Science.gov

Sample records for active chitinases chitotriosidase

  1. The relationship between chitotriosidase activity and tuberculosis.

    PubMed

    Chen, M; Deng, J; Li, W; Su, C; Xia, Y; Wang, M; Li, X; Abuaku, B K; Tan, H; Wen, S W

    2015-11-01

    Chitotriosidase, secreted by activated macrophages, is a biomarker of activated macrophages. In this study, we explored whether chitotriosidase could be adopted as a biomarker to evaluate the curative effect on tuberculosis (TB). Five counties were randomly selected out of 122 counties/cities/districts in Hunan Province, China. Our cases were all TB patients who were newly diagnosed or had been receiving treatment at the Centers for Disease Control (CDCs) of these five counties between April and August in 2009. Healthy controls were selected from a community health facility in the Kaifu district of Changsha City after frequency-matching of gender and age with the cases. Chitotriosidase activity was evaluated by a fluorometric assay. Categorical variables were analysed with the χ 2 test. Measurement data in multiple groups were tested with analysis of variance and least significant difference (LSD). Correlation between chitotriosidase activity and the degree of radiological extent (DRE) was examined by Spearman's rank correlation test. The average chitotriosidase activity levels of new TB cases, TB cases with different periods of treatment (6 months) and the control group were 54·47, 34·77, 21·54, 12·73 and 10·53 nmol/h.ml, respectively. Chitotriosidase activity in TB patients declined along with the continuity of treatment. The chitotriosidase activity of both smear-positive and the smear-negative pulmonary TB patients decreased after 6 months' treatment to normal levels (P < 0·05). Moreover, chitotriosidase activity was positively correlated with DRE (r = 0·607, P < 0·001). Our results indicate that chitotriosidase might be a marker of TB treatment effects. However, further follow-up study of TB patients is needed in the future. PMID:26418349

  2. Chitotriosidase activity in goat blood and colostrum.

    PubMed

    Argüello, A; Castro, N; Batista, M; Moreno-Indias, I; Morales-delaNuez, A; Sanchez-Macias, D; Quesada, E; Capote, J

    2008-05-01

    Chitotriosidase (ChT) activity has not been investigated in ruminants, and therefore, we studied this activity in blood and colostrum of 25 pregnant goats and 60 goat kids. Blood samples were taken from pregnant goats at 3, 2, and 1 d prepartum; at partum; and at 1, 2, 3, and 4 d postpartum. Colostrum samples were obtained by machine-milking at partum and 1, 2, 3, and 4 d postpartum. Goat kid blood was collected at birth and every 7 d thereafter until goats kids were 56 d old. The ChT activity ranged from 2,368 to 3,350 nmol/ mL per hour in goat blood serum, and no statistical differences were detected through time. However, activity tended to decrease from 3 d prepartum to 2 d post-partum. Colostrum ChT activity was 3,912 nmol/mL per hour and 465 nmol/mL per hour on the day of delivery and 4 d postpartum, respectively. Colostrum ChT activity was significantly higher at partum than at any other time. The ChT activity in colostrum was significantly greater at 1 d postpartum than at 2, 3, and 4 d postpartum. Chitotriosidase activity did not differ in colostrum collected on d 2, 3, and 4 postpartum. Chitotriosidase activity in goat kid blood serum ranged from 2,664 to 9,231 nmol/mL per hour at birth and 49 d of life, respectively. Chitotriosidase activity in the blood serum increased with age: at birth, activity was significantly less than at 28, 35, 42, 49, and 56 d postpartum. The maximum ChT activity in blood serum was observed at 49 d postpartum. Activity in 49-d-old kids was significantly greater than that observed in kids at 0, 7, and 14 d postpartum. PMID:18420635

  3. Immunomodulatory Effects of Chitotriosidase Enzyme

    PubMed Central

    Elmonem, Mohamed A.; van den Heuvel, Lambertus P.; Levtchenko, Elena N.

    2016-01-01

    Chitotriosidase enzyme (EC: 3.2.1.14) is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value. PMID:26881065

  4. The role of active site aromatic residues in substrate degradation by the human chitotriosidase.

    PubMed

    Eide, Kristine Bistrup; Stockinger, Linn Wilhelmsen; Lewin, Anna Sofia; Tøndervik, Anne; Eijsink, Vincent G H; Sørlie, Morten

    2016-02-01

    Human chitotriosidase (HCHT) is a glycoside hydrolase family 18 chitinase synthesized and secreted in human macrophages thought be an innate part of the human immune system. It consists of a catalytic domain with the (β/α)8 TIM barrel fold having a large area of solvent-exposed aromatic amino acids in the active site and an additional family 14 carbohydrate-binding module. To gain further insight into enzyme functionality, especially the effect of the active site aromatic residues, we expressed two variants with mutations in subsites on either side of the catalytic acid, subsite -3 (W31A) and +2 (W218A), and compared their catalytic properties on chitin and high molecular weight chitosans. Exchange of Trp to Ala in subsite -3 resulted in a 12-fold reduction in extent of degradation and a 20-fold reduction in kcat(app) on chitin, while the values are 5-fold and 10-fold for subsite +2. Moreover, aromatic residue mutation resulted in a decrease of the rate of chitosan degradation contrasting previous observations for bacterial family 18 chitinases. Interestingly, the presence of product polymers of 40 sugar moieties and higher starts to disappear already at 8% degradation for HCHT50-W31A. Such behavior contrast that of the wild type and HCHT-W218A and resembles the action of endo-nonprocessive chitinases. PMID:26621384

  5. Clinical evaluation of chitotriosidase enzyme activity in Gaucher and Niemann Pick A/B diseases: A retrospective study from India.

    PubMed

    Kadali, Srilatha; Kolusu, Anusha; Sunkara, Satish; Gummadi, Maheshwar Reddy; Undamatla, Jayanthi

    2016-06-01

    Plasma chitotriosidase originates from activated macrophages and is reported to be elevated in many Lysosomal Storage Disorders. Measurement of this enzyme activity has been an available tool for monitoring therapy of Gaucher disease. The degree of elevation of chitotriosidase is useful for differential diagnosis of Gaucher disease and Niemann Pick A/B. However the potential utility of this chitotriosidase assay depends on the frequency of deficient chitotriosidase activity in a particular population. We therefore aim to study the clinical utility of this assay Gaucher and Niemann Pick A/B diseases in the backdrop of chitotriosidase deficiency in our population. The study comprises 173 patients with clinical suspicion of either Gaucher disease (n=108) or Niemann Pick A/B (n=65) and 92 healthy controls. The plasma samples of controls, Gaucher disease, and Niemann Pick A/B showed chitotriosidase deficiency of 12%, 25% and 27% respectively. The degree of elevation of chitotriosidase in Gaucher disease and Niemann Pick A/B patients is 40-326 (11,325.7±6395.4nmol/h/ml) and 7-22 folds (1192.5±463.0nmol/h/ml) respectively. In view of these findings of distinguishable fold elevation of chitotriosidase in Gaucher disease or Niemann Pick A/B, it can be a potential surrogate differential diagnostic marker for these groups of diseases, except in the patients in whom this enzyme is deficient. PMID:26975750

  6. Toxoplasma gondii Chitinase Induces Macrophage Activation

    PubMed Central

    Almeida, Fausto; Sardinha-Silva, Aline; da Silva, Thiago Aparecido; Pessoni, André Moreira; Pinzan, Camila Figueiredo; Alegre-Maller, Ana Claudia Paiva; Cecílio, Nerry Tatiana; Moretti, Nilmar Silvio; Damásio, André Ricardo Lima; Pedersoli, Wellington Ramos; Mineo, José Roberto; Silva, Roberto Nascimento; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection. PMID:26659253

  7. Role of changes in serum chitotriosidase activity in mice under conditions of hyperlipidemia and lipid-lowering effect of carboxymethylated (1-3)-β-D-glycan.

    PubMed

    Pisareva, E E; Goncharova, I A; Tuzikov, F V; Goncharova, N V; Makhova, E; Korolenko, T A

    2014-09-01

    Enhanced expression and activity of chitotriosidase in humans is regarded as a marker of atherosclerosis. However, it remains unclear, whether this increase is related to lipemia or enhanced secretion of the enzyme by activated macrophages in the atherosclerotic plaques. It was shown that acute lipemia in mice caused by single administration of poloxamer 407 (P-407) in a dose of 300 mg/kg is accompanied by an increase in serum chitotriosidase activity (24 h) that correlated with elevated content of total cholesterol and triglycerides. Preliminary administration of (1-3)-β-D-glycan prevented the P-407-induced increase in chitotriosidase activity, probably due to the hypolipidemic action of (1-3)-β-D-glycan. The relationship between changes in chitotriosidase activity with atherogenic fractions and subfractions of serum lipoproteins during lipemia is discussed. PMID:25257411

  8. A Polymorphism in the Chitotriosidase Gene Associated with Risk of Mycetoma Due to Madurella mycetomatis Mycetoma–A Retrospective Study

    PubMed Central

    Verwer, Patricia E. B.; Notenboom, Charlotte C.; Eadie, Kimberly; Fahal, Ahmed H.; Verbrugh, Henri A.; van de Sande, Wendy W. J.

    2015-01-01

    Background Madurella mycetomatis is the most prevalent causative agent of eumycetoma in Sudan, an infection characterized by the formation of grains. Many patients are exposed to the causative agent, however only a small number develop infection. M. mycetomatis contains chitin in its cell wall, which can trigger the human immune system. Polymorphisms in the genes encoding for the chitin-degrading enzymes chitotriosidase and AMCase were described, resulting in altered chitinase activity. We investigated the association between 4 of these polymorphisms and the incidence of M. mycetomatis mycetoma in a Sudanese population. Methodology Polymorphisms studied in 112 eumycetoma patients and 103 matched controls included a 24-bp insertion in the chitotriosidase gene (rs3831317), resulting in impaired chitinase activity and single nucleotide polymorphism (SNP) in the AMCase gene (rs61756687), resulting in decreased AMCase activity. Also, a SNP (rs41282492) and a 10-bp insertion in the 5’UTR region of the AMCase gene (rs143789088) were studied, both resulting in increased AMCase activity. DNA was isolated from blood and genotypes were determined using PCR-RFLP. Principal Findings Histological staining proved the presence of chitin in the fungal grain. The polymorphism resulting in decreased chitotriosidase activity was associated with increased odds of eumycetoma (odds ratio 2.9; p = 0.004). No association was found for the polymorphisms in the genes for AMCase (all p>0.05). Conclusion Decreased chitotriosidase activity was associated with increased risk of M. mycetomatis mycetoma. PMID:26332238

  9. Allelic frequency determination of the 24-bp chitotriosidase duplication in the Portuguese population by real-time PCR.

    PubMed

    Rodrigues, M R; Sá Miranda, M C; Amaral, O

    2004-01-01

    Chitotriosidase is a human chitinase produced by macrophages. Its enzymatic activity is markedly elevated in serum of patients suffering from lysosomal storage disorders, as well as other diseases in which macrophages are activated. Therefore, it is a useful tool as a secondary marker in the diagnosis of several disorders including Gaucher disease type 1 and Niemann-Pick disease. The determination of chitotriosidase levels as a diagnosis complement in some lysosomal storage disorders and in enzyme replacement therapy follow-up of Gaucher disease patients is of great importance. However, the fact that a mutation caused by a 24-bp duplication in the CHIT1 gene resulting in deficiency of plasma chitotriosidase activity is very frequent makes the establishment of the frequency of this mutation in different population groups necessary. Furthermore, in order to validate the use of chitotriosidase activity as a marker, it is indispensable to screen individuals for this particular mutation. In this work, we present the results of a study where the allelic frequency of the above mentioned CHIT1 gene mutation was determined in the Portuguese population by real-time PCR. The frequency of carriers encountered in this sample of Portuguese individuals was of 37%. PMID:15528158

  10. GENETIC ASSOCIATION BETWEEN HUMAN CHITINASES AND LUNG FUNCTION IN COPD

    PubMed Central

    Aminuddin, F.; Akhabir, L.; Stefanowicz, D.; Paré, P.D.; Connett, J.E.; Anthonisen, N.R.; Fahy, J.V.; Seibold, M.A.; Burchard, E.G.; Eng, C.; Gulsvik, A.; Bakke, P.; Cho, M. H.; Litonjua, A.; Lomas, D.A.; Anderson, W. H.; Beaty, T.H.; Crapo, J.D.; Silverman, E.K.; Sandford, A.J.

    2013-01-01

    Two primary chitinases have been identified in humans – acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host’s immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to Chronic Obstructive Pulmonary Disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the Caucasian LHS population, the baseline forced expiratory volume in one second (FEV1) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV1 and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV1. Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups. PMID:22200767

  11. A complete chitinolytic system in the atherinopsid pike silverside Chirostoma estor: gene expression and activities.

    PubMed

    Pohls, P; González-Dávalos, L; Mora, O; Shimada, A; Varela-Echavarria, A; Toledo-Cuevas, E M; Martínez-Palacios, C A

    2016-06-01

    The expression and digestive activity of pike silverside Chirostoma estor endogenous chitinases were analysed in samples from four life stages: whole eggs; larvae; juvenile intestine and hepatopancreas and adult intestine and hepatopancreas. A chitinase cDNA was cloned and partially sequenced (GenBank accession number: FJ785521). It was highly homologous to non-acidic chitinase sequences from other fish species, suggesting that it is a chitotriosidase. Quantitative PCR showed that this chitinase was expressed throughout the life span of C. estor, with maximum expression in the hepatopancreas of juveniles. Chitotriosidase and chitobiosidase activities were found at all life stages, along with a very high level of N-acetyl glucosaminidase (NAGase). The chitotriosidase activity could be encoded by the cloned complementary (c)DNA, although additional chitinase genes may be present. The chitotriosidase activity appeared to be transcriptionally regulated only at the juvenile stage. The expression and activity of chitinases tended to increase from the early to juvenile stages, suggesting that these variables are stimulated by chitin-rich live food. Nevertheless, the feeding of juvenile and adult fish with both live food and a balanced commercial diet seemed to provoke significant reductions in pancreatic NAGase secretion and/or synthesis in the gut. Moreover, all chitinase activities were lower in adults, probably reflecting a higher intake and use of the balanced diet. The observation of chitotriosidase and chitobiosidase activities together with a very high NAGase activity suggest the presence of a complete and compensatory chitinolytic chitinase system that enables this stomachless short-gut fish species to use chitin as an energy substrate. These novel findings suggest that dietary inclusions of chitin-rich ingredients or by-products might reduce the farming costs of C. estor without impairing performance. PMID:27161769

  12. Identification and characterization of a novel chitinase with antifungal activity from 'Baozhu' pear (Pyrus ussuriensis Maxim.).

    PubMed

    Han, Peng; Yang, Chengcheng; Liang, Xiaobo; Li, Lirong

    2016-04-01

    A novel chitinase from the 'Baozhu' pear was found, purified, and characterized in this report. This chitinase was a monomer with a molecular mass of 28.9 kDa. Results of the internal peptide sequence analyses classify this chitinase as a class III chitinase. In the enzymatic hydrolytic assay, this chitinase could hydrolyze chitin derivatives into di-N-acetylchitobiose (GlcNAc2) as a major product in the initial phase, as well as hydrolyze GlcNAc2 into N-acetylglucosamine (GlcNAc), which represents both chitobiosidase and β-N-acetylglucosaminase activity. Biological analyses showed that this chitinase exhibits strong antifungal activity toward agricultural pathogenic fungi. In total, chitinase from 'Baozhu' pear is a novel bifunctional chitinase that could be a potential fungicide in the biological control of plant diseases. PMID:26593558

  13. Reduced Chitinase Activities in Ant Plants of the Genus Macaranga

    NASA Astrophysics Data System (ADS)

    Heil, Martin; Fiala, Brigitte; Linsenmair, K. Eduard; Boller, Thomas

    Many plant species have evolved mutualistic associations with ants, protecting their host against detrimental influences such as herbivorous insects. Letourneau (1998) reported in the case of Piper that ants defend their plants principally against stem-boring insects and also reduce fungal infections on inflorescences. Macaranga plants that were experimentally deprived of their symbiotic Crematogaster ants suffered heavily from shoot borers and pathogenic fungi (Heil 1998). Here we report that ants seem to reduce fungal infections actively in the obligate myrmecophyte Macarangatriloba (Euphorbiaceae), while ant-free plants can be easily infected. We also found extremely low chitinase activity in Macaranga plants. The plants' own biochemical defense seems to be reduced, and low chitinase activity perhaps may represent a predisposition for the evolution of myrmecophytism. These plants are therefore highly dependent on their ants, which obviously function not only as an antiherbivore defense but also as an effective agent against fungal pathogens.

  14. Chitotriosidase in the Pathogenesis of Inflammation, Interstitial Lung Diseases and COPD.

    PubMed

    Cho, Soo Jung; Weiden, Michael D; Lee, Chun Geun

    2015-01-01

    As a member of 18 glycosyl hydrolase (GH) family, chitotriosidase (Chitinase 1, CHIT1) is a true chitinase mainly expressed in the differentiated and polarized macrophages. CHIT1 is an innate immune mediator that digests the cell walls of chitin-containing eukaryotic pathogens, such as fungi. However, CHIT1 is dysregulated in granulomatous and fibrotic interstitial lung diseases characterized by inflammation and tissue remodeling. These include tuberclosis, sarcoidosis, idiopathic pulmonary fibrosis, scleroderma-associated interstitial lung diseases (SSc-ILD), and chronic obstructive lung diseases (COPD). CHIT1 serum concentration correlates with the progression or the severity of these diseases, suggesting a potential use of CHIT1 as a biomarker or a therapeutic target. Recent studies with genetically modified mice demonstrate that CHIT1 enhances TGF-β1 receptor expression and signaling, suggesting a role in initiating or amplifying the response to organ injury and repair. This additional CHIT1 activity is independent of its enzymatic activity. These studies suggest that CHIT1 serves a bridging function; it is both an innate immune mediator and a regulator of tissue remodeling. This review will focus on recent data linking CHIT1 to the pathogenesis of inflammation, interstitial lung disease, and COPD. PMID:25553258

  15. Neutrophils as a Source of Chitinases and Chitinase-Like Proteins in Type 2 Diabetes

    PubMed Central

    Żurawska-Płaksej, Ewa; Ługowska, Agnieszka; Hetmańczyk, Katarzyna; Knapik-Kordecka, Maria; Piwowar, Agnieszka

    2015-01-01

    Purpose The pathophysiological role of human chitinases and chitinase-like proteins (CLPs) is not fully understood. We aimed to determine the levels of neutrophil-derived chitotriosidase (CHIT1), acidic mammalian chitinase (AMCase) and chitinase 3-like protein 1 (YKL-40) in patients with type 2 diabetes (T2D) and verify their association with metabolic and clinical conditions of these patients. Methods Neutrophils were obtained from the whole blood by gradient density centrifugation from 94 T2D patients and 40 control subjects. The activities of CHIT1 and AMCase as well as leukocyte elastase (LE) were measured fluorometrically and concentration of YKL-40 immunoenzymatically. Also, routine laboratory parameters in serum/plasma were determined by standard methods. Results The levels of all three examined proteins were about 2-times higher in diabetic patients in comparison to control subjects. They were significantly correlated with the activity of LE and increased progressively across tertiles of LE activity. Moreover, the activities of CHIT1 and AMCase were significantly correlated with each other. Metabolic compensation of diabetes did not influence the levels of these proteins. In the subgroup of patients with inflammatory evidence only YKL-40 concentration was significantly higher compared to those without inflammation. The highest levels of all three proteins were observed in patients with macroangiopathies. Insulin therapy was associated with lower levels of examined proteins. Conclusions We revealed that neutrophils may be an important source of the increased levels of chitinases and CLPs in T2D, and these proteins may participate in inflammatory mechanisms in the course of the disease and consequent development of diabetic angiopathies. PMID:26517273

  16. Inverse relationship between chitobiase and transglycosylation activities of chitinase-D from Serratia proteamaculans revealed by mutational and biophysical analyses

    PubMed Central

    Madhuprakash, Jogi; Bobbili, Kishore Babu; Moerschbacher, Bruno M.; Singh, Tej Pal; Swamy, Musti J.; Podile, Appa Rao

    2015-01-01

    Serratia proteamaculans chitinase-D (SpChiD) has a unique combination of hydrolytic and transglycosylation (TG) activities. The TG activity of SpChiD can be used for large-scale production of chito-oligosaccharides (CHOS). The multiple activities (hydrolytic and/or chitobiase activities and TG) of SpChiD appear to be strongly influenced by the substrate-binding cleft. Here, we report the unique property of SpChiD substrate-binding cleft, wherein, the residues Tyr28, Val35 and Thr36 control chitobiase activity and the residues Trp160 and Trp290 are crucial for TG activity. Mutants with reduced (V35G and T36G/F) or no (SpChiDΔ30–42 and Y28A) chitobiase activity produced higher amounts of the quantifiable even-chain TG product with degree of polymerization (DP)-6, indicating that the chitobiase and TG activities are inversely related. In addition to its unprecedented catalytic properties, unlike other chitinases, the single modular SpChiD showed dual unfolding transitions. Ligand-induced thermal stability studies with the catalytically inactive mutant of SpChiD (E153A) showed that the transition temperature increased upon binding of CHOS with DP2–6. Isothermal titration calorimetry experiments revealed the exceptionally high binding affinities for E153A to CHOS with DP2–6. These observations strongly support that the architecture of SpChiD substrate-binding cleft adopted to control chitobiase and TG activities, in addition to usual chitinase-mediated hydrolysis. PMID:26493546

  17. Protein engineering of chit42 towards improvement of chitinase and antifungal activities.

    PubMed

    Kowsari, Mojegan; Motallebi, Mostafa; Zamani, Mohammadreza

    2014-04-01

    The antagonism of Trichoderma strains usually correlates with the secretion of fungal cell wall degrading enzymes such as chitinases. Chitinase Chit42 is believed to play an important role in the biocontrol activity of Trichoderma strains as a biocontrol agent against phytopathogenic fungi. Chit42 lacks a chitin-binding domain (ChBD) which is involved in its binding activity to insoluble chitin. In this study, a chimeric chitinase with improved enzyme activity was produced by fusing a ChBD from T. atroviride chitinase 18-10 to Chit42. The improved chitinase containing a ChBD displayed a 1.7-fold higher specific activity than chit42. This increase suggests that the ChBD provides a strong binding capacity to insoluble chitin. Moreover, Chit42-ChBD transformants showed higher antifungal activity towards seven phytopathogenic fungal species. PMID:24322404

  18. Measuring Chitinase and Protease Activity in Cultures of Fungal Entomopathogens.

    PubMed

    Cheong, Peter; Glare, Travis R; Rostás, Michael; Haines, Stephen R

    2016-01-01

    Entomopathogenic fungi produce a variety of destructive enzymes and metabolites to overcome the unique defense mechanisms of insects. In a first step, fungal chitinases and proteinases need to break down the insect's cuticle. Both enzyme classes support the infection process by weakening the chitin barrier and by producing nutritional cleavage products for the fungus. In a second step, the pathogen can now mechanically penetrate the weakened cuticle and reach the insect's hemolymph where it starts proliferating. The critical enzymes chitinase and proteinase are also excreted into the supernatants of fungal cultures and can be used as indicators of virulence. Chromogenic assays adapted for 96-well microtiter plates that measure these enzymes provide a sensitive, fast, and easy screening method for evaluating the potential biocontrol activity of fungal isolates and may be considered as an alternative to laborious and time-consuming bioassays. Furthermore, monitoring fungal enzyme production in dependence of time, nutrient sources, or other factors can facilitate in establishing optimal growth and harvesting conditions for selected isolates with the aim of achieving maximum biocontrol activity. PMID:27565500

  19. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    PubMed Central

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  20. Low chitinase activity in Acacia myrmecophytes: a potential trade-off between biotic and chemical defences?

    NASA Astrophysics Data System (ADS)

    Heil, M.; Staehelin, Christian; McKey, D.

    We determined chitinase activity in leaves of four myrmecophytic and four non-myrmecophytic leguminous species at the plants' natural growing sites in Mexico. Myrmecophytic plants (or 'ant plants') have obligate mutualisms with ants protecting them against herbivores and pathogenic fungi. Plant chitinases can be considered a reliable measure of plant resistance to pathogenic fungi. The myrmecophytic Acacia species, which were colonised by mutualistic ants, exhibited at least six-fold lower levels of chitinase activity compared with the non-myrmecophytic Acacia farnesiana and three other non-myrmecophytes. Though belonging to different phylogenetic groups, the myrmecophytic Acacia species formed one distinct group in the data set, which was clearly separated from the non-myrmecophytic species. These findings allowed for comparison between two recent hypotheses that attempt to explain low chitinase activity in ant plants. Most probably, chitinases are reduced in myrmecophytic plant species because these are effectively defended indirectly due to their symbiosis with mutualistic ants.

  1. Low chitinase activity in Acacia myrmecophytes: a potential trade-off between biotic and chemical defences?

    PubMed

    Heil, M; Staehelin, C; McKey, D

    2000-12-01

    We determined chitinase activity in leaves of four myrmecophytic and four non-myrmecophytic leguminous species at the plants' natural growing sites in Mexico. Myrmecophytic plants (or 'ant plants') have obligate mutualisms with ants protecting them against herbivores and pathogenic fungi. Plant chitinases can be considered a reliable measure of plant resistance to pathogenic fungi. The myrmecophytic Acacia species, which were colonised by mutualistic ants, exhibited at least six-fold lower levels of chitinase activity compared with the non-myrmecophytic Acacia farnesiana and three other non-myrmecophytes. Though belonging to different phylogenetic groups, the myrmecophytic Acacia species formed one distinct group in the data set, which was clearly separated from the non-myrmecophytic species. These findings allowed for comparison between two recent hypotheses that attempt to explain low chitinase activity in ant plants. Most probably, chitinases are reduced in myrmecophytic plant species because these are effectively defended indirectly due to their symbiosis with mutualistic ants. PMID:11198198

  2. Only Specific Tobacco (Nicotiana tabacum) Chitinases and [beta]-1,3-Glucanases Exhibit Antifungal Activity.

    PubMed Central

    Sela-Buurlage, M. B.; Ponstein, A. S.; Bres-Vloemans, S. A.; Melchers, L. S.; Van Den Elzen, PJM.; Cornelissen, BJC.

    1993-01-01

    Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes. PMID:12231736

  3. Activity of Lipase and Chitinase Immobilized on Superparamagnetic Particles in a Rotational Magnetic Field

    PubMed Central

    Mizuki, Toru; Sawai, Miyuki; Nagaoka, Yutaka; Morimoto, Hisao; Maekawa, Toru

    2013-01-01

    We immobilize hydrolases such as lipase and chitinase on superparamagnetic particles, which are subjected to a rotational magnetic field, and measure the activities of the enzymes. We find that the activities of lipase and chitinase increase in the rotational magnetic field compared to those in the absence of a magnetic field and reach maximum at certain frequencies. The present methodology may well be utilized for the design and development of efficient micro reactors and micro total analysis systems (μ-TASs). PMID:23799111

  4. Purification and characterisation of a novel chitinase from persimmon (Diospyros kaki) with antifungal activity.

    PubMed

    Zhang, Jianzhi; Kopparapu, Narasimha Kumar; Yan, Qiaojuan; Yang, Shaoqing; Jiang, Zhengqiang

    2013-06-01

    A novel chitinase from the persimmon fruit was isolated, purified and characterised in this report. The Diospyros kaki chitinase (DKC) was found to be a monomer with a molecular mass of 29 kDa. It exhibited optimal activity at pH 4.5 with broad pH stability from pH 4.0-9.0. It has an optimal temperature of 60°C and thermostable up to 60°C when incubated for 30 min. The internal peptide sequences of DKC showed similarity with other reported plant chitinases. It has the ability to hydrolyse colloidal chitin into chito-oligomers such as chitotriose, chitobiose and into its monomer N-acetylglucosamine. It can be used to degrade chitin waste into useful products such as chito-oligosacchaarides. DKC exhibited antifungal activity towards pathogenic fungus Trichoderma viride. Chitinases with antifungal property can be used as biocontrol agents replacing chemical fungicides. PMID:23411236

  5. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform.

    PubMed Central

    Yun, D J; D'Urzo, M P; Abad, L; Takeda, S; Salzman, R; Chen, Z; Lee, H; Hasegawa, P M; Bressan, R A

    1996-01-01

    NaCl (428 mM)-adapted tobacco (Nicotiana tabacum L. var Wisconsin 38) cells accumulate and secrete several antifungal chitinases. The predominant protein secreted to the culture medium was a 29-kD peptide that, based on internal amino acid sequence, was determined to be a class II acidic chitinase with similarity to PR-Q. The four predominant chitinases (T1, T2, T3, and T4) that accumulated intracellularly in 428 mM NaCl-adapted cells were purified. Based on N-terminal sequence analyses, two of these were identified as class I chitinase isoforms, one similar to the N. tomentosiformis (H. Shinshi, J.M. Neuhaus, J. Ryals, F. Meins [1990] Plant Mol Biol 14:357-368) protein (T1) and the other homologous to the N. sylvestris (Y. Fukuda, M. Ohme, H. Shinshi [1991] Plant Mol Biol 16:1-10) protein (T2). The other two proteins (T3 and T4) were determined to be novel chitinases that have sequence similarity with class I chitinases, but each lacks a chitin-binding domain. All four chitinases inhibited Fusarium oxysporum f. sp. lycopersici and Trichoderma longibrachiatum hyphal growth in vitro, although the isoforms containing a chitin-binding domain were somewhat more active. Conditions were established for the successful expression of soluble and active bacterial recombinant T2. Expression of soluble recombinant T2 was achieved when isopropyl beta-D-thiogalactopyranoside induction occurred at 18 degrees C but not at 25 or 37 degrees C. The purified recombinant protein exhibited antifungal activity comparable to a class I chitinase purified from NaCl-adapted tobacco cells. PMID:8756502

  6. Chitinase-mediated inhibitory activity of Brassica transgenic on growth of Alternaria brassicae.

    PubMed

    Mondal, Kalyan K; Chatterjee, Subhas Chandra; Viswakarma, Navin; Bhattacharya, Ram Charan; Grover, Anita

    2003-09-01

    Chitinase, capable of degrading the cell walls of invading phytopathogenic fungi, plays an important role in plant defense response, particularly when this enzyme is overexpressed through genetic engineering. In the present study, Brassica plant (Brassica juncea L.) was transformed with chitinase gene tagged with an overexpressing promoter 35 S CaMV. The putative transgenics were assayed for their inhibitory activity against Alternaria brassicae, the inducer of Alternaria leaf spot of Brassica both in vitro and under polyhouse conditions. In in vitro fungal growth inhibition assays, chitinase inhibited the fungal colony size by 12-56% over the non-trangenic control. The bioassay under artificial epiphytotic conditions revealed the delay in the onset of disease as well as reduced lesion number and size in 35S-chitinase Brassica as compared to the untransformed control plants. PMID:14570264

  7. Chitinase producing bacteria with direct algicidal activity on marine diatoms.

    PubMed

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-01-01

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources. PMID:26902175

  8. Chitinase producing bacteria with direct algicidal activity on marine diatoms

    PubMed Central

    Li, Yi; Lei, Xueqian; Zhu, Hong; Zhang, Huajun; Guan, Chengwei; Chen, Zhangran; Zheng, Wei; Fu, Lijun; Zheng, Tianling

    2016-01-01

    Chitinase producing bacteria can involve extensively in nutrient cycling and energy flow in the aquatic environment through degradation and utilization of chitin. It is well known that diatoms cells are encased by box-like frustules composed of chitin. Thus the chitin containing of diatoms shall be a natural target of chitinase producing bacteria, however, the interaction between these two organismic groups has not been studied thus far. Therefore, in this study, the algicidal mechanism of one chitinase producing bacterium (strain LY03) on Thalassiosira pseudonana was investigated. The algicidal range and algicidal mode of strain LY03 were first studied, and then bacterial viability, chemotactic ability and direct interaction characteristic between bacteria and diatom were also confirmed. Finally, the characteristic of the intracellular algicidal substance was identified and the algicidal mechanism was determined whereby algicidal bacterial cells showed chemotaxis to algal cells, fastened themselves on algal cells with their flagella, and then produced chitinase to degrade algal cell walls, and eventually caused algal lysis and death. It is the first time to investigate the interaction between chitinase producing bacteria and diatoms, and this novel special interaction mode was confirmed in this study, which will be helpful in protection and utilization of diatoms resources. PMID:26902175

  9. Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A

    PubMed Central

    Zarei, Mandana; Aminzadeh, Saeed; Zolgharnein, Hossein; Safahieh, Alireza; Daliri, Morteza; Noghabi, Kambiz Akbari; Ghoroghi, Ahmad; Motallebi, Abbasali

    2011-01-01

    Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. In the following investigation, a novel chitinase with antifungal activity was characterized from a native Serratia marcescens B4A. Partially purified enzyme had an apparent molecular mass of 54 kDa. It indicated an optimum activity in pH 5 at 45°C. Enzyme was stable in 55°C for 20 min and at a pH range of 3–9 for 90 min at 25°C. When the temperature was raised to 60°C, it might affect the structure of enzymes lead to reduction of chitinase activity. Moreover, the Km and Vmax values for chitin were 8.3 mg/ml and 2.4 mmol/min, respectively. Additionally, the effect of some cations and chemical compounds were found to stimulate the chitinase activity. In addition, Iodoacetamide and Idoacetic acid did not inhibit enzyme activity, indicating that cysteine residues are not part of the catalytic site of chitinase. Finally, chitinase activity was further monitored by scanning electronic microscopy data in which progressive changes in chitin porosity appeared upon treatment with chitinase. This enzyme exhibited antifungal activity against Rhizoctonia solani, Bipolaris sp, Alternaria raphani, Alternaria brassicicola, revealing a potential application for the industry with potentially exploitable significance. Fungal chitin shows some special features, in particular with respect to chemical structure. Difference in chitinolytic ability must result from the subsite structure in the enzyme binding cleft. This implies that why the enzyme didn’t have significant antifungal activity against other Fungi. PMID:24031719

  10. The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase.

    PubMed

    Stockinger, Linn Wilhelmsen; Eide, Kristine Bistrup; Dybvik, Anette Israelsen; Sletta, Håvard; Vårum, Kjell Morten; Eijsink, Vincent G H; Tøndervik, Anne; Sørlie, Morten

    2015-10-01

    Human chitotriosidase (HCHT) is one of two active glycoside hydrolase family 18 chitinases produced by humans. The enzyme is associated with several diseases and is thought to play a role in the anti-parasite responses of the innate immune system. HCHT occurs in two isoforms, one 50 kDa (HCHT50) and one 39 kDa variant (HCHT39). Common for both isoforms is a catalytic domain with the (β/α)8 TIM barrel fold. HCHT50 has an additional linker-region, followed by a C-terminal carbohydrate-binding module (CBM) classified as CBM family 14 in the CAZy database. To gain further insight into enzyme functionality and especially the effect of the CBM, we expressed both isoforms and compared their catalytic properties on chitin and high molecular weight chitosans. HCHT50 degrades chitin faster than HCHT39 and much more efficiently. Interestingly, both HCHT50 and HCHT39 show biphasic kinetics on chitosan degradation where HCHT50 is faster initially and HCHT39 is faster in the second phase. Moreover, HCHT50 produces distinctly different oligomer distributions than HCHT39. This is likely due to increased transglycosylation activity for HCHT50 due the CBM extending the positive subsites binding surface and therefore promoting transglycosylation. Finally, studies with both chitin and chitosan showed that both isoforms have a similarly low degree of processivity. Combining functional and structural features of the two isoforms, it seems that HCHT combines features of exo-processive and endo-nonprocessive chitinases with the somewhat unusual CBM14 to reach a high degree of efficiency, in line with its alleged physiological task of being a "complete" chitinolytic machinery by itself. PMID:26116146

  11. Chitinase activity on amorphous chitin thin films: a quartz crystal microbalance with dissipation monitoring and atomic force microscopy study.

    PubMed

    Wang, Chao; Kittle, Joshua D; Qian, Chen; Roman, Maren; Esker, Alan R

    2013-08-12

    Chitinases are widely distributed in nature and have wide-ranging pharmaceutical and biotechnological applications. This work highlights a real-time and label-free method to assay Chitinase activity via a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). The chitin substrate was prepared by spincoating a trimethylsilyl chitin solution onto a silica substrate, followed by regeneration to amorphous chitin (RChi). The QCM-D and AFM results clearly showed that the hydrolysis rate of RChi films increased as Chitinase (from Streptomyces griseus) concentrations increased, and the optimal temperature and pH for Chitinase activity were around 37 °C and 6-8, respectively. The Chitinase showed greater activity on chitin substrates, having a high degree of acetylation, than on chitosan substrates, having a low degree of acetylation. PMID:23822524

  12. Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro.

    PubMed

    Seo, Dong-Jun; Lee, Yong-Sung; Kim, Kil-Yong; Jung, Woo-Jin

    2016-07-01

    To investigate the expression patterns of chitinase on SDS-PAGE gel, Paenibacillus ehimensis MA2012 was incubated in gelatin-chitin medium (GCM) at 30 °C for 7 days. Six major bands (Ch3, Ch4, Ch5, Ch6, Ch7, and Ch8) of chitinase isozymes in GC medium appeared on SDS-PAGE gel during the incubation period. Chitinase activity staining of P. ehimensis MA2012 was detected on 2-DE with different pI values (4-11). After DEAE-Sephadex chromatography, eight bands (Ch1 to Ch8) of chitinase isozymes were stained strongly with Calcofluor white M2R at fraction 45. After Sephadex G-75 gel filtration, six bands (Ch3 to Ch8) of chitinase isozymes were stained with Calcofluor white M2R at fractions of 11-12. The specific activity of the purified chitinase was 3.8 units mg(-1) protein with a purification factor of 0.27. Inhibition rate of the conidial germination of Colletotrichum gloeosporioides was 87% in partial purified chitinase treatment compared with control. PMID:27133265

  13. A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection

    PubMed Central

    2014-01-01

    Background Most of the current colorimetric methods for detection of chitinase or cellulase activities on the insoluble natural polymers chitin and cellulose depend on a chemical redox reaction. The reaction involves the reducing ends of the hydrolytic products. The Schales’ procedure and the 3,5-dinitrosalicylic acid (DNS) method are two examples that are commonly used. However, these methods lack sensitivity and present practical difficulties of usage in high-throughput screening assays as they require boiling or heating steps for color development. Results We report a novel method for colorimetric detection of chitinase and cellulase activity. The assay is based on the use of two oxidases: wild-type chito-oligosaccharide oxidase, ChitO, and a mutant thereof, ChitO-Q268R. ChitO was used for chitinase, while ChitO-Q268R was used for cellulase activity detection. These oxidases release hydrogen peroxide upon the oxidation of chitinase- or cellulase-produced hydrolytic products. The hydrogen peroxide produced can be monitored using a second enzyme, horseradish peroxidase (HRP), and a chromogenic peroxidase substrate. The developed ChitO-based assay can detect chitinase activity as low as 10 μU within 15 minutes of assay time. Similarly, cellulase activity can be detected in the range of 6 to 375 mU. A linear response was observed when applying the ChitO-based assay for detecting individual chito-oligosaccharides and cello-oligosaccharides. The detection limits for these compounds ranged from 5 to 25 μM. In contrast to the other commonly used methods, the Schales’ procedure and the DNS method, no boiling or heating is needed in the ChitO-based assays. The method was also evaluated for detecting hydrolytic activity on biomass-derived substrates, that is, wheat straw as a source of cellulose and shrimp shells as a source of chitin. Conclusion The ChitO-based assay has clear advantages for the detection of chitinase and cellulase activity over the conventional

  14. Chitotriosidase is a Biomarker for the Resistance to World Trade Center Lung Injury in New York City Firefighters

    PubMed Central

    Cho, Soo Jung; Nolan, Anna; Echevarria, Ghislaine C.; Kwon, Sophia; Naveed, Bushra; Schenck, Edward; Tsukiji, Jun; Prezant, David J.; Rom, William N.; Weiden, Michael D.

    2013-01-01

    Purpose World Trade Center (WTC) exposure caused airflow obstruction years after exposure. Chitinases and IgE are innate and humoral mediators of obstructive airway disease. We investigated if serum expression of chitinases and IgE early after WTC exposure predicts subsequent obstruction. Methods With a nested case-control design, 251 FDNY personnel had chitotriosidase, YKL-40 and IgE measured in serum drawn within months of 9/11/2001. The main outcome was subsequent Forced Expiratory Volume after one second/Forced Vital Capacity (FEV1/FVC) less than the lower limit of normal (LLN). Cases (N=125) had abnormal FEV1/FVC whereas controls had normal FEV1/FVC (N=126). In a secondary analysis, resistant cases (N=66) had FEV1 (≥107%) one standard deviation above the mean. Logistic regression adjusted for age, BMI, exposure intensity and post-exposure FEV1/FVC modeled the association between early biomarkers and later lung function. Results Cases and Controls initially lost lung function. Controls recovered to pre-9/11 FEV1 and FVC while cases continue to decline. Cases expressed lower serum chitotriosidase and higher IgE levels. Increase in IgE increased the odds of airflow obstruction and decreased the odds of above average FEV1. Alternately, increasing chitotriosidase decreased the odds of abnormal FEV1/FVC and increased the odds of FEV1≥107%. Serum YKL-40 was not associated with FEV1/FVC or FEV1 in this cohort. Conclusions Increased serum chitotriosidase reduces the odds of developing obstruction after WTC-particulate matter exposure and is associated with recovery of lung function. Alternately, elevated IgE is a risk factor for airflow obstruction and progressive lung function decline. PMID:23744081

  15. A Diverse Range of Bacterial and Eukaryotic Chitinases Hydrolyzes the LacNAc (Galβ1–4GlcNAc) and LacdiNAc (GalNAcβ1–4GlcNAc) Motifs Found on Vertebrate and Insect Cells*

    PubMed Central

    Frederiksen, Rikki F.; Yoshimura, Yayoi; Storgaard, Birgit G.; Paspaliari, Dafni K.; Petersen, Bent O.; Chen, Kowa; Larsen, Tanja; Duus, Jens Ø.; Ingmer, Hanne; Bovin, Nicolai V.; Westerlind, Ulrika; Blixt, Ola; Palcic, Monica M.; Leisner, Jørgen J.

    2015-01-01

    There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1–4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1–4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1–4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1–6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1–6 bond in LacNAcβ1–6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis. PMID:25561735

  16. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Galβ1-4GlcNAc) and LacdiNAc (GalNAcβ1-4GlcNAc) motifs found on vertebrate and insect cells.

    PubMed

    Frederiksen, Rikki F; Yoshimura, Yayoi; Storgaard, Birgit G; Paspaliari, Dafni K; Petersen, Bent O; Chen, Kowa; Larsen, Tanja; Duus, Jens Ø; Ingmer, Hanne; Bovin, Nicolai V; Westerlind, Ulrika; Blixt, Ola; Palcic, Monica M; Leisner, Jørgen J

    2015-02-27

    There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1-4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1-4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1-4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1-6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1-6 bond in LacNAcβ1-6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis. PMID:25561735

  17. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple

    PubMed Central

    Schäfer, Tina; Hanke, Magda-Viola; Flachowsky, Henryk; König, Stephan; Peil, Andreas; Kaldorf, Michael; Polle, Andrea; Buscot, François

    2012-01-01

    This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF). We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova) and transgenic lines (M9/T386 and M9/T389) were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass. PMID:22888297

  18. Serum cystatin C and chitotriosidase in acute P-407 induced dyslipidemia: Can they serve as potential early biomarkers for atherosclerosis?

    PubMed

    Korolenko, T A; Pisareva, E E; Filyushina, E E; Johnston, T P; Machova, E

    2015-09-01

    In an attempt to better understand potential biomarkers for, and the role of macrophages in, the development of atherosclerosis, the toxicologic, and any therapeutic pharmacologic effects of carboxymethylated β-glucan, gadolinium chloride, and poloxamer 407 were studied in mice for their capacity to perturb serum lipids, cystatin C, and chitotriosidase-1. Gadolinium and carboxymethylated β-glucan dosed separately to control mice had no effect on serum lipids, whereas carboxymethylated β-glucan, but not gadolinium, exerted a significant (p<0.01) and unexpected hypolipidemic effect in poloxamer 407-induced hyperlipidemic mice. An acute hyperlipidemic state (∼4 days), induced with poloxamer 407 administration alone, resulted in a significant (p<0.01) time-dependent decrease and increase in serum cystatin C and chitotriosidase, respectively. Carboxymethylated β-glucan administration to hyperlipidemic mice significantly (p<0.05) increased the serum concentration of cystatin C, but significantly (p<0.01) decreased chitotriosidase activity, when each was compared to mice treated with poloxamer 407 only. Gadolinium administration caused a significant decrease in serum chitotriosidase activity in both controls (p<0.01) and poloxamer 407-induced hyperlipidemic (p<0.001) mice, but had no effect on the concentration of cystatin C in either controls or poloxamer 407-induced hyperlipidemic mice. Gadolinium administration resulted in both morphological and functional changes to liver macrophages, which included incorporation of excess lipids, especially when simultaneously administered with poloxamer 407. It is suggested that serum cystatin C and chitotriosidase may represent potential early biomarkers for eventual atherosclerosis in the poloxamer 407-induced mouse model of atherogenesis, and that two compounds known to either increase (carboxymethylated β-glucan) or decrease (gadolinium chloride) the number of macrophages in vivo were able to modulate serum

  19. Purification and characterization of a novel chitinase from Trichosanthes dioica seed with antifungal activity.

    PubMed

    Kabir, Syed Rashel; Rahman, Md Musfikur; Tasnim, Shahnima; Karim, Md Rezaul; Khatun, Nazma; Hasan, Imtiaj; Amin, Ruhul; Islam, Shaikh Shohidul; Nurujjaman, Md; Kabir, Ahmad Humayan; Sana, Niranjan Kumar; Ozeki, Yasuhiro; Asaduzzaman, A K M

    2016-03-01

    Chitinases are a group of enzymes that show differences in their molecular structure, substrate specificity, and catalytic mechanism and widely found in organisms like bacteria, yeasts, fungi, arthropods actinomycetes, plants and humans. A novel chitinase enzyme (designated as TDSC) was purified from Trichosanthes dioica seed with a molecular mass of 39±1 kDa in the presence and absence of β-mercaptoethanol. The enzyme was a glycoprotein in nature containing 8% neutral sugar. The N-terminal sequence was determined to be EINGGGA which did not match with other proteins. Amino acid analysis performed by LC-MS revealed that the protein was rich in leucine. The enzyme was stable at a wide range of pH (5.0-11.0) and temperature (30-90 °C). Chitinase activity was little bit inhibited in the presence of chelating agent EDTA (ethylenediaminetetraaceticacid), urea and Ca(2+). A strong fluorescence quenching effect was found when dithiothreitol and sodium dodecyl sulfate were added to the enzyme. TDSC showed antifungal activity against Aspergillus niger and Trichoderma sp. as tested by MTT assay and disc diffusion method. PMID:26666429

  20. A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1

    PubMed Central

    Tanaka, Takeshi; Fujiwara, Shinsuke; Nishikori, Shingo; Fukui, Toshiaki; Takagi, Masahiro; Imanaka, Tadayuki

    1999-01-01

    We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85°C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA. PMID:10583986

  1. Chitinase Production by Streptomyces sp. ANU 6277

    PubMed Central

    Narayana, Kolla J.P.; Vijayalakshmi, Muvva

    2009-01-01

    Chitinase production by a terrestrial Streptomyces sp. ANU 6277 was studied under sub-merged fermentation. Chitinase production started after 24 h of incubation and reached maximum levels after 60 h of cultivation. A high level of chitinase activity was observed in the culture medium with pH 6 at 35°C. Culture medium amended with 1% chitin was found to be suitable for maximum production of chitinase. An optimum concentration of colloidal chitin for chitinase production was determined. Studies on the influence of additional carbon and nitrogen sources on chitinase production revealed that starch and yeast extract served as good carbon and nitrogen sources to enhance chitinase yield. Chitinase was purified from crude enzyme extract by single step gel filtration by Sephadex G-100. Purified chitinase of the strain exhibited a distinct protein band near 45 kDa by means of SDS-PAGE. PMID:24031419

  2. Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity.

    PubMed

    Annamalai, Neelamegam; Veeramuthu Rajeswari, Mayavan; Vijayalakshmi, Shanmugam; Balasubramanian, Thangavel

    2011-12-01

    Marine waste is an abundant renewable source for the recovery of several value added metabolites with potential industrial applications. This study describes the production of chitinase on marine waste, with the subsequent use of the same marine waste for the extraction of antioxidants. A chitinase-producing bacterium isolated from seafood effluent was identified as Alcaligenes faecalis AU02. Optimal chitinase production was obtained in culture conditions of 37°C for 72 h in 100 ml medium containing 1% shrimp and crab shell powder (1:1) (w/v), 0.1% K(2)HPO(4), and 0.05% MgSO(4)·7H(2)O. The molecular weight of chitinase was determined by SDS-PAGE to be 36 kDa. The optimum pH, temperature, pH stability, and thermal stability of chitinase were about 8, 37°C, 5-12, and 40-80°C, respectively. The antioxidant activity of A. faecalis AU02 culture supernatant was determined through scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) as 84%, and the antioxidant compound was characterized by TLC and its FT-IR spectrum. The present study proposed that marine wastes can be utilized to generate a high-value-added product and that pharmacological studies can extend its use to the field of medicine. PMID:22131949

  3. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR. PMID:19447031

  4. Chitinase Genes LbCHI31 and LbCHI32 from Limonium bicolor Were Successfully Expressed in Escherichia coli and Exhibit Recombinant Chitinase Activities

    PubMed Central

    Liu, Zhihua; Huang, Ying; Zhang, Rongshu; Diao, Guiping; Fan, Haijuan; Wang, Zhiying

    2013-01-01

    The two chitinase genes, LbCHI31 and LbCHI32 from Limonium bicolor, were, respectively, expressed in Escherichia coli BL21 strain. The intracellular recombinant chitinases, inrCHI31 and inrCHI32, and the extracellular exrCHI31 and exrCHI32 could be produced into E. coli. The exrCHI31 and exrCHI32 can be secreted into extracellular medium. The optimal reaction condition for inrCHI31 was 5 mmol/L of Mn2+ at 40°C and pH 5.0 with an activity of 0.772 U using Alternaria alternata cell wall as substrate. The optimal condition of inrCHI32 was 5 mmol/L of Ba2+ at 45°C and pH 5.0 with an activity of 0.792 U using Valsa sordida cell wall as substrate. The optimal reaction condition of exrCHI31 was 5 mmol/L of Zn2+ at 40°C and pH 5.0, and the activity was 0.921 U using the A. alternata cell wall as substrate. Simultaneously, the optimal condition of exrCHI32 was 5 mmol/L of K+ at 45°C and pH 5.0, with V. sordida cell wall as the substrate, and the activity was 0.897 U. Furthermore, the activities of extracellular recombinant enzymes on fungal cell walls and compounds were generally higher than those of the intracellular recombinant enzymes. Recombinant exrCHI31 and exrCHI32 have better hydrolytic ability on cell walls of different fungi than synthetic chitins and obviously showed activity against A. alternata. PMID:24385885

  5. Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco.

    PubMed

    Di Maro, Antimo; Terracciano, Irma; Sticco, Lucia; Fiandra, Luisa; Ruocco, Michelina; Corrado, Giandomenico; Parente, Augusto; Rao, Rosa

    2010-05-01

    The Autographa californica nucleopolyhedrovirus chitinase A (AcMNPV ChiA) is a chitinolytic enzyme with fungicidal and insecticidal properties. Its expression in transgenic plants enhances resistance against pests and fungal pathogens. We exploited tobacco for the production of a biologically active recombinant AcMNPV ChiA (rChiA), as such species is an alternative to traditional biological systems for large-scale enzyme production. The protein was purified from leaves using ammonium sulfate precipitation followed by anion exchange and gel-filtration chromatography. Transgenic plants produced an estimated 14 mg kg(-1) fresh leaf weight, which represents 0.2% of total soluble proteins. The yield of the purification was about 14% (2 mg kg(-1) fresh leaf weight). The comparison between the biochemical and kinetic properties of the rChiA with those of a commercial Serratia marcescens chitinase A indicated that the rChiA was thermostable and more resistant at basic pH, two positive features for agricultural and industrial applications. Finally, we showed that the purified rChiA enhanced the permeability of the peritrophic membrane of larvae of two Lepidoptera (Bombyx mori and Heliothis virescens) and inhibited spore germination and growth of the phytopatogenic fungus Alternaria alternata. The data indicated that tobacco represents a suitable platform for the production of rChiA, an enzyme with interesting features for future applications as "eco-friendly" control agent in agriculture. PMID:20302895

  6. The chitinase C gene PsChiC from Pseudomonas sp. and its synergistic effects on larvicidal activity

    PubMed Central

    Zhong, Wanfang; Ding, Shaojun; Guo, Huifang

    2015-01-01

    Pseudomonas sp. strain TXG6-1, a chitinolytic gram-negative bacterium, was isolated from a vegetable field in Taixing city, Jiangsu Province, China. In this study, a Pseudomonas chitinase C gene (PsChiC) was isolated from the chromosomal DNA of this bacterium using a pair of specific primers. The PsChiC gene consisted of an open reading frame of 1443 nucleotides and encoded 480 amino acid residues with a calculated molecular mass of 51.66 kDa. The deduced PsChiC amino acid sequence lacked a signal sequence and consisted of a glycoside hydrolase family 18 catalytic domain responsible for chitinase activity, a fibronectin type III-like domain (FLD) and a C-terminal chitin-binding domain (ChBD). The amino acid sequence of PsChiCshowed high sequence homology (> 95%) with chitinase C from Serratia marcescens. SDS-PAGE showed that the molecular mass of chitinase PsChiC was 52 kDa. Chitinase assays revealed that the chitobiosidase and endochitinase activities of PsChiCwere 51.6- and 84.1-fold higher than those of pET30a, respectively. Although PsChiC showed little insecticidal activity towards Spodoptera litura larvae, an insecticidal assay indicated that PsChiC increased the insecticidal toxicity of SpltNPV by 1.78-fold at 192 h and hastened death. These results suggest that PsChiC from Pseudomonas sp. could be useful in improving the pathogenicity of baculoviruses. PMID:26500441

  7. Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase.

    PubMed

    Sørensen, Hans Peter; Madsen, Lone Søvad; Petersen, Jørgen; Andersen, Jesper Tapdrup; Hansen, Anne Maria; Beck, Hans Christian

    2010-03-01

    Extracts from different higher plants were screened for the ability to inhibit the growth of Penicillium roqueforti, a major contaminating species in industrial food processing. Oat (Avena sativa) seed extracts exhibited a high degree of antifungal activity and could be used directly on rye bread to prevent the formation of P. roqueforti colonies. Proteins in the oat seed extracts were fractionated by column chromatography and proteins in fractions containing antifungal activity were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searches. Identified antifungal candidates included thaumatin-like proteins, 1,3-beta-glucanase, permatin precursor, pathogenesis-related protein type 1, and chitinases of class I and II. Class I chitinase could be specifically removed from the extracts and was found to be indispensable for 50% of the P. roqueforti inhibiting activity. The purified class I chitinase has a molecular weight of approximately 34 kDa, optimal chitinase activity at pH 7, and exists as at least two basic isoforms (pI values of 7.6 and 8.0). Partial sequencing of the class I chitinase isoforms by LC-MS/MS revealed a primary structure with high similarity to class I chitinases of wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale). Oat, wheat, barley, and rye seed extracts were compared with respect to the abundance of the class I chitinase and decrease in antifungal activity when class I chitinase is removed. We found that the oat seed class I chitinase is at least ten times more abundant than the wheat, barley, and rye homologs and that oat seed extracts are highly active toward P. roqueforti as opposed to extracts of other cereal seeds. PMID:19224400

  8. Quantitative Real-Time PCR Analysis of YKL-40 and Its Comparison with Mammalian Chitinase mRNAs in Normal Human Tissues Using a Single Standard DNA

    PubMed Central

    Ohno, Misa; Bauer, Peter O.; Kida, Yuta; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2015-01-01

    YKL-40 (YKL for the first three N-terminal residues of a 40 kDa protein) belongs to a group of human chitinase-like proteins (CLPs), which are similar to chitinases but lack chitinolytic activity. YKL-40 mRNA and its protein levels have been reported elevated in multiple disorders including asthma, cystic fibrosis, rheumatoid arthritis and malignant tumors. Here, we quantified the YKL-40 mRNA levels and compared them with chitinases and housekeeping genes in normal human tissues. To establish the quantitative real-time PCR (qPCR) system for evaluation of relative YKL-40 mRNA levels, we constructed a human standard DNA molecule by ligating cDNAs of YKL-40, two mammalian chitinases and two housekeeping genes in a one-to-one ratio. We generated cDNAs from various normal human tissues and analyzed the YKL-40 mRNA expression levels using a qPCR system with the standard DNA. We found that YKL-40 mRNA is present widely in human tissues while its expression patterns exhibit clear tissue specificity. Highest YKL-40 mRNA levels were detected in the liver, followed by kidney, trachea and lung. The levels of YKL-40 mRNA in the kidney and liver were more than 100-times higher than those of chitotriosidase mRNA. Our study provides for the first time a comprehensive analysis of the relative expression levels of YKL-40 mRNA versus mammalian chitinases in normal human tissues. PMID:25941933

  9. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey.

    PubMed

    Matusíková, Ildikó; Salaj, Ján; Moravcíková, Jana; Mlynárová, Ludmila; Nap, Jan-Peter; Libantová, Jana

    2005-12-01

    Induction of plant-derived chitinases in the leaves of a carnivorous plant was demonstrated using aseptically grown round-leaf sundew (Drosera rotundifolia L.). The presence of insect prey was mimicked by placing the chemical inducers gelatine, salicylic acid and crustacean chitin on leaves. In addition, mechanical stirring of tentacles was performed. Chitinase activity was markedly increased in leaf exudates upon application of notably chitin. Application of gelatine increased the proteolytic activity of leaf exudates, indicating that the reaction of sundew leaves depends on the molecular nature of the inducer applied. In situ hybridization of sundew leaves with a Drosera chitinase probe showed chitinase gene expression in different cell types of non-treated leaves, but not in the secretory cells of the glandular heads. Upon induction, chitinase mRNA was also present in the secretory cells of the sundew leaf. The combined results indicate that chitinase is likely to be involved in the decomposition of insect prey by carnivorous plants. This adds a novel role to the already broad function of chitinases in the plant kingdom and may contribute to our understanding of the molecular mechanisms behind the ecological success of carnivorous plants in nutritionally poor environments. PMID:16049675

  10. [The accumulation of proteins with chitinase activity in the culture media of the parent and mutant Serratia marcescens strain grown in the presence of mitomycin C].

    PubMed

    Iusupova, D V; Petukhova, E V; Sokolova, R B; Gabdrakhmanova, L A

    2002-01-01

    The study of the accumulation pattern of extracellular proteins with chitinase activity in the parent Serratia marcescens strain Bú 211 (ATCC 9986) grown in the presence of mitomycin C and its mutant strain with the constitutive synthesis of chitinases grown in the absence of the inducer showed that chitinase activity appeared in the culture liquids of both strains at the end of the exponential phase (4 h of growth) and reached a maximum in the stationary phase (18-20 h of growth). The analysis of the culture liquids (12 h of growth) by denaturing electrophoresis in PAAG followed by the protein renaturation step revealed the presence of four extracellular proteins with chitinase activity and molecular masses of 21, 38, 52, and 58 kDa. PMID:12449629

  11. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection

    PubMed Central

    Wiesner, Darin L.; Specht, Charles A.; Lee, Chrono K.; Smith, Kyle D.; Mukaremera, Liliane; Lee, S. Thera; Lee, Chun G.; Elias, Jack A.; Nielsen, Judith N.; Boulware, David R.; Bohjanen, Paul R.; Jenkins, Marc K.; Levitz, Stuart M.; Nielsen, Kirsten

    2015-01-01

    Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. PMID:25764512

  12. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica.

    PubMed

    Muñoz, Patricia L A; Minchaca, Alexis Z; Mares, Rosa E; Ramos, Marco A

    2016-02-01

    Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed. PMID:26526675

  13. Chitotriosidase - a putative biomarker for sporadic amyotrophic lateral sclerosis

    PubMed Central

    2013-01-01

    Background Potential biomarkers to aid diagnosis and therapy need to be identified for Amyotrophic Lateral Sclerosis, a progressive motor neuronal degenerative disorder. The present study was designed to identify the factor(s) which are differentially expressed in the cerebrospinal fluid (CSF) of patients with sporadic amyotrophic lateral sclerosis (SALS; ALS-CSF), and could be associated with the pathogenesis of this disease. Results Quantitative mass spectrometry of ALS-CSF and control-CSF (from orthopaedic surgical patients undergoing spinal anaesthesia) samples showed upregulation of 31 proteins in the ALS-CSF, amongst which a ten-fold increase in the levels of chitotriosidase-1 (CHIT-1) was seen compared to the controls. A seventeen-fold increase in the CHIT-1 levels was detected by ELISA, while a ten-fold elevated enzyme activity was also observed. Both these results confirmed the finding of LC-MS/MS. CHIT-1 was found to be expressed by the Iba-1 immunopositive microglia. Conclusion Elevated CHIT-1 levels in the ALS-CSF suggest a definitive role for the enzyme in the disease pathogenesis. Its synthesis and release from microglia into the CSF may be an aligned event of neurodegeneration. Thus, high levels of CHIT-1 signify enhanced microglial activity which may exacerbate the process of neurodegeneration. In view of the multifold increase observed in ALS-CSF, it can serve as a potential CSF biomarker for the diagnosis of SALS. PMID:24295388

  14. Chitinases: An update

    PubMed Central

    Hamid, Rifat; Khan, Minhaj A.; Ahmad, Mahboob; Ahmad, Malik Mobeen; Abdin, Malik Zainul; Musarrat, Javed; Javed, Saleem

    2013-01-01

    Chitin, the second most abundant polysaccharide in nature after cellulose, is found in the exoskeleton of insects, fungi, yeast, and algae, and in the internal structures of other vertebrates. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications, especially the chitinases exploited in agriculture fields to control pathogens. Chitinases have a use in human health care, especially in human diseases like asthma. Chitinases have wide-ranging applications including the preparation of pharmaceutically important chitooligosaccharides and N-acetyl D glucosamine, preparation of single-cell protein, isolation of protoplasts from fungi and yeast, control of pathogenic fungi, treatment of chitinous waste, mosquito control and morphogenesis, etc. In this review, the various types of chitinases and the chitinases found in different organisms such as bacteria, plants, fungi, and mammals are discussed. PMID:23559820

  15. A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity.

    PubMed

    Zhang, Lan-Yue; Cai, Jie; Li, Ru-Jie; Liu, Wei; Wagner, Christian; Wong, Kam-Bo; Xie, Zhi-Ping; Staehelin, Christian

    2016-07-01

    The symbiotic interaction between nitrogen-fixing rhizobia and legumes depends on lipo-chitooligosaccharidic Nod-factors (NFs). The NF hydrolase MtNFH1 of Medicago truncatula is a symbiotic enzyme that hydrolytically inactivates NFs with a C16 : 2 acyl chain produced by the microsymbiont Sinorhizobium meliloti 1021. MtNFH1 is related to class V chitinases (glycoside hydrolase family 18) but lacks chitinase activity. Here, we investigated the substrate specificity of MtNFH1-related proteins. MtCHIT5a and MtCHIT5b of M. truncatula as well as LjCHIT5 of Lotus japonicus showed chitinase activity, suggesting a role in plant defence. The enzymes failed to hydrolyse NFs from S. meliloti. NFs from Rhizobium leguminosarum with a C18 : 4 acyl moiety were neither hydrolysed by these chitinases nor by MtNFH1. Construction of chimeric proteins and further amino acid replacements in MtCHIT5b were performed to identify chitinase variants that gained the ability to hydrolyse NFs. A single serine-to-proline substitution was sufficient to convert MtCHIT5b into an NF-cleaving enzyme. MtNFH1 with the corresponding proline-to-serine substitution failed to hydrolyse NFs. These results are in agreement with a substrate-enzyme model that predicts NF cleavage when the C16 : 2 moiety is placed into a distinct fatty acid-binding cleft. Our findings support the view that MtNFH1 evolved from the ancestral MtCHIT5b by gene duplication and subsequent symbiosis-related neofunctionalization. PMID:27383628

  16. A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity

    PubMed Central

    Zhang, Lan-Yue; Cai, Jie; Li, Ru-Jie; Liu, Wei; Wagner, Christian; Wong, Kam-Bo; Xie, Zhi-Ping; Staehelin, Christian

    2016-01-01

    The symbiotic interaction between nitrogen-fixing rhizobia and legumes depends on lipo-chitooligosaccharidic Nod-factors (NFs). The NF hydrolase MtNFH1 of Medicago truncatula is a symbiotic enzyme that hydrolytically inactivates NFs with a C16 : 2 acyl chain produced by the microsymbiont Sinorhizobium meliloti 1021. MtNFH1 is related to class V chitinases (glycoside hydrolase family 18) but lacks chitinase activity. Here, we investigated the substrate specificity of MtNFH1-related proteins. MtCHIT5a and MtCHIT5b of M. truncatula as well as LjCHIT5 of Lotus japonicus showed chitinase activity, suggesting a role in plant defence. The enzymes failed to hydrolyse NFs from S. meliloti. NFs from Rhizobium leguminosarum with a C18 : 4 acyl moiety were neither hydrolysed by these chitinases nor by MtNFH1. Construction of chimeric proteins and further amino acid replacements in MtCHIT5b were performed to identify chitinase variants that gained the ability to hydrolyse NFs. A single serine-to-proline substitution was sufficient to convert MtCHIT5b into an NF-cleaving enzyme. MtNFH1 with the corresponding proline-to-serine substitution failed to hydrolyse NFs. These results are in agreement with a substrate-enzyme model that predicts NF cleavage when the C16 : 2 moiety is placed into a distinct fatty acid-binding cleft. Our findings support the view that MtNFH1 evolved from the ancestral MtCHIT5b by gene duplication and subsequent symbiosis-related neofunctionalization. PMID:27383628

  17. Heterologous expression of new antifungal chitinase from wheat.

    PubMed

    Singh, Arpita; Kirubakaran, S Isaac; Sakthivel, N

    2007-11-01

    Chitinases (EC 3.2.1.14) have been grouped into seven classes (class I-VII) on the basis of their structural properties. Chitinases expressed during plant-microbe interaction are involved in defense responses of host plant against pathogens. In the present investigation, chitinase gene from wheat has been subcloned and overexpressed in Escherichia coli BL-21 (DE3). Molecular phylogeny analyses of wheat chitinase indicated that it belongs to an acidic form of class VII chitinase (glycosyl hydrolase family 19) and shows 77% identity with other wheat chitinase of class IV and low level identity to other plant chitinases. The three-dimensional structural model of wheat chitinase showed the presence of 10 alpha-helices, 3 beta-strands, 21 loop turns and the presence of 6 cysteine residues that are responsible for the formation of 3 disulphide bridges. The active site residues (Glu94 and Glu103) may be suggested for its antifungal activity. Expression of chitinase (33 kDa) was confirmed by SDS-PAGE and Western hybridization analyses. The yield of purified chitinase was 20 mg/L with chitinase activity of 1.9 U/mg. Purified chitinase exerted a broad-spectrum antifungal activity against Colletotrichum falcatum (red rot of sugarcane) Pestalotia theae (leaf spot of tea), Rhizoctonia solani (sheath blight of rice), Sarocladium oryzae (sheath rot of rice) Alternaria sp. (grain discoloration of rice) and Fusarium sp. (scab of rye). Due to its innate antifungal potential wheat chitinase can be used to enhance fungal-resistance in crop plants. PMID:17697785

  18. Computational analysis of difenoconazole interaction with soil chitinases

    NASA Astrophysics Data System (ADS)

    Vlǎdoiu, D. L.; Filimon, M. N.; Ostafe, V.; Isvoran, A.

    2015-01-01

    This study focusses on the investigation of the potential binding of the fungicide difenoconazole to soil chitinases using a computational approach. Computational characterization of the substrate binding sites of Serratia marcescens and Bacillus cereus chitinases using Fpocket tool reflects the role of hydrophobic residues for the substrate binding and the high local hydrophobic density of both sites. Molecular docking study reveals that difenoconazole is able to bind to Serratia marcescens and Bacillus cereus chitinases active sites, the binding energies being comparable.

  19. From bacteria to human: a journey into the world of chitinases.

    PubMed

    Adrangi, Sina; Faramarzi, Mohammad Ali

    2013-12-01

    Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed. PMID:24095741

  20. Chitinases: in agriculture and human healthcare.

    PubMed

    Nagpure, Anand; Choudhary, Bharti; Gupta, Rajinder K

    2014-09-01

    Biological control of phytopathogenic fungi and insects continues to inspire the research and development of environmentally friendly bioactive alternatives. Potentially lytic enzymes, chitinases can act as a biocontrol agent against agriculturally important fungi and insects. The cell wall in fungi and protective covers, i.e. cuticle in insects shares a key structural polymer, chitin, a β-1,4-linked N-acetylglucosamine polymer. Therefore, it is advantageous to develop a common biocontrol agent against both of these groups. As chitin is absent in plants and mammals, targeting its metabolism will signify an eco-friendly strategy for the control of agriculturally important fungi and insects but is innocuous to mammals, plants, beneficial insects and other organisms. In addition, development of chitinase transgenic plant varieties probably holds the most promising method for augmenting agricultural crop protection and productivity, when properly integrated into traditional systems. Recently, human proteins with chitinase activity and chitinase-like proteins were identified and established as biomarkers for human diseases. This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of chitin as well as in implementing chitinases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization. PMID:23859124

  1. Characterization of a Grape Class IV Chitinase

    PubMed Central

    2015-01-01

    A chitinase was purified from Vitis vinifera Manzoni Bianco grape juice and characterized. On the basis of proteomic analysis of tryptic peptides, a significant match identified the enzyme as a type IV grape chitinase previously found in juices of other V. vinifera varieties. The optimal pH and temperature for activity toward colloidal chitin were found to be 6 and 30 °C, respectively. The enzyme was found to hydrolyze chitin and oligomers of N-acetylglucosamine, generating N,N′-diacetylchitobiose and N-acetylglucosamine as products, but was inactive toward N,N′-diacetylchitobiose. The enzyme exhibited both endo- and exochitinase activities. Because yeast contains a small amount of chitin in the cell wall, the possibility of growth inhibition was tested. At a concentration and pH expected in ripe grapes, no inhibition of wine yeast growth by the chitinase was observed. PMID:24845689

  2. A High-Throughput MALDI-TOF Mass Spectrometry-Based Assay of Chitinase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-throughput MALDI-TOF mass spectrometric assay is described for assay of chitolytic enzyme activity. The assay uses unmodified chitin oligosaccharide substrates, and is readily achievable on a microliter scale (2 µL total volume, containing 2 µg of substrate and 1 ng of protein). The speed a...

  3. Structural and functional characterization of a small chitin-active lytic polysaccharide monooxygenase domain of a multi-modular chitinase from Jonesia denitrificans.

    PubMed

    Mekasha, Sophanit; Forsberg, Zarah; Dalhus, Bjørn; Bacik, John-Paul; Choudhary, Swati; Schmidt-Dannert, Claudia; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) boost enzymatic depolymerization of recalcitrant polysaccharides, such as chitin and cellulose. We have studied a chitin-active LPMO domain (JdLPMO10A) that is considerably smaller (15.5 kDa) than all structurally characterized LPMOs so far and that is part of a modular protein containing a GH18 chitinase. The 1.55 Å resolution structure revealed deletions of interacting loops that protrude from the core β-sandwich scaffold in larger LPMO10s. Despite these deletions, the enzyme is active on alpha- and beta-chitin, and the chitin-binding surface previously described for larger LPMOs is fully conserved. JdLPMO10A may represent a minimal scaffold needed to catalyse the powerful LPMO reaction. PMID:26763108

  4. Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury

    PubMed Central

    Lee, Chun Geun; Da Silva, Carla A.; Dela Cruz, Charles S.; Ahangari, Farida; Ma, Bing; Kang, Min-Jong; He, Chuan-Hua; Takyar, Seyedtaghi; Elias, Jack A.

    2013-01-01

    The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below. PMID:21054166

  5. Cloning, Expression and 3D Structure Prediction of Chitinase from Chitinolyticbacter meiyuanensis SYBC-H1

    PubMed Central

    Hao, Zhikui; Wu, Hangui; Yang, Meiling; Chen, Jianjun; Xi, Limin; Zhao, Weijie; Yu, Jialin; Liu, Jiayang; Liao, Xiangru; Huang, Qingguo

    2016-01-01

    Two CHI genes from Chitinolyticbacter meiyuanensis SYBC-H1 encoding chitinases were identified and their protein 3D structures were predicted. According to the amino acid sequence alignment, CHI1 gene encoding 166 aa had a structural domain similar to the GH18 type II chitinase, and CHI2 gene encoding 383 aa had the same catalytic domain as the glycoside hydrolase family 19 chitinase. In this study, CHI2 chitinase were expressed in Escherichia coli BL21 cells, and this protein was purified by ammonium sulfate precipitation, DEAE-cellulose, and Sephadex G-100 chromatography. Optimal activity of CHI2 chitinase occurred at a temperature of 40 °C and a pH of 6.5. The presence of metal ions Fe3+, Fe2+, and Zn2+ inhibited CHI2 chitinase activity, while Na+ and K+ promoted its activity. Furthermore, the presence of EGTA, EDTA, and β-mercaptoethanol significantly increased the stability of CHI2 chitinase. The CHI2 chitinase was active with p-NP-GlcNAc, with the Km and Vm values of 23.0 µmol/L and 9.1 mM/min at a temperature of 37 °C, respectively. Additionally, the CHI2 chitinase was characterized as an N-acetyl glucosaminidase based on the hydrolysate from chitin. Overall, our results demonstrated CHI2 chitinase with remarkable biochemical properties is suitable for bioconversion of chitin waste. PMID:27240345

  6. Cloning, Expression and 3D Structure Prediction of Chitinase from Chitinolyticbacter meiyuanensis SYBC-H1.

    PubMed

    Hao, Zhikui; Wu, Hangui; Yang, Meiling; Chen, Jianjun; Xi, Limin; Zhao, Weijie; Yu, Jialin; Liu, Jiayang; Liao, Xiangru; Huang, Qingguo

    2016-01-01

    Two CHI genes from Chitinolyticbacter meiyuanensis SYBC-H1 encoding chitinases were identified and their protein 3D structures were predicted. According to the amino acid sequence alignment, CHI1 gene encoding 166 aa had a structural domain similar to the GH18 type II chitinase, and CHI2 gene encoding 383 aa had the same catalytic domain as the glycoside hydrolase family 19 chitinase. In this study, CHI2 chitinase were expressed in Escherichia coli BL21 cells, and this protein was purified by ammonium sulfate precipitation, DEAE-cellulose, and Sephadex G-100 chromatography. Optimal activity of CHI2 chitinase occurred at a temperature of 40 °C and a pH of 6.5. The presence of metal ions Fe(3+), Fe(2+), and Zn(2+) inhibited CHI2 chitinase activity, while Na⁺ and K⁺ promoted its activity. Furthermore, the presence of EGTA, EDTA, and β-mercaptoethanol significantly increased the stability of CHI2 chitinase. The CHI2 chitinase was active with p-NP-GlcNAc, with the Km and Vm values of 23.0 µmol/L and 9.1 mM/min at a temperature of 37 °C, respectively. Additionally, the CHI2 chitinase was characterized as an N-acetyl glucosaminidase based on the hydrolysate from chitin. Overall, our results demonstrated CHI2 chitinase with remarkable biochemical properties is suitable for bioconversion of chitin waste. PMID:27240345

  7. Chitinases in Pneumocystis carinii pneumonia

    PubMed Central

    Villegas, Leah R.; Kottom, Theodore J.

    2014-01-01

    Pneumocystis pneumonia remains an important complication of immune suppression. The cell wall of Pneumocystis has been demonstrated to potently stimulate host inflammatory responses, with most studies focusing on β-glucan components of the Pneumocystis cell wall. In the current study, we have elaborated the potential role of chitins and chitinases in Pneumocystis pneumonia. We demonstrated differential host mammalian chitinase expression during Pneumocystis pneumonia. We further characterized a chitin synthase gene in Pneumocystis carinii termed Pcchs5, a gene with considerable homolog to the fungal chitin biosynthesis protein Chs5. We also observed the impact of chitinase digestion on Pneumocystis-induced host inflammatory responses by measuring TNFα release and mammalian chitinase expression by cultured lung epithelial and macrophage cells stimulated with Pneumocystis cell wall isolates in the presence and absence of exogenous chitinase digestion. These findings provide evidence supporting a chitin biosynthetic pathway in Pneumocystis organisms and that chitinases modulate inflammatory responses in lung cells. We further demonstrate lung expression of chitinase molecules during Pneumocystis pneumonia. PMID:22535444

  8. High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites

    PubMed Central

    Manno, N.; Sherratt, S.; Boaretto, F.; Coico, F. Mejìa; Camus, C. Espinoza; Campos, C. Jara; Musumeci, S.; Battisti, A.; Quinnell, R.J.; León, J. Mostacero; Vazza, G.; Mostacciuolo, M.L.; Paoletti, M.G.; Falcone, F.H.

    2014-01-01

    The human genome encodes a gene for an enzymatically active chitinase (CHIT1) located in a single copy on Chromosome 1, which is highly expressed by activated macrophages and in other cells of the innate immune response. Several dysfunctional mutations are known in CHIT1, including a 24-bp duplication in Exon 10 causing catalytic deficiency. This duplication is a common variant conserved in many human populations, except in West and South Africans. Thus it has been proposed that human migration out of Africa and the consequent reduction of exposure to chitin from environmental factors may have enabled the conservation of dysfunctional mutations in human chitinases. Our data obtained from 85 indigenous Amerindians from Peru, representative of populations characterized by high prevalence of chitin-bearing enteroparasites and intense entomophagy, reveal a very high frequency of the 24-bp duplication (47.06%), and of other single nucleotide polymorphisms which are known to partially affect enzymatic activity (G102S: 42.7% and A442G/V: 25.5%). Our finding is in line with a founder effect, but appears to confute our previous hypothesis of a protective role against parasite infection and sustains the discussion on the redundancy of chitinolytic function. PMID:25256524

  9. Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca(2+) spiking and NIN gene expression in the actinorhizal plant Casuarina glauca.

    PubMed

    Chabaud, Mireille; Gherbi, Hassen; Pirolles, Elodie; Vaissayre, Virginie; Fournier, Joëlle; Moukouanga, Daniel; Franche, Claudine; Bogusz, Didier; Tisa, Louis S; Barker, David G; Svistoonoff, Sergio

    2016-01-01

    Although it is now well-established that decorated lipo-chitooligosaccharide Nod factors are the key rhizobial signals which initiate infection/nodulation in host legume species, the identity of the equivalent microbial signaling molecules in the Frankia/actinorhizal association remains elusive. With the objective of identifying Frankia symbiotic factors we present a novel approach based on both molecular and cellular pre-infection reporters expressed in the model actinorhizal species Casuarina glauca. By introducing the nuclear-localized cameleon Nup-YC2.1 into Casuarina glauca we show that cell-free culture supernatants of the compatible Frankia CcI3 strain are able to elicit sustained high frequency Ca(2+) spiking in host root hairs. Furthermore, an excellent correlation exists between the triggering of nuclear Ca(2+) spiking and the transcriptional activation of the ProCgNIN:GFP reporter as a function of the Frankia strain tested. These two pre-infection symbiotic responses have been used in combination to show that the signal molecules present in the Frankia CcI3 supernatant are hydrophilic, of low molecular weight and resistant to chitinase degradation. In conclusion, the biologically active symbiotic signals secreted by Frankia appear to be chemically distinct from the currently known chitin-based rhizobial/arbuscular mycorrhizal signaling molecules. Convenient bioassays in Casuarina glauca are now available for their full characterization. PMID:26484850

  10. Purification and characterization of an extracellular chitinase from antagonistic Streptomyces violaceusniger.

    PubMed

    Nagpure, Anand; Gupta, Rajinder K

    2013-05-01

    The actinomycetes Streptomyces violaceusniger showed strong antagonistic activity against various tested wood rotting fungi. An extracellular chitinase, produced by antagonistic S. violaceusniger MTCC 3959, was purified as follows: ammonium sulfate precipitation, chitin affinity and chromatographic separation of Q Sepharose. The molecular mass of the purified chitinase was estimated as 56.5 kDa by SDS-PAGE. Chitinase was optimally active at pH of 5.0 and 50 °C. It retained almost 100% activity at pH 5.0 and also had high thermal tolerance at 50 °C. Enzyme activity was inhibited by Hg(2+) and Ag(+) cations, but was neither substantially inhibited by K(+) cation nor by chelating agent EDTA. The apparent Km and Vmax at 37 °C were 0.1426 mM and 6.6 U/mg, respectively using pNP-(GlcNAc)2 as substrate. The 56.5 kDa chitinase of strain MTCC 3959 represented an exo-type activity. The purified chitinase was further identified by MALDI-TOF. The results of peptide mass fingerprinting showed that 10 tryptic peptides of the chitinase were identical to the chitinase C from Streptomyces albus J1074 (GenBank Accession No. gi|239982330). The sequence of N-terminal amino acid (AA) of the chitinase was determined to be G-D-G-T-G-P-G-P-G-P. PMID:22915152

  11. Bacillus thuringiensis fermentation of wastewater and wastewater sludge--presence and characterization of chitinases.

    PubMed

    Brar, S K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2008-02-01

    This study investigated the presence of chitinases in Bacillus thuringiensis ssp kurstaki HD-1 (Bt) fermented broths of wastewater sludge (non-hydrolyzed and hydrolyzed); starch industry wastewater and soyameal. Chitinase activity was absent in soyameal and present in others. Chitinase demonstrated peaks at pH 4.0 and temperatures 40 and 50 degrees C with higher activity between pH 4-5 and 10-11. The chitinase band on SDS-PAGE was found to be between 36 and 45 kDa for non-hydrolyzed (NH) and hydrolyzed sludge (TH) and starch industry wastewater. The chitinase profile during fermentation showed peaks at 15 and 30 h for non-hydrolyzed and hydrolyzed sludge and 15 and 24 h for starch industry wastewater. Chitinase retained 96-99 % activity after two weeks incubation at room temperature and pH 4. Bioassays with supplementation of Bt chitinases showed 1.2 fold increase in entomotoxicity of wastewater sludge and a small increase in starch industry wastewater. This study sheds light on production of Bt chitinases in alternative media which will have a long term effect on entomotoxicity of these formulations. PMID:18613615

  12. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli.

    PubMed

    Kirubakaran, S Isaac; Sakthivel, N

    2007-03-01

    Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover. PMID:17029984

  13. Catalytic Efficiency of Chitinase-D on Insoluble Chitinous Substrates Was Improved by Fusing Auxiliary Domains

    PubMed Central

    Madhuprakash, Jogi; El Gueddari, Nour Eddine; Moerschbacher, Bruno M.; Podile, Appa Rao

    2015-01-01

    Chitin is an abundant renewable polysaccharide, next only to cellulose. Chitinases are important for effective utilization of this biopolymer. Chitinase D from Serratia proteamaculans (SpChiD) is a single domain chitinase with both hydrolytic and transglycosylation (TG) activities. SpChiD had less of hydrolytic activity on insoluble polymeric chitin substrates due to the absence of auxiliary binding domains. We improved catalytic efficiency of SpChiD in degradation of insoluble chitin substrates by fusing with auxiliary domains like polycystic kidney disease (PKD) domain and chitin binding protein 21 (CBP21). Of the six different SpChiD fusion chimeras, two C-terminal fusions viz. ChiD+PKD and ChiD+CBP resulted in improved hydrolytic activity on α- and β-chitin, respectively. Time-course degradation of colloidal chitin also confirmed that these two C-terminal SpChiD fusion chimeras were more active than other chimeras. More TG products were produced for a longer duration by the fusion chimeras ChiD+PKD and PKD+ChiD+CBP. PMID:25615694

  14. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element.

    PubMed

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-08-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  15. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element

    PubMed Central

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-01-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea. Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea. These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  16. Characterization of a chitinase from the cellulolytic actinomycete Thermobifida fusca.

    PubMed

    Gaber, Yasser; Mekasha, Sophanit; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Fraaije, Marco W

    2016-09-01

    Thermobifida fusca is a well-known cellulose-degrading actinomycete, which produces various glycoside hydrolases for this purpose. However, despite the presence of putative chitinase genes in its genome, T. fusca has not been reported to grow on chitin as sole carbon source. In this study, a gene encoding a putative membrane-anchored GH18 chitinase (Tfu0868) from T. fusca has been cloned and overexpressed in Escherichia coli. The protein was produced as SUMO fusion protein and, upon removal of the SUMO domain, soluble pure TfChi18A was obtained with yields typically amounting to 150mg per litre of culture. The enzyme was found to be relatively thermostable (apparent Tm=57.5°C) but not particularly thermoactive, the optimum temperature being 40-45°C. TfChi18A bound to α- and β-chitin and degraded both these substrates. Interestingly, activity towards colloidal chitin was minimal and in this case, substrate inhibition was observed. TfChi18A also cleaved soluble chito-oligosaccharides and showed a clear preference for substrates having five sugars or more. While these results show that TfChi18A is a catalytically competent GH18 chitinase, the observed catalytic rates were low compared to those of well-studied GH18 chitinases. This suggests that TfChi18A is not a true chitinase and not likely to endow T. fusca with the ability to grow on chitin. PMID:27108953

  17. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    SciTech Connect

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  18. Human gastric juice contains chitinase that can degrade chitin.

    PubMed

    Paoletti, Maurizio G; Norberto, Lorenzo; Damini, Roberta; Musumeci, Salvatore

    2007-01-01

    Chitin digestion by humans has generally been questioned or denied. Only recently chitinases have been found in several human tissues and their role has been associated with defense against parasite infections and to some allergic conditions. In this pilot study we tested the gastric juices of 25 Italian subjects on the artificial substrates 4-methylumbelliferyl-beta-D-N,N',diacetylchitobiose or/and fluorescein isothiocyanate (FITC) chitin to demonstrate the presence of a chitinase activity. Since this chitinase activity was demonstrated at acidic pH, it is currently referred to acidic mammalian chitinase (AMCase). AMCase activity was present in gastric juices of twenty of 25 Italian patients in a range of activity from 0.21 to 36.27 nmol/ml/h and from 8,881 to 1,254,782 fluorescence emission (CPS), according to the used methods. In the remaining five of 25 gastric juices, AMCase activity was almost absent in both assay methods. An allosamidine inhibition test and the measurement at different pH values confirmed that this activity was characteristic of AMCase. The absence of activity in 20% of the gastric juices may be a consequence of virtual absence of chitinous food in the Western diet. PMID:17587796

  19. Biochemistry of plant class IV chitinases and fungal chitinase-modifying proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant class IV chitinases have 2 domains, a small (3 kDa) amino-terminal domain with homology to carbohydrate binding peptides, and a larger (25 kDa) catalytic domain. The biological function of these chitinases is not known. But it is known that some pathogenic fungi secrete chitinase modifying pro...

  20. Chitinases Are Essential for Cell Separation in Ustilago maydis.

    PubMed

    Langner, Thorsten; Öztürk, Merve; Hartmann, Sarah; Cord-Landwehr, Stefan; Moerschbacher, Bruno; Walton, Jonathan D; Göhre, Vera

    2015-09-01

    Chitin is an essential component of the fungal cell wall, providing rigidity and stability. Its degradation is mediated by chitinases and supposedly ensures the dynamic plasticity of the cell wall during growth and morphogenesis. Hence, chitinases should be particularly important for fungi with dramatic morphological changes, such as Ustilago maydis. This smut fungus switches from yeast to filamentous growth for plant infection, proliferates as a mycelium in planta, and forms teliospores for spreading. Here, we investigate the contribution of its four chitinolytic enzymes to the different morphological changes during the complete life cycle in a comprehensive study of deletion strains combined with biochemical and cell biological approaches. Interestingly, two chitinases act redundantly in cell separation during yeast growth. They mediate the degradation of remnant chitin in the fragmentation zone between mother and daughter cell. In contrast, even the complete lack of chitinolytic activity does not affect formation of the infectious filament, infection, biotrophic growth, or teliospore germination. Thus, unexpectedly we can exclude a major role for chitinolytic enzymes in morphogenesis or pathogenicity of U. maydis. Nevertheless, redundant activity of even two chitinases is essential for cell separation during saprophytic growth, possibly to improve nutrient access or spreading of yeast cells by wind or rain. PMID:25934689

  1. Isolation, partial characterization, and cloning of an extracellular chitinase from the entomopathogenic fungus Verticillium lecanii.

    PubMed

    Yu, G; Xie, L Q; Li, J T; Sun, X H; Zhang, H; Du, Q; Li, Q Y; Zhang, S H; Pan, H Y

    2015-01-01

    The entomopathogenic fungus Verticillium lecanii is a well-known biocontrol agent of fungal phytopathogens, as well as insect pests. A 42-kDa chitinase belonging to family 18 of the glycosyl hydrolases was isolated and partially characterized. Chitinase was purified using successive column chromatography on phenyl-sepharose, DEAE-sepharose, and CM-sepharose. The enzyme showed the highest activity at 40°C and pH 4.6. Enzyme activity was strongly activated in the presence of Mg(2+). The purified enzyme showed inhibitory activity of spore germination against several plant pathogens, particularly Fusarium moniliforme. The genomic DNA and cDNA sequences were resolved by polymerase chain reaction amplification and sequencing. Protein modeling and comparative investigation of different chitinase amino acids showed that chitinases are conserved in parasitic fungi. PMID:25867374

  2. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives

    PubMed Central

    Rathore, Abhishek Singh; Gupta, Rinkoo D.

    2015-01-01

    Chitin is the second most plenteous polysaccharide in nature after cellulose, present in cell walls of several fungi, exoskeletons of insects, and crustacean shells. Chitin does not accumulate in the environment due to presence of bacterial chitinases, despite its abundance. These enzymes are able to degrade chitin present in the cell walls of fungi as well as the exoskeletons of insect. They have shown being the potential agents for biological control of the plant diseases caused by various pathogenic fungi and insect pests and thus can be used as an alternative to chemical pesticides. There has been steady increase in demand of chitin derivatives, obtained by action of chitinases on chitin polymer for various industrial, clinical, and pharmaceutical purposes. Hence, this review focuses on properties and applications of chitinases starting from bacteria, followed by fungi, insects, plants, and vertebrates. Designing of chitinase by applying directed laboratory evolution and rational approaches for improved catalytic activity for cost-effective field applications has also been explored. PMID:26664744

  3. Identification of a chitinase modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (cmps) are proteases, secreted by fungal pathogens, which truncate the plant class IV chitinases ChitA and ChitB during maize ear rot. Cmp activity has been characterized for Bipolaris zeicola and Stenocarpella maydis, but the identities of the proteases are not known. H...

  4. Degradation of chitin and chitosan by a recombinant chitinase derived from a virulent Aeromonas hydrophila isolated from diseased channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A chitinase was identified in extracellular products of a virulent Aeromonas hydrophila isolated from diseased channel catfish (Ictalurus punctatus). Bioactive recombinant chitinase (rChi-Ah) was produced in Escherichia coli. Purified rChi-Ah had optimal activity at temperature of 42°C and pH 6.5. T...

  5. Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms

    PubMed Central

    Hirose, Tomoyasu; Sunazuka, Toshiaki; Ōmura, Satoshi

    2010-01-01

    Chitin, the second most abundant polysaccharide in nature, occurs in fungi, some algae and many invertebrates, including insects. Thus, chitin synthesis and degradation could represent specific targets for fungicides and insecticides. Chitinases hydrolyze chitin into oligomers of N-acetyl-d-glucosamine at key points in the life cycles of organisms, consequently, chitinase inhibitors have become subject of increasing interest. This review covers the development of two chitinase inhibitors of natural origin, Argifin and Argadin, isolated from the cultured broth of microorganisms in our laboratory. In particular, the practical total synthesis of these natural products, the synthesis of lead compounds via computer-aided rational molecular design, and discovery methods that generate only highly-active compounds using a kinetic target(chitinase)-guided synthesis approach (termed in situ click chemistry) are described. PMID:20154467

  6. Cloning and expression analysis of the chitinase gene Ifu-chit2 from Isaria fumosorosea

    PubMed Central

    Meng, Huimin; Wang, Zhangxun; Meng, Xiangyun; Xie, Ling; Huang, Bo

    2015-01-01

    Entomopathogenic fungi can produce a series of chitinases, some of which function synergistically with proteases and other hydrolytic enzymes to degrade the insect cuticle. In the present study, the chitinase gene Ifu-chit2 from Isaria fumosorosea was investigated. The Ifu-chit2 gene is 1,435-bp long, interrupted by three short introns, and encodes a predicted protein of 423 amino acids with a 22 residue signal peptide. The predicted Ifu-Chit2 protein is highly homologous to Beauveria bassiana chitinase Bbchit2 and belongs to the glycohydrolase family 18. Ifu-Chit2 was expressed in Escherichia coli to verify chitinase activity, and the recombinant enzyme exhibited activity with a colloidal chitin substrate. Furthermore, the expression profiles of Ifu-chit2 were analyzed at different induction times under in vivo conditions. Quantitative real-time PCR analysis revealed that Ifu-chit2 expression peaked at two days post-induction. The expression of chitinase Ifu-chit2 in vivo suggests that the chitinase may play a role in the early stage of pathogenesis. PMID:26500443

  7. Cloning and expression analysis of the chitinase gene Ifu-chit2 from Isaria fumosorosea.

    PubMed

    Meng, Huimin; Wang, Zhangxun; Meng, Xiangyun; Xie, Ling; Huang, Bo

    2015-01-01

    Entomopathogenic fungi can produce a series of chitinases, some of which function synergistically with proteases and other hydrolytic enzymes to degrade the insect cuticle. In the present study, the chitinase gene Ifu-chit2 from Isaria fumosorosea was investigated. The Ifu-chit2 gene is 1,435-bp long, interrupted by three short introns, and encodes a predicted protein of 423 amino acids with a 22 residue signal peptide. The predicted Ifu-Chit2 protein is highly homologous to Beauveria bassiana chitinase Bbchit2 and belongs to the glycohydrolase family 18. Ifu-Chit2 was expressed in Escherichia coli to verify chitinase activity, and the recombinant enzyme exhibited activity with a colloidal chitin substrate. Furthermore, the expression profiles of Ifu-chit2 were analyzed at different induction times under in vivo conditions. Quantitative real-time PCR analysis revealed that Ifu-chit2 expression peaked at two days post-induction. The expression of chitinase Ifu-chit2 in vivo suggests that the chitinase may play a role in the early stage of pathogenesis. PMID:26500443

  8. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.): chitinases in sundew tissues.

    PubMed

    Libantová, Jana; Kämäräinen, Terttu; Moravcíková, Jana; Matusíková, Ildikó; Salaj, Jan

    2009-05-01

    The round-leaf sundew (Drosera rotundifolia L.) is a carnivorous plant expressing a wide range of chitinolytic enzymes playing role in many different processes. In this study the intact plants were analyzed for the presence of chitinase transcripts and chitinolytic activities in different organs. In situ hybridization with chitnase fragment as a probe has revealed the presence of chitinases in the mesophyll cells of leaves and vascular elements of stems of healthy, non-stressed plants. More pronounced expression was observed in cortex and stele cells of roots as well as in ovules and anthers of reproductive organs. Similarly, higher chitinase enzyme activity was typical for flowers and roots suggesting a more specific role of chitinases in these tissues. In addition to endochitinases of different substrate specificities, chitobiosidases contributed to overall chitinolytic activity of tissue extracts. The activity of chitobiosidases was again typical for flowers and roots, while their role in plant physiology remains to be elucidated. PMID:18437530

  9. The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis.

    PubMed Central

    Hollis, T.; Monzingo, A. F.; Bortone, K.; Ernst, S.; Cox, R.; Robertus, J. D.

    2000-01-01

    The X-ray structure of chitinase from the fungal pathogen Coccidioides immitis has been solved to 2.2 A resolution. Like other members of the class 18 hydrolase family, this 427 residue protein is an eight-stranded beta/alpha-barrel. Although lacking an N-terminal chitin anchoring domain, the enzyme closely resembles the chitinase from Serratia marcescens. Among the conserved features are three cis peptide bonds, all involving conserved active site residues. The active site is formed from conserved residues such as tryptophans 47, 131, 315, 378, tyrosines 239 and 293, and arginines 52 and 295. Glu171 is the catalytic acid in the hydrolytic mechanism; it was mutated to a Gln, and activity was abolished. Allosamidin is a substrate analog that strongly inhibits the class 18 enzymes. Its binding to the chitinase hevamine has been observed, and we used conserved structural features of the two enzymes to predict the inhibitors binding to the fungal enzyme. PMID:10752616

  10. Chitinases from uncultured marine microorganisms

    SciTech Connect

    Cottrell, M.T.; Moore, J.A.; Kirchman, D.L.

    1999-06-01

    An understanding of the degradation of organic matter will benefit from a greater appreciation for the genes encoding enzymes involved in the hydrolysis of biopolymers such as chitin, one of the most abundant polymers in nature. To isolate representative and abundant chitinase genes from uncultivated marine bacteria, the authors constructed libraries of genomic DNA isolated from coastal and estuarine waters. The libraries were screened for genes encoding proteins that hydrolyze a fluorogenic analogue of chitin, 4-methylumbelliferyl {beta}-D-N,N{prime}-diacetylchitobioside (MUF-diNAG). The abundance of clones capable of MUF-diNAG hydrolysis was higher in the library constructed with DNA from the estuary than in that constructed with DNA from coastal waters, although the abundance of positive clones was also dependent on the method used to screen the library. Plaque assays revealed nine MUF-diNAG-positive clones of 75,000 screened for the estuarine sample and two clones of 750,000 for the coastal sample. A microtiter plate assay revealed approximately 1 positive clone for every 500 clones screened in the coastal library. The number of clones detected with the plaque assay was consistent with estimates of the portion of culturable bacteria that degrade chitin. Their results suggest that culture-dependent methods do not greatly underestimate the portion of marine bacterial communities capable of chitin degradation.

  11. Enzymatic properties of chitinase-producing antagonistic bacterium Paenibacillus chitinolyticus with various substrates.

    PubMed

    Song, Yong-Su; Seo, Dong-Jun; Ju, Wan-Taek; Lee, Yong-Seong; Jung, Woo-Jin

    2015-12-01

    Various chitin substrates were used to investigate the properties of enzymes produced from the chitinase-producing bacterium Paenibacillus chitinolyticus MP-306 against phytopathogens. The MP-306 bacterium was incubated in nine culture media [crab shell powder chitin (CRS), chitin-protein complex powder (CPC), carboxymethyl-chitin powder (CMC), yeast extract only (YE), LB (Trypton, NaCl, and yeast extract), GT (Trypton, NaCl, and glucose), crab shell colloidal chitin (CSC), squid pen powder chitin (SPC), and cicada slough powder chitin (CSP)] at 30 °C for 3 days. Chitinase isozymes in CPC medium were expressed strongly as CN1, CN2, CN3, CN4, CN5, and CN6 bands on native-PAGE gels. Chitinase isozymes in CPC and CMC medium were expressed as 13 bands (CS1-CS13) on SDS-PAGE gels. Chitinase isozymes were expressed strongly on SDS-PAGE gels as two bands (CS6 and CS8) on YE and LB medium and 13 bands (CS1-CS13) on SPC medium. In crude enzyme, chitinase isozymes at pH 7 and pH 9 in chitin media appeared strongly on SDS-PAGE gels. Partial purified enzyme indicated high stability of enzyme activity at various temperatures and pHs in chitin medium, while these enzymes indicated low activity staining of enzyme on electrophoresis gels at various temperatures and pHs condition of chitin medium. PMID:26546718

  12. First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2.

    PubMed

    Ghasemi, Seyedhadi; Ahmadian, Gholamreza; Sadeghi, Mehdi; Zeigler, Daniel R; Rahimian, Heshmatollah; Ghandili, Soheila; Naghibzadeh, Neda; Dehestani, Ali

    2011-03-01

    Bacillus pumilus SG2 isolated from high salinity ecosystem in Iran produces two chitinases (ChiS and ChiL) and secretes them into the medium. In this study, chiS and chiL genes were cloned in pQE-30 expression vector and were expressed in the cytoplasm of Escherichia coli strain M15. The recombinant proteins were purified using Ni-NTA column. The optimum pH and optimum temperature for enzyme activity of ChiS were pH 6, 50°C; those of ChiL were pH 6.5, 40°C. The purified chitinases showed antifungal activity against Fusarium graminearum, Rhizoctonia solani, Magnaporthe grisea, Sclerotinia sclerotiorum, Trichoderma reesei, Botrytis cinerea and Bipolaris sp. Moreover, purified ChiS was identified as chitinase/lysozyme, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of cell walls with many kinds of bacteria (Xanthomonas translucens pv. hordei, Xanthomonas axonopodis pv. citri, Bacillus licheniformis, E. coli C600, E. coli TOP10, Pseudomonas aeruginosa and Pseudomonas putida). Strong homology was found between the three-dimensional structures of ChiS and a chitinase/lysozyme from Bacillus circulans WL-12. This is the first report of a bifunctional chitinase/lysozyme from B. pumilus. PMID:22112904

  13. Significance of Penicillium ochrochloron chitinase as a biocontrol agent against pest Helicoverpa armigera.

    PubMed

    Patil, Nilambari S; Jadhav, Jyoti P

    2015-06-01

    Penicillium ochrochloron chitinase purified by DEAE-cellulose ion exchange chromatography was evaluated for its antifeedant and growth inhibitory activities against Helicoverpa armigera at different concentrations of 2000, 1000, 500, 250 and 100 U mL(-1). It reduced the successful pupation and increased larval and pupal mortality, adult emergence in a dosage-dependent manner when applied topically. The highest mortalities were recorded for groups treated with 2000 U mL(-1) chitinase activity. The studies showed P.ochrochloron chitinase can affect the growth of H.armigera larvae. Since this insect pest species has developed resistance and resurgence to chemical insecticides, only alternate is the usage of enzyme-based pesticide formulations as an environmentally friendly pest management tool. PMID:25723715

  14. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

    PubMed

    Aghazadeh, Rustam; Zamani, Mohammadreza; Motallebi, Mostafa; Moradyar, Mehdi; Moghadassi Jahromi, Zahra

    2016-09-01

    Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant. PMID:27430511

  15. Characterization of two Listeria innocua chitinases of different sizes that were expressed in Escherichia coli.

    PubMed

    Honda, Shotaro; Wakita, Satoshi; Sugahara, Yasusato; Kawakita, Masao; Oyama, Fumitaka; Sakaguchi, Masayoshi

    2016-09-01

    Two putative chitinase genes, lin0153 and lin1996, from the nonpathogenic bacterium Listeria innocua were expressed in Escherichia coli, and the gene products were characterized. The genes were close homologs of chitinases from the pathogenic bacterium Listeria monocytogenes, in which chitinases and chitin-binding proteins play important roles in pathogenesis in mice-infection models. The purified recombinant enzymes that are different in size, LinChi78 (lin0153 product) and LinChi35 (lin1996 product)-with molecular masses of 82 and 38 kDa, including vector-derived additional sequences, respectively-exhibited optimum catalytic activity under neutral and acidic conditions at 50 °C, respectively, and were stable over broad pH (4-11) and temperature (4-40 °C) ranges. LinChi35 displayed higher k cat and K M values for 4-nitrophenyl N,N-diacetyl-β-D-chitobioside [4NP-(GlcNAc)2] than LinChi78. Both enzymes produced primarily dimers from colloidal chitin as a substrate. However, LinChi78 and LinChi35 could hydrolyze oligomeric substrates in a processive exo- and nonprocessive endo-manner, respectively, and showed different reactivity toward oligomeric substrates. Both enzymes could bind chitin beads but were different in their binding ability toward crystalline α-chitin and cellulose. The structure-function relationships of these chitinases are discussed in reference to other bacterial chitinases. PMID:27138200

  16. Trichoderma asperellum Chi42 Genes Encode Chitinase

    PubMed Central

    Quang, Hoang Tan; Hung, Nguyen Bao; Huy, Nguyen Duc; Phuong, Truong Thi Bich; Ha, Tran Thi Thu

    2011-01-01

    Four Trichoderma strains (CH2, SH16, PQ34, and TN42) were isolated from soil samples collected from Quang Tri and Thua Thien Hue provinces in Vietnam. The strains exhibited high chitinolytic secretion. Strain PQ34 formed the largest zone of chitinase-mediated clearance (> 4 cm in diameter) in agar containing 1% (w/v) colloidal chitin. Analysis of the internal transcribed spacer regions of these strains indicated that they were Trichoderma asperellum. The molecular weights of the chitinases were approximately 42 kDa. Chitinase genes (chi42) of T. asperellum strains TN42, CH2, SH16, and PQ34 were 98~99% homologous to the ech42 gene of T. harzianum CB-Pin-01 (accession No. DQ166036). The deduced amino acid sequences of both T. asperellum strains SH16 and TN42 shared 100% similarity. PMID:22783101

  17. Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb).

    PubMed

    Han, Bing; Zhou, Kang; Li, Zhihong; Sun, Bin; Ni, Qi; Meng, Xianzhi; Pan, Guoqing; Li, Chunfeng; Long, Mengxian; Li, Tian; Zhou, Congzhao; Li, Weifang; Zhou, Zeyang

    2016-01-01

    Chitinases (EC 3.2.1.14), as one kind of glycosyl hydrolase, hydrolyze the β-(1,4) linkages of chitin. According to the sequence similarity, chitinases can be divided into glycoside hydrolase family 18 and family 19. Here, a chitinase from Nosema bombycis (NbchiA) was cloned and purified by metal affinity chromatography and molecular exclusion chromatography. Sequence analysis indicated that NbchiA belongs to glycoside hydrolase family 19 class IV chitinase. The optimal pH and temperature of NbchiA are 7.0 and 40 °C, respectively. This purified chitinase showed high activity toward soluble substrates such as ethylene glycol chitin and soluble chitosan. The degradation of chitin oligosaccharides (GlcNAc)(2-5) detected by high-performance liquid chromatography showed that NbchiA hydrolyzed mainly the second glycosidic linkage from the reducing end of (GlcNAc)(3-5). On the basis of structure-based multiple-sequence alignment, Glu51 and Glu60 are believed to be the key catalytic residues. The site-directed mutation analysis revealed that the enzymatic activity was decreased upon mutation of Glu60, whereas mutation of Glu51 totally abolished the enzymatic activity. This is the first report of a GH19 chitinase in fungi and in Microsporidia. PMID:26108336

  18. Insectivorous Bats Digest Chitin in the Stomach Using Acidic Mammalian Chitinase

    PubMed Central

    Strobel, Sara; Roswag, Anna; Becker, Nina I.; Trenczek, Tina E.; Encarnação, Jorge A.

    2013-01-01

    The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to their diet and be able to digest chitin. We hypothesized that (i) European vespertilionid bat species have the digestive enzyme chitinase and that (ii) the chitinolytic activity is located in the intestine, as has been found for North American bat species. The gastrointestinal tracts of seven bat species (Pipistrellus pipistrellus, Plecotus auritus, Myotis bechsteinii, Myotis nattereri, Myotis daubentonii, Myotis myotis, and Nyctalus leisleri) were tested for chitinolytic activity by diffusion assay. Gastrointestinal tracts of P. pipistrellus, P. auritus, M. nattereri, M. myotis, and N. leisleri were examined for acidic mammalian chitinase by western blot analysis. Tissue sections of the gastrointestinal tract of P. pipistrellus were immunohistochemically analyzed to locate the acidic mammalian chitinase. Chitinolytic activity was detected in the stomachs of all bat species. Western blot analysis confirmed the acidic mammalian chitinase in stomach samples. Immunohistochemistry of the P. pipistrellus gastrointestinal tract indicated that acidic mammalian chitinase is located in the stomach chief cells at the base of the gastric glands. In conclusion, European vespertilionid bat species have acidic mammalian chitinase that is produced in the gastric glands of the stomach. Therefore, the gastrointestinal tracts of insectivorous bat species evolved an enzymatic adaptation to their diet. PMID:24019876

  19. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase.

    PubMed

    Strobel, Sara; Roswag, Anna; Becker, Nina I; Trenczek, Tina E; Encarnação, Jorge A

    2013-01-01

    The gastrointestinal tract of animals is adapted to their primary source of food to optimize resource use and energy intake. Temperate bat species mainly feed on arthropods. These contain the energy-rich carbohydrate chitin, which is indigestible for the endogenous enzymes of a typical mammalian gastrointestinal tract. However, the gastrointestinal tract of bat species should be adapted to their diet and be able to digest chitin. We hypothesized that (i) European vespertilionid bat species have the digestive enzyme chitinase and that (ii) the chitinolytic activity is located in the intestine, as has been found for North American bat species. The gastrointestinal tracts of seven bat species (Pipistrellus pipistrellus, Plecotus auritus, Myotis bechsteinii, Myotis nattereri, Myotis daubentonii, Myotis myotis, and Nyctalus leisleri) were tested for chitinolytic activity by diffusion assay. Gastrointestinal tracts of P. pipistrellus, P. auritus, M. nattereri, M. myotis, and N. leisleri were examined for acidic mammalian chitinase by western blot analysis. Tissue sections of the gastrointestinal tract of P. pipistrellus were immunohistochemically analyzed to locate the acidic mammalian chitinase. Chitinolytic activity was detected in the stomachs of all bat species. Western blot analysis confirmed the acidic mammalian chitinase in stomach samples. Immunohistochemistry of the P. pipistrellus gastrointestinal tract indicated that acidic mammalian chitinase is located in the stomach chief cells at the base of the gastric glands. In conclusion, European vespertilionid bat species have acidic mammalian chitinase that is produced in the gastric glands of the stomach. Therefore, the gastrointestinal tracts of insectivorous bat species evolved an enzymatic adaptation to their diet. PMID:24019876

  20. Isolation, purification, crystallization and preliminary crystallographic studies of chitinase from tamarind (Tamarindus indica) seeds.

    PubMed

    Patil, Dipak N; Datta, Manali; Chaudhary, Anshul; Tomar, Shailly; Sharma, Ashwani Kumar; Kumar, Pravindra

    2009-04-01

    A protein with chitinase activity has been isolated and purified from tamarind (Tamarindus indica) seeds. N-terminal amino-acid sequence analysis of this protein confirmed it to be an approximately 34 kDa endochitinase which belongs to the acidic class III chitinase family. The protein was crystallized by the vapour-diffusion method using PEG 4000. The crystals belonged to the tetragonal space group P4(1), with two molecules per asymmetric unit. Diffraction data were collected to a resolution of 2.6 A. PMID:19342775

  1. Distribution and Phylogenetic Analysis of Family 19 Chitinases in Actinobacteria

    PubMed Central

    Kawase, Tomokazu; Saito, Akihiro; Sato, Toshiya; Kanai, Ryo; Fujii, Takeshi; Nikaidou, Naoki; Miyashita, Kiyotaka; Watanabe, Takeshi

    2004-01-01

    In organisms other than higher plants, family 19 chitinase was first discovered in Streptomyces griseus HUT6037, and later, the general occurrence of this enzyme in Streptomyces species was demonstrated. In the present study, the distribution of family 19 chitinases in the class Actinobacteria and the phylogenetic relationship of Actinobacteria family 19 chitinases with family 19 chitinases of other organisms were investigated. Forty-nine strains were chosen to cover almost all the suborders of the class Actinobacteria, and chitinase production was examined. Of the 49 strains, 22 formed cleared zones on agar plates containing colloidal chitin and thus appeared to produce chitinases. These 22 chitinase-positive strains were subjected to Southern hybridization analysis by using a labeled DNA fragment corresponding to the catalytic domain of ChiC, and the presence of genes similar to chiC of S. griseus HUT6037 in at least 13 strains was suggested by the results. PCR amplification and sequencing of the DNA fragments corresponding to the major part of the catalytic domains of the family 19 chitinase genes confirmed the presence of family 19 chitinase genes in these 13 strains. The strains possessing family 19 chitinase genes belong to 6 of the 10 suborders in the order Actinomycetales, which account for the greatest part of the Actinobacteria. Phylogenetic analysis suggested that there is a close evolutionary relationship between family 19 chitinases found in Actinobacteria and plant class IV chitinases. The general occurrence of family 19 chitinase genes in Streptomycineae and the high sequence similarity among the genes found in Actinobacteria suggest that the family 19 chitinase gene was first acquired by an ancestor of the Streptomycineae and spread among the Actinobacteria through horizontal gene transfer. PMID:14766598

  2. Influence of culture conditions of Streptomyces sp. (strain S242) on chitinase production.

    PubMed

    Saadoun, Ismail; Al-Omari, Ruqayyah; Jaradat, Ziad; Ababneh, Qotaiba

    2009-01-01

    The purpose of this study was to determine the influence of growth conditions and medium composition on the production ofchitinase by Streptomyces sp. (strain S242). Production of chitinase by strain S242 was detected on colloidal chitin agar (CCA) medium after 8 days of incubation at 28 degrees C resulting in a clear zone 10 mm around the colony. Chitinase activity was assayed as the amount of N-acetylglucosamine released in micromol/ml/min using the dinitrosalicylic acid assay method. The crude enzyme had maximum activity (0.162 U ml/l) after 4 days of incubation at pH 7 and 30 degrees C when the broth medium was supplemented with 1.6% of colloidal chitin. However, enzyme activity was strongly decreased at 40 degrees C and extreme acidic and alkaline pH values. SDS-PAGE and zymogram analysis revealed six distinctive bands that range from 39 to 97 kDa with chitinolytic activity. The findings of this investigation create a possibility for the use of the organism in the commercial production of chitinase. In addition, it can be a source of DNA for cloning the chitinase gene(s) to generate phytopathogen resistant transgenic plants. PMID:20380144

  3. Production, purification and properties of fungal chitinases--a review.

    PubMed

    Karthik, Narayanan; Akanksha, Karthik; Pandey, Ashok

    2014-11-01

    After cellulose, chitin is the second most abundant organic and renewable polysaccharide in nature. This polymer is degraded by enzymes called chitinases which are a part of the glycoside hydrolase family. Chitinases have many important biophysiological functions and immense potential applications especially in control of phytopathogens, production of chito- oligosaccharides with numerous uses and in treatment and degradation of chitinous biowaste. At present many microbial sources are being explored and tapped for chitinase production which includes potential fungal cultures. With advancement in molecular biology and gene cloning techniques, research on fungal chitinases have made fast progress. The present review focuses on recent advances in fungal chitinases, containing a short introduction to types of chitinases, their fermentative production, purification and characterization and molecular cloning and expression. PMID:25434097

  4. Brittle Culm15 Encodes a Membrane-Associated Chitinase-Like Protein Required for Cellulose Biosynthesis in Rice1[C][W][OA

    PubMed Central

    Wu, Bin; Zhang, Baocai; Dai, Yan; Zhang, Lei; Shang-Guan, Keke; Peng, Yonggang; Zhou, Yihua; Zhu, Zhen

    2012-01-01

    Plant chitinases, a class of glycosyl hydrolases, participate in various aspects of normal plant growth and development, including cell wall metabolism and disease resistance. The rice (Oryza sativa) genome encodes 37 putative chitinases and chitinase-like proteins. However, none of them has been characterized at the genetic level. In this study, we report the isolation of a brittle culm mutant, bc15, and the map-based cloning of the BC15/OsCTL1 (for chitinase-like1) gene affected in the mutant. The gene encodes the rice chitinase-like protein BC15/OsCTL1. Mutation of BC15/OsCTL1 causes reduced cellulose content and mechanical strength without obvious alterations in plant growth. Bioinformatic analyses indicated that BC15/OsCTL1 is a class II chitinase-like protein that is devoid of both an amino-terminal cysteine-rich domain and the chitinase activity motif H-E-T-T but possesses an amino-terminal transmembrane domain. Biochemical assays demonstrated that BC15/OsCTL1 is a Golgi-localized type II membrane protein that lacks classical chitinase activity. Quantitative real-time polymerase chain reaction and β-glucuronidase activity analyses indicated that BC15/OsCTL1 is ubiquitously expressed. Investigation of the global expression profile of wild-type and bc15 plants, using Illumina RNA sequencing, further suggested a possible mechanism by which BC15/OsCTL1 mediates cellulose biosynthesis and cell wall remodeling. Our findings provide genetic evidence of a role for plant chitinases in cellulose biosynthesis in rice, which appears to differ from their roles as revealed by analysis of Arabidopsis (Arabidopsis thaliana). PMID:22665444

  5. Chitinase genes in lake sediments of Ardley Island, Antarctica.

    PubMed

    Xiao, Xiang; Yin, Xuebin; Lin, Jian; Sun, Liguang; You, Ziyong; Wang, Peng; Wang, Fengping

    2005-12-01

    A sediment core spanning approximately 1,600 years was collected from a lake on Ardley Island, Antarctica. The sediment core had been greatly influenced by penguin guano. Using molecular methods, the chitinolytic bacterial community along the sediment core was studied over its entire length. Primers targeting conserved sequences of the catalytic domains of family 18 subgroup A chitinases detected group A chitinases from a wide taxonomic range of bacteria. Using quantitative competitive PCR (QC-PCR), chitinase gene copies in each 1-cm section of the whole sediment column were quantified. QC-PCR determination of the chitinase gene copies indicated significant correlation with phosphorus and total organic carbon concentration, suggesting a historical connection between chitinase gene copies and the amount of penguin guano input into the lake sediment. Most of the chitinase genes cloned from the historic sediment core were novel. Analysis of the chitinase gene diversity in selected sediment layers and in the fresh penguin deposits indicated frequent shifts in the chitinolytic bacterial community over time. Sequence analysis of the 16S rRNA genes of chitinolytic bacteria isolated from the lake sediment revealed that the isolates belonged to Janthinobacterium species, Stenotrophomonas species of gamma-Proteobacteria, Cytophaga species of the Cytophaga-Flexibacter-Bacteroides group, and Streptomyces and Norcardiopsis species of Actinobacteria. Chitinase gene fragments were cloned and sequenced from these cultivated chitinolytic bacteria. The phylogeny of the chitinase genes obtained from the isolates did not correspond well to that of the isolates, suggesting acquisition via horizontal gene transfer. PMID:16332766

  6. Studies on Exo-Chitinase Production from Trichoderma asperellum UTP-16 and Its Characterization.

    PubMed

    Kumar, D Praveen; Singh, Rajesh Kumar; Anupama, P D; Solanki, Manoj Kumar; Kumar, Sudheer; Srivastava, Alok K; Singhal, Pradeep K; Arora, Dilip K

    2012-09-01

    The growth conditions for chitinase production by Trichoderma asperellum UTP-16 in solid state fermentation was optimized using response surface methodology based on central composite design. The chitinase production was optimized, using one-factor at a time approach, with six independent variables (temperature, pH, NaCl, incubation period, nitrogen and carbon sources) and 3.31 Units per gram dry substrate (U gds(-1)) exo-chitinase yield was obtained. A 21.15% increase was recorded in chitinase activity (4.01 U gds(-1)) through surface response methodology, indicates that it is a powerful and rapid tool for optimization of physical and nutritional variables. Further, efficiency of crude enzyme was evaluated against phytopathogenic Fusarium spp. and a mycelial growth inhibition up to 3.5-6.5 mm was achieved in well diffusion assay. These results could be supplemented as basic information for the development of enzyme based formulation of T. asperellum UTP-16 and its use as a biocontrol agent. PMID:23997329

  7. Expression, purification, crystallization and preliminary crystallographic analysis of chitinase A from Vibrio carchariae

    SciTech Connect

    Songsiriritthigul, Chomphunuch; Yuvaniyama, Jirundon; Robinson, Robert C.; Vongsuwan, Archara; Prinz, Heino; Suginta, Wipa

    2005-10-01

    This article describes the high-level expression, purification and crystallization as well as preliminary X-ray diffraction study of a family 18 chitinase, chitinase A from V. carchariae. Chitinase A of Vibrio carchariae was expressed in Escherichia coli M15 host cells as a 575-amino-acid fragment with full enzymatic activity using the pQE60 expression vector. The yield of the highly purified recombinant protein was approximately 70 mg per litre of bacterial culture. The molecular mass of the expressed protein was determined by HPLC/ESI–MS to be 63 770, including the hexahistidine tag. Crystals of recombinant chitinase A were grown to a suitable size for X-ray structure analysis in a precipitant containing 10%(v/v) PEG 400, 0.1 M sodium acetate pH 4.6 and 0.125 M CaCl{sub 2}. The crystals belonged to the tetragonal space group P422, with two molecules per asymmetric unit and unit-cell parameters a = b = 127.64, c = 171.42 Å. A complete diffraction data set was collected to 2.14 Å resolution using a Rigaku/MSC R-AXIS IV{sup ++} detector system mounted on an RU-H3R rotating-anode X-ray generator.

  8. The role of enzyme distortion in the single displacement mechanism of family 19 chitinases

    PubMed Central

    Brameld, Ken A.; Goddard, William A.

    1998-01-01

    By using molecular dynamics simulations, we have examined the binding of a hexaNAG substrate and two potential hydrolysis intermediates (an oxazoline ion and an oxocarbenium ion) to a family 19 barley chitinase. We find the hexaNAG substrate binds with all sugars in a chair conformation, unlike the family 18 chitinase which causes substrate distortion. Glu 67 is in a position to protonate the anomeric oxygen linking sugar residues D and E whereas Asn 199 serves to hydrogen bond with the C2′ N-acetyl group of sugar D, thus preventing the formation of an oxazoline ion intermediate. In addition, Glu 89 is part of a flexible loop region allowing a conformational change to occur within the active site to bring the oxocarbenium ion intermediate and Glu 89 closer by 4–5 Å. A hydrolysis product with inversion of the anomeric configuration occurs because of nucleophilic attack by a water molecule that is coordinated by Glu 89 and Ser 120. Issues important for the design of inhibitors specific to family 19 chitinases over family 18 chitinases also are discussed. PMID:9539727

  9. Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides).

    PubMed

    Zhang, Yanhong; Feng, Shaozhen; Chen, Jun; Qin, Chaobin; Lin, Haoran; Li, Wensheng

    2012-05-01

    Chitinase, belonging to either family 18 or family 19 of the glycosylhydrolases, hydrolyze chitin into oligosaccharides. In the present study, the cDNA fragment encoding orange-spotted grouper (Epinephelus coioides) chitinase1 was subcloned into pPIC3.5K vector and expressed in Pichia pastoris GS115. The results showed that a band with the size of about 53 kDa could be detected by SDS-PAGE and Western blot. The recombinant protein of grouper chitinase1 (rgChi1) was added into the fish diet containing shrimp shell chitin for feeding experiment lasting 8 weeks. The weight of orange-spotted grouper, fed with diets containing rgChi1 at 0, 5, 10 and 20 μg/g was calculated on the 2nd, 4th, 6th and 8th weeks, and difference in growth rates was first observed in the 6th week of the feeding period and it kept until the end of the feeding experiment. At the end of 8 weeks feeding trial, the percent weight gain (PWG), growth rate (GR) and specific growth rate (SGR) of fish fed with 10 and 20 μg rgChi1/g feed were significantly higher compared to the control group. The neuropeptide Y (NPY), growth-hormone-releasing hormone (GHRH), growth-hormone (GH), interleukin-1beta (IL-1β), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD) (Cu/Zn) and SOD (Mn) mRNA expression of fish fed with diet containing 10 μg/g or/and 20 μg/g rgChi1 were obviously higher than the control group. The lysozyme (LZM) and total SOD activity of fish fed with diet containing rgChi1 at 10 and 20 μg/g were significantly higher than that of the control. The aspartate aminotransferase (AST)/glutamic oxalacetic transaminases (GOT) activity in 20 μg/g group decreased compared to the control group. These results indicated that the grouper chitinase1 was successfully produced using the P. pastoris expression system and the recombinant protein had obvious effects on growth and immune defense. The mRNA expression and protein secretion of grouper chitinase1 and chitinase2 were significantly stimulated in

  10. Dual protonophore-chitinase inhibitors dramatically affect O. volvulus molting.

    PubMed

    Gooyit, Major; Tricoche, Nancy; Lustigman, Sara; Janda, Kim D

    2014-07-10

    The L3-stage-specific chitinase OvCHT1 has been implicated in the development of Onchocerca volvulus, the causative agent of onchocerciasis. Closantel, a known anthelmintic drug, was previously discovered as a potent and specific OvCHT1 inhibitor. As closantel is also a known protonophore, we performed a simple scaffold modulation to map out the structural features that are relevant for its individual or dual biochemical roles. Furthermore, we present that either OvCHT1 inhibition or protonophoric activity was capable of affecting O. volvulus L3 molting and that the presence of both activities in a single molecule yielded more potent inhibition of the nematode's developmental process. PMID:24918716

  11. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens.

    PubMed

    Nakagawa, Yuko S; Eijsink, Vincent G H; Totani, Kazuhide; Vaaje-Kolstad, Gustav

    2013-11-20

    Industrial depolymerization of chitinous biomass generally requires numerous steps and the use of deleterious substances. Enzymatic methods provide an alternative, but fundamental knowledge that could direct potential development of industrial enzyme cocktails is scarce. We have studied the contribution of monocomponent chitinases (ChiA, -B, and -C) and the lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens on depolymerization of α-chitin substrates with varying particle size and crystallinity that were generated using a converge mill. For all chitinases activity was positively correlated to a decline in particle size and crystallinity. Especially ChiC, the only nonprocessive endochitinase from the S. marcescens chitinolytic machinery, benefited from mechanical pretreatment. Combining the chitinases revealed clear synergies for all substrates tested. CBP21, the chitin-active LPMO from S. marcescens, increased solubilization of substrates with high degrees of crystallinity when combined with each of the three chitinases, but this synergy was reduced upon decline in crystallinity. PMID:24168426

  12. Structural Investigation of a Novel N-Acetyl Glucosamine Binding Chi-Lectin Which Reveals Evolutionary Relationship with Class III Chitinases

    PubMed Central

    Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra

    2013-01-01

    The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482

  13. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...

  14. Family GH19 plant class IV chitinase from Zea mays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize ChitA chitinase is composed of a small, hevein-like domain attached to a carboxy-terminal chitinase domain. During fungal ear rot, the hevein-like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here we report a structural and biochemical characterization of...

  15. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a protein secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) i...

  16. Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate.

    PubMed

    Vu, Khanh Dang; Yan, S; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-11-01

    Induced production of chitinase during bioconversion of starch industry wastewater (SIW) to Bacillus thuringiensis var. kurstaki HD-1 (Btk) based biopesticides was studied in shake flask as well as in computer-controlled fermentors. SIW was fortified with different concentrations (0%; 0.05%; 0.1%; 0.2%; 0.3% w/v) of colloidal chitin and its consequences were ascertained in terms of Btk growth (total cell count and viable spore count), chitinase, protease and amylase activities and entomotoxicity. At optimum concentration of 0.2% w/v colloidal chitin, the entomotoxicity of fermented broth and suspended pellet was enhanced from 12.4x10(9) (without chitin) to 14.4x10(9) SBU/L and from 18.2x10(9) (without chitin) to 25.1x10(9) SBU/L, respectively. Further, experiments were conducted for Btk growth in a computer-controlled 15 L bioreactor using SIW as a raw material with (0.2% w/v chitin, to induce chitinase) and without fortification of colloidal chitin. It was found that the total cell count, spore count, delta-endotoxin concentration (alkaline solubilised insecticidal crystal proteins), amylase and protease activities were reduced whereas the entomotoxicity and chitinase activity was increased with chitin fortification. The chitinase activity attained a maximum value at 24 h (15 mU/ml) and entomotoxicity of suspended pellet reached highest (26.7x10(9) SBU/L) at 36 h of fermentation with chitin supplementation of SIW. In control (without chitin), the highest value of entomotoxicity of suspended pellet (20.5x10(9) SBU/L) reached at 48 h of fermentation. A quantitative synergistic action of delta-endotoxin concentration, spore concentration and chitinase activity on the entomotoxicity against spruce budworm larvae was observed. PMID:19564105

  17. Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2015-04-16

    Metschnikowia fructicola strain AP47 is a yeast antagonist against postharvest pathogens of fruits. The yeast was able to produce chitinase enzymes in the presence of pathogen cell wall. A novel chitinase gene MfChi (GenBank accession number HQ113461) was amplified from the genomic DNA of Metschnikowia fructicola AP47. Sequence analysis showed lack of introns, an open reading frame (ORF) of 1098 bp encoding a 365 amino acid protein with a calculated molecular weight of 40.9 kDa and a predicted pI of 5.27. MfChi was highly induced in Metschnikowia fructicola after interaction with Monilinia fructicola cell wall, suggesting a primary role of MfChi chitinase in the antagonistic activity of the yeast. The MfChi gene overexpressed in the heterologous expression system of Pichia pastoris KM71 and the recombinant chitinase showed high endochitinase activity towards 4-Nitrophenyl β-d-N,N',N″-triacetylchitotriose substrate. The antifungal activity of the recombinant chitinase was investigated against Monilinia fructicola and Monilinia laxa in vitro and on peaches. The chitinase significantly controlled the spore germination and the germ tube length of the tested pathogens in PDB medium and the mycelium diameter in PDA. The enzyme, when applied on peaches cv. Redhaven, successfully reduced brown rot severity. This work shows that the chitinase MfChi could be developed as a postharvest treatment with antimicrobial activity for fruit undergoing a short shelf life, and confirms that P. pastoris KM71 is a suitable microorganism for cost-effective large-scale production of recombinant chitinases. PMID:25632799

  18. Partial purification, characterization, and kinetic studies of a low-molecular-weight, alkali-tolerant chitinase enzyme from Bacillus subtilis JN032305, A potential biocontrol strain.

    PubMed

    Shivakumar, Srividya; Karmali, Anika Nayak; Ruhimbana, Charles

    2014-01-01

    A new alkalophilic low-molecular-mass chitinase of 14 kD from the potent biocontrol agent Bacillus subtilis JN032305 was partially purified and enzymology of the chitinase was studied. The enzyme showed optimal pH of 9.0 and temperature of 50°C. The enzyme was found stable during the 60-min incubation at 50 °C. The chitinase was inhibited by group specific agents like IAA, DAN, TLCK, and SDS and metal ions Mg(2+), Ca(2+), Fe(2+), Mn(2+), Ba(2+), and Hg(2+), whereas Zn(2+) did not show significant inhibitory effect against the chitinase. PMSF partially inhibited the enzyme. Substrates specificity tests indicated that the enzyme showed 75% of relative activity on glycol chitin, 58% on carboxymethylcellulose (CMC), 33% on chitin flakes, and 166% laminarin compared to that on colloidal chitin. The enzyme also hydrolyzed 4-methylumbelliferyl-N-acetyl-D-glucosaminide, indicating its chitobiase activity. The chitinase of this study has broad specificity, which could hydrolyze not only the glycosidic bond in GlcNAc-GlcNAc but also that of related carbohydrates with glycosidic linkages. The partially purified chitinase not only showed antifungal activity against Rhizoctonia solani and Colletotrichum gloeosporioides, two potent phytopathogens of chilli, but also increased the germination of chilli seeds when infected with the two potent phytopathogenic fungi. PMID:24499366

  19. Characterization of Thermotolerant Chitinases Encoded by a Brevibacillus laterosporus Strain Isolated from a Suburban Wetland

    PubMed Central

    Liu, Pulin; Cheng, Deyong; Miao, Lihong

    2015-01-01

    To isolate and characterize chitinases that can be applied with practical advantages, 57 isolates of chitin-degrading bacteria were isolated from the soil of a suburban wetland. 16S rRNA gene analysis revealed that the majority of these strains belonged to two genera, Paenibacillus and Brevibacillus. Taking thermostability into account, the chitinases (ChiA and ChiC) of a B. laterosporus strain were studied further. Ni-NTA affinity-purified ChiA and ChiC were optimally active at pH 7.0 and 6.0, respectively, and showed high temperature stability up to 55 °C. Kinetic analysis revealed that ChiC has a lower affinity and stronger catalytic activity toward colloidal chitin than ChiA. With their stability in a broad temperature range, ChiA and ChiC can be utilized for the industrial bioconversion of chitin wastes into biologically active products. PMID:26690223

  20. Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51

    PubMed Central

    Kuzu, Secil Berna; Güvenmez, Hatice Korkmaz; Denizci, Aziz Akin

    2012-01-01

    This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni2+ (32%), K+ (44%), and Cu2+ (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg2+ (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer. PMID:23304523

  1. Stomach Chitinase from Japanese Sardine Sardinops melanostictus: Purification, Characterization, and Molecular Cloning of Chitinase Isozymes with a Long Linker

    PubMed Central

    Kawashima, Satoshi; Ikehata, Hiroki; Tada, Chihiro; Ogino, Tomohiro; Kakizaki, Hiromi; Ikeda, Mana; Fukushima, Hideto; Matsumiya, Masahiro

    2016-01-01

    Fish express two different chitinases, acidic fish chitinase-1 (AFCase-1) and acidic fish chitinase-2 (AFCase-2), in the stomach. AFCase-1 and AFCase-2 have different degradation patterns, as fish efficiently degrade chitin ingested as food. For a comparison with the enzymatic properties and the primary structures of chitinase isozymes obtained previously from the stomach of demersal fish, in this study, we purified chitinase isozymes from the stomach of Japanese sardine Sardinops melanostictus, a surface fish that feeds on plankton, characterized the properties of these isozymes, and cloned the cDNAs encoding chitinases. We also predicted 3D structure models using the primary structures of S. melanostictus stomach chitinases. Two chitinase isozymes, SmeChiA (45 kDa) and SmeChiB (56 kDa), were purified from the stomach of S. melanostictus. Moreover, two cDNAs, SmeChi-1 encoding SmeChiA, and SmeChi-2 encoding SmeChiB were cloned. The linker regions of the deduced amino acid sequences of SmeChi-1 and SmeChi-2 (SmeChi-1 and SmeChi-2) are the longest among the fish stomach chitinases. In the cleavage pattern groups toward short substrates and the phylogenetic tree analysis, SmeChi-1 and SmeChi-2 were classified into AFCase-1 and AFCase-2, respectively. SmeChi-1 and SmeChi-2 had catalytic domains that consisted of a TIM-barrel (β/α)8–fold structure and a deep substrate-binding cleft. This is the first study showing the 3D structure models of fish stomach chitinases. PMID:26805857

  2. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases.

    PubMed

    Jana, Suvamay; Hamre, Anne Grethe; Wildberger, Patricia; Holen, Matilde Mengkrog; Eijsink, Vincent G H; Beckham, Gregg T; Sørlie, Morten; Payne, Christina M

    2016-02-25

    Microorganisms use a host of enzymes, including processive glycoside hydrolases, to deconstruct recalcitrant polysaccharides to sugars. Processive glycoside hydrolases closely associate with polymer chains and repeatedly cleave glycosidic linkages without dissociating from the crystalline surface after each hydrolytic step; they are typically the most abundant enzymes in both natural secretomes and industrial cocktails by virtue of their significant hydrolytic potential. The ubiquity of aromatic residues lining the enzyme catalytic tunnels and clefts is a notable feature of processive glycoside hydrolases. We hypothesized that these aromatic residues have uniquely defined roles, such as substrate chain acquisition and binding in the catalytic tunnel, that are defined by their local environment and position relative to the substrate and the catalytic center. Here, we investigated this hypothesis with variants of Serratia marcescens family 18 processive chitinases ChiA and ChiB. We applied molecular simulation and free energy calculations to assess active site dynamics and ligand binding free energies. Isothermal titration calorimetry provided further insight into enthalpic and entropic contributions to ligand binding free energy. Thus, the roles of six aromatic residues, Trp-167, Trp-275, and Phe-396 in ChiA, and Trp-97, Trp-220, and Phe-190 in ChiB, have been examined. We observed that point mutation of the tryptophan residues to alanine results in unfavorable changes in the free energy of binding relative to wild-type. The most drastic effects were observed for residues positioned at the "entrances" of the deep substrate-binding clefts and known to be important for processivity. Interestingly, phenylalanine mutations in ChiA and ChiB had little to no effect on chito-oligomer binding, in accordance with the limited effects of their removal on chitinase functionality. PMID:26824449

  3. Role of Tyr-435 of Vibrio harveyi chitinase A in chitin utilization.

    PubMed

    Sritho, Natchanok; Suginta, Wipa

    2012-03-01

    Vibrio harveyi chitinase A or VhChiA (EC.3.2.1.14) is a member of GH-18 chitinases that catalyzes chitin degradation from marine biomaterials. Our earlier structural data of VhChiA suggested that Tyr-435 marks the ending of subsite +2 and may influence binding of the interacting substrate at the aglycone binding sites. This study reports the effects of Tyr-435 using site-directed mutagenesis technique. Mutation of Tyr-435 to Ala (mutant Y435A) enhanced both binding and catalytic efficiency of VhChiA, whereas substitution of Tyr-435 to Trp (mutant Y435W) lessened the ability of the enzyme to bind and hydrolyze chitin substrates. The increased activity of Y435A can be explained by partial removal of a steric clash around subsite (+2), thereby allowing a chitin chain to move beyond or to access the enzyme's active site from the aglycone side more straightforwardly. PMID:22194054

  4. Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa

    PubMed Central

    Chen, Lin; Jiang, Huang; Cheng, Qipeng; Chen, Junpeng; Wu, Gaobing; Kumar, Ashok; Sun, Ming; Liu, Ziduo

    2015-01-01

    Nematodes are known to be harmful to various crops, vegetables, plants and insects. The present study reports that, chitin upregulates the activity of chitinase (20%) and nematicidal potential (15%) of Pseudomonas aeruginosa. The chitinase gene (pachi) from P. aeruginosa was cloned, and its nematicidal activity of pachi protein against Caenorhabditis elegans was studied. The mortality rate induced by pachi increased by 6.3-fold when in association with Cry21Aa from Bacillus thuringiensis. Pachi efficiently killed C. elegans in its native state (LC50 = 387.3 ± 31.7 μg/ml), as well as in association with Cry21Aa (LC50 = 30.9 ± 4.1 μg/ml), by degrading the cuticle, egg shell and intestine in a relatively short time period of 24 h. To explore the nematidal potential of chitinase, six fusion proteins were constructed using gene engineering techniques. The CHACry showed higher activity against C. elegans than others owing to its high solubility. Notably, the CHACry showed a synergistic factor of 4.1 versus 3.5 a mixture [1:1] of pachi and Cry21Aa. The present study has identified eco-friendly biological routes (e.g., mixed proteins, fusion proteins) with potent nematicidal activity, which not only can help to prevent major crop losses but also strengthen the agro-economy and increase gross crop yield. PMID:26400097

  5. Utilization of Chitinaceous Wastes for the Production of Chitinase.

    PubMed

    Das, S; Roy, D; Sen, R

    2016-01-01

    Marine environment is the most abundant source of chitin. Several marine organisms possess chitin in their structural components. Hence, a huge amount of chitin wastes is deposited in marine environment when such organisms shed their outer skeleton and also after their demise. Waste chitins are potential nutrient source of certain microbes. These microbes produce chitinases that hydrolyze waste chitins. These organisms thus play an important role to remove the chitin wastes from marine environment. In connection with this, chitinases are found to be most important biocatalyst for the utilization of chitin wastes. Therefore, use of chitin for chitinase production is one of the useful tools for different types of bioprocesses. PMID:27452164

  6. Chitinase from a Novel Strain of Serratia marcescens JPP1 for Biocontrol of Aflatoxin: Molecular Characterization and Production Optimization Using Response Surface Methodology

    PubMed Central

    Wang, Kai; Yan, Pei-sheng; Cao, Li-xin

    2014-01-01

    Chitinase is one of the most important mycolytic enzymes with industrial significance, and produced by a number of organisms. A chitinase producing isolate Serratia marcescens JPP1 was obtained from peanut hulls in Jiangsu Province, China, and exhibited antagonistic activity against aflatoxins. In this study, we describe the optimization of medium composition with increased production of chitinase for the selected bacteria using statistical methods: Plackett-Burman design was applied to find the key ingredients, and central composite design of response surface methodology was used to optimize the levels of key ingredients for the best yield of chitinase. Maximum chitinase production was predicted to be 23.09 U/mL for a 2.1-fold increase in medium containing 12.70 g/L colloidal chitin, 7.34 g/L glucose, 5.00 g/L peptone, 1.32 g/L (NH4)2SO4, 0.7 g/L K2HPO4, and 0.5 g/L MgSO4·7H2O. Polymerase chain reaction (PCR) amplification of the JPP1 chitinase gene was performed and obtained a 1,789 bp nucleotide sequence; its open reading frame encoded a protein of 499 amino acids named as ChiBjp. PMID:24812619

  7. Structure and disulfide bonding pattern of the hevein-like peptide domains from plant class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays) and Arabidopsis (Arabidopsis thaliana) produce GH family 19 plant class IV chitinases. These chitinases contain two domains: a small N-terminal hevein region, and a C-terminal chitinase. Numerous structures of GH19 chitinase domains have been reported, including the chitinase domain ...

  8. Functional Implications of the Subcellular Localization of Ethylene-Induced Chitinase and [beta]-1,3-Glucanase in Bean Leaves.

    PubMed Central

    Mauch, F.; Staehelin, L. A.

    1989-01-01

    Plants respond to an attack by potentially pathogenic organisms and to the plant stress hormone ethylene with an increased synthesis of hydrolases such as chitinase and [beta]-1,3-glucanase. We have studied the subcellular localization of these two enzymes in ethylene-treated bean leaves by immunogold cytochemistry and by biochemical fractionation techniques. Our micrographs indicate that chitinase and [beta]-1,3-glucanase accumulate in the vacuole of ethylene-treated leaf cells. Within the vacuole label was found predominantly over ethylene-induced electron dense protein aggregates. A second, minor site of accumulation of [beta]-1,3-glucanase was the cell wall, where label was present nearly exclusively over the middle lamella surrounding intercellular air spaces. Both kinds of antibodies labeled Golgi cisternae of ethylene-treated tissue, suggesting that the newly synthesized chitinase and [beta]-1,3-glucanase are processed in the Golgi apparatus. Biochemical fractionation studies confirmed the accumulation in high concentrations of both chitinase and [beta]-1,3-glucanase in isolated vacuoles, and demonstrated that only [beta]-1,3-glucanase, but not chitinase, was present in intercellular washing fluids collected from ethylene-treated leaves. Based on these results and earlier studies, we propose a model in which the vacuole-localized chitinase and [beta]-1,3-glucanase are used as a last line of defense to be released when the attacked host cells lyse. The cell wall-localized [beta]-1,3-glucanase, on the other hand, would be involved in recognition processes, releasing defense activating signaling molecules from the walls of invading pathogens. PMID:12359894

  9. Purification and characterization of chitinases from ridgetail white prawn Exopalaemon carinicauda.

    PubMed

    Wang, Jing; Zhang, Jiquan; Song, Fengge; Gui, Tianshu; Xiang, Jianhai

    2015-01-01

    In this paper, we purified two native chitinases from the hepatopancreas of the ridgetail white prawn Exopalaemon carinicauda by using ion-exchange resin chromatography (IEC) and gel filtration. These two chitinases, named EcChi1 and EcChi2, were identified by chitinolytic activity assay and LC-ESI-MS/MS. Their apparent molecular weights were 44 kDa and 65 kDa as determined by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity of EcChi1 and EcChi2 was 1305.97 U·mg-1 and 28.69 U·mg-1. The optimal temperature and pH of EcChi1 were 37 °C and pH 4.0, respectively. Co2+, Fe3+, Zn2+, Cd2+, and Cu2+ had an obvious promoting effect upon chitinase activity of EcChi1. For colloidal chitin, the Km and Vmax values of EcChi1 were 2.09 mg·mL-1 and 31.15 U·mL-1·h-1. PMID:25629456

  10. A Chitinase from Aeromonas veronii CD3 with the Potential to Control Myxozoan Disease

    PubMed Central

    Liu, Yuchun; Zhou, Zhigang; Miao, Wei; Zhang, Yuting; Cao, Yanan; He, Suxu; Bai, Dongqing; Yao, Bin

    2011-01-01

    Background The class Myxosporea encompasses about 2,400 species, most of which are parasites of fish and cause serious damage in aquaculture. Due to the concerns about food safety issues and limited knowledge of Myxozoa life cycle and fish immune system, no chemicals, antibiotics or immune modulators are available to control myxozoa infection. Therefore, little can be done once Myxozoa establishment has occurred. Methodology/Principal Findings In this paper we isolated Aeromonas veronii CD3 with significant myxospore shell valve-degrading ability from pond sediment. A 3,057-bp full-length chitinase gene was consequently cloned, and the corresponding mature, recombinant chitinase (ChiCD3) produced by Escherichia coli had substantial chitinase activity. The deduced sequence of ChiCD3 contained one catalytic domain, two chitin-binding domains, and one putative signal peptide. ChiCD3 had an optimal activity at 50°C and pH 6.0, and retained more than 50% of its optimal activity under warm water aquaculture conditions (∼30°C and pH ∼7.0). After incubation with ChiCD3, 38.0±4.8% of the myxospores had damaged shell valves, whereas myxospores incubated with commercially available chitinases remained intact. Conclusion/Significance This study reveals a new strategy to control myxozoan disease. ChiCD3 that has capacity to damage the shell valve of myxospores can be supplemented into fish feed and used to control Myxozoa-induced diseases specifically. PMID:22205999

  11. Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride

    PubMed Central

    Matroudi, S.; Zamani, M.R.; Motallebi, M.

    2008-01-01

    In this study Trichoderma atroviride was selected as over producer of chitinase enzyme among 30 different isolates of Trichoderma sp. on the basis of chitinase specific activity. From this isolate the genomic and cDNA clones encoding chit33 have been isolated and sequenced. Comparison of genomic and cDNA sequences for defining gene structure indicates that this gene contains three short introns and also an open reading frame coding for a protein of 321 amino acids. The deduced amino acid sequence includes a 19 aa putative signal peptide. Homology between this sequence and other reported Trichoderma Chit33 proteins are discussed. The coding sequence of chit33 gene was cloned in pEt26b(+) expression vector and expressed in E. coli. PMID:24031242

  12. Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii

    PubMed Central

    Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong

    2008-01-01

    Entomopathogenic fungus Verticillium lecanii is a promising whitefly and aphid control agent. Chitinases secreted by this insect pathogen have considerable importance in the biological control of some insect pests. An endochitinase gene Vlchit1 from the fungus was cloned and overexpressed in Escherichia coli. The Vlchit1 gene not only contains an open reading frame (ORF) which encodes a protein of 423 amino acids (aa), but also is interrupted by three short introns. Vlchit1 protein showed that the chitinase Vlchit1 has a (a/b)8 TIM barrel structure. Overexpression test and Enzymatic activity assay indicated that the Vlchit1 is a functional enzyme that can hydrolyze the chitin substrate, so the Vlchit1 gene can service as a useful gene source for genetic manipulation leading to strain improvement of entomopathogenic fungi or constructing new transgenic plants with resistance to various fungal and insects pests. PMID:24031223

  13. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  14. CONTROL OF LATE BLIGHT (PHYTOPHTHORA CAPSICI) IN PEPPER PLANT WITH A COMPOST CONTAINING MULTITUDE OF CHITINASE-PRODUCING BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compost sustaining a multitude of chitinase-producing bacteria was evaluated in a greenhouse study as a soil amendment for the control of late blight (Phytophthora capsici L.) in pepper (Capsicum annuum L.). Microbial population and exogenous enzyme activity were measured in the rhizosphere and corr...

  15. Cloning, Sequencing, and Expression of the Chitinase Gene chiA74 from Bacillus thuringiensis

    PubMed Central

    Barboza-Corona, J. Eleazar; Nieto-Mazzocco, Elizabeth; Velázquez-Robledo, Rocio; Salcedo-Hernandez, Rubén; Bautista, Mayela; Jiménez, Beatriz; Ibarra, Jorge E.

    2003-01-01

    The endochitinase gene chiA74 from Bacillus thuringiensis serovar kenyae strain LBIT-82 was cloned in Escherichia coli DH5αF′. A sequence of 676 amino acids was deduced when the gene was completely sequenced. A molecular mass of 74 kDa was estimated for the preprotein, which includes a putative 4-kDa signal sequence located at the N terminus. The deduced amino acid sequence showed high degree of identity with other chitinases such as ChiB from Bacillus cereus (98%) and ChiA71 from Bacillus thuringiensis serovar pakistani (70%). Additionally, ChiA74 showed a modular structure comprised of three domains: a catalytic domain, a fibronectin-like domain, and a chitin-binding domain. All three domains showed conserved sequences when compared to other bacterial chitinase sequences. A ca. 70-kDa mature protein expressed by the cloned gene was detected in zymograms, comigrating with a chitinase produced by the LBIT-82 wild-type strain. ChiA74 is active within a wide pH range (4 to 9), although a bimodal activity was shown at pH 4.79 and 6.34. The optimal temperature was estimated at 57.2°C when tested at pH 6. The potential use of ChiA74 as a synergistic agent, along with the B. thuringiensis insecticidal Cry proteins, is discussed. PMID:12571025

  16. Two cold-induced family 19 glycosyl hydrolases from cherimoya (Annona cherimola) fruit: an antifungal chitinase and a cold-adapted chitinase.

    PubMed

    Goñi, Oscar; Sanchez-Ballesta, María T; Merodio, Carmen; Escribano, María I

    2013-11-01

    Two cold-induced chitinases were isolated and purified from the mesocarp cherimoyas (Annona cherimola Mill.) and they were characterised as acidic endochitinases with a Mr of 24.79 and 47.77kDa (AChi24 and AChi48, respectively), both family 19 glycosyl hydrolases. These purified chitinases differed significantly in their biochemical and biophysical properties. While both enzymes had similar optimal acidic pH values, AChi24 was enzymatically active and stable at alkaline pH values, as well as displaying an optimal temperature of 45°C and moderate thermostability. Kinetic studies revealed a great catalytic efficiency of AChi24 for oligomeric and polymeric substrates. Conversely, AChi48 hydrolysis showed positive co-operativity that was associated to a mixture of different functional oligomeric states through weak transient protein interactions. The rise in the AChi48 kcat at increasing enzyme concentrations provided evidence of its oligomerisation. AChi48 chitinase was active and stable in a broad acidic pH range, and while it was relatively labile as temperatures increased, with an optimal temperature of 35°C, it retained about 50% of its maximal activity from 5 to 50°C. Thermodynamic characterisation reflected the high kcat of AChi48 and the remarkably lower ΔH(‡), ΔS(‡) and ΔG(‡) values at 5°C compared to AChi24, indicating that the hydrolytic activity of AChi48 was less thermodependent. In vitro functional studies revealed that AChi24 had a strong antifungal defence potential against Botrytis cinerea, whereas they displayed no cryoprotective or antifreeze activity. Hence, based on biochemical, thermodynamic and functional data, this study demonstrates that two acidic endochitinases are induced at low temperatures in a subtropical fruit, and that one of them acts in an oligomeric cold-adapted manner. PMID:23890591

  17. Identification, Phylogeny, and Transcript of Chitinase Family Genes in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Wang, Shanshan; Wang, Zhuqing; Yang, Yuting; Chen, Yun; Que, Youxiong

    2015-01-01

    Chitinases are pathogensis-related proteins, which play an important role in plant defense mechanisms. The role of the sugarcane chitinase family genes remains unclear due to the highly heterozygous and aneuploidy chromosome genetic background of sugarcane. Ten differentially expressed chitinase genes (belonging to class I~VII) were obtained from RNA-seq analysis of both incompatible and compatible sugarcane genotypes during Sporisorium scitamineum challenge. Their structural properties and expression patterns were analyzed. Seven chitinases (ScChiI1, ScChiI2, ScChiI3, ScChiIII1, ScChiIII2, ScChiIV1 and ScChiVI1) showed more positive with early response and maintained increased transcripts in the incompatible interaction than those in the compatible one. Three (ScChiII1, ScChiV1 and ScChiVII1) seemed to have no significant difference in expression patterns between incompatible and compatible interactions. The ten chitinases were expressed differentially in response to hormone treatment as well as having distinct tissue specificity. ScChiI1, ScChiIV1 and ScChiVII1 were induced by various abiotic stresses (NaCl, CuCl2, PEG and 4 °C) and their involvement in plant immunity was demonstrated by over-expression in Nicotiana benthamiana. The results suggest that sugarcane chitinase family exhibit differential responses to biotic and abiotic stress, providing new insights into their function. PMID:26035173

  18. Chitinase Expression in Listeria monocytogenes Is Positively Regulated by the Agr System

    PubMed Central

    Paspaliari, Dafni Katerina; Mollerup, Maria Storm; Kallipolitis, Birgitte H.; Ingmer, Hanne; Larsen, Marianne Halberg

    2014-01-01

    The food-borne pathogen Listeria monocytogenes encodes two chitinases, ChiA and ChiB, which allow the bacterium to hydrolyze chitin, the second most abundant polysaccharide in nature. Intriguingly, despite the absence of chitin in human and mammalian hosts, both of the chitinases have been deemed important for infection, through a mechanism that, at least in the case of ChiA, involves modulation of host immune responses. In this study, we show that the expression of the two chitinases is subject to regulation by the listerial agr system, a homologue of the agr quorum-sensing system of Staphylococcus aureus, that has so far been implicated in virulence and biofilm formation. We demonstrate that in addition to these roles, the listerial agr system is required for efficient chitin hydrolysis, as deletion of agrD, encoding the putative precursor of the agr autoinducer, dramatically decreased chitinolytic activity on agar plates. Agr was specifically induced in response to chitin addition in stationary phase and agrD was found to regulate the amount of chiA, but not chiB, transcripts. Although the transcript levels of chiB did not depend on agrD, the extracellular protein levels of both chitinases were reduced in the ΔagrD mutant. The regulatory effect of agr on chiA is potentially mediated through the small RNA LhrA, which we show here to be negatively regulated by agr. LhrA is in turn known to repress chiA translation by binding to the chiA transcript and interfering with ribosome recruitment. Our results highlight a previously unrecognized role of the agr system and suggest that autoinducer-based regulation of chitinolytic systems may be more commonplace than previously thought. PMID:24752234

  19. Purification, cDNA cloning, and characterization of LysM-containing plant chitinase from horsetail (Equisetum arvense).

    PubMed

    Inamine, Saki; Onaga, Shoko; Ohnuma, Takayuki; Fukamizo, Tamo; Taira, Toki

    2015-01-01

    Chitinase-A (EaChiA), molecular mass 36 kDa, was purified from the vegetative stems of a horsetail (Equisetum arvense) using a series of column chromatography. The N-terminal amino acid sequence of EaChiA was similar to the lysin motif (LysM). A cDNA encoding EaChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1320 nucleotides and encoded an open reading frame of 361 amino acid residues. The deduced amino acid sequence indicated that EaChiA is composed of a N-terminal LysM domain and a C-terminal plant class IIIb chitinase catalytic domain, belonging to the glycoside hydrolase family 18, linked by proline-rich regions. EaChiA has strong chitin-binding activity, however, no antifungal activity. This is the first report of a chitinase from Equisetopsida, a class of fern plants, and the second report of a LysM-containing chitinase from a plant. PMID:25818933

  20. Expression and efficient secretion of a functional chitinase from Chromobacterium violaceum in Escherichia coli

    PubMed Central

    2013-01-01

    Background Chromobacterium violaceum is a free-living β-proteobacterium found in tropical and subtropical regions. The genomic sequencing of C. violaceum ATCC 12472 has revealed many genes that underpin its adaptability to diverse ecosystems. Moreover, C. violaceum genes with potential applications in industry, medicine and agriculture have also been identified, such as those encoding chitinases. However, none of the chitinase genes of the ATCC 12472 strain have been subjected to experimental validation. Chitinases (EC 3.2.1.14) hydrolyze the β-(1,4) linkages in chitin, an abundant biopolymer found in arthropods, mollusks and fungi. These enzymes are of great biotechnological interest as potential biocontrol agents against pests and pathogens. This work aimed to experimentally validate one of the chitinases from C. violaceum. Results The open reading frame (ORF) CV2935 of C. violaceum ATCC 12472 encodes a protein (439 residues) that is composed of a signal peptide, a chitin-binding domain, a linker region, and a C-terminal catalytic domain belonging to family 18 of the glycoside hydrolases. The ORF was amplified by PCR and cloned into the expression vector pET303/CT-His. High levels of chitinolytic activity were detected in the cell-free culture supernatant of E. coli BL21(DE3) cells harboring the recombinant plasmid and induced with IPTG. The secreted recombinant protein was purified by affinity chromatography on a chitin matrix and showed an apparent molecular mass of 43.8 kDa, as estimated by denaturing polyacrylamide gel electrophoresis. N-terminal sequencing confirmed the proper removal of the native signal peptide during the secretion of the recombinant product. The enzyme was able to hydrolyze colloidal chitin and the synthetic substrates p-nitrophenyl-β-D-N,N’-diacetylchitobiose and p-nitrophenyl-β-D-N,N’,N”-triacetylchitotriose. The optimum pH for its activity was 5.0, and the enzyme retained ~32% of its activity when heated to 60°C for 30

  1. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato.

    PubMed

    Saber, Wesam I A; Ghoneem, Khalid M; Al-Askar, Abdulaziz A; Rashad, Younes M; Ali, Abeer A; Rashad, Ehsan M

    2015-12-01

    Stem canker and black scurf of potato, caused by Rhizoctonia solani, can be serious diseases causing an economically significant damage. Biocontrol activity of Bacillus subtilis ATCC 11774 against the Rhizoctonia diseases of potato was investigated in this study. Chitinase enzyme was optimally produced by B. subtilis under batch fermentation conditions similar to those of the potato-growing soil. The maximum chitinase was obtained at initial pH 8 and 30 °C. In vitro, the lytic action of the B. subtilis chitinase was detected releasing 355 μg GlcNAc ml⁻¹ from the cell wall extract of R. solani and suggesting the presence of various chitinase enzymes in the bacterial filtrate. In dual culture test, the antagonistic behavior of B. subtilis resulted in the inhibition of the radial growth of R. solani by 48.1% after 4 days. Moreover, the extracted B. subtilis chitinase reduced the growth of R. solani by 42.3% when incorporated with the PDA plates. Under greenhouse conditions, application of a bacterial suspension of B. subtilis at 109 cell mL⁻¹ significantly reduced the disease incidence of stem canker and black scurf to 22.3 and 30%, respectively. In addition, it significantly improved some biochemical parameters, growth and tubers yield. Our findings indicate two points; firstly, B. subtilis possesses a good biocontrol activity against Rhizoctonia diseases of potato, secondly, the harmonization and suitability of the soil conditions to the growth and activity of B. subtilis guaranteed a high controlling capacity against the target pathogen. PMID:26616375

  2. The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea.

    PubMed

    Huang, Zhen; Hao, Yongfen; Gao, Tianni; Huang, Yü; Ren, Shunxiang; Keyhani, Nemat O

    2016-06-01

    The filamentous fungus, Isaria fumosorosea, is a promising insect biological control agent. Chitinases have been implicated in targeting insect cuticle structures, with biotechnological potential in insect and fungal control. The I. fumosorosea chitinase gene, Ifchit1, was isolated and determined to encode a polypeptide of 423 amino acids (46 kDa, pI = 6.53), present as a single copy in the I. fumosorosea genome. A split marker transformation system was developed and used to construct an Ifchit1 gene knockout. The ΔIfchit1 strain displayed minor alterations in mycelial growth on diverse media at 26 °C compared to the wild type and complemented (ΔIfchit1::Ifchit1) strains; however, colony morphology was affected, and the mutant strain had a temperature sensitive phenotype (32 °C). Although sporulation was delayed for the mutant, overall conidial production was almost twice than that of wild type. Biochemical assays indicated decreased chitinase activity during growth in Czapek-Dox liquid media for the ΔIfchit1 strain. Insect bioassays using diamondback moth, Plutella xylostella, larvae revealed decreased infectivity, i.e., increased LC 50 (threefold to fourfold) and a significantly delayed time to death, LT 50 from 3 to 6 days, for the ΔIfchit1 strain compared to the wild type and complemented strains. These data indicate an important role for the Ifchit1 chitinase as a virulence factor in I. fumosorosea. PMID:26910039

  3. Direct Regulation of Extracellular Chitinase Production by the Transcription Factor LeClp in Lysobacter enzymogenes OH11.

    PubMed

    Xu, Huiyong; Chen, Hongfu; Shen, Yuemao; Du, Liangcheng; Chou, Shan-Ho; Liu, Hongxia; Qian, Guoliang; Liu, Fengquan

    2016-09-01

    Lysobacter enzymogenes is a gram-negative bacterial biological control agent that produces abundant extracellular enzymes capable of degrading the cell walls of fungal pathogens. In strain OH11, an isolate from China, the global regulator LeClp controls the production of extracellular chitinase by regulating the transcription of the chitinase-encoding gene chiA. Using a combination of bioinformatic, genetic, and biochemical methods, we show that LeClp regulates chiA transcription by directly binding to the chiA promoter region. Although LeClp appears to be important in this role, it is not the sole regulator of chiA transcription. Furthermore, the sequence analysis of putative LeClp binding sites indicated that the LeClp homolog could be involved in the regulation of extracellular chitinase production in diverse Lysobacter spp. by a mechanism similar to that in L. enzymogenes. Our findings present new insights into the molecular mechanism of LeClp in controlling extracellular chitinase activity, providing a fundamental road to elucidate how LeClp regulates the production of other extracellular lytic enzymes in L. enzymogenes. PMID:27385597

  4. Class I β-1,3-Glucanase and Chitinase Are Expressed in the Micropylar Endosperm of Tomato Seeds Prior to Radicle Emergence1

    PubMed Central

    Wu, Chun-Ta; Leubner-Metzger, Gerhard; Meins, Frederick; Bradford, Kent J.

    2001-01-01

    β-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. β-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. β-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of β-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 μM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both β-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed. PMID:11457981

  5. Isolation and characterization of chitinase-producing Bacillus and Paenibacillus strains from salted and fermented shrimp, Acetes japonicus.

    PubMed

    Han, Kook-Il; Patnaik, Bharat Bhusan; Kim, Yong Hyun; Kwon, Hyun-Jung; Han, Yeon Soo; Han, Man-Deuk

    2014-04-01

    Chitinases catalyze the conversion of chitin and are produced by a wide range of bacteria. The biological applications of these enzymes have been exploited in food and pharmaceutical industries. We isolated 2 halophilic chitinase-producing novel strains of bacteria-SCH-1 and SCH-2 from Saeu-jeot, a traditional Korean salted and fermented food made with shrimp (Acetes japonicus). The isolated strains- SCH-1 and SCH-2 were Gram-positive, rod-shaped, endospore-forming facultative anaerobes, with strain SCH-2 showing peritrichous flagella. Molecular characterization of the 16S rRNA gene identified the strains SCH-1 and SCH-2 as Bacillus sp. and Paenibacillus sp. respectively. Basic Local Alignment Search Tool and subsequent phylogenetic analysis of strain SCH-1 showed an identity of 97.83% with Bacillus cereus ATCC 14579 (NR_074540), whereas strain SCH-2 showed an identity of 99.16% with Paenibacillus lautus JCM 9073 (NR_040882). Furthermore, the SCH-1 strain could use glucose, N-acetyl glucosamine, esculin, and maltose as carbon source substrates. Cellular fatty acid analysis showed that iso-C15:0 and anteiso-C15:0 are the major acids in strain SCH-1 and SCH-2, respectively. The SCH-1 strain showed a higher chitinase activity at 15.71 unit/mg protein compared with SCH-2 strain. Chitinase isozymes of Bacillus sp. SCH-1was expressed as 2 bands having sizes of 41 and 50 kDa, and as 4 bands with sizes of 30, 37, 45.7, and 50 kDa in Paenibacillus sp. SCH-2. The rich chitinase activity with the isozyme profiles of the isolated Bacillus and Paenibacillus strains provide advancement in the study of fermentation and may play putative functions in the chitin bioconversion of sea crustacean foods. PMID:24611959

  6. Preparation of chitooligosaccharides from fungal waste mycelium by recombinant chitinase.

    PubMed

    Lv, Mengyuan; Hu, Ying; Gänzle, Michael G; Lin, Jianguo; Wang, Changgao; Cai, Jun

    2016-07-22

    This study aimed to develop an enzymatic method for conversion of chitin from fungal waste mycelia to chitooligosaccharides. The recombinant chitinase LlChi18A from Lactococcus lactis was over-expressed by Escherichia coli BL21 (DE3) and purified by affinity chromatography. The enzymatic properties of the purified enzyme were studied by chitin oligosaccharides. Waste mycelium was pre-treated by alkaline. The optimal conditions for hydrolysis of fungal chitin by recombinant chitinase were determined by Schales method. HPLC/ESI-MS was used to determine the content of N-acetylglucosamine and chitooligosaccharides after hydrolysis. The level of reducing sugar released from pretreated mycelium by chitinase increased with the reaction time during 6 days. The main product in the hydrolysates was N,N'-diacetylchitobiose. After hydrolysis by chitinase for 5 d, the yield of N,N'-diacetylchitobiose from waste mycelium was around 10% with estimated purity of around 70%. Combination of chitinase and snailase remarkably increased the yield to 24% with purity of 78%. Fungal mycelium which contains chitin is a new potential source for obtaining food grade chitooligosaccharides. PMID:27153004

  7. Co-evolution of chitinases from maize and other cereals with secreted proteases from Pleosporineae fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant class IV chitinases are composed of a carboxy-terminal chitinase domain that is attached, through a linker sequence, to a small amino-terminal domain that can be thought of as a structured peptide. While both the peptide-like domain and the chitinase domain share sequence homology throughout m...

  8. Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant class IV chitinases have a small, amino-terminal chitin binding domain and a larger chitinase domain. Previous work on Zea mays chitinases ChitA and ChitB showed that their chitin binding domains bind insoluble chitin, that their catalytic domains degrade short, soluble forms of chitin, and th...

  9. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins.

    PubMed

    Naumann, Todd A

    2011-05-01

    In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a chitinase-modifying protein (cmp) secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) is also modified by Stm-cmp, a protein secreted by the fungal pathogen Stenocarpella maydis, whereas the other (ChitA-LH82) is resistant. The two ChitA alloforms possess six differences or polymorphisms (P1-P6). To determine whether the P2 polymorphism in the chitin-binding domain is responsible for resistance or susceptibility to modification by Stm-cmp, and to determine whether Stm-cmp and Bz-cmp are proteases, heterologous expression strains of the yeast Pichia pastoris that produce recombinant maize ChitA (rChitA) alloforms and mutant rChitAs were created. rChitA alloforms and mutant rChitAs were purified from yeast cultures and used as substrates in assays with Stm-cmp and Bz-cmp. As with native protein, Bz-cmp modified both rChitA-LH82 and rChitA-B73, whereas Stm-cmp modified rChitA-B73 only. Mutant rChitAs, in which the P2 amino acids were changed to those of the other alloform, resulted in a significant exchange in Stm-cmp susceptibility. Amino-terminal sequencing of unmodified and modified rChitA-B73 demonstrated that Stm-cmp cleaves the peptide bond on the amino-terminal side of the P2 alanine, whereas Bz-cmp cleaves in the poly-glycine hinge region, the site of P3. The results demonstrate that Stm-cmp and Bz-cmp are proteases that truncate ChitA chitinase at the amino terminus, but at different sites. Both sites correspond to polymorphisms in the two alloforms, suggesting that the sequence diversity at P2 and P3 is the result of selective pressure to prevent truncation by fungal proteases. PMID:21453431

  10. Purification and characterization of chitinase showing antifungal and biodegradation properties obtained from Streptomyces anulatus CS242.

    PubMed

    Mander, Poonam; Cho, Seung Sik; Choi, Yun Hee; Panthi, Sandesh; Choi, Yoon Seok; Kim, Hwan Mook; Yoo, Jin Cheol

    2016-07-01

    In an effort to identify a microbial enzyme that can be useful as a fungicide and biodegradation agent of chitinous wastes, a chitinase (Chi242) was purified from the culture supernatant of Streptomyces anulatus CS242 utilizing powder of shrimp shell wastes as a sole carbon source. It was purified employing ammonium sulfate precipitation and gel permeation chromatography techniques. The molecular weight of the purified chitinase was ~38 kDa by SDS-PAGE. The N-terminal amino acid sequence (A-P-G-A-P-G-T-G-A-L) showed close similarity to those of other Streptomyes chitinases. The purified enzyme displayed optimal activity at pH 6.0 and 50 °C respectively. It showed substantial thermal stability for 2 h at 30-60 °C, and exhibited broad pH stability in the range 5.0-13.0 for 48 h at 4 °C. Scanning electron microscopy confirmed the ability of this enzyme to adsorb onto solid shrimp bio-waste and to degrade chitin microfibers. Chi242 could proficiently convert colloidal chitin to N-acetyl glucosamine (GlcNAc) and N-acetyl chitobiose (GlcNAc)2 signifying that this enzyme is suitable for bioconversion of chitin waste. In addition, it exerted an effective antifungal activity towards fungal pathogen signifying its role as a biocontrol agent. Thus, a single microbial cell of Streptomyces anulatus CS242 justified its dual role. PMID:27215829

  11. Acidic Chitinase Limits Allergic Inflammation and Promotes Intestinal Nematode Expulsion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acidic mammalian chitinase (AMCase) is stereotypically induced during mammalian immune responses to helminths and allergens—yet, its precise role in immunity and inflammation is unclear. Here we show that in the lung, genetic ablation of AMCase failed to diminish type 2 inflammation against helmint...

  12. Production of prodigiosin and chitinases by tropical Serratia marcescens strains with potential to control plant pathogens.

    PubMed

    Gutiérrez-Román, Martha Ingrid; Holguín-Meléndez, Francisco; Bello-Mendoza, Ricardo; Guillén-Navarro, Karina; Dunn, Michael F; Huerta-Palacios, Graciela

    2012-01-01

    The potential of three Serratia marcescens strains (CFFSUR-B2, CFFSUR-B3 and CFFSUR-B4) isolated from tropical regions in Mexico to inhibit the mycelial growth and conidial germination of Colletotrichum gloeosporioides, causal agent of fruit anthracnose, was evaluated. The ability of these strains to produce prodigiosin and chitinases when cultivated in oil seed-based media (peanut, sesame, soybean and castor bean) and in Luria-Bertani medium was determined. All of the strains exhibited similar fungal antagonistic activities and inhibited myceliar growth by more than 40% while inhibiting conidial germination by 81-89% (P = 0.01). The highest level of prodigiosin (40 μg/ml) was produced in the peanut-based medium while growth in soybean-based medium allowed the highest production of chitinases (56 units/ml), independent of the strain used. Strain CFFSUR-B2 grown in peanut medium was used to evaluate the effect of inoculum density and initial pH on metabolite production. The amount of prodigiosin produced increased with greater inoculum densities, with an initial density of 1 × 10(12) resulting in the highest production (60 μg/ml). Prodigiosin production was not affected by pH. The strains studied have the advantage of being adapted to tropical climates and are able to produce chitinases in the absence of chitin induction in vitro. These characteristics suggest their potential as biocontrol agents for fungal pathogens in tropical regions of the world. PMID:22806790

  13. Cooperative Degradation of Chitin by Extracellular and Cell Surface-Expressed Chitinases from Paenibacillus sp. Strain FPU-7

    PubMed Central

    Itoh, Takafumi; Hibi, Takao; Fujii, Yutaka; Sugimoto, Ikumi; Fujiwara, Akihiro; Suzuki, Fumiko; Iwasaki, Yukimoto; Kim, Jin-Kyung; Taketo, Akira

    2013-01-01

    Chitin, a major component of fungal cell walls and invertebrate cuticles, is an exceedingly abundant polysaccharide, ranking next to cellulose. Industrial demand for chitin and its degradation products as raw materials for fine chemical products is increasing. A bacterium with high chitin-decomposing activity, Paenibacillus sp. strain FPU-7, was isolated from soil by using a screening medium containing α-chitin powder. Although FPU-7 secreted several extracellular chitinases and thoroughly digested the powder, the extracellular fluid alone broke them down incompletely. Based on expression cloning and phylogenetic analysis, at least seven family 18 chitinase genes were found in the FPU-7 genome. Interestingly, the product of only one gene (chiW) was identified as possessing three S-layer homology (SLH) domains and two glycosyl hydrolase family 18 catalytic domains. Since SLH domains are known to function as anchors to the Gram-positive bacterial cell surface, ChiW was suggested to be a novel multimodular surface-expressed enzyme and to play an important role in the complete degradation of chitin. Indeed, the ChiW protein was localized on the cell surface. Each of the seven chitinase genes (chiA to chiF and chiW) was cloned and expressed in Escherichia coli cells for biochemical characterization of their products. In particular, ChiE and ChiW showed high activity for insoluble chitin. The high chitinolytic activity of strain FPU-7 and the chitinases may be useful for environmentally friendly processing of chitin in the manufacture of food and/or medicine. PMID:24077704

  14. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2.

    PubMed

    He, Chuan Hua; Lee, Chun Geun; Dela Cruz, Charles S; Lee, Chang-Min; Zhou, Yang; Ahangari, Farida; Ma, Bing; Herzog, Erica L; Rosenberg, Stephen A; Li, Yue; Nour, Adel M; Parikh, Chirag R; Schmidt, Insa; Modis, Yorgo; Cantley, Lloyd; Elias, Jack A

    2013-08-29

    Members of the 18 glycosyl hydrolase (GH 18) gene family have been conserved over species and time and are dysregulated in inflammatory, infectious, remodeling, and neoplastic disorders. This is particularly striking for the prototypic chitinase-like protein chitinase 3-like 1 (Chi3l1), which plays a critical role in antipathogen responses where it augments bacterial killing while stimulating disease tolerance by controlling cell death, inflammation, and remodeling. However, receptors that mediate the effects of GH 18 moieties have not been defined. Here, we demonstrate that Chi3l1 binds to interleukin-13 receptor α2 (IL-13Rα2) and that Chi3l1, IL-13Rα2, and IL-13 are in a multimeric complex. We also demonstrate that Chi3l1 activates macrophage mitogen-activated protein kinase, protein kinase B/AKT, and Wnt/β-catenin signaling and regulates oxidant injury, apoptosis, pyroptosis, inflammasome activation, antibacterial responses, melanoma metastasis, and TGF-β1 production via IL-13Rα2-dependent mechanisms. Thus, IL-13Rα2 is a GH 18 receptor that plays a critical role in Chi3l1 effector responses. PMID:23972995

  15. Evaluation of high density lipoprotein as a circulating biomarker of Gaucher disease activity

    PubMed Central

    Stein, Philip; Yang, Ruhua; Liu, Jun; Pastores, Gregory M.; Mistry, Pramod K.

    2011-01-01

    Circulating biomarkers are important surrogates for monitoring disease activity in type I Gaucher disease (GD1). We and others have reported low high-density lipoprotein (HDL) in GD1. We assessed HDL cholesterol as a biomarker of GD1, with respect to its correlation with indicators of disease severity and its response to imiglucerase enzyme replacement therapy (ERT). In 278 consecutively evaluated GD1 patients, we correlated HDL cholesterol, chitotriosidase, and angiotensin-converting enzyme (ACE) with indicators of disease severity. Additionally, we measured the response of these biomarkers to ERT. HDL cholesterol was negatively correlated with spleen volume, liver volume, and GD severity score index; the magnitude of this association of disease severity with HDL cholesterol was similar to that for ACE and for chitotriosidase. Within individual patients monitored over many years, there was a strikingly strong correlation of HDL with liver and spleen volumes; there was a similarly strong correlation of chitotriosidase and ACE with disease severity in individual patients monitored serially over many years (chitotriosidase r=0.96 to 0.98, ACE r =0.88 to 0.94, and HDL r=−0.84 to −0.94, p<0.001). ERT for 3 years resulted in a striking increase of HDL while serum levels of chitotriosidase and ACE decreased. Our results reveal markedly low HDL cholesterol in untreated GD1, a correlation with indicators of disease severity in GD1, and a rise towards normal after ERT. These findings suggest HDL cholesterol merits inclusion within the “biomarker basket” for monitoring of patients with GD1. PMID:21290183

  16. Characterization of an acidic chitinase from seeds of black soybean (Glycine max (L) Merr Tainan No. 3).

    PubMed

    Chang, Ya-Min; Chen, Li-Chun; Wang, Hsin-Yi; Chiang, Chui-Liang; Chang, Chen-Tien; Chung, Yun-Chin

    2014-01-01

    Using 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside (4-MU-GlcNAc3) as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3) by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain length from 3 to 5 (GlcNAcn, n = 3-5), and pNp-GlcNAc4 was the most degradable substrate. Using pNp-GlcNAc4 as a substrate, the optimal pH for the enzyme reaction was 4.0; kinetic parameters Km and kcat were 245 µM and 10.31 min-1, respectively. This enzyme also showed activity toward CM-chitin-RBV, a polymer form of chitin, and N-acetyl chitooligosaccharides, an oligomer form of chitin. The smallest oligomer substrate was an N-acetylglucosamine tetramer. These results suggested that this enzyme was an endo-splitting chitinase with short substrate cleavage activity and useful for biotechnological applications, in particular for the production of N-acetyl chitooligosaccharides. PMID:25437446

  17. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii.

    PubMed

    Yang, Shaoqing; Fu, Xing; Yan, Qiaojuan; Guo, Yu; Liu, Zhuqing; Jiang, Zhengqiang

    2016-02-01

    A novel chitinase gene (PbChi70) from a marine bacterium Paenicibacillus barengoltzii was cloned and functionally expressed in Escherichia coli. The recombinant enzyme (PbChi70) was purified to homogeneity with a recovery yield of 51.9%. The molecular mass of purified enzyme was estimated to be 70.0 kDa by SDS-PAGE. PbChi70 displayed maximal activity at pH 5.5 and 55 °C, respectively. It exhibited strict substrate specificity for colloidal chitin, glycol chitin, powdery chitin, and N-acetyl chitooligosaccharides with degrees of polymerization above three. The enzyme exhibited an endo-type cleavage pattern and hydrolyzed colloidal chitin to yield mainly (GlcNAc)2. Furthermore, colloidal chitin was hydrolyzed by PbChi70 to produce 21.6 mg mL(-1) (GlcNAc)2 with the highest conversion yield of 89.5% (w/w). (GlcNAc)2 was further separated by an active charcoal column with a purity of 99% and a final yield of 61%. The unique enzymatic properties of the chitinase may make it a good candidate for (GlcNAc)2 production. PMID:26304445

  18. Characterization of Chitinase C from a Marine Bacterium, Alteromonas sp. Strain O-7, and Its Corresponding Gene and Domain Structure

    PubMed Central

    Tsujibo, Hiroshi; Orikoshi, Hideyuki; Shiotani, Kayoko; Hayashi, Miyuki; Umeda, Junko; Miyamoto, Katsushiro; Imada, Chiaki; Okami, Yoshiro; Inamori, Yoshihiko

    1998-01-01

    One of the chitinase genes of Alteromonas sp. strain O-7, the chitinase C-encoding gene (chiC), was cloned, and the nucleotide sequence was determined. An open reading frame coded for a protein of 430 amino acids with a predicted molecular mass of 46,680 Da. Alignment of the deduced amino acid sequence demonstrated that ChiC contained three functional domains, the N-terminal domain, a fibronectin type III-like domain, and a catalytic domain. The N-terminal domain (59 amino acids) was similar to that found in the C-terminal extension of ChiA (50 amino acids) of this strain and furthermore showed significant sequence homology to the regions found in several chitinases and cellulases. Thus, to evaluate the role of the domain, we constructed the hybrid gene that directs the synthesis of the fusion protein with glutathione S-transferase activity. Both the fusion protein and the N-terminal domain itself bound to chitin, indicating that the N-terminal domain of ChiC constitutes an independent chitin-binding domain. PMID:9464381

  19. Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease.

    PubMed

    Cantú, M D; Mariano, A G; Palma, M S; Carrilho, E; Wulff, N A

    2008-10-01

    Citrus sudden death (CSD) is a disease of unknown etiology that greatly affects sweet oranges grafted on Rangpur lime rootstock, the most important rootstock in Brazilian citriculture. We performed a proteomic analysis to generate information related to this plant pathogen interaction. Protein profiles from healthy, CSD-affected and CSD-tolerant stem barks, were generated using two-dimensional gel electrophoresis. The protein spots were well distributed over a pI range of 3.26 to 9.97 and a molecular weight (MW) range from 7.1 to 120 kDa. The patterns of expressed proteins on 2-DE gels made it possible to distinguish healthy barks from CSD-affected barks. Protein spots with MW around 30 kDa and pI values ranging from 4.5 to 5.2 were down-regulated in the CSD-affected root-stock bark. This set of protein spots was identified as chitinases. Another set of proteins, ranging in pI from 6.1 to 9.6 with an MW of about 20 kDa, were also suppressed in CSD-affected rootstock bark; these were identified as miraculin-like proteins, potential trypsin inhibitors. Down-regulation of chitinases and proteinase inhibitors in CSD-affected plants is relevant since chitinases are well-known pathogenesis-related protein, and their activity against plant pathogens is largely accepted. PMID:18943454

  20. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037.

    PubMed Central

    Ohno, T; Armand, S; Hata, T; Nikaidou, N; Henrissat, B; Mitsutomi, M; Watanabe, T

    1996-01-01

    The specificity of chitinase C-1 of Streptomyces griseus HUT 6037 for the hydrolysis of the beta-1,4-glycosidic linkages in partially acetylated chitosan is different from that of other microbial chitinases. In order to study the primary structure of this unique chitinase, the chiC gene specifying chitinase C-1 was cloned and its nucleotide sequence was determined. The gene encodes a polypeptide of 294 amino acids with a calculated size of 31.4 kDa. Comparison of the amino acid sequence of the deduced polypeptide with that of other proteins revealed a C-terminal catalytic domain displaying considerable sequence similarity to the catalytic domain of plant class I, II, and IV chitinases which form glycosyl hydrolase family 19. The N-terminal domain of the deduced polypeptide exhibits sequence similarity to substrate-binding domains of several microbial chitinases and cellulases but not to the chitin-binding domains of plant chitinases. The previously purified chitinase C-1 from S. griseus is suggested to be generated by proteolytic removal of the N-terminal chitin-binding domain and corresponds to the catalytic domain of the chitinase encoded by the chiC gene. High-performance liquid chromatography analysis of the hydrolysis products from N-acetyl chitotetraose revealed that chitinase C-1 catalyzes hydrolysis of the glycosidic bond with inversion of the anomeric configuration, in agreement with the previously reported inverting mechanism of plant class I chitinases. This is the first report of a family 19 chitinase found in an organism other than higher plants. PMID:8752320

  1. Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery.

    PubMed

    Qin, Xu; Xiang, Xuemei; Sun, Xiaowen; Ni, Hong; Li, Lin

    2016-01-01

    A series of amino, carboxylic, and aldehydic surface-grafted silica nanoparticles (SNPs) was prepared based on SiO2 NYSi40 nanoparticles to develop an efficient, biocompatible, and cost-effective biopesticide delivery system. Bacillus thuringiensis chitinase (Chi9602) was immobilized onto SNP surface to prepare nanoscale chitinases (SNPCs) through electrostatic adsorption and covalent binding. The specimens were characterized by Fourier transform infrared, scanning electron microscopy, and zeta-potential analyses. The delivery capacity of the SNPs in Caenorhabditis elegans N2 was observed by immunofluorescence. Results demonstrated that amino-grafted SiO2 nanoparticles with Chi9602 electrostatically adsorbed onto their surface (SNPC2) exhibited a relatively high enzyme immobilization rate (80.2%) and the highest (94.1%) residual enzyme activity among all SNPCs. SNPC2 also showed wider pH tolerance and relatively higher thermostability and ultraviolet radiation resistance capacity than Chi9602. Bioassays further showed that SNPC2 synergistically enhanced the nematicidal effect of B. thuringiensis YBT-020 preparation against C. elegans, with a reduced LC50 of 8.35mg/mL and a shortened LT50 of 12.04h. Immunofluorescence assays showed that SNPC2 had considerable delivery capacity to carry a large protein into C. elegans. Therefore, SNP2 can serve as an efficient nanocarrier for the delivery of macromolecular proteic biopesticides or drugs, indicating potential agricultural or biotechnological applications. PMID:26476241

  2. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales.

    PubMed

    Renner, Tanya; Specht, Chelsea D

    2012-10-01

    Proteins produced by the large and diverse chitinase gene family are involved in the hydrolyzation of glycosidic bonds in chitin, a polymer of N-acetylglucosamines. In flowering plants, class I chitinases are important pathogenesis-related proteins, functioning in the determent of herbivory and pathogen attack by acting on insect exoskeletons and fungal cell walls. Within the carnivorous plants, two subclasses of class I chitinases have been identified to play a role in the digestion of prey. Members of these two subclasses, depending on the presence or absence of a C-terminal extension, can be secreted from specialized digestive glands found within the morphologically diverse traps that develop from carnivorous plant leaves. The degree of homology among carnivorous plant class I chitinases and the method by which these enzymes have been adapted for the carnivorous habit has yet to be elucidated. This study focuses on understanding the evolution of carnivory and chitinase genes in one of the major groups of plants that has evolved the carnivorous habit: the Caryophyllales. We recover novel class I chitinase homologs from species of genera Ancistrocladus, Dionaea, Drosera, Nepenthes, and Triphyophyllum, while also confirming the presence of two subclasses of class I chitinases based upon sequence homology and phylogenetic affinity to class I chitinases available from sequenced angiosperm genomes. We further detect residues under positive selection and reveal substitutions specific to carnivorous plant class I chitinases. These substitutions may confer functional differences as indicated by protein structure homology modeling. PMID:22490823

  3. Purification and characterization of chitinase from Streptomyces violascens NRRL B2700.

    PubMed

    Gangwar, Mamta; Singh, Vineeta; Pandey, Asheesh Kumar; Tripathi, C K M; Mishra, B N

    2016-01-01

    Chitinase is one of the important enzymes as it is directly linked to Chitin that has wide applications in industrial, medical and commercial fields for its biocompatibility and biodegradability. Here, we report extracellular chitinase production by Streptomyces violascens NRRL B2700 under submerged fermentation condition. Chitinase production started after 10 h of incubation and reached to maximum level at 72 h of cultivation. Studies on the influence of additional carbon and nitrogen sources on chitinase production revealed that maltose, xylose, fructose, lactose, soybean meal and ammonium nitrate served as good carbon and nitrogen sources to enhance chitinase yield by 1.6 to 6 fold. Medium supplemented with 1% colloidal chitin produced high chitinase concentration (0.1714 U/mg). The enzyme chitinase was purified from the culture broth by 75% ammonium sulphate precipitation, DEAE-cellulose ion-exchange and sephadex G-100 gel filtration. The molecular mass of the purified chitinase was 65 kDa as estimated by SDS-PAGE. The apparent Michaelis constant (K(m)) and the maximum rate (V(max)) of the enzyme for colloidal chitin were 1.556 mg/mL and 2.680 μM/min/mg, respectively suggested high affinity towards-chitin. Possibly, it is the first report on production of chitinase from S. violascens NRRL B2700. The findings were encouraging, especially for cost effective production, and further warrants media and purification optimization studies for enhanced yield. PMID:26891554

  4. Polyglycine hydrolases secreted by Pleosporineae fungi that target the linker region of plant class IV chitinases*

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (cmps) are fungal proteases that truncate plant class IV chitinases by cleaving near their amino termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. Here we describe a new type of cmp—pol...

  5. PROPERTIES OF CATALYTIC, LINKER AND CHITIN-BINDING DOMAINS OF INSECT CHITINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manduca sexta (tobacco hornworm) chitinase is a glycoprotein that consists of an N-terminal catalytic domain, a Ser/Thr-rich linker region, and a C-terminal chitin-binding domain. To delineate the properties of these domains, we have generated truncated forms of chitinase, which were expressed in i...

  6. Functional specialization among insect chitinase family genes revealed by RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological functions of individual members of the large family of chitinase-like proteins from the red flour beetle, Tribolium castaneum, were examined using gene-specific RNA interference (RNAi). One chitinase, TcCHT5, was found to be required for pupal-adult molting only. A lethal phenotype ...

  7. Chitinase isoenzyme profiles in seedlings of Fusarium resistant and susceptible corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant chitinases have been implicated in both antagonistic and beneficial interactions with microorganisms. In an effort to better understand communication between Zea mays and its fungal environment, we are developing a knowledge base of corn chitinase isoenzymes. Of specific interest is the iden...

  8. Antimicrobial peptide inhibition of fungalysin proteases that target plant type 19 Family IV defense chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and other plants produce secreted seed chitinases that reduce pathogenic infection, most likely by targeting the fungal chitinous cell wall. We have shown that corn (Zea mays) produces three GH family 19, plant class IV chitinases, that help in protecting the plant against Fusarium and ...

  9. Domain organization and phylogenetic analysis of the chitinase family of proteins in three species of insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bioinformatics investigation of three insect species with completed genome sequences has revealed that insect chitinase-like proteins (glycosylhydrolase family 18) are encoded by a rather large and diverse group of genes. We identified 15, 16, and 13 putative chitinase-like genes in the genomic d...

  10. Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells

    PubMed Central

    Rath, Barbara; Burghuber, Otto

    2015-01-01

    Ex vivo expansion of circulating tumor cells (CTCs) of small cell lung cancer (SCLC) patients enabled systematic screening of secreted cytokines. Permanent CTC cultures of different patients shared secretion of chitinase-3-like-1 (CHI3L1)/YKL-40, known to be upregulated in a range of tumor entities and to be associated with increased metastasis and decreased survival. This protein lacks enzymatic activity and its mechanism of promoting tumor dissemination has not been resolved. Results from SCLC CTC cultures suggest CHI3L1 as marker and important effector of tumor cell dissemination in the peripheral blood. Furthermore, this protein may link chronic inflammation of the lung, chronic obstructive pulmonary disease (COPD) and lung cancer. PMID:26207216

  11. Purification and biochemical characterization of novel acidic chitinase from Paenicibacillus barengoltzii.

    PubMed

    Fu, Xing; Yan, Qiaojuan; Wang, Jing; Yang, Shaoqing; Jiang, Zhengqiang

    2016-10-01

    The novel chitinase (PbChi67) from the marine bacterium Paenicibacillus barengoltzii CAU904 was purified and biochemically characterized. PbChi67 was purified to apparent homogeneity with 10.2 fold purification and 8.0% recovery yield. The molecular mass of the enzyme was 67.0kDa by SDS-PAGE and 67.9kDa by gel filtration, respectively. PbChi67 was most active at pH 3.5 and was stable within pH 3.0-9.0. The optimal temperature of PbChi67 was 60°C and it was stable up to 55°C with a thermal denaturing half-life of 43min at 65°C. The enzyme exhibited strict substrate specificity towards colloidal chitin and glycol chitin but showed no or trace activities towards other tested substrates. The Km and Vmax values of PbChi67 for colloidal chitin and glycol chitin were 3.35mg/mL and 17.1μmol/min/mg, and 2.66mg/mL and 15.0μmol/min/mg, respectively. PbChi67 hydrolyzed colloidal chitin to yield N-acetyl chitooligosaccharides (COSs) with degree of polymerization (DP) of 2-4 at the initial hydrolysis stage, indicating that it is an endo-type chitinase. These properties make the enzyme as a good candidate for recycling of chitin materials. PMID:27320843

  12. Functional characterization of chitinase from Cydia pomonella granulovirus.

    PubMed

    Daimon, T; Katsuma, S; Kang, W K; Shimada, T

    2007-01-01

    Baculovirus chitinases (V-CHIAs) play a crucial role in the terminal liquefaction of virus-infected larvae after death. Although v-chiAs from nucleopolyhedroviruses (NPVs) have been well characterized, little is known about v-chiAs from granuloviruses (GVs). We characterized the v-chiA of Cydia pomonella GV (CpGV) by constructing a recombinant Bombyx mori NPV (BmNPV) in which BmNPV v-chiA was replaced by CpGV v-chiA (103CpGV virus). CpGV v-chiA encoded an approximately 70-kDa chitinase with an exo-type substrate preference. CpGV V-CHIA lacked a C-terminal KDEL endoplasmic reticulum retention motif and was suggested to be a secretory protein. Terminal host liquefaction of B. mori larvae and proper folding of BmNPV-encoded cysteine protease (BmNPV V-CATH) were observed following infection with 103CpGV, indicating that CpGV v-chiA is able to compensate for the absence of its BmNPV counterpart. Our data suggest that the molecular interaction between V-CHIA and V-CATH may be conserved across a broad range of lepidopteran GVs and NPVs. PMID:17557135

  13. Chitinase-Like Proteins Are Autoantigens in a Model of Inflammation-Promoted Incipient Neoplasia

    PubMed Central

    Qureshi, Asif M.; Hannigan, Adele; Campbell, Donald; Nixon, Colin; Wilson, Joanna B.

    2011-01-01

    An important role for B cells and immunoglobulin deposition in the inflammatory tumor cell environment has been recognized in several cancers, and this is recapitulated in our murine model of inflammation-associated carcinogenesis: transgenic mice expressing the Epstein-Barr virus oncogene LMP1 in epithelia. Similarly in several autoimmune disorders, immunoglobulin deposition represents a key underlying event in the disease process. However, the autoantigens in most cases are not known. In other studies, overexpression of the enzymatically inactive mammalian chitinase-like proteins (CLPs) has been observed in a number of autoimmune disorders and numerous cancers, with expression correlated with poor prognosis, although the function of these proteins is largely unknown. We have now linked these observations demonstrating that overexpression of the CLPs renders them the targets for autoantigenicity during carcinogenic progression. We show that the CLPs, Chi3L1, Chi3L3 /YM1, and Chi3L4/YM2, are abundantly overexpressed in the transgenic epidermis at an early, preneoplastic stage and secreted into the serum. Immunoglobulin G reactive to the CLPs is detected in the serum and deposited in the hyperplastic tissue, which goes on to become inflamed and progressively displastic. The CLPs are also upregulated in chemical carcinogen-promoted lesions in both transgenic and wild-type mice. Expression of the related, active chitinases, Chit1 and AMCase, increases following infiltration of inflammatory cells. In this model, the 3 CLPs are autoantigens for the tissue-deposited immunoglobulin, which we propose plays a causative role in promoting the inflammation-associated carcinogenesis. This may reflect their normal, benign function to promote tissue remodeling and to amplify immune responses. Their induction during carcinogenesis and consequent autoantigenicity provides a missing link between the oncogenic event and subsequent inflammation. This study identifies the CLPs as

  14. Purification, characterization, and molecular cloning of an extracellular chitinase from Bacillus licheniformis stain LHH100 isolated from wastewater samples in Algeria.

    PubMed

    Laribi-Habchi, Hassiba; Bouanane-Darenfed, Amel; Drouiche, Nadjib; Pauss, André; Mameri, Nabil

    2015-01-01

    An extracellular chitinase (ChiA-65) was produced and purified from a newly isolated Bacillus licheniformis LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75 °C. Among the inhibitors and metals tested, p-chloromercuribenzoic acid, N-ethylmaleimide, Hg(2+), and Hg(+) completely inhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose, and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc)n (n = 2-4) was p-NP-(GlcNAc)2 > p-NP-(GlcNAc)4 > p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc)n. ChiA-65 obeyed Michaelis-Menten kinetics, the Km and kcat values being 0.385 mg, colloidal chitin/ml and 5000 s(-1), respectively. The chiA-65 gene encoding ChiA-65 was cloned in Escherichia coli and its sequence was determined. Above all, ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste. PMID:25450539

  15. Functional Characterization of Novel Chitinase Genes Present in the Sheath Blight Resistance QTL: qSBR11-1 in Rice Line Tetep.

    PubMed

    Richa, Kamboj; Tiwari, Ila M; Kumari, Mandeep; Devanna, B N; Sonah, Humira; Kumari, Archana; Nagar, Ramawatar; Sharma, Vinay; Botella, Jose R; Sharma, Tilak R

    2016-01-01

    Rice sheath blight disease caused by Rhizoctonia solani is one of the most devastating diseases in rice leading to heavy yield losses. Due to the polygenic nature of resistance, no major resistance gene with complete host resistance against R. solani has been reported. In this study, we have performed molecular and functional analysis of the genes associated with the major R. solani-resistance QTL qSBR11-1 in the indica rice line Tetep. Sequence analysis revealed the presence of a set of 11 tandem repeats containing genes with a high degree of homology to class III chitinase defense response genes. Real-time quantitative PCR analysis showed that all the genes are strongly induced 36 h after R. solani infection. Comparison between the resistant Tetep and the susceptible HP2216 lines shows that the induction of the chitinase genes is much higher in the Tetep line. Recombinant protein produced in vitro for six of the eleven genes showed chitinolytic activity in gel assays but we did not detect any xylanase inhibitory activity. All the six in vitro expressed proteins show antifungal activity with a clear inhibitory effect on the growth of the R. solani mycelium. The characterized chitinase genes can provide an important resource for the genetic improvement of R. solani susceptible rice lines for sheath blight resistance breeding. PMID:26973685

  16. Functional Characterization of Novel Chitinase Genes Present in the Sheath Blight Resistance QTL: qSBR11-1 in Rice Line Tetep

    PubMed Central

    Richa, Kamboj; Tiwari, Ila M.; Kumari, Mandeep; Devanna, B. N.; Sonah, Humira; Kumari, Archana; Nagar, Ramawatar; Sharma, Vinay; Botella, Jose R.; Sharma, Tilak R.

    2016-01-01

    Rice sheath blight disease caused by Rhizoctonia solani is one of the most devastating diseases in rice leading to heavy yield losses. Due to the polygenic nature of resistance, no major resistance gene with complete host resistance against R. solani has been reported. In this study, we have performed molecular and functional analysis of the genes associated with the major R. solani-resistance QTL qSBR11-1 in the indica rice line Tetep. Sequence analysis revealed the presence of a set of 11 tandem repeats containing genes with a high degree of homology to class III chitinase defense response genes. Real-time quantitative PCR analysis showed that all the genes are strongly induced 36 h after R. solani infection. Comparison between the resistant Tetep and the susceptible HP2216 lines shows that the induction of the chitinase genes is much higher in the Tetep line. Recombinant protein produced in vitro for six of the eleven genes showed chitinolytic activity in gel assays but we did not detect any xylanase inhibitory activity. All the six in vitro expressed proteins show antifungal activity with a clear inhibitory effect on the growth of the R. solani mycelium. The characterized chitinase genes can provide an important resource for the genetic improvement of R. solani susceptible rice lines for sheath blight resistance breeding. PMID:26973685

  17. Heterogonous expression and characterization of a plant class IV chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Honda, Yuji; Taniguchi, Hajime; Hatano, Naoya; Hamada, Tatsuro

    2012-03-01

    A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates. PMID:21930651

  18. Selected Chitinase Genes in Cultured and Uncultured Marine Bacteria in the α- and γ-Subclasses of the Proteobacteria

    PubMed Central

    Cottrell, Matthew T.; Wood, Daniel N.; Yu, Liying; Kirchman, David L.

    2000-01-01

    PCR primers were patterned after chitinase genes in four γ-proteobacteria in the families Alteromonadaceae and Enterobacteriaceae (group I chitinases) and used to explore the occurrence and diversity of these chitinase genes in cultured and uncultured marine bacteria. The PCR results from 104 bacterial strains indicated that this type of chitinase gene occurs in two major groups of marine bacteria, α- and γ-proteobacteria, but not the Cytophaga-Flavobacter group. Group I chitinase genes also occur in some viruses infecting arthropods. Phylogenetic analysis indicated that similar group I chitinase genes occur in taxonomically related bacteria. However, the overall phylogeny of chitinase genes did not correspond to the phylogeny of 16S rRNA genes, possibly due to lateral transfer of chitinase genes between groups of bacteria, but other mechanisms, such as gene duplication, cannot be ruled out. Clone libraries of chitinase gene fragments amplified from coastal Pacific Ocean and estuarine Delaware Bay bacterioplankton revealed similarities and differences between cultured and uncultured bacteria. We had hypothesized that cultured and uncultured chitin-degrading bacteria would be very different, but in fact, clones having nucleotide sequences identical to those of chitinase genes of cultured α-proteobacteria dominated both libraries. The other clones were similar but not identical to genes in cultured γ-proteobacteria, including vibrios and alteromonads. Our results suggest that a closer examination of chitin degradation by α-proteobacteria will lead to a better understanding of chitin degradation in the ocean. PMID:10698791

  19. Antifungal chitinase against human pathogenic yeasts from Coprinellus congregatus.

    PubMed

    Yoo, Yeeun; Choi, Hyoung T

    2014-05-01

    The inky cap, Coprinellus congregatus, produces mushrooms which become autolyzed rapidly to generate black liquid droplets, in which no cell wall is detected by microscopy. A chitinase (Chi2) which is synthesized during the autolytic phase of C. congregatus inhibits the growths of Candida albicans and Cryptococcus neoformans up to 10% at the concentration of 10 μg/ml, about 50% at concentration of 20 μg/ml, and up to 95% at the concentration of 70 μg/ml. Upon treatment these yeast cells are observed to be severely deformed, with the formation of large holes in the cell wall. The two yeast species show no growth inhibition at the concentration of 5 μg/ml, which means the minimum inhibitory concentrations for both yeast species are 10 μg/ml under these experimental conditions. PMID:24535739

  20. Establishment of a quantitative PCR system for discriminating chitinase-like proteins: catalytically inactive breast regression protein-39 and Ym1 are constitutive genes in mouse lung

    PubMed Central

    2014-01-01

    Background Mice and humans produce chitinase-like proteins (CLPs), which are highly homologous to chitinases but lack chitinolytic activity. Mice express primarily three CLPs, including breast regression protein-39 (BRP-39) [chitinase 3-like-1 (Chi3l1) or 38-kDa glycoprotein (gp38k)], Ym1 (Chi3l3) and Ym2 (Chi3l4). Recently, CLPs have attracted considerable attention due to their increased expression in a number of pathological conditions, including asthma, allergies, rheumatoid arthritis and malignant tumors. Although the exact functions of CLPs are largely unknown, the significance of their increased expression levels during pathophysiological states needs to be determined. The quantification of BRP-39, Ym1 and Ym2 is an important step in gaining insight into the in vivo regulation of the CLPs. Methods We constructed a standard DNA for quantitative real-time PCR (qPCR) by containing three CLPs target fragments and five reference genes cDNA in a one-to-one ratio. We evaluated this system by analyzing the eight target cDNA sequences. Tissue cDNAs obtained by reverse transcription from total RNA from four embryonic stages and eight adult tissues were analyzed using the qPCR system with the standard DNA. Results We established a qPCR system detecting CLPs and comparing their expression levels with those of five reference genes using the same scale in mouse tissues. We found that BRP-39 and Ym1 were abundant in the mouse lung, whereas Ym2 mRNA was abundant in the stomach, followed by lung. The expression levels of BRP-39 and Ym1 in the mouse lung were higher than those of two active chitinases and were comparable to glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene which is constitutively expressed in all tissues. Conclusion Our results indicate that catalytically inactive BRP-39 and Ym1 are constitutive genes in normal mouse lung. PMID:25294623

  1. Abundant class III acidic chitinase homologue in tamarind (Tamarindus indica) seed serves as the major storage protein.

    PubMed

    Rao, Devavratha H; Gowda, Lalitha R

    2008-03-26

    The phyla Leguminosae contains protease inhibitors, lectins, chitinases, and glycohydrolases as major defense proteins in their seeds. Electrophoretic analysis of the seed proteins of tamarind ( Tamarindus indica L.), an agri-waste material, indicated the unusual presence of two major proteins comparable to overexpression of recombinant proteins. These proteins were identified by amino-terminal analysis to be (1) Kunitz-type trypsin inhibitor and (2) class III endochitinase (34000 Da). These two proteins were purified to apparent homogeneity by a single-step chitin bead affinity chromatography and characterized. The Kunitz inhibitor was specific toward inhibiting trypsin with a stoichiometry of 1:1. The 33000 +/- 1000 Da protein, accounting for >50% of the total seed protein, is an acidic glycoprotein exhibiting a very low endotype hydrolytic activity toward chitin derivatives. SDS-PAGE followed by densitometry of tamarind seed germination indicates the disappearance of the chitinase with the concomitant appearance of a cysteine endopeptidase. On the basis of its abundance, accumulation without any pathogenesis-related stimulus, temporal regulation, amino acid composition, and very low enzyme activity, this 34000 Da protein designated "tamarinin" physiologically serves as the major storage protein. PMID:18298067

  2. Chitinase-like Proteins are Candidate Biomarkers for Sepsis-induced Acute Kidney Injury*

    PubMed Central

    Maddens, B.; Ghesquière, B.; Vanholder, R.; Demon, D.; Vanmassenhove, J.; Gevaert, K.; Meyer, E.

    2012-01-01

    Sepsis-induced acute kidney injury (AKI) is a frequent complication of critically ill patients and leads to high mortality rates. The specificity of currently available urinary biomarkers for AKI in the context of sepsis is questioned. This study aimed to discover urinary biomarkers for septic AKI by contemporary shotgun proteomics in a mouse model for sepsis and to validate these in individual urine samples of mice and human septic patients with and without AKI. At 48 h after uterine ligation and inoculation of Escherichia coli, aged mice (48 weeks) became septic. A subgroup developed AKI, defined by serum creatinine, blood urea nitrogen, and renal histology. Separate pools of urine from septic mice with and without AKI mice were collected during 12 h before and between 36–48 h after infection, and their proteome compositions were quantitatively compared. Candidate biomarkers were validated by Western blot analysis of urine, plasma, and renal tissue homogenates from individual mice, and a limited number of urine samples from human septic patients with and without AKI. Urinary neutrophil gelatinase-associated lipocalin, thioredoxin, gelsolin, chitinase 3-like protein 1 and -3 (CHI3L3) and acidic mammalian chitinase were the most distinctive candidate biomarkers selected for septic AKI. Both neutrophil gelatinase-associated lipocalin and thioredoxin were detected in urine of septic mice and increased with severity of AKI. Acidic mammalian chitinase was only present in urine of septic mice with AKI. Both urinary chitinase 3-like protein 1 and -3 were only detected in septic mice with severe AKI. The human homologue chitinase 3-like protein 1 was found to be more excreted in urine from septic patients with AKI than without. In summary, urinary chitinase 3-like protein 1 and -3 and acidic mammalian chitinase discriminated sepsis from sepsis-induced AKI in mice. Further studies of human chitinase proteins are likely to lead to additional insights in septic AKI. PMID

  3. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions.

    PubMed

    Langner, Thorsten; Göhre, Vera

    2016-05-01

    In the past decades our knowledge about fungal cell wall architecture increased tremendously and led to the identification of many enzymes involved in polysaccharide synthesis and remodeling, which are also of biotechnological interest. Fungal cell walls play an important role in conferring mechanic stability during cell division and polar growth. Additionally, in phytopathogenic fungi the cell wall is the first structure that gets into intimate contact with the host plant. A major constituent of fungal cell walls is chitin, a homopolymer of N-acetylglucosamine units. To ensure plasticity, polymeric chitin needs continuous remodeling which is maintained by chitinolytic enzymes, including lytic polysaccharide monooxygenases N-acetylglucosaminidases, and chitinases. Depending on the species and lifestyle of fungi, there is great variation in the number of encoded chitinases and their function. Chitinases can have housekeeping function in plasticizing the cell wall or can act more specifically during cell separation, nutritional chitin acquisition, or competitive interaction with other fungi. Although chitinase research made huge progress in the last decades, our knowledge about their role in phytopathogenic fungi is still scarce. Recent findings in the dimorphic basidiomycete Ustilago maydis show that chitinases play different physiological functions throughout the life cycle and raise questions about their role during plant-fungus interactions. In this work we summarize these functions, mechanisms of chitinase regulation and their putative role during pathogen/host interactions. PMID:26527115

  4. Production of N-Acetyl-d-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-d-glucosaminidase.

    PubMed

    Zhu, Weixing; Wang, Di; Liu, Tian; Yang, Qing

    2016-09-01

    N-Acetyl-d-glucosamine (GlcNAc) has great potential to be used as a food additive and medicine. The enzymatic degradation of chitin-containing biomass for producing GlcNAc is an eco-friendly approach but suffers from a high cost. The economical efficiency can be improved by both optimizing the member and ratio of the chitinolytic enzymes and using new inexpensive substrates. To address this, a novel combination of bacterial and insect chitinolytic enzymes was developed in this study to efficiently produce GlcNAc from the mycelia of Asperillus niger, a fermentation waste. This enzyme combination contained three bacterial chitinases (chitinase A from Serratia marcescens (SmChiA), SmChiB, SmChiC) and one insect N-acetyl-d-glucosaminidase from Ostrinia furnacalis (OfHex1) in a ratio of 39.1% of SmChiA, 26.7% of SmChiB, 32.9% of SmChiC, and 1.3% of OfHex1. A yield of 6.3 mM (1.4 mg/mL) GlcNAc with a purity of 95% can be obtained from 10 mg/mL mycelial powder in 24 h. The enzyme combination reported here exhibited 5.8-fold higher hydrolytic activity over the commercial chitinase preparation derived from Streptomyces griseus. PMID:27546481

  5. A glycosynthase derived from an inverting chitinase with an extended binding cleft.

    PubMed

    Ohnuma, Takayuki; Dozen, Satoshi; Honda, Yuji; Kitaoka, Motomitsu; Fukamizo, Tamo

    2016-08-01

    We created a glycosynthase from a GH19 chitinase from rye seeds (RSC-c), that has a long-extended binding cleft consisting of eight subsites; -4, -3, -2, -1, +1, +2, +3 and +4. When wild-type RSC-c was incubated with α-(GlcNAc)3-F [α-(GlcNAc)3 fluoride], (GlcNAc)3 and hydrogen fluoride were produced through the Hehre resynthesis-hydrolysis mechanism. Glu89, which acts as a catalytic base, and Ser120, which fixes a nucleophilic water molecule, were mutated to produce two single mutants, E89G and S120A, and a double mutant, E89G/S120A. E89G only produced a small amount of (GlcNAc)7 from α-(GlcNAc)3-F in the presence of (GlcNAc)4 S120A, with the highest F(-)-releasing activity, produced a larger amount of (GlcNAc)7, a fraction of which was decomposed by its own residual hydrolytic activity. However, the double mutant E89G/S120A, of which the hydrolytic activity was completely abolished while its F(-)-releasing activity was only moderately affected, produced the largest amount of (GlcNAc)7 from α-(GlcNAc)3-F and (GlcNAc)4 without decomposition. We concluded that E89G/S120A was an efficient glycosynthase, that enabled the addition of a three-sugar unit. PMID:26908157

  6. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    SciTech Connect

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn; Sohn, Myung Hyun

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  7. Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae.

    PubMed

    Braga, Fabio Ribeiro; Soares, Filippe Elias Freitas; Giuberti, Thais Zanotti; Lopes, Aline Del Carmen Garcias; Lacerda, Tracy; Ayupe, Tiago de Hollanda; Queiroz, Paula Viana; Gouveia, Angélica de Souza; Pinheiro, Larissa; Araújo, Andreia Luíza; Queiroz, José Humberto; Araújo, Jackson Victor

    2015-09-15

    Duddingtonia flagrans produces chitinases, however, optimization of the production of these enzymes still needs to be explored, and its nematocidal activity should still be the subject of studies. The objective of the present study was to optimize chitinase production, and evaluate the nematocidal activity of extracellular enzymes produced by the nematophagous fungus D. flagrans on cyathostomin infective larvae. An isolate from D. flagrans (AC001) was used in this study. For the production of enzymes (protease and chitinase), two different culture media were inoculated with AC001 conidia. Both enzymes were purified. The statistical Plackett-Burman factorial design was used to investigate some variables and their effect on the production of chitinases by D. flagrans. After that, the design central composite (CCD) was used in order to determine the optimum levels and investigate the interactions of these variables previously observed. Only two variables (moisture and incubation time), in the evaluated levels, had a significant effect (p<0.05) on chitinase production. The conditions of maximum chitinase activity were calculated, with the following values: incubation time 2 days, and moisture 511%. The protease and chitinase derived from D. flagrans, individually or together (after 24h), led to a significant reduction (p<0.01) in the number of intact cyathostomin L3, when compared to the control, with following reduction percentage values: 19.4% (protease), 15.5% (chitinase), and 20.5% (protease+chitinase). Significant differences were observed (p<0.05) between the group treated with proteases in relation to the group treated with proteases+chitinases. In this study, the assay with the cyathostomins showed that chitinase had a nematocidal effect, suggesting that this enzyme acts on the "fungus versus nematodes" infection process. It is known that nematode eggs are rich in chitin, and in this case, we could think of a greater employability for this chitinase. PMID

  8. [Production and properties of chitinase from Beauveria bassiana Bb174 in solid state fermentation].

    PubMed

    Zhang, Jie; Cai, Jingmin; Wu, Ke; Jin, Shengxian; Pan, Renrui; Fan, Meizhen

    2004-05-01

    This paper studied the chitinase production of Beauveria bassiana Bb174 under solid state fermentation condition. The optimal medium consisted of wheat bran and silkworm chrysalis at the ratio of 4:1, supplemented with 1 g peptone L(-1) as nitrogen source and some other mineral nutrients. The enzyme activity reached 126 units per gram dry medium after cultured for 2 days at 28 degrees C and natural pH by inoculated 3 ml spore suspension into this medium. The optimal temperature and pH for chintinase production were 40 degrees C and 5.0, respectively. The temperature to lose 50% activity of the enzyme was 48 degrees C after incubated at 30-70 degrees C for 1 h. The enzyme was stable at 30-40 degrees C and pH 4-6, and the Km and Vmax values were 0.52 mg x ml(-1) and 0.7 deltaE680 x h(-1), respectively. PMID:15320411

  9. CHITINASE DETERMINANTS OF 'VIBRIO VULNIFICUS': GENE CLONING AND APPLICATIONS OF A CHITINASE PROBE

    EPA Science Inventory

    To initiate study of the genetic control of chitinolytic activity in vibrios, the chitobiase gene was isolated by cloning chromosomal DNA prepared from Vibrio vulnificus. Chimeric plasmids were constructed from Sau3A I partial digests of chromosomal DNA by ligating 5 to 15-Kiloba...

  10. Acidic chitinase primes the protective immune response to gastrointestinal nematodes.

    PubMed

    Vannella, Kevin M; Ramalingam, Thirumalai R; Hart, Kevin M; de Queiroz Prado, Rafael; Sciurba, Joshua; Barron, Luke; Borthwick, Lee A; Smith, Allen D; Mentink-Kane, Margaret; White, Sandra; Thompson, Robert W; Cheever, Allen W; Bock, Kevin; Moore, Ian; Fitz, Lori J; Urban, Joseph F; Wynn, Thomas A

    2016-05-01

    Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung. PMID:27043413

  11. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.

    PubMed Central

    Wu, S; Kriz, A L; Widholm, J M

    1994-01-01

    The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that

  12. Purification and characterization of chitinase from Bacillus circulans No.4.1.

    PubMed

    Wiwat, C; Siwayaprahm, P; Bhumiratana, A

    1999-09-01

    Bacillus circulans No.4.1 produced a high level of chitinase when cells were grown in tryptic soy broth supplemented with 0.3% colloidal chitin at 35 degrees C for 5 days. Purification was carried out by protein precipitation with 80% saturation ammonium sulfate, anion-exchange chromatography with DEAE-Sephacel, and gel filtration with Sephadex G-100, sequentially. The purified enzyme could be demonstrated as a single band on SDS-PAGE, estimated to be 45 kDa. This enzyme could hydrolyze colloidal chitin, purified chitin, glycol chitin, carboxymethyl-chitin (CM-chitin), and 4-methylumbelliferyl-beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)(2)]. The optimal conditions for this chitinase were pH 8.0 and 40 degrees C. The isoelectric point of the chitinase was 5.1. The amino acid composition of the purified chitinase was determined. The initial 20 amino acid residues of the N-terminal were found to be alanine (A), proline (P), tryptophan (W), asparagine (N), serine (S), lysine (K), glycine (G), asparagine (N), tyrosine (Y), alanine (A), leucine (L), proline (P), tyrosine (Y), tyrosine (Y), arginine (R), glycine (G), alanine (A), tryptophan (W), alanine (A), and valine (V). Knowledge of these properties of chitinase from B. circulans No. 4.1 should be useful in the development of genetically engineered Bacillus sp. as biopesticides. PMID:10441726

  13. Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice

    PubMed Central

    Rogers, Matthew E; Hajmová, Martina; Joshi, Manju B; Sadlova, Jovana; Dwyer, Dennis M; Volf, Petr; Bates, Paul A

    2008-01-01

    Chitinases of trypanosomatid parasites have been proposed to fulfil various roles in their blood-feeding arthropod vectors but so far none have been directly tested using a molecular approach. We characterized the ability of Leishmania mexicana episomally transfected with LmexCht1 (the L. mexicana chitinase gene) to survive and grow within the permissive sand fly vector, Lutzomyia longipalpis. Compared with control plasmid transfectants, the overexpression of chitinase was found to increase the average number of parasites per sand fly and accelerate the escape of parasites from the peritrophic matrix-enclosed blood meal as revealed by earlier arrival at the stomodeal valve. Such flies also exhibited increased damage to the structure of the stomodeal valve, which may facilitate transmission by regurgitation. When exposed individually to BALB/c mice, those flies with chitinase-overexpressing parasites spent on average 2.4–2.5 times longer in contact with their host during feeding, compared with flies with control infections. Furthermore, the lesions that resulted from these single fly bite infections were both significantly larger and with higher final parasite burdens than controls. These data show that chitinase is a multifunctional virulence factor for L. mexicana which assists its survival in Lu. longipalpis. Specifically, this enzyme enables the parasites to colonize the anterior midgut of the sand fly more quickly, modify the sand fly stomodeal valve and affect its blood feeding, all of which combine to enhance transmission. PMID:18284631

  14. Abundance of truncated and full-length ChitA and ChitB chitinases in healthy and diseased maize tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins, cmps, are secreted fungal proteases that combat plant defenses by truncating plant class IV chitinases. We initially discovered that ChitA and ChitB, two plant class IV chitinases that are abundant in developing and mature kernels of corn, are truncated by cmps during e...

  15. Refolding process of cysteine-rich proteins:Chitinase as a model

    PubMed Central

    Moghadam, Malihe; Ganji, Ali; Varasteh, Abdolreza; Falak, Reza; Sankian, Mojtaba

    2015-01-01

    Background: Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain native- or correctly- folded recombinant proteins. Methods: Dilution method that allows refolding of recombinant proteins, especially at high protein concentrations, is to slowly add the soluble protein to refolding buffer. For this purpose: first, the inclusion bodies containing insoluble proteins were purified; second, the aggregated proteins were solubilized; finally, the soluble proteins were refolded using glutathione redox system, guanidinium chloride, dithiothreitol, sucrose, and glycerol, simultaneously. Results: After protein solubilization and refolding, SDS-PAGE showed a 32 kDa band that was recognized by an anti-chitin antibody on western blots. Conclusions: By this method, cysteine-rich proteins from E. coli inclusion bodies can be solubilized and correctly folded into active proteins. PMID:26989746

  16. Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A.

    PubMed Central

    Aronson, Nathan N; Halloran, Brian A; Alexyev, Mikhail F; Amable, Lauren; Madura, Jeffry D; Pasupulati, Lakshminarasimhulu; Worth, Catherine; Van Roey, Patrick

    2003-01-01

    The sizes and anomers of the products formed during the hydrolysis of chitin oligosaccharides by the Family 18 chitinase A (ChiA) from Serratia marcescens were analysed by hydrophilic interaction chromatography using a novel approach in which reactions were performed at 0 degrees C to stabilize the anomer conformations of the initial products. Crystallographic studies of the enzyme, having the structure of the complex of the ChiA E315L (Glu315-->Leu) mutant with a hexasaccharide, show that the oligosaccharide occupies subsites -4 to +2 in the substrate-binding cleft, consistent with the processing of beta-chitin by the release of disaccharide at the reducing end. Products of the hydrolysis of hexa- and penta-saccharides by wild-type ChiA, as well as by two mutants of the residues Trp275 and Phe396 important in binding the substrate at the +1 and +2 sites, show that the substrates only occupy sites -2 to +2 and that additional N -acetyl-D-glucosamines extend beyond the substrate-binding cleft at the reducing end. The subsites -3 and -4 are not used in this four-site binding mode. The explanation for these results is found in the high importance of individual binding sites for the processing of short oligosaccharides compared with the cumulative recognition and processive hydrolysis mechanism used to digest natural beta-chitin. PMID:12932195

  17. Screening-based discovery of Aspergillus fumigatus plant-type chitinase inhibitors.

    PubMed

    Lockhart, Deborah E A; Schuettelkopf, Alexander; Blair, David E; van Aalten, Daan M F

    2014-08-25

    A limited therapeutic arsenal against increasing clinical disease due to Aspergillus spp. necessitates urgent characterisation of new antifungal targets. Here we describe the discovery of novel, low micromolar chemical inhibitors of Aspergillus fumigatus family 18 plant-type chitinase A1 (AfChiA1) by high-throughput screening (HTS). Analysis of the binding mode by X-ray crystallography confirmed competitive inhibition and kinetic studies revealed two compounds with selectivity towards fungal plant-type chitinases. These inhibitors provide new chemical tools to probe the effects of chitinase inhibition on A. fumigatus growth and virulence, presenting attractive starting points for the development of further potent drug-like molecules. PMID:25063338

  18. The chitinase-like protein YKL-40 increases mucin5AC production in human bronchial epithelial cells

    SciTech Connect

    Liu, Chunyi; Li, Qi; Zhou, Xiangdong; Kolosov, Victor P.; Perelman, Juliy M.

    2013-11-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases. However, the regulatory mechanisms that mediate excessive mucin production remain elusive. Recently, the level of YKL-40, a chitinase-like protein, has been found to be significantly increased in chronic inflammatory airway diseases and has been shown to be associated with the severity of these diseases. In this study, we sought to explore the effect of YKL-40 on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in this process. We found that elevated YKL-40 levels increased the mRNA and protein expression of MUC5AC in a dose- and time-dependent manner, in association with the phosphorylation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), reflecting their activation. These responses were significantly suppressed by the knockdown of protease-activating receptor 2 (PAR2) with specific small interfering RNA or the inhibitors of ERK and NF-κB. YKL-40-induced MUC5AC overproduction was also effectively attenuated by the inhibitor of focal adhesion kinase (FAK). Taken together, these results imply that YKL-40 can stimulate excessive MUC5AC production through PAR2- and FAK-mediated mechanisms. - Highlights: • MUC5AC is the major secreted mucin in chronic inflammatory airway diseases. • YKL-40 is a prototype of the chitinase-like protein in mammals. • YKL-40 is an active player in chronic inflammatory airway diseases. • YKL-40 can increase MUC5AC production via PAR2-mediated pathway. • FAK is another candidate to mediate YKL-40-induced MUC5AC overexpression.

  19. Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Seo, Mi-Suk; Kumar, Thamilarasan Senthil; Lee, In-Ho; Park, Beom-Seok; Nou, Ill-Sup

    2012-04-01

    Brassica is a very important vegetable group because of its contribution to human nutrition and consequent economic benefits. However, biotic stress is a major concern for these crops and molecular biology techniques offer the most efficient of approaches to address this concern. Chitinase is an important biotic stress resistance-related gene. We identified three genes designated as Brassica chitinase like protein (BrCLP1), BrCLP2 and BrCLP3 from a full-length cDNA library of Brassica rapa cv. Osome. Sequence analysis of these genes confirmed that BrCLP1 was a class IV chitinase, and BrCLP2 and BrCLP3 were class VII chitinases. Also, these genes showed a high degree of homology with other biotic stress resistance-related plant chitinases. In expression analysis, organ-specific expression of all three genes was high except BrCLP1 in all the organs tested and BrCLP2 showed the highest expression compared to the other genes in flower buds. All these genes also showed expression during all developmental growth stages of Chinese cabbage. In addition, BrCLP1 was up-regulated with certain time of infection by Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage plants during microarray expression analysis. On the other hand, expression of BrCLP2 and BrCLP3 were increased after 6 h post inoculation (hpi) but decreased from 12 hpi. All these data suggest that these three chitinase genes may be involved in plant resistance against biotic stresses. PMID:21720758

  20. Industrially Important Carbohydrate Degrading Enzymes from Yeasts: Pectinases, Chitinases, and β-1,3-Glucanases

    NASA Astrophysics Data System (ADS)

    Gummadi, Sathyanarayana N.; Kumar, D. Sunil; Dash, Swati S.; Sahu, Santosh Kumar

    Polysaccharide degrading enzymes are hydrolytic enzymes, which have a lot of industrial potential and also play a crucial role in carbon recycling. Pectinases, chitinases and glucanases are the three major polysaccharide degrading enzymes found abundantly in nature and these enzymes are mainly produced by fungal strains. Production of these enzymes by yeasts is advantageous over fungi, because the former are easily amenable to genetic manipulations and time required for growth and production is less than that of the latter. Several yeasts belonging to Saccharomyces, Pichia, Rhodotorula and Cryptococcus produce extracellular pectinases, glucanases and chitinases. This chapter emphasizes on the biological significance of these enzymes, their production and their industrial applications.

  1. Chitinase-like protein CTL1 plays a role in altering root system architecture in response to multiple environmental conditions.

    PubMed

    Hermans, Christian; Porco, Silvana; Verbruggen, Nathalie; Bush, Daniel R

    2010-02-01

    Plant root architecture is highly responsive to changes in nutrient availability. However, the molecular mechanisms governing the adaptability of root systems to changing environmental conditions is poorly understood. A screen for abnormal root architecture responses to high nitrate in the growth medium was carried out for a population of ethyl methanesulfonate-mutagenized Arabidopsis (Arabidopsis thaliana). The growth and root architecture of the arm (for anion altered root morphology) mutant described here was similar to wild-type plants when grown on low to moderate nitrate concentrations, but on high nitrate, arm exhibited reduced primary root elongation, radial swelling, increased numbers of lateral roots, and increased root hair density when compared to the wild-type control. High concentrations of chloride and sucrose induced the same phenotype. In contrast, hypocotyl elongation in the dark was decreased independently of nitrate availability. Positional cloning identified a point mutation in the AtCTL1 gene that encodes a chitinase-related protein, although molecular and biochemical analysis showed that this protein does not possess chitinase enzymatic activity. CTL1 appears to play two roles in plant growth and development based on the constitutive effect of the arm mutation on primary root growth and its conditional impact on root architecture. We hypothesize that CTL1 plays a role in determining cell wall rigidity and that the activity is differentially regulated by pathways that are triggered by environmental conditions. Moreover, we show that mutants of some subunits of the cellulose synthase complex phenocopy the conditional effect on root architecture under nonpermissive conditions, suggesting they are also differentially regulated in response to a changing environment. PMID:20007445

  2. Heterologous expression and characterization of two chitinase 5 enzymes from the migratory locust Locusta migratoria.

    PubMed

    Li, Ying-Long; Song, Hui-Fang; Zhang, Xue-Yao; Li, Da-Qi; Zhang, Ting-Ting; Ma, En-Bo; Zhang, Jian-Zhen

    2016-06-01

    Insect chitinases are involved in degradation of chitin from the exoskeleton or peritrophic metrix of midgut. In Locusta migratoria, two duplicated Cht5s (LmCht5-1 and LmCht5-2) have been shown to have distinct molecular characteristics and biological roles. To explore the protein properties of the two LmCht5s, we heterologously expressed both enzymes using baculovirus expression system in SF9 cells, and characterized kinetic and carbohydrate-binding properties of purified enzymes. LmCht5-1 and LmCht5-2 exhibited similar pH and temperature optimums. LmCht5-1 has lower Km value for the oligomeric substrate (4MU-(GlcNAc)3 ), and higher Km value for the longer substrate (CM-Chitin-RBV) compared with LmCht5-2. A comparison of amino acids and homology modeling of catalytic domain presented similar TIM barrel structures and differentiated amino acids between two proteins. LmCht5-1 has a chitin-binding domain (CBD) tightly bound to colloidal chitin, but LmCht5-2 does not have a CBD for binding to colloidal chitin. Our results suggested both LmCht5-1 and LmCht5-2, which have the critical glutamate residue in region II of catalytic domain, exhibited chitinolytic activity cleaving both polymeric and oligomeric substrates. LmCht5-1 had relatively higher activity against the oligomeric substrate, 4MU-(GlcNAc)3 , whereas LmCht5-2 exhibited higher activity toward the longer substrate, CM-Chitin-RBV. These findings are helpful for further research to clarify their different roles in insect growth and development. PMID:26792119

  3. Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect chitinase (CHT) family proteins are encoded by as many as 16 genes depending upon species. We have classified these proteins in three species into five different groups based on amino acid sequence similarities (Zhu et al., 2007). The functions of most of the individual proteins of this fam...

  4. Maize Seed Chitinase is Modified by a Protein Secreted by Bipolaris zeicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants contain defense mechanisms that prevent infection by most fungi. Some specialized fungi have the ability to overcome plant defenses. The Zea mays (maize) seed chitinase ChitA has been previously reported as an antifungal protein. Here we report that ChitA is converted to a modified form by...

  5. Differential aphicidal effects of chitinase inhibitors on the polyphagous homopteran Myzus persicae (Sulzer).

    PubMed

    Saguez, Julien; Dubois, Françoise; Vincent, Charles; Laberche, Jean-Claude; Sangwan-Norreel, Brigitte S; Giordanengo, Philippe

    2006-12-01

    Four chitinase inhibitors, cyclo-(Proline-Tyrosine), cyclo-(Histidine-Proline), allosamidin and psammaplin A, were selected for in vitro feeding experiments with the peach-potato aphid, Myzus persicae (Sulzer), under controlled photoperiod and temperature conditions. Artificial diets were used to provide chitinase inhibitors at 10, 50 and 100 microg mL(-1) to M. persicae. Except for cyclo-(Proline-Tyrosine), which did not modify aphid demographic parameters, chitinase inhibitors induced differential aphicidal effects on M. persicae. At all doses, cyclo-(Histidine-Proline) induced significant effects affecting daily fecundity, intrinsic rate of natural increase (r(m)) and doubling time of population. When compared with the control diet, allosamidin decreased nymph survival and daily fecundity, increasing the doubling time of population from 1 to 1.5 days. Psammaplin A was the most toxic inhibitor when delivered via artificial diet, as it induced the death of all aphids reared at 50 and 100 microg mL(-1). The results demonstrate the potential use of chitinase inhibitors as aphid management tools. PMID:16953493

  6. Characterization of the Maize Chitinase Genes and Their Effect on Aspergillus flavus and Aflatoxin Accumulation Resistance

    PubMed Central

    Hawkins, Leigh K.; Mylroie, J. Erik; Oliveira, Dafne A.; Smith, J. Spencer; Ozkan, Seval; Windham, Gary L.; Williams, W. Paul; Warburton, Marilyn L.

    2015-01-01

    Maize (Zea mays L.) is a crop of global importance, but prone to contamination by aflatoxins produced by fungi in the genus Aspergillus. The development of resistant germplasm and the identification of genes contributing to resistance would aid in the reduction of the problem with a minimal need for intervention by farmers. Chitinolytic enzymes respond to attack by potential pathogens and have been demonstrated to increase insect and fungal resistance in plants. Here, all chitinase genes in the maize genome were characterized via sequence diversity and expression patterns. Recent evolution within this gene family was noted. Markers from within each gene were developed and used to map the phenotypic effect on resistance of each gene in up to four QTL mapping populations and one association panel. Seven chitinase genes were identified that had alleles associated with increased resistance to aflatoxin accumulation and A. flavus infection in field grown maize. The chitinase in bin 1.05 identified a new and highly significant QTL, while chitinase genes in bins 2.04 and 5.03 fell directly beneath the peaks of previously published QTL. The expression patterns of these genes corroborate possible grain resistance mechanisms. Markers from within the gene sequences or very closely linked to them are presented to aid in the use of marker assisted selection to improve this trait. PMID:26090679

  7. Chitinase production in pine callus (Pinus sylvestris L.): a defense reaction against endophytes?

    PubMed

    Pirttilä, Anna Maria; Laukkanen, Hanna; Hohtola, Anja

    2002-04-01

    In shoot tip-derived tissue cultures of Scots pine (Pinus sylvestris L.), browning and subsequent degeneration of the culture is accompanied by lipid peroxidation and lignification of cells, which are characteristic features of a plant defense reaction. Since chitinases are enzymes acting primarily in plant defense, their expression was studied in pine callus in order to elucidate the defense reaction. Chitinases were present diversely in tissue cultures originating from shoot tips and embryos of P. sylvestris, in contrast to Pinus nigra embryogenic callus, where production of chitinases or browning was not detected. Because endophytic microbes had earlier been detected in buds of Scots pine, their subsequent presence in the tissue cultures was considered a potential cause of the defense reaction. Therefore, the presence of endophytes in the tissue cultures was examined by in situ hybridization. Endophytes were found to colonize heavily in 45% of the tissue cultures of P. sylvestris and to form biofilms, while the P. nigra callus was not found to contain any microbes. The endophytes seemed to propagate uncontrollably once a tissue culture of P. sylvestris was initiated. Regardless of the high level of chitinase production in the callus, the control of the endophytes presumably becomes inadequate during the tissue culture of P. sylvestris. PMID:11941460

  8. Purification, characterization and physiological significance of a chitinase from the pilei of Coprinopsis cinerea fruiting bodies.

    PubMed

    Zhou, Yajun; Kang, Liqin; Niu, Xin; Wang, Jun; Liu, Zhonghua; Yuan, Sheng

    2016-06-01

    We purified a chitinase from pilei extractions of Coprinopsis cinerea fruiting bodies by ammonium sulfate precipitation and CM Sepharose cation exchange chromatography. MALDI-TOF/TOF MS analysis characterized this purified chitinase as a putative class V chitinase, ChiB1. ChiB1 hydrolyzed colloidal chitin and chitosan, whereas it did not hydrolyze chitin powder. ChiB1 cleaved only pNP-(GlcNAc)2, rather than pNP-GlcNAc or pNP-(Glc-NAc)3, to release nitrophenol. ChiB1 preferably and progressively released (GlcNAc)2 from (GlcNAc)6 and digested (GlcNAc)6 to two molecules of (GlcNAc)3 in a small proportion, but did not split (GlcNAc)2, so it is an exochitinase. ChiB1 has an optimum temperature range of 35°C to 40°C and an optimum pH of 5.0. ChiB1 exhibited Km and Vmax values of 2.63 mg ml(-1) and 2.31 μmol min(-1) mg protein(-1) for colloidal chitin, respectively. The ChiB1 gene, along with another putative endochitinase (class III chitinase gene), was expressed dominantly among eight predicted chitinase genes in the genome, and its expression level increased with the maturation of fruiting bodies. ChiB1 incubation released a large amount of soluble β-glucan fractions from alkali-insoluble cell wall fractions of C. cinerea fruiting bodies, thereby it may promote the degradation of cell walls in synergy with the β-1,3-glucanases during pileus autolysis. PMID:27190145

  9. ScChi, Encoding an Acidic Class III Chitinase of Sugarcane, Confers Positive Responses to Biotic and Abiotic Stresses in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Fu, Zhiwei; Yang, Yuting; Guo, Jinlong; Wang, Shanshan; Que, Youxiong

    2014-01-01

    Chitinases (EC 3.2.2.14), expressed during the plant-pathogen interaction, are associated with plant defense against pathogens. In the present study, a positive correlation between chitinase activity and sugarcane smut resistance was found. ScChi (GenBank accession no. KF664180), a Class III chitinase gene, encoded a 31.37 kDa polypeptide, was cloned and identified. Subcellular localization revealed ScChi targeting to the nucleus, cytoplasm and the plasma membrane. Real-time quantitative PCR (RT-qPCR) results showed that ScChi was highly expressed in leaf and stem epidermal tissues. The ScChi transcript was both higher and maintained longer in the resistance cultivar during challenge with Sporisorium scitamineum. The ScChi also showed an obvious induction of transcription after treatment with SA (salicylic acid), H2O2, MeJA (methyl jasmonate), ABA (abscisic acid), NaCl, CuCl2, PEG (polyethylene glycol) and low temperature (4 °C). The expression levels of ScChi and six immunity associated marker genes were upregulated by the transient overexpression of ScChi. Besides, histochemical assay of Nicotiana benthamiana leaves overexpressing pCAMBIA 1301-ScChi exhibited deep DAB (3,3′-diaminobenzidinesolution) staining color and high conductivity, indicating the high level of H2O2 accumulation. These results suggest a close relationship between the expression of ScChi and plant immunity. In conclusion, the positive responses of ScChi to the biotic and abiotic stimuli reveal that this gene is a stress-related gene of sugarcane. PMID:24552874

  10. Dissecting the role of CHITINASE-LIKE1 in nitrate-dependent changes in root architecture.

    PubMed

    Hermans, Christian; Porco, Silvana; Vandenbussche, Filip; Gille, Sascha; De Pessemier, Jérôme; Van Der Straeten, Dominique; Verbruggen, Nathalie; Bush, Daniel R

    2011-11-01

    The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair density. We found here that the spatial pattern of CTL1 expression was mainly in the root and root tips during seedling development and that the protein localized to the cell wall. Fourier-transform infrared microspectroscopy of mutant root tissues indicated differences in spectra assigned to linkages in cellulose and pectin. Indeed, root cell wall polymer composition analysis revealed that the arm mutant contained less crystalline cellulose and reduced methylesterification of pectins. We also explored the implication of growth regulators on the phenotype of the mutant response to the nitrate supply. Exogenous abscisic acid application inhibited more drastically primary root growth in the arm mutant but failed to repress lateral branching compared with the wild type. Cytokinin levels were higher in the arm root, but there were no changes in mitotic activity, suggesting that cytokinin is not directly involved in the mutant phenotype. Ethylene production was higher in arm but inversely proportional to the nitrate concentration in the medium. Interestingly, eto2 and eto3 ethylene overproduction mutants mimicked some of the conditional root characteristics of the arm mutant on high nitrate. Our data suggest that ethylene may be involved in the arm mutant phenotype, albeit indirectly, rather than functioning as a primary signal. PMID:21949212

  11. Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation.

    PubMed

    Li, Daqi; Zhang, Jianqin; Wang, Yan; Liu, Xiaojian; Ma, Enbo; Sun, Yi; Li, Sheng; Zhu, Kun Yan; Zhang, Jianzhen

    2015-03-01

    The duplication of chitinase 5 (Cht5) into two to five different genes has been reported only in mosquito species to date. Here, we report the duplication of Cht5 genes (LmCht5-1 and LmCht5-2) in the migratory locust (Locusta migratoria). Both LmCht5-1 (505 aa) and LmCht5-2 (492 aa) possess a signal peptide and a catalytic domain with four conserved motifs, but only LmCht5-1 contains a chitin-binding domain. Structural and phylogenetic analyses suggest that LmCht5-1 is orthologous to other insect Cht5 genes, whereas LmCht5-2 might be newly duplicated. Both LmCht5 genes were expressed in all tested tissues with LmCht5-1 highly expressed in hindgut and LmCht5-2 highly expressed in integument, foregut, hindgut and fat bodies. From the fourth-instar nymphs to the adults, LmCht5-1 and LmCht5-2 showed similar developmental expression patterns with transcript peaks prior to each nymphal molting, suggesting that their expression levels are similarly regulated. Treatment with 20-hydroxyecdysone (20E; the most active molting hormone) and reducing expression of EcR (ecdysone receptor gene) by RNAi increased and decreased expression of both LmCht5 genes, respectively, indicating that both genes are responsive to 20E. Although transcript level of LmCht5-2 is generally 10-fold higher than that of LmCht5-1, RNAi-mediated suppression of LmCht5-1 transcript led to severe molting defects and lethality, but such effects were not seen with RNAi of LmCht5-2, suggesting that the newly duplicated LmCht5-2 is not essential for development and survivorship of the locust. PMID:25623241

  12. Human YKL39 (chitinase 3-like protein 2), an osteoarthritis-associated gene, enhances proliferation and type II collagen expression in ATDC5 cells

    SciTech Connect

    Miyatake, Kazumasa; Tsuji, Kunikazu; Yamaga, Mika; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Muneta, Takeshi

    2013-02-01

    Highlights: ► hYKL-39 expression is increased in osteoarthritic articular chondrocytes. ► To examine the molecular functions of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in chondrocytic ATDC5 cells. ► hYKL-39 enhanced proliferation and colony formation in ATDC5 cells. ► hYKL-39 increased type II collagen expression in ATDC5 cells treated with chondrogenic medium. -- Abstract: Human YKL39 (chitinase 3-like protein 2/CHI3L2) is a secreted 39 kDa protein produced by articular chondrocytes and synoviocytes. Recent studies showed that hYKL-39 expression is increased in osteoarthritic articular chondrocytes suggesting the involvement of hYKL-39 in the progression of osteoarthritis (OA). However little is known regarding the molecular function of hYKL-39 in joint homeostasis. Sequence analyses indicated that hYKL-39 has significant identity with the human chitotorisidase family molecules, although it is considered that hYKL-39 has no enzymatic activity since it lacks putative chitinase catalytic motif. In this study, to examine the molecular function of hYKL-39 in chondrocytes, we overexpressed hYKL-39 in ATDC5 cells. Here we report that hYKL-39 enhances colony forming activity, cell proliferation, and type II collagen expression in these cells. These data suggest that hYKL-39 is a novel growth and differentiation factor involved in cartilage homeostasis.

  13. Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight.

    PubMed

    Kim, Ju-Kon; Jang, In-Cheol; Wu, Ray; Zuo, Wei-Neng; Boston, Rebecca S; Lee, Yong-Hwan; Ahn, Il-Pyung; Nahm, Baek Hie

    2003-08-01

    Chitinases, beta-1,3-glucanases, and ribosome-inactivating proteins are reported to have antifungal activity in plants. With the aim of producing fungus-resistant transgenic plants, we co-expressed a modified maize ribosome-inactivating protein gene, MOD1, and a rice basic chitinase gene, RCH10, in transgenic rice plants. A construct containing MOD1 and RCH10 under the control of the rice rbcS and Act1 promoters, respectively, was co-transformed with a plasmid containing the herbicide-resistance gene bar as a selection marker into rice by particle bombardment. Several transformants analyzed by genomic Southern-blot hybridization demonstrated integration of multiple copies of the foreign gene into rice chromosomes. Immunoblot experiments showed that MOD1 formed approximately 0.5% of the total soluble protein in transgenic leaves. RCH10 expression was examined using the native polyacrylamide-overlay gel method, and high RCH10 activity was observed in leaf tissues where endogenous RCH10 is not expressed. R1 plants were analyzed in a similar way, and the Southern-blot patterns and levels of transgene expression remained the same as in the parental line. Analysis of the response of R2 plants to three fungal pathogens of rice, Rhizoctonia solani, Bipolaris oryzae, and Magnaporthe grisea, indicated statistically significant symptom reduction only in the case of R. solani (sheath blight). The increased resistance co-segregated with herbicide tolerance, reflecting a correlation between the resistance phenotype and transgene expression. PMID:12885168

  14. Contribution of Chitinase A’s C-Terminal Vacuolar Sorting Determinant to the Study of Soluble Protein Compartmentation

    PubMed Central

    Stigliano, Egidio; Di Sansebastiano, Gian-Pietro; Neuhaus, Jean-Marc

    2014-01-01

    Plant chitinases have been studied for their importance in the defense of crop plants from pathogen attacks and for their peculiar vacuolar sorting determinants. A peculiarity of the sequence of many family 19 chitinases is the presence of a C-terminal extension that seems to be important for their correct recognition by the vacuole sorting machinery. The 7 amino acids long C-terminal vacuolar sorting determinant (CtVSD) of tobacco chitinase A is necessary and sufficient for the transport to the vacuole. This VSD shares no homology with other CtVSDs such as the phaseolin’s tetrapeptide AFVY (AlaPheValTyr) and it is also sorted by different mechanisms. While a receptor for this signal has not yet been convincingly identified, the research using the chitinase CtVSD has been very informative, leading to the observation of phenomena otherwise difficult to observe such as the presence of separate vacuoles in differentiating cells and the existence of a Golgi-independent route to the vacuole. Thanks to these new insights in the endoplasmic reticulum (ER)-to-vacuole transport, GFPChi (Green Fluorescent Protein carrying the chitinase A CtVSD) and other markers based on chitinase signals will continue to help the investigation of vacuolar biogenesis in plants. PMID:24945312

  15. Molecular characterization of plantain class i chitinase gene and its expression in response to infection by Gloeosporium musarum Cke and Massee and other abiotic stimuli.

    PubMed

    Fan, Jianming; Wang, Hongbin; Feng, Dongru; Liu, Bin; Liu, Haiyan; Wang, Jinfa

    2007-11-01

    We have cloned a chitinase cDNA (MpChi-1) from plantain (Musa paradisiacal L) using rapid amplification of cDNA ends (RACE) according to a sequence fragment which we had cloned using the suppression subtractive hybridization (SSH) technique. The MpChi-1 encodes a protein of 326 amino acids and belongs to acidic chitinase class Ib subfamily. MpChi-1 shares high identity with rice endochitinase (XP_468714) and different each other only at three residues. Homology modelling indicated these three substitutions would not change the configuration of the activity site of the enzyme. We have expressed recombinant MpChi-1 and purified by ammonium sulphate precipitation and preparative reversed phase HPLC. The recombinant protein could hydrolyse chitin and inhibit the growth of the Gloeosporium musarum Cke and Massee in vitro. Northern blot revealed that the MpChi-1 transcripts rapidly after inoculation with G. musarum and maximum mRNA accumulation reached at 48 h. Jasmonic acid (JA) and salicylic acid (SA) could induce MpChi-1 expression, while mechanical wounding, silver nitrate and osmotic stress stimulated only a slight accumulation of MpChi-1 transcripts. Abscisic acid (ABA) could induce MpChi-1 transcript. These results suggest the MpChi-1 plays important role in the events of the hypersensitive reaction (HR). PMID:18006520

  16. Successful heterologous expression of a novel chitinase identified by sequence analyses of the metagenome from a chitin-enriched soil sample.

    PubMed

    Stöveken, J; Singh, R; Kolkenbrock, S; Zakrzewski, M; Wibberg, D; Eikmeyer, F G; Pühler, A; Schlüter, A; Moerschbacher, B M

    2015-05-10

    Chitin and its derivative chitosan are abundant natural polysaccharides with many potential industrial applications. Metagenomic analysis of chitin-enriched soil samples using the Roche Genome Sequencer FLX platform led to the identification of several novel genes for chitin and chitosan modifying enzymes (CCMEs) which may be used to produce novel chitosans. The sequencing approach yielded 2,281,090 reads with an average length of 378 bp amounting to a total sequence information of approximately 851 Mb. Assembly of the obtained sequences comprised 699,710 reads representing 30.68% of all reads. A total of 6625 contigs larger than 500 bp containing 16,289 predicted genes are included in the assembly. Taxonomic profiling of the indigenous microbial community by applying the software CARMA revealed that 96.1% of the reads were of bacterial origin including 17% assigned to the family Xanthomonadaceae. Several putative genes encoding CCMEs were identified by comparison against the GenBank database, inclusive a full-length chitinase gene which was codon optimized for Escherichia coli and heterologously synthesized as a Strep-tagged protein in E. coli Rosetta 2 using the pET vector system. Approximately 5mg of the novel active chitinase was purified as demonstrated by dot assay analysis using glycol chitin as a substrate. Next generation metagenomic sequencing, thus, emerges as a new and powerful tool for the identification of potentially novel biocatalysts of biotechnological value. PMID:25240439

  17. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea. PMID:25772466

  18. Identification of a chitinase-producing bacterium C4 and histopathologic study on locusts.

    PubMed

    Yong, Tao; Zhangfu, Long; Jing, Xie; Hong, Jin; Hongyan, Ran; Ke, Tao; Shaorong, Ge; Kun, Liu; Shigui, Liu

    2005-02-01

    In order to develop the potential of chitinase-producing micro-organisms as biocontrol agents for insect pests, five chitinase-producing bacterial strains (C1, C2, C3, C4 and C5) previously isolated from soil samples were chosen to infect grassland locusts. The data showed that the mortality rate of locusts fed with strain C4 was significantly higher than that of other groups, and its pathogenicity was confirmed by Koch's law. Midgut tissues of locusts infected with C4 were examined with a light microscope. Apparent histopathologic changes in midgut cells partly explained the pathogenesis of locusts. Therefore, strain C4 was considered to be a potential biocontrol agent. To determine the taxonomic position of C4, physiological and biochemical characteristics were determined and molecular identification was performed. The 16S rDNA gene of C4 was amplified, cloned and sequenced. Comparative sequence analysis demonstrated that C4 corresponded to the genera Sanguibacter, Oerskovia and Cellulomonas. On the basis of phenotypic characterization and sequence similarity analysis, strain C4 was more closely related to the genus Sanguibacter. This chitinase-producing strain C4, which closely corresponds to the species of the genus Sanguibacter and is pathogenic to locusts, is here reported for the first time. PMID:15619732

  19. Optimization of Chitinase Production by Bacillus pumilus Using Plackett-Burman Design and Response Surface Methodology

    PubMed Central

    Tasharrofi, Noshin; Adrangi, Sina; Fazeli, Mehdi; Rastegar, Hossein; Khoshayand, Mohammad Reza; Faramarzi, Mohammad Ali

    2011-01-01

    A soil bacterium capable of degrading chitin on chitin agar plates was isolated and identified as Bacillus pumilus isolate U5 on the basis of 16S rDNA sequence analysis. In order to optimize culture conditions for chitinase production by this bacterium, a two step approach was employed. First, the effects of several medium components were studied using the Plackett-Burman design. Among various components tested, chitin and yeast extract showed positive effect on enzyme production while MgSO4 and FeSO4 had negative effect. However, the linear model proved to be insufficient for determining the optimum levels for these components due to a highly significant curvature effect. In the second step, Box-Behnken response surface methodology was used to determine the optimum values. It was noticed that a quadratic polynomial equation fitted he experimental data appropriately. The optimum concentrations for chitin, yeast extract, MgSO4 and FeSO4 were found to be 4.76, 0.439, 0.0055 and 0.019 g/L, respectively, with a predicted value of chitinase production of 97.67 U/100 mL. Using this statistically optimized medium, the practical chitinase production reached 96.1 U/100 mL. PMID:24250411

  20. Biochemical characterization of a recombinant plant class III chitinase from the pitcher of the carnivorous plant Nepenthes alata.

    PubMed

    Ishisaki, Kana; Arai, Sachiko; Hamada, Tatsuro; Honda, Yuji

    2012-11-01

    A class III chitinase belonging to the GH18 family from Nepenthes alata (NaCHIT3) was expressed in Escherichia coli. The enzyme exhibited hydrolytic activity toward colloidal chitin, ethylene glycol chitin, and (GlcNAc)(n) (n=5 and 6). The enzyme hydrolyzed the fourth glycosidic linkage from the non-reducing end of (GlcNAc)(6). The anomeric form of the products indicated it was a retaining enzyme. The colloidal chitin hydrolytic reaction displayed high activity between pH 3.9 and 6.9, but the pH optimum of the (GlcNAc)(6) hydrolytic reaction was 3.9 at 37 °C. The optimal temperature for activity was 65 °C in 50 mM sodium acetate buffer (pH 3.9). The pH optima of NaCHIT3 and NaCHIT1 might be related to their roles in chitin degradation in the pitcher fluid. PMID:23026711

  1. Chitinase gene responses and tissue sensitivity in an intertidal mud crab (Macrophthalmus japonicus) following low or high salinity stress.

    PubMed

    Nikapitiya, Chamilani; Kim, Won-Seok; Park, Kiyun; Kim, Jongkyu; Lee, Moon-Ock; Kwak, Ihn-Sil

    2015-05-01

    Changes in salinity affect the physiological status of the marine habitat including that of the intertidal mud crab Macrophthalmus japonicus. Chitinases play significant biological roles in crustaceans such as morphogenesis, nutrient digestion, and pathogen defense. In this study, the osmoregulatory function of three chitinase gene transcripts was determined compared to seawater (SW, 31 ± 1 psu) in M. japonicus gills and hepatopancreas under different salinities (10, 25, and 40 psu) for 1, 4, and 7 days. In SW-exposed crab, quantitative real-time PCR analysis showed chitinase 1 (Mj-chi1) and chitinase 4 (Mj-chi4) transcripts constitutively expressed in all the tested tissues with strong expression in hepatopancreas, but chitinase 5 (Mj-chi5) showed highest expression in stomach. When exposed to different salinities, Mj-chi1 showed significant up-regulation at day 4 whereas Mj-chi4 showed late up-regulation (day 7) at all the salinities in hepatopancreas. In the gills, early up-regulation (day 1) in Mj-chi1 and time-dependent late up-regulation (day 7) in Mj-chi4 at high salinity were observed. These results indicate the possibility of using Mj-chi4 as a marker against salinity changes. Moreover, our results further suggest that Mj-chi1 and Mj-chi4 transcriptions were significantly affected by changes in salinity; however, Mj-chi5 in gills was less affected by salinity and showed no effect in hepatopancreas. Thus, chitinase transcription modulations in the gills are more sensitive than hepatopancreas to salinity stress. Further, present data indicate the possible existence of different physiological roles among chitinase gene families, which need to be clarified in more detail by future biochemical and physiological functional studies. PMID:25697403

  2. Expression, purification, crystallization and X-ray diffraction analysis of ChiL, a chitinase from Chitiniphilus shinanonensis.

    PubMed

    Ueda, Miruku; Shimosaka, Makoto; Arai, Ryoichi

    2015-12-01

    Chitin, a linear polysaccharide consisting of β-1,4-linked N-acetyl-D-glucosamine (GlcNAc), is widely used because of its biochemical properties. GlcNAc oligomers prepared from chitin have useful biological activities, such as immunostimulation and the induction of plant defence responses. Microbial chitinolytic enzymes have been investigated extensively for their potential use in the eco-friendly enzymatic production of GlcNAc and its oligomers. Chitiniphilus shinanonensis SAY3(T) is a recently found bacterium with a strong chitinolytic activity. The chitinolytic enzymes from this strain are potentially useful for the efficient production of GlcNAc and its oligomers from chitin. ChiL from C. shinanonensis is an endo-type chitinase belonging to the family 18 glycoside hydrolases (GH18). To understand the enzymatic reaction mechanism of ChiL and utilize it for further enzyme engineering, the catalytic domain (41-406) of ChiL, the construct for which was carefully designed, was expressed, purified and crystallized by the vapour-diffusion method. The crystal belonged to the orthorhombic space group P212121, with unit-cell parameters a = 69.19, b = 81.55, c = 130.01 Å, and diffracted to 1.25 Å resolution. The Matthews coefficient (VM = 2.2 Å(3) Da(-1)) suggested the presence of two monomers per asymmetric unit with a solvent content of 45%. PMID:26625294

  3. Molecular, Structural and Immunological Characterization of Der p 18, a Chitinase-Like House Dust Mite Allergen

    PubMed Central

    Resch, Yvonne; Blatt, Katharina; Malkus, Ursula; Fercher, Christian; Swoboda, Ines; Focke-Tejkl, Margit; Chen, Kuan-Wei; Seiberler, Susanne; Mittermann, Irene; Lupinek, Christian; Rodriguez-Dominguez, Azahara; Zieglmayer, Petra; Zieglmayer, René; Keller, Walter; Krzyzanek, Vladislav; Valent, Peter; Valenta, Rudolf; Vrtala, Susanne

    2016-01-01

    Background The house dust mite (HDM) allergen Der p 18 belongs to the glycoside hydrolase family 18 chitinases. The relevance of Der p 18 for house dust mite allergic patients has only been partly investigated. Objective To perform a detailed characterization of Der p 18 on a molecular, structural and immunological level. Methods Der p 18 was expressed in E. coli, purified to homogeneity, tested for chitin-binding activity and its secondary structure was analyzed by circular dichroism. Der p 18-specific IgG antibodies were produced in rabbits to localize the allergen in mites using immunogold electron microscopy and to search for cross-reactive allergens in other allergen sources (i.e. mites, crustacea, mollusca and insects). IgE reactivity of rDer p 18 was tested with sera from clinically well characterized HDM-allergic patients (n = 98) and its allergenic activity was analyzed in basophil activation experiments. Results Recombinant Der p 18 was expressed and purified as a folded, biologically active protein. It shows weak chitin-binding activity and partial cross-reactivity with Der f 18 from D. farinae but not with proteins from the other tested allergen sources. The allergen was mainly localized in the peritrophic matrix of the HDM gut and to a lower extent in fecal pellets. Der p 18 reacted with IgE from 10% of mite allergic patients from Austria and showed allergenic activity when tested for basophil activation in Der p 18-sensitized patients. Conclusion Der p 18 is a rather genus-specific minor allergen with weak chitin-binding activity but exhibits allergenic activity and therefore should be included in diagnostic test panels for HDM allergy. PMID:27548813

  4. [Influence of isoniazid complex with A-I apolipoprotein on activity of lysosomal enzymes in mice with tuberculous inflammation model].

    PubMed

    Sumenkova, D V; Poliakov, L M; Panin, L E

    2012-01-01

    It is established that isoniazid (isonicotinic acid hydrazide) can interact with A-I apolipoprotein to form a complex, which can be considered as the transport form of the preparation. The use of this complex for the treatment of mice with BCG-induced tuberculous inflammation led to an increase in the free activities of acid phosphatase and cathepsin D in the liver, which was decreased under the action of mycobacteria and the free form of isoniazid. The isoniazid complex with A-I apolipoprotein exhibited more expressed anti-inflammatory effect (estimated by the activity of chitotriosidase in blood serum) as compared to the free drug. PMID:23323330

  5. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis.

    PubMed

    Osman, Gamal H; Assem, Shireen K; Alreedy, Rasha M; El-Ghareeb, Doaa K; Basry, Mahmoud A; Rastogi, Anshu; Kalaji, Hazem M

    2015-01-01

    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica. PMID:26658494

  6. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis

    PubMed Central

    Osman, Gamal H.; Assem, Shireen K.; Alreedy, Rasha M.; El-Ghareeb, Doaa K.; Basry, Mahmoud A.; Rastogi, Anshu; Kalaji, Hazem M.

    2015-01-01

    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica. PMID:26658494

  7. Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet.

    PubMed

    Castillo, Benjamín Moreno; Dunn, Michael F; Navarro, Karina Guillén; Meléndez, Francisco Holguín; Ortiz, Magdalena Hernández; Guevara, Sergio Encarnación; Palacios, Graciela Huerta

    2016-03-01

    The tropical and mycoparasite strain Streptomyces galilaeus CFFSUR-B12 was evaluated as an antagonist of Mycosphaerella fijiensis Morelet, causal agent of the Black Sigatoka Disease (BSD) of banana. On zymograms of CFFSUR-B12 culture supernatants, we detected four chitinases of approximately 32 kDa (Chi32), 20 kDa (Chi20), and two with masses well over 170 kDa (ChiU) that showed little migration during denaturing electrophoresis at different concentrations of polyacrylamide. The thymol-sulphuric acid assay showed that the ChiU were glycosylated chitinases. Moreover, matrix assisted laser desorption ionization time-of-flight MS analysis revealed that the ChiU are the same protein and identical to a family 18 chitinase from Streptomyces sp. S4 (gi|498328075). Chi32 was similar to an extracellular protein from Streptomyces albus J1074 (gi|478687481) and Chi20 was non-significantly similar to chitinases from five different strains of Streptomyces (P > 0.05). Subsequently, Chi32 and Chi20 were partially purified by anion exchange and hydrophobic interaction chromatography and tested against M. fijiensis. Chitinases failed to inhibit ascospore germination, but inhibited up to 35 and 62% of germ tube elongation and mycelial growth, respectively. We found that crude culture supernatant and living cells of S. galilaeus CFFSUR-B12 were the most effective in inhibiting M. fijiensis and are potential biocontrol agents of BSD. PMID:26873555

  8. Cloning and identification of Fv-cmp, a protease from Fusarium verticillioides that truncates Zea mays and Arabidopsis thaliana class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (cmps) are proteases, secreted by fungal pathogens, that were originally identified as proteins that truncate class IV chitinases of maize during ear rot. Cmps from Bipolaris zeicola and Stenocarpella maydis have been characterized, but the identities of the proteases h...

  9. A New Gut-Specific Chitinase Gene Essential for Regulation of Chitin Content of Peritrophic Matrix and Growth of Ostrinia Nubilalis Larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinases belong to a large and diverse family of hydrolytic enzymes that break down glycosidic bonds of chitin. However, very little is known about the function of chitinase genes in regulating the chitin content in peritrophic matrix (PM) of the midgut in insects. We identified a cDNA putatively ...

  10. Effect of mouse antisera targeting the Phlebotomus papatasi midgut chitinase PpChit1 on sandfly physiology and fitness

    PubMed Central

    Robles-Murguia, Maricela; Bloedow, Nicholas; Murray, Leigh; Ramalho-Ortigão, Marcelo

    2014-01-01

    In sandflies, the absence of the peritrophic matrix (PM) affects the rate of blood digestion. Also, the kinetics of PM secretion varies according to species. We previously characterised PpChit1, a midgut-specific chitinase secreted in Phlebotomus papatasi (PPIS) that is involved in the maturation of the PM and showed that antibodies against PpChit1 reduce the chitinolytic activity in the midgut of several sandfly species. Here, sandflies were fed on red blood cells reconstituted with naïve or anti-PpChit1 sera and assessed for fitness parameters that included blood digestion, oviposition onset, number of eggs laid, egg bouts, average number of eggs per bout and survival. In PPIS, anti-PpChit1 led to a one-day delay in the onset of egg laying, with flies surviving three days longer compared to the control group. Anti-PpChit1 also had a negative effect on overall ability of flies to lay eggs, as several gravid females from all three species were unable to lay any eggs despite having lived longer than control flies. Whereas the longer survival might be associated with improved haeme scavenging ability by the PM, the inability of females to lay eggs is possibly linked to changes in PM permeability affecting nutrient absorption. PMID:25591111

  11. Characterization of chitinases of polycentric anaerobic rumen fungi.

    PubMed

    Novotná, Z; Fliegerová, K; Simůnek, J

    2008-01-01

    Chitinolytic systems of anaerobic polycentric rumen fungi of genera Orpinomyces and Anaeromyces were investigated in three crude enzyme fractions - extracellular, cytosolic and cell-wall. Endochitinase was found as a dominant enzyme with highest activity in the cytosolic fraction. Endochitinases of both genera were stable at pH 4.5-7.0 with optimum at 6.5. The Orpinomyces endochitinase was stable up to 50 degrees C with an optimum for enzyme activity at 50 degrees C; similarly, Anaeromyces endochitinase was stable up to 40 degrees C with optimum at 40 degrees C. The most suitable substrate for both endochitinases was fungal cell-wall chitin. Enzyme activities were inhibited by Hg(2+) and Mn(2+), and activated by Mg(2+) and Fe(3+). Both endochitinases were inhibited by 10 mmol/L SDS and activated by iodoacetamide. PMID:18661301

  12. Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain.

    PubMed

    Martínez-Caballero, Siseth; Cano-Sánchez, Patricia; Mares-Mejía, Israel; Díaz-Sánchez, Angel G; Macías-Rubalcava, Martha L; Hermoso, Juan A; Rodríguez-Romero, Adela

    2014-10-01

    Plants express chitinase and chitinase-like proteins (CLPs) belonging to the glycosyl hydrolases of the GH18 and GH19 families, which exhibit varied functions. CLPs in the GH18 family have been structurally and functionally characterized; however, there are no structures available for any member of the GH19 family. In this study, two CLPs of the GH19 family from the rubber tree Hevea brasiliensis (HbCLP1 and HbCLP2) were cloned, expressed and characterized. HbCLP1 was identical to the allergen Hev b 11.0101 previously described by others, while HbCLP2 was a novel isoform exhibiting an unusual half chitin-binding domain before the catalytic domain. Sequence alignments showed that in the two proteins the catalytic residues Glu117 and Glu147 in HbCLP1 and HbCLP2, respectively, were mutated to Ala, accounting for the lack of activity. Nonetheless, both CLPs bound chitin and chitotriose (GlcNAc)3 with high affinities, as evaluated with chitin-affinity chromatography and tryptophan fluorescence experiments. The chitin-binding domains also bound chitotriose with even higher affinities. The crystal structures of the HbCLP1-isolated domains were determined at high resolution. The analysis of the crystallographic models and docking experiments using (GlcNAc)6 oligosaccharides provides evidence of the residues involved in sugar binding. Endochitinase activity was restored in both proteins by mutating residues A117E (HbCLP1) and A147E (HbCLP2); the distance between the catalytic proton donor and the catalytic nucleophile in the in silico mutated residues was 9.5 Å, as occurs in inverting enzymes. HbCLP1 and HbCLP2 were highly thermostable and exhibited antifungal activity against Alternaria alternata, suggesting their participation in plant defense mechanisms. PMID:25104038

  13. Polyglycine hydrolases: Fungal β-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    PubMed Central

    Naumann, Todd A; Naldrett, Michael J; Ward, Todd J; Price, Neil P J

    2015-01-01

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine–glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochliobolus carbonum (Bz-cmp). Here we report the identity of their encoding genes and the primary amino acid sequences of the proteins responsible for these activities. Peptides from a tryptic digest of Es-cmp were analyzed by LC-MS/MS and the spectra obtained were matched to a draft genome sequence of E. sorghi. From this analysis, a 642 amino acid protein containing a predicted β-lactamase catalytic region of 280 amino acids was identified. Heterologous strains of the yeast Pichia pastoris were created to express this protein and its homolog from C. carbonum from their cDNAs. Both strains produced recombinant proteins with polyglycine hydrolase activity as shown by SDS-PAGE and MALDI-MS based assays. Site directed mutagenesis was used to mutate the predicted catalytic serine of Es-cmp to glycine, resulting in loss of catalytic activity. BLAST searching of publicly available fungal genomes identified full-length homologous proteins in 11 other fungi of the class Dothideomycetes, and in three fungi of the related class Sordariomycetes while significant BLAST hits extended into the phylum Basidiomycota. Multiple sequence alignment led to the identification of a network of seven conserved tryptophans that surround the β-lactamase-like region. This is the first report of a predicted β-lactamase that is an endoprotease. PMID:25966977

  14. Characterization of cis-acting elements residing in the chitinase promoter of Bacillus pumilus SG2.

    PubMed

    Heravi, K Morabbi; Shali, A; Naghibzadeh, N; Ahmadian, G

    2014-05-01

    Bacillus pumilus SG2 is a chitinolytic bacterium that produces two chitinases, namely ChiS and ChiL. The chiS and chiL genes are consecutively expressed under a common promoter. Regulation of the chiS and chiL genes is under the control of carbon catabolite repression (CCR) in B. pumilus. This study aimed to investigate the cis-acting elements of the chitinase promoter. For this purpose, we transferred the chiS gene along with its specific promoter to Bacillus subtilis as a host. Primer extension analysis revealed two transcription start sites located 287 and 65 bp upstream of the chiS start codon. The distal promoter was highly compatible with the consensus sequence of the σ(A)-type promoters in B. subtilis, whereas the proximal promoter sequence showed less similarity to the σ(A)-type consensus sequence. A catabolite responsive element (cre), which is required for CCR in Bacillus species, was found to be 136 to 123 bp upstream of the chiS start codon. Interestingly, this cre site was located upstream of the -35 of the proximal promoter and downstream of the distal promoter. Deletion of this cre site sequence rendered the chiS expression constitutive. PMID:24293243

  15. Regulation of a Chitinase Gene Promoter by Ethylene and Elicitors in Bean Protoplasts 1

    PubMed Central

    Roby, Dominique; Broglie, Karen; Gaynor, John; Broglie, Richard

    1991-01-01

    Chitinase gene expression has been shown to be transcriptionally regulated by a number of inducers, including ethylene, elicitors, and pathogen attack. To investigate the mechanism(s) responsible for induction of chitinase gene expression in response to various stimuli, we have developed a transient gene expression system in bean (Phaseolus vulgaris) protoplasts that is responsive to ethylene and elicitor treatment. This system was used to study the expression of a chimeric gene composed of the 5′ flanking sequences of a bean endochitinase gene fused to the reporter gene β-glucuronidase linked to a 3′ fragment from nopaline synthase. Addition of 1-aminocyclopropane-1-carboxylic acid, the direct precursor of ethylene, or elicitors such as chitin oligosaccharides or cell wall fragments derived from Colletotrichum lagenarium, to transformed protoplasts resulted in a rapid and marked increase in the expression of the chimeric gene. The kinetics and dose response for these treatments were similar to those observed for the native gene in vivo. Analyses of 5′ deletion mutants in the protoplast system indicated that DNA sequences located between −305 and −236 are important for both ethylene and elicitor induction of the reporter gene. ImagesFigure 1 PMID:16668405

  16. Quantification of chitinase and thaumatin-like proteins in grape juices and wines.

    PubMed

    Le Bourse, D; Conreux, A; Villaume, S; Lameiras, P; Nuzillard, J-M; Jeandet, P

    2011-09-01

    Chitinases and thaumatin-like proteins are important grape proteins as they have a great influence on wine quality. The quantification of these proteins in grape juices and wines, along with their purification, is therefore crucial to study their intrinsic characteristics and the exact role they play in wines. The main isoforms of these two proteins from Chardonnay grape juice were thus purified by liquid chromatography. Two fast protein liquid chromatography (FLPC) steps allowed the fractionation and purification of the juice proteins, using cation exchange and hydrophobic interaction media. A further high-performance liquid chromatography (HPLC) step was used to achieve higher purity levels. Fraction assessment was achieved by mass spectrometry. Fraction purity was determined by HPLC to detect the presence of protein contaminants, and by nuclear magnetic resonance (NMR) spectroscopy to detect the presence of organic contaminants. Once pure fractions of lyophilized chitinase and thaumatin-like protein were obtained, ultra-HPLC (UHPLC) and enzyme-linked immunosorbent assay (ELISA) calibration curves were constructed. The quantification of these proteins in different grape juice and wine samples was thus achieved for the first time with both techniques through comparison with the purified protein calibration curve. UHPLC and ELISA showed very consistent results (less than 16% deviation for both proteins) and either could be considered to provide an accurate and reliable quantification of proteins in the oenology field. PMID:21465097

  17. Cloning and characterization of a potentially protective chitinase-like recombinant antigen from Wuchereria bancrofti.

    PubMed Central

    Raghavan, N; Freedman, D O; Fitzgerald, P C; Unnasch, T R; Ottesen, E A; Nutman, T B

    1994-01-01

    While there is no direct evidence demonstrating the existence of protective immunity to Wuchereria bancrofti infection in humans, the presence of individuals, in populations in areas where infection is endemic, with no clinical evidence of past or current infection despite appreciable exposure to the infective larvae, suggests that protective immunity to filarial parasites may occur naturally. Earlier work indicated that such putatively immune individuals generated antibodies to a 43-kDa antigen from larval extracts of the related filarial parasite Brugia malayi that was recognized by only 8% of the infected population. With rabbit antiserum raised against this 43-kDa antigen, this current study identified a recombinant clone, WbN43, with an insert size of 2.3 kb, from a W. bancrofti genomic expression library. The recombinant fusion protein was differentially recognized by the putatively immune individuals but not by the infected patients. The coding sequence (684 bp) from the 5' end had significant sequence similarity to chitinases from Serratia marcescens, Bacillus circulans, Streptomyces plicatus, and B. malayi. Peptide sequencing of the expressed product also defined a chitinase-like sequence. Molecular characterization indicated WbN43 to be a low-copy-number gene, with expression predominantly in infective larvae and microfilariae but not in adult parasites. Images PMID:8168956

  18. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain.

    PubMed Central

    Morimoto, K; Karita, S; Kimura, T; Sakka, K; Ohmiya, K

    1997-01-01

    The Clostridium paraputrificum chiB gene, encoding chitinase B (ChiB), consists of an open reading frame of 2,493 nucleotides and encodes 831 amino acids with a deduced molecular weight of 90,020. The deduced ChiB is a modular enzyme composed of a family 18 catalytic domain responsible for chitinase activity, two reiterated domains of unknown function, and a chitin-binding domain (CBD). The reiterated domains are similar to the repeating units of cadherin proteins but not to fibronectin type III domains, and therefore they are referred to as cadherin-like domains. ChiB was purified from the periplasm fraction of Escherichia coli harboring the chiB gene. The molecular weight of the purified ChiB (87,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, was in good agreement with the value (86,578) calculated from the deduced amino acid sequence excluding the signal peptide. ChiB was active toward chitin from crab shells, colloidal chitin, glycol chitin, and 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)2]. The pH and temperature optima of the enzyme were 6.0 and 45 degrees C, respectively. The Km and Vmax values for 4-MU-(GlcNAc)2 were estimated to be 6.3 microM and 46 micromol/min/mg, respectively. SDS-PAGE, zymogram, and Western blot analyses using antiserum raised against purified ChiB suggested that ChiB was one of the major chitinase species in the culture supernatant of C. paraputrificum. Deletion analysis showed clearly that the CBD of ChiB plays an important role in hydrolysis of native chitin but not processed chitin such as colloidal chitin. PMID:9393694

  19. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    PubMed

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses. PMID:25955511

  20. Genome-wide analysis and differential expression of chitinases in banana against root lesion nematode (Pratylenchus coffeae) and eumusa leaf spot (Mycosphaerella eumusae) pathogens.

    PubMed

    Backiyarani, S; Uma, S; Nithya, S; Chandrasekar, A; Saraswathi, M S; Thangavelu, R; Mayilvaganan, M; Sundararaju, P; Singh, N K

    2015-04-01

    Knowledge on structure and conserved domain of Musa chitinase isoforms and their responses to various biotic stresses will give a lead to select the suitable chitinase isoform for developing biotic stress-resistant genotypes. Hence, in this study, chitinase sequences available in the Musa genome hub were analyzed for their gene structure, conserved domain, as well as intron and exon regions. To identify the Musa chitinase isoforms involved in Pratylenchus coffeae (root lesion nematode) and Mycosphaerella eumusae (eumusa leaf spot) resistant mechanisms, differential gene expression analysis was carried out in P. coffeae- and M. eumusae-challenged resistant and susceptible banana genotypes. This study revealed that more number of chitinase isoforms (CIs) were responses upon eumusa leaf spot stress than nematode stress. The nematode challenge studies revealed that class II chitinase (GSMUA_Achr9G16770_001) was significantly overexpressed with 6.75-fold (with high fragments per kilobase of exon per million fragments mapped (FPKM)) in resistant genotype (Karthobiumtham-ABB) than susceptible (Nendran-AAB) genotype, whereas when M. eumusae was challenge inoculated, two class III CIs (GSMUA_Achr9G25580_001 and GSMUA_Achr8G27880_001) were overexpressed in resistant genotype (Manoranjitham-AAA) than the susceptible genotype (Grand Naine-AAA). However, none of the CIs were found to be commonly overexpressed under both stress conditions. This study reiterated that the chitinase genes are responding differently to different biotic stresses in their respective resistant genotypes. PMID:25820355

  1. Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation.

    PubMed

    Nagy, Viviana; Seidl, Verena; Szakacs, George; Komoń-Zelazowska, Monika; Kubicek, Christian P; Druzhinina, Irina S

    2007-11-01

    Selection of suitable strains for biotechnological purposes is frequently a random process supported by high-throughput methods. Using chitinase production by Hypocrea lixii/Trichoderma harzianum as a model, we tested whether fungal strains with superior enzyme formation may be diagnosed by DNA bar codes. We analyzed sequences of two phylogenetic marker loci, internal transcribed spacer 1 (ITS1) and ITS2 of the rRNA-encoding gene cluster and the large intron of the elongation factor 1-alpha gene, tef1, from 50 isolates of H. lixii/T. harzianum, which were also tested to determine their ability to produce chitinases in solid-state fermentation (SSF). Statistically supported superior chitinase production was obtained for strains carrying one of the observed ITS1 and ITS2 and tef1 alleles corresponding to an allele of T. harzianum type strain CBS 226.95. A tef1-based DNA bar code tool, TrichoCHIT, for rapid identification of these strains was developed. The geographic origin of the strains was irrelevant for chitinase production. The improved chitinase production by strains containing this haplotype was not due to better growth on N-acetyl-beta-D-glucosamine or glucosamine. Isoenzyme electrophoresis showed that neither the isoenzyme profile of N-acetyl-beta-glucosaminidases or the endochitinases nor the intensity of staining of individual chitinase bands correlated with total chitinase in the culture filtrate. The superior chitinase producers did not exhibit similarly increased cellulase formation. Biolog Phenotype MicroArray analysis identified lack of N-acetyl-beta-D-mannosamine utilization as a specific trait of strains with the chitinase-overproducing haplotype. This observation was used to develop a plate screening assay for rapid microbiological identification of the strains. The data illustrate that desired industrial properties may be an attribute of certain populations within a species, and screening procedures should thus include a balanced mixture of all

  2. Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens.

    PubMed

    González-Teuber, Marcia; Pozo, María J; Muck, Alexander; Svatos, Ales; Adame-Alvarez, Rosa M; Heil, Martin

    2010-03-01

    Nectars are rich in primary metabolites and attract mutualistic animals, which serve as pollinators or as an indirect defense against herbivores. Their chemical composition makes nectars prone to microbial infestation. As protective strategy, floral nectar of ornamental tobacco (Nicotiana langsdorffii x Nicotiana sanderae) contains "nectarins," proteins producing reactive oxygen species such as hydrogen peroxide. By contrast, pathogenesis-related (PR) proteins were detected in Acacia extrafloral nectar (EFN), which is secreted in the context of defensive ant-plant mutualisms. We investigated whether these PR proteins protect EFN from phytopathogens. Five sympatric species (Acacia cornigera, A. hindsii, A. collinsii, A. farnesiana, and Prosopis juliflora) were compared that differ in their ant-plant mutualism. EFN of myrmecophytes, which are obligate ant-plants that secrete EFN constitutively to nourish specialized ant inhabitants, significantly inhibited the growth of four out of six tested phytopathogenic microorganisms. By contrast, EFN of nonmyrmecophytes, which is secreted only transiently in response to herbivory, did not exhibit a detectable inhibitory activity. Combining two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with nanoflow liquid chromatography-tandem mass spectrometry analysis confirmed that PR proteins represented over 90% of all proteins in myrmecophyte EFN. The inhibition of microbial growth was exerted by the protein fraction, but not the small metabolites of this EFN, and disappeared when nectar was heated. In-gel assays demonstrated the activity of acidic and basic chitinases in all EFNs, whereas glucanases were detected only in EFN of myrmecophytes. Our results demonstrate that PR proteins causally underlie the protection of Acacia EFN from microorganisms and that acidic and basic glucanases likely represent the most important prerequisite in this defensive function. PMID:20023149

  3. Identification and characterization of the Cydia pomonella granulovirus cathepsin and chitinase genes.

    PubMed

    Kang, W; Tristem, M; Maeda, S; Crook, N E; O'Reilly, D R

    1998-09-01

    A 3.2 kb BamHI-EcoRI fragment of the Cydia pomonella granulovirus (CpGV) genome was subcloned and characterized. Sequence analysis revealed two complete and one partial open reading frames (ORFs). ORF7L is predicted to encode a 66.7 kDa protein (594 amino acid residues) that is 57% identical (amino acid sequence) to the chiA gene (ORF126) of Autographa californica nucleopolyhedrovirus (AcMNPV), encoding a chitinase. ORF8R is 333 amino acids in length and shows high similarity (between 64% and 67%) with baculovirus cathepsins. The partial ORF, ORF5L, is related to AcMNPV ORF145 of unknown function. Phylogenetic trees were constructed for both chitinase and cathepsin sequences from baculoviruses and other species. In both cases, the baculovirus sequences were monophyletic but with a deep division between the GVs and NPVs, suggesting both genes were present in an ancestral virus prior to the separation of the two genera. However, these studies did not provide definitive evidence for the origin of either protein in baculoviruses. To investigate CpGV cathepsin function, a rescue experiment was performed using a Bombyx mori NPV (BmNPV) mutant (BmCysPD) which lacks a functional cathepsin (cath) gene. Larvae infected with BmCysPD-Cp.cat, a BmCysPD derivative carrying CpGV cath, showed similar symptoms to wild-type BmNPV infected insects, confirming that CpGV cath encodes a functional cathepsin. Primer extension analysis of mRNA from BmCysPD-Cp.cat infected cells showed that CpGV cath transcription was initiated from a consensus late transcription motif (ATAAG) within the CpGV sequences, indicating that a CpGV late promoter motif was recognized in this NPV system. PMID:9747739

  4. Chitinase 3-like-1 and its receptors in Hermansky-Pudlak syndrome-associated lung disease.

    PubMed

    Zhou, Yang; He, Chuan Hua; Herzog, Erica L; Peng, Xueyan; Lee, Chang-Min; Nguyen, Tung H; Gulati, Mridu; Gochuico, Bernadette R; Gahl, William A; Slade, Martin L; Lee, Chun Geun; Elias, Jack A

    2015-08-01

    Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3-like-1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3-dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS. PMID:26121745

  5. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase.

    PubMed

    Paspaliari, Dafni K; Loose, Jennifer S M; Larsen, Marianne H; Vaaje-Kolstad, Gustav

    2015-03-01

    Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and ChiB) and a multi-modular lytic polysaccharide monooxygenase (LmLPMO10). These enzymes have been related to virulence and their role in chitin metabolism is poorly understood. It is thus of interest to functionally characterize the individual enzymes in order to shed light on their roles in vivo. Our results demonstrate that L. monocytogenes has a fully functional chitinolytic system. Both chitinases show substrate degradation rates similar to those of the nonprocessive endo-chitinase SmChiC from Serratia marcescens. Compared to the S. marcescens LPMO chitin-binding protein CBP21, LmLPMO10 shows a similar rate but different product profiles depending on the substrate. In LPMO-chitinase synergy experiments, CBP21 is able to boost the activity of both ChiA and ChiB more than LmLPMO10. Product analysis of the synergy assays revealed that the chitinases were unable to efficiently hydrolyse the LPMO products (chitooligosaccharide aldonic acids) with a degree of polymerization below four (ChiA and SmChiC) or three (ChiB). Gene transcription and protein expression analysis showed that LmLPMO10 is neither highly transcribed, nor abundantly secreted during the growth of L. monocytogenes in a chitin-containing medium. The chitinases on the other hand are both abundantly secreted in the presence of chitin. Although LmLPMO10 is shown to promote chitin degradation in tandem with the chitinases in vitro, the secretome and transcription data question whether this is the primary role of LmLPMO10 in vivo. PMID:25565565

  6. ChiS histidine kinase negatively regulates the production of chitinase ChiC in Streptomyces peucetius.

    PubMed

    Rabbind Singh, Amrathlal; Senthamaraikannan, Paranthaman; Thangavel, Chitra; Danda, Ravikanth; Pandian, Shunmugiah Karutha; Dharmalingam, Kuppamuthu

    2014-01-01

    Computational analysis of sequence homology of the chiSRC gene cluster, encoding a chitinase in Streptomyces peucetius, showed that the gene cluster could be a two-component regulon comprising a sensor kinase (chiS) and a response regulator (chiR). To prove that the ChiSRC is an authentic two-component system, the chiS gene was cloned and expressed in E.coli and the purified protein was used for biochemical analysis. In this report, we provide biochemical evidence to show that the sensor kinase encoded by chiS gene indeed is a histidine kinase capable of autophosphorylation and the histidine 144 residue of the ChiS protein is the phosphate acceptor. An insertion mutation at the chiS locus led to overproduction chitinase protein in S. peucetius implying that the chiC gene is negatively regulated by the two-component system. PMID:23972296

  7. Complete genome sequence of the fish pathogen Aeromonas veronii TH0426 with potential application in biosynthesis of pullulanase and chitinase.

    PubMed

    Kang, Yuanhuan; Pan, Xiaoyi; Xu, Yang; Siddiqui, Shahrood A; Wang, Chunfeng; Shan, Xiaofeng; Qian, Aidong

    2016-06-10

    Aeromonas veronii TH0426 is a pathogen of the farmed yellow catfish Pelteobagrus fulvidraco but shows high-level expression of pullulanase and chitinase. Here, we present its genome sequence, which is the first reported complete genome of fish pathogen in A. veronii to date. Strain TH0426 harbors a single circular 4,923,009bp chromosome with a GC content of 58.25%. There are 4525 genes identified on its genome, including 4244 protein-coding genes, 32 rRNA genes, 120 tRNA genes, a noncoding RNA and 128 pseudo genes. We believe that the genomic information of A. veronii TH0426 would facilitate to reveal its pathogenic mechanism associated with yellow catfish, develop vaccine to decrease economic losses for fish farming, meanwhile explore the potential application in producing pullulanase and chitinase. PMID:27080448

  8. ECDYSTEROID AND CHITINASE FLUCTUATIONS IN THE WESTERN TARNISHED PLANT BUG (Lygus hesperus) PRIOR TO MOLT INDICATE ROLES IN DEVELOPMENT.

    PubMed

    Brent, Colin S; Wang, Meixian; Miao, Yun-Gen; Hull, J Joe

    2016-06-01

    Vital physiological processes that drive the insect molt represent areas of interest for the development of alternative control strategies. The western tarnished plant bug (Lygus hesperus Knight) is a pest of numerous agronomic and horticultural crops but the development of novel control approaches is impeded by limited knowledge of the mechanisms regulating its molt. To address this deficiency, we examined the fundamental relationship underlying the hormonal and molecular components of ecdysis. At 27°C L. hesperus exhibits a temporally controlled nymph-adult molt that occurs about 4 days after the final nymph-nymph molt with ecdysteroid levels peaking 2 days prior to the final molt. Application of exogenous ecdysteroids when endogenous levels had decreased disrupted the nymphal-adult molt, with treated animals exhibiting an inability to escape the old exoskeleton and resulting in mortality compared to controls. Using accessible transcriptomic data, we identified 10 chitinase-like sequences (LhCht), eight of which had protein motifs consistent with chitinases. Phylogenetic analyses revealed orthologous relationships to chitinases critical to molting in other insects. RT-PCR based transcript profiling revealed that expression changes to four of the LhChts was coordinated with the molt period and ecdysteroid levels. Collectively, our results support a role for ecdysteroid regulation of the L. hesperus molt and suggest that cuticle clearance is mediated by LhCht orthologs of chitinases that are essential to the molt process. These results provide the initial hormonal and molecular basis for future studies to investigate the specific roles of these components in molting. PMID:27192063

  9. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize.

    PubMed

    Ray, Swayamjit; Alves, Patrick C M S; Ahmad, Imtiaz; Gaffoor, Iffa; Acevedo, Flor E; Peiffer, Michelle; Jin, Shan; Han, Yang; Shakeel, Samina; Felton, Gary W; Luthe, Dawn S

    2016-05-01

    The perception of herbivory by plants is known to be triggered by the deposition of insect-derived factors such as saliva and oral secretions, oviposition materials, and even feces. Such insect-derived materials harbor chemical cues that may elicit herbivore and/or pathogen-induced defenses in plants. Several insect-derived molecules that trigger herbivore-induced defenses in plants are known; however, insect-derived molecules suppressing them are largely unknown. In this study, we identified two plant chitinases from fall armyworm (Spodoptera frugiperda) larval frass that suppress herbivore defenses while simultaneously inducing pathogen defenses in maize (Zea mays). Fall armyworm larvae feed in enclosed whorls of maize plants, where frass accumulates over extended periods of time in close proximity to damaged leaf tissue. Our study shows that maize chitinases, Pr4 and Endochitinase A, are induced during herbivory and subsequently deposited on the host with the feces. These plant chitinases mediate the suppression of herbivore-induced defenses, thereby increasing the performance of the insect on the host. Pr4 and Endochitinase A also trigger the antagonistic pathogen defense pathway in maize and suppress fungal pathogen growth on maize leaves. Frass-induced suppression of herbivore defenses by deposition of the plant-derived chitinases Pr4 and Endochitinase A is a unique way an insect can co-opt the plant's defense proteins for its own benefit. It is also a phenomenon unlike the induction of herbivore defenses by insect oral secretions in most host-herbivore systems. PMID:26979328

  10. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    PubMed Central

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-01-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  11. Purification of a thermostable chitinase from Bacillus cereus by chitin affinity and its application in microbial community changes in soil.

    PubMed

    Liang, Tzu-Wen; Hsieh, Tung-Yen; Wang, San-Lang

    2014-06-01

    A thermostable chitinase was purified by chitin affinity from the culture supernatant of Bacillus cereus TKU028 with shrimp head powder (SHP) as the sole carbon/nitrogen source. TKU028 chitinase was purified using a one-step affinity adsorbent system, and the molecular mass of TKU028 chitinase (approximately 40 kDa) was then determined using SDS-PAGE. The enzyme was stable for 60 min at temperatures below 60 °C and stable over a broad pH range of 4-9 for 60 min. In addition, the temporal changes of a bacterial community in mangrove river sediment of the Tamsui River with added SHP were also analysed by PCR-denaturing gradient gel electrophoresis to investigate the effects of B. cereus TKU028 on the degradation of SHP. The 6-week incubation sample of SHP and B. cereus TKU028-amended mangrove river sediment displayed the highest amount of biomass, reducing sugar and total sugar, and some variance of bacterial community composition existed in the soils. PMID:24342954

  12. Functional analysis of a chitinase gene during the larval-nymph transition in Panonychus citri by RNA interference.

    PubMed

    Xia, Wen-Kai; Shen, Xiao-Min; Ding, Tian-Bo; Niu, Jin-Zhi; Zhong, Rui; Liao, Chong-Yu; Feng, Ying-Cai; Dou, Wei; Wang, Jin-Jun

    2016-09-01

    Chitinases are hydrolytic enzymes that are required for chitin degradation and reconstruction in arthropods. In this study, we report a cDNA sequence encoding a putative chitinase (PcCht1) from the citrus red mite, Panonychus citri. The PcCht1 (564 aa) possessed a signal peptide, a conserver domain, and a chitin-binding domain. Structural and phylogenetic analyses found that PcCht1 had high sequence similarity to chitinases in Tetranychus urticae. Real-time quantitative PCR analyses showed that the transcript levels of PcCht1 peaked periodically in larval and nymph stages. Moreover, significant increase of PcCht1 transcript level in the larvae was observed upon the exposure of diflubenzuron. In contrast, exposures of the larvae to diflubenzuron resulted in the decreased chitin content. Furthermore, through a feeding-based RNA interference approach, we were able to reduce the PcCht1 transcript level by 59.7 % in the larvae, and consequently the treated larvae showed a very low molting rate compared with the control. Our results expanded the understanding of the important role of PcCht1 in the growth and development of P. citri. PMID:27388447

  13. Molecular cloning of class III chitinase gene from Avicennia marina and its expression analysis in response to cadmium and lead stress.

    PubMed

    Wang, Li-Ying; Wang, You-Shao; Zhang, Jing-Ping; Gu, Ji-Dong

    2015-10-01

    Mangrove species have high tolerance to heavy metal pollution. Chitinases have been widely reported as defense proteins in response to heavy metal stress in terrestrial plants. In this study, a full-length cDNA sequence encoding an acidic and basic class III chitinase (AmCHI III) was cloned by using RT-PCR and RACE methods in Avicennia marina. AmCHI III mRNA expression in leaf of A. marina were investigated under Cd, Pb stresses on using real-time quantitative PCR. The deduced AmCHI III protein consists of 302 amino acids, including a signal putative peptide region, and a catalytic domain. Homology modeling of the catalytic domain revealed a typical molecular structure of class III plant chitinases. Results further demonstrated that the regulation of AmCHI III mRNA expression in leaves was strongly dependent on Cd, Pb stresses. AmCHI III mRNA expressions were significantly increased in response to Cd, Pb, and peaked at 7 days Cd-exposure, 7 days Pb-exposure, respectively. AmCHI III mRNA expression exhibited more sensitive to Pb stress than Cd stress. This work was the first time cloing chitinase from A. marina, and it brought evidence on chitinase gene involving in heavy metals (Cd(2+) and Pb(2+)) resistance or detoxification in plants. Further studies including the promoter and upstream regulation, gene over-expression and the response of mangrove chitinases to other stresses will shed more light on the role of chitinase in mangrove plants. PMID:26044930

  14. Genome-wide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis.

    PubMed

    Su, C; Tu, G; Huang, S; Yang, Q; Shahzad, M F; Li, F

    2016-08-01

    Some insect chitinases are required to degrade chitin and ensure successful metamorphosis. Although chitinase genes have been well characterized in several model insects, no reports exist for the rice striped stem borer, Chilo suppressalis, a highly destructive pest that causes huge yield losses in rice production. Here, we conducted a genome-level analysis of chitinase genes in C. suppressalis. After amplification of full-length transcripts with rapid amplification of cDNA ends, we identified 12 chitinase genes in C. suppressalis. All these genes had the conserved domains and motifs of glycoside hydrolase family 18 and grouped phylogenetically into five subgroups. C. suppressalis chitinase 1 (CsCht1) was highly expressed in late pupae, whereas CsCht3 was abundant in early pupae. Both CsCht2 and CsCht4 were highly expressed in larvae. CsCht2 was abundant specifically in the third-instar larvae and CsCht4 showed periodic high expression in 2- to 5-day-old larvae in each instar. Tissue specific expression analysis indicated that CsCht1 and CsCht3 were highly expressed in epidermis whereas CsCht2 and CsCht4 were specifically abundant in the midgut. Knockdown of CsCht1 resulted in adults with curled wings, indicating that CsCht1 might have an important role in wing expansion. Silencing of CsCht2 or CsCht4 arrested moulting, suggesting essential roles in larval development. When the expression of CsCht3 was interfered, defects in pupation occurred. Overall, we provide here the first catalogue of chitinase genes in the rice striped stem borer and have elucidated the functions of four chitinases in metamorphosis. PMID:27080989

  15. Biocontrol of anthracnose in pepper using chitinase, beta-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224.

    PubMed

    Lee, So Youn; Tindwa, Hamisi; Lee, Yong Seong; Naing, Kyaw Wai; Hong, Seong Hyun; Nam, Yi; Kim, Kil Yong

    2012-10-01

    A strain of Streptomyces cavourensis subsp. cavourensis (coded as SY224) antagonistic to Colletotrichum gloeosporioides infecting pepper plants was isolated. SY224 produced lytic enzymes such as chitinase, beta-1,3-glucanase, lipase, and protease in respective assays. To examine for antifungal activity, the treatments amended with the nonsterilized supernatant resulted in the highest growth inhibition rate of about 92.9% and 87.4% at concentrations of 30% and 10%, respectively. However, the sterilized treatments (autoclaved or chloroform treated) gave a lowered but significant inhibitory effect of about 63.4% and 62.6% for the 10% supernatant concentration, and 75.2% and 74.8% for the of 30% supernatant concentration in the PDA agar medium, respectively, indicative of the role of a nonprotein, heat stable compound on the overall effect. This antifungal compound, which inhibited spore germination and altered hyphal morphology, was extracted by EtOAc and purified by ODS, silica gel, Sephadex LH-20 column, and HPLC, where an active fraction was confirmed to be 2-furancarboxaldehyde by GS-CI MS techniques. These results suggested that SY224 had a high potential in the biocontrol of anthracnose in pepper, mainly due to a combined effect of lytic enzymes and a non-protein, heatstable antifungal compound, 2-furancarboxaldehyde. PMID:23075786

  16. The Correlation between Chitin and Acidic Mammalian Chitinase in Animal Models of Allergic Asthma

    PubMed Central

    Shen, Chia-Rui; Juang, Horng-Heng; Chen, Hui-Shan; Yang, Ching-Jen; Wu, Chia-Jen; Lee, Meng-Hua; Hwang, Yih-Shiou; Kuo, Ming-Ling; Chen, Ya-Shan; Chen, Jeen-Kuan; Liu, Chao-Lin

    2015-01-01

    Asthma is the result of chronic inflammation of the airways which subsequently results in airway hyper-responsiveness and airflow obstruction. It has been shown that an elicited expression of acidic mammalian chitinase (AMCase) may be involved in the pathogenesis of asthma. Our recent study has demonstrated that the specific suppression of elevated AMCase leads to reduced eosinophilia and Th2-mediated immune responses in an ovalbumin (OVA)-sensitized mouse model of allergic asthma. In the current study, we show that the elicited expression of AMCase in the lung tissues of both ovalbumin- and Der P2-induced allergic asthma mouse models. The effects of allergic mediated molecules on AMCase expression were evaluated by utilizing promoter assay in the lung cells. In fact, the exposure of chitin, a polymerized sugar and the fundamental component of the major allergen mite and several of the inflammatory mediators, showed significant enhancement on AMCase expression. Such obtained results contribute to the basis of developing a promising therapeutic strategy for asthma by silencing AMCase expression. PMID:26580611

  17. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin

    NASA Astrophysics Data System (ADS)

    Igarashi, Kiyohiko; Uchihashi, Takayuki; Uchiyama, Taku; Sugimoto, Hayuki; Wada, Masahisa; Suzuki, Kazushi; Sakuda, Shohei; Ando, Toshio; Watanabe, Takeshi; Samejima, Masahiro

    2014-06-01

    Processivity refers to the ability of synthesizing, modifying and degrading enzymes to catalyse multiple successive cycles of reaction with polymeric substrates without disengaging from the substrates. Since biomass polysaccharides, such as chitin and cellulose, often form recalcitrant crystalline regions, their degradation is highly dependent on the processivity of degrading enzymes. Here we employ high-speed atomic force microscopy to directly visualize the movement of two processive glycoside hydrolase family 18 chitinases (ChiA and ChiB) from the chitinolytic bacterium Serratia marcescens on crystalline β-chitin. The half-life of processive movement and the velocity of ChiA are larger than those of ChiB, suggesting that asymmetric subsite architecture determines both the direction and the magnitude of processive degradation of crystalline polysaccharides. The directions of processive movements of ChiA and ChiB are observed to be opposite. The molecular mechanism of the two-way traffic is discussed, including a comparison with the processive cellobiohydrolases of the cellulolytic system.

  18. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects

    PubMed Central

    Pesch, Yanina-Yasmin; Riedel, Dietmar; Patil, Kapil R; Loch, Gerrit; Behr, Matthias

    2016-01-01

    The cuticle forms an apical extracellular-matrix (ECM) that covers exposed organs, such as epidermis, trachea and gut, for organizing morphogenesis and protection of insects. Recently, we reported that cuticle proteins and chitin are involved in ECM formation. However, molecular mechanisms that control assembly, maturation and replacement of the ECM and its components are not well known. Here we investigated the poorly described glyco-18-domain hydrolase family in Drosophila and identified the Chitinases (Chts) and imaginal-disc-growth-factors (Idgfs) that are essential for larval and adult molting. We demonstrate that Cht and idgf depletion results in deformed cuticles, larval and adult molting defects, and insufficient protection against wounding and bacterial infection, which altogether leads to early lethality. We show that Cht2/Cht5/Cht7/Cht9/Cht12 and idgf1/idgf3/idgf4/idgf5/idgf6 are needed for organizing proteins and chitin-matrix at the apical cell surface. Our data indicate that normal ECM formation requires Chts, which potentially hydrolyze chitin-polymers. We further suggest that the non-enzymatic idgfs act as structural proteins to maintain the ECM scaffold against chitinolytic degradation. Conservation of Chts and Idgfs proposes analogous roles in ECM dynamics across the insect taxa, indicating that Chts/Idgfs are new targets for species specific pest control. PMID:26838602

  19. Equilibrium heat-induced denaturation of chitinase 40 from Streptomyces thermoviolaceus.

    PubMed

    Pyrpassopoulos, Serapion; Vlassi, Metaxia; Tsortos, Achilleas; Papanikolau, Yannis; Petratos, Kyriacos; Vorgias, Constantinos E; Nounesis, George

    2006-08-01

    High-precision differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to study the thermal unfolding of chitinase 40 (Chi40) from Streptomyces thermoviolaceus. Chi40 belongs to family 18 of glycosyl hydrolase superfamily bearing a catalytic domain with a "TIM barrel"-like fold, which exhibits deviations from the (beta/alpha)8 fold. The thermal unfolding is reversible at pH = 8.0 and 9.0. The denatured state is characterized by extensive structural changes with respect to the native. The process is characterized by slow relaxation kinetics. Even slower refolding rates are recorded upon cooling. It is shown that the denaturation calorimetric data obtained at slow heating rate (0.17 K/min) are in excellent agreement with equilibrium data obtained by extrapolation of the experimental results to zero scanning rate. Analysis of the DSC results reveals that the experimental data can be successfully fitted using either a non-two-state sequential model involving one equilibrium intermediate, or an independent transitions model involving the unfolding of two Chi40 energetic domains to intermediate states. The stability of the native state with respect to the final denatured state is estimated, deltaG = 24.0 kcal/mol at 25 degrees C. The thermal results are in agreement with previous findings from chemical denaturation studies of a wide variety of (beta/alpha)8 barrel proteins, that their unfolding is a non-two-state process, always involving at least one unfolding intermediate. PMID:16685709

  20. Expression of a rice chitinase gene in transgenic banana ('Gros Michel', AAA genome group) confers resistance to black leaf streak disease.

    PubMed

    Kovács, Gabriella; Sági, László; Jacon, Géraldine; Arinaitwe, Geofrey; Busogoro, Jean-Pierre; Thiry, Els; Strosse, Hannelore; Swennen, Rony; Remy, Serge

    2013-02-01

    Transgenic banana (Musa acuminata 'Gros Michel') integrating either of two rice chitinase genes was generated and its resistance to Black Leaf Streak disease caused by the fungus Mycosphaerella fijiensis was tested using a leaf disk bioassay. PCR screening indicated the presence of the hpt selectable marker gene in more than 90 % of the lines tested, whereas more than three quarters of the lines contained the linked rice chitinase gene resulting in a co-transformation frequency of at least 71.4 %. Further, a unique stable integration of the transgenes in each line revealed some false negative PCR results and the expected co-transformation frequency of 100 %. The transgene insert number per line ranged from 1 to 5 and single transgene insert lines (25 % of all) were identified. Considerable delay in disease development (up to 63 days post-incoculation) over a monitoring period of 108 days occurred in nine lines with extracellularly targeted chitinase out of 17 transgenic lines tested and their necrotic leaf area decreased by 73-94 % compared to the untransformed susceptible control line. Finally, correlation between symptom development and rice chitinase expression was confirmed in two lines by Western analysis. The potential of rice chitinase genes to enhance resistance against M. fijiensis in banana was demonstrated as well as the usefulness of the leaf disk bioassay for early disease screening in transgenic banana lines. PMID:22791138

  1. Evidence of chitinase activity within necrotic enteritis-associated subtypes of Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    C. perfringens (Cp) is associated with the necrotic gastrointestinal condition known as necrotic enteritis (NE) in the chicken. rep-PCR subtyping identified subtypes of Cp from the gastrointestinal tracts of broiler chickens afflicted with NE that were distinguished from strains from environmental,...

  2. The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites.

    PubMed

    Reithner, Barbara; Brunner, Kurt; Schuhmacher, Rainer; Peissl, Isabel; Seidl, Verena; Krska, Rudolf; Zeilinger, Susanne

    2005-09-01

    Trichoderma mycoparasitism includes recognition, attack, overgrowth and lysis of the host fungus accompanied by morphological changes and secretion of hydrolytic enzymes and antibiotics. Studying the underlying signal transduction pathways, the tga1 gene encoding a Galpha subunit of Trichoderma atroviride P1 was analysed. A Deltatga1 mutant showed continuous sporulation and elevated internal steady-state cAMP levels. tga1 gene deletion resulted in a complete loss of mycoparasitic overgrowth and lysis of Rhizoctonia solani, Botrytis cinerea, and Sclerotinia sclerotiorum during direct confrontation, although infection structure formation was unaffected. The reduced mycoparasitic abilities were reflected by strongly decreased chitinase activities and reduced nag1 and ech42 gene transcription. Furthermore, production of 6-pentyl-alpha-pyrone and of metabolites with sesquiterpene structure was reduced in the Deltatga1 mutant. Regardless of these deficiencies, the mutant displayed an enhanced growth inhibition of the host fungi by over-producing other low molecular weight antifungal metabolites, suggesting opposite roles of Tga1 in regulating the biosynthesis of different antifungal substances in T. atroviride. PMID:15964222

  3. Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.

    PubMed

    Marangon, Matteo; Sauvage, Francois-Xavier; Waters, Elizabeth J; Vernhet, Aude

    2011-03-23

    Consumers expect white wines to be clear. During the storage of wines, grape proteins can aggregate to form haze. These proteins, particularly chitinases and thaumatin-like proteins (TL-proteins), need to be removed, and this is done through adsorption by bentonite, an effective but inefficient wine-processing step. Alternative processes are sought, but, for them to be successful, an in-depth understanding of the causes of protein hazing is required. This study investigated the role played by ionic strength (I) and sulfate toward the aggregation of TL-proteins and chitinases upon heating. Purified proteins were dissolved in model wine and analyzed by dynamic light scattering (DLS). The effect of I on protein aggregation was investigated within the range from 2 to 500 mM/L. For chitinases, aggregation occurred during heating with I values of 100 and 500 mM/L, depending on the isoform. This aggregation immediately led to the formation of large particles (3 μm, visible haze after cooling). TL-protein aggregation was observed only with I of 500 mM/L; it mainly developed during cooling and led to the formation of finite aggregates (400 nm) that remained invisible. With sulfate in the medium chitinases formed visible haze immediately when heat was applied, whereas TL-proteins aggregated during cooling but not into particles large enough to be visible to the naked eye. The data show that the aggregation mechanisms of TL-proteins and chitinases are different and are influenced by the ionic strength and ionic content of the model wine. Under the conditions used in this study, chitinases were more prone to precipitate and form haze than TL-proteins. PMID:21361294

  4. Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco.

    PubMed Central

    Broglie, K E; Biddle, P; Cressman, R; Broglie, R

    1989-01-01

    Expression of at least two genes from bean encoding the defense-related protein chitinase has been shown previously to be transcriptionally regulated by the phytohormone ethylene. We have determined the complete nucleotide sequence of one of these genes, the CH5B gene, which resides on a 4.7-kilobase fragment of bean genomic DNA. The structural gene consists of a single open reading frame and encodes the 301 amino acids of the mature protein and a 26-amino acid signal peptide. The CH5B gene has been introduced into tobacco plants using Agrobacterium Ti-plasmid vectors. Little or no expression of the bean gene was observed when transgenic tobacco plants were grown in air; however, exposure of these plants to an atmosphere containing 50 parts per million ethylene resulted in an approximately 20-fold to 50-fold increase in the level of the bean chitinase mRNA. Ethylene-dependent expression of a chimeric gene consisting of 1.6 kilobases of 5'-flanking DNA derived from the CH5B gene fused to the coding sequence of beta-glucuronidase indicates that this region of the CH5B gene is sufficient for ethylene-regulated expression. Deletion analysis of the CH5B promoter region has allowed us to localize these DNA sequences to within a 228-base pair region situated between -422 and -195 upstream of the transcriptional start site. This region is characterized by two short DNA sequences that are exactly conserved in a second ethylene-regulated bean chitinase gene. PMID:2535512

  5. Dual silencing of long and short Amblyomma americanum acidic chitinase forms weakens the tick cement cone stability

    PubMed Central

    Kim, Tae K.; Curran, Janet; Mulenga, Albert

    2014-01-01

    This study demonstrates that Amblyomma americanum (Aam) constitutively and ubiquitously expresses the long (L) and short (S) putative acidic chitinases (Ach) that are distinguished by a 210 base pair (bp) deletion in AamAch-S. Full-length AamAch-L and AamAch-S cDNA are 1959 and 1718 bp long, containing 1332 and 1104 bp open reading frames that code for 443 and 367 amino acid residues proteins with the former predicted to be extracellular and the latter intracellular. Both AamAch-L and AamAch-S mRNA are expressed in multiple organs as revealed by qualitative RT-PCR analysis. Furthermore, quantitative reverse transcription polymerase chain reaction analysis revealed that AamAch-L mRNA was downregulated in the mid-gut, but was unchanged in the salivary gland and in other organs in response to feeding. Of significant interest, AamAch-L and/or AamAch-S functions are probably associated with formation and/or maintenance of stability of A. americanum tick cement cone. Dual RNA interference silencing of AamAch-L and/or AamAch-S mRNA caused ticks to loosely attach onto host skin as suggested by bleeding around tick mouthparts and ticks detaching off host skin with a light touch. AamAch-L may apparently encode an inactive chitinase as indicated by Pichia pastoris-expressed recombinant AamAch-L failing to hydrolyse chitinase substrates. Unpublished related work in our laboratory, and published work by others that found AamAch-L in tick saliva, suggest that native AamAch-L is a non-specific immunoglobulin binding tick saliva protein in that rAamAch-L non-specifically bound rabbit, bovine and chicken non-immune sera. We discuss findings in this study with reference to advancing knowledge on tick feeding physiology. PMID:25189365

  6. Transcriptional Regulation of a Chitinase Gene by 20-Hydroxyecdysone and Starvation in the Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    Yang, Wen-Jia; Xu, Kang-Kang; Zhang, Rui-Ying; Dou, Wei; Wang, Jin-Jun

    2013-01-01

    Insect chitinases are hydrolytic enzymes that are required for the degradation of glycosidic bonds of chitin. In this study, we identified and characterized a full-length cDNA of the chitinase gene (BdCht2) in the oriental fruit fly, Bactrocera dorsalis. The cDNA contains an open reading frame (ORF) of 1449 bp that encodes 483 amino acid residues and 126- and 296-bp non-coding regions at the 5′- and 3′-ends, respectively. The BdCht2 genome has four exons and three introns. The predicted molecular mass of the deduced BdCht2 is approximately 54.3 kDa, with an isoelectric point of 5.97. The 977 bp 5′ flanking region was identified and the transcription factor binding sites were predicted. Bioinformatic analyses showed that the deduced amino acid sequence of BdCht2 had 34%–66% identity to that of chitinases identified in other insect species. Quantitative real-time PCR (qPCR) analyses indicated that BdCht2 was mainly expressed during the larval-pupal and pupal-adult transitions. The tissue-specific expression showed that the highest expression was in the integument, followed by the fat body and other tissues. Moreover, the expression of BdCht2 was upregulated significantly upon 20-hydroxyecdysone (20E) at different dose injections after 8 h compared to that of the control. Starvation also increased the expression of BdCht2 in the third-instar larvae and was suppressed again by re-feeding the insects. These results suggest that BdCht2 plays an important role in the molting process of B. dorsalis larvae and can be regulated by 20E. PMID:24113584

  7. Application of the effects of ionic strength reducing agents in the purification and crystallization of chitinase A.

    PubMed

    Papanikolau, Yannis; Petratos, Kyriacos

    2002-10-01

    The effects of ionic strength reducing agents may find a large number of applications. Based on these effects, we have redesigned the purification scheme of Chitinase A (ChiA) from Serratia marcescen. This scheme led to reproducibly crystallizable enzyme in both salting-in and salting-out conditions, which are presented here. Herein, we demonstrate some experimental applications of the ionic strength reducing agents theory and, in parallel, provide further evidence of the theory's correctness. Finally, we report a new crystal form produced recently in salting-in crystallization experiments. This form may allow the co-crystallization of ChiA mutants with longer substrates. PMID:12351868

  8. Chitosan leads to downregulation of YKL-40 and inflammasome activation in human macrophages.

    PubMed

    Gudmundsdottir, Steinunn; Lieder, Ramona; Sigurjonsson, Olafur E; Petersen, Petur H

    2015-08-01

    Chitosan, the deacetylated derivative of chitin, is used as biomaterial in diverse settings. It is also found on pathogens and can be proinflammatory. Shorter derivatives of chitosan can be generated chemically or enzymatically, chitosan oligosaccharides (ChOS). There is variation in the chemical composition of ChOS, including size distribution, but in general, they have been described as inert or anti-inflammatory. Active human chitinases can cleave chitin and chitosan, while inactive chitinases bind both but do not cleave. Both active and inactive chitinases have important roles in the immune response. The inactive chitinase YKL-40 is expressed highly during inflammation and has been proposed as a marker of poor prognosis. YKL-40 acts as a negative regulator of the inflammasome and as a positive regulator of angiogenesis. Levels of YKL-40 can therefore regulate levels of inflammation, the extent of angiogenesis, and the process of inflammation resolution. This study shows that chitosan leads to reduced secretion of YKL-40 by primary human macrophages and that this is concomitant with inflammasome activation. This was most pronounced with a highly deacetylated ChOS. No effect on the secretion of the active chitinase Chit-1 was detected. Smaller and more acetylated ChOS did not affect YKL-40 levels nor inflammasome activation. We conclude that this effect on the levels of YKL-40 is a part of the proinflammatory mechanisms of chitosan and its derivatives. PMID:25684555

  9. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin.

    PubMed Central

    Watanabe, Takeshi; Ariga, Yumiko; Sato, Urara; Toratani, Tadayuki; Hashimoto, Masayuki; Nikaidou, Naoki; Kezuka, Yuichiro; Nonaka, Takamasa; Sugiyama, Junji

    2003-01-01

    Bacillus circulans chitinase A1 (ChiA1) has a deep substrate-binding cleft on top of its (beta/alpha)8-barrel catalytic domain and an interaction between the aromatic residues in this cleft and bound oligosaccharide has been suggested. To study the roles of these aromatic residues, especially in crystalline-chitin hydrolysis, site-directed mutagenesis of these residues was carried out. Y56A and W53A mutations at subsites -5 and -3, respectively, selectively decreased the hydrolysing activity against highly crystalline beta-chitin. W164A and W285A mutations at subsites +1 and +2, respectively, decreased the hydrolysing activity against crystalline beta-chitin and colloidal chitin, but enhanced the activities against soluble substrates. These mutations increased the K(m)-value when reduced (GlcNAc)5 (where GlcNAc is N -acetylglucosamine) was used as the substrate, but decreased substrate inhibition observed with wild-type ChiA1 at higher concentrations of this substrate. In contrast with the selective effect of the other mutations, mutations of W433 and Y279 at subsite -1 decreased the hydrolysing activity drastically against all substrates and reduced the kcat-value, measured with 4-methylumbelliferyl chitotrioside to 0.022% and 0.59% respectively. From these observations, it was concluded that residues Y56 and W53 are only essential for crystalline-chitin hydrolysis. W164 and W285 are very important for crystalline-chitin hydrolysis and also participate in hydrolysis of other substrates. W433 and Y279 are both essential for catalytic reaction as predicted from the structure. PMID:12930197

  10. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    PubMed

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera. PMID:26659592

  11. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton

    PubMed Central

    Xu, Jun; Xu, Xiaoyang; Tian, Liangliang; Wang, Guilin; Zhang, Xueying; Wang, Xinyu; Guo, Wangzhen

    2016-01-01

    Verticillium dahliae, a destructive and soil-borne fungal pathogen, causes massive losses in cotton yields. However, the resistance mechanism to V. dahilae in cotton is still poorly understood. Accumulating evidence indicates that chitinases are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, to date, the chitinase genes (Chis) have not been systematically analyzed and effectively utilized in cotton. Here, we identified 47, 49, 92, and 116 Chis from four sequenced cotton species, diploid Gossypium raimondii (D5), G. arboreum (A2), tetraploid G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3–79 (AD2), respectively. The orthologous genes were not one-to-one correspondence in the diploid and tetraploid cotton species, implying changes in the number of Chis in different cotton species during the evolution of Gossypium. Phylogenetic classification indicated that these Chis could be classified into six groups, with distinguishable structural characteristics. The expression patterns of Chis indicated their various expressions in different organs and tissues, and in the V. dahliae response. Silencing of Chi23, Chi32, or Chi47 in cotton significantly impaired the resistance to V. dahliae, suggesting these genes might act as positive regulators in disease resistance to V. dahliae. PMID:27354165

  12. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases.

    PubMed

    Liu, Zhaohui; Gao, Yuanyuan; Kim, Yong Min; Faris, Justin D; Shelver, Weilin L; de Wit, Pierre J G M; Xu, Steven S; Friesen, Timothy L

    2016-08-01

    SnTox1 induces programmed cell death and the up-regulation of pathogenesis-related genes including chitinases. Additionally, SnTox1 has structural homology to several plant chitin-binding proteins. Therefore, we evaluated SnTox1 for chitin binding and localization. We transformed an avirulent strain of Parastagonospora nodorum as well as three nonpathogens of wheat (Triticum aestivum), including a necrotrophic pathogen of barley, a hemibiotrophic pathogen of sugar beet and a saprotroph, to evaluate the role of SnTox1 in infection and in protection from wheat chitinases. SnTox1 bound chitin and an SnTox1-green fluorescent fusion protein localized to the mycelial cell wall. Purified SnTox1 induced necrosis in the absence of the pathogen when sprayed on the leaf surface and appeared to remain on the leaf surface while inducing both epidermal and mesophyll cell death. SnTox1 protected the different fungi from chitinase degradation. SnTox1 was sufficient to change the host range of a necrotrophic pathogen but not a hemibiotroph or saprotroph. Collectively, this work shows that SnTox1 probably interacts with a receptor on the outside of the cell to induce cell death to acquire nutrients, but SnTox1 accomplishes a second role in that it protects against one aspect of the defense response, namely the effects of wheat chitinases. PMID:27041151

  13. Molecular characterisation and functional analysis of LsChi2, a chitinase found in the salmon louse (Lepeophtheirus salmonis salmonis, Krøyer 1838).

    PubMed

    Eichner, Christiane; Harasimczuk, Ewa; Nilsen, Frank; Grotmol, Sindre; Dalvin, Sussie

    2015-01-01

    The salmon louse (Lepeophtheirus salmonis spp.) is an economically important parasite on Atlantic salmon reared in aquaculture globally. Production and degradation of chitin, a major component of the exoskeleton, is the target of some pesticides (Di/Teflubenzuron) used in management of lice on farmed fish. These chemicals inhibit molting of the salmon louse leading to the death of the parasite. We found three chitinases (LsChi1, LsChi2 and LsChi4) in the salmon louse genome. Sequence analysis and phylogeny showed that they belong to the GH18 type of chitinase group and show high sequence similarity to chitinases found in other crustaceans and in insects. Expression patterns were different for all three chitinases suggesting different functions during louse development. Furthermore, the function of LsChi2 was further explored through the use of RNA interference and infection trials. Copepodids with knock down of LsChi2 transcripts were deformed and showed a highly reduced infection success. PMID:25643862

  14. Glucanases and Chitinases as Causal Agents in the Protection of Acacia Extrafloral Nectar from Infestation by Phytopathogens1[W][OA

    PubMed Central

    González-Teuber, Marcia; Pozo, María J.; Muck, Alexander; Svatos, Ales; Adame-Álvarez, Rosa M.; Heil, Martin

    2010-01-01

    Nectars are rich in primary metabolites and attract mutualistic animals, which serve as pollinators or as an indirect defense against herbivores. Their chemical composition makes nectars prone to microbial infestation. As protective strategy, floral nectar of ornamental tobacco (Nicotiana langsdorffii × Nicotiana sanderae) contains “nectarins,” proteins producing reactive oxygen species such as hydrogen peroxide. By contrast, pathogenesis-related (PR) proteins were detected in Acacia extrafloral nectar (EFN), which is secreted in the context of defensive ant-plant mutualisms. We investigated whether these PR proteins protect EFN from phytopathogens. Five sympatric species (Acacia cornigera, A. hindsii, A. collinsii, A. farnesiana, and Prosopis juliflora) were compared that differ in their ant-plant mutualism. EFN of myrmecophytes, which are obligate ant-plants that secrete EFN constitutively to nourish specialized ant inhabitants, significantly inhibited the growth of four out of six tested phytopathogenic microorganisms. By contrast, EFN of nonmyrmecophytes, which is secreted only transiently in response to herbivory, did not exhibit a detectable inhibitory activity. Combining two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with nanoflow liquid chromatography-tandem mass spectrometry analysis confirmed that PR proteins represented over 90% of all proteins in myrmecophyte EFN. The inhibition of microbial growth was exerted by the protein fraction, but not the small metabolites of this EFN, and disappeared when nectar was heated. In-gel assays demonstrated the activity of acidic and basic chitinases in all EFNs, whereas glucanases were detected only in EFN of myrmecophytes. Our results demonstrate that PR proteins causally underlie the protection of Acacia EFN from microorganisms and that acidic and basic glucanases likely represent the most important prerequisite in this defensive function. PMID:20023149

  15. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design.

    PubMed

    Segura-Cabrera, Aldo; Bocanegra-García, Virgilio; Lizarazo-Ortega, Cristian; Guo, Xianwu; Correa-Basurto, José; Rodríguez-Pérez, Mario A

    2011-12-01

    Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan(®) (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of

  16. Chitinase 3-Like 1 (Chil1) Regulates Survival and Macrophage-Mediated Interleukin-1β and Tumor Necrosis Factor Alpha during Pseudomonas aeruginosa Pneumonia.

    PubMed

    Marion, Chad R; Wang, Jianmiao; Sharma, Lokesh; Losier, Ashley; Lui, Wei; Andrews, Nathaniel; Elias, Jack A; Kazmierczak, Barbara I; Roy, Craig R; Dela Cruz, Charles S

    2016-07-01

    Pseudomonas aeruginosa causes hospital-acquired pneumonia and is associated with high mortality. An effective response to such an infection includes efficient clearance of pathogenic organisms while limiting collateral damage from the host inflammatory response, known as host resistance and host tolerance, respectively. P. aeruginosa expresses a type III secretion system (T3SS) needle complex that induces NLRC4 (NOD-like receptor C4) activation, interleukin-1β (IL-1β) production, and host tissue damage. Chitinase 3-like-1 (Chil1) is expressed during infection and binds to its receptor, IL-13 receptor α2 (IL-13Rα2), to regulate the pathogen-host response during Streptococcus pneumoniae infection, but the role Chil1 plays in balancing the host resistance and host tolerance during P. aeruginosa pneumonia is not known. We conducted experiments using C57BL/6 mice with or without a genetic deficiency of Chil1 and demonstrated that Chil1-deficient mice succumb to P. aeruginosa infection more rapidly than the wild type (WT). The decreased survival time in infected Chil1-deficient mice is associated with more neutrophils recruited to the airways, more lung parenchymal damage, and increased pulmonary consolidation while maintaining equivalent bacterial killing compared to WT mice. Infected Chil1-deficient mice and bone marrow-derived macrophages (BMDMs) from Chil1-deficient mice have increased production of tumor necrosis factor alpha (TNF-α) and IL-1β compared to infected WT mice and macrophages. Infection of Chil1-deficient BMDMs with non-NLRC4-triggering P. aeruginosa, which is deficient in the T3SS needle complex, did not alter the excessive IL-1β production compared to BMDMs from WT mice. The addition of recombinant Chil1 decreases the excessive IL-1β production but only partially rescues stimulated BMDMs from IL-13Rα2-deficient mice. Our data provide mechanistic insights into how Chil1 regulates P. aeruginosa-induced host responses. PMID:27141083

  17. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa

    PubMed Central

    Chakraborty, Sandeep; Nascimento, Rafael; Zaini, Paulo A.; Gouran, Hossein; Rao, Basuthkar J.; Goulart, Luiz R.

    2016-01-01

    Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set. PMID:27257535

  18. The Vibrio cholerae Extracellular Chitinase ChiA2 Is Important for Survival and Pathogenesis in the Host Intestine

    PubMed Central

    Mondal, Moumita; Nag, Dhrubajyoti; Koley, Hemanta; Saha, Dhira Rani; Chatterjee, Nabendu Sekhar

    2014-01-01

    In aquatic environments, Vibrio cholerae colonizes mainly on the chitinous surface of copepods and utilizes chitin as the sole carbon and nitrogen source. Of the two extracellular chitinases essential for chitin utilization, the expression of chiA2 is maximally up-regulated in host intestine. Recent studies indicate that several bacterial chitinases may be involved in host pathogenesis. However, the role of V. cholerae chitinases in host infection is not yet known. In this study, we provide evidence to show that ChiA2 is important for V. cholerae survival in intestine as well as in pathogenesis. We demonstrate that ChiA2 de-glycosylates mucin and releases reducing sugars like GlcNAc and its oligomers. Deglycosylation of mucin corroborated with reduced uptake of alcian blue stain by ChiA2 treated mucin. Next, we show that V. cholerae could utilize mucin as a nutrient source. In comparison to the wild type strain, ΔchiA2 mutant was 60-fold less efficient in growth in mucin supplemented minimal media and was also ∼6-fold less competent to survive when grown in the presence of mucin-secreting human intestinal HT29 epithelial cells. Similar results were also obtained when the strains were infected in mice intestine. Infection with the ΔchiA2 mutant caused ∼50-fold less fluid accumulation in infant mice as well as in rabbit ileal loop compared to the wild type strain. To see if the difference in survival of the ΔchiA2 mutant and wild type V. cholerae was due to reduced adhesion of the mutant, we monitored binding of the strains on HT29 cells. The initial binding of the wild type and mutant strain was similar. Collectively these data suggest that ChiA2 secreted by V. cholerae in the intestine hydrolyzed intestinal mucin to release GlcNAc, and the released sugar is successfully utilized by V. cholerae for growth and survival in the host intestine. PMID:25244128

  19. Salicylic Acid and Ethylene Pathways Are Differentially Activated in Melon Cotyledons by Active or Heat-Denatured Cellulase from Trichoderma longibrachiatum

    PubMed Central

    Martinez, Christelle; Blanc, Frédéric; Le Claire, Emilie; Besnard, Olivier; Nicole, Michel; Baccou, Jean-Claude

    2001-01-01

    Infiltration of cellulase (EC 3.2.1.4) from Trichoderma longibrachiatum into melon (Cucumis melo) cotyledons induced several key defense mechanisms and hypersensitive reaction-like symptoms. An oxidative burst was observed 3 hours after treatment and was followed by activation of ethylene and salicylic acid (SA) signaling pathways leading to marked induction of peroxidase and chitinase activities. The treatment of cotyledons by heat-denatured cellulase also led to some induction of peroxidase and chitinase activities, but the oxidative burst and SA production were not observed. Co-infiltration of aminoethoxyvinil-glycine (an ethylene inhibitor) with the active cellulase did not affect the high increase of peroxidase and chitinase activities. In contrast, co-infiltration of aminoethoxyvinil-glycine with the denatured enzyme blocked peroxidase and chitinase activities. Our data suggest that the SA pathway (induced by the cellulase activity) and ethylene pathway (induced by heat-denatured and active protein) together coordinate the activation of defense mechanisms. We found a partial interaction between both signaling pathways since SA caused an inhibition of the ethylene production and a decrease in peroxidase activity when co-infiltrated with denatured cellulase. Treatments with active or denatured cellulase caused a reduction in powdery mildew (Sphaerotheca fuliginea) disease. PMID:11553761

  20. Chitinase 3–like–1 and its receptors in Hermansky-Pudlak syndrome–associated lung disease

    PubMed Central

    Zhou, Yang; He, Chuan Hua; Herzog, Erica L.; Peng, Xueyan; Lee, Chang-Min; Nguyen, Tung H.; Gulati, Mridu; Gochuico, Bernadette R.; Gahl, William A.; Slade, Martin L.; Lee, Chun Geun; Elias, Jack A.

    2015-01-01

    Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3–like–1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3–dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS. PMID:26121745

  1. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis.

    PubMed

    Naumann, Todd A; Wicklow, Donald T

    2010-07-01

    Stenocarpella maydis causes both dry-ear rot and stalk rot of maize. Maize inbred lines have varying levels of resistance to ear rot caused by S. maydis. The genetic basis of resistance appears to rely on multiple genetic factors, none of which are known. The commonly used stiff-stalk inbred line B73 has been shown to be strongly susceptible to ear rot caused by S. maydis. Here, we report that the ChitA protein alloform from B73, ChitA-F, encoded by a known allele of the chiA gene, is susceptible to modification by a protein (Stm-cmp) secreted by S. maydis. We also identify a new allele of chiA (from inbred line LH82) which encodes ChitA-S, an alloform of ChitA that is resistant to Stm-cmp modification. Chitinase zymogram analysis of seed from a commercial field showed the presence of both ChitA alloforms in healthy ears, and showed that ChitA-F but not ChitA-S was modified in ears rotted by S. maydis. The ChitA-F protein was purified from inbred line B73 and ChitA-S from LH82. ChitA-F was modified more efficiently than ChitA-S by S. maydis protein extracts in vitro. The chiA gene from LH82 was cloned and sequenced. It is a novel allele that encodes six polymorphisms relative to the known allele from B73. This is the first demonstration that the susceptibility to modification of a fungal targeted plant chitinase differs among inbred lines. These findings suggest that the LH82 chiA allele may be a specific genetic determinant that contributes to resistance to ear rot caused by S. maydis whereas the B73 allele may contribute to susceptibility. PMID:20528182

  2. Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases

    PubMed Central

    Erban, Tomas; Rybanska, Dagmar; Harant, Karel; Hortova, Bronislava; Hubert, Jan

    2016-01-01

    Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in

  3. Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases.

    PubMed

    Erban, Tomas; Rybanska, Dagmar; Harant, Karel; Hortova, Bronislava; Hubert, Jan

    2016-01-01

    Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in

  4. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize1[OPEN

    PubMed Central

    Alves, Patrick C.M.S.; Gaffoor, Iffa; Acevedo, Flor E.; Peiffer, Michelle; Jin, Shan; Han, Yang; Shakeel, Samina; Felton, Gary W.

    2016-01-01

    The perception of herbivory by plants is known to be triggered by the deposition of insect-derived factors such as saliva and oral secretions, oviposition materials, and even feces. Such insect-derived materials harbor chemical cues that may elicit herbivore and/or pathogen-induced defenses in plants. Several insect-derived molecules that trigger herbivore-induced defenses in plants are known; however, insect-derived molecules suppressing them are largely unknown. In this study, we identified two plant chitinases from fall armyworm (Spodoptera frugiperda) larval frass that suppress herbivore defenses while simultaneously inducing pathogen defenses in maize (Zea mays). Fall armyworm larvae feed in enclosed whorls of maize plants, where frass accumulates over extended periods of time in close proximity to damaged leaf tissue. Our study shows that maize chitinases, Pr4 and Endochitinase A, are induced during herbivory and subsequently deposited on the host with the feces. These plant chitinases mediate the suppression of herbivore-induced defenses, thereby increasing the performance of the insect on the host. Pr4 and Endochitinase A also trigger the antagonistic pathogen defense pathway in maize and suppress fungal pathogen growth on maize leaves. Frass-induced suppression of herbivore defenses by deposition of the plant-derived chitinases Pr4 and Endochitinase A is a unique way an insect can co-opt the plant’s defense proteins for its own benefit. It is also a phenomenon unlike the induction of herbivore defenses by insect oral secretions in most host-herbivore systems. PMID:26979328

  5. Chitinase-Like (CTL) and Cellulose Synthase (CESA) Gene Expression in Gelatinous-Type Cellulosic Walls of Flax (Linum usitatissimum L.) Bast Fibers

    PubMed Central

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K.

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls. PMID:24918577

  6. A DFT study of the unusual substrate-assisted mechanism of Serratia marcescens chitinase B reveals the role of solvent and mutational effect on catalysis.

    PubMed

    Jitonnom, Jitrayut; Sattayanon, Chanchai; Kungwan, Nawee; Hannongbua, Supa

    2015-03-01

    Serratia marcescens chitinase B (SmChiB) catalyzes the hydrolysis of β-1,4-glycosidic bond, via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile. In this paper, the catalytic mechanism of SmChiB has been investigated by using density functional theory. The details of two consecutive steps (glycosylation and deglycosylation), the structures and energetics along the whole catalytic reaction, and the roles of solvent molecules as well as some conserved SmChiB residues (Asp142, Tyr214, Asp215, and Arg294) during catalysis are highlighted. Our calculations show that the formation of the oxazolinium cation intermediate in the glycosylation step was found to be a rate-determining step (with a barrier of 23 kcal/mol), in line with our previous computational studies (Jitonnom et al., 2011, 2014). The solvent water molecules have a significant effect on a catalytic efficiency in the degycosylation step: the catalytic water is essentially placed in a perfect position for nucleophic attack by hydrogen bond network, lowering the barrier height of this step from 11.3 kcal/mol to 2.9 kcal/mol when more water molecules were introduced. Upon the in silico mutations of the four conserved residues, their mutational effects on the relative stability of the reaction intermediates and the computed energetics can be obtained by comparing with the wild-type results. Mutations of Tyr214 to Phe or Ala have shown a profound effect on the relative stability of the oxazolinium intermediate, emphasizing a direct role of this residue in destabilizing the intermediate. In line with the experiment that the D142A mutation leads to almost complete loss of SmChiB activity, this mutation greatly decreases the stability of the intermediate, resulting in a very large increase in the activation barrier up to 50 kcal/mol. The salt-bridges residues (Asp215 and Arg294) were also found to play a role in stabilizing the oxazolinium intermediate

  7. Increased Expression of Chitinase 3-Like 1 in Aorta of Patients with Atherosclerosis and Suppression of Atherosclerosis in Apolipoprotein E-Knockout Mice by Chitinase 3-Like 1 Gene Silencing

    PubMed Central

    Gong, Zushun; Xing, Shanshan; Zheng, Fei; Xing, Qichong

    2014-01-01

    Introduction. The purpose of this study was to investigate the changes of chitinase 3-like 1 (CHI3L1) in the aorta of patients with coronary atherosclerosis and to determine whether inhibition of CHI3L1 by lentivirus-mediated RNA interference could stabilize atherosclerotic plaques in apolipoprotein E-knockout (ApoE−/−) mice. Methods. We collected discarded aortic specimens from patients undergoing coronary artery bypass graft surgery and renal arterial tissues from kidney donors. A lentivirus carrying small interfering RNA targeting the expression of CHI3L1 was constructed. Fifty ApoE−/− mice were divided into control group and CHI3L1 gene silenced group. A constrictive collar was placed around carotid artery to induce plaques formation. Then lentivirus was transfected into carotid plaques. Results. We found that CHI3L1 was overexpressed in aorta of patients with atherosclerosis and its expression was correlated with the atherosclerotic risk factors. After lentivirus transduction, mRNA and protein expression of CHI3L1 were attenuated in carotid plaques, leading to reduced plaque content of lipids and macrophages, and increased plaque content of collagen and smooth muscle cells. Moreover, CHI3L1 gene silencing downregulated the expression of local proinflammatory mediators. Conclusions. CHI3L1 is overexpressed in aorta from patients with atherosclerosis and the lentivirus-mediated CHI3L1 gene silencing could represent a new strategy to inhibit plaques progression. PMID:24729664

  8. Functional characterization of Mammary Gland Protein-40, a chitinase-like glycoprotein expressed during mammary gland apoptosis.

    PubMed

    Anand, Vijay; Jaswal, Shalini; Singh, Surender; Kumar, Sudarshan; Jena, Manoj Kumar; Verma, Arvind Kumar; Yadav, Munna Lal; Janjanam, Jagadeesh; Lotfan, Masoud; Malakar, Dhruba; Dang, Ajay Kumar; Mohanty, Tushar Kumar; Kaushik, Jai Kumar; Mohanty, Ashok Kumar

    2016-02-01

    MGP-40 is a chitinase-like protein which is over expressed during mammary gland involution. However, its physiological function in the mammary gland is poorly understood. In the present investigation, we have reported the functional significance of buffalo specific MGP-40 in the mammary gland by using an in vitro model of the buffalo mammary epithelial cell (BuMEC) line. MGP-40 was highly up regulated in BuMECs in serum starved condition as well as after treatment with prolactin suggesting its role in the stress response. Subsequently, to study the effect of MGP-40 on BuMECs, the cells were transfected with a mammalian expression construct of pCI neo harboring MGP-40 gene. It was observed that over expression of MGP-40 enhanced proliferation of BuMECs and protected the cells from apoptosis under serum free condition. In contrast, MGP-40 attenuated the mitogenic effect of insulin in BuMECs. Besides, over expression of the MGP-40 reduced dome formation, acinar polarization and casein synthesis in BuMECs in the presence of lactogenic hormones, it also induced Stat3 phosphorylation and epithelial to mesenchymal transition (EMT) -like features. Together, our data suggest that MGP-40 is involved in protection of BuMECs under stress conditions, inhibits cellular differentiation and induces EMT-like features. A schematic diagram depicting possible association of MGP-40 in various molecular pathways has been presented. PMID:26659075

  9. Chitinase 3-Like 1 Promotes Candida albicans Killing and Preserves Corneal Structure and Function by Controlling Host Antifungal Responses.

    PubMed

    Gao, Nan; Yu, Fu-Shin X

    2015-10-01

    Chitinase 3-like 1 (CHI3L1) has been shown to play a role in promoting antibacterial responses, decreasing tissue injury, and enhancing pulmonary repair. This study sought to elucidate the role of CHI3L1 in augmenting the corneal innate immune response to Candida albicans infection in an animal model of fungal keratitis. Flagellin applied topically 24 h prior to C. albicans inoculation significantly protected the corneal from C. albicans and induced CHI3L1 expression in C57BL/6 mouse corneas. CHI3L1, however, played a detectable but minor role in flagellin-induced protection. While C. albicans keratitis was more severe in the corneas treated with Chi3l1 small interfering RNA (siRNA), corneas treated with recombinant CHI3L1 before C. albicans inoculation had markedly ameliorated keratitis, reduced fungal load, and decreased polymorphonucleocyte (PMN) infiltration in an interleukin 13 receptor α2 (IL-13Rα2)-dependent manner. CHI3L1 treatment resulted in the induction of the antimicrobial peptides β-defensin 3, CRAMP, and chemokine CXCL10 and its receptor CXCR3 in corneal epithelial cells. Importantly, CHI3L1 administered after C. albicans inoculation also had strong protection against fungal keratitis, suggesting a therapeutic window. This is the first report demonstrating that CHI3L1 is induced during fungal infection, where it acts as an immunomodulator to promote fungal clearance and to regulate antifungal innate immune responses in the cornea. PMID:26238714

  10. CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae

    PubMed Central

    Hammer, Brian K.

    2015-01-01

    The facultative pathogen Vibrio cholerae transitions between its human host and aquatic reservoirs where it colonizes chitinous surfaces. Growth on chitin induces expression of chitin utilization genes, genes involved in DNA uptake by natural transformation, and a type VI secretion system that allows contact-dependent killing of neighboring bacteria. We have previously shown that the transcription factor CytR, thought to primarily regulate the pyrimidine nucleoside scavenging response, is required for natural competence in V. cholerae. Through high-throughput RNA sequencing (RNA-seq), we show that CytR positively regulates the majority of competence genes, the three type VI secretion operons, and the four known or predicted chitinases. We used transcriptional reporters and phenotypic analysis to determine the individual contributions of quorum sensing, which is controlled by the transcription factors HapR and QstR; chitin utilization that is mediated by TfoX; and pyrimidine starvation that is orchestrated by CytR, toward each of these processes. We find that in V. cholerae, CytR is a global regulator of multiple behaviors affecting fitness and adaptability in the environment. PMID:26401962

  11. Exacerbation of Experimental Autoimmune Encephalomyelitis in the Absence of Breast Regression Protein-39/Chitinase 3-like-1

    PubMed Central

    Bonneh-Barkay, Dafna; Wang, Guoji; LaFramboise, William A.; Wiley, Clayton A.; Bissel, Stephanie J.

    2012-01-01

    We previously reported that YKL-40, the human analog of mouse breast regression protein-39 (BRP-39; chitinase 3-like 1), is elevated in the cerebrospinal fluid of patients with a variety of neuroinflammatory conditions, such as multiple sclerosis and traumatic brain injury. YKL-40 expression in the CNS was predominantly associated with reactive astrocytes in the vicinity of inflammatory lesions. Because previous studies have shown that reactive astrocytes play a critical role in limiting immune infiltration in the mouse model of experimental autoimmune encephalomyelitis (EAE), we explored the role of BRP-39 in regulating neuroinflammation in EAE. Using BRP-39-deficient mice (BRP-39−/−), we demonstrate the importance of BRP-39 in modulating the severity of clinical EAE and CNS neuroinflammation. At disease onset, absence of BRP-39 had little effect on clinical disease or lymphocytic infiltrate, but by 14 days post-immunization (dpi), differences in clinical scores were evident. By 28 dpi, BRP-39−/− mice showed more severe and persistent clinical disease than BRP-39+/+ controls. Histopathological evaluation showed that BRP-39−/− mice had more marked lymphocytic and macrophage infiltrates and gliosis vs. BRP-39+/+ mice. These findings support the role of BRP-39 expression in limiting immune cell infiltration into the CNS and offer a new target to modulate neuroinflammation. PMID:23041842

  12. Mining of unexplored habitats for novel chitinases--chiA as a helper gene proxy in metagenomics.

    PubMed

    Cretoiu, Mariana Silvia; Kielak, Anna Maria; Abu Al-Soud, Waleed; Sørensen, Søren J; van Elsas, Jan Dirk

    2012-06-01

    The main objective of this study was to assess the abundance and diversity of chitin-degrading microbial communities in ten terrestrial and aquatic habitats in order to provide guidance to the subsequent exploration of such environments for novel chitinolytic enzymes. A combined protocol which encompassed (1) classical overall enzymatic assays, (2) chiA gene abundance measurement by qPCR, (3) chiA gene pyrosequencing, and (4) chiA gene-based PCR-DGGE was used. The chiA gene pyrosequencing is unprecedented, as it is the first massive parallel sequencing of this gene. The data obtained showed the existence across habitats of core bacterial communities responsible for chitin assimilation irrespective of ecosystem origin. Conversely, there were habitat-specific differences. In addition, a suite of sequences were obtained that are as yet unregistered in the chitinase database. In terms of chiA gene abundance and diversity, typical low-abundance/diversity versus high-abundance/diversity habitats was distinguished. From the combined data, we selected chitin-amended agricultural soil, the rhizosphere of the Arctic plant Oxyria digyna and the freshwater sponge Ephydatia fluviatilis as the most promising habitats for subsequent bioexploration. Thus, the screening strategy used is proposed as a guide for further metagenomics-based exploration of the selected habitats. PMID:22526805

  13. Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize.

    PubMed

    Bravo, Juan Manuel; Campo, Sonia; Murillo, Isabel; Coca, Mária; San Segundo, Blanca

    2003-07-01

    Pathogenesis-related (PR) proteins are plant proteins that are induced in response to pathogen attack. PR proteins are grouped into independent families based on their sequences and properties. The PR-4 family comprises class I and class II chitinases. We have isolated a full-length cDNA encoding a chitinase from maize which shares a high degree of nucleotide and amino acid sequence homology with the class II chitinases of the PR-4 family of PR proteins. Our results indicate that fungal infection, and treatment either with fungal elicitors or with moniliformin, a mycotoxin produced by the fungus Fusarium moniliforme, increase the level of ZmPR4 mRNA. In situ mRNA hybridization analysis in sections obtained from fungus-infected germinating embryos revealed that ZmPR4 mRNA accumulation occurs in those cell types that first establish contact with the pathogen. ZmPR4 mRNA accumulation is also stimulated by treatment with silver nitrate whereas the application of the hormones gibberellic acid or acetylsalicylic acid has no effect. Wounding, or treatment with abscisic acid or methyl jasmonate, results in accumulation of ZmPR4 mRNA in maize leaves. Furthermore, the ZmPR4 protein was expressed in Escherichia coli, purified and used to obtain polyclonal antibodies that specifically recognized ZmPR4 in protein extracts from fungus-infected embryos. Accumulation of ZmPR4 mRNA in fungus-infected maize tissues was accompanied by a significant accumulation of the corresponding protein. The possible implications of these findings as part of the general defence response of maize plants against pathogens are discussed. PMID:13677464

  14. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity.

    PubMed

    Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi

    2016-01-01

    Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. PMID:26316585

  15. Plasma chitinase 3-like 1 is persistently elevated during first month after minimally invasive colorectal cancer resection

    PubMed Central

    Shantha Kumara, H M C; Gaita, David; Miyagaki, Hiromichi; Yan, Xiaohong; Hearth, Sonali AC; Njoh, Linda; Cekic, Vesna; Whelan, Richard L

    2016-01-01

    AIM To assess blood chitinase 3-like 1 (CHi3L1) levels for 2 mo after minimally invasive colorectal resection (MICR) for colorectal cancer (CRC). METHODS CRC patients in an Institutional Review Board approved data/plasma bank who underwent elective MICR for whom preoperative (PreOp), early postoperative (PostOp), and 1 or more late PostOp samples [postoperative day (POD) 7-27] available were included. Plasma CHi3L1 levels (ng/mL) were determined in duplicate by enzyme linked immunosorbent assay. RESULTS PreOp and PostOp plasma sample were available for 80 MICR cancer patients for the study. The median PreOp CHi3L1 level was 56.8 CI: 41.9-78.6 ng/mL (n = 80). Significantly elevated (P < 0.001) median plasma levels (ng/mL) over PreOp levels were detected on POD1 (667.7 CI: 495.7, 771.7; n = 79), POD 3 (132.6 CI: 95.5, 173.7; n = 76), POD7-13 (96.4 CI: 67.7, 136.9; n = 62), POD14-20 (101.4 CI: 80.7, 287.4; n = 22), and POD 21-27 (98.1 CI: 66.8, 137.4; n = 20, P = 0.001). No significant difference in plasma levels were noted on POD27-41. CONCLUSION Plasma CHi3L1 levels were significantly elevated for one month after MICR. Persistently elevated plasma CHi3L1 may support the growth of residual tumor and metastasis. PMID:27574553

  16. The Role of CHI3L1 (Chitinase-3-Like-1) in the Pathogenesis of Infections in Burns in a Mouse Model

    PubMed Central

    Bohr, Stefan; Patel, Suraj J.; Vasko, Radovan; Shen, Keyue; Golberg, Alexander; Berthiaume, Francois; Yarmush, Martin L.

    2015-01-01

    In severe burn injury the unique setting of a depleted, dysfunctional immune system along with a loss of barrier function commonly results in opportunistic infections that eventually proof fatal. Unfortunately, the dynamic sequence of bacterial contamination, colonization and eventually septic invasion with bacteria such as Pseudomonas species is still poorly understood although a limiting factor in clinical decision making. Increasing evidence supports the notion that inhibition of bacterial translocation into the wound site may be an effective alternative to prevent infection. In this context we investigated the role of the mammalian Chitinase-3-Like-1 (CHI3L1) non-enyzmatic protein predominately expressed on epithelial as well as innate immune cells as a potential bacterial-translocation-mediating factor. We show a strong trend that a modulation of chitinase expression is likely to be effective in reducing mortality rates in a mouse model of burn injury with superinfection with the opportunistic PA14 Pseudomonas strain, thus demonstrating possible clinical leverage. PMID:26528713

  17. Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress.

    PubMed

    Wang, Li-Ying; Wang, You-Shao; Cheng, Hao; Zhang, Jing-Ping; Yeok, Foong Swee

    2015-10-01

    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I. PMID:26044931

  18. Electrochemical detection of the disease marker human chitinase-3-like protein 1 by matching antibody-modified gold electrodes as label-free immunosensors.

    PubMed

    Chaocharoen, Wethaka; Suginta, Wipa; Limbut, Warakorn; Ranok, Araya; Numnuam, Apon; Khunkaewla, Panida; Kanatharana, Proespichaya; Thavarungkul, Panote; Schulte, Albert

    2015-02-01

    Tissue inflammation, certain cardiovascular syndromes and the occurrence of some solid tumors are correlated with raised serum concentrations of human chitinase-3-like protein 1 (YKL-40), a mammalian chitinase-like glycoprotein, which has become the subject of current research. Here we report the construction and characterization of an electrochemical platform for label-free immunosensing of YKL-40. Details of the synthesis of YKL-40 and production of anti-YKL-40 immunoglobulin G (IgG) are provided and cross-reactivity tests presented. Polyclonal anti-YKL-40 IgG was immobilized on gold electrodes and the resulting immunosensors were operated in an electrochemical flow system with capacitive signal generation. The strategy offered a wide linear detection range (0.1μg/L to 1mg/L) with correlation coefficients (R(2)) above 0.99 and good sensitivity (12.28±0.27nF/cm(2) per decade of concentration change). Additionally, the detection limit of 0.07±0.01μg/L was well below that of optical enzyme-linked immunosorbent assays (ELISAs), which makes the proposed methodology a promising alternative for YKL-40 related disease studies. PMID:25203453

  19. RIG-like Helicase Regulation of Chitinase 3-like 1 Axis and Pulmonary Metastasis

    PubMed Central

    Ma, Bing; Herzog, Erica L.; Moore, Meagan; Lee, Chang-Min; Na, Sung Hun; Lee, Chun Geun; Elias, Jack A.

    2016-01-01

    Chi3l1 is induced by a variety of cancers where it portends a poor prognosis and plays a key role in the generation of metastasis. However, the mechanisms that Chi3l1 uses to mediate these responses and the pathways that control Chi3l1-induced tumor responses are poorly understood. We characterized the mechanisms that Chi3l1 uses to foster tumor progression and the ability of the RIG-like helicase (RLH) innate immune response to control Chi3l1 elaboration and pulmonary metastasis. Here we demonstrate that RLH activation inhibits tumor induction of Chi3l1 and the expression of receptor IL-13Rα2 and pulmonary metastasis while restoring NK cell accumulation and activation, augmenting the expression of IFN-α/β, chemerin and its receptor ChemR23, p-cofilin, LIMK2 and PTEN and inhibiting BRAF and NLRX1 in a MAVS-dependent manner. These studies demonstrate that Chi3l1 is a multifaceted immune stimulator of tumor progression and metastasis whose elaboration and tissue effects are abrogated by RLH innate immune responses. PMID:27198666

  20. Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and beta-1,3-glucanase genes in a double-gene construct.

    PubMed

    Melander, Margareta; Kamnert, Iréne; Happstadius, Ingrid; Liljeroth, Erland; Bryngelsson, Tomas

    2006-09-01

    A double-gene construct with one chitinase and one beta-1,3-glucanase gene from barley, both driven by enhanced 35S promoters, was transformed into oilseed rape. From six primary transformants expressing both transgenes 10 doubled haploid lines were produced and studied for five generations. The number of inserted copies for both the genes was determined by Southern blotting and real-time PCR with full agreement between the two methods. When copy numbers were analysed in different generations, discrepancies were found, indicating that at least part of the inserted sequences were lost in one of the alleles of some doubled haploids. Chitinase and beta-1,3-glucanase expression was analysed by Western blotting in all five doubled haploid generations. Despite that both the genes were present on the same T-DNA and directed by the same promoter their expression pattern between generations was different. The beta-1,3-glucanase was expressed at high and stable levels in all generations, while the chitinase displayed lower expression that varied between generations. The transgenic plants did not show any major impact on fungal resistance when assayed in greenhouse, although purified beta-1,3-glucanase and chitinase caused retardment of fungal growth in vitro. PMID:16565860

  1. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans.

    PubMed Central

    Chernin, L S; De la Fuente, L; Sobolev, V; Haran, S; Vorgias, C E; Oppenheim, A B; Chet, I

    1997-01-01

    The gene chiA, which codes for endochitinase, was cloned from a soilborne Enterobacter agglomerans. Its complete sequence was determined, and the deduced amino acid sequence of the enzyme designated Chia_Entag yielded an open reading frame coding for 562 amino acids of a 61-kDa precursor protein with a putative leader peptide at its N terminus. The nucleotide and polypeptide sequences of Chia_Entag showed 86.8 and 87.7% identity with the corresponding gene and enzyme, Chia_Serma, of Serratia marcescens, respectively. Homology modeling of Chia_Entag's three-dimensional structure demonstrated that most amino acid substitutions are at solvent-accessible sites. Escherichia coli JM109 carrying the E. agglomerans chiA gene produced and secreted Chia_Entag. The antifungal activity of the secreted endochitinase was demonstrated in vitro by inhibition of Fusarium oxysporum spore germination. The transformed strain inhibited Rhizoctonia solani growth on plates and the root rot disease caused by this fungus in cotton seedlings under greenhouse conditions. PMID:9055404

  2. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea.

    PubMed

    Wu, Qiong; Bai, Linquan; Liu, Weicheng; Li, Yingying; Lu, Caige; Li, Yaqian; Fu, Kehe; Yu, Chuanjin; Chen, Jie

    2013-04-01

    Streptomyces lydicus A01 and Trichoderma harzianum P1 are potential biocontrol agents of fungal diseases in plants. S. lydicus A01 produces natamycin to bind the ergosterol of the fungal cell membrane and inhibits the growth of Botrytis cinerea. T. harzianum P1, on the other hand, features high chitinase activity and decomposes the chitin in the cell wall of B. cinerea. To obtain the synergistic biocontrol effects of chitinase and natamycin on Botrytis cinerea, this study transformed the chit42 gene from T. harzianum P1 to S. lydicus A01. The conjugal transformant (CT) of S. lydicus A01 with the chit42 gene was detected using polymerase chain reaction (PCR). Associated chitinase activity and natamycin production were examined using the 3, 5-dinitrosalicylic acid (DNS) method and ultraviolet spectrophotometry, respectively. The S. lydicus A01-chit42 CT showed substantially higher chitinase activity and natamycin production than its wild type strain (WT). Consequently, the biocontrol effects of S. lydicus A01-chit42 CT on B. cinerea, including inhibition to spore germination and mycelial growth, were highly improved compared with those of the WT. Our research indicates that the biocontrol effect of Streptomyces can be highly improved by transforming the exogenous resistance gene, i.e. chit42 from Trichoderma, which not only enhances the production of antibiotics, but also provides a supplementary function by degrading the cell walls of the pathogens. PMID:23625216

  3. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  4. Anthelmintic activity of Leucaena leucocephala protein extracts on Haemonchus contortus.

    PubMed

    Soares, Alexandra Martins dos Santos; de Araújo, Sandra Alves; Lopes, Suzana Gomes; Costa Junior, Livio Martins

    2015-01-01

    The objective of this study was to evaluate the effects of protein extracts obtained from the plant Leucaena leucocephala on the nematode parasite Haemonchus contortus. The seeds, shell and cotyledon of L. leucocephala were separated and their proteins extracted using a sodium phosphate buffer, and named as TE (total seed extract), SE (shell extract) and CE (cotyledon extract). Soluble protein content, protease, protease inhibitory and chitinase activity assays were performed. Exsheathment inhibition of H. contortus larvae were performed at concentrations of 0.6 mg mL-1, and egg hatch assays were conducted at protein concentrations of 0.8, 0.4, 0.2, 0.1 and 0.05 mg mL-1. The effective concentration for 50% hatching inhibition (EC50) was estimated by probit. Different proportions of soluble proteins, protease and chitinase were found in TE and CE. Protease inhibitory activity was detected in all extracts. The EC50 of the CE and TE extracts were 0.48 and 0.33 mg mL-1, respectively. No ovicidal effects on H. contortus were detected in SE extracts, and none of the protein extracts demonstrated larvicidal effects on H. contortus. We therefore conclude that protein extracts of L. leucocephala had a detrimental effect on nematode eggs, which can be correlated with the high protease and chitinase activity of these extracts. PMID:26689178

  5. Computational analysis of the binding affinities of the natural-product cyclopentapeptides argifin and argadin to chitinase B from Serratia marcescens.

    PubMed

    Gouda, Hiroaki; Yanai, Yuichi; Sugawara, Akihiro; Sunazuka, Toshiaki; Omura, Satoshi; Hirono, Shuichi

    2008-04-01

    Molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method were applied to study the interaction of the natural-product cyclopentapeptide chitinase inhibitors argifin and argadin with chitinase B (ChiB) from Serratia marcescens. Argadin inhibited ChiB with an inhibition constant (K(i)) value of 20 nM, which was three orders of magnitude greater than that of argifin (K(i)=33,000 nM). The MM-PBSA free-energy analysis provided absolute binding free energies of -6.98 and -11.16 kcal/mol for the argifin and argadin complexes, respectively. These estimates were in good agreement with the free energies derived from the experimental K(i) values (-6.36 and -10.92 kcal/mol for the argifin and argadin complexes, respectively). The energetic analysis revealed that the van der Waals and nonpolar solvation energies drove the binding of both argifin and argadin. We found that the binding of argadin gained approximately 12 kcal/mol more van der Waals energy than that of argifin, which was mainly responsible for the difference in binding free energy between argifin and argadin. In particular, W220 and W403 of ChiB were found to contribute to the more favorable van der Waals interaction with argadin. We also designed argifin derivatives with better binding affinity, in which a constituent amino-acid residue of argifin was mutated to one with a bulky side chain. The derivative in which D-Ala of argifin was replaced with D-Trp appeared to possess a binding affinity that was equally potent to that of argadin. PMID:18313305

  6. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses.

    PubMed

    Chen, Peng-Jen; Senthilkumar, Rajendran; Jane, Wann-Neng; He, Yong; Tian, Zhihong; Yeh, Kai-Wun

    2014-05-01

    Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. PMID:24479648

  7. miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting.

    PubMed

    Yang, Meiling; Wang, Yanli; Jiang, Feng; Song, Tianqi; Wang, Huimin; Liu, Qing; Zhang, Jie; Zhang, Jianzhen; Kang, Le

    2016-08-01

    Chitin synthase and chitinase play crucial roles in chitin biosynthesis and degradation during insect molting. Silencing of Dicer-1 results in reduced levels of mature miRNAs and severely blocks molting in the migratory locust. However, the regulatory mechanism of miRNAs in the molting process of locusts has remained elusive. In this study, we found that in chitin metabolism, two crucial enzymes, chitin synthase (CHS) and chitinase (CHT) were regulated by miR-71 and miR-263 during nymph molting. The coding sequence of CHS1 and the 3'-untranslated region of CHT10 contain functional binding sites for miR-71 and miR-263, respectively. miR-71/miR-263 displayed cellular co-localization with their target genes in epidermal cells and directly interacted with CHS1 and CHT10 in the locust integument, respectively. Injections of miR-71 and miR-263 agomirs suppressed the expression of CHS1 and CHT10, which consequently altered chitin production of new and old cuticles and resulted in a molting-defective phenotype in locusts. Unexpectedly, reduced expression of miR-71 and miR-263 increased CHS1 and CHT10 mRNA expression and led to molting defects similar to those induced by miRNA delivery. This study reveals a novel function and balancing modulation pattern of two miRNAs in chitin biosynthesis and degradation, and it provides insight into the underlying molecular mechanisms of the molting process in locusts. PMID:27532544

  8. miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting

    PubMed Central

    Jiang, Feng; Song, Tianqi; Wang, Huimin; Liu, Qing; Zhang, Jie; Zhang, Jianzhen; Kang, Le

    2016-01-01

    Chitin synthase and chitinase play crucial roles in chitin biosynthesis and degradation during insect molting. Silencing of Dicer-1 results in reduced levels of mature miRNAs and severely blocks molting in the migratory locust. However, the regulatory mechanism of miRNAs in the molting process of locusts has remained elusive. In this study, we found that in chitin metabolism, two crucial enzymes, chitin synthase (CHS) and chitinase (CHT) were regulated by miR-71 and miR-263 during nymph molting. The coding sequence of CHS1 and the 3’-untranslated region of CHT10 contain functional binding sites for miR-71 and miR-263, respectively. miR-71/miR-263 displayed cellular co-localization with their target genes in epidermal cells and directly interacted with CHS1 and CHT10 in the locust integument, respectively. Injections of miR-71 and miR-263 agomirs suppressed the expression of CHS1 and CHT10, which consequently altered chitin production of new and old cuticles and resulted in a molting-defective phenotype in locusts. Unexpectedly, reduced expression of miR-71 and miR-263 increased CHS1 and CHT10 mRNA expression and led to molting defects similar to those induced by miRNA delivery. This study reveals a novel function and balancing modulation pattern of two miRNAs in chitin biosynthesis and degradation, and it provides insight into the underlying molecular mechanisms of the molting process in locusts. PMID:27532544

  9. Isolation and Characterization of Trichoderma spp. for Antagonistic Activity Against Root Rot and Foliar Pathogens.

    PubMed

    Kumar, Krishna; Amaresan, N; Bhagat, S; Madhuri, K; Srivastava, R C

    2012-06-01

    Trichoderma, soil-borne filamentous fungi, are capable of parasitising several plant pathogenic fungi. Twelve isolates of Trichoderma spp. isolated from different locations of South Andaman were characterized for their cultural, morphological and antagonistic activity against soil borne and foliar borne pathogens. The sequencing of these isolates showed seven different species. The isolates revealed differential reaction patterns against the test pathogens viz., Sclerotium rolfsii, Colletotrichum gloeosporioides and C. capsici. However, the isolates, TND1, TWN1, TWC1, TGD1 and TSD1 were most effective in percentage inhibition of mycelial growth of test pathogens. Significant chitinase and β-1,3-glucanase activities of all Trichoderma isolates has been recorded in growth medium. T. viride was found with highest chitinase whereas T. harzianum was recorded with highest β-1,3-glucanase activities. PMID:23729873

  10. Identification of two GH18 chitinase family genes and their use as targets for detection of the crayfish-plague oomycete Aphanomyces astaci

    PubMed Central

    2009-01-01

    Background The oomycete Aphanomyces astaci is regarded as the causative agent of crayfish plague and represents an evident hazard for European crayfish species. Native crayfish populations infected with this pathogen suffer up to 100% mortality. The existence of multiple transmission paths necessitates the development of a reliable, robust and efficient test to detect the pathogen. Currently, A. astaci is diagnosed by a PCR-based assay that suffers from cross-reactivity to other species. We developed an alternative closed-tube assay for A. astaci, which achieves robustness through simultaneous amplification of multiple functionally constrained genes. Results Two novel constitutively expressed members of the glycosyl hydrolase (GH18) gene family of chitinases were isolated from the A. astaci strain Gb04. The primary amino acid sequence of these chitinase genes, termed CHI2 and CHI3, is composed of an N-terminal signal peptide directing the post-translational transport of the protein into the extracellular space, the catalytic GH18 domain, a proline-, serine-, and threonine-rich domain and a C-terminal cysteine-rich putative chitin-binding site. The A. astaci mycelium grown in a pepton-glucose medium showed significant temporal changes in steady-state CHI2 and CHI3 mRNA amounts indicating functional constraint. Their different temporal occurrence with maxima at 48 and 24 hours of incubation for CHI2 and CHI3, respectively, is in accordance with the multifunctionality of GH18 family members. To identify A. astaci-specific primer target sites in these novel genes, we determined the partial sequence homologs in the related oomycetes A. frigidophilus, A. invadans, A. helicoides, A. laevis, A. repetans, Achlya racemosa, Leptolegnia caudata, and Saprolegnia parasitica, as well as in the relevant fungi Fusarium solani and Trichosporon cutaneum. An A. astaci-specific primer pair targeting the novel genes CHI2 and CHI3 as well as CHI1 - a third GH18 family member - was

  11. Visualization of enzyme activities inside earthworm pores

    NASA Astrophysics Data System (ADS)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  12. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    PubMed Central

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S.

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  13. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    PubMed

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  14. Expression of CHI3L1 and CHIT1 in Osteoarthritic Rat Cartilage Model. A Morphological Study

    PubMed Central

    Di Rosa, M.; Szychlinska, M.A.; Tibullo, D.; Malaguarnera, L.

    2014-01-01

    Osteoarthritis is a degenerative joint disease, which affects millions of people around the world. It occurs when the protective cartilage at the end of bones wears over time, leading to loss of flexibility of the joint, pain and stiffness. The cause of osteoarthritis is unknown, but its development is associated with different factors, such as metabolic, genetic, mechanical and inflammatory ones. In recent years the biological role of chitinases has been studied in relation to different inflammatory diseases and more in particular the elevated levels of human cartilage glycoprotein 39 (CHI3L1) and chitotriosidase (CHIT1) have been reported in a variety of diseases including chronic inflammation and degenerative disorders. The aim of this study was to investigate, by immunohistochemistry, the distribution of CHI3L1 and CHIT1 in osteoarthritic and normal rat articular cartilage, to discover their potential role in the development of this disease. The hypothesis was that the expression of chitinases could increase in OA disease. Immunohistochemical analysis showed that CHI3L1 and CHIT1 staining was very strong in osteoarthritic cartilage, especially in the superficial areas of the cartilage most exposed to mechanical load, while it was weak or absent in normal cartilage. These findings suggest that these two chitinases could be functionally associated with the development of osteoarthritis and could be used as markers, so in the future they could have a role in the daily clinical practice to stage the severity of the disease. However, the longer-term in vivoand in vitro studies are needed to understand the exact mechanism of these molecules, their receptors and activities on cartilage tissue. PMID:25308850

  15. Pyramiding taro cystatin and fungal chitinase genes driven by a synthetic promoter enhances resistance in tomato to root-knot nematode Meloidogyne incognita.

    PubMed

    Chan, Yuan-Li; He, Yong; Hsiao, Tsen-Tsz; Wang, Chii-Jeng; Tian, Zhihong; Yeh, Kai-Wun

    2015-02-01

    Meloidogyne incognita, one of the major root-knot nematode (RKN) species in agriculture, attacks many plant species, causing severe economic losses. Genetic engineering of plants with defense-responsive genes has been demonstrated to control RKN. These studies, however, focused on controlling RKN at certain growth stages. In the present study, a dual gene overexpression system, utilizing a plant cysteine proteinase inhibitor (CeCPI) and a fungal chitinase (PjCHI-1), was used to transform tomato (Solanum lycopersicum) in order to provide protection from all growth stages of RKN. A synthetic promoter, pMSPOA, containing NOS-like and SP8a elements, was employed to drive the expression of introduced genes. Gall formation and the proportion of female nematodes in the population, as well as effects on the reproduction of RKN, were monitored in both transgenic and control plants. RKN eggs collected from transgenic plants displayed reduced chitin content and retardation in embryogenesis. The results demonstrated that transgenic plants had inhibitory effects on RKN that were superior to plants transformed with a single gene. The pyramiding expression system produced synergistic effects by the two defense-responsive genes, leading to a detrimental effect on all growth stages of RKN. PMID:25575993

  16. C-reactive protein and chitinase 3-like protein 1 as biomarkers of spatial redistribution of retinal blood vessels on digital retinal photography in patients with diabetic retinopathy

    PubMed Central

    Cekić, Sonja; Cvetković, Tatjana; Jovanović, Ivan; Jovanović, Predrag; Pešić, Milica; Babić, Gordana Stanković; Milenković, Svetislav; Risimić, Dijana

    2014-01-01

    The aim of the study was to investigate the correlation between the levels of C-reactive protein (CRP) and chitinase 3-like protein 1 (YKL-40) in blood samples with morpohometric parameters of retinal blood vessels in patients with diabetic retinopathy. Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA). YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy. Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy. PMID:25172979

  17. CHITINASE-LIKE1/POM-POM1 and Its Homolog CTL2 Are Glucan-Interacting Proteins Important for Cellulose Biosynthesis in Arabidopsis[W][OA

    PubMed Central

    Sánchez-Rodríguez, Clara; Bauer, Stefan; Hématy, Kian; Saxe, Friederike; Ibáñez, Ana Belén; Vodermaier, Vera; Konlechner, Cornelia; Sampathkumar, Arun; Rüggeberg, Markus; Aichinger, Ernst; Neumetzler, Lutz; Burgert, Ingo; Somerville, Chris; Hauser, Marie-Theres; Persson, Staffan

    2012-01-01

    Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane–located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils. PMID:22327741

  18. Enzyme activities along a latitudinal transect in Western Siberia

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wild, Birgit; Eloy Alves, Ricardo J.; Gentsch, Norman; Gittel, Antje; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Takriti, Mounir; Richter, Andreas

    2014-05-01

    Decomposition of soil organic matter (SOM) and thus carbon and nutrient cycling in soils is mediated by the activity of extracellular enzymes. The specific activities of these enzymes and their ratios to each other represent the link between the composition of soil organic matter and the nutrient demand of the microbial community. Depending on the difference between microbial nutrient demand and substrate availability, extracellular enzymes can enhance or slow down different nutrient cycles in the soil. We investigated activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase) in the topsoil organic horizon, topsoil mineral horizon and subsoil horizon in seven ecosystems along a 1,500 km-long North-South transect in Western Siberia. The transect included sites in the southern tundra, northern taiga, middle taiga, southern taiga, forest-steppe (in forested patches as well as in adjacent meadows) and Steppe. We found that enzyme patterns varied stronger with soil depth than between ecosystems. Differences between horizons were mainly based on the increasing ratio of oxidative enzymes to hydrolytic enzymes. Differences between sites were more pronounced in topsoil than in subsoil mineral horizons, but did not reflect the north-south transect and the related gradients in temperature and precipitation. The observed differences between sites in topsoil horizons might therefore result from differences in vegetation rather than climatic factors. The decreasing variability in the enzyme pattern with depth might also indicate that the composition of soil organic matter becomes more similar with soil depth, most likely by an increasing proportion of microbial remains compared to plant derived constituents of SOM. This also indicates, that SOM becomes less divers the more it is processed by soil microorganisms. Our findings highlight the importance of soil depth on enzyme

  19. Activity of extracellular enzymes on the marine beach differing in the level of antropopressure.

    PubMed

    Perliński, P; Mudryk, Z J

    2016-03-01

    The level of activity of extracellular enzymes was determined on two transects characterised by different anthropic pressure on a sandy beach in Ustka, the southern coast of the Baltic Sea. Generally, the level of activity of the studied enzymes was higher on the transect characterised by high anthropic pressure. The ranking order of the mean enzyme activity rates in the sand was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > chitinase. Each enzyme had its characteristic horizontal profile of activity. The levels of activity of the studied enzymes were slightly higher in the surface than subsurface sand layer. Extracellular enzymatic activities were strongly influenced by the season. PMID:26911592

  20. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins.

    PubMed

    Peumans, Willy J; Proost, Paul; Swennen, Rony L; Van Damme, Els J M

    2002-10-01

    Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a beta-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas. PMID:12376669

  1. Bacillus thuringiensis subsp. kurstaki HD1 as a factory to synthesize alkali-labile ChiA74∆sp chitinase inclusions, Cry crystals and spores for applied use

    PubMed Central

    2014-01-01

    Background The endochitinase ChiA74 is a soluble secreted enzyme produced by Bacillus thuringiensis that synergizes the entomotoxigenecity of Cry proteins that accumulate as intracellular crystalline inclusion during sporulation. The purpose of this study was to produce alkaline-soluble ChiA74∆sp inclusions in B. thuringiensis, and to determine its effect on Cry crystal production, sporulation and toxicity to an important agronomical insect, Manduca sexta. To this end we deleted the secretion signal peptide-coding sequence of chiA74 (i.e. chiA74∆sp) and expressed it under its native promoter (pEHchiA74∆sp) or strong chimeric sporulation-dependent cytA-p/STAB-SD promoter (pEBchiA74∆sp) in Escherichia coli, acrystalliferous B. thuringiensis (4Q7) and B. thuringiensis HD1. Results Based on mRNA analyses, up to ~9-fold increase in expression of chiA74∆sp was observed using the cytA-p/STAB-SD promoter. ChiA74∆sp (~70 kDa) formed intracellular inclusions that frequently accumulated at the poles of cells. ChiA74∆sp inclusions were dissolved in alkali and reducing conditions, similar to Cry crystals, and retained its activity in a wide range of pH (5 to 9), but showed a drastic reduction (~70%) at pH 10. Chitinase activity of E. coli-pEHchiA74∆sp was ~150 mU/mL, and in E. coli-pEBchiA74∆sp, 250 mU/mL. 4Q7-pEBchiA74∆sp and 4Q7-pEHchiA74∆sp had activities of ~127 mU/mL and ~41 mU/mL, respectively. The endochitinase activity in HD1-pEBchiA74∆sp increased 42x when compared to parental HD1 strain. HD1-pEBchiA74∆sp and HD1 harbored typical bipyramidal Cry inclusions, but crystals in the recombinant were ~30% smaller. Additionally, a 3x increase in the number of viable spores was observed in cultures of the recombinant strain when compared to HD1. Bioassays against first instar larvae of M. sexta with spore-crystals of HD1 or spore-crystal-ChiA74∆sp inclusions of HD1-pEBchiA74∆sp showed LC50s of 67.30 ng/cm2 and 41.45 ng/cm2, respectively

  2. Rhizoxin, orfamide A, and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its activity in biological control of plant diseases and has since been shown to be lethal to certain insects. Among these is the fruit fly Drosophila melanogaster, a well-established model organism for studies evalu...

  3. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  4. Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction

    PubMed Central

    Ni, Xiangyang; Westpheling, Janet

    1997-01-01

    The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression. PMID:9371809

  5. Synthesis of Long-Chain Chitooligosaccharides by a Hypertransglycosylating Processive Endochitinase of Serratia proteamaculans 568

    PubMed Central

    Purushotham, Pallinti

    2012-01-01

    We describe the heterologous expression and characterization of a 407-residue single-domain glycosyl hydrolase family 18 chitinase (SpChiD) from Gram-negative Serratia proteamaculans 568 that has unprecedented catalytic properties. SpChiD was optimally active at pH 6.0 and 40°C, where it showed a Km of 83 mg ml−1, a kcat of 3.9 × 102 h−1, and a kcat/Km of 4.7 h mg−1 ml−1 on colloidal chitin. On chitobiose, the Km, kcat, and kcat/Km were 203 μM, 1.3 × 102 h−1, and 0.62 h−1 μM−1, respectively. Hydrolytic activity on chitooligosaccharides (CHOS) and colloidal chitin indicated that SpChiD was an endo-acting processive enzyme, with the unique ability to convert released chitobiose to N-acetylglucosamine, the major end product. SpChiD showed hyper transglycosylation (TG) with trimer-hexamer CHOS substrates, generating considerable amounts of long-chain CHOS. The TG activity of SpChiD was dependent on both the length and concentration of the oligomeric substrate and also on the enzyme concentration. The length and amount of accumulated TG products increased with increases in the length of the substrate and its concentration and decreased with increases in the enzyme concentration. The SpChiD bound to insoluble and soluble chitin substrates despite the absence of accessory domains. Sequence alignments and structural modeling indicated that SpChiD would have a deep substrate-binding groove lined with aromatic residues, which is characteristic of processive enzymes. SpChiD shows a combination of properties that seems rare among family 18 chitinases and that may resemble the properties of human chitotriosidase. PMID:22685288

  6. Stochastic and nonstochastic post-transcriptional silencing of chitinase and beta-1,3-glucanase genes involves increased RNA turnover-possible role for ribosome-independent RNA degradation.

    PubMed Central

    Holtorf, H; Schöb, H; Kunz, C; Waldvogel, R; Meins, F

    1999-01-01

    Stochastic and nonstochastic post-transcriptional gene silencing (PTGS) in Nicotiana sylvestris plants carrying tobacco class I chitinase (CHN) and beta-1,3-glucanase transgenes differs in incidence, stability, and pattern of expression. Measurements with inhibitors of RNA synthesis (cordycepin, actinomycin D, and alpha-amanitin) showed that both forms of PTGS are associated with increased sequence-specific degradation of transcripts, suggesting that increased RNA turnover may be a general feature of PTGS. The protein synthesis inhibitors cycloheximide and verrucarin A did not inhibit degradation of CHN RNA targeted for PTGS, confirming that PTGS-related RNA degradation does not depend on ongoing protein synthesis. Because verrucarin A, unlike cycloheximide, dissociates mRNA from ribosomes, our results also suggest that ribosome-associated RNA degradation pathways may not be involved in CHN PTGS. PMID:10072405

  7. Treatment with rhDNase in patients with cystic fibrosis alters in-vitro CHIT-1 activity of isolated leucocytes.

    PubMed

    Weckmann, M; Schultheiss, C; Hollaender, A; Bobis, I; Rupp, J; Kopp, M V

    2016-09-01

    Recent data suggest a possible relationship between cystic fibrosis (CF) pharmacotherapy, Aspergillus fumigatus colonization (AC) and/or allergic bronchopulmonary aspergillosis (ABPA). The aim of this study was to determine if anti-fungal defence mechanisms are influenced by CF pharmacotherapy, i.e. if (1) neutrophils form CF and non-CF donors differ in their ability to produce chitotriosidase (CHIT-1); (2) if incubation of isolated neutrophils with azithromycin, salbutamol, prednisolone or rhDNase might influence the CHIT-1 activity; and (3) if NETosis and neutrophil killing efficiency is influenced by rhDNase. Neutrophils were isolated from the blood of CF patients (n = 19; mean age 26·8 years or healthy, non-CF donors (n = 20; 38·7 years) and stimulated with phorbol-12-myristate-13-acetate (PMA), azithromycin, salbutamol, prednisolone or rhDNase. CHIT-1 enzyme activity was measured with a fluorescent substrate. NETosis was induced by PMA and neutrophil killing efficiency was assessed by a hyphae recovery assay. Neutrophil CHIT-1 activity was comparable in the presence or absence of PMA stimulation in both CF and non-CF donors. PMA stimulation and preincubation with rhDNase increased CHIT-1 activity in culture supernatants from non-CF and CF donors. However, this increase was significant in non-CF donors but not in CF patients (P < 0·05). RhDNase reduced the number of NETs in PMA-stimulated neutrophils and decreased the killing efficiency of leucocytes in our in-vitro model. Azithromycin, salbutamol or prednisolone had no effect on CHIT-1 activity. Stimulation of isolated leucocytes with PMA and treatment with rhDNase interfered with anti-fungal defence mechanisms. However, the impact of our findings for treatment in CF patients needs to be proved in a clinical cohort. PMID:27324468

  8. One-pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety.

    PubMed

    Zhang, Jin; Liu, Jia; Ma, Yangmin; Ren, Decheng; Cheng, Pei; Zhao, Jiawen; Zhang, Fan; Yao, Yuan

    2016-05-01

    An efficient one-pot, three-component synthesis of quinazolinone derivatives containing 3-acrylamino motif was carried out using CeO2 nanoparticles as catalyst. Thirty-nine synthesized compounds were obtained with satisfied yield and elucidated by spectroscopic analysis. Four phytopathogenic fungi were chosen to test the antifungal activities by minimum inhibitory concentration (MIC) method. Compounds 4ag, 4bb, 4bc showed broad antifungal activities against at least three fungi, and dramatic effects of substituents on the activities were observed. Docking studies were established to explore the potential antifungal mechanism of quinazolinone derivatives as the chitinase inhibitors, and also verified the importance of the amide moiety. PMID:27040656

  9. Soil zymography - A novel technique for mapping enzyme activity in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Spohn, Marie

    2014-05-01

    The effect plant roots on microbial activity in soil at the millimeter scale is poorly understood. One reason for this is that spatially explicit methods for the study of microbial activity in soil are limited. Here we present a quantitative in situ technique for mapping the distribution of exoenzymes in soil along with some results about the effects of roots on exoenzyme activity in soil. In the first study we showed that both acid and alkaline phosphatase activity were up to 5.4-times larger in the rhizosphere of Lupinus albus than in the bulk soil. While acid phosphatase activity (produced by roots and microorganisms) was closely associated with roots, alkaline phosphatase activity (produced only by microorganisms) was more widely distributed, leading to a 2.5-times larger area of activity of alkaline than of acid phosphatase. These results indicate a spatial differentiation of different ecophysiological groups of organic phosphorus mineralizing organisms in the rhizosphere which might alleviate a potential competition for phosphorus between them. In a second study cellulase, chitinase and phosphatase activities were analyzed in the presence of living Lupinus polyphyllus roots and dead/dying roots (in the same soils 10, 20 and 30 days after cutting the L. polyphyllus shoots). The activity of all three enzymes was 9.0 to 13.9-times higher at the living roots compared to the bulk soil. Microhotspots of cellulase, chitinase and phosphatase activity in the soil were found up to 60 mm away from the living roots. 10 days after shoot cutting, the areas of high activities of cellulase and phosphatase activity were extend up to 55 mm away from the next root, while the extension of the area of chitinase activity did not change significantly. At the root, cellulase and chitinase activity increased first at the root tips after shoot cutting and showed maximal activity 20 days after shoot cutting. The number and activity of microhotspots of chitinase activity was maximal 10

  10. Chitinolytic and chitosanolytic activities from crude cellulase extract produced by A. niger grown on apple pomace through Koji fermentation.

    PubMed

    Dhillon, Gurpreet Singh; Brar, Satinder Kaur; Kaur, Surinder; Valero, Jose R; Verma, Mausam

    2011-12-01

    Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase 79.24+/- 4.22 IU/gram fermented substrate (gfs) and CMCase 124.04+/-7.78 IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase 96.67+/-4.18 IU/gfs and CMCase 146.50+/-11.92 IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of 70.28+/-3.34 IU/gfs and 60.18+/-3.82 to 64.20+/-4.12 IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations. PMID:22210619

  11. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers

    PubMed Central

    Muzzarelli, Riccardo A. A.

    2010-01-01

    amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as “crustacean derivatives”, because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin. PMID:20390107

  12. Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches.

    PubMed

    Di Francesco, Alessandra; Roberti, Roberta; Martini, Camilla; Baraldi, Elena; Mari, Marta

    2015-12-01

    The Aureobasidium pullulans L1 and L8 strains are known as efficient biocontrol agents against several postharvest fungal pathogens. In order to better understand the mechanism of action underneath the antifungal activity of L1 and L8 strains, yeast cell filtrates grown at different times were evaluated in vivo against Monilinia laxa on peach. Lesion diameters on peach fruit were reduced by L1 and L8 culture filtrates of 42.5% and 67% respectively. The ability of these filtrates to inhibit M. laxa conidia germination and germ tube elongation was studied by in vitro assays. The results showed a 70% reduction of conidia germination for both strains while for germ tube elongation, it was 52% and 41% for L1 and L8 culture filtrates respectively. Finally, the activity of cell wall hydrolytic enzymes such as chitinase and glucanase in cell filtrates was analysed and the expression of genes encoding these activities was quantified during yeast growth. From 24h onward, both culture filtrates contained β,1-3,glucanase and. chitinase activities, the most pronounced of which was N-β-acetylglucosaminidase. Gene expression level encoding for these enzymes in L1 and L8 varied according to the strain. These results indicate that L1 and L8 strains culture filtrates retain the yeast antagonistic activity and suggest that the production of hydrolytic enzymes plays an important role in this activity. PMID:26640053

  13. Soil Microbial Activity Provides Insight to Carbon Cycling in Shrub Ecotones of Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Marek, E.; Kashi, N. N.; Chen, J.; Hobbie, E. A.; Schwan, M. R.; Varner, R. K.

    2015-12-01

    Shrubs are expanding in Arctic and sub-Arctic regions due to rising atmospheric temperatures. Microbial activity increases as growing temperatures cause permafrost warming and subsequent thaw, leading to a greater resource of soil nutrients enabling shrub growth. Increased carbon inputs from shrubs is predicted to result in faster carbon turnover by microbial decomposition. Further understanding of microbial activity underneath shrubs could uncover how microbes and soil processes interact to promote shrub expansion and carbon cycling. To address how higher soil carbon input from shrubs influences decomposition, soil samples were taken across a heath, shrub, and forest ecotone gradient at two sites near Abikso, Sweden. Samples were analyzed for soluble carbon and nitrogen, microbial abundance, and microbial activity of chitinase, glucosidase, and phosphatase to reflect organic matter decomposition and availability of nitrogen, carbon, and phosphate respectively. Chitinase activity positively correlated with shrub cover, suggesting microbial demands for nitrogen increase with higher shrub cover. Glucosidase activity negatively correlated with shrub cover and soluble carbon, suggesting decreased microbial demand for carbon as shrub cover and carbon stores increase. Lower glucosidase activity in areas with high carbon input from shrubs implies that microbes are decomposing carbon less readily than carbon is being put into the soil. Increasing soil carbon stores in shrub covered areas can lead to shrubs becoming a net carbon sink and a negative feedback to changing climate.

  14. Active invasion of bacteria into living fungal cells

    PubMed Central

    Moebius, Nadine; Üzüm, Zerrin; Dijksterhuis, Jan; Lackner, Gerald; Hertweck, Christian

    2014-01-01

    The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation. DOI: http://dx.doi.org/10.7554/eLife.03007.001 PMID:25182414

  15. Activity.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents three activities: (1) investigating succession in a schoolground; (2) investigating oak galls; and (3) making sun prints (photographs made without camera or darkroom). Each activity includes a list of materials needed and procedures used. (JN)

  16. Activities.

    ERIC Educational Resources Information Center

    Moody, Mally

    1992-01-01

    A series of four activities are presented to enhance students' abilities to appreciate and use trigonometry as a tool in problem solving. Activities cover problems applying the law of sines, the law of cosines, and matching equivalent trigonometric expressions. A teacher's guide, worksheets, and answers are provided. (MDH)

  17. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection

    PubMed Central

    Reithner, Barbara; Schuhmacher, Rainer; Stoppacher, Norbert; Pucher, Marion; Brunner, Kurt; Zeilinger, Susanne

    2015-01-01

    Trichoderma atroviride is a mycoparasite of a number of plant pathogenic fungi thereby employing morphological changes and secretion of cell wall degrading enzymes and antibiotics. The function of the tmk1 gene encoding a mitogen-activated protein kinase (MAPK) during fungal growth, mycoparasitic interaction, and biocontrol was examined in T. atroviride. Δtmk1 mutants exhibited altered radial growth and conidiation, and displayed de-regulated infection structure formation in the absence of a host-derived signal. In confrontation assays, tmk1 deletion caused reduced mycoparasitic activity although attachment to Rhizoctonia solani and Botrytis cinerea hyphae was comparable to the parental strain. Under chitinase-inducing conditions, nag1 and ech42 transcript levels and extracellular chitinase activities were elevated in a Δtmk1 mutant, whereas upon direct confrontation with R. solani or B. cinerea a host-specific regulation of ech42 transcription was found and nag1 gene transcription was no more inducible over an elevated basal level. Δtmk1 mutants exhibited higher antifungal activity caused by low molecular weight substances, which was reflected by an over-production of 6-pentyl-α-pyrone and peptaibol antibiotics. In biocontrol assays, a Δtmk1 mutant displayed a higher ability to protect bean plants against R. solani. PMID:17509915

  18. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection.

    PubMed

    Reithner, Barbara; Schuhmacher, Rainer; Stoppacher, Norbert; Pucher, Marion; Brunner, Kurt; Zeilinger, Susanne

    2007-11-01

    Trichoderma atroviride is a mycoparasite of a number of plant pathogenic fungi thereby employing morphological changes and secretion of cell wall degrading enzymes and antibiotics. The function of the tmk 1 gene encoding a mitogen-activated protein kinase (MAPK) during fungal growth, mycoparasitic interaction, and biocontrol was examined in T. atroviride. Deltatmk 1 mutants exhibited altered radial growth and conidiation, and displayed de-regulated infection structure formation in the absence of a host-derived signal. In confrontation assays, tmk 1 deletion caused reduced mycoparasitic activity although attachment to Rhizoctonia solani and Botrytis cinerea hyphae was comparable to the parental strain. Under chitinase-inducing conditions, nag 1 and ech 42 transcript levels and extracellular chitinase activities were elevated in a Deltatmk 1 mutant, whereas upon direct confrontation with R. solani or B. cinerea a host-specific regulation of ech 42 transcription was found and nag 1 gene transcription was no more inducible over an elevated basal level. Deltatmk 1 mutants exhibited higher antifungal activity caused by low molecular weight substances, which was reflected by an over-production of 6-pentyl-alpha-pyrone and peptaibol antibiotics. In biocontrol assays, a Deltatmk 1 mutant displayed a higher ability to protect bean plants against R. solani. PMID:17509915

  19. Activities.

    ERIC Educational Resources Information Center

    Kincaid, Charlene; And Others

    1993-01-01

    Presents an activity in which students collect and organize data from a real-world simulation of the scientific concept of half life. Students collect data using a marble sifter, analyze the data using a graphing calculator, and determine an appropriate mathematical model. Includes reproducible worksheets. (MDH)

  20. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    PubMed Central

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1–CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. PMID:25694549

  1. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    NASA Astrophysics Data System (ADS)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  2. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    PubMed Central

    Basurto-Cadena, M. G. L.; Vázquez-Arista, M.; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D. K.; Barboza-Corona, J. E.

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants. PMID:22593682

  3. Interaction of Autographa californica Multiple Nucleopolyhedrovirus Cathepsin Protease Progenitor (proV-CATH) with Insect Baculovirus Chitinase as a Mechanism for proV-CATH Cellular Retention▿†

    PubMed Central

    Hodgson, Jeffrey J.; Arif, Basil M.; Krell, Peter J.

    2011-01-01

    The insect baculovirus chitinase (CHIA) and cathepsin protease (V-CATH) enzymes cause terminal host insect liquefaction, enhancing the dissemination of progeny virions away from the host cadavers. Regulated and delayed cellular release of these host tissue-degrading enzymes ensures that liquefaction starts only after optimal viral replication has occurred. Baculoviral CHIA remains intracellular due to its C-terminal KDEL endoplasmic reticulum (ER) retention motif. However, the mechanism for cellular retention of the inactive V-CATH progenitor (proV-CATH) has not yet been determined. Signal peptide cleavage occurs upon cotranslational ER import of the v-cath-expressed protein, and ER-resident CHIA is needed for the folding of proV-CATH. Although this implies that CHIA and proV-CATH bind each other in the ER, the putative CHIA–proV-CATH interaction has not been experimentally verified. We demonstrate that the amino-terminal 22 amino acids (aa) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) preproV-CATH are responsible for the entry of proV-CATH into the ER. Furthermore, the CHIA–green fluorescent protein (GFP) and proV-CATH-red fluorescent protein (RFP) fusion proteins colocalize in the ER. Using monomeric RFP (mRFP)-based bimolecular fluorescence complementation (BiFC), we determined that CHIA and proV-CATH interact directly with each other in the ER during virus replication. Moreover, reciprocal Ni/His pulldowns of His-tagged proteins confirmed the CHIA–proV-CATH interaction biochemically. The reciprocal copurification of CHIA and proV-CATH suggests a specific CHIA–proV-CATH interaction and corroborates our BiFC data. Deletion of the CHIA KDEL motif allowed for premature CHIA secretion from cells, and proV-CATH was similarly prematurely secreted from cells along with ΔKDEL-CHIA. These data suggest that CHIA and proV-CATH interact directly with each other and that this interaction aids the cellular retention of proV-CATH. PMID:21289117

  4. Glutathione Reaction Products with a Chemical Allergen, Methylene-diphenyl Diisocyanate, Stimulate Alternative Macrophage Activation and Eosinophilic Airway Inflammation

    PubMed Central

    Wisnewski, Adam V.; Liu, Jian; Colangelo, Christopher M.

    2015-01-01

    Isocyanates have been a leading chemical cause of occupational asthma since their utility for generating polyurethane was first recognized over 60 years ago, yet the mechanisms of isocyanate asthma pathogenesis remain unclear. The present study provides in vivo evidence that a GSH mediated pathway underlies asthma-like eosinophilic inflammatory responses to respiratory tract isocyanate exposure. In naïve mice, a mixture of GSH reaction products with the chemical allergen, methylene-diphenyl diisocyanate (MDI), induced innate immune responses, characterized by significantly increased airway levels of Chitinase YM-1 and IL-12/IL-23β (but not α) subunit. However, in mice immunologically sensitized to MDI via prior skin exposure, identical GSH–MDI doses induced substantially greater inflammatory responses, including significantly increased airway eosinophil numbers and mucus production, along with IL-12/IL-23β, chitinases, and other indicators of alternative macrophage activation. The “self”-protein albumin in mouse airway fluid was uniquely modified by GSH–MDI at position 414K, a preferred site of MDI reactivity on human albumin. The 414K–MDI conjugation appears to covalently cross-link GSH to albumin via GSH's NH2-terminus, a unique conformation possibly resulting from cyclized mono(GSH)–MDI or asymmetric (S,N′-linked) bis(GSH)–MDI conjugates. Together, the data support a possible thiol mediated transcarbamoylating mechanism linking MDI exposure to pathogenic eosinophilic inflammatory responses. PMID:25635619

  5. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    PubMed

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression. PMID:26060440

  6. Antifungal and antiviral products of marine organisms.

    PubMed

    Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

    2014-04-01

    Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

  7. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds.

    PubMed

    Ye, X Y; Ng, T B; Tsang, P W; Wang, J

    2001-07-01

    A homodimeric lectin adsorbed on Affi-gel blue gel and CM-Sepharose and possessing a molecular weight of 67 kDa was isolated from red kidney beans. The hemagglutinating activity of this lectin was inhibited by glycoproteins but not by simple sugars. The lectin manifested inhibitory activity on human immunodeficiency virus-1 reverse transcriptase and alpha-glucosidase. The N-terminal sequence of the lectin exhibited some differences from previously reported lectins from Phaseolus vulgaris but showed some similarity to chitinases. It exerted a suppressive effect on growth of the fungal species Fusarium oxysporum, Coprinus comatus, and Rhizoctonia solani. The lectin had low ribonuclease and negligible translation-inhibitory activities. PMID:11732688

  8. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants

    PubMed Central

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10–32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  9. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  10. Burdock fructooligosaccharide induces fungal resistance in postharvest Kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning.

    PubMed

    Sun, Fei; Zhang, Pengying; Guo, Moran; Yu, Wenqian; Chen, Kaoshan

    2013-05-01

    Burdock fructooligosaccharide (BFO) is a natural elicitor from Arcitum lappa. The effects of BFO in controlling postharvest disease in grape, apple, banana, kiwi, citrus, strawberry, and pear were investigated. The disease index, decay percentage, and area under the disease progress curve indicated that BFO has general control effects on postharvest disease of fruits. Kyoho grapes were studied to elucidate the mechanism of BFO in boosting the resistance of grapes to Botrytis cinerea infection. BFO treatment induced upregulation of the npr1, pr1, pal, and sts genes, and inhibited the total phenol content decrease, which activated chitinase and β-1,3-glucanase. These results indicated that the salicylic acid-dependent signalling pathway was induced. The delayed colour change and peroxidase and polyphenoloxidase activity suggested that BFO delayed grape browning. The reduced respiration rate, weight loss, and titratable acidity prolonged the shelf life of postharvest grapes. BFO is a promising elicitor in postharvest disease control. PMID:23265522

  11. Proteome of Soybean Seed Exudates Contains Plant Defense-Related Proteins Active against the Root-Knot Nematode Meloidogyne incognita.

    PubMed

    Rocha, Raquel O; Morais, Janne K S; Oliveira, Jose T A; Oliveira, Hermogenes D; Sousa, Daniele O B; Souza, Carlos Eduardo A; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; de Souza Júnior, José Dijair Antonino; de Sá, Maria F Grossi; Vasconcelos, Ilka M

    2015-06-10

    Several studies have described the effects of seed exudates against microorganisms, but only few of them have investigated the proteins that have defensive activity particularly against nematode parasites. This study focused on the proteins released in the exudates of soybean seeds and evaluated their nematicidal properties against Meloidogyne incognita. A proteomic approach indicated the existence of 63 exuded proteins, including β-1,3-glucanase, chitinase, lectin, trypsin inhibitor, and lipoxygenase, all of which are related to plant defense. The presence of some of these proteins was confirmed by their in vitro activity. The soybean exudates were able to reduce the hatching of nematode eggs and to cause 100% mortality of second-stage juveniles (J2). The pretreatment of J2 with these exudates resulted in a 90% reduction of the gall number in tobacco plants. These findings suggest that the exuded proteins are directly involved in plant defense against soil pathogens, including nematodes, during seed germination. PMID:26034922

  12. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India.

    PubMed

    Sunar, Kiran; Dey, Pannalal; Chakraborty, Usha; Chakraborty, Bishwanath

    2015-01-01

    A total of 18 bacterial isolates were obtained from the rhizosphere of Sechium edule growing in the lower foothills of Darjeeling, India. The bacterial isolates were tested for PGPR traits in vitro such as phosphate solubilization, HCN, siderophore, IAA, chitinase, protease production as well as inhibition of pthytopathogens. Of all the bacterial isolates, one bacterium designated as BRHS/S-73 was found to possess all the tested characters which was identified on the basis of 16S rRNA gene sequence analysis as Bacillus altitudinis and was selected for in vivo studies. A significant improvement in growth measured in terms of increase in root length, shoot length, and increase in root and shoot biomass was observed when seeds of Vigna radiata, Cicer arietinum, and Glycine max were bacterized prior to sowing in field condition. Besides, the bacterium could also solubilize soil phosphate. Apart form growth promotion, root rot disease of Vigna radiata caused by Thanatephorus cucumeris was also significantly reduced by 74% when the bacterium was applied to the rhizosphere prior to pathogen challenge. The biocontrol efficacy of the bacterium was found to be 66.6% even after 30 days of pathogen inoculation. Activities of key defense related enzymes such as phenylalanine ammonia lyase, peroxidase, β-1,3-glucanase, and chitinase in both roots and leaves of treated plants were also enhanced. Results clearly suggest that B. altitudinis (BRHS/S-73) is a potential PGPR which can be used as efficient microorganism for enhancement of plant growth and suppression of fungal disease. PMID:23996212

  13. [Activity of protective proteins in wheat plants treated with chitooligosaccharides with different degrees of acetylation and infection with Bipolaris sorokiniana].

    PubMed

    Iarullina, L G; Kasimova, R I; Akhatova, A R

    2014-01-01

    The influence of chitooligosaccharides (COS) with different degrees of acetylation (DA) on the production of hydrogen peroxide (H2O2) and changes in the level of gene expression of pathogenesis-related (PR) proteins (oxalate oxidase AJ556991.1, peroxidase TC 151917, chitinase AV029935L, proteinase inhibitor EU293132.1) in the roots of the wheat Triticum aestivum L. inoculated with root rot pathogen Bipolaris sorokiniana (Sacc.) Shoenaker was investigated. Differences were detected in plant responses to infection. These differences were due to the pretreatment of COS seeds with differing DA. Our results demonstrated that COS with a DA over 65% more effectively induced accumulation of H2O2 and increased the transcriptional activity of genes of PR-proteins as compared to COS with a DA of 30%. These data suggest an important role for DA in the manifestation of eliciting properties of COS, also in the presence of H2O2. PMID:25707110

  14. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth.

    PubMed

    Jog, Rahul; Pandya, Maharshi; Nareshkumar, G; Rajkumar, Shalini

    2014-04-01

    The application of plant-growth-promoting rhizobacteria (PGPR) at field scale has been hindered by an inadequate understanding of the mechanisms that enhance plant growth, rhizosphere incompetence and the inability of bacterial strains to thrive in different soil types and environmental conditions. Actinobacteria with their sporulation, nutrient cycling, root colonization, bio-control and other plant-growth-promoting activities could be potential field bio-inoculants. We report the isolation of five rhizospheric and two root endophytic actinobacteria from Triticum aestivum (wheat) plants. The cultures exhibited plant-growth-promoting activities, namely phosphate solubilization (1916 mg l(-1)), phytase (0.68 U ml(-1)), chitinase (6.2 U ml(-1)), indole-3-acetic acid (136.5 mg l(-1)) and siderophore (47.4 mg l(-1)) production, as well as utilizing all the rhizospheric sugars under test. Malate (50-55 mmol l(-1)) was estimated in the culture supernatant of the highest phosphate solublizer, Streptomyces mhcr0816. The mechanism of malate overproduction was studied by gene expression and assays of key glyoxalate cycle enzymes - isocitrate dehydrogenase (IDH), isocitrate lyase (ICL) and malate synthase (MS). The significant increase in gene expression (ICL fourfold, MS sixfold) and enzyme activity (ICL fourfold, MS tenfold) of ICL and MS during stationary phase resulted in malate production as indicated by lowered pH (2.9) and HPLC analysis (retention time 13.1 min). Similarly, the secondary metabolites for chitinase-independent biocontrol activity of Streptomyces mhcr0817, as identified by GC-MS and (1)H-NMR spectra, were isoforms of pyrrole derivatives. The inoculation of actinobacterial isolate mhce0811 in T. aestivum (wheat) significantly improved plant growth, biomass (33%) and mineral (Fe, Mn, P) content in non-axenic conditions. Thus the actinobacterial isolates reported here were efficient PGPR possessing significant antifungal activity and may have potential field

  15. Biological activity of phenylpropionic acid isolated from a terrestrial Streptomycetes.

    PubMed

    Narayana, Kolla J P; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra; Krishna, Palakodety S J

    2007-01-01

    The strain ANU 6277 was isolated from laterite soil and identified as Streptomyces sp. closely related to Streptomyces albidoflavus cluster by 16S rRNA analysis. The cultural, morphological and physiological characters of the strain were recorded. The strain exhibited resistance to chloramphenicol, penicillin and streptomycin. It had the ability to produce enzymes such as amylase and chitinase. A bioactive compound was isolated from the strain at stationary phase of culture and identified as 3-phenylpropionic acid (3-PPA) by FT-IR, EI-MS, 1H NMR and 13C NMR spectral studies. It exhibited antimicrobial activity against different bacteria like Bacillus cereus, B. subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, P. flourescens, Staphylococcus aureus and some fungi including Aspergillus flavus, A. niger, Candida albicans, Fusarium oxysporum, F. udum and Penicillium citrinum. The antifungal activity of 3-PPA of the strain was evaluated in in vivo and in vitro conditions against Fusarium udum causing wilt disease in pigeon pea. The compound 3-PPA is an effective antifungal agent when compared to tricyclozole (fungicide) to control wilt caused by F. udum, but it exhibited less antifungal activity than carbendazim. PMID:18062653

  16. Proteins and enzymatic activities in Erbaluce grape berries with different response to the withering process.

    PubMed

    Vincenzi, Simone; Tolin, Serena; Cocolin, Luca; Rantsiou, Kalliopi; Curioni, Andrea; Rolle, Luca

    2012-06-30

    During the off-vine natural withering process of Erbaluce (white) grapes to obtain "Erbaluce Caluso" Passito wine, some berries change in color from green-yellow to blue. This phenomenon appears at different extents in different years and might be related to several parameters, such as temperature and humidity during withering, grape composition and Botrytis cinerea loading. To better understand the mechanism involved in color variation, the metabolic changes corresponding to this event were studied. At the end of the withering process berries with different colors were separated using a reflectance spectrophotometer, obtaining three color classes identified as "green" (L*=40.3, a*=-0.56, b*=15.20), "gold" (L*=37.7, a*=5.01, b*=14.12) and "blue" (L*=28.6, a*=0.89, b*=-0.67). The three groups of berries had different water contents, the blue berries containing about 30% less water than the green ones. Samples were crushed and the juices were analyzed. The juice yield for blue berries was less than 50% of that of the other two classes, confirming their higher dehydration level. Protein extraction from de-seeded berries was carried out using two different protocols, the first involving a treatment with phenol (to remove polyphenolic substances) and the second based on an extraction with a mild detergent (to recover the proteins to be used for enzymatic analyses). No trace of laccase activity was found in any of the samples, although DNA analysis, by quantitative PCR, suggested the presence of B. cinerea infection in the blue grapes. Chitinase activity of the blue berries was only 30% of that of the other two samples, as confirmed also by zymographic analysis on electrophoretic gels. The same was found also for esterase activity, which was lower (of about 85%) in the blue berries, which, in contrast, showed the highest beta-glucosidase activity. The electrophoretic analysis of the protein extracts revealed strong differences among the samples. Compared to the green and

  17. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    PubMed Central

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  18. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    PubMed

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  19. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa

    PubMed Central

    2014-01-01

    Background The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. Results TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. Conclusion To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively. PMID:24920373

  20. Different Effects of Metarhizium anisopliae Strains IMI330189 and IBC200614 on Enzymes Activities and Hemocytes of Locusta migratoria L.

    PubMed Central

    Cao, Guangchun; Jia, Miao; Zhao, Xia; Wang, Lei; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Background Metarhizium is an important class of entomopathogenic fungi in the biocontrol of insects, but its virulence is affected by insect immunity. To clarify the mechanism in virulence of Metarhizium, we compared the immunological differences in Locusta migratoria L. when exposed to two strains of Metarhizium anisopliae (Ma). Results The virulence of Ma IMI330189 was significantly higher than that of Ma IBC200614 to locust, and IMI330189 overcame the hemocytes and began destroying the hemocytes of locust at 72 h after spray, while locust is immune to IBC200614. IMI330189 could overcome the humoral immunity of locust by inhibiting the activities of phenol oxidase (PO), esterases, multi-function oxidases (MFOs) and acetylcholinesterases in locust while increasing the activities of glutathione-S-transferases (GSTs), catalase and aryl-acylamidase (AA). However IBC200614 inhibit the activities of GSTs and AA in locust and increase the activities of MFOs, PO, superoxide dismutase, peroxidase and chitinase in locust. The changes of enzymes activities in period of infection showed that the time period between the 2nd and the 5th day after spray is critical in the pathogenic process. Conclusion These results found the phenomenon that Ma initiatively broke host hemocytes, revealed the correlation between the virulence of Ma and the changes of enzymes activities in host induced by Ma, and clarified the critical period in the infection of Ma. So, these results should provide guidance for the construction of efficient biocontrol Ma strains. PMID:27227835

  1. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas.

    PubMed

    Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Kaushik, Rajeev; Saxena, Anil Kumar

    2016-03-01

    The diversity of culturable, cold-active enzymes producing Bacilli was investigated from three sub-glacial lakes of north western Indian Himalayas. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes Alu I, Msp I, and Hae III led to the clustering of 136 Bacilli into 26, 23, and 22 clusters at 75% similarity index from Chandratal Lake, Dashair Lake, and Pangong Lake, respectively. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 35 Bacilli that could be grouped in seven families viz.: Bacillaceae (48%), Staphylococcaceae (14%), Bacillales incertae sedis (13%), Planococcaceae (12%), Paenibacillaceae (9%), Sporolactobacillaceae (3%), and Carnobacteriaceae (1%), which included twelve different genera Bacillus, Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus, and Virgibacillus. Based on their optimal temperature for growth, 35 Bacilli were grouped as psychrophilic (11 strains), psychrotrophic (17 strains), or psychrotolerant (7 strains), respectively. The representative isolates from each cluster were screened for cold-active enzyme activities. Amylase, β-glucosidase, pectinase, and protease activities at 4 °C were detected in more than 80% of the strains while approximately 40, 31, 23, 14, 11, and 9% of strains possessed cellulase, xylanase, β-galactosidase, laccase, chitinase, and lipase activity, respectively. Among 35 Bacilli, Bacillus amyloliquefaciens, Bacillus marisflavi, Exiguobacterium indicum, Paenibacillus terrae, Pontibacillus sp., Sporosarcina globispora, and Sporosarcina psychrophila were efficient producers of different cold-active enzymes. These cold-adapted Bacilli could play an important role in industrial and agricultural processes. PMID:26933936

  2. [Effect on low-molecular-weight heparin obtained using a chitinolytic complex on the anticoagulant activity of plasma in rabbits and rats].

    PubMed

    Drozd, N N; Tolstenkov, A S; Makarov, V A; Miftakhova, N T; Bannikova, G E; Sukhanova, P P; Varlamov, V P; Vikhoreva, G E

    2007-01-01

    The anticoagulant activity of low-molecular-weight heparin with an average molecular weight of 4.7 kD (LMWH-4.7) has been studied. This derivative was prepared from unfractionated heparin with the help of chitinolytic enzyme complex from Streptomyces kurssanovii. The antithrombin activity of LMWH-4.7 (aIla activity) was 72 +/- 9 IU/mg and the activity with respect to the blood coagulation factor Xa (aXa activity) was 200 +/- 33 IU/mg, which corresponded to an aXa/aIIa ratio of 2.8 (necessary for effective antithrombotic drugs). The aIIa and aXa activity exhibited a dose-dependent variation upon intravenous and subcutaneous injections in rabbits, so that a high aIIa/aXa ratio was retained: 5 min after the intravenous injection of a minimum dose (0.3 mg/kg), this ratio was 2, 7, and for a greater dose (3.0 mg/kg) it reached 3.8. Subcutaneous injections were followed by slow elimination of the anticoagulant within 24 h. LMWH-4.7 upon intraperitoneal injections produced a dose-dependent inhibition of a model thrombosis in rats. Complete inhibition was observed for a dose of 3 mg/kg. Thus, it is possible to obtain active LMW heparin with the help of chitinases. PMID:17523450

  3. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis.

    PubMed Central

    Pardo-López, L.; Muñoz-Garay, C.; Porta, H.; Rodríguez-Almazán, C.; Soberón, M.; Bravo, A.

    2009-01-01

    Bacillus thuringiensis Cry toxins have been widely used in the control of insect pests either as spray products or expressed in transgenic crops. These proteins are pore forming toxins with a complex mechanism of action that involves the sequential interaction with several toxin-receptors. Cry toxins are specific against susceptible larvae and although they are often highly effective, some insect pests are not affected by them or show low susceptibility. In addition, the development of resistance threatens their effectiveness, so strategies to cope with all these problems are necessary. In this review we will discuss and compare the different strategies that have been used to improve insecticidal activity of Cry toxins. The activity of Cry toxins can be enhanced by using additional proteins in the bioassay like serine protease inhibitors, chitinases, Cyt toxins, or a fragment of cadherin receptor containing a toxin-binding site. On the other hand, different modifications performed in the toxin gene such as site directed mutagenesis, introduction of cleavage sites in specific regions of the protein, and deletion of small fragments from the amino-terminal region lead to improved toxicity or overcome resistance, representing interesting alternatives for insect pest control. PMID:18773932

  4. [Effects of forest type on soil organic matter, microbial biomass, and enzyme activities].

    PubMed

    Lu, Shun-bao; Zhou, Xiao-qi; Rui, Yi-chao; Chen, Cheng-rong; Xu, Zhi-hong; Guo, Xiao-min

    2011-10-01

    Taking the typical forest types Pinus elliottii var. elliotttii, Araucaria cunninghamii, and Agathis australis in southern Queensland of Australia as test objects, an investigation was made on the soil soluble organic carbon (SOC) and nitrogen (SON), microbial biomass C (MBC) and N (MBN), and enzyme activities, aimed to understand the effects of forest type on soil quality. In the three forests, soil SOC content was 552-1154 mg kg(-1), soil SON content was 20.11-57.32 mg kg(-1), soil MBC was 42-149 mg kg(-1), soil MBN was 7-35 mg kg(-1), soil chitinase (CAS) activity was 2.96-7.63 microg g(-1) h(-1), soil leucine aminopeptidase (LAP) activity was 0.18-0.46 microg g(-1) d(-1), soil acid phosphatase (ACP) activity was 16.5-29.6 microg g(-1) h(-1), soil alkaline phosphatase (AKP) activity was 0.79-3.42 microg g(-1) h(-1), and soil beta-glucosidase (BG) activity was 3.71-9.93 microg g(-1) h(-1). There was a significant correlation between soil MBC and MBN. Soil SOC content and soil CAS and LAP activities decreased in the order of P. elliottii > A. cunninghamii > A. australis, soil SON content decreased in the order of A. cunninghamii > A. australis > P. elliottii and was significantly higher in A. cunninghamii than in P. elliottii forest (P < 0.05), soil MBC and MBN and AKP activity decreased in the order of A. australis > P. elliottii > A. cunninghamii, and soil ACP and BG activities decreased in the order of P. elliottii > A. australis > A. cunninghamii. Among the test soil biochemical factors, soil MBC, MBN, SON, and LAP had greater effects on the soil quality under the test forest types. PMID:22263459

  5. Glucosylsphingosine Is a Highly Sensitive and Specific Biomarker for Primary Diagnostic and Follow-Up Monitoring in Gaucher Disease in a Non-Jewish, Caucasian Cohort of Gaucher Disease Patients

    PubMed Central

    Rolfs, Arndt; Giese, Anne-Katrin; Grittner, Ulrike; Mascher, Daniel; Elstein, Deborah; Zimran, Ari; Böttcher, Tobias; Lukas, Jan; Hübner, Rayk; Gölnitz, Uta; Röhle, Anja; Dudesek, Ales; Meyer, Wolfgang; Wittstock, Matthias; Mascher, Hermann

    2013-01-01

    Background Gaucher disease (GD) is the most common lysosomal storage disorder (LSD). Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments. Methodology Here, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs). Findings Only GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT) in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine. Interpretation In summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD. PMID:24278166

  6. Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Celussi, Mauro; Cataletto, Bruno; Fonda Umani, Serena; Del Negro, Paola

    2009-12-01

    The identification of bacterial community structure has led, since the beginning of the 1990s, to the idea that bacterioplankton populations are stratified in the water column and that diverse lineages with mostly unknown phenotypes dominate marine microbial communities. The diversity of depth-related assemblages is also reflected in their patterns of activities, as bacteria affiliated to different groups can express different activities in a given ecosystem. We analysed bacterial assemblages (DGGE fingerprinting) and their activities (prokaryotic carbon production, protease, phosphatase, chitinase, beta-glucosidase and lipase activities) in two areas in the Ross Sea, differing mainly in their productivity regime: two stations are located in the Terra Nova Bay polynya area (highly productive during summer) and two close to Cape Adare (low phytoplankton biomass and activity). At every station a pronounced stratification of bacterial assemblages was identified, highlighting epipelagic communities differing substantially from the mesopelagic and the bathypelagic communities. Multivariate analysis suggested that pressure and indirectly light-affected variables (i.e. oxygen and fluorescence) had a great effect on the bacterial communities outcompeting the possible influences of temperature and dissolved organic carbon concentration. Generally activities decreased with depth even though a signal of the Circumpolar Deep Water (CDW) at one of the northern stations corresponded to an increase in some of the degradative activities, generating some 'hot spots' in the profile. We also found that similar assemblages express similar metabolic requirements reflected in analogous patterns of activity (similar degradative potential and leucine uptake rate). Furthermore, the presence of eukaryotic chloroplasts' 16S rDNA in deep samples highlighted how in some cases the dense surface-water formation (in this case High Salinity Shelf Water—HSSW) and downwelling can affect, at least

  7. The Glycolytic Enzymes Activity in the Midgut of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) adult and their Seasonal Changes

    PubMed Central

    Guzik, Joanna; Nakonieczny, Mirosław; Tarnawska, Monika; Bereś, Paweł K.; Drzewiecki, Sławomir; Migula, Paweł

    2015-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is an important pest of maize. The diet of the D. virgifera imago is rich in starch and other polysaccharides present in cereals such as maize. Therefore, knowledge about enzymes involved in digestion of such specific food of this pest seems to be important. The paper shows, for the first time, the activities of main glycolytic enzymes in the midgut of D. virgifera imago: endoglycosidases (α-amylase, cellulase, chitinase, licheninase, laminarinase); exoglycosidases (α- and β-glucosidases, α- and β-galactosidases) and disaccharidases (maltase, isomaltase, sucrase, trehalase, lactase, and cellobiase). Activities of α-amylase, α-glucosidase, and maltase were the highest among assayed endoglycosidases, exoglycosidases, and disaccharidases, respectively. This indicates that in the midgut of D. virgifera imago α-amylase, α-glucosidase and maltase are important enzymes in starch hydrolysis and products of its digestion. These results lead to conclusion that inhibition of most active glycolytic enzymes of D. virgifera imago may be another promising method for chemical control of this pest of maize.

  8. Response of microbial extracellular enzyme activities and r- vs. K- selected microorganisms to elevated atmospheric CO2 depends on soil aggregate size

    NASA Astrophysics Data System (ADS)

    Dorodnikov, Maxim; Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov

    2014-05-01

    Increased belowground carbon (C) transfer by plant roots under elevated atmospheric CO2 and the contrasting environment in soil macro- and microaggregates could affect properties of the microbial community in the rhizosphere. We evaluated the effect of 5 years of elevated CO2 (550 ppm) on four extracellular enzymes: ß-glucosidase, chitinase, phosphatase, and sulfatase along with the contribution of fast- (r-strategists) and slow-growing microorganisms (K-strategists) in soil aggregates. We fractionated the bulk soil from the ambient and elevated CO2 treatments of FACE-Hohenheim (Stuttgart) into large macro- (>2 mm), small macro- (0.25-2.00 mm), and microaggregates (<0.25 mm) using a modified dry sieving. Microbial biomass (C-mic by SIR), the maximal specific growth rate (µ), growing microbial biomass (GMB) and lag-period (t-lag) were estimated by the kinetics of CO2 emission from bulk soil and aggregates amended with glucose and nutrients. In the bulk soil and isolated aggregates before and after activation with glucose, the actual and the potential enzyme activities were measured. Although C-org and C-mic as well as the activities of ß-glucosidase, phosphatase, and sulfatase were unaffected in bulk soil and in aggregate-size classes by elevated CO2, significant changes were observed in potential enzyme production after substrate amendment. After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. In addition, µ values were significantly higher under elevated than ambient CO2 for bulk soil, small macroaggregates, and microaggregates. Based on changes in µ, GMB, and lag-period, we conclude that elevated atmospheric CO2 stimulated the r-selected microorganisms, especially in soil microaggregates. In contrast, significantly higher chitinase activity in bulk soil and in large macroaggregates under elevated CO2 revealed an increased contribution of fungi to turnover processes. We conclude that quantitative and

  9. Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II

    PubMed Central

    Zhu-Salzman, Keyan; Shade, Richard E.; Koiwa, Hisashi; Salzman, Ron A.; Narasimhan, Meena; Bressan, Ray A.; Hasegawa, Paul M.; Murdock, Larry L.

    1998-01-01

    Griffonia simplicifolia leaf lectin II (GSII), a plant defense protein against certain insects, consists of an N-acetylglucosamine (GlcNAc)-binding large subunit with a small subunit having sequence homology to class III chitinases. Much of the insecticidal activity of GSII is attributable to the large lectin subunit, because bacterially expressed recombinant large subunit (rGSII) inhibited growth and development of the cowpea bruchid, Callosobruchus maculatus (F). Site-specific mutations were introduced into rGSII to generate proteins with altered GlcNAc binding, and the different rGSII proteins were evaluated for insecticidal activity when added to the diet of the cowpea bruchid. At pH 5.5, close to the physiological pH of the cowpea bruchid midgut lumen, rGSII recombinant proteins were categorized as having high (rGSII, rGSII-Y134F, and rGSII-N196D mutant proteins), low (rGSII-N136D), or no (rGSII-D88N, rGSII-Y134G, rGSII-Y134D, and rGSII-N136Q) GlcNAc-binding activity. Insecticidal activity of the recombinant proteins correlated with their GlcNAc-binding activity. Furthermore, insecticidal activity correlated with the resistance to proteolytic degradation by cowpea bruchid midgut extracts and with GlcNAc-specific binding to the insect digestive tract. Together, these results establish that insecticidal activity of GSII is functionally linked to carbohydrate binding, presumably to the midgut epithelium or the peritrophic matrix, and to biochemical stability of the protein to digestive proteolysis. PMID:9844026

  10. Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa.

    PubMed Central

    Heidstra, R.; Geurts, R.; Franssen, H.; Spaink, H. P.; Van Kammen, A.; Bisseling, T.

    1994-01-01

    We used a semiquantitative root hair deformation assay for Vicia sativa (vetch) to study the activity of Rhizobium leguminosarum bv viciae nodulation (Nod) factors. Five to 10 min of Nod factor-root interaction appears to be sufficient to induce root hair deformation. The first deformation is visible within 1 h, and after 3 h about 80% of the root hairs in a small susceptible zone of the root are deformed. This zone encompasses root hairs that have almost reached their maximal size. The Nod factor accumulates preferentially to epidermal cells of the young part of the root, but is not restricted to the susceptible zone. In the interaction with roots, the glucosamine backbone of Nod factors is shortened, presumably by chitinases. NodRlv-IV(C18:4,Ac) is more stable than NodRlv-V(C18:4,Ac). No correlation was found between Nod factor degradation and susceptibility. Degradation occurs both in the susceptible zone and in the mature zone. Moreover, degradation is not affected by NH4NO3 and is similar in vetch and in the nonhost alfalfa (Medicago sativa). PMID:12232242

  11. Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity

    PubMed Central

    Reynolds, Hannah T.; Barton, Hazel A.

    2014-01-01

    White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans’ saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth. PMID:24466096

  12. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars.

    PubMed

    Atsumi, Go; Kagaya, Uiko; Kitazawa, Hiroaki; Nakahara, Kenji Suto; Uyeda, Ichiro

    2009-02-01

    The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination. PMID:19132869

  13. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity.

    PubMed

    Reynolds, Hannah T; Barton, Hazel A

    2014-01-01

    White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth. PMID:24466096

  14. Evaluating the Biodeterioration Enzymatic Activities of Fungal Contamination Isolated from Some Ancient Yemeni Mummies Preserved in the National Museum

    PubMed Central

    Naji, Khalid Mohammed; Abdullah, Qais Yusuf M.; AL-Zaqri, Aida Qaseem M.; Alghalibi, Saeed M.

    2014-01-01

    Sophisticated mummification using chemical preservation was prevalent in ancient Yemeni civilization as noted in the 4th century B.C. mummies of the National Museum of Yemen, Sana'a, used in this study. Five of these mummies were used to evaluate hydrolytic enzymes produced as a result of fungal contamination. Forty-seven fungal species were isolated, thereby reflecting a high degree of contamination which may have resulted from the poor ventilation and preservation system. Aspergillus was the most common genus isolated (48.9%). Fifteen isolates exhibited ability to produce cellulase (EC; 3.2.1.4), Aspergillus candidus being the highest cellulose-producer. Pectin lyase (PL, EC; 4.2.2.2) and pectin methyl esterase (PME, EC; 3.1.1.11) were produced by Trichoderma hamatum, whereas chitinase (EC; 3.2.1.14) was produced by Aspergillus niger. Protease activity was noted by only Cladosporium herbarum. The higher activities of these fungal hydrolytic enzymes represent the major threats of biodeterioration including deteriorating linen bandages as well as the mummy bodies. Therefore, it is recommended to improve the preservation system of the mummies at the National Museum to minimize the contamination up to the lowest level and protect the mummies from biodeterioration. PMID:25478228

  15. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.

    PubMed

    Woo, Hannah L; Hazen, Terry C; Simmons, Blake A; DeAngelis, Kristen M

    2014-02-01

    Lignocellulolytic bacteria have promised to be a fruitful source of new enzymes for next-generation lignocellulosic biofuel production. Puerto Rican tropical forest soils were targeted because the resident microbes decompose biomass quickly and to near-completion. Isolates were initially screened based on growth on cellulose or lignin in minimal media. 75 Isolates were further tested for the following lignocellulolytic enzyme activities: phenol oxidase, peroxidase, β-d-glucosidase, cellobiohydrolase, β-xylopyranosidase, chitinase, CMCase, and xylanase. Cellulose-derived isolates possessed elevated β-d-glucosidase, CMCase, and cellobiohydrolase activity but depressed phenol oxidase and peroxidase activity, while the contrary was true of lignin isolates, suggesting that these bacteria are specialized to subsist on cellulose or lignin. Cellobiohydrolase and phenol oxidase activity rates could classify lignin and cellulose isolates with 61% accuracy, which demonstrates the utility of model degradation assays. Based on 16S rRNA gene sequencing, all isolates belonged to phyla dominant in the Puerto Rican soils, Proteobacteria, Firmicutes, and Actinobacteria, suggesting that many dominant taxa are capable of the rapid lignocellulose degradation characteristic of these soils. The isolated genera Aquitalea, Bacillus, Burkholderia, Cupriavidus, Gordonia, and Paenibacillus represent rarely or never before studied lignolytic or cellulolytic species and were undetected by metagenomic analysis of the soils. The study revealed a relationship between phylogeny and lignocellulose-degrading potential, supported by Kruskal-Wallis statistics which showed that enzyme activities of cultivated phyla and genera were different enough to be considered representatives of distinct populations. This can better inform future experiments and enzyme discovery efforts. PMID:24238986

  16. Effects of stoichiometry and temperature perturbations on beech litter decomposition, enzyme activities and protein expression

    NASA Astrophysics Data System (ADS)

    Keiblinger, K. M.; Schneider, T.; Roschitzki, B.; Schmid, E.; Eberl, L.; Hämmerle, I.; Leitner, S.; Richter, A.; Wanek, W.; Riedel, K.; Zechmeister-Boltenstern, S.

    2011-12-01

    Microbes are major players in leaf litter decomposition and therefore advances in the understanding of their control on element cycling are of paramount importance. Our aim was to investigate the influence of leaf litter stoichiometry in terms of carbon (C) : nitrogen (N) : phosphorus (P) on the decomposition process, and to follow changes in microbial community structure and function in response to temperature-stress treatments. To elucidate how the stoichiometry of beech litter (Fagus sylvatica L.) and stress treatments interactively affect the decomposition processes, a terrestrial microcosm experiment was conducted. Beech litter from different Austrian sites covering C:N ratios from 39 to 61 and C:P ratios from 666 to 1729 were incubated at 15 °C and 60% moisture for six months. Part of the microcosms were then subjected to severe changes in temperature (+30 °C and -15 °C) to monitor the influence of temperature stress. Extracellular enzyme activities were assayed and respiratory activities measured. A semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass-spectrometry; unique spectral counting) was employed to investigate the impact of the applied stress treatments in dependency of litter stoichiometry on structure and function of the decomposing community. In litter with narrow C:nutrient ratios microbial decomposers were most abundant. Cellulase, chitinase, phosphatase and protease activity decreased after heat and frost treatments. Decomposer communities and specific functions varied with site i.e. stoichiometry. The applied stress evoked strong changes of enzyme activities, dissolved organic nitrogen and litter pH. Freeze treatments resulted in a decline in residual plant litter material, and increased fungal abundance indicating slightly accelerated decomposition. Overall, we could detect a strong effect of litter stoichiometry on microbial community structure as well as function. Temperature

  17. Mutation of the protein-O-mannosyltransferase enhances secretion of the human urokinase-type plasminogen activator in Hansenula polymorpha.

    PubMed

    Agaphonov, Michael O; Sokolov, Sviatoslav S; Romanova, Nina V; Sohn, Jung-Hoon; Kim, So-Young; Kalebina, Tatyana S; Choi, Eui-Sung; Ter-Avanesyan, Michael D

    2005-10-15

    Human urokinase-type plasminogen activator (uPA) is poorly secreted and aggregates in the endoplasmic reticulum of yeast cells due to inefficient folding. A screen for Hansenula polymorpha mutants with improved uPA secretion revealed a gene encoding a homologue of the Saccharomyces cerevisiae protein-O-mannosyltransferase Pmt1p. Expression of the H. polymorpha PMT1 gene (HpPMT1) abolished temperature sensitivity of the S. cerevisiae pmt1 pmt2 double mutant. As in S. cerevisiae, inactivation of the HpPMT1 gene affected electrophoretic mobility of the O-glycosylated protein, extracellular chitinase. In contrast to S. cerevisiae, disruption of HpPMT1 alone caused temperature sensitivity. Inactivation of the HpPMT1 gene decreased intracellular aggregation of uPA, suggesting that enhanced secretion of uPA was due to improvement of its folding in the endoplasmic reticulum. Unlike most of the endoplasmic reticulum membrane proteins, HpPmt1p possesses the C-terminal KDEL retention signal. PMID:16200504

  18. Elicitor and resistance-inducing activities of beta-1,4 cellodextrins in grapevine, comparison with beta-1,3 glucans and alpha-1,4 oligogalacturonides.

    PubMed

    Aziz, Aziz; Gauthier, Adrien; Bézier, Annie; Poinssot, Benoît; Joubert, Jean-Marie; Pugin, Alain; Heyraud, Alain; Baillieul, Fabienne

    2007-01-01

    Cellodextrins (CD), water-soluble derivatives of cellulose composed of beta-1,4 glucoside residues, have been shown to induce a variety of defence responses in grapevine (Vitis vinifera L.) cells. The larger oligomers of CD rapidly induced transient generation of H2O2 and elevation in free cytosolic calcium, followed by a differential expression of genes encoding key enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins as well as stimulation of chitinase and beta-1,3 glucanase activities. Most of these defence reactions were also induced by linear beta-1,3 glucans (betaGlu) and alpha-1,4 oligogalacturonides (OGA) of different degree of polymerization (DP), but the intensity of some reactions induced by CD was different when compared with betaGlu and OGA effects. Moreover, desensitization assays using H2O2 production showed that cells treated with CD remained fully responsive to a second application of OGA, suggesting a different mode of perception of these oligosaccharides by grape cells. None of CD, betaGlu, or OGA induced HSR gene expression nor did they induce cell death. In accordance with elicitor activity in grapevine cells, CD-incubated leaves challenged with Botrytis cinerea also resulted in a significant reduction of the disease. Data suggest that CD could operate via other distinct reaction pathways than betaGlu and OGA. They also highlight the requirement of a specific DP for each oligosaccharide to induce the defence response. PMID:17322548

  19. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region

    PubMed Central

    2012-01-01

    Background Antarctica has been successfully colonized by microorganisms despite presenting adverse conditions for life such as low temperatures, high solar radiation, low nutrient availability and dryness. Although these “cold-loving” microorganisms are recognized as primarily responsible for nutrient and organic matter recycling/mineralization, the yeasts, in particular, remain poorly characterized and understood. The aim of this work was to study the yeast microbiota in soil and water samples collected on King George Island. Results A high number of yeast isolates was obtained from 34 soil and 14 water samples. Molecular analyses based on rDNA sequences revealed 22 yeast species belonging to 12 genera, with Mrakia and Cryptococcus genera containing the highest species diversity. The species Sporidiobolus salmonicolor was by far the most ubiquitous, being identified in 24 isolates from 13 different samples. Most of the yeasts were psychrotolerant and ranged widely in their ability to assimilate carbon sources (consuming from 1 to 27 of the 29 carbon sources tested). All species displayed at least 1 of the 8 extracellular enzyme activities tested. Lipase, amylase and esterase activity dominated, while chitinase and xylanase were less common. Two yeasts identified as Leuconeurospora sp. and Dioszegia fristingensis displayed 6 enzyme activities. Conclusions A high diversity of yeasts was isolated in this work including undescribed species and species not previously isolated from the Antarctic region, including Wickerhamomyces anomalus, which has not been isolated from cold regions in general. The diversity of extracellular enzyme activities, and hence the variety of compounds that the yeasts may degrade or transform, suggests an important nutrient recycling role of microorganisms in this region. These yeasts are of potential use in industrial applications requiring high enzyme activities at low temperatures. PMID:23131126

  20. The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice.

    PubMed

    Gupta, Santosh Kumar; Rai, Amit Kumar; Kanwar, Shamsher Singh; Chand, Duni; Singh, Nagendera Kumar; Sharma, Tilak Raj

    2012-01-01

    The Pi54 gene (Pi-k(h)) confers a high degree of resistance to diverse strains of the fungus Magnaporthe oryzae. In order to understand the genome-wide co-expression of genes in the transgenic rice plant Taipei 309 (TP) containing the Pi54 gene, microarray analysis was performed at 72 h post-inoculation of the M. oryzae strain PLP-1. A total of 1154 differentially expressing genes were identified in TP-Pi54 plants. Of these, 587 were up-regulated, whereas 567 genes were found to be down-regulated. 107 genes were found that were exclusively up-regulated and 58 genes that were down- regulated in the case of TP-Pi54. Various defence response genes, such as callose, laccase, PAL, and peroxidase, and genes related to transcription factors like NAC6, Dof zinc finger, MAD box, bZIP, and WRKY were found to be up-regulated in the transgenic line. The enzymatic activities of six plant defence response enzymes, such as peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, β-glucosidase, β-1,3-glucanase, and chitinase, were found to be significantly high in TP-Pi54 at different stages of inoculation by M. oryzae. The total phenol content also increased significantly in resistant transgenic plants after pathogen inoculation. This study suggests the activation of defence response and transcription factor-related genes and a higher expression of key enzymes involved in the defence response pathway in the rice line TP-Pi54, thus leading to incompatible host-pathogen interaction. PMID:22058403

  1. Active-R filter

    DOEpatents

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  2. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Vergadi, Eleni; Chang, Mun Seog; Lee, Changjin; Liang, Olin; Liu, Xianlan; Fernandez-Gonzalez, Angeles; Mitsialis, S. Alex; Kourembanas, Stella

    2011-01-01

    Background Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, is protective in HPH. Methods and Results We generated bitransgenic mice that overexpress human HO-1 under doxycycline (dox) control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of dox resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of Found in Inflammatory Zone-1, Arginase-1 and Chitinase-3-like-3. A brief, two-day pulse of dox delayed but did not prevent the peak of hypoxic inflammation, and could not protect from HPH. In contrast, a seven-day dox treatment sustained high HO-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage IL-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted proliferation of pulmonary artery smooth muscle cells while treatment with carbon monoxide, a HO-1 enzymatic product, abrogated this effect. Conclusions Early recruitment and alternative activation of macrophages in hypoxic lungs is critical for the later development of HPH. HO-1 may confer protection from HPH by effectively modifing macrophage activation state in hypoxia. PMID:21518986

  3. [Effects of arbuscular mycorrhizal fungus on the seedling growth of grafted watermelon and the defensive enzyme activities in the seedling roots].

    PubMed

    Chen, Ke; Sun, Ji-Qing; Liu, Run-Jin; Li, Min

    2013-01-01

    A greenhouse pot experiment was conducted to study the effects of arbuscular mycorrhizal fungus Glomus versiforme on the seedling growth and root membrane permeability, malondiadehyde (MDA) content, and defensive enzyme activities of non-grafted and grafted watermelon growing on the continuously cropped soil. Inoculation with G. versiforme increased the seedling biomass and root activity significantly, and decreased the root membrane permeability and MDA content. The seedling shoot fresh mass, shoot dry mass, and root activity of non-grafted watermelon increased by 57.6%, 60.0% and 142.1%, and those of grafted watermelon increased by 26.7%, 28.0% and 11.0%, respectively, compared with no G. versiforme inoculation. The root membrane permeability of non-grafted seedlings (C), grafted seedlings (G), non-grafted seedlings inoculated with G. versiforme (C+M), and grafted seedlings inoculated with G. versiforme (G+M) was in the order of C >G>C+M>G+M, and the root MDA content was in the sequence of C>G>G+M>C+M. G. versiforme inoculation increased the root phenylalanine ammonialyase (PAL), catalase (CAT), peroxidase (POD), beta-1,3-glucanase and chitinase activities of grafted and non-grafted seedlings significantly, and the peaks of the POD, PAL and beta-1,3-glucanase activities in the mycorrhizal roots appeared about two weeks earlier than those in the non-inoculated roots. These results indicated that inoculating arbuscular mycorrhizal fungus G. versiforme could activate the defensive enzyme activities of non-grafted and grafted watermelon seedlings, enable the seedling roots to produce rapid response to adversity, and thus, improve the capability of watermelon seedling against continuous cropping obstacle. PMID:23718001

  4. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and 14C-labeled plant residues as determined by enzyme activities

    NASA Astrophysics Data System (ADS)

    Mahmoud Awad, Yasser; Ok, Young Sik; Kuzyakov, Yakov

    2014-05-01

    Application of polymers for the improvement of aggregate structure and reduction of soil erosion may alter the availability and decomposition of plant residues. In this study, we assessed the effects of anionic polyacrylamide (PAM), synthesized biopolymer (BP), and biochar (BC) on the decomposition of 14C-labeled maize residue in sandy and sandy loam soils. Specifically, PAM and BP with or without 14C-labeled plant residue were applied at 400 kg ha-1, whereas BC was applied at 5000 kg ha-1, after which the soils were incubated for 80 days at 22 oC. Initially, plant residue decomposition was much higher in untreated sandy loam soil than in sandy soil. Nevertheless, the stimulating effects of BP and BC on the decomposition of plant residue were more pronounced in sandy soil, where it accounted for 13.4% and 23.4% of 14C input, respectively, whereas in sandy loam soil, the acceleration of plant residue decomposition by BP and BC did not exceed 2.6% and 14.1%, respectively, compared to untreated soil with plant residue. The stimulating effects of BP and BC on the decomposition of plant residue were confirmed based on activities of β-cellobiohydrolase, β-glucosidase, and chitinase in both soils. In contrast to BC and BP, PAM did not increase the decomposition of native or added C in both soils.

  5. Isolation, characterization, kinetics, and enzymatic and nonenzymatic microbicidal activities of a novel c-type lysozyme from plasma of Schistocerca gregaria (Orthoptera: Acrididae).

    PubMed

    Elmogy, Mohamed; Bassal, Taha T M; Yousef, Hesham A; Dorrah, Moataza A; Mohamed, Amr A; Duvic, Bernard

    2015-01-01

    A protein, designated as Sgl, showing a muramidase lytic activity to the cell wall of the Gram-positive bacterium Micrococcus lysodeikticus was isolated for the first time from plasma of Escherichia coli-immunized fifth instar Schistocerca gregaria. The isolated Sgl was detected as a single protein band, on both native- and SDS-PAGE, has a molecular weight of ∼15.7 kDa and an isoelectric point (pI) of ca 9.3 and its antiserum has specifically recognized its isolated form. Fifty-nine percentage of Sgl lytic activity was recovered in the isolated fractions and yielded ca 126-fold increase in specific activity than that of the crude. The partial N-terminal amino acid sequence of the Sgl has 55 and 40% maximum identity with Bombyx mori and Gallus gallus c-type lysozymes, respectively. The antibacterial activity against the Gram-positive and the Gram-negative bacteria were comparatively stronger than that of the hen egg white lysozyme (HEWL). The detected Sgl poration to the inner membrane that reach a maximum ability after 3 h was suggested to operate as a nonenzymatic mechanism for Gram-negative bacterial cell lysis, as tested in a permease-deficient E. coli, ML-35 strain. Sgl showed a maximal muramidase activity at pH 6.2, 30-50°C, and 0.05 M Ca(2+) or Mg(2+); and has a Km of 0.5 μg/ml and a Vmax of 0.518 with M. lysodeikticus as a substrate. The Sgl displayed a chitinase activity against chitin with a Km of 0.93 mg/ml and a Vmax of 1.63. PMID:25972507

  6. Isolation, Characterization, Kinetics, and Enzymatic and Nonenzymatic Microbicidal Activities of a Novel c-Type Lysozyme from Plasma of Schistocerca gregaria (Orthoptera: Acrididae)

    PubMed Central

    Elmogy, Mohamed; Bassal, Taha T. M.; Yousef, Hesham A.; Dorrah, Moataza A.; Mohamed, Amr A.; Duvic, Bernard

    2015-01-01

    A protein, designated as Sgl, showing a muramidase lytic activity to the cell wall of the Gram-positive bacterium Micrococcus lysodeikticus was isolated for the first time from plasma of Escherichia coli-immunized fifth instar Schistocerca gregaria. The isolated Sgl was detected as a single protein band, on both native- and SDS-PAGE, has a molecular weight of ∼15.7 kDa and an isoelectric point (pI) of ca 9.3 and its antiserum has specifically recognized its isolated form. Fifty-nine percentage of Sgl lytic activity was recovered in the isolated fractions and yielded ca 126-fold increase in specific activity than that of the crude. The partial N-terminal amino acid sequence of the Sgl has 55 and 40% maximum identity with Bombyx mori and Gallus gallus c-type lysozymes, respectively. The antibacterial activity against the Gram-positive and the Gram-negative bacteria were comparatively stronger than that of the hen egg white lysozyme (HEWL). The detected Sgl poration to the inner membrane that reach a maximum ability after 3 h was suggested to operate as a nonenzymatic mechanism for Gram-negative bacterial cell lysis, as tested in a permease-deficient E. coli, ML-35 strain. Sgl showed a maximal muramidase activity at pH 6.2, 30–50°C, and 0.05 M Ca2+ or Mg2+; and has a Km of 0.5 μg/ml and a Vmax of 0.518 with M. lysodeikticus as a substrate. The Sgl displayed a chitinase activity against chitin with a Km of 0.93 mg/ml and a Vmax of 1.63. PMID:25972507

  7. Purification of an antifungal endochitinase from a potential biocontrol Agent Streptomyces griseus.

    PubMed

    Rabeeth, M; Anitha, A; Srikanth, Geetha

    2011-08-15

    Streptomyces griseus (MTCC 9723) is a chitinolytic bacterium isolated from prawn cultivated pond soil of Peddapuram Village; East Godavari District was studied in detailed. Chitinase (EC 3.2.1.14) was extracted from the culture filtrate of Streptomyces griseus and purified by ammonium sulfate precipitation, DEAE-cellulose ionexchange chromatography, Sephadex G-100 and Sephadex G-200 gel filtration chromatography. The molecular mass of the purified chitinase was estimated to be 34, 32 kDa by SDS gel electrophoresis and confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 6.0 and at 40 degrees C. The enzyme was stable from pH 5-9 and up to 20-50 degrees C. The chitinase exhibited Km and Vmax values of 400 mg and 180 IU mL(-1) for colloidal chitin. Among the metals and inhibitors that were tested, the Hg+, Hg2+ and P-chloromercuribenzoic acid completely inhibited the chitinase activity at 1 mM concentration. The purified chitinase showed high activity on colloidal chitin, chitobiose, and chitooligosaccharide. An in vitro assay proved that the crude chitinase, actively growing cells of S. griseus having antifungal activity against all studied fungal pathogen. This result implies that characteristics of S. griseus producing endochitinase made them suitable for biotechnological purpose such as for degradation of chitin containing waste and it might be a promising biocontrol agent for plant pathogens. PMID:22545353

  8. In Vitro Evaluation of Enzymatic and Antifungal Activities of Soil-Actinomycetes Isolates and Their Molecular Identification by PCR

    PubMed Central

    Keikha, Nasser; Ayatollahi Mousavi, Seyyed Amin; Nakhaei, Ali Reza; Yadegari, Mohammad Hossein; Shahidi Bonjar, Gholam Hossein; Amiri, Somayyeh

    2015-01-01

    Background: Human cutaneous infection caused by a homogeneous group of keratinophilic fungi called dermatophytes. These fungi are the most common infectious agents in humans that are free of any population and geographic area. Microsporum canis is a cause of dermatophytosis (Tinea) in recent years in Iran and atypical strain has been isolated in Iran. Its cases occur sporadically due to M. canis transmission from puppies and cats to humans. Since this pathogenic dermatophyte is eukaryotes, chemical treatment with antifungal drugs may also affect host tissue cells. Objectives: The aim of the current study was to find a new antifungal agent of soil-Actinomycetes from Kerman province against M. canis and Actinomycete isolates were identified by PCR. Materials and Methods: A number of hundred Actinomycete isolated strains were evaluated from soil of Kerman province, for their antagonistic activity against the M. canis. M. canis of the Persian Type Culture Collection (PTCC) was obtained from the Iranian Research Organization for Science and Technology (IROST). Electron microscope studies of these isolates were performed based on the physiological properties of these antagonists including lipase, amylase, protease and chitinase activities according to the relevant protocols and were identified using gene 16SrDNA. Results: In this study the most antagonist of Actinomycete isolates with antifungal activity against M. canis isolates of L1, D5, Ks1m, Km2, Kn1, Ks8 and Ks1 were shown in vitro. Electron microscopic studies showed that some fungal strains form spores, mycelia and spore chain. Nucleotide analysis showed that Ks8 had maximum homology (98%) to Streptomyces zaomyceticus strain xsd08149 and L1 displayed 100% homology to Streptomyces sp. HVG6 using 16SrDNA studies. Conclusions: Our findings showed that Streptomyces has antifungal effects against M. canis. PMID:26060560

  9. Differences in the Activities of Eight Enzymes from Ten Soil Fungi and Their Possible Influences on the Surface Structure, Functional Groups, and Element Composition of Soil Colloids

    PubMed Central

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3–4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11–60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9–22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11–49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  10. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    PubMed

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  11. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt.

    PubMed

    Rashad, Ferial M; Fathy, Hayam M; El-Zayat, Ayatollah S; Elghonaimy, Ahlam M

    2015-06-01

    Different strategies have been employed for selective isolation of Streptomycetes from 20 marine samples varied in their biological nature. The recovery of Streptomycetes isolates (112) was influenced preferentially by different strategies; sediment samples were the best source of potential candidate Streptomycetes. All isolates exhibited antimicrobial activities with variable spectrum; the most promising isolates (31) were phenotypically characterized and identified as Streptomyces sp.; these isolates exhibited variable capacity for secretion of numerous hydrolytic enzymes such as catalase, protease, amylase, lipase, lecithinase, asparaginase, chitinase and pectinase. All the strains resisted both penicillin and streptomycin, 29 were sensitive to neomycin; the majority of strains (25) showed multiple antibiotic resistance index greater than 0.2; 23, 22 and 13 degraded the shrimp shell, chicken feather and corn cob, respectively, producing bioactive substance(s) which indicates their diversity and their ecological role in the marine ecosystem. At least 28 strains exhibited nematicidal activity in vitro and in vivo against root-knot nematode and supported plant growth. In vitro, the assessed Streptomyces species exhibited the ability to produce gibberellic acid, indole acetic acid, abscisic acid, kinetin and benzyladenine. Except for indole acetic acid, this is the first report concerning the ability of marine Streptomyces to produce such phytohormones and the use of shrimp shell waste as a mono component medium for production of phytohormones. The study is efficacious in selecting effective biodiverse strains of marine Streptomyces that may work under diverse agro-ecological conditions as a useful element in plant nutrition and as biocontrol agents involved in integrated management programs. PMID:25805507

  12. Comparison of Antifungal Activities and 16S Ribosomal DNA Sequences of Clinical and Environmental Isolates of Stenotrophomonas maltophilia

    PubMed Central

    Minkwitz, Arite; Berg, Gabriele

    2001-01-01

    In recent years, the gram-negative bacterium Stenotrophomonas maltophilia has become increasingly important in biotechnology and as a nosocomial pathogen, giving rise to a need for new information about its taxonomy and epidemiology. To determine intraspecies diversity and whether strains can be distinguished based on the sources of their isolation, 50 S. maltophilia isolates from clinical and environmental sources, including strains of biotechnological interest, were investigated. The isolates were characterized by in vitro antagonism against pathogenic fungi and the production of antifungal metabolites and enzymes. Phenotypically the strains showed variability that did not correlate significantly with their sources of isolation. Clinical strains displayed remarkable activity against the human pathogenic fungus Candida albicans. Antifungal activity against plant pathogens was more common and generally more severe from the environmental isolates, although not exclusive to them. All isolates, clinical and environmental, produced a range of antifungal metabolites including antibiotics, siderophores, and the enzymes proteases and chitinases. From 16S ribosomal DNA sequencing analysis, the isolates could be separated into three clusters, two of which consisted of isolates originating from the environment, especially rhizosphere isolates, and one of which consisted of clinical and aquatic strains. In contrast to the results of other recent investigations, these strains could be grouped based on their sources of isolation, with the exception of three rhizosphere isolates. Because there was evidence of nucleotide signature positions within the sequences that are suitable for distinguishing among the clusters, the clusters could be defined as different genomovars of S. maltophilia. Key sequences on the 16S ribosomal DNA could be used to develop a diagnostic method that differentiates these genomovars. PMID:11136762

  13. Antifungal Hydrolases in Pea Tissue 1

    PubMed Central

    Mauch, Felix; Mauch-Mani, Brigitte; Boller, Thomas

    1988-01-01

    Chitinase and β-1,3-glucanase purified from pea pods acted synergistically in the degradation of fungal cell walls. The antifungal potential of the two enzymes was studied directly by adding protein preparations to paper discs placed on agar plates containing germinated fungal spores. Protein extracts from pea pods infected with Fusarium solani f.sp. phaseoli, which contained high activities of chitinase and β-1,3-glucanase, inhibited growth of 15 out of 18 fungi tested. Protein extracts from uninfected pea pods, which contained low activities of chitinase and β-1,3-glucanase, did not inhibit fungal growth. Purified chitinase and β-1,3-glucanase, tested individually, did not inhibit growth of most of the test fungi. Only Trichoderma viride was inhibited by chitinase alone, and only Fusarium solani f.sp. pisi was inhibited by β-1,3-glucanase alone. However, combinations of purified chitinase and β-1,3-glucanase inhibited all fungi tested as effectively as crude protein extracts containing the same enzyme activities. The pea pathogen, Fusarium solani f.sp. pisi, and the nonpathogen of peas, Fusarium solani f.sp. phaseoli, were similarly strongly inhibited by chitinase and β-1,3-glucanase, indicating that the differential pathogenicity of the two fungi is not due to differential sensitivity to the pea enzymes. Inhibition of fungal growth was caused by the lysis of the hyphal tips. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16666407

  14. Physical activity

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001941.htm Physical activity To use the sharing features on this page, please enable JavaScript. Physical activity -- which includes an active lifestyle and routine exercise -- ...

  15. Co-expression of the protease furin in Nicotiana benthamiana leads to efficient processing of latent transforming growth factor-β1 into a biologically active protein.

    PubMed

    Wilbers, Ruud H P; Westerhof, Lotte B; van Raaij, Debbie R; van Adrichem, Marloes; Prakasa, Andreas D; Lozano-Torres, Jose L; Bakker, Jaap; Smant, Geert; Schots, Arjen

    2016-08-01

    Transforming growth factor beta (TGF-β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF-β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TGF-β3 has been produced in plants before using a chloroplast expression system. However, this strategy requires chemical refolding to obtain a biologically active protein. In this study, we investigated the possibility to transiently express active human TGF-β1 in Nicotiana benthamiana plants. We successfully expressed mature TGF-β1 in the absence of the latency-associated peptide (LAP) using different strategies, but the obtained proteins were inactive. Upon expression of LAP-TGF-β1, we were able to show that processing of the latent complex by a furin-like protease does not occur in planta. The use of a chitinase signal peptide enhanced the expression and secretion of LAP-TGF-β1, and co-expression of human furin enabled the proteolytic processing of latent TGF-β1. Engineering the plant post-translational machinery by co-expressing human furin also enhanced the accumulation of biologically active TGF-β1. This engineering step is quite remarkable, as furin requires multiple processing steps and correct localization within the secretory pathway to become active. Our data demonstrate that plants can be a suitable platform for the production of complex proteins that rely on specific proteolytic processing. PMID:26834022

  16. Complete genome sequences of the Serratia plymuthica strains 3Rp8 and 3Re4-18, two rhizosphere bacteria with antagonistic activity towards fungal phytopathogens and plant growth promoting abilities.

    PubMed

    Adam, Eveline; Müller, Henry; Erlacher, Armin; Berg, Gabriele

    2016-01-01

    The Serratia plymuthica strains 3Rp8 and 3Re4-18 are motile, Gram-negative, non-sporulating bacteria. Strain 3Rp8 was isolated from the rhizosphere of Brassica napus L. and strain 3Re4-18 from the endorhiza of Solanum tuberosum L. Studies have shown in vitro activity against the soil-borne fungi Verticillium dahliae Kleb., Rhizoctonia solani Kühn, and Sclerotinia sclerotiorum. Here, we announce and describe the complete genome sequence of S. plymuthica 3Rp8 consisting of a single circular chromosome of 5.5 Mb that encodes 4954 protein-coding and 108 RNA-only encoding genes and of S. plymuthica 3Re4-18 consisting of a single circular chromosome of 5.4 Mb that encodes 4845 protein-coding and 109 RNA-only encoding genes. The whole genome sequences and annotations are available in NCBI under the locus numbers CP012096 and CP012097, respectively. The genome analyses revealed genes putatively responsible for the promising plant growth promoting and biocontrol properties including predicting factors such as secretion systems, iron scavenging siderophores, chitinases, secreted proteases, glucanases and non-ribosomal peptide synthetases, as well as unique genomic islands. PMID:27602183

  17. Activation detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-12-08

    A method of detecting an activator, the method including impinging with an activator a receptor material lacking a photoluminescent material and generating a by-product of a radioactive decay due to the activator impinging the reeptor material. The method further including, generating light from the by-product via the Cherenkov effect and identifying a characteristic of the activator based on the light.

  18. Active turbulence in active nematics

    NASA Astrophysics Data System (ADS)

    Thampi, S. P.; Yeomans, J. M.

    2016-07-01

    Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.

  19. Effects of stoichiometry and temperature perturbations on beech leaf litter decomposition, enzyme activities and protein expression

    NASA Astrophysics Data System (ADS)

    Keiblinger, K. M.; Schneider, T.; Roschitzki, B.; Schmid, E.; Eberl, L.; Hämmerle, I.; Leitner, S.; Richter, A.; Wanek, W.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-11-01

    Microbes are major players in leaf litter decomposition and therefore advances in the understanding of their control on element cycling are of paramount importance. Our aim was to investigate the influence of leaf litter stoichiometry in terms of carbon (C) : nitrogen (N) : phosphorus (P) ratios on the decomposition processes and to track changes in microbial community structures and functions in response to temperature stress treatments. To elucidate how the stoichiometry of beech leaf litter (Fagus sylvatica L.) and stress treatments interactively affect the microbial decomposition processes, a terrestrial microcosm experiment was conducted. Beech litter from different Austrian sites covering C:N ratios from 39 to 61 and C:P ratios from 666 to 1729 were incubated at 15 °C and 60% moisture for six months. Part of the microcosms were then subjected to severe changes in temperature (+30 °C and -15 °C) to monitor the influence of temperature stress. Extracellular enzyme activities were assayed and respiratory activities measured. A semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting) was employed to investigate the impact of the applied stress treatments in dependency of litter stoichiometry on structure and function of the decomposing community. In litter with narrow C:nutrient (C:N, C:P) ratios, microbial decomposers were most abundant. Cellulase, chitinase, phosphatase and protease activity decreased after heat and freezing treatments. Decomposer communities and specific functions varied with site, i.e. stoichiometry. The applied stress combined with the respective time of sampling evoked changes of enzyme activities and litter pH. Freezing treatments resulted in a decline in residual plant litter material and increased fungal abundance, indicating slightly accelerated decomposition. Overall, a strong effect of litter stoichiometry on microbial community structures and

  20. Genomic Analyses and Transcriptional Profiles of the Glycoside Hydrolase Family 18 Genes of the Entomopathogenic Fungus Metarhizium anisopliae

    PubMed Central

    Junges, Ângela; Boldo, Juliano Tomazzoni; Souza, Bárbara Kunzler; Guedes, Rafael Lucas Muniz; Sbaraini, Nicolau; Kmetzsch, Lívia; Thompson, Claudia Elizabeth; Staats, Charley Christian; de Almeida, Luis Gonzaga Paula; de Vasconcelos, Ana Tereza Ribeiro; Vainstein, Marilene Henning; Schrank, Augusto

    2014-01-01

    Fungal chitin metabolism involves diverse processes such as metabolically active cell wall maintenance, basic nutrition, and different aspects of virulence. Chitinases are enzymes belonging to the glycoside hydrolase family 18 (GH18) and 19 (GH19) and are responsible for the hydrolysis of β-1,4-linkages in chitin. This linear homopolymer of N-acetyl-β-D-glucosamine is an essential constituent of fungal cell walls and arthropod exoskeletons. Several chitinases have been directly implicated in structural, morphogenetic, autolytic and nutritional activities of fungal cells. In the entomopathogen Metarhizium anisopliae, chitinases are also involved in virulence. Filamentous fungi genomes exhibit a higher number of chitinase-coding genes than bacteria or yeasts. The survey performed in the M. anisopliae genome has successfully identified 24 genes belonging to glycoside hydrolase family 18, including three previously experimentally determined chitinase-coding genes named chit1, chi2 and chi3. These putative chitinases were classified based on domain organization and phylogenetic analysis into the previously described A, B and C chitinase subgroups, and into a new subgroup D. Moreover, three GH18 proteins could be classified as putative endo-N-acetyl-β-D-glucosaminidases, enzymes that are associated with deglycosylation and were therefore assigned to a new subgroup E. The transcriptional profile of the GH18 genes was evaluated by qPCR with RNA extracted from eight culture conditions, representing different stages of development or different nutritional states. The transcripts from the GH18 genes were detected in at least one of the different M. anisopliae developmental stages, thus validating the proposed genes. Moreover, not all members from the same chitinase subgroup presented equal patterns of transcript expression under the eight distinct conditions studied. The determination of M. anisopliae chitinases and ENGases and a more detailed study concerning the enzymes

  1. Physical activity

    MedlinePlus

    ... time they spend watching TV and using a computer and other electronic devices. All of these activities ... U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans: Recommendation ... Page last updated: ...

  2. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  3. Activity Scale.

    ERIC Educational Resources Information Center

    Kerpelman, Larry C.; Weiner, Michael J.

    This twenty-four item scale assesses students' actual and desired political-social activism in terms of physical participation, communication activities, and information-gathering activities. About ten minutes are required to complete the instrument. The scale is divided into two subscales. The first twelve items (ACT-A) question respondents on…

  4. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber.

    PubMed

    Sang, Mee Kyung; Kim, Ki Deok

    2011-06-01

    We investigated direct and indirect effects of compost water extracts (CWEs) from Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 for the control of anthracnoses caused by Colletotrichum coccodes on pepper and C. orbiculare on cucumber. All tested CWEs significantly (P < 0.05) inhibited in vitro conidial germination and appressorium formation of the fungal pathogens; however, DL-β-amino-n-butyric acid (BABA) failed to inhibit the conidial development of the pathogens. Direct treatments of the CWEs and BABA on pepper and cucumber leaves at 1 and 3 days before or after inoculation significantly (P < 0.05) reduced anthracnose severities; Iljuk-3, Shinong-9, and BABA for pepper and Iljuk-7 for cucumber had more protective activities than curative activities. In addition, root treatment of CWEs suppressed anthracnoses on the plants by the pathogens; however, CWE treatment on lower leaves failed to reduce the diseases on the upper leaves of the plants. The CWE root treatments enhanced not only the expression of the pathogenesis-related (PR) genes CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, and CaPR-10 in pepper and PR1-1a, PR-2, PR-3, and APOX in cucumber but also the activity of β-1,3-glucanase, chitinase, and peroxidase and the generation of hydrogen peroxide in pepper and cucumber under pathogen-inoculated conditions. However, the CWE treatments failed to induce the plant responses under pathogen-free conditions. These results indicated that the CWEs had direct effects, reducing anthracnoses by C. coccodes on pepper leaves and C. orbiculare on cucumber leaves through protective and curative effects. In addition, CWE root treatments could induce systemic resistance in the primed state against pathogens on plant leaves that enhanced PR gene expression, defense-related enzyme production, and hydrogen peroxide generation rapidly and effectively immediately after pathogen infection. Thus, the CWEs might suppress anthracnoses on leaves of both pepper and cucumber through primed

  5. Active ratchets

    NASA Astrophysics Data System (ADS)

    Angelani, L.; Costanzo, A.; Di Leonardo, R.

    2011-12-01

    We analyze self-propelling organisms, or active particles, in a periodic asymmetric potential. Unlike standard ratchet effect for Brownian particles requiring external forcing, in the case of active particles asymmetric potential alone produces a net drift speed (active ratchet effect). By using theoretical models and numerical simulations we demonstrate the emergence of the rectification process in the presence of an asymmetric piecewise periodic potential. The broken spatial symmetry (external potential) and time symmetry (active particles) are sufficient ingredients to sustain unidirectional transport. Our findings open the way to new mechanisms to move in directional manner motile organisms by using external periodic static fields.

  6. Faculty Activism

    ERIC Educational Resources Information Center

    Academe, 2005

    2005-01-01

    Blending scholarship and activism, whether domestic or international, takes some real work. Two scholar-activists reflect on why and how activism can be more than academic labor in this feature of the "Academe" journal. This feature includes the following brief reflections on political work, both local and global that demonstrates how on campus…

  7. Indoor Activities

    MedlinePlus

    ... so you can do some lifting while you watch TV. Walk around the house when you talk on the phone. Make an extra trip up and down the stairs when you do the laundry. Download the Tip Sheet Indoor Activities (PDF, 739.53 KB) You Might Also Like Sun Safety Have Fun. Be Active with Your Dog! ...

  8. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  9. Outdoor Activities.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Twenty-four activities suitable for outdoor use by elementary school children are outlined. Activities designed to make children aware of their environment include soil painting, burr collecting, insect and pond water collecting, studies of insect galls and field mice, succession studies, and a model of natural selection using dyed toothpicks. A…

  10. Astronomy Activities.

    ERIC Educational Resources Information Center

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  11. Activated Charcoal

    MedlinePlus

    ... ACTIVATED CHARCOAL are as follows:Trapping chemicals to stop some types of poisoning when used as a ... Charbon Végétal, Charbon Végétal Activé, Charcoal, Gas Black, Lamp Black, Medicinal Charcoal, Noir de Gaz, Noir de ...

  12. CSF markers of Alzheimer’s pathology and microglial activation are associated with altered white matter microstructure in asymptomatic adults at risk for Alzheimer’s disease

    PubMed Central

    Melah, Kelsey E; Lu, Sharon Yuan-Fu; Hoscheidt, Siobhan M; Alexander, Andrew L; Adluru, Nagesh; Destiche, Daniel J; Carlsson, Cynthia M; Zetterberg, Henrik; Blennow, Kaj; Okonkwo, Ozioma C; Gleason, Carey E; Dowling, N Maritza; Bratzke, Lisa C; Rowley, Howard A; Sager, Mark A; Asthana, Sanjay; Johnson, Sterling C; Bendlin, Barbara B

    2015-01-01

    Background The immune response in Alzheimer’s disease (AD) involves activation of microglia which may remove β-amyloid. However, overproduction of inflammatory compounds may exacerbate neural damage in Alzheimer’s disease. AD pathology accumulates years before diagnosis, yet the extent to which neuroinflammation is involved in the earliest disease stages is unknown. Objective To determine whether neuroinflammation exacerbates neural damage in preclinical AD. Methods We utilized cerebrospinal fluid (CSF) and magnetic resonance imaging collected in 192 asymptomatic late-middle-aged adults (mean age=60.98 years). Neuroinflammatory markers chitinase-3-like protein 1 (YKL-40) and monocyte chemoattractant protein-1 (MCP-1) in CSF were utilized as markers of neuroinflammation. Neural cell damage was assessed using CSF neurofilament light chain protein (NFL), CSF total tau (T-Tau), and neural microstructure assessed with diffusion tensor imaging (DTI). With regard to AD pathology, CSF Aβ42 and tau phosphorylated at threonine 181 (P-Tau181) were used as markers of amyloid and tau pathology, respectively. We hypothesized that higher YKL-40 and MCP-1 in the presence of AD pathology would be associated with higher NFL, T-Tau, and altered microstructure on DTI. Results Neuroinflammation was associated with markers of neural damage. Higher CSF YKL-40 was associated with both higher CSF NFL and T-Tau. Inflammation interacted with AD pathology, such that greater MCP-1 and lower Aβ42 was associated with altered microstructure in bilateral frontal and right temporal lobe and that greater MCP-1 and greater P-Tau181 was associated with altered microstructure in precuneus. Conclusion Inflammation may play a role in neural damage in preclinical AD. PMID:26836182

  13. Pathogenic and enzyme activities of the entomopathogenic fungus Tolypocladium cylindrosporum (Ascomycota: Hypocreales) from Tierra del Fuego, Argentina.

    PubMed

    Scorsetti, Ana C; Elíades, Lorena A; Stenglein, Sebastián A; Cabello, Marta N; Pelizza, Sebastián A; Saparrat, Mario C N

    2012-06-01

    Tolypocladium cylindrosporum is an entomopathogenic fungi that has been studied as a biological control agent against insects of several orders. The fungus has been isolated from the soil as well as from insects of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera. In this study, we analyzed the ability of a strain of T cylindrosporum, isolated from soil samples taken in Tierra del Fuego, Argentina, to produce hydrolytic enzymes, and to study the relationship of those activities to the fungus pathogenicity against pest aphids. We have made the traditional and molecular characterization of this strain of T cylindrosporum. The expression of hydrolase activity in the fungal strain was estimated at three incubation temperatures (4 degreeC, 12 degreeC and 24 degreeC), on different agar media supplemented with the following specific substrates: chitin azure, Tween 20, casein, and urea for chitinase, lipase, protease, and urease activity, respectively. The hydrolytic-enzyme activity was estimated qualitatively according to the presence of a halo of clarification through hydrolase action, besides was expressed semi-quantitatively as the ratio between the hydrolytic-halo and colony diameters. The pathogenicity of the fungus was tested on adults of the aphid Rhopalosiphum padi at three temperatures of incubation (4 degree C, 12 degree C and 24 degree C). The suspension was adjusted to a concentration of 1x10(7) conidia/ml. In pathogenicity assays at seven days post-inoculation, the fungus caused the mortality of adults of Ropalosiphum padi at different temperatures also showed a broad ability to grow on several agar-culture media, supplemented with different carbon sources at the three incubation temperatures tested. Although, the growth was greater with higher incubation temperatures (with maximum levels at 24 degreeC), the fungus reached similar colony diameters after 15 days of incubation on the medium supplemented with Tween 20 at the lower two incubation

  14. Activated Charcoal

    MedlinePlus

    ... is used to treat poisonings, reduce intestinal gas (flatulence), lower cholesterol levels, prevent hangover, and treat bile ... lower cholesterol levels in the blood. Decreasing gas (flatulence). Some studies show that activated charcoal is effective ...

  15. Activation analysis

    SciTech Connect

    Alfassi, Z.B. . Dept. of Nuclear Engineering)

    1990-01-01

    This volume contains 16 chapters on the application of activation analysis in the fields of life sciences, biological materials, coal and its effluents, environmental samples, archaeology, material science, and forensics. Each chapter is processed separately for the data base.

  16. Get Active

    MedlinePlus

    ... section Health Conditions 4 of 10 sections Take Action! Take Action: How Active Are You? First, think about your ... section Learn More 5 of 10 sections Take Action: Get Started I’m just getting started. Start ...

  17. Integrin activation

    PubMed Central

    Ginsberg, Mark H.

    2014-01-01

    Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of “inside-out” signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals. [BMB Reports 2014; 47(12): 655-659] PMID:25388208

  18. Active Cytokinins

    PubMed Central

    Mornet, René; Theiler, Jane B.; Leonard, Nelson J.; Schmitz, Ruth Y.; Moore, F. Hardy; Skoog, Folke

    1979-01-01

    Four series of azidopurines have been synthesized and tested for cytokinin activity in the tobacco callus bioassay: 2- and 8-azido-N6-benzyladenines, -N6-(Δ2-isopentenyl)adenines, and -zeatins, and N6-(2- and 4-azidobenzyl)adenines. The compounds having 2-azido substitution on the adenine ring are as active as the corresponding parent compounds, while those with 8-azido substitution are about 10 or more times as active. The 8-azidozeatin, which is the most active cytokinin observed, exhibited higher than minimal detectable activity at 1.2 × 10−5 micromolar, the lowest concentration tested. The shape of the growth curve indicates that even a concentration as low as 5 × 10−6 micromolar would probably be effective. By comparison, the lowest active concentration ever reported for zeatin has been 5 × 10−5 micromolar, representing a sensitivity rarely attained. All of the azido compounds have been submitted to photolysis in aqueous ethanol, and the photoproducts have been detected and identified by low and high resolution mass spectrometry. They are rationalized as products of abstraction and insertion reactions of the intermediate nitrenes. The potential of the major released products as cytokinins was also assessed by bioassay. 2-Azido-N6-(Δ2-isopentenyl)adenine competed with [14C]kinetin for the cytokinin-binding protein isolated from wheat germ. When the azido compound was photolysed in the presence of this protein, its attachment effectively blocked the binding of [14C]kinetin. PMID:16661017

  19. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    PubMed Central

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  20. Get Active

    MedlinePlus

    ... Lifting small weights – you can even use bottled water or cans of food as weights Watch these videos for muscle strengthening exercises to do at home or at the gym. If you do muscle-strengthening activities with weights, check out the do’s and don’ ...

  1. Learning Activities.

    ERIC Educational Resources Information Center

    Tipton, Tom, Ed.

    1983-01-01

    Presents a flow chart for naming inorganic compounds. Although it is not necessary for students to memorize rules, preliminary skills needed before using the chart are outlined. Also presents an activity in which the mass of an imaginary atom is determined using lead shot, Petri dishes, and a platform balance. (JN)

  2. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  3. Activity report

    SciTech Connect

    Yu, S W

    2008-08-11

    This report is aimed to show the author's activities to support the LDRD. The title is 'Investigation of the Double-C Behavior in the Pu-Ga Time-Temperature-Transformation Diagram' The sections are: (1) Sample Holder Test; (2) Calculation of x-ray diffraction patterns; (3) Literature search and preparing publications; (4) Tasks Required for APS Experiments; and (5) Communications.

  4. Molecular size and net charge of pathogenesis-related enzymes from barley (Hordeum vulgare L., v. Karat) infected with Drechslera teres f. teres (Sacch.) Shoem.

    PubMed

    Rothe, G M; Welschbillig, N; Reiss, E

    1998-05-01

    Molecular size and net charge of isoforms of pathogenesis-related (PR) chitinase, beta-1,3-glucanase and peroxidase were studied in uninfected barley (Hordeum vulgare L., v. Karat) leaves and in barley leaves infected with the pathogenic fungus Drechslera teres f. teres (Sacch.) Shoem. Molecular characteristics were determined by time-dependent polyacrylamide gradient gel electrophoresis under native conditions and by applying an extended version of the computer program MOL-MASS (Rothe, G. M., Weidmann, H., Electrophoresis 1991, 12, 703-709). Uninfected barley leaves contained predominantly one peroxidase isozyme but also three very weak peroxidases. Activities of all of these three peroxidases increased considerably after infection with Drechslera teres. The molecular masses of peroxidases 1 and 3 were estimated to be 38 +/- 5 and 42 +/- 7 kDa and their apparent valences at pH 8.4 were Z = 3.13 and 3.20, respectively. Amongst the chitinase isoforms, chitinase 1 and chitinase 2 appeared after infection, while chitinase 3 was also observed in uninfected leaves of barley. The molecular mass of chitinase 3 (31 +/- 6 kDa; f/fo = 1.20) was larger than that of chitinase 1 (20 +/- 2 kDa; f/fo = 1.04) and chitinase 2 (23 +/- 3 kDa; f/fo = 1.06). The valence of constitutive chitinase 3 (Z = 1.44 +/- 0.81) at pH 8.4 was lower than that of adaptive chitinase 1 (Z = 3.27 +/- 1.02) and chitinase 2 (Z = 2.96 +/- 1.38). Infection of barley leaves with Drechslera teres also induced the hydrolytic enzyme beta-1,3-glucanase 1; beta-1,3-glucanase 2 appeared in uninfected and in infected leaves. Constitutive beta-1,3-glucanase 2 was smaller (molecular mass 19 +/- kDa; f/fo = 1.05) than adaptive beta-1,3-glucanase 1 (molecular mass 26 +/- 4 kDa; f/fo = 1.07). The valence of adaptive beta-1,3-glucanase 1 (Z = 9.58 +/- 4.17) was approximately threefold that of beta-1,3-glucanase 2 (Z = 2.80 +/- 0.93). PMID:9629909

  5. Laboratory Activities

    SciTech Connect

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  6. Hepatoprotective Activity.

    PubMed

    2016-01-01

    The liver performs a vital role in metabolism, secretion, storage, and detoxification of endogenous and exogenous substances. Oxidative stress and free radicals enhance the severity of hepatic damage, which can be overcome by the antioxidant mechanism. Plant extracts can be the best source of such antioxidants and mediate hepatoprotective activity. In this chapter, high-dose paracetamol-induced hepatotoxicity in rat model is discussed with explanations of biochemical and histopathological studies. PMID:26939279

  7. Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    PubMed Central

    Montgomery, Michael T.; Kirchman, David L.

    1993-01-01

    We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin. Images PMID:16348865

  8. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    PubMed

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  9. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere

    PubMed Central

    Mallikharjuna Rao, K.L.N.; Siva Raju, K.; Ravisankar, H.

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30 °C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  10. Analgesic Activity.

    PubMed

    2016-01-01

    Analgesics are agents which selectively relieve pain by acting in the CNS and peripheral pain mediators without changing consciousness. Analgesics may be narcotic or non-narcotic. The study of pain in animals raises ethical, philosophical, and technical problems. Both peripheral and central pain models are included to make the test more evident for the analgesic property of the plant. This chapter highlights methods such as hot plate and formalin and acetic acid-induced pain models to check the analgesic activity of medicinal plants. PMID:26939272

  11. Active Sonar

    NASA Astrophysics Data System (ADS)

    Sullivan, Edmund J.

    An active sonar system is one in which pulses of acoustic energy are launched into the water for the purpose of producing echoes. By examining the echoes of transmitted pulses, it affords the capability of both detecting the presence of and estimating the range, and in certain cases, the bearing, of an underwater target. In its most common arrangement, the transmitter (or projector) and the receiver are colocated. This is known as the monostatic configuration and is depicted in Figure 1. When this is not so, it is known as a bistatic or multistatic configuration.

  12. Active packaging with antifungal activities.

    PubMed

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. PMID:26803804

  13. Active tectonics

    SciTech Connect

    Not Available

    1986-01-01

    This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonic processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.

  14. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    SciTech Connect

    Grison, R.; Grezes-Besset, B.; Lucante, N.

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  15. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumactivities under elevated CO2 were

  16. DAVIC activities

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiroshi

    1995-12-01

    DAVIC (Digital Audio Visual Council) is the defacto standardization organization established in Mar. 1994, based on international consensus for digital audio visual services. After completion of MPEG2 standardization, the broadcasting industry, the communication industry, the computer industry, and consumer electronics industry have started development of concrete services and products. Especially the interactive digital audio visual services, such as Video On Demand (VOD) or Near Video On Demand (NVOD), have become hot topics all over the world. Such interactive digital audio visual services are combined technologies of multi-media coding, digital transmission and computer networking. Therefore more than 150 organizations from all industry sectors have participated in DAVIC and are contributing from their own industrial contexts. DAVIC's basic policy is to use the available technologies specified by the other standards bodies as much as possible. So DAVIC's standardization activities have close relationship with ISO IEC/JTC1/SC29, ITU-T SG 9, ATM-Forum, IETF, IMA, DVB, etc. DAVIC is trying to specify Applications, Reference Models, Security, Usage Information Control, and the interfaces and protocols among the Content Provider, the Server, the core network, the access network, and the Set Top Unit. DAVIC's first goal is to specify DAVIC1.0 based on CFP1 (Call for Proposal) and CFP2 by Dec. 1995, and the next direction is under preparation for further progress based on CFP3 and CFP4.

  17. Activities update

    NASA Astrophysics Data System (ADS)

    Smith, Gerald A.

    1994-07-01

    The present report is an update on activities for the second year of funding. Research leading to a detailed characterization of antiproton annihilation in nuclei has resulted in a published analysis of fast deuteron production from carbon and uranium targets. This follows previously reported work and publications by our group on gamma-ray, neutral and charged pion, proton, and neutron production. The deuteron measurements are important to our SHIVA Star antiproton- catalyzed microfission experiment at the Phillips Laboratory, Kirtland AFB, in that they help constrain theoretical models of light nuclei production and subsequent energy deposition in the target. Work continues at SHIVA Star on working fluid formation and target compression for the microfission experiment. Excellent progress has been made, both theoretically and experimentally, on these important aspects of the experiment. The Penn State group, working in collaboration with Los Alamos National Laboratory physicists, trapped and held up to 721,000 antiprotons per beam injection pulse from the LEAR accelerator during July, 1993. This was a crucial step to the ultimate goal of transferring large numbers of antiprotons to the Phillips Laboratory for the antiproton-catalyzed microfission experiment.

  18. Active Segmentation

    PubMed Central

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary. We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach. PMID:20686671

  19. Impact of repeated dry-wet cycles on soil greenhouse gas emissions, extracellular enzyme activity and nutrient cycling in a temperate forest

    NASA Astrophysics Data System (ADS)

    Leitner, Sonja; Zimmermann, Michael; Bockholt, Jan; Schartner, Markus; Brugner, Paul; Holtermann, Christian; Zechmeister-Boltenstern, Sophie

    2014-05-01

    , chitinase, phosphatase and protease) and phenoloxidase responded strongly to rewetting events with significantly increased activities. Furthermore, we observed a pulsed release of inorganic nitrogen which resulted in high concentrations of NH4 and NO3 in the first 24h after soil rewetting, especially in summer when soil temperatures were high. Emissions of CO2 were increased in the first 24 to 48h after rewetting, and then slowly decreased again. Overall, our results indicate that repeated dry-wet cycles strongly influence microbial soil processes, even in the first year of experimental rainfall manipulation. The next 2 years will show whether these changes are permanent, or if the system adapts to the new precipitation regime.

  20. IASS Activity

    NASA Astrophysics Data System (ADS)

    Hojaev, Alisher S.; Ibragimova, Elvira M.

    2015-08-01

    It’s well known, astronomy in Uzbekistan has ancient roots and traditions (e.g., Mirzo Ulugh Beg, Abū al-Rayhān al-Bīrūnī, Abū ‘Abdallāh al-Khwārizmī) and astronomical heritage carefully preserved. Nowadays uzbek astronomers play a key role in scientific research but also in OAD and Decadal Plan activity in the Central Asia region. International Aerospace School (IASS) is an amazing and wonderful event held annually about 30 years. IASS is unique project in the region, and at the beginning we spent the Summer and Winter Schools. At present in the summer camp we gather about 50 teenage and undergraduate students over the country and abroad (France, Malaysia, Turkey, Azerbaijan, Pakistan, Russia, etc.). They are selected on the basis of tests of astronomy and space issues. During two weeks of IASS camp the invited scientists, cosmonauts and astronauts as well as other specialists give lectures and engage in practical exercises with IASS students in astronomy, including daily observations of the Sun and night sky observations with meniscus telescope, space research and exploration, aerospace modelling, preparation and presentation of original projects. This is important that IASS gives not theoretical grounds only but also practically train the students and the hands-on training is the major aims of IASS. Lectures and practice in the field of astronomy carried out with the direct involvement and generous assistance of Uranoscope Association (Paris, France). The current 26-th IASS is planned to held in July 2015.

  1. Activation Energy

    NASA Technical Reports Server (NTRS)

    Gadeken, Owen

    2002-01-01

    Teaming is so common in today's project management environment that most of us assume it comes naturally. We further assume that when presented with meaningful and challenging work, project teams will naturally engage in productive activity to complete their tasks. This assumption is expressed in the simple (but false) equation: Team + Work = Teamwork. Although this equation appears simple and straightforward, it is far from true for most project organizations whose reality is a complex web of institutional norms based on individual achievement and rewards. This is illustrated by the very first successful team experience from my early Air Force career. As a young lieutenant, I was sent to Squadron Officer School, which was the first in the series of Air Force professional military education courses I was required to complete during my career. We were immediately formed into teams of twelve officers. Much of the course featured competition between these teams. As the most junior member of my team, I quickly observed the tremendous pressure to show individual leadership capability. At one point early in the course, almost everyone in our group was vying to become the team leader. This conflict was so intense that it caused us to fail miserably in our first outdoor team building exercise. We spent so much time fighting over leadership that we were unable to complete any of the events on the outdoor obstacle course. This complete lack of success was so disheartening to me that I gave our team little hope for future success. What followed was a very intense period of bickering, conflict, and even shouting matches as our dysfunctional team tried to cope with our early failures and find some way to succeed. British physician and researcher Wilfred Bion (Experiences in Groups, 1961) discovered that there are powerful psychological forces inherent in all groups that divert from accomplishing their primary tasks. To overcome these restraining forces and use the potential

  2. The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take-all.

    PubMed

    Wang, Miao; Xing, Yuwan; Wang, Junfang; Xu, Yubin; Wang, Gang

    2014-08-01

    Take-all, a disease caused by the fungus Gaeumannomyces graminis var. tritici, is the most important root disease of wheat and causes severe yield losses worldwide. Using microorganisms as biological agents to control the disease is important because no resistant cultivars or effective chemical fungicides are available. In this study, we tested the biological control capability of a chitinase produced by the endophytic bacterium Serratia proteamaculans 336x against wheat take-all. The chitinase gene chi1 of S. proteamaculans 336x was cloned and heterologously expressed in Escherichia coli. The recombinant protein exhibited chitinase activity and in vitro antifungal activity against G. graminis var. tritici. With in-frame deletion of the chi1 gene by homologous recombination, the chi1-deleted mutant was devoid of chitinase activity and the biocontrol efficacy was reduced by 42.5%. The complementation of the Δchi1 mutant strain by the chi1 gene resulted in the partial restoration of the chitinase activity and biocontrol efficacy. These results support a role for the Chi1 protein in the biocontrol process of S. proteamaculans 336x against wheat take-all. PMID:25093749

  3. CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid.

    PubMed

    Porrini, V; Lanzillotta, A; Branca, C; Benarese, M; Parrella, E; Lorenzini, L; Calzà, L; Flaibani, R; Spano, P F; Imbimbo, B P; Pizzi, M

    2015-08-27

    Activation of microglia associated with neuroinflammation and loss of phagocytic activity is considered to play a prominent role in the pathogenesis of Alzheimer's disease (AD). CHF5074 (CSP-1103) has been shown to improve cognition and reduce brain inflammation in patients with mild cognitive impairment (MCI). CHF5074 was also found to reverse impairments in recognition memory and improve hippocampal long-term potentiation when administered to plaque-free Tg2576 mice (5-month-old) for 4 weeks. Though, no investigation has focused on the consequence of CHF5074 treatment on microglia polarization yet. In this study we evaluated the effect of CHF5074 administration (375 ppm in the diet) to 5-month-old Tg2576 mice on the expression of pro-inflammatory (M1) genes, Interleukin 1 beta (IL-1β), Tumor Necrosis Factor alpha (TNFα) and inducible Nitric Oxide Synthase (iNOS), and anti-inflammatory/phagocytic (M2) markers Mannose Receptor type C 1 (MRC1/CD206), Triggering Receptor Expressed on Myeloid cells 2 (TREM2) and Chitinase 3-like 3 (Ym1). No changes of pro-inflammatory gene transcription but a reduced expression of MRC1/CD206, TREM2 and Ym1 were detected in the hippocampus of young Tg2576 mice receiving normal diet, when compared to wild-type littermates. CHF5074 did not affect the pro-inflammatory transcription but significantly increased the expression of MRC1/CD206 and Ym1. CHF5074 effects appeared to be hippocampus-specific, as the M2 transcripts were only slightly modified in the cerebral cortex. In primary cultures of mouse astrocyte-microglia, CHF5074 totally suppressed the expression of TNF-α, IL-1β and iNOS induced by 10 μM β-amyloid1-42 (Aβ42). Moreover, CHF5074 significantly increased the expression of anti-inflammatory/phagocytic markers MRC1/CD206 and TREM2, reduced by the Aβ42 application alone. The effect of CHF5074 was not reproduced by ibuprofen (3 μM or 500 μM) or R-flurbiprofen (3 μM or 100 μM), as both compounds limited the pro

  4. Physical Activity (Exercise)

    MedlinePlus

    ... fitness. Your fitness routine should include aerobic and strength-training activities, and may also include stretching activities. Aerobic ... Examples include walking, jogging, bicycling, swimming, and tennis. Strength-training activities These activities increase the strength and endurance ...

  5. [Adapting physical activities for an active retirement].

    PubMed

    Renaudie, François

    2016-01-01

    The benefits of doing adapted physical exercise for elderly people have been proven. For more than thirty years, the French Federation for an Active Retirement has been striving to help people age well by proposing multiple activities to remain in good health after the age of 50. Doctors, activity leaders and federal instructors are attentive to each individual's capacities. PMID:27449307

  6. Learning as Activity.

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2002-01-01

    Integrates contemporary theories of learning into a theory of learning as activity. Explains ecological psychology, changes in understanding of learning, activity systems and activity theory (including the integration of consciousness and activity), and activity structure; and discusses learning as a cognitive and social process. (LRW)

  7. Coagulant Activity of Leukocytes. TISSUE FACTOR ACTIVITY

    PubMed Central

    Niemetz, J.

    1972-01-01

    Peritoneal leukocytes harvested from rabbits which have received two spaced doses of endotoxin have significantly greater (10-fold) coagulant activity than leukocytes from control rabbits. The coagulant activity accelerates the clotting of normal plasma and activates factor X in the presence of factor VII and calcium and is therefore regarded as tissue factor. A total of 40-80 mg tissue factor activity was obtained from the peritoneal cavity of single endotoxin-treated rabbits. In leukocyte subcellular fractions, separated by centrifugation, the specific tissue factor activity sedimented mainly at 14,500 g and above. The procoagulant activity was destroyed after heating for 10 min at 65°C but was preserved at lower temperatures. Polymyxin B, when given with the first dose of endotoxin, reduced both the number of peritoneal leukocytes and their tissue factor activity by two-thirds. When given immediately before the second dose of endotoxin, polymyxin B had no inhibitory effect. PMID:4333021

  8. AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites

    PubMed Central

    Kim, Lark Kyun; Morita, Rimpei; Kobayashi, Yasushi; Eisenbarth, Stephanie C.; Lee, Chun Geun; Elias, Jack; Eynon, Elizabeth E.; Flavell, Richard A.

    2015-01-01

    Chitinases are enzymes that cleave chitin, a component of the exoskeleton of many organisms including the house dust mite (HDM). Here we show that knockin mice expressing an enzymatically inactive acidic mammalian chitinase (AMCase), the dominant true chitinase in mouse lung, showed enhanced type 2 immune responses to inhaled HDM. We found that uncleaved chitin promoted the release of IL-33, whereas cleaved chitin could be phagocytosed and could induce the activation of caspase-1 and subsequent activation of caspase-7; this results in the resolution of type 2 immune responses, probably by promoting the inactivation of IL-33. These data suggest that AMCase is a crucial regulator of type 2 immune responses to inhaled chitin-containing aeroallergens. PMID:26038565

  9. Facts about Physical Activity

    MedlinePlus

    ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Facts about Physical Activity ... Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File Formats Help: How ...

  10. Physical Activity Assessment

    Cancer.gov

    Current evidence convincingly indicates that physical activity reduces the risk of colon and breast cancer. Physical activity may also reduce risk of prostate cancer. Scientists are also evaluating potential relationships between physical activity and other cancers.

  11. Active commuting to school

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declines in physical activity levels have coincided with increasing rates of obesity in children. This is problematic because physical activity has been shown to attenuate weight gain in children. Active commuting to school is one way of increasing children's physical activity. However, given the hi...

  12. Civil Law: 12 Activities.

    ERIC Educational Resources Information Center

    Dresbach, Debra

    These learning activities on civil law are intended to supplement the secondary level Scholastic materials "Living Law." Case studies, simulations, and role-play activities are included. Information provided for each activity includes a brief overview, background information, teacher instructions and a description of each activity. Activities…

  13. Increasing Youth Physical Activity with Activity Calendars

    ERIC Educational Resources Information Center

    Eckler, Seth

    2016-01-01

    Physical educators often struggle with ways to get their students to be active beyond the school day. One strategy to accomplish this is the use of physical activity calendars (PACs). The purpose of this article is to support the use of PACs and give practical advice for creating effective PACs.

  14. Persistent active longitudes in sunspot activity

    NASA Astrophysics Data System (ADS)

    Berdyugina, S.; Usoskin, I.

    It has been recently shown that spot activity of cool stars including solar analogues, is grouped in two clearly distinguished active longitudes which are persistent within at least one starspot cycle. Solar data including positional information of individual sunspots / groups extends back for about 130 years covering 12 solar cycles. Here we present the results of our research of longitudinal distribution of sunspot activity using an analysis similar to that applied to the stars. First, we synthesized, from the actual sunspot data, the sun's light curve as if it was defined only by spots. Then solar images were calculated from this light curve, giving a natural smoothing of the spot pattern. For each Carrington rotation, longitudinal position of these smoothed spot regions was calculated. The analysis reveals the following main features: - Sunspot activity is grouped in two active longitudes (with the differential rotation taken into account) 180o apart from each other which are persistent through the entire studied period of 12 cycles, similarly to stars. - The longitude migration is determined by changing the mean latitude of sunspot activity (the Maunder butterfly) and differential rotation. - The two longitudes periodically alternate the dominant activity with about 3.7 year period implying for the existence of the Sflip-flopT phenomenon known in - starspot activity.

  15. Antifeedant activity of quassinoids.

    PubMed

    Leskinen, V; Polonsky, J; Bhatnagar, S

    1984-10-01

    The antifeedant activity of 13 quassinoids of different structural types has been studied against the Mexican bean beetle (Epilachna varivestis Mulsant) 4th instar larvae and the southern armyworm (Spodoptera eridania Crawer) 5th instar larvae. All quassinoids tested displayed significant activity against the Mexican bean beetle and, thus, do not reveal a simple structure-activity relationship. Five quassinoids were active against the southern armyworm. Interestingly, four of these-bruceantin (I), glaucarubinone (VI), isobruceine A (VIII), and simalikalactone D (XI)-possess the required structural features for antineoplastic activity. The noncytotoxic quassin (X) is an exception; it is active against both pests. PMID:24318349

  16. CATALASE ACTIVITY IN LEPTOSPIRA

    PubMed Central

    Rao, P. J.; Larson, A. D.; Cox, C. D.

    1964-01-01

    Rao, P. J. (University of Illinois, Urbana), A. D. Larson, and C. D. Cox. Catalase activity in Leptospira. J. Bacteriol. 88:1045–1048. 1964.—A number of serotypes of Leptospira were found to possess catalase activity, although considerable variation in activity existed among various serotypes. Catalase activity of L. pomona was reduced by inhibitors commonly employed for arresting catalase activity in other biological systems. Catalase activity was increased three to five times by growing cultures under conditions of oxygen availability; however, aeration had no beneficial effect on total viable cell crop. The relationship of oxygen to metabolism and future studies on virulence of the leptospirae is discussed. PMID:14219017

  17. Active Fire Mapping Program

    MedlinePlus

    ... Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS ... Data Web Services Latest Detected Fire Activity Other MODIS Products Frequently Asked Questions About Active Fire Maps ...

  18. Preschoolers’ Physical Activity Behaviours

    PubMed Central

    Irwin, Jennifer D.; He, Meizi; Bouck, L. Michelle Sangster; Tucker, Patricia; Pollett, Graham L.

    2016-01-01

    Objectives To understand parents’ perspectives of their preschoolers’ physical activity behaviours. Methods A maximum variation sample of 71 parents explored their preschoolers’ physical activity behaviours through 10 semi-structured focus group discussions. Results Parents perceived Canada’s Physical Activity Guidelines for Children as inadequate; that their preschoolers get and need more than 30–90 minutes of activity daily; and that physical activity habits must be established during the preschool years. Nine barriers against and facilitators toward adequate physical activity were proposed: child’s age, weather, daycare, siblings, finances, time, society and safety, parents’ impact, and child’s activity preferences. Discussion The need for education and interventions that address current barriers are essential for establishing physical activity as a lifestyle behaviour during early childhood and, consequently, helping to prevent both childhood and adulthood obesity. PMID:16625802

  19. Balance Food and Activity

    MedlinePlus

    ... For Health Professionals Tools and Resources Promotional Materials Programming Materials Weight Management Nutrition Physical Activity Reduce Screen ... Training For Health Professionals Tools & Resources Promotional ... Programming Materials Weight Management Nutrition Physical Activity Reduce Screen ...

  20. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  1. Exercise and Physical Activity

    MedlinePlus

    Alzheimer ’s Caregiving Tips Exercise and Physical Activity Being active and getting exercise helps people with Alzheimer’s disease feel better. Exercise helps keep their muscles, joints, and heart in ...

  2. Antimicrobial activity of isopteropodine.

    PubMed

    García, Rubén; Cayunao, Cesia; Bocic, Ronny; Backhouse, Nadine; Delporte, Carle; Zaldivar, Mercedes; Erazo, Silvia

    2005-01-01

    Bioassay-directed fractionation for the determination of antimicrobial activity of Uncaria tomentosa, has led to the isolation of isopteropodine (0.3%), a known Uncaria pentacyclic oxindol alkaloid that exhibited antibacterial activity against Gram positive bacteria. PMID:16042336

  3. Population Education. Awareness Activities.

    ERIC Educational Resources Information Center

    Brouse, Deborah E.

    1990-01-01

    Described are awareness activities that deal with human population growth, resources, and the environment. Activities include simulations, mathematical exercises, and discussions of the topic. Specific examples of what individuals can do to help are listed. (KR)

  4. Major operations and activities

    SciTech Connect

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the major operations and activities on the site. These operations and activities include site management, waste management, environmental restoration and corrective actions, and research and technology development.

  5. Family Activities for Fitness

    ERIC Educational Resources Information Center

    Grosse, Susan J.

    2009-01-01

    This article discusses how families can increase family togetherness and improve physical fitness. The author provides easy ways to implement family friendly activities for improving and maintaining physical health. These activities include: walking, backyard games, and fitness challenges.

  6. Active at Any Size

    MedlinePlus

    ... beginners. Daily life activities Lifestyle activities, such as gardening or washing the car, are great ways to ... bags. Doing chores like lawn mowing, raking leaves, gardening, and housework also count. What questions should I ...

  7. WASTE ACTIVATED SLUDGE PROCESSING

    EPA Science Inventory

    A study was made at pilot scale of a variety of processes for dewatering and stabilization of waste activated sludge from a pure oxygen activated sludge system. Processes evaluated included gravity thickening, dissolved air flotation thickening, basket centrifugation, scroll cent...

  8. Green Schools Activity Booklet.

    ERIC Educational Resources Information Center

    Sacramento Tree Foundation, CA.

    This collection of interdisciplinary hands-on activities covers a variety of topics related to trees and conservation. Twenty-four activities integrate the subjects of social studies, fine arts, science, language arts, math, geography, and music. Although activity instructions are not consistent they usually contain details on objectives and…

  9. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  10. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  11. Bonus Activity Book.

    ERIC Educational Resources Information Center

    Learning, 1992

    1992-01-01

    Provides on-task activities to fill in unexpected extra moments in elementary classes. The activities require little preparation and take 5-15 minutes to complete. There are activities for math, language arts, social science, science, critical thinking, and computer. An outer space board game is also included. (SM)

  12. Activity Sheets. Draft Copy.

    ERIC Educational Resources Information Center

    Duke Power Company, Educational Services Dept., Charlotte, NC.

    This document consists of energy vocabulary activities, three games, worksheets, laboratory activities/exercises, and an introductory classroom exercise designed to introduce energy concepts to students. Vocabulary activities focus on coal and energy consumption. The three games (with instructions) focus on various aspects of energy and energy…

  13. Hepatitis and activity

    PubMed Central

    Krikler, Dennis M.

    1971-01-01

    The effects of physical activity during an attack of infectious hepatitis are discussed. There is no evidence that activity during convalescence produces any ill-effects. On the other hand, strenuous physical activity in the acute stage may be dangerous, possibly because hepatic blood-flow is reduced. PMID:5560143

  14. Measurement of Physical Activity.

    ERIC Educational Resources Information Center

    Dishman, Rod K.; Washburn, Richard A.; Schoeller, Dale A.

    2001-01-01

    Valid assessment of physical activity must be unobtrusive, practical to administer, and specific about physical activity type, frequency, duration, and intensity. Assessment methods can be categorized according to whether they provide direct or indirect (e.g., self-report) observation of physical activity, body motion, physiological response…

  15. Activity Theory and Ontology

    ERIC Educational Resources Information Center

    Peim, Nick

    2009-01-01

    This paper seeks to re-examine Yrio Engestrom's activity theory as a technology of knowledge designed to enable positive transformations of specific practices. The paper focuses on a key paper where Engestrom defines the nature and present state of activity theory. Beginning with a brief account of the relations between activity theory and…

  16. Technology Learning Activities I.

    ERIC Educational Resources Information Center

    International Technology Education Association, Reston, VA.

    This guide contains 30 technology learning activities. Activities may contain all or some of the following: an introduction, objectives, materials and equipment, challenges, limitations, notes and investigations, resources and references used, and evaluation ideas. Activity titles are: (1) Occupations in Construction Technology; (2) Designing a…

  17. Woodsy Owl Activity Guide.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    This guide offers teachers and after-school group leaders 12 fun and engaging activities. Activities feature lessons on trees, water, wind, the earth, food, and waste. The activities are designed to help children aged 5-8 become more aware of the natural environment and fundamental conservation principles. Titles of children's books are embedded…

  18. FLES Games and Activities.

    ERIC Educational Resources Information Center

    Irujo, Suzanne, Ed.

    A number of activities for teaching foreign language in the elementary school (FLES) are presented. The activities were developed by participants in a FLES teacher training workshop, Project INTERACT, in the Boston area. The first section contains games, thematic units, and other activities specifically related to French language instruction,…

  19. FL Activities & Festivals.

    ERIC Educational Resources Information Center

    American Council on the Teaching of Foreign Languages, Hastings-on-Hudson, NY.

    A collection of student, class, and school foreign language activities suggests a variety of projects and describes three specific school efforts. The suggested activities include: (1) individual student efforts such as writing to pen-pals; (2) group activities such as a foreign language auction or sing-along; (3) group projects for the school…

  20. Highlights of 1981 activities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The highlights of NASA's 1981 activities are presented, including the results of the two flights of the space shuttle Columbia and the Voyager 2 encounter with Saturn. Accomplishments in the areas of space transportation operations; space science; aeronautical, energy, and space research and development; as well as space tracking, international activities, and 1981 launch activities are discussed.

  1. Anticancer activity of ferrocenylthiosemicarbazones.

    PubMed

    Sandra, Cortez-Maya; Elena, Klimova; Marcos, Flores-Alamo; Elena, Martínez-Klimova; Arturo, Ramírez-Ramírez; Teresa, Ramírez Apan; Marcos, Martínez-García

    2014-03-01

    Aliphatic and aromatic ferrocenylthiosemicarbazones were synthesized. The characterization of the new ferrocenylthiosemicarbazones was done by IR, (1)H-NMR and (13)C-NMR spectroscopy, elemental analysis and X-ray diffraction studies. The biological activity of the obtained compounds was assessed in terms of anticancer activity. Their activity against U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma), K562 (human chronic myelogenous leukemia), HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human lung adenocarcinoma) cell lines was studied and compared with cisplatin. All tested compounds showed good activity and the aryl-chloro substituted ferrocenylthiosemicarbazones showed the best anticancer activity. PMID:24144199

  2. Transcriptional activators in yeast

    PubMed Central

    2006-01-01

    Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested ∼6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix–loop–helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2). PMID:16464826

  3. Vestibular activation of sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carter, J. R.

    2003-01-01

    AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.

  4. Genetics Home Reference: sialidosis

    MedlinePlus

    ... syndrome Related Information How are genetic conditions and genes named? ... Morrone A. Type II sialidosis: review of the clinical spectrum and identification of a new splicing defect with chitotriosidase assessment in two patients. J ...

  5. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  6. Marine Biology Activities. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  7. Patterns in Active Nematics

    NASA Astrophysics Data System (ADS)

    Yeomans, Julia M.

    Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like, chaotic patterns. We describe how active systems can be stabilised by tuning a physical feature of the system, friction. We demonstrate how the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter and demonstrate vortex ordering at the wet-dry crossover. We show that the self organisation of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices which leads to the positional ordering of topological defects may be a useful step towards the design and control of active materials.

  8. Thermally Activated Driver

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Murray, Robert C.; Walsh, Robert F.

    1987-01-01

    Space-qualified, precise, large-force, thermally activated driver (TAD) developed for use in space on astro-physics experiment to measure abundance of rare actinide-group elements in cosmic rays. Actinide cosmic rays detected using thermally activated driver as heart of event-thermometer (ET) system. Thermal expansion and contraction of silicone oil activates driver. Potential applications in fluid-control systems where precise valve controls are needed.

  9. Activity in distant comets

    NASA Technical Reports Server (NTRS)

    Luu, Jane X.

    1992-01-01

    Activity in distant comets remains a mystery in the sense that we still have no complete theory to explain the various types of activity exhibited by different comets at large distances. This paper explores the factors that should play a role in determining activity in a distant comet, especially in the cases of comet P/Tempel 2, comet Schwassmann-Wachmann 1, and 2060 Chiron.

  10. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  11. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  12. Physical Activity and Cancer

    MedlinePlus

    ... of scientists, ranging from experts in basic biological science to those with expertise in community behavioral interventions to increase physical activity. This combination of scientists and expertise will ...

  13. NASA metrication activities

    NASA Technical Reports Server (NTRS)

    Vlannes, P. N.

    1978-01-01

    NASA's organization and policy for metrification, history from 1964, NASA participation in Federal agency activities, interaction with nongovernmental metrication organizations, and the proposed metrication assessment study are reviewed.

  14. Active material based active sealing technology: Part 1. Active seal requirements vs. active material actuator properties

    NASA Astrophysics Data System (ADS)

    Henry, Christopher P.; Carter, William; Herrera, Guillermo A.; McKnight, Geoffrey P.; Browne, Alan L.; Johnson, Nancy L.; Bazzi, Imad F.

    2010-04-01

    Current seals used for vehicle closures/swing panels are essentially flexible, frequently hollow structures whose designs are constrained by numerous requirements, many of them competing, including door closing effort (both air bind and seal compression), sound isolation, prevention of water leaks, and accommodation of variations in vehicle build. This paper documents the first portion of a collaborative research study/exploration of the feasibility of and approaches for using active materials with shape and stiffness changing attributes to produce active seal technologies, seals with improved performance. An important design advantage of an active material approach compared to previous active seal technologies is the distribution of active material regions throughout the seal length, which would enable continued active function even with localized failure. Included as a major focus of this study was the assessment of polymeric active materials because of their potential ease of integration into the current seal manufacturing process. In Part 1 of this study, which is documented in this paper, potential materials were evaluated in terms of their cost, activation mechanisms, and mechanical and actuation properties. Based on these properties, simple designs were proposed and utilized to help determine which materials are best suited for active seals. Shape memory alloys (SMA) and electroactive polymers (EAP) were judged to be the most promising.

  15. Inducible proteins in citrus rootstocks with different tolerance towards the root rot pathogen Phytophthora palmivora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activities of defense-related proteins (ß-1,3-glucanases, chitinases and peroxidases) and concentrations of total soluble phenolics were measured in roots and leaves of uninfected and infected plants to investigate the response of different citrus rootstock genotypes to the root rot pathogen Phytoph...

  16. Cyclic lipopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of cyclic lipopeptides obtained from B. subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level ...

  17. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  18. Activating Event Knowledge

    ERIC Educational Resources Information Center

    Hare, Mary; Jones, Michael; Thomson, Caroline; Kelly, Sarah; McRae, Ken

    2009-01-01

    An increasing number of results in sentence and discourse processing demonstrate that comprehension relies on rich pragmatic knowledge about real-world events, and that incoming words incrementally activate such knowledge. If so, then even outside of any larger context, nouns should activate knowledge of the generalized events that they denote or…

  19. Endonuclease activity in lipocalins.

    PubMed Central

    Yusifov, T N; Abduragimov, A R; Gasymov, O K; Glasgow, B J

    2000-01-01

    Several lipocalins contain conserved amino acid sequences similar to the phosphodiester bond cleavage domain of sugar non-specific magnesium-dependent nucleases of the Serratia marcescens type. His-89 and Glu-127 of the S. marcescens endonuclease are believed to have a role in the active catalytic site by the attack of a water molecule at the phosphorus atom of the bridging phosphate. Tear lipocalin contains both amino acids in analogous regions, and is active as a nuclease. Two forms of beta-lactoglobulin contain only Glu-134 (analogous to Glu-127 of the Serratia nuclease) yet retain nuclease activity equal to or greater than that of tear lipocalin. However, retinol-binding protein lacks both of these motifs and shows no detectable activity. DNA-nicking activity is decreased by 80% in the mutant of tear lipocalin that replaces Glu-128 but is unchanged by mutations of His-84. The endonuclease activity of tear lipocalin is dependent on the bivalent cations Mg(2+) or Mn(2+) but is decreased at high concentrations of NaCl. These findings indicate that some lipocalins have non-specific endonuclease activity similar in characteristics to the Mg(2+)-dependent nucleases and related to the conserved sequence LEDFXR (where 'X' denotes 'any other residue'), in which the glutamic residue seems to be important for activity. PMID:10769187

  20. Endonuclease activity in lipocalins.

    PubMed

    Yusifov, T N; Abduragimov, A R; Gasymov, O K; Glasgow, B J

    2000-05-01

    Several lipocalins contain conserved amino acid sequences similar to the phosphodiester bond cleavage domain of sugar non-specific magnesium-dependent nucleases of the Serratia marcescens type. His-89 and Glu-127 of the S. marcescens endonuclease are believed to have a role in the active catalytic site by the attack of a water molecule at the phosphorus atom of the bridging phosphate. Tear lipocalin contains both amino acids in analogous regions, and is active as a nuclease. Two forms of beta-lactoglobulin contain only Glu-134 (analogous to Glu-127 of the Serratia nuclease) yet retain nuclease activity equal to or greater than that of tear lipocalin. However, retinol-binding protein lacks both of these motifs and shows no detectable activity. DNA-nicking activity is decreased by 80% in the mutant of tear lipocalin that replaces Glu-128 but is unchanged by mutations of His-84. The endonuclease activity of tear lipocalin is dependent on the bivalent cations Mg(2+) or Mn(2+) but is decreased at high concentrations of NaCl. These findings indicate that some lipocalins have non-specific endonuclease activity similar in characteristics to the Mg(2+)-dependent nucleases and related to the conserved sequence LEDFXR (where 'X' denotes 'any other residue'), in which the glutamic residue seems to be important for activity. PMID:10769187