose only contributed in part to the activity of RR, suggesting that other active components might be present and yet to be found. PMID:24716137

  1. Sex pheromone components ofEuxoa drewseni Chemical identification, electrophysiological evaluation, and field attractancy tests.

    PubMed

    Struble, D L

    1983-03-01

    Eleven compounds structurally similar to known lepidopterous pheromone components were identified in the extract from 18 calling female moths ofEuxoa drewseni (Staudinger). The identifications were done by gas chromatography-mass spectrometry and high-resolution gas chromatography with flame ionization and electroantennographic detectors simultaneously. Detector antennae were from five species of moths. In the field, male moths were specifically attracted to a three-component blend of dodecyl, (Z)-5-dodecenyl, and (Z)-7-tetradecenyl acetates in a ratio of 2∶6∶1. This blend at 1000 μg/rubber septum dispenser is recommended as a trap bait for monitoring purposes. Low concentrations of (Z)-7-dodecenyl acetate or (Z)-7-tetradecenol inhibited the attraction of moths to the three-component blend. (Z)-7-Pentadecenyl acetate functioned as a parapheromone in place of (Z)-7-tetradecenyl acetate in the pheromone blend, and they appear to react via the same antennal receptor.

  2. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    PubMed

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  3. Mining Chemical Activity Status from High-Throughput Screening Assays.

    PubMed

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  4. Mining Chemical Activity Status from High-Throughput Screening Assays

    PubMed Central

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare. PMID:26658480

  5. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  6. Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods.

    PubMed

    Jun, Xi; Deji, Shen; Ye, Li; Rui, Zhang

    2011-04-15

    In this study, in vitro antioxidant activities and bioactive components of green tea extracts (GTE) by ultrahigh pressure extraction and conventional extraction methods (microwave extraction, ultrasonic extraction, Soxhlet extraction and heat reflux extraction) were investigated. DPPH radical-scavenging and FTC method were applied to test the antioxidant activities. The bioactive components were determined by chemical methods. The results indicated that the GTE by ultrahigh pressure extraction exhibited the strongest antioxidant activities. The contents of polyphenols and catechins in the GTE by ultrahigh pressure extraction were significantly higher than those by other extraction methods, which was possibly responsible for the higher antioxidant activities of the GTE by ultrahigh pressure extraction. From the results we can draw the conclusion that not only the more bioactive components are obtained but also the extract has better free radical and reactive oxygen species scavenging activities through ultrahigh pressure extraction method. These findings further illustrate that ultrahigh pressure extraction has a bright prospect for extracting active ingredients from plant materials.

  7. Comparison of Chemical Components of Cell Walls of Brucella abortus Strains of Low and High Virulence.

    PubMed

    Kellerman, G D; Foster, J W; Badakhsh, F F

    1970-09-01

    Amino acid, carbohydrate, and lipid components of cell walls of Brucella abortus strain 19A (low virulence) and strain 2308 (high virulence) were compared by thin layer chromatography (TLC) and by use of an amino acid analyzer. A total of 15 amino acids were detected by both chromatographic methods. Each amino acid was present in greater amounts in strain 2308 than in strain 19A when equal amounts of hydrolysates of cell wall and endotoxin-containing preparations were analyzed. A component with the same R(F) value as ethanolamine was present in strain 2308 cell wall hydrolysates but was not revealed by TLC of strain 19A cell wall hydrolysates. This component was not detected with the amino acid analyzer. TLC of cell walls tagged with 2,4-dinitrofluorobenzene prior to hydrolysis showed that phenylalanine was a terminal amino acid in cell walls of B. abortus strains 19A and 2308, B. suis strain 1776, and B. melitensis strain 2500. Carbohydrates detected in cell walls of strains 19A and 2308 by TLC were tentatively identified as glucose, mannose, rhamnose, and galactose. Colorimetric tests were also positive for 2-keto-3-deoxy-octulosonic acid, heptose, and dideoxyhexose. At least seven lipid components were detected by TLC of ether extracts of cell walls of strains 19A and 2308. It is suggested that one or more lipids is important in maintaining cell wall structure, because isolated cell walls rapidly became fragmented after exposure to ether.

  8. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region.

    PubMed

    Kassotis, Christopher D; Tillitt, Donald E; Davis, J Wade; Hormann, Annette M; Nagel, Susan C

    2014-03-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized that a selected subset of chemicals used in natural gas drilling operations and also surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas-related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operations may result in elevated endocrine-disrupting chemical activity in surface and ground water.

  9. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  10. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation.

  11. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    PubMed

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors.

  12. Chemical Kinetics Mechanism Reduction Based on Principal Component Analysis: Development and Testing of Some New Implementations

    DTIC Science & Technology

    2013-05-01

    prediction of propulsion system performance. In addition, programs employed in this study for screening the merit of reduced mechanisms were...development of system -specific gas-phase finite-rate chemical kinetics mechanisms is a significant part of these efforts (Anderson et al., 2010; Chen and...employed to model other combustion systems . The final step involves producing a “reduced” (or skeletal) mechanism from the detailed/full one

  13. The Design of Actively Cooled Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Bolt, H.; Gervash, A.; Linke, J.; Smid, I.

    In future fusion devices, like in the stellarator Wendelstein 7-X, the target plates of the divertor will be exposed to heat loads up to power densities of 10 MW/m2 for 1000 s. For this purpose actively cooled target elements with an internal coolant flow return, made of 2-D CFC armor tiles brazed onto a two tube cooling structure were developed and manufactured at the Forschungszentrum Jülich. Individual bent- and coolant flow reversal elements were used to achieve a high flexibility in the shape of the target elements. A special brazing technology, using a thin layer of plasma-arc deposited titanium was used for the bonding of the cooling structure to the plasma facing armor (PFA). FEM-simulations of the thermal and mechanical behavior show that a detachment of about 25% of the bonded area between the copper tubes and the PFA can be tolerated, without exceeding the critical heat flux at 15 MW/m2 or a surface temperature of 1400°C at 10 MW/m2 by using twisted tape inserts with a twist ratio of 2 at a cooling water velocity of 10 m/s. Thermal cycling tests in an electron beam facility up to a power density level 10.5 MW/m2 show a very good behavior of parts of the target elements, which confirms the performance under fusion relevant conditions. Even defected parts in the bonding interface of the target elements, known from ultrasonic inspections before, show no change in the thermal performance under cycling, which confirms also the structural integrity of partly defected regions.

  14. Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds.

    PubMed

    Tian, Hong-Lei; Zhan, Ping; Li, Kai-Xiong

    2010-06-01

    In order to improve the comprehensive utilization of major by-products in apple-juice processing, the components, antioxidant and antimicrobial activities of oil in two species apple seeds, Fuji and New Red Star, were investigated. The Soxhlet extracted oil content of apple seeds raged from 20.69 to 24.32 g/100 g. The protein, fiber and ash contents were found to be 38.85-49.55 g/100 g, 3.92-4.32 g/100 g and 4.31-5.20 g/100 g, respectively; the extracted oils exhibited an iodine value of 94.14-101.15 g I/100 g oil; refractive index (40 degrees C) was 1.465-1.466; density (25 degrees C) was 0.902-0.903 mg/ml; saponification value was 179.01-197.25 mg KOH/g oil; and the acid value was 4.036-4.323 mg KOH/g oil. The apple seed oils mainly consisted of linoleic acid (50.7-51.4 g/100 g) and oleic acid (37.49-38.55 g/100 g). Other prominent fatty acids were palmitic acid (6.51-6.60 g/100 g), stearic acid (1.75-1.96 g/100 g) and arachidic acid (1.49-1.54 g/100 g). Apple seed oil was proven to possess interesting properties, emerging from its chemical composition and from the evaluation of its in vitro biological activities. The apple seed oil was almost completely active against bacteria, mildews were less sensitive to apple seed oil than yeasts, and the minimum inhibitory concentration (MIC) of apple seed oil ranged from 0.3 to 0.6 mg/ml. The observed biological activities showed that the oil had a good potential for use in the food industry and pharmacy.

  15. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    NASA Astrophysics Data System (ADS)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  16. Short-term associations of cause-specific emergency hospitalizations and particulate matter chemical components in Hong Kong.

    PubMed

    Pun, Vivian Chit; Yu, Ignatius Tak-Sun; Qiu, Hong; Ho, Kin-Fai; Sun, Zhiwei; Louie, Peter K K; Wong, Tze Wai; Tian, Linwei

    2014-05-01

    Despite an increasing number of recent studies, the overall epidemiologic evidence associating specific particulate matter chemical components with health outcomes has been mixed. The links between components and hospitalizations have rarely been examined in Asia. We estimated associations between exposures to 18 chemical components of particulate matter with aerodynamic diameter less than 10 μm (PM10) and daily emergency cardiorespiratory hospitalizations in Hong Kong, China, between 2001 and 2007. Carbonaceous particulate matter, sulfate, nitrate, and ammonium accounted for two-thirds of the PM10 mass. After adjustment for time-varying confounders, a 3.4-μg/m(3) increment in 2-day moving average of same-day and previous-day nitrate concentrations was associated with the largest increase of 1.32% (95% confidence interval: 0.73, 1.92) in cardiovascular hospitalizations; elevation in manganese level (0.02 μg/m(3)) was linked to a 0.91% (95% confidence interval: 0.19, 1.64) increase in respiratory hospitalizations. Upon further adjustment for gaseous copollutants, nitrate, sodium ion, chloride ion, magnesium, and nickel remained significantly associated with cardiovascular hospitalizations, whereas sodium ion, aluminum, and magnesium, components abundantly found in coarser PM10, were associated with respiratory hospitalizations. Most positive links were seen during the cold season. These findings lend support to the growing body of literature concerning the health associations of particulate matter composition and provide important insight into the differential health risks of components found in fine and coarse modes of PM10.

  17. Catalase activity as a potential indicator of the reducer component of small closed ecosystems

    NASA Astrophysics Data System (ADS)

    Sarangova, A. B.; Somova, L. A.; Pisman, T. I.

    1997-01-01

    Dynamics of catalase activity has been shown to reflect the growth curve of microorganisms in batch cultivation (celluloselythic bacteria Bacillus acidocaldarius and bacteria of the associated microflora Chlorella vulgaris). Gas and substrate closure of the three component ecosystems with spatially separated components ``producer-consumer-reducer'' (Chl. vulgaris-Paramecium caudatum-B. acidocaldarius, two bacterial strains isolated from the associated microflora Chl. vulgaris) demonstrated that the functioning of the reducer component can be estimated by the catalase activity of microorganisms of this component.

  18. Evaluation of the Vesicating Properties of Neutralized Chemical Agent Identification Set (CAIS) Components

    DTIC Science & Technology

    1997-06-01

    euthanasia, 17 TABLE 2. SYNOPSIS OF PHASE II AND PHASE 111 TESTING PROCEDURES Phase II. A total of I I hairless guinea pigs ( HGPs ) were used in this...24 HGPs were used, dosing six to eight sites per animal with a 1 hr duration of exposure. All animals were examined 24 hr following exposure and...The "blue" wastestream, that CAIS component containing neat HD neutralized with DCDMH, has been found to cause microvesication in HGPs at dosing

  19. Quantifying components of the hydrologic cycle in Virginia using chemical hydrograph separation and multiple regression analysis

    USGS Publications Warehouse

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2012-01-01

    This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.

  20. Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi.

    PubMed

    Lynch, J P; O'Kiely, P; Murphy, R; Doyle, E M

    2014-08-01

    Maize stover (total stem and leaves) is not considered a ruminant feed of high nutritive value. Therefore, an improvement in its digestibility may increase the viability of total forage maize production systems in marginal growth regions. The objective of this study was to describe the changes in chemical composition during the storage of contrasting components of maize stover (leaf, upper stem and lower stem) treated with either of two lignin degrading white-rot fungi (WRF; Pleurotus ostreatus, Trametes versicolor). Three components of maize stover (leaf, upper stem and lower stem), harvested at a conventional maturity for silage production, were digested with either of two WRF for one of four digestion durations (1-4 months). Samples taken prior to fungal inoculation were used to benchmark the changes that occurred. The degradation of acid detergent lignin was observed in all sample types digested with P. ostreatus; however, the loss of digestible substrate in all samples inoculated with P. ostreatus was high, and therefore, P. ostreatus-digested samples had a lower dry matter digestibility than samples prior to inoculation. Similarly, T. veriscolor-digested leaf underwent a non-selective degradation of the rumen-digestible components of fibre. The changes in chemical composition of leaf, upper stem and lower stem digested with either P. ostreatus or T. veriscolor were not beneficial to the feed value of the forage, and incurred high DM losses.

  1. Chemical compositions and antimicrobial activity of the essential oils of Hornstedtia havilandii (Zingiberaceae).

    PubMed

    Hashim, Siti Ernieyanti; Sirat, Hasnah Mohd; Yen, Khong Heng

    2014-01-01

    The chemical compositions and antimicrobial activity of the fresh rhizome and flower oils of Hornstedtia havilandii were studied. The components present were analyzed using GC and GC-MS. A total of forty-eight constituents were successfully identified from the flower and rhizome oils, representing 93.4% and 89.6%, respectively. The most abundant components of the flower oil were beta-pinene, (19.5%), beta-elemene, (10.0%), beta-cubebene, (6.2%), alpha-pinene, (5.6%), gamma-cadinene, (4.3%) and germacrene D, (3.3%), while alpha-copaene, (10.2%), beta-selinene, (8.4%), beta-elemene, (7.0%), gamma-cadinene, (6.9%), beta-cubebene, (5.3%) and germacrene D, (5.3%) were found as the main components of the rhizome oil. The essential oils were tested for antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria and yeasts. Both oils showed activity against the Gram-positive bacterium, Staphylococcus aureus, with moderate MIC values of 112.5 micro/mL, however, for Gram-negative bacteria, the flower oil showed weak antimicrobial activity with a MIC value of 225 microg/mL. Only very weak activity was shown against the yeasts Candida albicans and C. glabrata, with MIC values of 900-1800 microg/mL.

  2. Migration and Retardation of Chemical Toxic Components from Radioactive Waste - Hydrochemical Aspects

    SciTech Connect

    Jedinakova-Krizova, V.; Hanslik, E.

    2003-02-24

    A systematic analysis of nuclear power plant (NPP) operation and radioactive wastes disposal (near-surface disposal and geologic disposal) in underground repositories has provided the basis for a comparison between the radiotoxicity and chemotoxicity as part of an EIA (environmental impact assessment) procedure. This contribution summarizes the hydrochemical mechanisms of transport and retardation processes, chemistry and migration behavior of radionuclides and chemical toxics in natural sorbents, especially bentonites. The effect of solubility and dissolution reactions, diffusion and sorption/desorption, complexation and variations in the aqueous phase composition, pH-value and oxidation-reduction properties and other phenomena affecting distribution coefficients (Kd values) is discussed.

  3. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  4. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities

    PubMed Central

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  5. Pyrazine Analogues Are Active Components of Wolf Urine That Induce Avoidance and Freezing Behaviours in Mice

    PubMed Central

    Osada, Kazumi; Kurihara, Kenzo; Izumi, Hiroshi; Kashiwayanagi, Makoto

    2013-01-01

    Background The common grey wolf (Canis lupus) is found throughout the entire Northern hemisphere and preys on many kinds of mammals. The urine of the wolf contains a number of volatile constituents that can potentially be used for predator–prey chemosignalling. Although wolf urine is put to practical use to keep rabbits, rodents, deer and so on at bay, we are unaware of any prior behavioural studies or chemical analyses regarding the fear-inducing impact of wolf urine on laboratory mice. Methodology/Principal Findings Three wolf urine samples harvested at different times were used in this study. All of them induced stereotypical fear-associated behaviors (i.e., avoidance and freezing) in female mice. The levels of certain urinary volatiles varied widely among the samples. To identify the volatiles that provoked avoidance and freezing, behavioural, chemical, and immunohistochemical analyses were performed. One of the urine samples (sample C) had higher levels of 2,6-dimethylpyrazine (DMP), trimethylpyrazine (TMP), and 3-ethyl-2,5-dimethyl pyrazine (EDMP) compared with the other two urine samples (samples A and B). In addition, sample C induced avoidance and freezing behaviours more effectively than samples A and B. Moreover, only sample C led to pronounced expression of Fos-immunoreactive cells in the accessory olfactory bulb (AOB) of female mice. Freezing behaviour and Fos immunoreactivity were markedly enhanced when the mice were confronted with a mixture of purified DMP, TMP, and EDMP vs. any one pyrazine alone. Conclusions/Significance The current results suggest that wolf urinary volatiles can engender aversive and fear-related responses in mice. Pyrazine analogues were identified as the predominant active components among these volatiles to induce avoidance and freezing behaviours via stimulation of the murine AOB. PMID:23637901

  6. Crystallization of urine mineral components may depend on the chemical nature of Proteus endotoxin polysaccharides.

    PubMed

    Torzewska, Agnieszka; Staczek, Paweł; Rózalski, Antoni

    2003-06-01

    Formation of infectious urinary calculi is the most common complication accompanying urinary tract infections by members of the genus Proteus. The major factor involved in stone formation is the urease produced by these bacteria, which causes local supersaturation and crystallization of magnesium and calcium phosphates as carbonate apatite [Ca(10)(PO(4))(6).CO(3)] and struvite (MgNH(4)PO(4).6H(2)O), respectively. This effect may also be enhanced by bacterial polysaccharides. Macromolecules of such kind contain negatively charged residues that are able to bind Ca(2+) and Mg(2+), leading to the accumulation of these ions around bacterial cells and acceleration of the crystallization process. The levels of Ca(2+) and Mg(2+) ions bound by whole Proteus cells were measured, as well as the chemical nature of isolated LPS polysaccharides, and the intensity of the in vitro crystallization process was compared in a synthetic urine. The results suggest that the sugar composition of Proteus LPS may either enhance or inhibit the crystallization of struvite and apatite, depending on its chemical structure and ability to bind cations. This points to the increased importance of endotoxin in urinary tract infections.

  7. Particulate matter mass and chemical component concentrations over four Chinese cities along the western Pacific coast.

    PubMed

    Xu, Hong; Bi, Xiao-Hui; Zheng, Wei-Wei; Wu, Jian-Hui; Feng, Yin-Chang

    2015-02-01

    China has witnessed rapid economic growth in the past three decades, especially in coastal areas. Particulate matter (PM) pollution is becoming increasingly serious in China's cities along the western Pacific coast with the rapid development of China's society and economy. This study analyzed PM (PM10 and PM2.5) in terms of their mass and chemical composition in four coastal Chinese cities. The goal was to study the spatial variation and characteristics of PM pollution in sites under different levels of economic development and in diverse natural environments. A distinct trend for concentrations of PM and related chemical species was observed and increased from south to north in Haikou, Ningbo, Qingdao, and Tianjin. Secondary inorganic aerosols, crustal materials, and organic matter dominated the composition of both PM10 and PM2.5. Crustal materials were the most abundant species in the northern coastal areas because these areas have less vegetation cover and lower humidity than southern coastal areas. The presence of high SO4 (2-)/nitrate (NO3 (-)) concentrations indicated that the burning of coals gives significant contributions to PM10 and PM2.5. The differences observed in the characteristics of PM pollution in these coastal cities are probably caused by different levels of industrial and urban development.

  8. Microbial conversion of synthesis gas components to useful fuels and chemicals

    SciTech Connect

    Madhukar, G.R.; Elmore, B.B.; Huckabay, H.K.

    1996-12-31

    Enriched culture techniques have been used to isolate microbial cultures exhibiting growth on synthesis gas components. Three rod-shaped, gram-positive cultures have been isolated from petroleum-contaminated soil, a cow manure-soil mixture, and sheep rumen fluid. Each culture exhibits growth on carbon monoxide as its primary carbon source, producing alcohols and acids in the fermentation medium. Quantities of up to 7.5, 0.58, and 0.25 g/L of acetate, ethanol, and methanol, respectively, have been produced in batch culture with lesser amounts of acetone, butyric, and propionic acid detected. 15 refs., 5 figs., 3 tabs.

  9. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure.

    PubMed

    Hollister, Kyle A; Conner, Elizabeth S; Zhang, Xinxing; Spell, Mark; Bernard, Gary M; Patel, Pratik; de Carvalho, Ana Carolina G V; Butcher, Rebecca A; Ragains, Justin R

    2013-09-15

    The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This panel includes a number of natural ascarosides that were detected in crude pheromone extract, but as yet have no assigned function, as well as many unnatural ascaroside derivatives. Most of these ascarosides, some of which have significant structural similarity to the natural dauer pheromone components, have very little dauer-inducing activity. Our results provide a primer to ascaroside structure-activity relationships and suggest that slight modifications to ascaroside structure dramatically influence binding to the relevant G protein-coupled receptors that control dauer formation.

  10. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure

    PubMed Central

    Hollister, Kyle A.; Conner, Elizabeth S.; Zhang, Xinxing; Spell, Mark; Bernard, Gary M.; Patel, Pratik; de Carvalho, Ana Carolina G.V.; Butcher, Rebecca A.; Ragains, Justin R.

    2015-01-01

    The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This panel includes a number of natural ascarosides that were detected in crude pheromone extract, but as yet have no assigned function, as well as many unnatural ascaroside derivatives. Most of these ascarosides, some of which have significant structural similarity to the natural dauer pheromone components, have very little dauer-inducing activity. Our results provide a primer to ascaroside structure-activity relationships and suggest that slight modifications to ascaroside structure dramatically influence binding to the relevant G protein-coupled receptors that control dauer formation. PMID:23920482

  11. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring.

    PubMed

    Doan, Chi Diem; To, Chak Ming; De Vrieze, Mike; Lynen, Frederic; Danthine, Sabine; Brown, Allison; Dewettinck, Koen; Patel, Ashok R

    2017-01-01

    Elucidating the composition of waxes is of utmost importance to explain their behavior in liquid oil structuring. The chemical components (hydrocarbons - HCs, free fatty acids - FFAs, free fatty alcohols - FALs and wax esters - WEs) of natural waxes were analyzed using HPLC-ELSD and GC-MS followed by evaluation of their oil structuring properties. The gel strength, including the average storage modulus and oscillation yield stress, displayed a negative correlation with FALs and a positive correlation with HCs, FFAs and WEs. The components dictating the gel strength are HCs, FFAs and WEs in a descending order of importance. The consistency of the oleogels increased with the increasing amount of FFAs and HCs and the decreasing amount of WEs and FALs. The presence of more WEs results in a strong but brittle gel with a high initial flow yield stress. We believe these results might be useful in selecting the right waxes to combine in certain fat-based food products.

  12. Chemical Signaling and Functional Activation in Colloidosome-Based Protocells.

    PubMed

    Sun, Shiyong; Li, Mei; Dong, Faqin; Wang, Shengjie; Tian, Liangfei; Mann, Stephen

    2016-04-13

    An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and show dual catalytic functions involving spatially confined enzyme-mediated dephosphorylation and peroxidase-like membrane activity. The latter is used for the colloidosome-mediated synthesis and assembly of a temperature-responsive poly(N-isopropylacrylamide)(PNIPAM)/clay-integrated hybrid membrane. In situ PNIPAM elaboration of the membrane is coupled to a glucose oxidase (GOx)-mediated signaling pathway to establish a primitive model of chemical communication and functional activation within a synthetic "protocell community" comprising a mixed population of GOx-containing silica colloidosomes and alkaline phosphatase (ALP)-containing FeM-clay colloidosomes. Triggering the enzyme reaction in the silica colloidosomes gives a hydrogen peroxide signal that induces polymer wall formation in a coexistent population of the FeM-clay colloidosomes, which in turn generates self-regulated membrane-gated ALP-activity within the clay microcompartments. The emergence of new functionalities in inorganic colloidosomes via chemical communication between different protocell populations provides a first step toward the realization of interacting communities of synthetic functional microcompartments.

  13. Atypical Hydrogen Uptake on Chemically Activated, Ultramicroporous Carbon

    SciTech Connect

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C; Baker, Frederick S

    2010-01-01

    Hydrogen adsorption at near-ambient temperatures on ultramicroporous carbon (UMC), derived through secondary chemical activation from a wood-based activated carbon was studied using volumetric and gravimetric methods. The results showed that physisorption is accompanied by a process of different nature that causes slow uptake at high pressures and hysteresis on desorption. In combination, this results in unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt % at 25 oC and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17 20 kJ/mol) is higher than usually reported for carbon materials, but the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption caused by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.

  14. Changes in structural and chemical components of wood delignified by fungi

    SciTech Connect

    Blanchette, R.A.; Otjen, L.; Effland, M.J.; Eslyn, W.E.

    1985-01-01

    Cerrena unicolor, Ganoderma applanatum, Ischnoderma resinosum and Poria medulla-panis were associated with birch (Betula papyrifera) wood that had been selectively delignified in the forest. Preferential lignin degradation was not uniformly distributed throughout the decayed wood. A typical white rot causing a simultaneous removal of all cell wall components was also present. In the delignified wood, 95 to 98% of the lignin was removed as well as substantial amounts of hemicelluloses. Scanning and transmission electron microscopy were used to identify the micromorphological and ultrastructural changes that occurred in the cells during degradation. In delignified areas the compound middle lamella was extensively degraded causing a defibration of cells. The secondary wall, especially the S2 layer, remained relatively unaltered. In simultaneously white-rotted wood all cell wall layers were progressively removed from the lumen toward the middle lamella causing erosion troughs or holes to form. Large voids filled with fungal mycelia resulted from a coalition of degraded areas. Birch wood decayed in laboratory soil-block tests was also intermittently delignified, selective delignification, sparsely distributed throughout the wood, and a simultaneous rot resulting in the removal of all cell wall components were evident. SEM appears to be an appropriate technique for examining selectively delignified decayed wood. 30 references.

  15. Formation of a two-component Bose condensate during the chemical-potential curve crossing

    SciTech Connect

    Kayali, M.A.; Sinitsyn, N.A.

    2003-04-01

    In this paper, we study the coherent dissociation of a molecular condensate into a multiple-mode atomic condensate during the chemical-potential curve crossing beyond the mean-field approximation. We show that the problem can be reduced to the dissociation of a molecular condensate into a two-mode atomic one. We employ the time-dependent Landau-Zener theory and derive analytical expression for the transition amplitudes. We calculate the number of produced atoms and show that they exist in squeezed state. We also study the formation of multiple-mode atomic condensate by inelastic scatterings of atoms in a single-mode atomic condensate. We show that the problem is also a Landau-Zener-like and exact solution can be found by imposing an additional symmetry.

  16. Regular Wave Propagation Out of Noise in Chemical Active Media

    SciTech Connect

    Alonso, S.; Sendina-Nadal, I.; Perez-Munuzuri, V.; Sancho, J. M.; Sagues, F.

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  17. Regular wave propagation out of noise in chemical active media.

    PubMed

    Alonso, S; Sendiña-Nadal, I; Pérez-Muñuzuri, V; Sancho, J M; Sagués, F

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  18. Chemical Composition of the Essential Oil from Croton oblongifolius and its Antibacterial Activity against Propionibacterium acnes.

    PubMed

    Athikomkulchai, Sirivan; Tadtong, Sarin; Ruangrungsi, Nijsiri; Hongratanaworakit, Tapanee

    2015-08-01

    The essential oil of C. oblongifolius Roxb. stem bark was obtained by hydrodistillation. Chemical analysis by GC-MS identified 29 compounds. Terpinen-4-ol (17.8%) was a major component, together with α-guaiene (7.9%), E-caryophyllene (7.0%), myrcene (6.7%), (+)-cyclosativene (5.1%), sabinene (4.8%), aciphyllene (4.7%), pogostol (4.6%), gamma-terpinene (3.4%), α-muurolol (3.2%) and germecrene D (3.2%). The essential oil exhibited antibacterial activity against Propionibacterium acnes ATCC 6919 with an MIC of 0.125%, v/v.

  19. Genotoxic activity of organic chemicals in drinking water.

    PubMed

    Meier, J R

    1988-11-01

    The information summarized in this review provides substantial evidence for the widespread presence of genotoxins in drinking water. In many, if not most cases, the genotoxic activity can be directly attributed to the chlorination stage of drinking water treatment. The genotoxic activity appears to originate primarily from reactions of chlorine with humic substances in the source waters. Genotoxic activity in drinking water concentrates has been most frequently demonstrated using bacterial mutagenicity tests but results with mammalian cell assay systems are generally consistent with the findings from the bacterial assays. There is currently no evidence for genotoxic damage following in vivo exposures to animals. In some locations genotoxic contaminants of probable industrial and/or agricultural origin occur in the source waters and contribute substantially to the genotoxic activity of finished drinking waters. The method used for sample concentration can have an important bearing on study results. In particular, organic acids account for most of the mutagenicity of chlorinated drinking water, and their recovery from water requires a sample acidification step prior to extraction or XAD resin adsorption. Considerable work has been done to determine the identity of the compounds responsible for the mutagenicity of organic concentrates of drinking water. Recently, one class of acidic compounds, the chlorinated hydroxyfuranones, has been shown to be responsible for a major part of the mutagenic activity. Strategies for drinking water treatment that have been evaluated with respect to reduction of genotoxins in drinking water include granular activated carbon (GAC) filtration, chemical destruction, and the use of alternative means of treatment (i.e., ozone, chlorine dioxide, and monochloramine). GAC treatment has been found to be effective for removal of mutagens from drinking water even after the GAC is beyond its normal use for organic carbon removal. All disinfectant

  20. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  1. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria.

    PubMed

    Sofrata, Abier; Santangelo, Ellen M; Azeem, Muhammad; Borg-Karlson, Anna-Karin; Gustafsson, Anders; Pütsep, Katrin

    2011-01-01

    Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate.

  2. Benzyl Isothiocyanate, a Major Component from the Roots of Salvadora Persica Is Highly Active against Gram-Negative Bacteria

    PubMed Central

    Sofrata, Abier; Santangelo, Ellen M.; Azeem, Muhammad; Borg-Karlson, Anna-Karin; Gustafsson, Anders; Pütsep, Katrin

    2011-01-01

    Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate. PMID:21829688

  3. Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell

    PubMed Central

    Zhang, Gen; He, Li-sheng; Wong, Yue-Him; Xu, Ying; Zhang, Yu; Qian, Pei-yuan

    2015-01-01

    As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 12 proteins were unknown. Besides the known proteins in barnacle shell (SIPC, carbonic anhydrase and acidic acid matrix protein), we also identified chorion peroxidase, C-type lectin-like domains, serine proteases and proteinase inhibitor proteins in the A. Amphitrite shell. The sequences of these proteins were characterized and their potential functions were discussed. Histology and DAPI staining revealed living cells in the shell, which might secrete the shell proteins identified in this study. PMID:26222041

  4. Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell.

    PubMed

    Zhang, Gen; He, Li-Sheng; Wong, Yue-Him; Xu, Ying; Zhang, Yu; Qian, Pei-Yuan

    2015-01-01

    As typical biofoulers, barnacles possess hard shells and cause serious biofouling problems. In this study, we analyzed the protein component of the barnacle Amphibalanus (= Balanus) amphitrite shell using gel-based proteomics. The results revealed 52 proteins in the A. Amphitrite shell. Among them, 40 proteins were categorized into 11 functional groups based on KOG database, and the remaining 12 proteins were unknown. Besides the known proteins in barnacle shell (SIPC, carbonic anhydrase and acidic acid matrix protein), we also identified chorion peroxidase, C-type lectin-like domains, serine proteases and proteinase inhibitor proteins in the A. Amphitrite shell. The sequences of these proteins were characterized and their potential functions were discussed. Histology and DAPI staining revealed living cells in the shell, which might secrete the shell proteins identified in this study.

  5. Effect of second cooling on the chemical components of essential oils from orange peel (Citrus sinensis).

    PubMed

    Chen, Yulong; Wu, Jijun; Xu, Yujuan; Fu, Manqing; Xiao, Gengsheng

    2014-09-03

    A second cooling was added to the oil collectors of an improved Clevenger-type apparatus (ICT) to investigate the thermal reaction of essential oils from orange peel compared to a traditional Clevenger-type apparatus (CT). The results demonstrated the yield rate of essential oil from ICT was significantly higher (p < 0.05) than that from CT. The major components of the essential oils consisted of monoterpenes, such as d-limonene, β-myrcene, β-pinene, γ-terpinene, α-pinene. Interestingly, ICT prevented the thermal reaction-the transformation of β-myrcene to β-thujene-and reduced the oxidation on α-pinene and β-pinene of the essential oil in comparison to CT. In addition, the yield rate of γ-terpinene can also be improved via ICT compared to CT. Thus, ICT is an effective improvement to traditional CT.

  6. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  7. INHIBITION OF RETINOID ACTIVITY BY COMPONENTS OF A PAPER MILL EFFLUENT

    EPA Science Inventory

    A cell line stably transfected with reporter genes activated by retinoic acid was used to test a paper mill effluent for the presence of retinoids or components that interfere with retinoic acid-stimulated gene transcription.

  8. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    PubMed

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL.

  9. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    PubMed Central

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydrodistillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (30.20 %) and citronellal (6.30 %). The in vitro antimicrobial activity was determined by paper disk agar diffusion testing and minimum inhibitory concentration (MIC) using 7 bacteria (3 Gram-positive and 4 Gram-negative), 2 yeasts and 3 fungi. The results showed that the essential oil presented high antimicrobial activity against all microorganisms targeted mainly against five human pathogenic bacteria, one yeast Candida albicans and two phytopathogenic fungi tested. The minimum inhibitory concentrations (MIC) ranged from 1.00 to 5.00 µL/mL. PMID:26417300

  10. Halloysite clay nanotubes for controlled delivery of chemically active agents

    NASA Astrophysics Data System (ADS)

    Abdullayev, Elshard

    In this work we explored the capabilities of halloysite nanotubes as capsules for encapsulation and controlled delivery of the chemically and biologically active substances. Halloysite is a two-layered aluminosilicate which has a predominantly hollow tubular structure in the submicron range and is chemically similar to kaolinite [1, 2]. In the first section of this work, we analyzed the structure of the halloysite nanotubes as well as its capability to encapsulate and deliver biologically and chemically active agents, similarities and differences between release characteristics of different agents and how these differences relate with their chemical structure. Models were used to describe the release characteristics of the active agents. Study of the interaction between loaded agents and halloysite nanotubes provides better understanding of the release characteristics of the loaded agents and how halloysite can be implemented for technological and medical applications. The second part of the work deals with self-healing coatings produced on the basis of halloysite nanotubes loaded with corrosion inhibitors. Self-healing coatings are one of the effective methods to protect metals from corrosion and deterioration. The difference between self-healing coatings and the usual coatings is the ability of the first to recover after the formation of the damages due to external or internal stresses. High efficiency of the self- healing coatings produced by halloysite nanotubes were demonstrated on 110 Copper alloys and 2024 aluminum alloys. Controlled delivery of the corrosion inhibitors with additional encapsulation of the halloysite nanotubes by synthesizing stoppers at tube endings was also demonstrated. Additional encapsulation of the halloysite nanotubes may be necessary when slow release of the loaded agents is required or rapid convection of the liquid in the surrounding environment takes place (since this may cause rapid release of the loaded agents without additional

  11. A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components

    DTIC Science & Technology

    2016-01-01

    C O R P O R A T I O N Research Report A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components...Lisa M. Harrington, James H . Bigelow, Alexander Rothenberg, James Pita, Paul D. Emslie Limited Print and Electronic Distribution Rights This document...of a particular component—whether active , guard, or reserve. As a result, when personnel policies are implemented in one component, little is known

  12. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  13. Chemical composition and biological activity of Salvia verbenaca essential oil.

    PubMed

    Canzoneri, Marisa; Bruno, Maurizio; Rosselli, Sergio; Russo, Alessandra; Cardile, Venera; Formisano, Carmen; Rigano, Daniela; Senatore, Felice

    2011-07-01

    Salvia verbenaca L. (syn. S. minore) is a perennial herb known in the traditional medicine of Sicily as "spaccapetri" and is used to resolve cases of kidney stones, chewing the fresh leaves or in decoction. The chemical composition of the essential oil obtained from aerial parts of S. verbenaca collected in Piano Battaglia (Sicily) on July 2009, was analyzed by GC and GC-MS. The oil was strongly characterized by fatty acids (39.5%) and carbonylic compounds (21.2%), with hexadecanoic acid (23.1%), (Z)-9-octadecenoic acid (11.1%) and benzaldehyde (7.3%) as the main constituents. The in vitro activity of the essential oil against some microorganisms in comparison with chloramphenicol by the broth dilution method was determined. The oil exhibited a good activity as inhibitor of growth of Gram + bacteria.

  14. Convective self-propulsion of chemically active particles

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Shum, Henry; Balazs, Anna

    2016-11-01

    A mechanism of particle self-propulsion activated by transduction of chemical energy into convective motion of fluid that drags microscale particles is proposed. The convection is generated by an active spherical particle located on the bottom of a microchannel and coated with a catalyst that decomposes reagent dissolved in the solution into less dense products and gives rise to a buoyancy force. The symmetry of the flow generated around the active particle can be broken if a passive spherical particle, which does not produce the flow, is present in the vicinity of the first one. The generated flow drags the passive particle toward the active one along the bottom wall until they form a dimer. The resulting asymmetric fluid flow, which is generated by only one of the particles, imposes a different drag on the different sides on the dimer. The net force causes the dimer to translate along the bottom wall. By varying numbers of active and passive particles, as well as their positions within a group, one can control the structure of the generated convective flow and, therefore, design clusters with different mobile properties. The proposed mechanism can be harnessed to transport cargo in microchannels.

  15. Chemical Characterization of Beer Aging Products Derived from Hard Resin Components in Hops (Humulus lupulus L.).

    PubMed

    Taniguchi, Yoshimasa; Yamada, Makiko; Taniguchi, Harumi; Matsukura, Yasuko; Shindo, Kazutoshi

    2015-11-25

    The bitter taste of beer originates from resins in hops (Humulus lupulus L.), which are classified into two subtypes (soft and hard). Whereas the nature and reactivity of soft-resin-derived compounds, such as α-, β-, and iso-α-acids, are well studied, there is only a little information on the compounds in hard resin. For this work, hard resin was prepared from stored hops and investigated for its compositional changes in an experimental model of beer aging. The hard resin contained a series of α-acid oxides. Among them, 4'-hydroxyallohumulinones were unstable under beer storage conditions, and their transformation induced primary compositional changes of the hard resin during beer aging. The chemical structures of the products, including novel polycyclic compounds scorpiohumulinols A and B and dicyclohumulinols A and B, were determined by HRMS and NMR analyses. These compounds were proposed to be produced via proton-catalyzed cyclization reactions of 4'-hydroxyallohumulinones. Furthermore, they were more stable than their precursor 4'-hydroxyallohumulinones during prolonged storage periods.

  16. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties.

    PubMed

    Happi Emaga, Thomas; Robert, Christelle; Ronkart, Sébastien N; Wathelet, Bernard; Paquot, Michel

    2008-07-01

    The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins.

  17. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components.

    PubMed

    Carlson, Steven S; Valdez, Gregorio; Sanes, Joshua R

    2010-11-01

    At chemical synapses, synaptic cleft components interact with elements of the nerve terminal membrane to promote differentiation and regulate function. Laminins containing the β2 subunit are key cleft components, and they act in part by binding the pore-forming subunit of a pre-synaptic voltage-gated calcium channel (Ca(v)α) (Nishimune et al. 2004). In this study, we identify Ca(v)α-associated intracellular proteins that may couple channel-anchoring to assembly or stabilization of neurotransmitter release sites called active zones. Using Ca(v)α-antibodies, we isolated a protein complex from Torpedo electric organ synapses, which resemble neuromuscular junctions but are easier to isolate in bulk. We identified 10 components of the complex: six cytoskeletal proteins (α2/β2 spectrins, plectin 1, AHNAK/desmoyokin, dystrophin, and myosin 1), two active zone components (bassoon and piccolo), synaptic laminin, and a calcium channel β subunit. Immunocytochemistry confirmed these proteins in electric organ synapses, and PCR analysis revealed their expression by developing mammalian motor neurons. Finally, we show that synaptic laminins also interact with pre-synaptic integrins containing the α3 subunit. Together with our previous finding that a distinct synaptic laminin interacts with SV2 on nerve terminals (Son et al. 2000), our results identify three paths by which synaptic cleft laminins can send developmentally important signals to nerve terminals.

  18. Chemical characterization and biological activity of Macfadyena unguis-cati (Bignoniaceae).

    PubMed

    Duarte, D S; Dolabela, M F; Salas, C E; Raslan, D S; Oliveiras, A B; Nenninger, A; Wiedemann, B; Wagner, H; Lombardi, J; Lopes, M T

    2000-03-01

    Macfadyena unguis-cati (L.) has been widely used in folk medicine as an anti-inflammatory, antimalarial and antivenereal. The purpose of this study was to chemically characterize the main plant components, and to evaluate the biological properties of some of the fractions derived from leaves (MACb) and liana (MACa) of this plant. Chemical characterization allowed the identification of the compounds corymboside, vicenin-2, quercitrin, chlorogenic acid, isochlorogenic acid, lupeol, beta-sitosterol, beta-sitosterylglucoside, allantoin and lapachol. The biological screening of fractions and/or purified substances derived from fractions revealed antitumoral and antitrypanosomal activities in fractions MACa/lapachol and MACb/MACb21, respectively. The anti-lipoxygenase and anti-cyclooxygenase effect seen in fractions MACa and MACb showed a partial correlation with the anti-inflammatory property attributed to this plant.

  19. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    PubMed

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  20. Health hazards of natural and introduced chemical components of boatbuilding woods.

    PubMed

    Jagels, R

    1985-01-01

    The major components of untreated wood--cellulose, hemicellulose, and lignin--have not been implicated as toxicants, but extractive substances, especially in heartwood, can be toxic. Decay-resistant woods are more likely to contain irritants or sensitizers than nondurable woods. Short-term exposures to certain wood dusts may result in asthma, conjunctivitis, rhinitis, or allergic dermatitis, but long-term effects may include nasal cancer and Hodgkin's disease. Some thermophilic microorganisms found in wood are human pathogens, and septic splinters (chromomycosis) and inhalation of ascomycete spores from stored wood chips have been implicated in human illnesses. Reconstituted wood can contain formaldehyde resins, which pose health risks in enclosed humid areas. Pentachlorophenol (PCP)-treated wood is particularly toxic--short-term exposures to PCP-treating solutions can lead to aplastic anemia and mortality, while diseases such as Hodgkin's disease are associated with long-term exposures. Since much commercial lumber is dipped in PCP, the separation of the chronic effects of wood dust from PCP exposure is difficult. Chromated copper arsenate (CCA)- and ammoniacal copper arsenite (ACA)-treated wood may leach arsenic. CCA-treated wood is potentially safer, since it contains the pentavalent arsenic, which is a common constituent in the environment. ACA contains the trivalent arsenic, which is more toxic.

  1. Metabolomic Assessment of Induced and Activated Chemical Defence in the Invasive Red Alga Gracilaria vermiculophylla

    PubMed Central

    Nylund, Göran M.; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  2. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla.

    PubMed

    Nylund, Göran M; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  3. Correlation of wood-based components and dewatering properties of waste activated sludge from pulp and paper industry.

    PubMed

    Kyllönen, H; Lehto, J; Pirkonen, P; Grönroos, A; Pakkanen, H; Alén, R

    2010-01-01

    Large amounts of wet sludge are produced annually in municipal and industrial wastewater treatment. Already in pulp and paper industry, more than ten million tons of primary sludge, waste activated sludge, and de-inking sludge is generated. Waste activated sludge contains large quantities of bound water, which is difficult to dewater. Low water content would be a matter of high calorific value in incineration but it also has effects on the volume and the quality of the matter to be handled in sludge disposal. In this research waste activated sludges from different pulp and paper mills were chemically characterised and dewatered. Correlations of chemical composition and dewatering properties were determined using multivariate analysis. Chemical characterisation included basic sludge analysis, elementary analysis and analysis of wood-based components, such as hemicelluloses and lignin-derived material. Dewatering properties were determined using measurements of dry solids content, flux and flocculant dosage. The effects of different variables varied according to the response concerned. The variables which were significant regarding cake DS increase in filtration or centrifugation and flocculant dosage needed in filtration were different from those which were significant regarding flux.

  4. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    NASA Astrophysics Data System (ADS)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  5. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions.

    PubMed

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-10

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, (13)C and (1)H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  6. Efficacy of Various Chemical Disinfectants on Biofilms Formed in Spacecraft Potable Water System Component

    NASA Technical Reports Server (NTRS)

    Wong, Willy; Garcia, Veronica; Castro, Victoria; Ott, Mark; Duane

    2009-01-01

    As the provision of potable water is critical for successful habitation of the International Space Station (ISS), life support systems were installed in December 2008 to recycle both humidity from the atmosphere and urine to conserve available water in the vehicle. Pre-consumption testing from the dispensing needle at the Potable Water Dispenser (PWD) indicated that bacterial concentrations exceeded the current ISS specifications of 50 colony forming units (CFU) per ml. Subsequent investigations revealed that a corrugated stainless steel flex hose upstream of the dispensing needle in the PWD was filled with non-sterile water and left at room temperature for over one month before launch. To simulate biofilm formation that was suspected in the flight system, sterile flex hoses were seeded with a consortium of bacterial isolates previously recovered from other ISS water systems, which included Ralstonia pickettii, Burkholderia multivorans, Caulobacter vibrioides., and Cupriavidus pauculus. After 5 days of incubation, these hoses were challenged with various chemical disinfectants including hydrogen peroxide, colloidal silver, and buffered pH solutions to determine the ability of the disinfectants to decrease and maintain bacterial concentrations below ISS specifications. Disinfection efficacy over time was measured by collecting daily heterotrophic plate counts following exposure to the disinfectants. A single flush with either 6% hydrogen peroxide solution or a mixture of 3% hydrogen peroxide and 400 ppb colloidal silver effectively reduced the bacterial concentrations to less than 1 CFU/ml for a period of up to 2 months. Testing results indicated that hydrogen peroxide and mixtures of hydrogen peroxide and colloidal silver have tremendous potential as alternative disinfectants for ISS water systems.

  7. Influences of chemical activators on incinerator bottom ash

    SciTech Connect

    Qiao, X.C. Cheeseman, C.R.; Poon, C.S.

    2009-02-15

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 deg. C (TIBA). The TIBA produced was blended with Ca(OH){sub 2} and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, NaOH, KOH and CaCl{sub 2} into 100 g of binder (TIBA+Ca(OH){sub 2}). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca{sub 2}Al{sub 2}SiO{sub 7}), wollastonite (CaSiO{sub 3}) and mayenite (Ca{sub 12}Al{sub 14}O{sub 33}) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na{sub 2}CO{sub 3} can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, K{sub 2}CO{sub 3}, NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl{sub 2} has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca{sub 4}Al{sub 2}O{sub 6}(CO{sub 3}){sub 0.67}(SO{sub 3}){sub 0.33}(H{sub 2}O){sub 11}) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl{sub 2}.

  8. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    PubMed

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  9. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  10. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    SciTech Connect

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  11. Hydrogeology, chemical and microbial activity measurement through deep permafrost.

    PubMed

    Stotler, Randy L; Frape, Shaun K; Freifeld, Barry M; Holden, Brian; Onstott, Tullis C; Ruskeeniemi, Timo; Chan, Eric

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with δ(18) O values ∼5‰ lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH(4) was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH(4) is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  12. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  13. Speciation and chemical activities in superheated sodium borate solutions

    SciTech Connect

    Weres, O. )

    1993-06-01

    The system H[sub 2]O-B[sub 2]O[sub 3]-Na[sub 2]O has been studied experimentally at 277[degrees] and 317[degrees]C. The activities of water and boric acid have been determined at mole ratios Na/B from 0 to 1.5, and total dissolved solids 3 to 80 weight percent. The activity of boric acid has been fitted to within experimental error using a speciation model with eight complex species. This model is consistent with the model previously published by Mesmer et al. The electrolyte properties of the liquid are modelled using the Pitzer-Simonson Model of very concentrated electrolyte solutions. The calculated values of water activity agree with experiment, and the activity of NaOH and pOH have also been calculated. These data will allow prediction of the composition and chemical behavior of sodium borate liquids that may accumulate in the superheated crevices within a steam generator. A modified form of the model is provided for use with MULTEQ. The potassium borate system also was briefly studied at 317[degrees]C, and is adequately described by a model with five complex species. The potassium borate liquid is more alkaline at K/B = 1 than a sodium borate liquid at the same mole ratio, but pOH in the two systems is the same at lower mole ratios.

  14. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  15. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products.

  16. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae).

    PubMed

    Saïdana, D; Mahjoub, M A; Boussaada, O; Chriaa, J; Chéraif, I; Daami, M; Mighri, Z; Helal, A N

    2008-01-01

    The chemical composition of the Tamarix boveana volatile oils obtained from the whole aerial part, flowers, leaves and stems by steam distillation was analysed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Sixty-two components were identified. Hexadecanoic acid (18.14%), docosane (13.34%), germacrene D (7.68%), fenchyl acetate (7.34%), Benzyl benzoate (4.11%) were found to be the major components in the whole aerial parts. This composition differed according to the tested part: 2.4 Nonadienal was the main compound in the flowers (12.13%) while germacrene D was the major component in leaves (31.43%) and hexadecanoic acid in the stems (13.94%). To evaluate in vitro antimicrobial activity, all volatile oils were tested against six Gram-positive and Gram-negative bacteria and four fungi. The T. boveana volatile oils exhibited an interesting antibacterial activity against all strains tested except Pseudomonas aeruginosa but no antifungal activity was detected.

  17. Antimicrobial activity and determination of bioactive components from marine Alcaligenes faecalis extract against a sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    AbdSharad, Ali; Usup, Gires; Sahrani, Fathul Karim; Ahmad, Asmat

    2016-11-01

    Biogenic souring and microbial-influenced corrosion is a common scenario in petroleum reservoir. The serious threat normally comes from sulfate-reducing bacteria (SRB). Alcaligenes faecalis was tested in this study for the ability to inhibit the growth of SRB. Ethyl acetate extraction of A. faecalis grown in marine broth was carried out to produce crude ethyl acetate of A. faecalis (CEAF). CEAF was diluted at concentrations 0.2-12.8 mg/mL and was tested for anti-microbial activity by microdilution susceptibility tests in 96-wells plate. CEAF was then analyzed by Gas Chromatography Mass Spectrometry (GC-MS). The microdilution susceptibility tests showed that the crude have anti- microbial activities on SRB. CEAF showed immediate killing effect against SRB in liquid medium which suggest the presence of active chemical compounds with antimicrobial activity. The GC-MS analysis showed the presence of 20 different chemical compounds in CEAF, The major components in CEAF can be related to antimicrobial, antifungal, antioxidant, pesticide, metabolism, toxicity, anticancer and corrosion inhibition activities. In conclusion, crude ethyl acetate extract of A. faecalis has the ability to inhibit SRB growth.

  18. Eupatorium Capillifolium Essential Oil: Chemical Composition, Antifungal Activity, and Insecticidal Activity

    DTIC Science & Technology

    2010-01-01

    hydrodistillation of aerial parts was analyzed by gas chromatography (GC) and gas chromatography–mass spectrometry (GC/MS). The major components were determined...on the use of Eupatorium species in pest management. The potential molluscicidal activities of aqueous extracts of E. adenophorum were recently...cloth [23]. The result of this assay indicated that the oil was repellent, implicating that one or more components of the oil were producing this

  19. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    PubMed Central

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity

  20. Variation in contents of main active components and antioxidant activity in leaves of different pigeon pea cultivars during growth.

    PubMed

    Wei, Zuo-Fu; Jin, Shuang; Luo, Meng; Pan, You-Zhi; Li, Ting-Ting; Qi, Xiao-Lin; Efferth, Thomas; Fu, Yu-Jie; Zu, Yuan-Gang

    2013-10-23

    Pigeon pea is an important and multiuse grain legume crop, and its leaves are a very valuable natural resource. To obtain a high-quality biological resource, it is necessary to choose the excellent cultivar and determine the appropriate harvest time. In this study, the variation in contents of main active components and antioxidant activity in leaves of six pigeon pea cultivars during growth were investigated. The level of each individual active component significantly varied during growth, but with a different pattern, and this variation was different among cultivars. Flavonoid glycosides orientin, vitexin, and apigenin-6,8-di-C-α-L-arabinopyranoside showed two peak values at mid-late and final stages of growth in most cases. Pinostrobin chalcone, longistyline C, and cajaninstilbene acid showed remarkablely higher values at the mid-late stage of growth than at other stages. Pinostrobin had an extremely different variation pattern compared to other active components. Its content was the highest at the earlier stage of growth. Principal component analysis (PCA) revealed that vitexin and apigenin-6,8-di-C-α-L-arabinopyranoside were mainly responsible for distinguishing cultivars analyzed. In a comprehensive consideration, the leaves should preferentially be harvested at the 135th day after sowing when the level of active components and antioxidant activity reached higher values. Cultivars ICP 13092, ICPL 87091, and ICPL 96053 were considered to be excellent cultivars with high antioxidant activity. Our findings can provide valuable information for producing a high-quality pigeon pea resource.

  1. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    PubMed Central

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-01-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing. PMID:23342386

  2. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    PubMed

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-03-03

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were (E)-propenyl sec-butyl disulfide (15.7-39.4%) and (Z)-propenyl sec-butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca(2+)]i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca(2+)]i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca(2+) influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be (Z)-propenyl sec-butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs.

  3. Profile of volatile components of hydrodistilled and extracted leaves of Jacaranda acutifolia and their antimicrobial activity against foodborne pathogens.

    PubMed

    Singab, Abdel Nasser B; Mostafa, Nada M; Eldahshan, Omayma A; Ashour, Mohamed L; Wink, Michael

    2014-07-01

    Volatile constituents of the essential oil and n-hexane extract of Jacaranda acutifolia Humb. and Bonpl. (Bignoniaceae) leaves were determined, and their antimicrobial activities were investigated using an agar diffusion method. The minimum inhibitory concentrations (MIC) were determined and compared with those of standard antibiotics (penicillin, gentamicin and nystatin). The chemical composition of the oils was analyzed by capillary gas chromatography (GLC-FID) and gas chromatography-mass spectrometry (GLC-MS). Thirty-four components, comprising almost 93.8% of the total peak area, were identified in the leaf essential oil. The main components were methyl linolenate (26.7%), 1-octen-3-ol (10.8%), methyl phenyl acetate (9.9%), beta-linalool (5.5%) and palmitic acid (4.7%). The n-hexane extract revealed similar oil constituents, but also p-benzoquinone, phenyl acetic acid, resorcinol and homogentisic acid. The oil showed some activity against Staphylococcus aureus and Escherichia coli with MIC values of 2.2 and 2.9 mg/mL, respectively, and moderate activity against Candida albicans, Salmonella typhimurium and Shigella flexneri. The n-hexane extract showed moderate activities against all tested microorganisms, with MIC values ranging from 3.5 to 10.2 mg/mL. The antimicrobial activities of the hydrodistilled and extracted leaves make their local traditional uses rational.

  4. Real-time measurement of volatile chemicals released by bed bugs during mating activities.

    PubMed

    Kilpinen, Ole; Liu, Dezhao; Adamsen, Anders Peter S

    2012-01-01

    In recent years, bed bug (Hemiptera: Cimicidae) problems have increased dramatically in many parts of the world, leading to a renewed interest in their chemical ecology. Most studies of bed bug semiochemicals have been based on the collection of volatiles over a period of time followed by chemical analysis. Here we present for the first time, a combination of proton transfer reaction mass spectrometry and video analysis for real-time measurement of semiochemicals emitted by isolated groups of bed bugs during specific behavioural activities. The most distinct peaks in the proton transfer reaction mass spectrometry recordings were always observed close to the termination of mating attempts, corresponding to the defensive emissions that bed bugs have been suspected to exploit for prevention of unwanted copulations. The main components of these emissions were (E)-2-hexenal and (E)-2-octenal recorded in ratios between 1:3 and 3:1. In the current study, the quantity varied over 1000 fold for both of the compounds with up to 40 µg total release in a single emission. Males also emit defensive compounds due to homosexual copulation attempts by other males, and no significant differences were observed in the ratio or the amount of the two components released from males or females. In summary, this study has demonstrated that combining proton-transfer-reaction mass spectrometry with video analysis can provide detailed information about semiochemicals emitted during specific behavioural activities.

  5. Real-Time Measurement of Volatile Chemicals Released by Bed Bugs during Mating Activities

    PubMed Central

    Kilpinen, Ole; Liu, Dezhao; Adamsen, Anders Peter S.

    2012-01-01

    In recent years, bed bug (Hemiptera: Cimicidae) problems have increased dramatically in many parts of the world, leading to a renewed interest in their chemical ecology. Most studies of bed bug semiochemicals have been based on the collection of volatiles over a period of time followed by chemical analysis. Here we present for the first time, a combination of proton transfer reaction mass spectrometry and video analysis for real-time measurement of semiochemicals emitted by isolated groups of bed bugs during specific behavioural activities. The most distinct peaks in the proton transfer reaction mass spectrometry recordings were always observed close to the termination of mating attempts, corresponding to the defensive emissions that bed bugs have been suspected to exploit for prevention of unwanted copulations. The main components of these emissions were (E)-2-hexenal and (E)-2-octenal recorded in ratios between 1∶3 and 3∶1. In the current study, the quantity varied over 1000 fold for both of the compounds with up to 40 µg total release in a single emission. Males also emit defensive compounds due to homosexual copulation attempts by other males, and no significant differences were observed in the ratio or the amount of the two components released from males or females. In summary, this study has demonstrated that combining proton-transfer-reaction mass spectrometry with video analysis can provide detailed information about semiochemicals emitted during specific behavioural activities. PMID:23227225

  6. Antifungal activities and chemical composition of some medicinal plants.

    PubMed

    Mohammadi, A; Nazari, H; Imani, S; Amrollahi, H

    2014-06-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists and natural-products scientists are combing the earth for phytochemicals and leads, which could be developed for treatment of infectious diseases. The aim of this study was to investigate the antifungal activities of the essential oils of some medicinal plants such as Stachys pubescens, Thymus kotschyanus, Thymus daenensis and Bupleurum falcatum against Fusarium oxysporum, Aspergillus flavus and Alternaria alternata. The essential oils were used to evaluate their MICs and MFCs compared to the amphotricin B as a standard drug. The essential oils were also analyzed by GC/MS. Essential oils isolated from the S. pubescens, T. kotschyanus and B. falcatum showed strong antifungal activities. The essential oil of T. daenensis exhibited a moderate activity against the selected fungi in comparison with the other plants' essential oils. In addition, the results showed that 26, 23, 22 and 15 components were identified from the essential oils of T. kotschyanus, S. pubescens, T. daenensis and B. falcatum, respectively. These oils exhibited a noticeable antifungal activity against the selected fungi. Regarding obtained results and that natural antimicrobial substances are inexpensive and have fewer side effects, they convey potential for implementation in fungal pathogenic systems.

  7. High activity redox catalysts synthesized by chemical vapor impregnation.

    PubMed

    Forde, Michael M; Kesavan, Lokesh; Bin Saiman, Mohd Izham; He, Qian; Dimitratos, Nikolaos; Lopez-Sanchez, Jose Antonio; Jenkins, Robert L; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J

    2014-01-28

    The use of precious metals in heterogeneous catalysis relies on the preparation of small nanoparticles that are stable under reaction conditions. To date, most conventional routes used to prepare noble metal nanoparticles have drawbacks related to surface contamination, particle agglomeration, and reproducibility restraints. We have prepared titania-supported palladium (Pd) and platinum (Pt) catalysts using a simplified vapor deposition technique termed chemical vapor impregnation (CVI) that can be performed in any standard chemical laboratory. These materials, composed of nanoparticles typically below 3 nm in size, show remarkable activity under mild conditions for oxidation and hydrogenation reactions of industrial importance. We demonstrate the preparation of bimetallic Pd-Pt homogeneous alloy nanoparticles by this new CVI method, which show synergistic effects in toluene oxidation. The versatility of our CVI methodology to be able to tailor the composition and morphology of supported nanoparticles in an easily accessible and scalable manner is further demonstrated by the synthesis of Pdshell-Aucore nanoparticles using CVI deposition of Pd onto preformed Au nanoparticles supported on titania (prepared by sol immobilization) in addition to the presence of monometallic Au and Pd nanoparticles.

  8. Using Indices of Fidelity to Intervention Core Components to Identify Program Active Ingredients

    ERIC Educational Resources Information Center

    Abry, Tashia; Hulleman, Chris S.; Rimm-Kaufman, Sara E.

    2015-01-01

    Identifying the active ingredients of an intervention--intervention-specific components serving as key levers of change--is crucial for unpacking the intervention black box. Measures of intervention fidelity can be used to identify specific active ingredients, yet such applications are rare. We illustrate how fidelity measures can be used to…

  9. Independent component feature-based human activity recognition via Linear Discriminant Analysis and Hidden Markov Model.

    PubMed

    Uddin, Md; Lee, J J; Kim, T S

    2008-01-01

    In proactive computing, human activity recognition from image sequences is an active research area. This paper presents a novel approach of human activity recognition based on Linear Discriminant Analysis (LDA) of Independent Component (IC) features from shape information. With extracted features, Hidden Markov Model (HMM) is applied for training and recognition. The recognition performance using LDA of IC features has been compared to other approaches including Principle Component Analysis (PCA), LDA of PC, and ICA. The preliminary results show much improved performance in the recognition rate with our proposed method.

  10. Toxicity of chemical components of fine particles inhaled by aged rats: effects of concentration.

    PubMed

    Kleinman, Michael T; Hyde, Dallas M; Bufalino, Charles; Basbaum, Carol; Bhalla, Deepak K; Mautz, William J

    2003-09-01

    This study tested the hypothesis that exposure to mixtures containing fine particles and ozone (O3) would cause pulmonary injury and decrements in functions of immunological cells in exposed rats (22-24 months old) in a dose-dependent manner. Rats were exposed to high and low concentrations of ammonium bisulfate and elemental carbon and to 0.2 ppm O3. Control groups were exposed to purified air or O3 alone. The biological end points measured included histopathological markers of lung injury, bronchoalveolar lung fluid proteins, and measures of the function of the lung's innate immunological defenses (macrophage antigen-directed phagocytosis and respiratory burst activity). Exposure to O3 alone at 0.2 ppm did not result in significant changes in any of the measured end points. Exposures to the particle mixtures plus O3 produced statistically significant changes consistent with adverse effects. The low-concentration mixture produced effects that were statistically significant compared to purified air but, with the exception of macrophage Fc receptor binding, exposure to the high-concentration mixture did not. The effects of the low- and high-concentration mixtures were not significantly different. The study supports previous work that indicated that particle + O3 mixtures were more toxic than O3 alone.

  11. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components.

    PubMed

    Weeratunga, Prasanna; Uddin, Md Bashir; Kim, Myun Soo; Lee, Byeong-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Ma, Jin Yeul; Kim, Hongik; Lee, Jong-Soo

    2016-01-01

    Angelica tenuissima Nakai is a widely used commodity in traditional medicine. Nevertheless, no study has been conducted on the antiviral and immune-modulatory properties of an aqueous extract of Angelica tenuissima Nakai. In the present study, we evaluated the antiviral activities and the mechanism of action of an aqueous extract of Angelica tenuissima Nakai both in vitro and in vivo. In vitro, an effective dose of Angelica tenuissima Nakai markedly inhibited the replication of Influenza A virus (PR8), Vesicular stomatitis virus (VSV), Herpes simplex virus (HSV), Coxsackie virus, and Enterovirus (EV-71) on epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. Such inhibition can be described by the induction of the antiviral state in cells by antiviral, IFNrelated gene induction and secretion of IFNs and pro-inflammatory cytokines. In vivo, Angelica tenuissima Nakai treated BALB/c mice displayed higher survivability and lower lung viral titers when challenged with lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3, and H9N2). We also found that Angelica tenuissima Nakai can induce the secretion of IL-6, IFN-λ, and local IgA in bronchoalveolar lavage fluid (BALF) of Angelica tenuissima Nakai treated mice, which correlating with the observed prophylactic effects. In HPLC analysis, we found the presence of several compounds in the aqueous fraction and among them; we evaluated antiviral properties of ferulic acid. Therefore, an extract of Angelica tenuissima Nakai and its components, including ferulic acid, play roles as immunomodulators and may be potential candidates for novel anti-viral/anti-influenza agents.

  12. Generator of chemically active low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  13. Enhancement of immunotoxin activity using chemical and biological reagents.

    PubMed Central

    Wu, M.

    1997-01-01

    One of the major discoveries of effective therapeutics is the use of targeted treatment, such as antibody-directed toxins, i.e. immunotoxins; however, this medicine delivery strategy is still at a developmental stage. A number of problems need to be resolved; one is their inefficacy when applied in vivo. Research has stimulated interest in this area through the use of chemical reagents and other moieties to increase the activity of immunotoxins. In this article, reagents that can potentiate the cytotoxicity of immunotoxins are reviewed and the mechanisms that increase activity of immunotoxins are discussed. Lysosomotropic amines, especially ammonium chloride and chloroquine, may raise the pH value of the lysosome in which the conjugates enter. Carboxylic ionophores, e.g. monensin, can influence Golgi vacuolation, which may facilitate the routing of conjugates, augmenting activity. Calcium channel antagonists may increase immunotoxin killing through morphological or other mechanisms that are not yet well understood. Viral particles and surface structure can enhance the cytotoxicity of conjugates, probably through the mechanism of disrupting endosomes. In addition, cytokines, beta-adrenergic blockers, immunosuppressive agents (cyclosporin A) and some antibiotics (daunorubicin) can be used to increase the effect of immunotoxins. PMID:9155057

  14. Omani propolis: chemical profiling, antibacterial activity and new propolis plant sources

    PubMed Central

    2013-01-01

    Background Propolis (bee glue) is a resinous honeybee product having a long history of application in many countries as a traditional remedy for treating wounds, burns, soar throat, stomach disorders, etc. It has been proved to possess beneficial biological effects, including antimicrobial, antioxidant, anti-inflammatory, cytotoxic, antiulcer, and many others. Bees gather propolis from diverse resinous plant parts and in different phytogeographic regions its chemical composition might vary significantly. In this article we report the results of the first study on the chemical profiles of propolis from Oman, its plant origin and antibacterial activity. Results The chemical profiles of Omani propolis extracts were obtained by GC-MS analysis after silylation. Over 50 individual compounds were identified in the samples, belonging to different compound types: sugars, polyols, hydroxy acids, fatty acids, cardanols and cardols, anacardic acids, flavan derivatives, triterpenes, prenylated flavanones and chalcones. The profiles were dissimilar from other known propolis types. They demonstrate that although Oman is not a large country, the plant sources of propolis vary significantly, even in the same apiary and the same season. Based on chemical profiles, and isolation and identification of major marker compounds (new propolis constituents), new plant sources of propolis were found: Azadiracta indica (neem tree) and Acacia spp. (most probably A. nilotica). The ethanol extracts of the studied propolis samples demonstrated activity against S. aureus (MIC < 100 μg. mL-1) and E. coli (MIC < 380 μg. mL-1). Conclusion Omani propolis is different form the known propolis types and demonstrates significant chemical diversity. Its most important plant source is the resin of Azadirachta indica, and as a result its typical components are С5-prenyl flavanones. Other plant sources have been identified, too, playing some role in resin collection by bees in Oman: Acacia spp

  15. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route

    PubMed Central

    2012-01-01

    Background The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. Results The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. Conclusions The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix. PMID:22967920

  16. Chemical composition and antibacterial activity of the essential oil and the gum of Pistacia lentiscus Var. chia.

    PubMed

    Koutsoudaki, Christina; Krsek, Martin; Rodger, Alison

    2005-10-05

    The essential oil and gum of Pistacia lentiscus var. chia, commonly known as the mastic tree, are natural antimicrobial agents that have found extensive uses in medicine in recent years. In this work, the chemical composition of mastic oil and gum was studied by GC-MS, and the majority of their components was identified. alpha-Pinene, beta-myrcene, beta-pinene, limonene, and beta-caryophyllene were found to be the major components. The antibacterial activity of 12 components of mastic oil and the oil itself was evaluated using the disk diffusion method. Furthermore, attempts were made to separate the essential oil into different fractions in order to have a better picture of the components responsible for its antibacterial activity. Several trace components that appear to contribute significantly to the antibacterial activity of mastic oil have been identified: verbenone, alpha-terpineol, and linalool. The sensitivity to these compounds was different for different bacteria tested (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis), which suggests that the antibacterial efficacy of mastic oil is due to a number of its components working synergistically. The establishment of a correlation between the antibacterial activity of mastic oil and its components was the main purpose of this research. Mastic gum was also examined, but it proved to be more difficult to handle compared to the essential oil.

  17. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  18. Dynamic model for selective metabolic activation in chemical carcinogenesis

    SciTech Connect

    Selkirk, J.K.; MacLeod, M.C.

    1980-01-01

    Theoretical calculations predict the relative ease of formation of carbonium ions from 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene-9,10-oxide or from either of the 2 symmetrical bay regions of B(e)P, and suggest their attraction to cellular nucleophiles. When both isomers were metabolized by hamster embryo fibroblasts (HEF) and the products analyzed, the results showed that the probable reason for benzo(e)pyrene's lack of carcinogenicity was its metabolic preference to attack the molecule away from the bay-region area. Particularly striking was the absence of any evidence for the formation of a significant amount of B(e)P-9,10-dihydrodiol. This suggests a metabolic basis for the relative lack of carcinogenic and mutagenic activity of B(e)P. The reason for this is not clear but may be due to physical or chemical factors such as membrane solubility or stereochemical requirements of the active site of the enzyme. The bay-region theory of PAH carcinogenesis predicts that carbonium ion formation from 9,10-dihydro-9,10-dihydroxybenzo(e)pyrene-11, 12-oxide, if formed, would be energetically favorable. Thus, the inability of HEF and microcomes to form B(e)P-9,10-dihydrodiol, the precursor of its potentially highly reactive diol-epoxide, would explain the relative inertness of B(e)P in several biological systems. As the subtle biochemical interactions of the various carcinogen intermediates become clarified, it becomes apparent that susceptibility and resistance to malignant transformation are based on a complex set of both chemical and physical parameters. It is becoming clear that metabolism kinetics, membrane interaction, and the role of nuclear metabolism help dictate the passage of the carcinogen and its reactive intermediates into and through the metabolic machinery of the cell. (ERB)

  19. INCREASED ENDOCRINE ACTIVITY OF XENOBIOTIC CHEMICALS AS MEDIATED BY METABOLIC ACTIVATION

    EPA Science Inventory

    This research is part of an effort to develop in vitro assays and QSARs applicable to untested chemicals on EPA inventories through study of estrogen receptor (ER) binding and estrogen mediated gene expression in fish. The current effort investigates metabolic activation of chemi...

  20. [Content and distribution of active components in cultivated and wild Taxus chinensis var. mairei plants].

    PubMed

    Yu, Shao-Shuai; Sun, Qi-Wu; Zhang, Xiao-Ping; Tian, Sheng-Ni; Bo, Pei-Lei

    2012-10-01

    Taxus chinensis var. mairei is an endemic and endangered plant species in China. The resources of T. chinensis var. mairei have been excessively exploited due to its anti-cancer potential, accordingly, the extant T. chinensis var. mairei population is decreasing. In this paper, ultrasonic extraction and HPLC were adopted to determine the contents of active components paclitaxel, 7-xylosyltaxol and cephalomannine in cultivated and wild T. chinensis var. mairei plants, with the content distribution of these components in different parts of the plants having grown for different years and at different slope aspects investigated. There existed obvious differences in the contents of these active components between cultivated and wild T. chinensis var. mairei plants. The paclitaxel content in the wild plants was about 0.78 times more than that in the cultivated plants, whereas the 7-xylosyltaxol and cephalomannine contents were slishtly higher in the cultivated plants. The differences in the three active components contents between different parts and tree canopies of the plants were notable, being higher in barks and upper tree canopies. Four-year old plants had comparatively higher contents of paclitaxel, 7-xylosyltaxol and cephalomannine (0.08, 0.91 and 0.32 mg x g(-1), respectively), and the plants growing at sunny slope had higher contents of the three active components, with significant differences in the paclitaxel and 7-xylosyltaxol contents and unapparent difference in the cephalomannine content of the plants at shady slope. It was suggested that the accumulation of the three active components in T. chinensis var. mairei plants were closely related to the sunshine conditions. To appropriately increase the sunshine during the artificial cultivation of T. chinensis var. mairei would be beneficial to the accumulation of the three active components in T. chinensis var. mairei plants.

  1. Chemical composition and antioxidant, antimicrobial, and antifungal activities of the essential oil of Achillea ligustica all.

    PubMed

    Tuberoso, Carlo I G; Kowalczyk, Adam; Coroneo, Valentina; Russo, Maria Teresa; Dessì, Sandro; Cabras, Paolo

    2005-12-28

    The chemical composition of the essential oil from flowering tops of Achillea ligustica All. was studied. Samples were collected in different localities of Sardinia (Italy) and hydrodistilled both with Clevenger-type and with simultaneous distillation-extraction apparatus. The yields ranged between 0.88 +/- 0.06 and 0.43 +/- 0.02% (vol/dry wt). The essential oils were analyzed by GC-MS, and a total of 96 components were detected. From a qualitative point of view, irrelevant differences between samples were observed. Strong chemical variability depending on the origin of the samples was observed. The major compounds found were santolina alcohol (6.7-21.8%, for the first time detected in A. ligustica), borneol (3.4-20.8%), sabinol (2.1-15.5%), trans-sabinyl acetate (0.9-17.6%), alpha-thujone (0.4-25.8%), and, among sesquiterpenes, viridiflorol (0.7-3.6%). No significant differences were detected between essential oils extracted by hydrodistillation and simultaneous distillation-extraction with CH2Cl2 and n-hexane. Antioxidant activity as DPPH radical scavenging activity was expressed in TEAC and ranged between 0.40 and 0.88 mmol/L. The antimicrobial and antifungal activities were investigated on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Penicillium commune, Fusarium oxysporum, Rizoctonia solani, and Aspergillus flavus, showing low activity.

  2. [Chemical structural characterization of some components from essential oil of Rosa banksiae for estimation and prediction of their retention time].

    PubMed

    Zhu, Wan-Ping; Mei, Hu; Shu, Mao; Liao, Li-Min; Yang, Juan; Li, Zhi-Liang

    2008-03-01

    The molecular electronegativity-distance vector (MEDV) was used to describe the chemical structural characterization of 46 components of essential oils in the flower of Rosa banksiae. Various multiple linear regression (MLR) models were created with variable screening by the stepwise multiple regression technique and statistics. The QSRR models of 10 and 6 variables were built by MLR with the correlation coefficients (R) of molecular modeling being 0.906 and 0.903. Cross-validation of the models, which contain selected vectors were performed by leave-one -out procedure (LOO) and the satisfied results with correlation coefficients (Rcv) of 0.904 and 0.903, respectively. The results showed that the models constructed can provide estimation stability and favorable predictive ability.

  3. Retrieval of the vertical distribution of chemical components in the mesosphere from simultaneous measurements of ozone and hydroxyl distributions

    NASA Astrophysics Data System (ADS)

    Kulikov, M. Yu.; Feigin, A. M.; Sonnemann, G. R.

    2006-09-01

    We propose a method for retrieval of directly unmeasurable concentrations of minor gas constituents of the mesosphere from available experimental data using simplified models of atmospheric photochemical systems. The method is used for processing of the results of simultaneous measurements of ozone and hydroxyl concentrations within the framework of the CRISTA-MAHRSI satellite experiments. As a result, vertical distributions of concentrations of three more key chemical components of the mesosphere, namely, atomic oxygen, atomic hydrogen, and hydroperoxide, were retrieved. It is shown that a limiting altitude-dependent ratio between OH and O3 concentrations is valid in the mesosphere and lower thermosphere. It is found that CRISTA-MAHRSI data satisfy this ratio up to an altitude of 87 km, but a strong discrepancy between theory and experiment arises in the upper region.

  4. Spatial Frequency Components of Images Modulate Neuronal Activity in Monkey Amygdala.

    PubMed

    Montes-Lourido, Pilar; Bermudez, M A; Romero, M C; Vicente, A F; Gonzalez, F

    2016-04-01

    Processing the spatial frequency components of an image is a crucial feature for visual perception, especially in recognition of faces. Here, we study the correlation between spatial frequency components of images of faces and neuronal activity in monkey amygdala while performing a visual recognition task. The frequency components of the images were analyzed using a fast Fourier transform for 40 spatial frequency ranges. We recorded 65 neurons showing statistically significant responses to at least one of the images used as a stimulus. A total of 37 of these neurons (n = 37) showed significant responses to at least three images, and in eight of them (8/37, 22%), we found a statistically significant correlation between neuron response and the modulus amplitude of at least one frequency range present in the images. Our results indicate that high spatial frequency and low spatial frequency components of images influence the activity of amygdala neurons.

  5. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  6. Antibacterial Activity of Thymus Syriacus Boiss Essential Oil and Its Components against Some Syrian Gram-Negative Bacteria Isolates

    PubMed Central

    Al-Mariri, Ayman; Swied, Ghayath; Oda, Adnan; Al Hallab, Laila

    2013-01-01

    Background: Despite the medical discoveries of different medicines and advanced ways of treatment, statistics have shown that the number of patients is increasing. This may be due to chemical drugs used in healthcare, agriculture, and diets. This soaring demand in medicines urges us to look for natural sources such as aromatic plants and essential oils, which are rich in efficient compounds. Methods: Extraction of essential oils was performed using a Clevenger-type apparatus. Identification was achieved using the GC-FID technique. Confirmation was made using the GC-MS technique, and isolation was done using a preparative HPLC, equipped with an aliquots collector. The microdilution broth susceptibility assay was utilized to determine minimum inhibitory concentrations (MICs). Results: Our in vitro study demonstrated the antibacterial activity of the Thymus syriacus Boiss essential oil and its components against the tested isolates at levels between 0.375 and 50 µl/ml. The main components of the T. syriacus essential oil were carvacrol, γ-terpinene, and ß–caryophyllene. MIC90 values for the T. syriacus essential oil against the gram-negative organisms varied between 3.125 and 12.5 µl/ml. The most effective components against the gram-negative bacteria were thymol, carvacrol, dihydro-carvon, and linalool respectively. Conclusions: The T. syriacus essential oil and some of its components exhibited very good inhibitory effects against Syrian gram-negative isolates. PMID:24031109

  7. Integrated treatment and handling of highly activated components from nuclear facilities

    SciTech Connect

    Schneider, K.A.; Kiolbassa, A.; Rose, K.A.; Raymont, J.M. Jr.

    1993-12-31

    A complete Underwater Treatment System (UTS) is described for activated/contaminated components of various origins in the nuclear industry. The system comprises different kinds of cutting/compacting equipment: the USC (Underwater Shear/compactor), the SCS (Stellite Corner Shear), the VLS (Velocity Limiter Shear) and the LCS (Light Crusher Shear). Transfer and loading equipment, the STB (Shielded Transfer Bell) provides safe and economic loading of containers with cut components. Operating experience and performance data are presented.

  8. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China

    PubMed Central

    Xiao, Jing; Shen, Chong; Chu, Min J.; Gao, Yue X.; Xu, Guang F.; Huang, Jian P.; Xu, Qiong Q.; Cai, Hui

    2016-01-01

    Background Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. Methods The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Results Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15–40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15–30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Conclusions Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also

  9. Chemical activation by mechanochemical mixing, microwave, and ultrasonic irradiation

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste ad reaction times in several organic syntheses and chemical transformations. This editorial comments on the recent developments in mechanochemica...

  10. Spatial correspondence of brain alpha activity component in fMRI and EEG

    NASA Astrophysics Data System (ADS)

    Jeong, Jeong-Won; Kim, Sung-Heon; Singh, Manbir

    2005-04-01

    This paper presents a new approach to investigate the spatial correlation of brain alpha activity in functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). To avoid potential problems of simultaneous fMRI and EEG acquisitions in imaging brain alpha activity, data from each modality were acquired separately under a "three conditions" setup where one of the conditions involved closing eyes and relaxing, thus making it conducive to generation of alpha activity. The other two conditions -- eyes open in a lighted room or engaged in a mental arithmetic task, were designed to attenuate alpha activity. Using the Mixture Density Independent Component Analysis (MD-ICA) that incorporates flexible non-linearity functions into the conventional ICA framework, we could identify the spatiotemporal components of fMRI activations and EEG activities associated with the alpha rhythm. The sources of the individual EEG alpha activity component were localized by a Maximum Entropy (ME) method that solves an inverse problem in the framework of a classical four-sphere head model. The resulting dipole sources of EEG alpha activity were spatially transformed to 3D MRIs of the subject and compared to fMRI ICA-determined alpha activity maps.

  11. Comparison of chemical composition and antibacterial activity of lavender varieties from Poland.

    PubMed

    Adaszyńska, M; Swarcewicz, M; Dzięcioł, M; Dobrowolska, A

    2013-01-01

    The aim of the study was comparing the chemical composition of the essential oils from five varieties of lavender (Lavandula angustifolia L.), and its biological activity against two pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. In the comparison we included the following varieties: 'Munstead', 'Munstead Strain', 'Lavender Lady', 'Ellegance Purple' and 'Blue River'. Selected varieties of lavender (L. angustifolia) are characterised by exactly the same main compounds with only variations in the percentage of content. The primary components of the essential oils were: linalool (23.9-15.8%), linalyl anthranilate (12.3-1.6%), 1-terpinen-4-ol (9.7-5.5%), p-menth-1-en-8-ol (7.9-4.0%) and linalool oxide (4.7-1.1%). From the essential oils that were tested, the 'Blue River' and 'Munstead' varieties have the greatest antibacterial activity against S. aureus and P. aeruginosa.

  12. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  13. Chemically modified RNA activated matrices enhance bone regeneration.

    PubMed

    Elangovan, Satheesh; Khorsand, Behnoush; Do, Anh-Vu; Hong, Liu; Dewerth, Alexander; Kormann, Michael; Ross, Ryan D; Sumner, D Rick; Allamargot, Chantal; Salem, Aliasger K

    2015-11-28

    There exists a dire need for improved therapeutics to achieve predictable bone regeneration. Gene therapy using non-viral vectors that are safe and efficient at transfecting target cells is a promising approach to overcoming the drawbacks of protein delivery of growth factors. Here, we investigated the transfection efficiency, cytotoxicity, osteogenic potential and in vivo bone regenerative capacity of chemically modified ribonucleic acid (cmRNA) (encoding BMP-2) complexed with polyethylenimine (PEI) and made comparisons with PEI complexed with conventional plasmid DNA (encoding BMP-2). The polyplexes were fabricated at an amine (N) to phosphate (P) ratio of 10 and characterized for transfection efficiency using human bone marrow stromal cells (BMSCs). The osteogenic potential of BMSCs treated with these polyplexes was validated by determining the expression of bone-specific genes, osteocalcin and alkaline phosphatase as well as through the detection of bone matrix deposition. Using a calvarial bone defect model in rats, it was shown that PEI-cmRNA (encoding BMP-2)-activated matrices promoted significantly enhanced bone regeneration compared to PEI-plasmid DNA (BMP-2)-activated matrices. Our proof of concept study suggests that scaffolds loaded with non-viral vectors harboring cmRNA encoding osteogenic proteins may be a powerful tool for stimulating bone regeneration with significant potential for clinical translation.

  14. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  15. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  16. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  17. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  18. Do Training Programs Work? An Assessment of Pharmacists Activities in the Field of Chemical Dependency.

    ERIC Educational Resources Information Center

    Brooks, Valerie G.; Brock, Tina Penick; Ahn, Jungeun

    2001-01-01

    Seeks to determine if pharmacists who attended a chemical dependency training program were performing more chemical dependency related activities. Results reveal that participants were more likely to perform the following activities: lecture to community groups about chemical dependency; participate in a pharmacists' recovery program; provide…

  19. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  20. Comparison of bioactive components and pharmacological activities of ophiopogon japonicas extracts from different geographical origins.

    PubMed

    Zhao, Min; Xu, Wan-Feng; Shen, Han-Yuan; Shen, Pei-Qiang; Zhang, Jun; Wang, Dan-Dan; Xu, Han; Wang, Hong; Yan, Ting-Ting; Wang, Lin; Hao, Hai-Ping; Wang, Guang-Ji; Cao, Li-Juan

    2017-02-07

    Ophiopogon japonicus (Linn. f.) Ker-Gawl (O. japonicas), mainly cultivated in Sichuan and Zhejiang province in China, has different bioactive components and therefore their pharmacological activities. To explain the different clinical efficacy of O. japonicas derived preparations, herein we report differences of pharmacological activities between Sichuan and Zhejiang O. japonicas and behind them the exact differences of bioactive components. Based on a LC/MS-IT-TOF method, the differences of bioactive components between Sichuan and Zhejiang O. japonicas extracts were analyzed and respective characteristic components were picked out. We determined 39 ophiopogonones and 71 ophiopogonins compounds in Sichuan and Zhejiang O. japonicas extracts and found the contents of these compositions have several times difference. Evidenced by experimental data of pharmacological activities in inhibiting cardiomyocyte damage induced by H2O2, mouse macrophage cell inflammation induced by lipopolysaccharide and cytotoxicity in vitro, Zhejiang O. japonicas extract had a stronger antioxidant and anti-inflammatory capacity than Sichuan O. japonicas extract, and the two O. japonicas extracts exhibited selective cytotoxicity on different cancer cell lines in vitro. These data shed light on the links between bioactive components and pharmacological activities of O. japonicas derived preparations. Thus, geographical origin of O. japonicas should be considered to be a key factor in efficacy studies and further clinical application.

  1. Tea and human health: biomedical functions of tea active components and current issues*

    PubMed Central

    Chen, Zong-mao; Lin, Zhi

    2015-01-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea’s medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols. PMID:25644464

  2. Tea and human health: biomedical functions of tea active components and current issues.

    PubMed

    Chen, Zong-mao; Lin, Zhi

    2015-02-01

    Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea's medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols.

  3. Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits

    PubMed Central

    Sun, Jie; Liu, Shao-fang; Zhang, Chu-shu; Yu, Li-na; Bi, Jie; Zhu, Feng; Yang, Qing-li

    2012-01-01

    Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC–MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products. PMID:22389678

  4. Thermal properties of ration components as affected by moisture content and water activity during freezing.

    PubMed

    Li, J; Chinachoti, P; Wang, D; Hallberg, L M; Sun, X S

    2008-11-01

    Beef roast with vegetables is an example of a meal, ready-to-eat (MRE) ration entrée. It is a mixture of meat, potato, mushroom, and carrot with a gravy sauce. The thermal properties of each component were characterized in terms of freezing point, latent heat, freezable and unfreezable water contents, and enthalpy during freezing using differential scanning calorimetry. Freezing and thawing curves and the effect of freezing and thawing cycles on thermal properties were also evaluated. The freezing points of beef, potato, mushroom, and sauce were all in the range of -5.1 to -5.6 degrees C, but moisture content, water activity, latent heat, freezable and unfreezable water contents, and enthalpy varied among these components. Freezing temperature greatly affected the unfrozen water fraction. The unfreezable water content (unfrozen water fraction at -50 degrees C) of ration components was in the range of 8.2% to 9.7%. The freezing and thawing curves of vegetables with sauce differed from those of beef but took similar time to freeze or thaw. Freezing and thawing cycles did not greatly affect the thermal properties of each component. Freezing point and latent heat were reduced by decreasing moisture content and water activity of each component. Water activity was proportionally linear to freezing point at a(w) > 0.88, and moisture content was proportionally linear to freezable water content in all ration components. Water was not available for freezing when moisture content was reduced to 28.8% or less. This study indicates that moisture content and water activity are critical factors affecting thermal behavior of ration components during freezing.

  5. Chemical composition and antibacterial activity of Iranian Lavandula x hybrida.

    PubMed

    Bajalan, Iman; Rouzbahani, Razieh; Ghasemi Pirbalouti, Abdollah; Maggi, Filippo

    2017-03-17

    Lavandin (Lavandula x hybrida) is an evergreen shrub and cultivated worldwide for its essential oil which possesses various biological activities. In this study, the essential oils were isolated from the leaves of ten lavandin populations in western Iran. The hydrodistilled essential oils were analyzed by GC-FID/MS. Results indicated significant differences (p ≤0.05) among the various populations for the main essential oil constituents. The major components from different populations were 1,8-cineole (31.64 to 47.94%), borneol (17.11 to 26.14%), and camphor (8.41 to 12.68%). In vitro antibacterial activity was evaluated against S. agalactiae, S. aureus, E. coli and K. pneumoniae. The inhibition zones were in the range of 09.36 mm for S. aureus to 23.30 mm for E. coli. Results indicated that there was a significant correlation between essential oil composition and level of antibacterial efficacy expressed as inhibition zones. This article is protected by copyright. All rights reserved.

  6. Chemical variability, antifungal and antioxidant activity of Eucalyptus camaldulensis essential oil from Sardinia.

    PubMed

    Barra, Andrea; Coroneo, Valentina; Dessi, Sandro; Cabras, Paolo; Angioni, Alberto

    2010-02-01

    Essential oil (EO) from aerial parts of Eucalyptus camaldulensis Dehnh., growing wild in different localities of Sardinia (Italy), was extracted by steam distillation and analyzed by gas chromatography (GC) FID and GC-ion trap mass spectrometry (ITMS). The yields of EO (v/dry wt) ranged between 0.2-0.5%. Samples were harvested between April and December to study the seasonal chemical variability of the EO. The chemical composition varied depending on the different origins and showed strong fluctuation during the vegetative stage. Thirty-seven compounds, accounting for at least 97.7% of the total EOs were identified, the major components being p-cymene (27.8-42.7%), 1,8-cineole (4.1-39.5%), beta-phellandrene (3.9-23.8%), spathulenol (2.1-15.5%) and cryptone (3.2-10.2%). The oils possessed moderate amounts (1.4-4.7%) of two uncommon aldehydes, cuminal and phellandral. The essential oils were screened for their antifungal activities against common phytopathogenic fungi using the paper disk diffusion method and they showed activity at low doses against the fungi tested. The antioxidant activity, assessed by DPPH-test and expressed as Trolox equivalent antioxidant capacity, showed values ranging between 0.5 and 5.8 mmol/L.

  7. The physico-chemical properties and biostimulative activities of humic substances regenerated from lignite.

    PubMed

    David, Jan; Smejkalová, Daniela; Hudecová, Sárka; Zmeškal, Oldřich; von Wandruszka, Ray; Gregor, Tomáš; Kučerík, Jiří

    2014-01-01

    The positive effect of humic acids on the growth of plant roots is well known, however, the mechanisms and role of their physical structure in these processes have not been fully explained yet. In this work, South-Moravian lignite was oxidized by means of nitric acid and hydrogen peroxide to produce a set of regenerated humic acids. The elemental composition, solid state stability and solution characteristics were determined and correlated in vitro with their biological activity. A modified hydroponic method was applied to determine the effects of their potassium salts on Zea mays seedlings roots with respect to the plant weight, root length, root division, and starch and protein content. The relations between the determined parameters were evaluated through Principal Component Analysis and Pearson's correlation coefficients. The results indicated that the most important factor determining the biological activity of South-Moravian lignite potassium humates is related to the nature of self-assemblies, while the chemical composition had no direct connection with the root growth of Zea mays seedlings. It was demonstrated a controlled processing that provided humic substances with different chemical and physicochemical properties and variable biological activity.

  8. Chemical Variability and Biological Activities of Essential Oils of Micromeria inodora (Desf.) Benth. from Algeria.

    PubMed

    Benomari, Fatima Zahra; Djabou, Nassim; Medbouhi, Ali; Khadir, Abdelmounaim; Bendahou, Mourad; Selles, Chaouki; Desjobert, Jean-Marie; Costa, Jean; Muselli, Alain

    2016-11-01

    The chemical composition of the essential oils isolated from the aerial parts of Micromeria inodora (Desf.) Benth. collected in 24 Algerian localities was investigated from the first time using GC-FID, GC/MS and (13) C-NMR. Altogether, 83 components which accounted for 94.7% of the total oil composition were identified. The main compounds were trans-sesquisabinene hydrate (1; 20.9%), α-terpinyl acetate (2; 19.8%), globulol (3; 4.9%), caryophyllene oxide (4; 4.3%), β-bisabolol (5; 2.9%) and trans-7-epi-sesquisabinene hydrate (6; 2.6%). Comparison with the literature highlighted the originality of the Algerian M. inodora oil and indicated that 1 might be used as taxonomical marker. The study of the chemical variability allowed the discrimination of two main clusters confirming that there is a relation between the essential-oil compositions and the soil nature of the harvest locations. Biological activity of M. inodora essential oil was assessed against fourteen species of microorganisms involved in nosocomial infections using paper disc diffusion and dilution agar assays. The in vitro study demonstrated a good activity against Gram-positive strains such as Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, and Enterococcus faecalis, and moderate activity against Candida albicans. These results might be useful for the future commercial valorization of M. inodora essential oil as a promising source of natural products with potential against various nosocomial community and toxinic infections.

  9. Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae)

    PubMed Central

    Musa, Aliyu Muhammad; Ibrahim, Mohammed Auwal; Aliyu, Abubakar Babando; Abdullahi, Mikhail Sabo; Tajuddeen, Nasir; Ibrahim, Halliru; Oyewale, Adebayo Ojo

    2015-01-01

    Objective: The aim was to determine the chemical constituents and antimicrobial activity of the hexane leaf extract of Anisopus mannii against a wide range of human pathogenic microorganisms. Methods: The chemical constituents of the hexane leaf extract was determined using gas chromatography-mass spectrometry (GC-MS) analysis; and the antimicrobial activity was evaluated on “standard strains”, clinical susceptible and resistant bacterial and fungal isolates using the disc diffusion and broth microdilution methods. Results: GC-MS analysis of the hexane leaf extract revealed 32 compounds, representing 73.8% of the identified components. The major compounds were hexadecanoic acid, ethyl ester (34%), oxirane, hexadecyl- (11%) and 9, 12, 15-octadecatrienoic acid, ethyl ester, (Z, Z, Z) (9.6%). Results from the antimicrobial activity demonstrated higher inhibition zones against Bacillus cereus (29 mm), followed by Streptococcus pyogenes (28 mm). Other notable inhibitions were observed with Enterococcus faecalis (27 mm), Proteus vulgaris (26 mm) and MRSA (25 mm). The MIC values ranged from 0.625 mg/mL to 1.25 mg/mL while the MBC/MFC values ranged from 2.5 mg/mL to 5.0 mg/mL. Conclusion: These results support the traditional use of the plant and demonstrate the huge potential of A. mannii as a source of antimicrobial compounds. PMID:26401399

  10. Inhibitory effects of various essential oils and individual components against extended-spectrum beta-lactamase (ESBL) produced by Klebsiella pneumoniae and their chemical compositions.

    PubMed

    Orhan, Ilkay Erdogan; Ozcelik, Berrin; Kan, Yüksel; Kartal, Murat

    2011-10-01

    In the current study, in vitro inhibitory activity of several essential oils obtained from the cultivated plants, Foeniculum vulgare, Mentha piperita and M. spicata, Ocimum basilicum, Origanum majorana, O. onites, O. vulgare, Satureja cuneifolia, and a number of individual essential oil components of terpene and aromatic types were screened against 10 isolated strains of Klebsiella pneumoniae producing extended-spectrum beta-lactamase (ESBL) enzyme, which makes this microorganism quite resistant against the antibiotics: trimetoprime-sulfametoksazol, sulbactam-ampicilin, clavulonate-amoxicilin, ceftriaxon, cefepime, imipenem, ceftazidime, tobramicine, gentamisine, ofloxacin, and ciprofloksasin. All of the essential oils and the components exerted a remarkable inhibition ranging between 32 and 64 μg/mL against all of these strains as strong as the references (ampicilin and oflaxocin) inhibiting at 32 μg/mL. Besides, chemical compositions of the essential oils were elucidated by gas chromatography-mass spectrometry (GC-MS). The essential oils and the pure components widely found in essential oils screened herein have shown remarkable inhibition against ESBL-producing K. pneumoniae strains, which leads to the suggestion that they may be used as food preservatives for this purpose. Practical Application:  The essential oils obtained from Foeniculum vulgare, Mentha piperita and M. spicata, O.cimum basilicum, Origanum majorana, O. onites, O. vulgare, and Satureja cuneifolia as well as common essential oil components have shown notable inhibitory effects against 10 isolated strains of Klebsiella pneumoniae producing extended-spectrum beta-lactamase (ESBL) enzyme and they might be used as food preservative or ingredient.

  11. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  12. Hybridization of active and passive elements for planar photonic components and interconnects

    NASA Astrophysics Data System (ADS)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  13. Chemical Processing. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    Reviews major organic and inorganic chemicals, their products, and the sociocultural impact of the chemical industry. Provides the following learning activity components: objectives, list of materials and equipment, procedures, student quiz with answers, and three references. (SK)

  14. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions.

    PubMed

    Nayak, Arunima; Bhushan, Brij; Gupta, Vartika; Sharma, P

    2017-05-01

    Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl2 impregnated carbon (CASD_ZnCl2) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd(2+) and 1.61mmoles/g for Ni(2+)) in comparison to CASD_ZnCl2 (0.23mmoles/g and 0.33mmoles/g for Cd(2+) and Ni(2+) respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment.

  15. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    PubMed

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides.

  16. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa.

    PubMed

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa.

  17. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa

    PubMed Central

    Olajuyigbe, Olufunmiso; Ashafa, Anofi

    2014-01-01

    The chemical composition of essential oils isolated from the leaves of Cosmos bipinnatus and its antibacterial activity were analyzed by GC-MS and microbroth dilution assay respectively. The essential oil extracted from this plant was predominantly composed of monoterpenes (69.62%) and sesquiterpenes (22.73%). The antibacterial assay showed that the oil had significant inhibitory effects against both Gram-negative and Gram-positive bacteria isolates. The MIC of Gram-positive strains ranged between 0.16 and 0.31 mg/mL while those of Gram-negative bacteria ranged between 0.31 and 0.63 mg/mL. The Gram-positive bacteria were more susceptible to the essential oil than the Gram-negative bacteria. Most of the major components of this oil in other plants have been reported for antimicrobial activities. The antibacterial activity can be attributed to effects of the combination of several components of the oil. The results indicate that the C. bipinnatus might be exploited as natural antibacterial agent and have application in the treatment of several infectious diseases caused by these bacteria. Since this species is endemic to the eastern Free State, the plant could be collected during its bloom and used efficiently in the management of bacterial infections in South Africa. PMID:25587332

  18. Discussion of the Separation of Chemical and Relaxational Kinetics of Chemically Activated Intermediates in Master Equation Simulations.

    PubMed

    Döntgen, Malte; Leonhard, Kai

    2017-03-02

    Chemical activation of intermediates, such as hydrogen abstraction products, is emerging as a basis for a fully new reaction type: hot β-scission. While for thermally equilibrated intermediates chemical kinetics are typically orders of magnitude slower than relaxational kinetics, chemically activated intermediates raise the issue of inseparable chemical and relaxational kinetics. Here, this separation problem is discussed in the framework of master equation simulations, proposing three cases often encountered in chemistry: insignificant chemical activation, predominant chemical activation, and the transition between these two limits. These three cases are illustrated via three example systems: methoxy (CH3Ȯ), diazenyl (ṄNH), and methyl formate radicals (CH3OĊO). For diazenyl, it is found that hot β-scission fully replaces the sequence of hydrogen abstraction and β-scission of thermally equilibrated diazenyl. Building on the example systems, a rule of thumb is proposed that can be used to intuitively judge the significance of hot β-scission: if the reverse hydrogen abstraction barrier height is comparable to or larger than the β-scission barrier height, hot β-scission should be considered in more detail.

  19. Chemical composition and antimicrobial activity of three essential oils from Curcuma wenyujin.

    PubMed

    Zhu, Jingjing; Lower-Nedza, Agnieszka D; Hong, Meng; Jie, Song; Wang, Zhimin; Yingmao, Dong; Tschiggerl, Christine; Bucar, Franz; Brantner, Adelheid H

    2013-04-01

    Curcuma wenyujin is a traditional medicinal plant in China. The non-steamed rhizomes, steamed rhizomes and steamed roots of this plant are used as herbal medicines in three clinics, namely Pian-jiang-huang (PJH), Wen-e-zhu (WEZ), and Wen-yu-jin (WYJ), and are officially listed in the Chinese Pharmacopoeia. The purpose of this study was to conduct a comparative analysis of the three essential oils extracted from the C. wenyujin rhizomes and roots using GC-MS, and in doing so thirty compounds were identified. Principal component analysis (PCA) effectively distinguished the samples taken from the three different groups. Monoterpenoids, including camphene, linalool, camphor, isoborneol, borneol and eucalyptol, were characteristic components of the PJH oil, while beta-elemene, beta-elemenone, gamma-elemene and delta-elemene were typical components of the WEZ oil, and propanenitrile, caryophyllene oxide, (-)-caryophyllene, germacrene B, pogostol and alpha-humulene were representative ingredients of the WYJ oil. The ratio of sesquiterpenoids to monoterpenoids in PJH, WEZ, and WYJ were 2:1, 5:1 and 7:1, respectively. The antimicrobial activities of the three essential oils and of the six main ingredients were tested against two bacterial and one fungal strains using agar diffusion and broth dilution methods. The essential oil of PJH was shown to present a higher antimicrobial activity than that of WEZ and WYJ. Based on the Partial Least Square Model (PLS), the correlation between the antimicrobial activity of the tested oils and the identified chemical components was discussed and potential components of the antimicrobial activity were predicted according to Variable Importance in the Project (VIP) Value. The tested monoterpenes eucalyptol and isoborneol demonstrated a higher inhibitory activity than the sesquiterpenes germacrone, curdione and beta-elemene. Therefore, the potent inhibitory effect of the PJH oil might be attributed to its higher content of monoterpenes. The

  20. Meaningful Components of Exercise and Active Recreation for Spinal Cord Injuries.

    PubMed

    Luchauer, Bryna; Shurtleff, Timothy

    2015-10-01

    This qualitative study used focus groups to identify meaningful components of exercise and active recreation (E/AR) related to consistent participation for those with spinal cord injury (SCI). Transcripts from each focus group were analyzed with classical content analysis, grounded theory coding, and meaning condensation using the International Classification of Function, Disability and Health (ICF). Variables within each of the ICF domains (body structures and functions, activities/participation, and environment) were indicated as meaningful components leading to increased participation, independence, and reasons why people consistently participated in E/AR. Occupational therapists can utilize these components to implement therapeutic intervisions, which provide clients with a sense of purpose and being, thus improving outcomes in meaningful occupations.

  1. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-22

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  2. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  3. Two-phase flow in a chemically active porous medium

    SciTech Connect

    Darmon, Alexandre Dauchot, Olivier; Benzaquen, Michael; Salez, Thomas

    2014-12-28

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species, in a one-dimensional macroscopic description, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy’s law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor.

  4. Thymus mastichina: chemical constituents and their anti-cancer activity.

    PubMed

    Gordo, Joana; Máximo, Patrícia; Cabrita, Eurico; Lourenço, Ana; Oliva, Abel; Almeida, Joana; Filipe, Mariana; Cruz, Pedro; Barcia, Rita; Santos, Miguel; Cruz, Helder

    2012-11-01

    The cytotoxicity-guided study of the dichloromethane and ethanol extracts of Thymus mastichina L. using the HCT colon cancer cell line allowed the identification of nine compounds, sakuranetin (1), sterubin (2), oleanolic acid (3), ursolic acid (4), lutein (5), beta-sitosterol (6), rosmarinic acid (7), 6-hydroxyluteolin-7-O-beta-glucopyranoside (8), and 6-hydroxyapigenin-7-O-beta-glucopyranoside (9). All compounds were tested for their cytotoxicity against the HCT colon cancer cell line. Compound 4 showed cytotoxicity with GI50 value of 6.8 microg/mL. A fraction composed of a mixture (1:1) of triterpenoid acids 3 and 4 displayed improved cytotoxicity with a GI50 of 2.8 microg/mL suggesting a synergistic behavior. This is the first report on the chemical constituents of Thymus mastichina L. based on structural assignments by spectroscopic analysis. The presence of these constituents identified by colon cancer cytotoxicity-guided activity indicates that extracts of T. mastichina L. may have a protective effect against colon cancers.

  5. Adsorption of copper cyanide on chemically active adsorbents

    SciTech Connect

    Lee, J.S.; Deorkar, N.V.; Tavlarides, L.L.

    1998-07-01

    An inorganic chemically active adsorbent (ICAA), SG(1)-TEPA (tetraethylenepentaamine)-propyl, is developed for removal, recovery, and recycling of copper cyanide from industrial waste streams. Equilibrium studies are executed to determine and model adsorption of the copper cyanide complex from aqueous solutions in a batch and packed column. It appears that adsorption is dependent on anionic copper cyanide species and the basicity of the ligand. Aqueous-phase equilibrium modeling shows that monovalent (Cu(CN){sub 2}{sup {minus}}), divalent (Cu(CN){sub 3}{sup 2{minus}}), and trivalent (Cu(CN){sub 4}{sup 3{minus}}) species of copper cyanide exist in the solution, depending on the pH and the concentration of total cyanide ions. Batch adsorption data are modeled using a modified multicomponent Langmuir isotherm which includes aqueous-phase speciation and basicity of the SG(1)-TEPA-propyl. This developed model is applied with a mass balance equation to describe the adsorption of copper cyanide complexes in a packed column.

  6. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  7. Suicide Risk by Military Occupation in the DoD Active Component Population

    ERIC Educational Resources Information Center

    Trofimovich, Lily; Reger, Mark A.; Luxton, David D.; Oetjen-Gerdes, Lynne A.

    2013-01-01

    Suicide risk based on occupational cohorts within the U.S. military was investigated. Rates of suicide based on military occupational categories were computed for the Department of Defense (DoD) active component population between 2001 and 2010. The combined infantry, gun crews, and seamanship specialist group was at increased risk of suicide…

  8. Analysis of the relationship between ribosomal DNA ITS sequences and active components in Rhodiola plants.

    PubMed

    Zhang, D J; Yuan, W T; Li, M T; Zhang, Y H

    2016-12-23

    Rhodiola plants are a valuable resource in traditional Chinese medicine. The objective of this study was to evaluate the correlation between ribosomal DNA internal transcribed spacer (ITS) sequences and the three active components in Rhodiola plants. For this, we determined ITS sequence polymorphisms and the concentrations of active components salidroside, tyrosol, and gallic acid in different Rhodiola species from the Tibetan Plateau. In a total of 23 Rhodiola samples, 16 different haplotypes were defined based on their ITS sequences. Analysis of the active components in these same samples revealed that salidroside was not detected in species with haplotypes H4, H5, or H10, tyrosol was not detected with haplotypes H3, H5, H7, H10, H14, or H15, and gallic acid was detected in with all haplotypes except H14 and H15. In addition, the concentrations of salidroside, tyrosol and gallic acid varied between samples with different haplotypes as well as those with the same haplotype, implying that no significant correlation exists between haplotype and salidroside, tyrosol or gallic acid concentrations. However, a statistically significant positive correlation was observed for among these three active components.

  9. ALTERATION OF CARDIAC ELECTRICAL ACTIVITY BY WATER-LEACHABLE COMPONENTS OF RESIDUAL OIL FLY ASH (ROFA)

    EPA Science Inventory

    Alteration of cardiac electrical activity by water-leachable components
    of residual oil fly ash (ROFA)

    Desuo Wang, Yuh-Chin T. Huang*, An Xie, Ting Wang

    *Human Studies Division, NHEERL, US EPA
    104 Mason Farm Road, Chapel Hill, NC 27599
    Department of Basic ...

  10. The Components of Effective Professional Development Activities in Terms of Teachers' Perspective

    ERIC Educational Resources Information Center

    Bayar, Adem

    2014-01-01

    Teacher preparedness is linked to student achievement, yet regularly teachers are entering the profession unprepared. In-service training, or professional development activities, are increasingly being used to remedy this situation. There is little agreement regarding exactly what key components should be included in an effective professional…

  11. Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment

    NASA Astrophysics Data System (ADS)

    EstelléS, VíCtor; MartíNez-Lozano, José A.; Pey, Jorge; Sicard, MichaëL.; Querol, Xavier; Esteve, Anna R.; Utrillas, MaríA. P.; Sorribas, Mar; Gangoiti, Gotzon; Alastuey, AndréS.; Rocadenbosch, Francesc

    2012-02-01

    Although routinely monitored by ground based air quality networks, the particulate matter distribution could be eventually better described with remote sensing techniques. However, valid relationships between ground level and columnar ground based quantities should be known beforehand. In this study we have performed a comparison between particulate matter measurements at ground level at different cut sizes (10, 2.5 and 1.0 μm), and the aerosol optical depth obtained by means of a ground based sunphotometer during a multiinstrumental field campaign held in El Arenosillo (Huelva, Spain) from 28 June to 4 July 2006. All the PM fractions were very well correlated with AOD with correlation coefficients that ranged from 0.71 to 0.81 for PM10, PM2.5 and PM1. Furthermore, the influence of the mixing layer height in the correlations was explored. The improvement in the correlation when the vertical distribution is taken into account was significant for days with a homogeneous mixing layer. Moreover, the chemical analysis of the individual size fractions allowed us to study the origin of the particulate matter. Secondary components were the most abundant and also well correlated in the three size fractions; but for PM10 fraction, chemical species related to marine origin were best correlated. Finally, we obtained a relationship between MODIS L3 AOD from collection 5.1 and the three PM cut sizes. In spite of being a relatively clean environment, all the techniques were able to capture similar day to day variations during this field campaign.

  12. Dynamics of sinking particles in northern Japan trench in the western North Pacific: biogenic chemical components and fatty acids biomarkers

    NASA Astrophysics Data System (ADS)

    Shin, K. H.; Noriki, S.; Itou, M.; Tsunogai, S.

    Biogenic opal was predominant component, and had strongly positive correlation with organic carbon in both traps. The average atomic ratios of biogenic opal and calcium carbonate (CaCO 3) were also large (7.1 and 11 in the shallow and deep trap, respectively) and the highest ratio was found in May 1995, when the biogenic opal proportion (%) to the total particle flux and C org/C inorg ratio increased concomitantly. However, transient switching of the biogenic opal and CaCO 3 ratios (0.6 and 0.8) was observed in winter 1995, which seems to be related to a warm-core ring developed in the northwestern Pacific. Downward fluxes of fatty acids as molecular markers were determined and compared with major biogenic chemical components in sinking particles. As a diatom index of fatty acids, the 16:1(n-7)/16:0 ratio is positively related to biogenic opal contribution (%) to the sinking particles in the shallow and deep traps. 20:5(n-3) proportion (%) was also correlated with opal content (%) in sinking particles in the 1-km trap. In addition, a major source of sinking fatty acids in the western North Pacific might be characterized by algal fatty acids as a diatom marker (16:1(n-7)), comparing to a zooplankton fatty acid (18:1(n-9)) in the central North Pacific and fecal pellets and coccolithophores in the eastern North Pacific, respectively. Also, PUFA index (a measure of polyunsaturated fatty acids contribution to the total fatty acids) correlated well with Chl a inventory in surface 0-50 m water. These results suggest that undegraded diatomaceous fatty acids are present in sinking particles, and the composition of fatty acids is useful to understand the origin of sinking organic particles.

  13. Laboratory studies of reactions of atmospheric gases with components of mineral dust aerosol and research in chemical education

    NASA Astrophysics Data System (ADS)

    Schuttlefield, Jennifer Dianne

    Mineral dust aerosol surfaces provide a medium in the atmosphere for heterogeneous chemistry to occur, which can alter the chemical balance of the Earth's atmosphere. It is becoming increasingly clear that the heterogeneous chemistry of these aerosols is a function of relative humidity (RH), as water on the surface of these particles can enhance or inhibit reactivity depending on the reaction. In this thesis, the uptake of water on clays and oxides was investigated, as well as phase transitions for atmospherically relevant salts. Reactions of carbon dioxide and nitric acid on oxide particles in the presence and absence of water were also examined. Following the reaction of HNO 3 on an alumina surface, photoirradiation experiments were preformed to determine the effect of irradiation on the adsorbed nitrate. The results presented in this thesis provide insight into the heterogeneous reactivity of mineral dust aerosol in the presence and absence of co-adsorbed water, as well as a fundamental understanding of water uptake on soluble and insoluble aerosols. A new method, using a quartz crystal microbalance, was developed to attempt to obtain a better fundamental understanding of different mineral dust components. In addition to the laboratory research, research in chemical education is also presented in this thesis. Two different types of work being done in the area of chemical education are shown. First a new experiment was implemented into an undergraduate physical chemistry course. The technique, ATR-FTIR spectroscopy, was chosen for its ability to expose students to a technique that is commonly used in laboratory research as well as the ease for which high quality results can be obtained. Students used ATR-FTIR spectroscopy to monitor sulfate, SO 42-, adsorption on TiO2 thin films. Second, the role of cognitive load and problem difficulty was accessed with data acquired while students completed an introductory-level chemistry word problem using a web-based tool

  14. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components.

    PubMed

    Wang, W; Wu, N; Zu, Y G; Fu, Y J

    2008-06-01

    This study was designed to examine the in vitro antioxidant activities of Rosmarinus officinalis L. essential oil compared to three of its main components (1,8-cineole, α-pinene, β-pinene). GC-MS analysis of the essential oil resulted in the identification of 19 compounds, representing 97.97% of the oil, the major constituents of the oil were described as 1,8-cineole (27.23%), α-pinene (19.43%), camphor (14.26%), camphene (11.52%) and β-pinene (6.71%). The oil and the components were subjected to screening for their possible antioxidant activity by means of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and β-carotene bleaching test. In the DPPH test system, free radical-scavenging activity of R. officinalis L. essential oil, 1,8-cineole, α-pinene and β-pinene were determined to be 62.45%±3.42%, 42.7%±2.5%, 45.61%±4.23% and 46.21%±2.24% (v/v), respectively. In the β-carotene bleaching test system, we tested series concentration of samples to show the antioxidant activities of the oil and its main components, whereas the concentrations providing 50% inhibition (IC50) values of R. officinalis L. essential oil, 1,8-cineole, α-pinene and β-pinene were 2.04%±0.42%, 4.05%±0.65%, 2.28%±0.23% and 2.56%±0.16% (v/v), respectively. In general, R. officinalis L. essential oil showed greater activity than its components in both systems, and the antioxidant activities of all the tested samples were mostly related to their concentrations. Antioxidant activities of the synthetic antioxidant, ascorbic acid and BHT, were also determined in parallel experiments as positive control.

  15. Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity.

    PubMed

    León, Alejandra; Del-Ángel, Mayela; Ávila, José Luis; Delgado, Guillermo

    2017-01-01

    oxidation, reduction, addition, elimination, and cycloaddition reactions, and treatments with Lewis acids of (Z)-ligustilide have afforded linear dimers. Some intramolecular condensations and differentiated cyclizations of the dimeric phthalides have been carried out, providing evidences for the particular chemical reactivity of these compounds.Several structural modifications of phthalides have been carried out subjecting them to microbial transformations by different species of bacteria, fungi and algae, and these included resolutions of racemic mixtures and oxidations, among others.The [π4s + π2s] and [π2s + π2s] cycloadditions of (Z)-ligustilide for the synthesis of dimeric phthalides have been reported, and different approaches involving cyclizations, Alder-Rickert reactions, Sharpless asymmetric hydroxylations, or Grignard additions have been used for the synthesis of monomeric phthalides. The use of phthalides as building blocks for divergent oriented synthesis has been proven.Many of the naturally occurring phthalides display different biological activities including antibacterial, antifungal, insecticidal, cytotoxic, and anti-inflammatory effects, among many others, with a considerable recent research on the topic. In the case of compounds isolated from the Apiaceae, the bioactivities correlate with the traditional medicinal uses of the natural sources. Some monomeric phthalides have shown their ability to attenuate certain neurological diseases, including stroke, Alzheimer's and Parkinson's diseases.The present contribution covers the distribution of phthalides in nature and the findings in the structural diversity, chemical reactivity, biotransformations, syntheses, and bioactivity of natural and semisynthetic phthalides.

  16. Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani

    PubMed Central

    Wirsig-Wiechmann, Celeste R; Houck, Lynne D; Wood, Jessica M; Feldhoff, Pamela W; Feldhoff, Richard C

    2006-01-01

    Background The mental gland pheromone of male Plethodon salamanders contains two main protein components: a 22 kDa protein named Plethodon Receptivity Factor (PRF) and a 7 kDa protein named Plethodon Modulating Factor (PMF), respectively. Each protein component individually has opposing effects on female courtship behavior, with PRF shortening and PMF lengthening courtship. In this study, we test the hypothesis that PRF or PMF individually activate vomeronasal neurons. The agmatine-uptake technique was used to visualize chemosensory neurons that were activated by each protein component individually. Results Vomeronasal neurons exposed to agmatine in saline did not demonstrate significant labeling. However, a population of vomeronasal neurons was labeled following exposure to either PRF or PMF. When expressed as a percent of control level labeled cells, PRF labeled more neurons than did PMF. These percentages for PRF and PMF, added together, parallel the percentage of labeled vomeronasal neurons when females are exposed to the whole pheromone. Conclusion This study suggests that two specific populations of female vomeronasal neurons are responsible for responding to each of the two components of the male pheromone mixture. These two neural populations, therefore, could express different receptors which, in turn, transmit different information to the brain, thus accounting for the different female behavior elicited by each pheromone component. PMID:16553953

  17. Chemical composition and antimicrobial activity of essential oils from Chromolaena laevigata during flowering and fruiting stages.

    PubMed

    Murakami, Cynthia; Lago, João H G; Perazzo, Fábio F; Ferreira, Karen S; Lima, Marcos E L; Moreno, Paulo R H; Young, Maria C M

    2013-04-01

    The chemical compositions and antimicrobial activities of essential oils from the leaves, stems, capitula, and cypselas of Chromolaena laevigata were evaluated at two different phenological stages, flowering and fruiting. Thirty-eight compounds were identified in the crude oils by GC/MS. The sesquiterpene laevigatin was the major constituent of the leaf, capitulum, and cypsela oils, while the sesquiterpene spathulenol was the main component in the stem oils. The antimicrobial activities of the oils were evaluated against Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Stem oil obtained from Chromolaena laevigata during the fruiting stage generally showed the highest activity with minimum inhibitory concentration (MIC) values of 62.5 μg/ml against Candida albicans and S. aureus, and 500 μg/ml against P. aeruginosa and E. coli. Pure laevigatin exhibited MIC values of 500 and 125 μg/ml against C. albicans and S. aureus, respectively, indicating that this constituent could be responsible, at least in part, for the antimicrobial activities detected in the crude oils. More studies concerning the biological activities of isolated derivatives are required to improve our knowledge of the antimicrobial potential of volatile compounds present in native plants.

  18. Synergistic activation of estrogen receptor with combinations of environmental chemicals

    SciTech Connect

    Arnold, S.F.; Klotz, D.M.; Collins, B.M.

    1996-06-07

    Certain chemicals in the environment are estrogenic. The low potencies of the compounds, when studied singly, suggest that they may have little effect on biological systems. The estrogenic potencies of combinations of such chemicals were screened in a simple yeast estrogen potencies of combination of such chemicals were screened in a simple yeast estrogen systems (YES) containing human estrogen receptor (hER). Combinations of two weak environmental estrogens, such as dieldrin, endosulfan, or toxaphene, were 100 times as potent in hER-mediated transactivation as any chemical alone. Hydroxylated polychlorinated biphenyls shown previously to synergistically alter sexual development in turtles also synergized in the YES. The synergistic interaction of chemical mixtures with the estrogen receptor may have profound environmental implications. These results may represent a previously uncharacterized level of regulation of estrogen-associated responses. 32 refs., 3 figs., 3 tabs.

  19. Chemical composition of the major components of PM in different sites at the Metropolitan Region of Chile

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Castillo, M. A.; Rubio, M.; Gramsch, E.; Vasquez, Y.; Oyola, P.

    2013-05-01

    Santiago, Chile's capital is one of most polluted megacity (5.5 million of people) of the world. Currently, PM2.5 annual concentration is over 2.2 times the Chilean standard (20 μg/m3). Continuous measurements of non-refractory PM1.0 (sulfate, nitrate, chloride, ammonium and organics aerosols), black carbon, and PM2,5 mass concentration were determined using Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research, Inc), absorption coefficient monitor (SIMCA, Santiago University) and dustrack monitor (TSI Inc) in order to know the temporal variability of the major components of PM. The measurements were carried out at kerbside, urban background, industrial and mixed residential/industrial locations during year 2012 and -2013. Meteorological data (Relative Humidity, temperature, wind speed, wind direction and precipitations) were obtained from the air quality network operated by the environmental authority. The results show strong correlation with the metropolitan region major sources. Multiple regression analysis indicates that precipitations have a strong impact on PM1.0 soluble components; relative humidity has effects only on chloride, sulfate and black carbon. Chloride concentration decrease when temperature is increasing. The perceptual contribution of each component is similar among all sites. All sites shows that OA (Organics Aerosol) as the major constituent of PM1.0 (>50%), followed of nitrates (>13%). Sulfate could be used to differentiate the industrial site; due to there is a strong impact of SO2 emission. Combustion sources direct impact can be seen at BC contribution at industrial and kerbside site. Also, the OA/BC ratio shows slow value at kerbside (3.05) and industrial (3.26) site, and higher at urban background site (4.15). Aged organics aerosols are majority found at all sites (f43/f44 plot), indicating that regional background is strong in all results. These results will be compared with size distribution measurements available from previous

  20. Size distributions of mass and chemical components in street-level and rooftop PM 1 particles in Helsinki

    NASA Astrophysics Data System (ADS)

    Pakkanen, Tuomo A.; Kerminen, Veli-Matti; Loukkola, Kati; Hillamo, Risto E.; Aarnio, Päivi; Koskentalo, Tarja; Maenhaut, Willy

    In June 1997, five pairs of simultaneous 24 h atmospheric aerosol samples were collected on working days using Berner low-pressure impactors at 3.5 and 20 m heights at an urban site in Helsinki, Finland. The weather was dry and sunny during the campaign. The results were compared to earlier observations made at the lower site. Average submicron masses were 11 μg/m 3 at both heights. Local vehicle exhaust emissions seemed to accumulate particulate mass especially in the 0.15-0.4 μm size range with the average mass concentration being 12% higher at street level for 0.24 μm particles. Long-range transport and sea salt were important for the 0.4-1.3 μm particles leading to slightly higher average mass concentration at the rooftop site for this size-range. Average concentrations of most components, including mass and sulphate, were higher at the rooftop site in the 0.07-0.15 μm size range suggesting that regional or long-range-transported particles and/or local high-level sources might have enhanced these concentrations at the rooftop site. Average submicron concentrations of Cu, Ba, Fe, Sb, Bi, Al and nitrate were higher at street level suggesting that local traffic and road dust were important sources for these components. Concentrations of Ca, Co, Li, Mo, Na, Ni, Pb, Rb, Se, Sr, Ti, Tl, V, MSA, pyruvate, succinate, malonate, SO 42-, Cl -, Na +, K + and Ca 2+ were similar at the two heights or higher at the rooftop site pointing to long-range transport and/or local high-level sources. Comparison of size distributions and concentrations revealed several groups of correlating chemical components: (1) SO 42-, oxalate, NH 4+ and methane sulphonate, (2) Tl, As, K +, Cd, B, glutarate, succinate and Pb, (3) V, Ni, and, to a lesser extent, Co and Mo, (4) Ba, Cu, Fe and Sb, and (5) Zn, Rb, Pb and Mo. The suggested principal sources for the above groups are (1) long-range transport, (2) mainly long-range transport with some local contribution, (3) local oil combustion, (4

  1. Lymphocyte Activation Dynamics Is Shaped by Hereditary Components at Chromosome Region 17q12-q21

    PubMed Central

    Carreras-Sureda, Amado; Rubio-Moscardo, Fanny; Olvera, Alex; Argilaguet, Jordi; Kiefer, Kerstin; Mothe, Beatriz; Meyerhans, Andreas; Brander, Christian

    2016-01-01

    Single nucleotide polymorphisms (SNPs) located in the chromosome region 17q12-q21 are risk factors for asthma. Particularly, there are cis-regulatory haplotypes within this region that regulate differentially the expression levels of ORMDL3, GSDMB and ZPBP2 genes. Remarkably, ORMDL3 has been shown to modulate lymphocyte activation parameters in a heterologous expression system. In this context, it has been shown that Th2 and Th17 cytokine production is affected by SNPs in this region. Therefore, we aim to assess the impact of hereditary components within region 17q12-q21 on the activation profile of human T lymphocytes, focusing on the haplotype formed by allelic variants of SNPs rs7216389 and rs12936231. We measured calcium influx and activation markers, as well as the proliferation rate upon T cell activation. Haplotype-dependent differences in mRNA expression levels of IL-2 and INF-γ were observed at early times after activation. In addition, the allelic variants of these SNPs impacted on the extent of calcium influx in resting lymphocytes and altered proliferation rates in a dose dependent manner. As a result, the asthma risk haplotype carriers showed a lower threshold of saturation during activation. Finally, we confirmed differences in activation marker expression by flow cytometry using phytohemagglutinin, a strong polyclonal stimulus. Altogether, our data suggest that the genetic component of pro-inflammatory pathologies present in this chromosome region could be explained by different T lymphocyte activation dynamics depending on individual allelic heredity. PMID:27835674

  2. Water Extract of Ashwagandha Leaves Has Anticancer Activity: Identification of an Active Component and Its Mechanism of Action

    PubMed Central

    Gao, Ran; Shah, Navjot; Widodo, Nashi; Nakamoto, Tomoko; Ishida, Yoshiyuki; Terao, Keiji; Kaul, Sunil C.

    2013-01-01

    Background Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX). Methodology/Principal Findings Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX) was detected by in vitro and in vivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s). Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression in vivo. Its active anticancer component was identified as triethylene glycol (TEG). Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest), normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression). We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. Conclusion We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine. PMID:24130852

  3. Analysis of active components in Salvia miltiorrhiza injection based on vascular endothelial cell protection.

    PubMed

    Shen, Jie; Yang, Kai; Sun, Caihua; Zheng, Minxia

    2014-09-01

    Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI). HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.

  4. Numerical investigation of acoustic field in enclosures: Evaluation of active and reactive components of sound intensity

    NASA Astrophysics Data System (ADS)

    Meissner, Mirosław

    2015-03-01

    The paper focuses on a theoretical description and numerical evaluation of active and reactive components of sound intensity in enclosed spaces. As the study was dedicated to low-frequency room responses, a modal expansion of the sound pressure was used. Numerical simulations have shown that the presence of energy vortices whose size and distribution depend on the character of the room response is a distinctive feature of the active intensity field. When several modes with frequencies close to a source frequency are excited, the vortices within the room are positioned irregularly. However, if the response is determined by one or two dominant modes, a regular distribution of vortices in the room can be observed. The irrotational component of the active intensity was found using the Helmholtz decomposition theorem. As was evidenced by numerical simulations, the suppression of the vortical flow of sound energy in the nearfield permits obtaining a clear image of the sound source.

  5. Identification of volatile components in Phyllanthus emblica L. and their antimicrobial activity.

    PubMed

    Liu, Xiaoli; Zhao, Mouming; Luo, Wei; Yang, Bao; Jiang, Yueming

    2009-04-01

    The volatile components and in vitro antimicrobial activities of Emblica (Phyllanthus emblica L.) essential oils (EOs) obtained by hydrodistillation (HD-EO) and supercritical fluid extraction (SFE-EO) were investigated. The compositions of volatile compounds in these oils were tentatively determined by gas chromatography-mass spectrometry. The antimicrobial activites of these two extracts were investigated with microbiological tests against Gram-positive and Gram-negative bacteria and three pathogenic fungi. The main components of both oils were beta-caryophyllene, beta-bourbonene, 1-octen-3-ol, thymol, and methyleugenol. Both essential oils showed a broad spectrum of antimicrobial activity against all the tested microorganisms. Gram-positive bacteria were more sensitive to the investigated oils than Gram-negative bacteria. SFE-EO exhibited a higher antifungal activity compared to HD-EO.

  6. Distribution of iodine into blood components of the Sprague-Dawley rat differs with the chemical form administered

    NASA Technical Reports Server (NTRS)

    Thrall, K. D.; Bull, R. J.; Sauer, R. L.

    1992-01-01

    It has been reported previously that radioactivity derived from iodine distributes differently in the Sprague-Dawley rat depending on the chemical form administered (Thrall and Bull, 1990). In the present communication we report the differential distribution of radioactivity derived from iodine (I2) and iodide (I-) into blood components. Twice as much radioiodine is in the form of I- in the plasma of animals treated with 125I- compared to 125I2-treated rats. No I2 could be detected in the plasma. With an increase in dose, increasing amounts of radioactivity derived from 125I2-treated animals distribute to whole blood compared to equivalent doses of 125I-, reaching a maxima at a dose of 15.8 mumol I/kg body weight. Most of the radioactivity derived from I2 associates with serum proteins and lipids, in particular with albumin and cholesteryl iodide. These data indicate a differential distribution of radioactivity depending on whether it is administered as iodide or iodine. This is inconsistent with the commonly held view that iodine (I2) is reduced to iodide (I-) before it is absorbed systemically from the gastrointestinal tract.

  7. Drug target identification using network analysis: Taking active components in Sini decoction as an example.

    PubMed

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-20

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  8. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction

    PubMed Central

    Kaul, Sunil C.; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10–30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy. PMID:28207892

  9. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction.

    PubMed

    Kaushik, Mahesh K; Kaul, Sunil C; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  10. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  11. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  12. To ~P or Not to ~P? Non-canonical activation by two-component response regulators

    PubMed Central

    Desai, Stuti K.; Kenney, Linda J.

    2016-01-01

    Summary Bacteria sense and respond to their environment through the use of two-component regulatory systems. The ability to adapt to a wide range of environmental stresses is directly related to the number of two-component systems an organism possesses. Recent advances in this area have identified numerous variations on the archetype systems that employ a sensor kinase and a response regulator. It is now evident that many orphan regulators that lack cognate kinases do not rely on phosphorylation for activation and new roles for unphosphorylated response regulators have been identified. The significance of recent findings and suggestions for further research are discussed. PMID:27656860

  13. Antioxidant Activities and Chemical Constituents of Flavonoids from the Flower of Paeonia ostii.

    PubMed

    Zhang, Huifang; Li, Xiaofang; Wu, Ke; Wang, Mengke; Liu, Pu; Wang, Xinsheng; Deng, Ruixue

    2016-12-23

    Paeonia ostii is a traditional medicinal plant popularly used in China. This study intended to evaluate the antioxidant properties and the chemical components of the flavonoid-rich extracts from the flowers of P. ostii. The results showed that the flavonoid-rich extracts from the flowers of P. ostii had strong scavenging capacities on 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), hydroxyls, superoxide anions, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals in a dose-dependent manner. Five flavonoids, dihydrokaempferol (1), apigenin-7-O-β-d-glucoside (2), apigenin-7-O-β-d-neohesperidoside (3), kaempferol-7-O-β-d-glucopyranoside (4), and kaempferol-3-O-β-d-glucopyranosyl-7-O-β-d-glucopyranoside (5), were isolated from the flavonoid-rich extracts of the flowers of P. ostii. High-performance liquid chromatography (HPLC) analysis revealed that compounds 3 and 4 were abundant in the P. ostii flower and in flavonoid-rich extracts. The main components of the flower of P. ostii are flavonoids. The high antioxidant activity of the flavonoid-rich extracts may be attributed to the high content of flavonoids. The five isolated flavonoids were the primary antioxidant ingredients, and may play important roles in the strong antioxidant activities of this flower. Based on the obtained results, the flower of P. ostii could be a potential source of natural antioxidants in food and pharmaceutical applications.

  14. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole.

    PubMed

    Huang, Yongfu; Zhao, Jianglin; Zhou, Ligang; Wang, Jihua; Gong, Youwen; Chen, Xujun; Guo, Zejian; Wang, Qi; Jiang, Weibo

    2010-10-27

    In order to identify natural products for plant disease control, the essential oil of star anise (Illicium verum Hook. f.) fruit was investigated for its antifungal activity on plant pathogenic fungi. The fruit essential oil obtained by hydro-distillation was analyzed for its chemical composition by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). trans-Anethole (89.5%), 2-(1-cyclopentenyl)-furan (0.9%) and cis-anethole (0.7%) were found to be the main components among 22 identified compounds, which accounted for 94.6% of the total oil. The antifungal activity of the oil and its main component trans-anethole against plant pathogenic fungi were determined. Both the essential oil and trans-anethole exhibited strong inhibitory effect against all test fungi indicating that most of the observed antifungal properties was due to the presence of trans-anethole in the oil, which could be developed as natural fungicides for plant disease control in fruit and vegetable preservation.

  15. Acaricidal activity of Thymus vulgaris oil and its main components against Tyrophagus putrescentiae, a stored food mite.

    PubMed

    Jeong, E Y; Lim, J H; Kim, H G; Lee, H S

    2008-02-01

    The acaricidal activities of compounds derived from Thymus vulgaris (thyme) oil against Tyrophagus putrescentiae were assessed using an impregnated fabric disk bioassay, and were compared with those of the synthetic acaricides, benzyl benzoate and N,N-diethyl-m-toluamide. The observed responses differed according to dosage and chemical components. The 50% lethal dose (LD50) value of the T. vulgaris oil against T. putrescentiae was 10.2 microg/cm2. Biologically active constituents derived from T. vulgaris oil were purified by using silica gel chromatography and high-performance liquid chromatography. The structures of acaricidal components were analyzed by gas chromatography-mass spectrometry, 1H nuclear magnetic resonance (NMR), 13C NMR, 1H-13C COSY-NMR, and DEPT-NMR spectra, and were subsequently identified as carvacrol and thymol. Carvacrol was the most toxic compound with LD50 values (4.5 microg/cm2) significantly different from thymol (11.1 microg/cm2), benzyl benzoate (11.3 microg/cm2), and N,N-diethyl-m-toluamide (13.9 microg/cm2). Linalool was as toxic as was N,N-diethyl-m-toluamide. The lower LD50 of carvacrol indicates that it may be the major contributor of the toxicity of T. vulagaris oil against the stored food mite, although it only constitutes 14.2% of the oil. From this point of view, carvacrol and thymol can be very useful as potential control agents against stored food mite.

  16. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    PubMed

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-04

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

  17. Activity-guided isolation and identification of anti-staphylococcal components from Senecio tenuifolius Burm. F. leaf extracts

    PubMed Central

    Manubolu, Manjunath; Goodla, Lavanya; Ravilla, Sivajyothi; Obulum, Vijayasarathi Reddy

    2013-01-01

    Objective To investigate activity-guided isolation and identification of anti-Staphylococcus aures components from Senecio tenuifolius Burm. F. (S. tenuifolius). Methods Hexane, chloroform, ethyl acetate, methanol and aqueous extracts of S. tenuifolius were prepared by soxilation for antimicrobial activity against one registered Staphylococcus aureus (S. aureus) (ATCC No: 25923) and two clinical isolates, methicillin resistant and methicillin sensitive S. aureus. NCCL standard methods were followed for antibacterial activity. GC-MS was performed to identify the chemical composition of bio active fraction. Results Among all solvent extracts, methanol extract significantly reduced the growth of S. aureus (ATCC No: 25923), methicillin resistant and methicillin sensitive S. aureus with the best zone of inhibition at 16.23, 14.06 and 15.23 mm and minimum inhibition concentration (MIC) values at 426.16, 683.22 and 512.12 µg/mL, respectively. In order to detect the active component in methanol extract, it was further purified by column chromatography, which yielded four fractions (St1, St2, St3, and St4). Among these four fractions, St3 was effective against the tested strains of S. aures, with the best zone of inhibition at 15.09, 13.25 and 14.12 mm and with best MIC values at 88.16, 128.11 and 116.12 µg/mL, respectively. Effective fraction partially purified from S. tenuifolius (St3) yielded MIC's that were at least 20 fold less when compared to crude extract. GC-MS analysis of St3 revealed the presence of 3-[methyl-6,7-dihydro benzofuran-4 (5H)-one], 1,2-benzenedicarboxylic acid, hydroquinone, methyl ester and 3 unknown compounds. Conclusions The study provides scientific evidence for traditional and folklore medicinal use of S. tenuifolius in skin infections treatment. PMID:23620836

  18. Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling

    NASA Astrophysics Data System (ADS)

    Grančič, Peter; Štěpánek, František

    2011-08-01

    The multibody dynamics of a system of chemical swarm robots in a porous environment is investigated. The chemical swarm robots are modeled as Brownian particles capable of delivering an encapsulated chemical payload toward a given target location and releasing it in response to an external stimulus. The presence of chemical signals (chemo-attractant) in the system plays a crucial role in coordinating the collective movement of the particles via chemotaxis. For a number of applications, such as distributed chemical processing and targeted drug delivery, the understanding of factors that govern the collective behavior of the particles, especially their ability to localize a given target, is of immense importance. A hybrid modeling methodology based on the combination of the Brownian dynamics method and diffusion problem coupled through the chemotaxis phenomena is used to analyze the impact of a varying signaling threshold and the strength of chemotaxis on the ability of the chemical robots to fulfill their target localization mission. The results demonstrate that the selected performance criteria (the localization half time and the success rate) can be improved when an appropriate signaling process is chosen. Furthermore, for an optimum target localization strategy, the topological complexity of the porous environment needs to be reflected.

  19. Chemical composition and antibacterial activity of Pinus halepensis Miller growing in West Northern of Algeria

    PubMed Central

    Fekih, Nadia; Allali, Hocine; Merghache, Salima; Chaïb, Faïza; Merghache, Djamila; El Amine, Mohamed; Djabou, Nassim; Muselli, Alain; Tabti, Boufeldja; Costa, Jean

    2014-01-01

    Objective To find new bioactive natural products, the chemical composition and to sudy the antibacterial activity of essential oil components extracted from the aerial parts of the Algerian aromatic plant Pinus halepensis Miller (P. halepensis) (needles, twigs and buds). Methods The essential oil used in this study was isolated by hydrodistillation using a Clevenger-type apparatus according to the European Pharmacopoeia. The chemical composition was investigated using GC-retention indices (RI) and GC-MS. Results Forty-nine compounds, representing 97.9% of the total collective oil, were identified. Essential oil was dominated by hydrocarbon compounds (80.6%) especially monoterpenes (65.5%). The major compounds from ten oils stations were: myrcene (15.2%-32.0%), α-pinene (12.2%-24.5%), E-β-caryophyllene (7.0%-17.1%), terpinolene (1.8%-13.3%), 2-phenyl ethyl isovalerate (4.8%-10.9%), terpinene-4-ol (1.0%-8.2 %) and sabinene (1.5%-6.3%). The intra-species variations of the chemical compositions of P. halepensis aerial parts essential oils from ten Algerian sample locations were investigated using statistical analysis. Essential oil samples were clustered in 2 groups by hierarchical cluster analysis, according to their chemical composition. The essential oil revealed an interesting antimicrobial effect against Lysteria monocytogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumanii, Citrobacter freundii and Klebsiella pneumoniae. Conclusions These results suggest that the essential oil from P. halepensis may be a new potential source as natural antimicrobial applied in pharmaceutical and food industries.

  20. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms.

    PubMed

    Monzote, Lianet; García, Marley; Pastor, Jacinta; Gil, Lizette; Scull, Ramón; Maes, Louis; Cos, Paul; Gille, Lars

    2014-01-01

    Chenopodium ambrosioides is an aromatic herb used by native people to treat parasitic diseases. The aim of this work is to compare the in vitro anti-leishmanial activity of the essential oil (EO) from C. ambrosioides and its major components (ascaridole, carvacrol and caryophyllene oxide) and study their mechanism of action and activity against a panel of microorganism. Antileishmanial activity and cytotoxicity of the EO and major components was study. In addition, experiments to elucidate the mechanism of action were perform and activities against other microorganisms (bacteria, fungi and protozoa) were evaluate. All products were active against promastigote and amastigote forms of Leishmania. Ascaridole exhibited the better antileishmanial activity and the EO the highest selectivity index. The exploration of the mechanism suggests that the products cause a breakdown of mitochondrial membrane potential and a modification of redox indexes. Only EO showed antiprotozoal effect against Plasmodium falciparum and Trypanosoma brucei; while no activity against bacteria and fungi was observed. Our results demonstrate the potentialities of EO in cellular and molecular system, which could be consider in future studies to develop new antileishmanial drugs with a wide anti-parasitic spectrum.

  1. Active components of common traditional Chinese medicine decoctions have antioxidant functions.

    PubMed

    Guo, K J; Xu, S F; Yin, P; Wang, W; Song, X Z; Liu, F H; Xu, J Q; Zoccarato, I

    2011-10-01

    Many traditional Chinese medicine (TCM) decoctions are proven to have multiple functions in animal production. These decoctions are seldom recognized by the international scientific community because the mechanisms of action are not clearly elucidated. According to TCM theory, Cortex Phellodendri (COP), Rhizoma Atractylodes (RA), Agastache Rugosa (AR), and Gypsum Fibrosum (GF) can be used to formulate a medicinal compound that prevents or cures animal disease caused by heat stress. The aim of this research was to study the regulatory functions of the active components of TCM and to elucidate the effects of different TCM decoctions on antioxidant activity and lipid peroxide content, using in vitro and in vivo models of heat stress. For in vitro experiments, intestinal crypt-like epithelial cell line-6 (IEC-6) cells were employed to evaluate the effects of the active components of COP, RA, AR, and GF. For in vivo experiments, forty-eight 2-mo-old Chinese experimental mini-pigs (7.20 ± 0.02 kg) were randomly assigned to 4 groups: a normal-temperature group (NTG); a high-temperature group (HTG); HTG treated with COP, RA, AR, and GF (1:1:1:1, TCM1); and HTG treated with COP, RA, AR, and GF (1:1:1:0.5, TCM2). Results showed that the active components of the COP, RA, AR, and GF increased (P < 0.05) the proliferation and viability of heat-stressed IEC-6 cells and that the most effective treatment doses of COP alkaloid, RA Aetherolea, Herba Agastachis Aetherolea, and GF water extract were 200, 100, 100, and 200 µg/mL, respectively. All 4 active components increased (P < 0.05) superoxide dismutase, glutathione peroxidase activities, and glutathione content, and decreased (P < 0.05) malondialdehyde content with respect to the heat-stressed group to concentrations similar to those seen in NTG. In vivo experiments demonstrated that TCM1 and TCM2 improved (P < 0.05) the poor growth performance seen in HTG pigs. The superoxide dismutase, glutathione peroxidase activities, and

  2. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria.

    PubMed

    Shan, Bin; Cai, Yi-Zhong; Brooks, John D; Corke, Harold

    2007-07-11

    Cinnamomum burmannii Blume (cinnamon stick) from Indonesia is a little-investigated spice. In this study, the antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of cinnamon stick extract were evaluated against five common foodborne pathogenic bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella anatum). Cinnamon stick extract exhibited significant antibacterial properties. Major compounds in cinnamon stick were tentatively identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC-MS) as a predominant volatile oil component ((E)-cinnamaldehyde) and several polyphenols (mainly proanthocyanidins and (epi)catechins). Both (E)-cinnamaldehyde and proanthocyanidins significantly contributed to the antibacterial properties. Additionally, scanning electron microscopy was used to observe morphological changes of bacteria treated with the crude extract of cinnamon stick and its major components. This study suggests that cinnamon stick and its bioactive components have potential for application as natural food preservatives.

  3. Evaluation of impact factors on PM2.5 based on long-term chemical components analyses in the megacity Beijing, China.

    PubMed

    Chen, Yuan; Schleicher, Nina; Cen, Kuang; Liu, Xiuli; Yu, Yang; Zibat, Volker; Dietze, Volker; Fricker, Mathieu; Kaminski, Uwe; Chen, Yizhen; Chai, Fahe; Norra, Stefan

    2016-07-01

    Nine years of sampling and analyses of fine particles (PM2.5) were performed in Beijing from 2005 to 2013. Twenty-seven chemical elements and black carbon (BC) in PM2.5 were analyzed in order to study chemical characteristics and temporal distribution of Beijing aerosols. Principle component analysis defined different types of elemental sources, based on which, the influences of a variety of anthropogenic activities including governmental intervention measures and natural sources on air quality were evaluated. For the first time, Ga is used as a tracer element for heating activities mainly using coal in Beijing, due to its correlation with BC and coal combustion, as well as its concentration variation between the heating- and non-heating periods. The traffic restrictions effectively reduced emissions of relevant heavy metals such as As, Cd, Sn and Sb. The expected long-term effectiveness of the steel smelters relocation was not observed due to the nearby relocation with increased capacity. Firework display during every Chinese spring festival season and special events such as the Olympic Games resulted in several times higher concentrations of K, Sr and Ba than other days and thus they were proposed as tracers for firework display. The impacts of all these factors were quantified and evaluated. Sand dust or dust storms induced higher concentrations of geogenic elements in PM2.5 compared to non-dust days. Sustainable mitigation measures, such as traffic restrictions, are necessary to be continued and improved to obtain more "blue sky" days in the future.

  4. The Effects of Training on the Time Components of the Left Ventricle, and Cardiac Time Components: Sedentary versus Active Individuals.

    ERIC Educational Resources Information Center

    Plowman, Sharon Ann

    A review of previous research was completed to determine (a) the response of the cardiac time components of the left ventricle to varying types and intensities of training programs, (b) the probable physiological explanations for these responses, and (c) the significance of the changes which did or did not occur. It was found that, at rest,…

  5. The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS)

    NASA Astrophysics Data System (ADS)

    Moreno, F.; Pozuelos, F. J.; Novaković, B.; Licandro, J.; Cabrera-Lavers, A.; Bolin, Bryce; Jedicke, Robert; Gladman, Brett J.; Bannister, Michele T.; Gwyn, Stephen D. J.; Vereš, Peter; Chambers, Kenneth; Chastel, Serge; Denneau, Larry; Flewelling, Heather; Huber, Mark; Schunová-Lilly, Eva; Magnier, Eugene; Wainscoat, Richard; Waters, Christopher; Weryk, Robert; Farnocchia, Davide; Micheli, Marco

    2017-03-01

    We present deep imaging observations, orbital dynamics, and dust-tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada–France–Hawaii Telescope (CFHT) from mid-March to late July of 2016. A statistical analysis of backward-in-time integrations of the orbits of a large sample of clone objects of P/2016 J1-A and J1-B shows that the minimum separation between them occurred most likely ∼2300 days prior to the current perihelion passage, i.e., during the previous orbit near perihelion. This closest approach was probably linked to a fragmentation event of their parent body. Monte Carlo dust-tail models show that those two components became active simultaneously ∼250 days before the current perihelion, with comparable maximum loss rates of ∼0.7 and ∼0.5 kg s‑1, and total ejected masses of 8 × 106 and 6 × 106 kg for fragments J1-A and J1-B, respectively. Consequently, the fragmentation event and the present dust activity are unrelated. The simultaneous activation times of the two components and the fact that the activity lasted 6–9 months or longer, strongly indicate ice sublimation as the most likely mechanism involved in the dust emission process.

  6. Osteoblasts Proliferation and Differentiation Stimulating Activities of the Main Components of Epimedii folium

    PubMed Central

    Liu, Mingming; Xu, Haiyan; Ma, Yong; Cheng, Jian; Hua, Zhen; Huang, Guicheng

    2017-01-01

    Background: Osteoporosis is a disease of bones that leads to an increased risk of fracture. Epimedii Folium is commonly used for treating bone fractures and joint diseases for thousands of years in China. Methods: This study was aimed to screen active components, which might have the potency to stimulate osteoblasts proliferation and differentiation in Epimedii Folium. An HPLC method was established to analyze the main components in Epimedii Folium. The MTT and ALP methods were utilized for the assay of osteoblasts proliferation and differentiation activity. Bavachin, a flavonoid compound was treated as the positive control. Results: Totally eight compounds have been identified by comparing their retention time with correspondent standard substances. Icariside I and icariside II significantly stimulated cell proliferation and osteoblasts differentiation. All these compounds were found with a characterized flavonoid structure in each of their molecule backbones. Conclusion: These results lead to a hypothesis that flavonoid monoglycoside structure might be crucial to exhibit the activity. The structure–effect relationship of these compounds with flavonoid monoglycoside structure in mouse primary calvarial osteoblasts needs to be explored in further research. SUMMARY Eight compounds were identified by comparing their retention time with correspondent standard substances.Icariside I and icariside II significantly stimulated cell proliferation and osteoblasts differentiation.Flavonoid monoglycoside structure might be crucial to exhibit the osteoblasts proliferation and differentiation activity. Effects of the main components of Epimedii Folium on osteoblasts proliferation after treating 48 h. Abbreviations used: HPLC: High performance liquid chromatography, MTT: Methylthiazolyldiphenyl - tetrazolium bromide, ALP: Alkaline phosphatase PMID:28216889

  7. Essential oils of Retama raetam from Libya: chemical composition and antimicrobial activity.

    PubMed

    Awen, Bahlul Zayed Sh; Unnithan, C Ramachandra; Ravi, Subban; Kermagy, Adel; Sasikumar, J M; Khrbash, Amal S; Ekreem, Wafa Lutfi

    2011-05-01

    Retama raetam (Forssk) Webb & Berthel is well known in the folk medicine of North and East Mediterranean regions for the treatment of microbial infections. The powdered leaves are used to heal circumcision wounds and used as an antiseptic for wounds, skin rash and pruritus. In this study, to validate this antiseptic property, the chemical composition and antimicrobial activity of the essential oil from the flowers of R. raetam was evaluated. The oil was obtained using hydrodistillation and was analysed by gas chromatography-mass spectrometry. The antibacterial activity was achieved using disc diffusion and broth dilution assay against six bacteria species. Analysis of the essential oil revealed the presence of β-linalool (51%), 2-decen-1-ol (6.6%) and limonene (7.4%) as the major components. The results showed significant activity against microorganisms, especially Staphylococcus aureus, with inhibition zones and minimal inhibitory concentration values in the range of 5.0 mm and 3.0 mg mL⁻¹, respectively. The results on the antibacterial activity provide scientific support for the use of these plants in traditional herbal preparations.

  8. Ethnobotany, chemical constituents and biological activities of the flowers of Hydnora abyssinica A.Br. (Hydnoraceae).

    PubMed

    Al-Fatimi, M; Ali, N A A; Kilian, N; Franke, K; Arnold, N; Kuhnt, C; Schmidt, J; Lindequist, U

    2016-04-01

    Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg/mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen.

  9. AMDE-1 Is a Dual Function Chemical for Autophagy Activation and Inhibition

    PubMed Central

    Li, Min; Yang, Zuolong; Vollmer, Laura L.; Gao, Ying; Fu, Yuanyuan; Liu, Cui; Chen, Xiaoyun; Liu, Peiqing; Vogt, Andreas; Yin, Xiao-Ming

    2015-01-01

    Autophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1), triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy. PMID:25894744

  10. Growth of multi-component alloy films with controlled graded chemical composition on sub-nanometer scale

    DOEpatents

    Bajt, Sasa; Vernon, Stephen P.

    2005-03-15

    The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.

  11. Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans.

    PubMed

    Stauder, Monica; Papetti, Adele; Mascherpa, Dora; Schito, Anna Maria; Gazzani, Gabriella; Pruzzo, Carla; Daglia, Maria

    2010-11-24

    In previous studies we demonstrated that green and roasted coffee contains low molecular weight (LMW) compounds capable of inhibiting the ability of Streptococcus mutans, the major causative agent of human dental caries, to adhere to hydroxyapatite (HA) beads. This study addressed the ability of the whole high molecular weight coffee fraction (cHMW) and of its melanoidin and non-melanoidin components (GFC1-5), applied at concentrations that occur in coffee beverages, to (i) inhibit S. mutans growth; (ii) affect S. mutans sucrose-dependent adhesion to and detachment from saliva-coated HA beads (sHA); and (iii) inhibit biofilm development on microtiter plates. The results indicated that only cHMW is endowed with antimicrobial activity. The cHMW fraction and each of the five GFC components inhibited S. mutans adhesion, the strongest effect being exerted by cHMW (91%) and GFC1 (88%). S. mutans detachment from sHA was four times greater (∼20%) with cHMW and the GFC1 and GFC4 melanoidins than with controls. Finally, biofilm production by S. mutans was completely abolished by cHMW and was reduced by 20% by the melanoidin components GFC2 and GFC4 and by the non-melanoidin component GFC5 compared with controls. Altogether these findings show that coffee beverage contains both LMW compounds and HMW melanoidin and non-melanoidin components with a strong ability to interfere in vitro with the S. mutans traits relevant for cariogenesis.

  12. The ghost component of the mass balances at the Critical Zone scale: the chemical reactivity of immobile water

    NASA Astrophysics Data System (ADS)

    Nsir, K.; Mercury, L.; Azaroual, M.; Coquet, Y.

    2014-12-01

    and without capillary effects, according to a wide range of conditions (climate, recharge rate, water potential in each domain, etc). It demonstrates how the capillary component acts on the chemical dynamics at the CZ scale. Keywords: critical zone, unsaturated zone, capillarity, reactive transport modeling,"stretched water".

  13. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  14. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  15. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  16. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  17. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange...

  18. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity

    PubMed Central

    Yang, Hye Jin; Weon, Jin Bae; Lee, Bohyoung; Ma, Choong Je

    2011-01-01

    Background: Hwangryunhaedok-tang is a traditional herbal prescription that has sedative activity, hypotensive and anti-bacterial effects. Objective: In this study, we investigated the alteration of contents of components in Hwangryunhaedok-tang, antioxidant activity and neuroprotective activity by fermentation with Lactobacillus acidophilus KFRI 128. Materials and Methods: Contents of three marker compounds (geniposide, berberine and palmatine) and unknown compounds in the Hwangryunhaedok-tang (HR) and the fermented Hwangryunhaedok-tang (FHR) were measured and compared using the established high-performance liqued chromatograph coupled with a photodiode (HPLC-DAD) method. The antioxidant activity of HR and FHR were determined by DPPH free radical and hydrogen peroxide (H2O2) scavenging assay. Also, the neuroprotective activities of HR and FHR against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. Results: The contents of geniposide and palmatine were decreased but the content of berberine was increased in the FHR. And the contents of unknown compounds (1), (2), (3), (4) and (5) in the HR were altered by fermentation. Electron donating activity (EDA, %) value of FHR was higher than HR for DPPH radical scavenging activity and H2O2 scavenging activity, respectively. In the MTT assay, FHR showed more potent neuroprotective activity than HR by 513.90%. Conclusion: The FHR using microorganism could convert compounds in HR and enhance the antioxidant and neuroprotective activity. PMID:21969791

  19. Digestibility and Bioavailability of the Active Components of Erica australis L. Aqueous Extracts and Their Therapeutic Potential as Acetylcholinesterase Inhibitors

    PubMed Central

    Dias, Pilar; Falé, Pedro L.; Martins, Alice; Rauter, Amélia P.

    2015-01-01

    Erica australis L. (Ericaceae) is used in traditional medicine to treat many free-radical related ailments. In the present work, the stability and biological activity of the plant aqueous extracts submitted to an in vitro digestive process were investigated. Chemical stability was monitored by HPLC-DAD and LC-MS/MS, while the bioactivities were evaluated through the inhibition of acetylcholinesterase (AChE) and DPPH radical scavenging activity. Both extracts, whose main components were flavonol glycosides, inhibited AChE, showing IC50 values of 257.9 ± 6.2 µg/mL and 296.8 ± 8.8 µg/mL for the decoction and for the infusion, respectively. Significant radical scavenging activities were also revealed by both extracts, as denoted by the IC50 values for the decoction, 6.7 ± 0.1 µg/mL, and for the infusion, 10.5 ± 0.3 µg/mL. After submission to gastric and pancreatic juices, no remarkable alterations in the composition or in the bioactivities were observed, suggesting that the extracts may pass through the gastrointestinal tract, keeping their composition and therefore their biological properties. Moreover, the bioavailability of the components of both extracts, as studied in a Caco-2 cell model, showed that compounds can permeate the membrane, which is a condition to exert their biological activities. Our results add further support to the potential of E. australis for its antioxidant and neuroprotective properties. PMID:26347794

  20. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100.

    PubMed

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2005-01-01

    We have previously reported that the C-Med 100 extract of the plant Uncaria tomentosa induces prolonged lymphocyte half life and hence increased spleen cell number in mice receiving the extract in their drinking water. Further, the extract induces cell proliferation arrest and inhibits activation of the transcriptional regulator nuclear factor kappaB (NF-kappaB) in vitro. We now report that mice exposed to quinic acid (QA), a component of this extract, had significantly increased number of spleen cells, thus recapitulating the in vivo biological effect of C-Med 100 exposure. Commercially supplied QA (H(+) form) did not, however, inhibit cell proliferation in vitro, while the ammonia-treated QA (QAA) was a potent inhibitor. Both QA and QAA inhibited NF-kappaB activity in exposed cells at similar concentrations. Thus, our present data identify QA as a candidate component for both in vivo and in vitro biological effects of the C-Med 100 extract.

  1. [Preliminary study on molluscicidal effect of active components from Centipeda minima].

    PubMed

    Ni, Hong; Ma, An-Ning; Zhang, Yun; Geng, Peng

    2009-08-01

    The active components from Centipeda minima were extracted by water or ethanol, and identified by FTIR spectroscopy and UV-visible spectrophotometer. The molluscicidal effect of aqueous extract and ethanol extract from Centipeda minima against Oncomelania hupensis was determined as referring to the WHO guidelines for laboratory molluscicidal test. Treated with over 2.0 g/L aqueous extract and ethanol extract for five days, the mortality of O. hupensis was up to 100%, and their LC50, for snails was 0.50 g/L and 0.62 g/L, respectively. The molluscicidal activity of aqueous extract was higher than that of ethanol extract. The main components of aqueous extract and ethanol extract were sesquiterpenes lactones and sterols.

  2. Principal component analysis of Birkeland currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.

    2015-12-01

    Principal component analysis is performed on Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. Principal component analysis (PCA) identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The regions 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns.

  3. Chemical properties and toxicity of soils contaminated by mining activity.

    PubMed

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and <1-10% for lead. In 1 mol HCl dm(-3), the solubility of the studied metals was much higher and obtained values depending on the collection site, from 45 to 92% for zinc, from 74 to 99%, and from 79 to 99% for lead. The lower solubility of the heavy metals in 1 mol dm(-3) NH4NO3 than 1 mol HCl dm(-3) is connected with that, the ammonium nitrate has low extraction power, and it is used in determining the bioavailable (active) form of heavy metals. Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to

  4. chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L.

    PubMed

    Angioni, Alberto; Barra, Andrea; Cereti, Elisabetta; Barile, Daniela; Coïsson, Jean Daniel; Arlorio, Marco; Dessi, Sandro; Coroneo, Valentina; Cabras, Paolo

    2004-06-02

    The chemical composition of the essential oil of the Sardinian Rosmarinus officinalis L. obtained by hydro distillation and steam\\hydro distillation was studied using GC-FID and MS. Samples were collected at different latitude and longitude of Sardinia (Italy). The yields ranged between 1.75 and 0.48% (v/w, volume/dry-weight). A total of 30 components were identified. The major compounds in the essential oil were alpha-pinene, borneol, (-) camphene, camphor, verbenone, and bornyl-acetate. Multivariate analysis carried out on chemical molecular markers, with the appraisal of chemical, pedological, and random amplified polymorphic DNA data, allows four different clusters to be distinguished. The antimicrobial and antifungal tests showed a weak activity of Sardinian rosemary. On the other hand, an inductive effect on fungal growth, especially toward Fusarium graminearum was observed.

  5. Visualization of cancer-related chemical components in mouse pancreas tissue by tapping-mode scanning probe electrospray ionization mass spectrometry.

    PubMed

    Otsuka, Yoichi; Satoh, Shuya; Naito, Junpei; Kyogaku, Masafumi; Hashimoto, Hiroyuki

    2015-10-01

    Mass spectrometry imaging is an informative approach for the comprehensive analysis of multiple components inside biological specimens. We used novel tapping-mode scanning probe electrospray ionization mass spectrometry method to visualize cancer-related chemical components in the mouse pancreas tissue section at a sampling pitch of 100 µm. Positive ion mode measurements from m/z 100 to 1500 resulted in the visualization of multiple components that are tentatively assigned as polyamines, lipids and proteins. Their signal intensities inside the cancerous and the non-cancerous regions were found to be significantly different by the two-sample t-test.

  6. [Distribution of 137Cs, 90Sr and their chemical analogues in the components of an above-ground part of a pine in a quasi-equilibrium condition].

    PubMed

    Mamikhin, S V; Manakhov, D V; Shcheglov, A I

    2014-01-01

    The additional study of the distribution of radioactive isotopes of caesium and strontium and their chemical analogues in the above-ground components of pine in the remote from the accident period was carried out. The results of the research confirmed the existence of analogy in the distribution of these elements on the components of this type of wood vegetation in the quasi-equilibrium (relatively radionuclides) condition. Also shown is the selective possibility of using the data on the ash content of the components of forest stands of pine and oak as an information analogue.

  7. Application of chromatography technology in the separation of active components from nature derived drugs.

    PubMed

    Zhao, H-Y; Jiang, J-G

    2010-11-01

    Chromatography technology has been widely applied in various aspects of the pharmacy research on traditional Chinese medicine (TCM). This paper reviews literatures, published in the past decades, on the separation of active component from TCM using chromatography technology. Ultra-performance liquid chromatography (UPLC), high-speed counter-current chromatography (HSCCC), rapid resolution liquid chromatography (RRLC), supercritical fluid chromatography (SFC), affinity chromatography (AC), and bio-chromatography (BC) are introduced in detail. Compared to high performance of high-performance liquid chromatography (HPLC), analysis time and solvent loss are significantly reduced by UPLC with increase in resolution and sensitivity. Some ingredients from nature derived drugs can be separated more completely by HSCCC, which has remarkable characteristics such as low cost, simple operation and no pollution. Trace components from complex systems can be selectively and efficiently separated and purified by AC, This feature makes it effective in isolation and identification of active components of Chinese herbs. Interference of some impurities could be excluded by BC. Active ingredients that are difficult to be separated by normal method can be acquired by SFC. Currently, application of novel chromatography techniques in TCM is still in the exploratory stage and many problems, such as preparation of stationary phase and detection, need to be solved.

  8. Effect of Lycoris chejuensis and Its Active Components on Experimental Models of Alzheimer's Disease.

    PubMed

    Kim, Joonki; Park, Yurim; Chun, Yoon Sun; Cha, Jin Wook; Kwon, Hak Cheol; Oh, Myung Sook; Chung, Sungkwon; Yang, Hyun Ok

    2015-08-12

    We found that an extract of Lycoris chejuensis and its three isolated active components, narciclasine, 7-deoxynarciclasine, and 7-deoxy-trans-dihydronarciclasine, each significantly reduced the formation of amyloid-β peptides in HeLa cells transfected with an amyloid precursor protein carrying the Swedish mutation up to 45 ± 3.6%. The extract down-regulated amyloid precursor protein, especially the mature form by up to 88%, and reduced the ability of secretases to generate toxic amyloid-β. Double-transgenic mice treated with the extract for 4 months also showed significantly reduced levels of amyloid-β and plaques while exhibiting improved memory functions in the Morris water maze and novel object recognition tests. In conclusion, the extract and isolated active components of L. chejuensis decreased the production of amyloid-β by attenuating amyloid precursor protein levels. Furthermore, the extract improved the disrupted memory functions in animals while inhibiting amyloid plaque formation. Thus, this extract, as well as its active components, could prove beneficial in the treatment of Alzheimer's disease.

  9. Significant Modules and Biological Processes between Active Components of Salvia miltiorrhiza Depside Salt and Aspirin.

    PubMed

    Li, Yuan; Xie, Yanming; Wang, Lianxin; Zhang, Yingying; Gu, Hao; Chai, Yan

    2016-01-01

    The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside salt and aspirin's related genes were identified via the STITCH4.0 and GeneCards Database. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28 overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus, insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further clinical trials to confirm this hypothesis are still needed.

  10. Significant Modules and Biological Processes between Active Components of Salvia miltiorrhiza Depside Salt and Aspirin

    PubMed Central

    Xie, Yanming; Wang, Lianxin; Zhang, Yingying; Gu, Hao; Chai, Yan

    2016-01-01

    The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside salt and aspirin's related genes were identified via the STITCH4.0 and GeneCards Database. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28 overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus, insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further clinical trials to confirm this hypothesis are still needed. PMID:27069488

  11. Pharmacological actions and therapeutic applications of Salvia miltiorrhiza depside salt and its active components

    PubMed Central

    Wu, Wen-yu; Wang, Yi-ping

    2012-01-01

    Salvia miltiorrhiza, a traditional medical herb known as danshen, has been widely used in China to improve blood circulation, relieve blood stasis, and treat coronary heart disease. S miltiorrhiza depside salt is a novel drug recently developed at the Shanghai Institute of Materia Medica; it contains magnesium lithospermate B (MLB) and its analogs, rosmarinic acid (RA) and lithospermic acid (LA), as active components. The drug has been used in the clinic to improve blood circulation and treat coronary heart disease. The pharmacological effects of the depside salt from S miltiorrhiza and its components have been extensively investigated. Experimental studies have demonstrated that magnesium lithospermate B possesses a variety of biological activities, especially protective effects in the cardiovascular system such as attenuation of atherosclerosis and protection against myocardial ischemia-reperfusion injury. Rosmarinic acid and lithospermic acid also show beneficial effects on the cardiovascular system. This paper reviews the recent findings regarding the mechanisms underlying the pharmacological actions of the active components of S miltiorrhiza depside salt, based on published works and our own observations. PMID:22941285

  12. Effect of linalool as a component of Humulus lupulus on doxorubicin-induced antitumor activity.

    PubMed

    Miyashita, Michiko; Sadzuka, Yasuyuki

    2013-03-01

    As malignant neoplasm is a major public health problem, there is a need for the development of a novel modulator that enhances antitumor activity and reduces adverse reactions to antitumor agents. In this study, the effects of some volatile oil components in Humulus lupulus on doxorubicin (DOX) permeability in tumor cells and DOX-induced antitumor activity were examined. In vitro, DOX levels in tumor cells by combined linalool as its component significantly increased in the DOX influx system, and the increased effect by linalool on DOX cytotoxicity was shown. In vivo, the combination of DOX with linalool significantly decreased tumor weight compared with that of DOX alone treated group. The promotion of DOX influx level by combined linalool did not depend on energy, whereas it was suppressed by the absence of Na(+). This promoting effect was suppressed by the presence of S-(4-nitrobenzyl)-6-thioinosine and inhibited dependently on phlorizin concentration. It is considered that linalool promoted DOX influx in tumor cells because of its action on DOX transport through concentrative Na(+)-dependent nucleoside transporter 3, which increased DOX concentration in tumor cells and thus enhanced the antitumor activity of DOX. Therefore, linalool as a food component is anticipated to be an effective DOX modulator.

  13. Spectral components at visual and infrared wavelengths in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stein, W. A.; Tokunaga, A. T.; Rudy, R. J.

    1984-01-01

    Aperture-dependent infrared photometry of active galactic nuclei are presented which illustrate the importance of eliminating starlight of the galaxy in order to obtain the intrinsic spectral distribution of the active nuclei. Separate components of emission are required to explain the infrared emission with a spectral index of alpha approx = 2 and the typical visual-ultraviolet continuum with alpha approx = 0.3 (where F(nu) varies as nu(sup-alpha). Present evidence does not allow unique determination of the appropriate mechanisms, but the characteristics of each are discussed.

  14. Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signalling.

    PubMed

    Huynh, TuAnh Ngoc; Noriega, Chris E; Stewart, Valley

    2013-05-01

    Negative control in two-component signal transduction results from sensor transmitter phosphatase activity for phospho-receiver dephosphorylation. A hypothetical mechanism for this reaction involves a catalytic residue in the H-box active-site region. However, a complete understanding of transmitter phosphatase regulation is hampered by the abundance of kinase-competent, phosphatase-defective missense substitutions (K(+) P(-) phenotype) outside of the active-site region. For the Escherichia coli NarX sensor, a model for the HisKA_3 sequence family, DHp domain K(+) P(-) mutants defined two classes. Interaction mutants mapped to the active site-distal base of the DHp helix 1, whereas conformation mutants were affected in the X-box region of helix 2. Thus, different types of perturbations can influence transmitter phosphatase activity indirectly. By comparison, K(+) P(-) substitutions in the HisKA sensors EnvZ and NtrB additionally map to a third region, at the active site-proximal top of the DHp helix 1, independently identified as important for DHp-CA domain interaction in this sensor class. Moreover, the NarX transmitter phosphatase activity was independent of nucleotides, in contrast to the activity for many HisKA family sensors. Therefore, distinctions involving both the DHp and the CA domains suggest functional diversity in the regulation of HisKA and HisKA_3 transmitter phosphatase activities.

  15. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer

    PubMed Central

    Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R. Dyche; Rao, Madan; Mayor, Satyajit

    2016-01-01

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  16. The screening of chemicals for juvenoid-related endocrine activity using the water flea Daphnia magna.

    PubMed

    Wang, Helen Ying; Olmstead, Allen W; Li, Hong; Leblanc, Gerald A

    2005-09-10

    U.S. Environmental Protection Agency is charged with developing a screening and testing paradigm for detecting endocrine toxicity of chemicals that are subject to regulation under the Food Quality Protection and the Safe Drinking Water Acts. In this study, we developed and evaluated a screening assay that could be employed to detect juvenoid-related endocrine-modulating activity in an invertebrate species. Juvenoid activity, anti-juvenoid activity, and juvenoid potentiator activity of chemicals was assessed using the water flea Daphnia magna. Male sex determination is under the regulatory control of juvenoid hormone, presumably methyl farnesoate, and this endpoint was used to detect juvenoid modulating activity of chemicals. Eighteen chemicals were evaluated for juvenoid agonist activity. Positive responses were detected with the juvenoid hormones methyl farnesoate and juvenile hormone III along with the insect growth regulating insecticides pyriproxyfen, fenoxycarb, and methoprene. Weak juvenoid activity also was detected with the cyclodiene insecticide dieldrin. Assays performed repetitively with compounds that gave either strong positive, weak positive, or negative response were 100% consistent indicating that the assay is not prone to false positive or negative responses. Five candidate chemicals were evaluated for anti-juvenoid activity and none registered positive. Four chemicals (all trans-retinoic acid, methoprene, kinoprene, bisphenol A) also were evaluated for their ability to potentiate the activity of methyl farnesoate. All registered positive. Results demonstrate that an in vivo assay with a crustacean species customarily employed in toxicity testing can be used to effectively screen chemicals for juvenoid-modulating activity.

  17. Traditional uses, chemical composition and biological activities of Sideritis raeseri Boiss. & Heldr.

    PubMed

    Romanucci, Valeria; Di Fabio, Giovanni; D'Alonzo, Daniele; Guaragna, Annalisa; Scapagnini, Giovanni; Zarrelli, Armando

    2017-01-01

    Sideritis species have been used in folk medicine for their antimicrobial, antiulcerogenic, digestive and anti-inflammatory properties. Over the years, the phytochemistry of the genus Sideritis has been studied, and various terpenoids, sterols, coumarins and especially flavonoid aglycones and glycosides have been identified. In particular, species from the Balkan Peninsula have been studied and were found to be rich in flavonoids, with valuable antioxidant activity. In the folk medicine of the Balkan countries, Sideritis raeseri is used as a herbal tea in the treatment of inflammation, gastrointestinal disorders and coughs, and also as a tonic, whereas extracts are used as a component of dietary supplements for anaemia. Its dried inflorescences are used to prepare a beverage called 'mountain tea'. In light of the considerable interest generated in the chemistry, pharmacological properties and commercial value of S. raeseri Boiss. & Heldr., we review and summarise the available literature on these plants. The review details the chemical composition of the essential oil, its mineral and polyphenol contents, the naming of these plants and their physicochemical characterisation, and the nuclear magnetic resonance spectral data and biological properties associated with the plant extracts, with a focus on their potential chemotherapeutic applications. © 2016 Society of Chemical Industry.

  18. Anti-oxidant activities of Acanthopanax senticosus stems and their lignan components.

    PubMed

    Lee, Sanghyun; Son, Dongwook; Ryu, Jiyoung; Lee, Yeon Sil; Jung, Sang Hoon; Kang, Jungil; Lee, Sang Yun; Kim, Hyun-Su; Shin, Kuk Hyun

    2004-01-01

    The antioxidant activities of Acanthopanax senticosus stems were evaluated in CCl4-intoxicated rats. The n-butanol fraction from the water extract of the stems, when pretreated orally at 200 mg/kg/day for 7 consecutive days in rats, was demonstrated to exhibit significant increases in antioxidant enzyme activities such as hepatic cytosolic superoxide dismutase, catalase and glutathione peroxidase by 30.31, 19.82 and 155%, respectively. The n-butanol fraction whereas showed a significant inhibition of serum GPT activity (65.79% inhibition) elevated with hepatic damage induced by CCl4-intoxication. Eleutheroside B, a lignan component, isolated from the n-butanol fraction was found to cause a moderate free radical scavenging effect on DPPH, its scavenging potency as indicated in IC50 value, being 58.5 microM. These results suggested that the stems of A. senticosus possess not only antioxidant but also hepatoprotective activities.

  19. Antioxidant, antimicrobial activities and fatty acid components of flower, leaf, stem and seed of Hypericum scabrum.

    PubMed

    Shafaghat, Ali

    2011-11-01

    The hexane extracts of flower, leaf, stem, and seed of Hypericum scabrum, which were collected from northwestern Iran, were obtained by extraction in a Soxhlet apparatus. The fatty acids were converted to methyl esters and determined by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS) systems. The hexane extract from the flower, leaf, stem, and seed contained 39.1%, 43.2%, 29.0%, and 37.6% of omega-3 fatty acids, respectively. The other main components of the flower extract were tetracosane (12.2%) and palmitic acid (9.3%), and that of the leaf extract was palmitic acid (7.4%). The stem and seed extracts contained bis(2-ethylhexyl)phthalate (18.7% and 35.7%), nonacosane (11.7% and 3.9%) and linoleic acid (6.5% and 6.9%) as major components. The hexane extracts of different parts from H. scabrum represent an important source of omega-3 fatty acids in several Hypericum species. The antioxidant activity of all hexane extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The results indicate that hexane extracts from different parts of H. scabrum possess considerable antioxidant activity. The highest radical scavenging activity was detected in seed, which had an IC50 = 165 microg/mL. The antimicrobial activity of the extracts of those samples were determined against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae), as well as three fungi (Candida albicans, Saccharomyces cerevisiae, and Aspergillus niger). The bioassay showed that the oil exhibited moderate antimicrobial activity. This study reveals that the all parts of this plant are attractive sources of fatty acid components, especially the essential ones, as well as of effective natural antioxidants.

  20. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components.

    PubMed

    Wang, Wei; Li, Nan; Luo, Meng; Zu, Yuangang; Efferth, Thomas

    2012-03-05

    In this study, Rosmarinus officinalis L. essential oil and three of its main components 1,8-cineole (27.23%), α-pinene (19.43%) and β-pinene (6.71%) were evaluated for their in vitro antibacterial activities and toxicology properties. R. officinalis L. essential oil possessed similar antibacterial activities to α-pinene, and a little bit better than β-pinene, while 1,8-cineole possessed the lowest antibacterial activities. R. officinalis L. essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC₅₀) values on SK-OV-3, HO-8910 and Bel-7402 were 0.025‰, 0.076‰ and 0.13‰ (v/v), respectively. The cytotoxicity of all the test samples on SK-OV-3 was significantly stronger than on HO-8910 and Bel-7402. In general, R. officinalis L. essential oil showed greater activity than its components in both antibacterial and anticancer test systems, and the activities were mostly related to their concentrations.

  1. Update on the Chemical Composition Of Crystalline, Smectite, and Amorphous Components for Rocknest Soil and John Klein and Cumberland Mudstone Drill Fines at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.; Treiman, A. H.; Yen, A. S.; Achilles, C. N.; Archer, P. D.; Bristow, T. F.; Cavanaugh, P.; Fenrdrich, K.; Crisp, J. A.; Des Marais, D. J.; Farmer, J. D.; Grotzinger, J. P.; Mahaffy, P. R.; McAdam, A. C.; Morookian, J. M.

    2015-01-01

    We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.

  2. Chemical composition and antimicrobial activity of essential oils from Centaurea pannonica and C. jacea.

    PubMed

    Milosević, Tanja; Argyropoulou, Catherine; Solujić, Slavica; Murat-Spahić, Dragana; Skaltsa, Helen

    2010-10-01

    The chemical composition and antimicrobial activity of the essential oils obtained by hydrodistillation from Centaurea pannonica (Heufel) Simonkai and C. jacea L. (Asteraceae), were investigated. The essential oils were analyzed by GC and GC-MS. Forty five and twenty nine compounds were identified in the two oils, respectively. C. pannonica oil was rich in fatty acids (43.7%), with 9-octadecanoic acid (34.0%) and (Z,Z)-9,12-octadecadienoic acid (8.6%) as the major compounds. In contrast, the essential oil of C. jacea was dominated by oxygenated sesquiterpenes (43.2%), among which caryophyllene oxide (23.5%) and spathulenol (8.9%) were the major constituents. However, the oil was also characterized by an important fatty acid fraction (15.5%), with 9-octadecanoic acid (8.9%) and hexadecanoic acid (6.6%) being the main components. The antimicrobial activities of the essential oils were evaluated by the microdilution method against three Gram-positive and three Gram-negative bacteria, and one yeast. Both oils exhibited significant antimicrobial activity, especially against Gram-positive bacteria.

  3. Chemical composition and biological activities of essential oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae).

    PubMed

    Silvério, Marcelo S; Del-Vechio-Vieira, Glauciemar; Pinto, Míriam A O; Alves, Maria S; Sousa, Orlando V

    2013-08-16

    The chemical composition of the essential oils obtained by hydrodistillation of different parts of Eremanthus erythropappus, including leaves, branches and inflorescences, was investigated by Gas Chromatography and Gas Chromatography/Mass Spectrometry. The antimicrobial activity of the oils was assessed by the disc diffusion and microdilution methods, while the antioxidant activity was evaluated by DPPH and reducing power tests. The main compounds found in the essential oils derived from the inflorescences and leaves were β-caryophyllene, germacrene-D, α-copaene and β-pinene. α-Bisabolol was the major component in the branches. The oils were active against Staphylococcus aureus, Streptococcus pyogenes and fungi, but not Escherichia coli and Pseudomonas aeruginosa. The MIC values ranged from 0.01 to 0.50 mg/mL. Using the DPPH test, the IC50 values ranged from 38.77 ± 0.76 to 102.24 ± 1.96 μg/mL, while the reducing power test produced IC50 values between 109.85 ± 1.68 and 169.53 ± 0.64 μg/mL. The results revealed that the E. erythropappus oils are new promising potential sources of antimicrobial and antioxidant compounds with good future practical applications for human health.

  4. Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts.

    PubMed

    Zhang, Huan-Li; Gan, Xiao-Qing; Fan, Qing-Fei; Yang, Jing-Jing; Zhang, Ping; Hu, Hua-Bin; Song, Qi-Shi

    2017-04-06

    In this study, 44 compounds in the petroleum ether extract of Maqian (Zanthoxylum myriacanthum var. pubescens) bark, a traditional Dai herbal medicine, were identified by GC-MS. Major components included 3(2H)-benzofuranone, asarinin and (dimethoxymethyl)-3-methoxy-benzene. A total of 18 compounds were isolated from the ethyl acetate extracts of Maqian bark by column chromatography and identified by chemical and spectral analyses. Rhoifoline B, zanthoxyline dimethoxy derivative, N-nortidine, nitidine, decarine are the major alkaloids. Both the petroleum ether and ethyl acetate extracts showed significant inhibition on NO production, which imply anti-inflammatory activity, in lipopolysaccharide-induced RAW 264.7 cells without cell toxicity. Decarine is the major anti-inflammatory constituent with NO IC50 values of 48.43 μM on RAW264.7 cells. The petroleum ether extract, the ethyl acetate extract and decarine showed anti-inflammatory activities through inhibiting TNF-α and IL-1β production in lipopolysaccharide-stimulated THP-1 cells without cell toxicity too. Decarine showed anti-inflammatory activity on human colon cells by reducing IL-6 and IL-8 production in TNF-α+IL-1β-induced Caco-2 cells. These results support the use of Maqian bark as a remedy for enteritis and colitis recorded by Dai medicine in China, and elucidate the major pharmacological compounds in Maqian bark.

  5. Chemical constituents and anti-inflammatory activities of Maqian (Zanthoxylum myriacanthum var. pubescens) bark extracts

    PubMed Central

    Zhang, Huan-li; Gan, Xiao-qing; Fan, Qing-fei; Yang, Jing-jing; Zhang, Ping; Hu, Hua-bin; Song, Qi-shi

    2017-01-01

    In this study, 44 compounds in the petroleum ether extract of Maqian (Zanthoxylum myriacanthum var. pubescens) bark, a traditional Dai herbal medicine, were identified by GC-MS. Major components included 3(2H)-benzofuranone, asarinin and (dimethoxymethyl)-3-methoxy-benzene. A total of 18 compounds were isolated from the ethyl acetate extracts of Maqian bark by column chromatography and identified by chemical and spectral analyses. Rhoifoline B, zanthoxyline dimethoxy derivative, N-nortidine, nitidine, decarine are the major alkaloids. Both the petroleum ether and ethyl acetate extracts showed significant inhibition on NO production, which imply anti-inflammatory activity, in lipopolysaccharide-induced RAW 264.7 cells without cell toxicity. Decarine is the major anti-inflammatory constituent with NO IC50 values of 48.43 μM on RAW264.7 cells. The petroleum ether extract, the ethyl acetate extract and decarine showed anti-inflammatory activities through inhibiting TNF-α and IL-1β production in lipopolysaccharide-stimulated THP-1 cells without cell toxicity too. Decarine showed anti-inflammatory activity on human colon cells by reducing IL-6 and IL-8 production in TNF-α+IL-1β-induced Caco-2 cells. These results support the use of Maqian bark as a remedy for enteritis and colitis recorded by Dai medicine in China, and elucidate the major pharmacological compounds in Maqian bark. PMID:28383530

  6. Antioxidant activity and chemical characterization of essential oil of Bunium persicum.

    PubMed

    Shahsavari, Neda; Barzegar, Mohsen; Sahari, Mohammad Ali; Naghdibadi, Hasanali

    2008-12-01

    The search for natural antioxidants, especially of plant origin, has notably increased in recent years. Bunium persicum Boiss. is an economically important medicinal plant growing wild in the dry temperature regions in Iran. In this study, chemical constituents of the essential oil of the seed from Bunium persicum Boiss. have been studied by GC/MS technique. The major components were caryophyllene (27.81%), gamma-terpinene (15.19%), cuminyl acetate (14.67%). Individual antioxidant assays such as, DPPH* scavenging activity and beta-carotene bleaching have been carried out. In DPPH* system, the EC(50) value of essential oil was determined as 0.88 mg/mL. In beta-carotene bleaching antioxidant activity of essential oil (0.45%) was almost equal to BHT at 0.01%. In addition, the antioxidant activity of the essential oil was evaluated in crude soybean oil by monitoring peroxide and thiobarbituric acid values of the oil substrate. The results showed that the Bunium persicum essential oil (BPEO) was able to reduce the oxidation rate of the soybean oil in the accelerated condition at 60 degrees C (oven test). The essential oil at 0.06% showed the same effect of BHA at 0.02%. Hence, BPEO could be used as an additive in food after screening.

  7. LIMITED-USE CHEMICAL PROTECTIVE CLOTHING FOR EPA SUPERFUND ACTIVITIES

    EPA Science Inventory

    Because contractor field personnel complained about the poor durability and fit of limited-use chemical protective clothing (CPC) most commonly used at hazardous waste site operations, the U.S. Environmental Protection Agency (EPA) initiated a study to • characterize use of CPC...

  8. Chemical compositions and antimicrobial activity of the essential oils of Piper abbreviatum, P. erecticaule and P. lanatum (Piperaceae).

    PubMed

    Wan Salleh, Wan Mohd Nuzul Hakimi; Ahmad, Farediah; Yen, Khong Heng

    2014-12-01

    The study was designed to examine the chemical composition and antimicrobial activities of essential oils extracted from the aerial parts of three Piper species: Piper abbreviatum, P. erecticaule and P. lanatum, all from Malaysia. GC and GC/MS analysis showed qualitative and quantitative differences between these oils. GC and GC-MS analysis of P. abbreviatum, P. erecticaule and P. lanatum oils resulted in the identification of 33, 35 and 39 components, representing 70.5%, 63.4% and 78.2% of the components, respectively. The major components of P. abbreviatum oil were spathulenol (11.2%), (E)-nerolidol (8.5%) and β-caryophyllene (7.8%), whereas P. erecticaule oil mainly contained β-caryophyllene (5.7%) and spathulenol (5.1%). Borneol (7.5%), β-caryophyllene (6.6%) and α-amorphene (5.6%) were the most abundant components in P. lanatum oil. Antimicrobial activity was carried out using disc diffusion and broth micro-dilution method against nine microorganisms. All of the essential oils displayed weak activity towards Gram-positive bacteria with MIC values in the range 250-500 μg/mL. P. erecticaule oil showed the best activity on Aspergillus niger (MIC 31.3 μg/mL), followed by P. lanatum oil (MIC 62.5 μg/mL). This study demonstrated that the essential oils have potential as antimicrobial agents and may be useful in the pharmaceutical and cosmetics industries.

  9. Volatile components of selected liverworts, and cytotoxic, radical scavenging and antimicrobial activities of their crude extracts.

    PubMed

    Komala, Ismiarni; Ito, Takuya; Yagi, Yasuyuki; Nagashima, Fumihiro; Asakawa, Yoshinori

    2010-09-01

    Crude extracts of the Tahitian liverworts Mastigophora diclados and Frullania sp., the Indonesian Frullania sp., Dumortiera hirsuta and Marchantia sp., and the Japanese Porella perrottetiana were investigated chemically by using gas chromatography-mass spectrometry (GC-MS). All extracts contained various volatile sesqui- and diterpenoids and a few aromatic compounds. The Tahitian M. diclados and Frullania sp., and the Indonesian Frullania sp. exhibited cytotoxic activity against HL-60 and KB cell lines. The extracts of the Tahitian M. diclados and the Indonesian Marchantia sp. showed radical scavenging activity, whereas the crude extracts of the Tahitian M. diclados and Frullania sp., and the Indonesian Frullania and Marchantia sp. showed antimicrobial activity against Staphylococcus aureus and Bacillus subtilis.

  10. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    PubMed

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  11. Antimicrobial activity of essential oil components against potential food spoilage microorganisms.

    PubMed

    Klein, G; Rüben, C; Upmann, M

    2013-08-01

    The antimicrobial activity of six essential oil components against the potential food spoilage bacteria Aeromonas (A.) hydrophila, Escherichia (E.) coli, Brochothrix (B.) thermosphacta, and Pseudomonas (P.) fragi at single use and in combination with each other was investigated. At single use, the most effective oil components were thymol (bacteriostatic effect starting from 40 ppm, bactericidal effect with 100 ppm) and carvacrol (50 ppm/100 ppm), followed by linalool (180 ppm/720 ppm), α-pinene (400 ppm/no bactericidal effect), 1,8-cineol (1,400 ppm/2,800 ppm), and α-terpineol (600 ppm/no bactericidal effect). Antimicrobial effects occurred only at high, sensorial not acceptable concentrations. The most susceptible bacterium was A. hydrophila, followed by B. thermosphacta and E. coli. Most of the essential oil component combinations tested showed a higher antimicrobial effect than tested at single use. Antagonistic antimicrobial effects were observed particularly against B. thermosphacta, rarely against A. hydrophila. The results show that the concentration of at least one of the components necessary for an antibacterial effect is higher than sensorial acceptable. So the use of herbs with a high content of thymol, carvacrol, linalool, 1,8-cineol, α-pinene or α-terpineol alone or in combination must be weighted against sensorial quality.

  12. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis.

    PubMed

    Nakamura, Kazuki; Shinozuka, Kazumasa; Yoshikawa, Noriko

    2015-01-01

    Cordyceps sinensis, a fungus that parasitizes on the larva of Lepidoptera, has been used as a valued traditional Chinese medicine. We investigated the effects of water extracts of Cordyceps sinensis (WECS), and particularly focused on its anticancer and antimetastatic actions. Based on in vitro studies, we report that WECS showed an anticancer action, and this action was antagonized by an adenosine A3 receptor antagonist. Moreover, this anticancer action of WECS was promoted by an adenosine deaminase inhibitor. These results suggest that one of the components of WECS with an anticancer action might be an adenosine or its derivatives. Therefore, we focused on cordycepin (3'-deoxyadenosine) as one of the active ingredients of WECS. According to our experiments, cordycepin showed an anticancer effect through the stimulation of adenosine A3 receptor, followed by glycogen synthase kinase (GSK)-3β activation and cyclin D1 suppression. Cordycepin also showed an antimetastatic action through inhibiting platelet aggregation induced by cancer cells and suppressing the invasiveness of cancer cells via inhibiting the activity of matrix metalloproteinase (MMP)-2 and MMP-9, and accelerating the secretion of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 from cancer cells. In conclusion, cordycepin, an active component of WECS, might be a candidate anticancer and antimetastatic agent.

  13. C1q complement component and -antibodies reflect SLE activity and kidney involvement.

    PubMed

    Horák, P; Hermanová, Z; Zadrazil, J; Ciferská, H; Ordeltová, M; Kusá, L; Zurek, M; Tichý, T

    2006-07-01

    The role of the complement system in the pathogenesis of systemic diseases is very ambivalent. In systemic lupus erythematosus (SLE), many abnormalities in the activation of the complement system have been reported. The most important antibodies formed against the complement system in SLE are the ones associated with the C1q component. The aim of this study was to assess separately the anti-C1q antibodies and C1q component in the serum from 65 patients with SLE, then in individuals with (n=33) and without (n=32) lupus nephritis and with active (n=36) and nonactive (n=29) form of the disease (European Consensus Lupus Activity Measurement, ECLAM>3, ECLAMcomponent. The mean serum levels were 90.89+/-13 IU/ml for anti-C1q antibodies and 145+/-52 mg/l for C1q. The significant difference in C1q antibodies levels was found between individuals with and without lupus nephritis (117.5+/-52 IU/ml vs. 28.2+/-12.2 IU/ml, p=0.0001) and between those with active and nonactive SLE (154.6+/-115 IU/ml vs. 50.6+/-73, p=0.001). C1q complement component was statistically lower in patients with lupus nephritis (144+/-30 mg/l vs. 175+/-50 mg/ml, p=0.002) and in active patients (138+/-40 mg/l vs. 202+/-20 mg/l, p=0.001). If the two parameters are measured together, they seem to have a mirror-like pattern of serum concentration, and they are potential markers of SLE activity and of the presence of lupus nephritis.

  14. Chemical constituents with anti-allergic activity from the root of Edulis Superba, a horticultural cultivar of Paeonia lactiflora.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Tamura, Takayuki; Kadowaki, Makoto; Wang, Zhengtao; Yoshimatsu, Kayo; Komatsu, Katsuko

    2016-04-01

    The methanolic extract and its subfractions from the dried root of Edulis Superba, a horticultural cultivar of Paeonia lactiflora Pallas, showed potent anti-allergic effect as inhibition of immunoglobulin E (IgE)-mediated degranulation in rat basophil leukemia (RBL)-2H3 cells. Bioassay-guided fractionation led to the isolation of 26 compounds, including a new norneolignan glycoside, paeonibenzofuran (1), together with 25 known ones (2-26). The chemical structure of the new compound was elucidated on the basis of spectroscopic and chemical evidences. Among the isolated compounds, mudanpioside E (5) with paeoniflorin-type skeleton and quercetin (16) showed potent inhibitory activity against a degranulation marker, β-hexosaminidase release with IC50 values of 40.34 and 25.05 μM, respectively. A primary structure-activity relationship of these components was discussed.

  15. A three-year investigation of daily PM2.5 main chemical components in four sites: the routine measurement program of the Supersito Project (Po Valley, Italy)

    NASA Astrophysics Data System (ADS)

    Ricciardelli, Isabella; Bacco, Dimitri; Rinaldi, Matteo; Bonafè, Giovanni; Scotto, Fabiana; Trentini, Arianna; Bertacci, Giulia; Ugolini, Pamela; Zigola, Claudia; Rovere, Flavio; Maccone, Claudio; Pironi, Claudia; Poluzzi, Vanes

    2017-03-01

    The Supersito Project (http://www.supersito-er.it) has been active in the Emilia-Romagna region, southern part of the Po Valley (Italy), since 2011. Focal aim of the project is to enhance the knowledge on atmospheric aerosol and its impact on human health. In the framework of Supersito, major chemical components of daily PM2.5 were investigated over a period of more than three years at four sampling sites, representative of dissimilar territorial conditions: one rural background (SPC) and three urban background sites in the coastal (RN), central (MS) and inner area (PR) of the region. In all the sites, organic and elemental carbon and water soluble inorganic ions accounted for more than 70% of PM2.5 mass, during all seasons. Nitrate and organic carbon (OC) were the main components of winter PM2.5, while summer aerosol was mainly contributed by OC and sulphate. OC was dominated by primary sources, with a potentially important contribution from biomass burning, in winter, while secondary processes dominated OC production in summer. A substantial homogeneity was observed on a regional scale in terms of spatial distribution of pollutants, with EC only presenting significant differences between urban and rural areas during winters. Nonetheless, differences were observed between the coastal and the inner part of the region, with the former being systematically characterized by higher concentrations of carbonaceous compounds and lower concentrations of ammonium nitrate. The coastal area was likely influenced by the aged OC from the Po Valley outflow in addition to local sources, while the scarcity of local sources of ammonia limited the formation of ammonium nitrate. In the studied area, local and regional meteorology - mostly governed by geographical collocation and orography - was responsible for PM2.5 mass and composition no less than local and regional emission sources.

  16. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation.

    PubMed

    Zhu, Yingdong; Warin, Renaud F; Soroka, Dominique N; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4-M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC(50) of 24.43 µM in HCT-116 human colon cancer cells and an IC(50) of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC(50) values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4-M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC(50)s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment.

  17. The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function

    PubMed Central

    Cai, Weili; Wei, Youheng; Jarnik, Michal; Reich, John; Lilly, Mary A.

    2016-01-01

    TORC1 is a master regulator of metabolism in eukaryotes that responds to multiple upstream signaling pathways. The GATOR complex is a newly defined upstream regulator of TORC1 that contains two sub-complexes, GATOR1, which inhibits TORC1 activity in response to amino acid starvation and GATOR2, which opposes the activity of GATOR1. While the GATOR1 complex has been implicated in a wide array of human pathologies including cancer and hereditary forms of epilepsy, the in vivo relevance of the GATOR2 complex remains poorly understood in metazoans. Here we define the in vivo role of the GATOR2 component Wdr24 in Drosophila. Using a combination of genetic, biochemical, and cell biological techniques we demonstrate that Wdr24 has both TORC1 dependent and independent functions in the regulation of cellular metabolism. Through the characterization of a null allele, we show that Wdr24 is a critical effector of the GATOR2 complex that promotes the robust activation of TORC1 and cellular growth in a broad array of Drosophila tissues. Additionally, epistasis analysis between wdr24 and genes that encode components of the GATOR1 complex revealed that Wdr24 has a second critical function, the TORC1 independent regulation of lysosome dynamics and autophagic flux. Notably, we find that two additional members of the GATOR2 complex, Mio and Seh1, also have a TORC1 independent role in the regulation of lysosome function. These findings represent a surprising and previously unrecognized function of GATOR2 complex components in the regulation of lysosomes. Consistent with our findings in Drosophila, through the characterization of a wdr24-/- knockout HeLa cell line we determined that Wdr24 promotes lysosome acidification and autophagic flux in mammalian cells. Taken together our data support the model that Wdr24 is a key effector of the GATOR2 complex, required for both TORC1 activation and the TORC1 independent regulation of lysosomes. PMID:27166823

  18. [Correlation analysis between meteorological factors, biomass, and active components of Salvia miltiorrhiza in different climatic zones].

    PubMed

    Zhang, Chen-lu; Liang, Zong-suo; Guo, Hong-bo; Liu, Jing-ling; Liu, Yan; Liu, Feng-hua; Wei, Lang-zhu

    2015-02-01

    In this study, the growth and accumulation of active components of Salvia miltiorrhiza in twenty two experimental sites which crossing through three typical climate zones. The S. miltiorrhiza seedlings with the same genotype were planted in each site in spring, which were cultivated in fields with uniform management during their growing seasons till to harvest. The diterpene ketones (dihydrotanshinone, cryptotanshinone, tanshinone I and tanshinone II(A)) in S. miltiorrhiza root samples were determined by using high-performance liquid chromatography (HPLC) method. The biomass of root (root length, number of root branches, root width and dry weight) was also measured. The results showed that tanshinone II(A) in all samples of each site were higher than the standards required by China Pharmacopoeia. It has been found there is a relationship between root shape and climate change. The correlation analysis between active components and meteorological factors showed that the accumulation of tanshinones were effected by such meteorological factors as average relative humidity from April to October > average vapor pressure from April to October > average temperature difference day and night from April to October > annual average temperature and so on. The correlation analysis between root biomass and meteorological factors exhibited that root shape and accumulation of dry matter were affected by those factors, such as average annual aboveground (0-20 cm) temperature from April to October > annual average temperature > average vapor pressure from April to October > annual active accumulated temperature > annual average temperature > average vapor pressure from April to October. The accumulation of tanshinones and biomass was increased with the decrease of latitude. At the same time, the dry matter and diameter of root decreased if altitude rises. In addition, S. miltiorrhiza required sunlight is not sophisticated, when compared with humid and temperature. To sum up, S

  19. Study on the effects of sulfur fumigation on chemical constituents and antioxidant activity of Chrysanthemum morifolium cv. Hang-ju.

    PubMed

    Wang, Shan; Hao, Li-Juan; Zhu, Jing-Jing; Zhang, Qi-Wei; Wang, Zhi-Min; Zhang, Xian; Song, Xiao-mei

    2014-04-15

    The traditional after-harvesting drying method of C. morifolium cv. Hang-ju (HJ) is sun drying, but recently sulfur fumigation is increasingly used as a cheap and convenient method. However, the effects of sulfur fumigation on chemical constituents and potential activities of HJ were unknown. A comprehensively comparison of the chemical profiles between non-fumigated HJ (NHJ) and sulfur-fumigated HJ (SHJ) was conducted by HPLC fingerprints analysis and the discrepant peaks were identified or tentatively assigned by HPLC-ESI/MS(n). Dramatic chemical changes were found that the contents of 4 flavonoid aglycones remarkably increased while those of 7 glycosides significantly reduced which suggested that sulfur-fumigation induced flavonoid glycosides transformed into aglycons by hydrolysis reaction. A significant loss of hydroxycinnamoylquinic acids showed the sulfur fumigation was a destructive effect on HJ. Principal component analysis (PCA) was employed to rapidly discriminate NHJ and SHJ samples. By ICP-OES analysis, it was found that the residue of sulfur of SHJ were three times higher than NHJ (p<0.05). The antioxidant activity of NHJ and SHJ were evaluated by DPPH and FRAP assay, and the results showed that NHJ had much stronger antioxidant activities than SCF (p<0.05). Combining the results of chemical analysis, residue of sulfur and pharmacological evaluation, it showed that the sulfur fumigation was a destructive effect on HJ.

  20. Analysis of the autoproteolytic activity of the recombinant helper component proteinase from zucchini yellow mosaic virus.

    PubMed

    Boonrod, Kajohn; Füllgrabe, Marc W; Krczal, Gabi; Wassenegger, Michael

    2011-10-01

    The multifunctional helper component proteinase (HC-Pro) of potyviruses contains an autoproteolytic function that, together with the protein 1 (P1) and NIa proteinase, processes the polyprotein into mature proteins. In this study, we analysed the autoproteolytic active domain of zucchini yellow mosaic virus (ZYMV) HC-Pro. Several Escherichia coli-expressed MBP:HC-Pro:GFP mutants containing deletions or point mutations at either the N- or C-terminus of the HC-Pro protein were examined. Our results showed that amino acids essential for the proteolytic activity of ZYMV HC-Pro are distinct from those of the tobacco etch virus HC-Pro, although the amino acid sequences in the proteolytic active domain are conserved among potyviruses.

  1. Nitrogen and Phosphorus Removal from Combined Sewage Components by Microbial Activity1

    PubMed Central

    Finstein, M. S.

    1966-01-01

    When primary domestic sewage sludge was combined with settled sewage or secondary-treatment plant effluent, synergism resulted. The activity (measured by oxygen uptake, and the removal of Kjeldahl nitrogen and orthophosphate from solution) which resulted from incubating sludge together with settled sewage exceeded the sum of the activities when these components were incubated separately. A similar synergistic effect occurred with sludge and effluent. The sewage sludges were deficient in readily available nitrogen, but no shortage of phosphorus was demonstrated. The addition of ammonium and orthophosphate salts to sludge, in concentrations equivalent to those found in settled sewage and effluent, stimulated sludge oxygen uptake at least 80% as much as settled sewage or effluent. It is suggested that the synergism reflects increased microbial activity resulting from widened carbon-nitrogen and carbon-phosphorus ratios achieved by combining sludge with nutrient-rich settled sewage or effluent. PMID:5927052

  2. Activity of carbohydrate oxidases as influenced by wheat flour dough components.

    PubMed

    Degrand, L; Rakotozafy, L; Nicolas, J

    2015-08-15

    The carbohydrate oxidase (COXMn) from Microdochium nivale may well have desired functionalities as a dough and bread improver, similarly to Aspergillus niger glucose oxidase (GOX). COXMn catalyses the oxidation of various monosaccharides as well as maltooligosaccharides for which the best activity is obtained towards the maltooligosaccharides of polymerisation degrees 3 and 4. For the same activity towards glucose under air saturation, we show that COXMn exhibits a similar efficiency towards maltose as GOX towards glucose whatever the oxygen supply. Assays with COXMn show that no competition exists between carbohydrates naturally present in the wheat flour. We show that reaction products (d-glucono-δ-lactone and hydrogen peroxide) and the wheat flour dough component, ferulic acid, have no noticeable specific effect on the COXMn activity. The demonstrated differences in kinetics between COXMn and GOX allow predicting of differences in the functional behaviours of those enzymes during wheat flour dough formation.

  3. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers

    PubMed Central

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu235 makes no direct contact with the cofactor. The role of the conserved Glu571 residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  4. 32 CFR 21.425 - How does a DoD Component's authority flow to awarding and administering activities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false How does a DoD Component's authority flow to awarding and administering activities? 21.425 Section 21.425 National Defense Department of Defense OFFICE... a DoD Component's authority flow to awarding and administering activities? The Head of a...

  5. Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis

    SciTech Connect

    Reynolds, S.H.; Stowers, S.J.; Patterson, R.M.; Maronpot, R.R.; Anderson, M.W.

    1988-06-01

    The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

  6. Chemical modification of capuramycins to enhance antibacterial activity

    PubMed Central

    Bogatcheva, Elena; Dubuisson, Tia; Protopopova, Marina; Einck, Leo; Nacy, Carol A.; Reddy, Venkata M.

    2011-01-01

    Objectives To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. Methods Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). Results Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. Conclusions Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv. PMID:21186194

  7. Negative control in two-component signal transduction by transmitter phosphatase activity.

    PubMed

    Huynh, TuAnh Ngoc; Stewart, Valley

    2011-10-01

    Bifunctional sensor transmitter modules of two-component systems exert both positive and negative control on the receiver domain of the cognate response regulator. In negative control, the transmitter module accelerates the rate of phospho-receiver dephosphorylation. This transmitter phosphatase reaction serves the important physiological functions of resetting response regulator phosphorylation level and suppressing cross-talk. Although the biochemical reactions underlying positive control are reasonably well understood, the mechanism for transmitter phosphatase activity has been unknown. A recent hypothesis is that the transmitter phosphatase reaction is catalysed by a conserved Gln, Asn or Thr residue, via a hydrogen bond between the amide or hydroxyl group and the nucleophilic water molecule in acyl-phosphate hydrolysis. This hypothetical mechanism closely resembles the established mechanisms of auxiliary phosphatases such as CheZ and CheX, and may be widely conserved in two-component signal transduction. In addition to the proposed catalytic residues, transmitter phosphatase activity also requires the correct transmitter conformation and appropriate interactions with the receiver. Evidence suggests that the phosphatase-competent and autokinase-competent states are mutually exclusive, and the corresponding negative and positive activities are likely to be reciprocally regulated through dynamic control of transmitter conformations.

  8. [Biologically active peptides derived from food proteins as the food components with cardioprotective properties].

    PubMed

    Iwaniak, Anna; Darewicz, Małgorzata; Minkiewicz, Piotr; Protasiewicz, Monika; Borawska, Justyna

    2014-06-01

    Food proteins are the source of peptides with many biological activities. One of them is their impact on blood circulatory system. This group of peptides includes the ones with the ability to reduce the blood pressure (inhibitors of angiotensin converting enzyme--ACE), antithrombotic, and to lower the cholesterol level. Among the above-mentioned peptides' bioactivities, the most of them act as the ACE inhibitors. Some of them are the functional food components and nutraceuticals and possess the status of food with special use. The main known source of antithrombotic and cholesterol lowering peptides are milk and soy proteins, respectively. However, the scientists make the efforts to find new alternative sources of peptides with the above-mentioned activities. It should be noted, that although the bioactive peptides are considered as the safe food components and thus be supportive in the cardiovascular diseases therapy, they cannot substitute the drugs. This review shows the characteristics of selected peptides with: blood pressure reducing, antithrombotic, and cholesterol level reducing activities. We focused on the sequences that were identified in food proteins as well as were tested on humans or animals.

  9. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria.

    PubMed

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent.

  10. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria

    PubMed Central

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent. PMID:26351584

  11. An investigation of antioxidant and anti-inflammatory activities from blood components of Crocodile (Crocodylus siamensis).

    PubMed

    Phosri, Santi; Mahakunakorn, Pramote; Lueangsakulthai, Jiraporn; Jangpromma, Nisachon; Swatsitang, Prasan; Daduang, Sakda; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-10-01

    Antioxidant and anti-inflammatory activities were found from Crocodylus siamensis (C. siamensis) blood. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, nitric oxide scavenging, hydroxyl radical scavenging and linoleic peroxidation assays were used to investigate the antioxidant activities of the crocodile blood. Results show that crocodile blood components had antioxidant activity, especially hemoglobin (40.58 % nitric oxide radical inhibition), crude leukocyte extract (78 % linoleic peroxidation inhibition) and plasma (57.27 % hydroxyl radical inhibition). Additionally, the anti-inflammatory activity of the crocodile blood was studied using murine macrophage (RAW 264.7) as a model. The results show that hemoglobin, crude leukocyte extract and plasma were not toxic to RAW 264.7 cells. Also they showed anti-inflammatory activity by reduced nitric oxide (NO) and interleukin 6 (IL-6) productions from lipopolysaccharide (LPS)-stimulated cells. The NO inhibition percentages of hemoglobin, crude leukocyte extract and plasma were 31.9, 48.24 and 44.27 %, respectively. However, only crude leukocyte extract could inhibit IL-6 production. So, the results of this research directly indicate that hemoglobin, crude leukocyte extract and plasma of C. siamensis blood provide both antioxidant and anti-inflammatory activities, which could be used as a supplementary agent in pharmaceutical products.

  12. Antirheumatoid arthritis effect of Rhus verniciflua and of the active component, sulfuretin.

    PubMed

    Choi, Jongwon; Yoon, Byung-Jae; Han, Yong Nam; Lee, Kyung-Tae; Ha, Joohun; Jung, Hyun-Ju; Park, Hee-Juhn

    2003-10-01

    Oral administration of the MeOH extract of Rhus verniciflua or of an EtOAc fraction containing an EtOAc-soluble portion of the MeOH extract slightly decreased rheumatoid arthritis (RA) and C-reactive protein (CRP) factors in Freund's complete adjuvant reagent FCA-treated rats, indicating that they are active extracts for rheumatoid arthritis, the EtOAc extract being more active. Treatment with these two extracts prevented histological changes such as synovial cell proliferation, inflammatory cell infiltration and fat necrosis compared with an FCA-treated group. Oral administration (30 mg/kg) of sulfuretin and fustin, which were isolated from the EtOAc extract by activity-guided separation, significantly decreased RA and CRP factors, the former being more active than the latter. Treatment with the EtOAc fraction ( p. o.) containing sulfuretin significantly decreased malondialdehyde (MDA) formation, and highly increased the activities of superoxide dismutase, catalase and glutathione peroxidase. Inhibition of xanthine oxidase and aldehyde oxidase in FCA-treated rats was also evident. Since treatment with sulfuretin and the EtOAc extract decreased the concentration of infiltrated mast cells in the rat knee exhibiting rheumatoid arthritis, we suggest that the Rhus verniciflua extract, which contains sulfuretin as an active component, may prevent rheumatoid syndromes by inhibiting reactive oxygen species.

  13. Characterization of the third component of complement (C3) after activation by cigarette smoke

    SciTech Connect

    Kew, R.R.; Ghebrehiwet, B.; Janoff, A.

    1987-08-01

    Activation of lung complement by tobacco smoke may be an important pathogenetic factor in the development of pulmonary emphysema in smokers. We previously showed that cigarette smoke can modify C3 and activate the alternative pathway of complement in vitro. However, the mechanism of C3 activation was not fully delineated in these earlier studies. In the present report, we show that smoke-treated C3 induces cleavage of the alternative pathway protein, Factor B, when added to serum containing Mg-EGTA. This effect of cigarette smoke is specific for C3 since smoke-treated C4, when added to Mg-EGTA-treated serum, fails to activate the alternative pathway and fails to induce Factor B cleavage. Smoke-modified C3 no longer binds significant amounts of (/sup 14/C)methylamine (as does native C3), and relatively little (/sup 14/C)methylamine is incorporated into its alpha-chain. Thus, prior internal thiolester bond cleavage appears to have occurred in C3 activated by cigarette smoke. Cigarette smoke components also induce formation of noncovalently associated, soluble C3 multimers, with a Mr ranging from 1 to 10 million. However, prior cleavage of the thiolester bond in C3 with methylamine prevents the subsequent formation of these smoke-induced aggregates. These data indicate that cigarette smoke activates the alternative pathway of complement by specifically modifying C3 and that these modifications include cleavage of the thiolester bond in C3 and formation of noncovalently linked C3 multimers.

  14. Induction of apoptosis in human cervical carcinoma Hela cells with active components of Menispermum dauricum.

    PubMed

    Wang, J Y; Sun, S; Liu, L; Yang, W S

    2014-02-13

    Menispermum dauricum DC possesses a wide range of pharmacological effects. In this study, the mechanism of apoptosis induced by active components of M. dauricum was investigated in the human cervical carcinoma HeLa cell line. HeLa cells were treated with different M. dauricum concentrations over different time periods. The proliferation-inhibitory rate and cytotoxic effect of HeLa cells were measured by using the methyl thiazolyl tetrazolium (MTT) assay, and the apoptotic rate was detected by flow cytometry. Expressions of caspase-9, caspase-8, caspase-3, Bcl-2, and Fas proteins, in the apoptotic pathway, and the expression of nuclear factor-kappa B (NF-κB) were detected by SP immunocytochemistry. The MTT assay showed that active components of M. dauricum could significantly inhibit the growth of HeLa cells in a dose- and time-dependent manner (P<0.01). The Sub-Gl peak was found by flow cytometry, and the maximal apoptosis rate was 24.93%. Immunocytochemistry showed that after treatment with M. dauricum, the expressions of caspase-8, caspase-9, caspase-3, Fas protein, and NF-κB all increased, and the expression of the Bcl-2 protein decreased, with significant differences relative to the control group (P<0.01). Apoptosis in HeLa cells could be induced by active components of M. dauricum through the NF-κB signal transduction pathway and the caspase pathway, which was related to the downregulation of Bcl-2 expression and the upregulation of Fas expression.

  15. Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis?

    PubMed Central

    Huang, Qing-Chun; Wang, Mao-Jie; Chen, Xiu-Min; Yu, Wan-Lin; Chu, Yong-Liang; He, Xiao-Hong; Huang, Run-Yue

    2016-01-01

    OBJECTIVES This review stated the possible application of the active components of licorice, glycyrrhizin (GL) and glycyrrhetinic acid (GA), in rheumatoid arthritis (RA) treatment based on the cyclooxygenase (COX)-2/thromboxane A2 (TxA2) pathway. METHODS The extensive literature from inception to July 2015 was searched in PubMed central, and relevant reports were identified according to the purpose of this study. RESULTS The active components of licorice GL and GA exert the potential anti-inflammatory effects through, at least in part, suppressing COX-2 and its downstream product TxA2. Additionally, the COX-2/TxA2 pathway, an auto-regulatory feedback loop, has been recently found to be a crucial mechanism underlying the pathogenesis of RA. However, TxA2 is neither the pharmacological target of non-steroidal anti-inflammatory drugs (NSAIDs) nor the target of disease modifying anti-rheumatic drugs (DMARDs), and the limitations and side effects of those drugs may be, at least in part, attributable to lack of the effects on the COX-2/TxA2 pathway. Therefore, GL and GA capable of targeting this pathway hold the potential as a novel add-on therapy in therapeutic strategy, which is supported by several bench experiments. CONCLUSIONS The active components of licorice, GL and GA, could not only potentiate the therapeutic effects but also decrease the adverse effects of NSAIDs or DMARDs through suppressing the COX-2/TxA2 pathway during treatment course of RA. PMID:26498361

  16. Discrete piezoelectric sensors and actuators for active control of two-dimensional spacecraft components

    NASA Technical Reports Server (NTRS)

    Bayer, Janice I.; Varadan, V. V.; Varadan, V. K.

    1991-01-01

    This paper describes research into the use of discrete piezoelectric sensors and actuators for active modal control of flexible two-dimensional structures such as might be used as components for spacecraft. A dynamic coupling term is defined between the sensor/actuator and the structure in terms of structural model shapes, location and piezoelectric behavior. The relative size of the coupling term determines sensor/actuator placement. Results are shown for a clamped square plate and for a large antenna. An experiment was performed on a thin foot-square plate clamped on all sides. Sizable vibration control was achieved for first, second/third (degenerate) and fourth modes.

  17. Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health?

    PubMed

    DeFina, Laura F; Haskell, William L; Willis, Benjamin L; Barlow, Carolyn E; Finley, Carrie E; Levine, Benjamin D; Cooper, Kenneth H

    2015-01-01

    Physical activity (PA) and cardiorespiratory fitness (CRF) both have inverse relationships to cardiovascular (CV) morbidity and mortality. Recent position papers and guidelines have identified the important role of both of these factors in CV health. The benefits of PA and CRF in the prevention of CV disease and risk factors are reviewed. In addition, assessment methodology and utilization in the research and clinical arenas are discussed. Finally, the benefits, methodology, and utilization are compared and contrasted to better understand the two (partly) distinct components and their impact on CV health.

  18. Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation

    PubMed Central

    Bugni, Tim S.; Andjelic, Cynthia D.; Pole, Ann R.; Rai, Prem; Ireland, Chris M.; Barrows, Louis R.

    2009-01-01

    A traditional preparation of Parmotrema saccatilobum (Taylor) Hale (Family: Parmeliaceae) is being considered for inclusion into the PNG national drug formulary by the Ministry of Health Taskforce on Traditional Medicines. The lichen preparation is traditionally used in the Milne Bay province of Papua New Guinea for analgesic and anti-inflammatory activities. A hexane extract of Parmotrema saccatilobum yielded the principle components atranorin and chloroatranorin. Atranorin and chloroatranorin were tested in a COX-1 and -2 enzyme inhibition assay, which showed that atranorin inhibited COX-1 in a dose dependent manner and suggests partial inhibition by atranorin and chloroatranorin of COX-2 and COX-1, respectively. PMID:19289158

  19. Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation.

    PubMed

    Bugni, Tim S; Andjelic, Cynthia D; Pole, Ann R; Rai, Prem; Ireland, Chris M; Barrows, Louis R

    2009-07-01

    A traditional preparation of Parmotrema saccatilobum (Taylor) Hale (Family: Parmeliaceae) is being considered for inclusion into the PNG national drug formulary by the Ministry of Health Taskforce on Traditional Medicines. The lichen preparation is traditionally used in the Milne Bay province of Papua New Guinea for analgesic and anti-inflammatory activities. A hexane extract of P. saccatilobum yielded the principle components atranorin and chloroatranorin. Atranorin and chloroatranorin were tested in a COX-1 and -2 enzyme inhibition assay, which showed that atranorin inhibited COX-1 in a dose dependent manner and suggests partial inhibition by atranorin and chloroatranorin of COX-2 and COX-1, respectively.

  20. Viral hepatitis A, active component, U.S. Armed Forces, 2000-2010.

    PubMed

    2011-08-01

    From 2000 to 2010, there were 214 incident diagnoses of acute hepatitis A among active component members of the U.S. Armed Forces; the crude overall incidence rate during the period was 1.37 per 100,000 person-years. Rates of incident diagnoses of acute hepatitis A were relatively low throughout the period and much lower than during the pre-vaccine era (1990-1996). There were disproportionate numbers of diagnoses of acute hepatitis A among service members born in countries endemic for the infection. The low rates of acute hepatitis A among U.S. military members overall reflect the widespread use of hepatitis A virus vaccine.

  1. Mental Disorders and Mental Health Problems, Active Component, U.S. Armed Forces, 2000-2011

    DTIC Science & Technology

    2012-06-01

    301.83, 301.84, 301.89, 301.9 Schizophrenia 295.xx Other psychoses 293.81, 293.82, 297.0x-297.3x, 297.8, 297.9, 298.0. 298.1, 298.2, 298.3, 298.4, 298.8...Agency for Healthcare Research and Quality (AHRQ). A case of schizophrenia was defi ned as an active component service member with at least one...hospitalization or four outpatient encounters that were documented with schizophrenia -specifi c diagnoses (ICD- 9-CM: 295). V-coded diagnoses indicative

  2. Suicide risk by military occupation in the DoD active component population.

    PubMed

    Trofimovich, Lily; Reger, Mark A; Luxton, David D; Oetjen-Gerdes, Lynne A

    2013-06-01

    Suicide risk based on occupational cohorts within the U.S. military was investigated. Rates of suicide based on military occupational categories were computed for the Department of Defense (DoD) active component population between 2001 and 2010. The combined infantry, gun crews, and seamanship specialist group was at increased risk of suicide compared to the overall military population even when adjusted for gender, age, and deployment history. The results provide useful information that can help inform the DoD's suicide prevention mission. Data limitations and recommended areas for future research are discussed.

  3. Discovery of active components in herbs using chromatographic separation coupled with online bioassay.

    PubMed

    De-Qiang, Li; Zhao, Jing; Wu, Dong; Shao-Ping, Li

    2016-05-15

    Discovery of bioactive compounds from complex mixtures is a challenge. In past decades, several strategies were developed and implemented for rapid and effective screening and characterization of bioactive components in complex matrices. This review mainly focused on the online strategies, which integrated the separation science, mass spectrometry, and bioactivity screening in a single platform, allowing simultaneous screening and characterization of active compounds from complex matrices, especially from the herbs. The online screening methodologies, including pre-column affinity-based screening and post-column bioassay, were discussed and their applied examples were also presented to illustrate the strengths and limitations of these approaches.

  4. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond.

    PubMed

    Geng, Huiling; Yu, Xinchi; Lu, Ailin; Cao, Haoqiang; Zhou, Bohang; Zhou, Le; Zhao, Zhong

    2016-08-29

    The essential oil from the powder residual of dried bitter almond, a novel and environmentally-friendly fungicide, was successfully extracted in a 0.7% yield by hydro-distillation under optimized conditions. The chemical composition of bitter almond essential oil (BAEO) was analyzed by gas chromatography-mass spectrometry (GC-MS). Twenty-one different components representing 99.90% of the total essential oil were identified, of which benzaldehyde (62.52%), benzoic acid (14.80%), and hexadecane (3.97%) were the most abundant components. Furthermore, the in vitro and in vivo antifungal activities of BAEO against common plant pathogenic fungi were evaluated by the mycelium linear growth rate method and pot test, respectively. It was documented that 1 mg/mL of BAEO could variously inhibit all tested pathogenic fungi with the inhibition rates of 44.8%~100%. Among the tested 19 strains of fungi, the median effective concentration (EC50) values of BAEO against Alternaria brassicae and Alternaria solani were only 50.2 and 103.2 μg/mL, respectively, which were higher than those of other fungi. The in vivo antifungal activity of BAEO against Gloeosporium orbiculare was much higher than Blumeria graminis. The protective efficacy for the former was up to 98.07% at 10 mg/mL and the treatment efficacy was 93.41% at 12 mg/mL. The above results indicated that BAEO has the great potential to be developed as a botanical and agricultural fungicide.

  5. Extraction, Chemical Composition, and Antifungal Activity of Essential Oil of Bitter Almond

    PubMed Central

    Geng, Huiling; Yu, Xinchi; Lu, Ailin; Cao, Haoqiang; Zhou, Bohang; Zhou, Le; Zhao, Zhong

    2016-01-01

    The essential oil from the powder residual of dried bitter almond, a novel and environmentally-friendly fungicide, was successfully extracted in a 0.7% yield by hydro-distillation under optimized conditions. The chemical composition of bitter almond essential oil (BAEO) was analyzed by gas chromatography–mass spectrometry (GC–MS). Twenty-one different components representing 99.90% of the total essential oil were identified, of which benzaldehyde (62.52%), benzoic acid (14.80%), and hexadecane (3.97%) were the most abundant components. Furthermore, the in vitro and in vivo antifungal activities of BAEO against common plant pathogenic fungi were evaluated by the mycelium linear growth rate method and pot test, respectively. It was documented that 1 mg/mL of BAEO could variously inhibit all tested pathogenic fungi with the inhibition rates of 44.8%~100%. Among the tested 19 strains of fungi, the median effective concentration (EC50) values of BAEO against Alternaria brassicae and Alternaria solani were only 50.2 and 103.2 μg/mL, respectively, which were higher than those of other fungi. The in vivo antifungal activity of BAEO against Gloeosporium orbiculare was much higher than Blumeria graminis. The protective efficacy for the former was up to 98.07% at 10 mg/mL and the treatment efficacy was 93.41% at 12 mg/mL. The above results indicated that BAEO has the great potential to be developed as a botanical and agricultural fungicide. PMID:27589723

  6. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System

    PubMed Central

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-01-01

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity. PMID:27916876

  7. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    PubMed

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  8. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System.

    PubMed

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-11-30

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.

  9. Chemical constituents and antioxidant activity of the essential oil from leaves of Annona vepretorum Mart. (Annonaceae)

    PubMed Central

    Araújo, Camila de Souza; de Oliveira, Ana Paula; Lima, Rafaely Nascimento; Alves, Péricles Barreto; Diniz, Tâmara Coimbra; da Silva Almeida, Jackson Roberto Guedes

    2015-01-01

    Background: Annona vepretorum (AV) is a native tree from Caatinga biome (semiarid region of Brazil) popularly known as “araticum” and “pinha da Caatinga.” Objective: This study was carried out to evaluate the chemical constituents and antioxidant activity (AA) of the essential oil from the leaves from AV (EO-Av) collected in Petrolina, Pernambuco, Brazil. Materials and Methods: Fresh leaves of AV were cut into pieces, and subjected to distillation for 2 h in a clevenger-type apparatus. Gas chromatograph (GC) analyses were performed using a mass spectrometry/flame ionization detector. The identification of the constituents was assigned on the basis of comparison of their relative retention indices. The antioxidant ability of the EO was investigated through two in vitro models such as radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl method and β-carotene-linoleate-model system. The positive controls (ascorbic acid, butylated hydroxyanisole and butylated hydroxytoluene) were those using the standard solutions. Assays were carried out in triplicate. Results: The oil showed a total of 21 components, and 17 were identified, representing 93.9% of the crude EO. Spathulenol (43.7%), limonene (20.5%), caryophyllene oxide (8.1%) and α-pinene (5.5%) were found to be the major individual constituents. Spathulenol and caryophyllene oxide could be considered chemotaxonomic markers of these genera. The EO demonstrated weak AA. PMID:26246740

  10. Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review.

    PubMed

    Wang, Zhi-Yong; Liu, Jian-Gang; Li, Hao; Yang, Hui-Ming

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, not only severely decreases the quality of life for its victims, but also brings a heavy economic burden to the family and society. Unfortunately, few chemical drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far, and combined with their significant side-effects, there is therefore an urgent need for new strategies to be developed for AD treatment. Traditional Chinese Medicine has accumulated many experiences in the treatment of dementia during thousands of years of practice; modern pharmacological studies have confirmed the therapeutic effects of many active components derived from Chinese herbal medicines (CHM). Ginsenoside Rg1, extracted from Radix Ginseng, exerts a [Formula: see text]-secretase inhibitor effect so as to decrease A[Formula: see text] aggregation. It can also inhibit the apoptosis of neuron cells. Tanshinone IIA, extracted from Radix Salviae miltiorrhizae, and baicalin, extracted from Radix Scutellariae[Formula: see text] can inhibit the oxidative stress injury in neuronal cells. Icariin, extracted from Epimedium brevicornum, can decrease A[Formula: see text] levels and the hyperphosphorylation of tau protein, and can also inhibit oxidative stress and apoptosis. Huperzine A, extracted from Huperzia serrata, exerts a cholinesterase inhibitor effect. Evodiamine, extracted from Fructus Evodiae, and curcumin, extracted from Rhizoma Curcumae Longae, exert anti-inflammatory actions. Curcumin can act on A[Formula: see text] and tau too. Due to the advantages of multi-target effects and fewer side effects, Chinese medicine is more appropriate for long-term use. In this present review, the pharmacological effects of commonly used active components derived from Chinese herbal medicines in the treatment of AD are discussed.

  11. Activation and Environmental Aspects of In-Vacuum Vessel Components of CFETR

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaokang; Liu, Songlin; Zhu, Qingjun; Gao, Fangfang; Li, Jia

    2016-11-01

    The water-cooled ceramic breeder (WCCB) blanket is one of the three candidates of China's Fusion Engineering Test Reactor (CFETR). The evaluation of the radioactivity and decay heat produced by neutrons for the in-vacuum vessel components is essential for the assessment of radioactive wastes and the safety of CFETR. The activation calculation of CFETR in-vacuum vessel components was carried out by using the Monte Carlo N-Particle Transport Code MCNP, IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, and the nuclear inventory code FISPACT-2007 and corresponding EAF-2007 libraries. In these analyses, the three-dimensional (3-D) neutronics model was employed and the WCCB blanket, the divertor, and the shield were modeled in detail to provide the detailed spatial distribution of the neutron flux and energy spectra. Then the neutron flux, energy spectra and the materials specification were transferred to FISPACT for the activation calculation with an assumed irradiation scenario of CFETR. This paper presents the main results of the activation analysis to evaluate the radioactivity, the decay heat, the contact dose, and the waste classification of the radioactive materials. At the time of shutdown, the activity of the WCCB blanket is 1.88×1019 Bq and the specific activity, the decay heat and the contact dose rate are 1.7 × 1013 Bq/kg, 3.05 MW, and 2.0 × 103 Sv/h respectively. After cooling for 100 years, 79% (4166.4 tons) radioactive wastes produced from the blanket, divertor, high temperature shield (HTS) and low temperature shield (LTS) need near surface disposal, while 21% (1112.3 tons) need geological disposal. According to results of the contact dose rate, all the components of the blanket, divertor, HTS and LTS could potentially be recycled after shutdown by using advanced remote handling equipment. In addition, the selection of Eurofer97 or RAFM for the divertor is better than that of SS316 because SS316 makes the activity of the divertor-body keep at a

  12. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    NASA Astrophysics Data System (ADS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-05-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  13. Pathway Pattern-based prediction of active drug components and gene targets from H1N1 influenza's treatment with maxingshigan-yinqiaosan formula.

    PubMed

    Dai, Wen; Chen, Jianxin; Lu, Peng; Gao, Yibo; Chen, Lin; Liu, Xi; Song, Jianglong; Xu, Haiyu; Chen, Di; Ya