Science.gov

Sample records for active chlorine concentration

  1. The effect of pH and chloride concentration on the stability and antimicrobial activity of chlorine-based sanitizers.

    PubMed

    Waters, Brian W; Hung, Yen-Con

    2014-04-01

    Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy.

  2. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    SciTech Connect

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  3. A model to predict threshold concentrations for toxic effects of chlorinated benzenes in sediment

    SciTech Connect

    Fuchsman, P.C.; Duda, D.J.; Barber, T.R.

    1999-09-01

    A probabilistic model was developed to predict effects threshold concentrations for chlorinated benzenes in sediment. Based on published quantitative structure-activity relationships relating the toxicity of chlorinated benzenes to the degree of chlorination, congeners with the same number of chlorine substitutions were considered toxicologically equivalent. Hexachlorobenzene was excluded from the assessment based on a lack of aquatic toxicity at the water solubility limit. The equilibrium partitioning approach was applied in a probabilistic analysis to derive predicted effects thresholds (PETs) for each chlorinated benzene group, with model input distributions defined by published log K{sub ow} values and aquatic toxicity data extracted from the published literature. The probabilistic distributions of PETs generally increased with chlorination, with 20th percentile values ranging from 3.2 mg/kg{sub 1{degree}OC} for chlorobenzene to 67 mg/kg{sub 1%OC} for tetrachlorobenzene congeners. The toxicity of total chlorinated benzenes in sediment can be assessed by applying the PETs in a toxic index model, based on the assumption that multiple chlorinated benzene congeners will show approximately additive toxicity, as characteristic of nonpolar narcotic toxicants. The 20th percentile PET values are one to two orders of magnitude higher than published screening-level guidelines, suggesting that the screening-level guidelines will provide overly conservative assessments in most cases. Relevant spiked sediment toxicity data are very limited but seem consistent with the probabilistic model; additional testing could be conducted to confirm the model's predictions.

  4. Chlorine

    SciTech Connect

    Talmage, Sylvia Smith

    2009-01-01

    Following a brief description of the use of chlorine as a chemical warfare agent in World War I, this chapter summarizes physical and chemical data and recent clinical and controlled laboratory studies on the irritant and lethal effects of chlorine. The mechanism of toxicity for both irritation and lethal effects is described. The mathematical relationship between concentration and exposure duration for a set endpoint is given for both an irritancy response and mortality. This information can be used to assist in time-scaling for the set endpoint to other exposure durations. Risk assessment addresses the potential for greater effects in sensitive populations such as asthmatics. A concentration of 0.5 ppm for up to 8 hours is a no-adverse-effect concentration in most sensitive subjects; whereas, a concentration of 1.0 ppm induces some sensory irritation and transient changes in respiratory tract airflow parameters. Treatment and intervention of exposed individuals is dependent upon symptoms

  5. A MODEL FOR CHLORINE CONCENTRATION DECAY IN PIPES

    EPA Science Inventory

    A model that accounts for transport in the axial direction by convection and in the radial direction by diffusion and that incorporates first order decay kinetics has been developed to predict the chlorine concentration in a pipe in a distribution system. A generalized expressio...

  6. A new approximate solution for chlorine concentration decay in pipes.

    PubMed

    Yeh, Hund-Der; Wen, Shi-Bin; Chang, Ya-Chi; Lu, Chung-Sying

    2008-05-01

    Biswas et al. (1993. A model for chlorine concentration decay in pipes. Water Res. 27(12), 1715-1724) presented an analytical solution of a two-dimensional (2-D) steady-state chlorine transport equation in a pipe under the turbulent condition and employed fractional error function and regression technique to develop an approximate solution. However, their approximate solution may not give a good result if the wall decay parameter is large. This paper provides a more accurate approximate solution of the 2-D steady-state chlorine transport equation under the turbulent condition. This new approximate solution has advantages of easy evaluation and good accuracy when compared with the approximate solution given by Biswas et al. (1993). In addition, this paper also develops a methodology that combines simulated annealing (SA) with this new approximate solution to determine the wall decay parameter. Two cases are chosen to demonstrate the application of the present approximate solution and methodology. The first case is to use this new approximate solution in simulating chlorine decay in pipes with the experiment-observed data given by Rossman (2006. The effect of advanced treatment on chlorine decay in metallic pipes. Water Res. 40(13), 2493-2502), while the second case presents the determination of the wall consumption at the end of the pipe network.

  7. Breakpoint chlorination and free-chlorine contact time: implications for drinking water N-nitrosodimethylamine concentrations.

    PubMed

    Charrois, Jeffrey W A; Hrudey, Steve E

    2007-02-01

    North American drinking water utilities are increasingly incorporating alternative disinfectants, such as chloramines, in order to comply with disinfection by-product (DBP) regulations. N-Nitrosodimethylamine (NDMA) is a non-halogenated DBP, associated with chloramination, having a drinking water unit risk two to three orders of magnitude greater than currently regulated halogenated DBPs. We quantified NDMA from two full-scale chloraminating water treatment plants in Alberta between 2003 and 2005 as well as conducted bench-scale chloramination/breakpoint experiments to assess NDMA formation. Distribution system NDMA concentrations varied and tended to increase with increasing distribution residence time. Bench-scale disinfection experiments resulted in peak NDMA production near the theoretical monochloramine maximum in the sub-breakpoint region of the disinfection curve. Breakpoints for the raw and partially treated waters tested ranged from 1.9:1 to 2.4:1 (Cl(2):total NH(3)-N, M:M). Bench-scale experiments with free-chlorine contact (2h) before chloramination resulted in significant reductions in NDMA formation (up to 93%) compared to no free-chlorine contact time. Risk-tradeoff issues involving alternative disinfection methods and unregulated DBPs, such as NDMA, are emerging as a major water quality and public health information gap.

  8. Chlorine-36 and chlorine concentrations within several compartments of a deciduous forest ecosystem in Meuse/Haute-Marne (France)

    NASA Astrophysics Data System (ADS)

    Pupier, Julie; Benedetti, Lucilla; Bourles, Didier; Leclerc, Elisabeth; Thiry, Yves

    2013-04-01

    ., 2004 have also observed a similar pattern in southern Spain. This increase might be due to a tropopause break, a natural process which occurs in spring and in fall. This break implies an increase of the air masses exchange between the tropopause and the stratosphere and therefore could cause high chlorine-36 inflow. All together, those results allow to draw a profile of the evolution of chlorine-36 concentrations in the various pools of the biogeochemical cycle (from the upper rainfall through stemflow and throughfall to the lower soil). Both 36Cl and Cl concentrations in stemflow samples are 25-50% higher than in the rainfall and throughfall samples. In water solutions collected from the soil, chlorine-36 concentrations vary between 3 to 8 10 3 at/ml, with an increase in the concentration at 30 cm depth. To understand the chlorine-36 recycling in soil, the next step will be to isolate and measure the 36Cl concentrations in the inorganic and organic fractions of chlorine in a soil profile. * : OPE : Observatoire Pérenne de l'Environnement (SOERE), French national long-term monitoring and experimental system for research in environment, www.andra-ope.fr Ashworth, D. J. and Shaw, G. (2006). A comparison of the soil migration and plant uptake of radioactive chlorine and iodine from contaminated groundwater. Journal of environmental radioactivity, 89(1) :61-80. Redon, P.-O., Jolivet, C., Saby, N. P. a., Abdelouas, A., and Thiry, Y. (2012). Occurrence of natural organic chlorine in soils for different land uses. Biogeochemistry (In press), doi : 10.1007/s10533- 012-9771-7. Santos, F., Lopez-Gutierrez, J., Garcia-Leon, M., Schnabel, C., Synal, H., and Suter, M. (2004). Analysis of 36Cl in atmospheric samples from Seville (Spain) by AMS. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, 223-224 :501-506.

  9. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    PubMed

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  10. Free chlorine and monochloramine application to nitrifying biofilm: comparison of biofilm penetration, activity, and viability.

    PubMed

    Lee, Woo Hyoung; Wahman, David G; Bishop, Paul L; Pressman, Jonathan G

    2011-02-15

    Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct biofilm monochloramine measurement. This study compared free chlorine and monochloramine biofilm penetration into an undefined mixed-culture nitrifying biofilm by use of microelectrodes and assessed the subsequent effect on biofilm activity and viability by use of dissolved oxygen (DO) microelectrodes and confocal laser scanning microscopy (CLSM) with LIVE/DEAD BacLight. For equivalent chlorine concentrations, monochloramine initially penetrated biofilm 170 times faster than free chlorine, and even after subsequent application to a monochloramine penetrated biofilm, free chlorine penetration was limited. DO profiles paralleled monochloramine profiles, providing evidence that either the biofilm was inactivated with monochloramine's penetration or its persistence reduced available substrate (free ammonia). While this research clearly demonstrated monochloramine's greater penetration, this penetration did not necessarily translate to immediate viability loss. Even though free chlorine's penetration was limited compared to that of monochloramine, it more effectively (on a cell membrane integrity basis) inactivated microorganisms near the biofilm surface. Limited free chlorine penetration has implications when converting to free chlorine in full-scale chloraminated systems in response to nitrification episodes.

  11. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    PubMed Central

    Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J

    1982-01-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes. PMID:7151762

  12. Factors Affecting Atrazine Concentration and Quantitative Determination in Chlorinated Water

    EPA Science Inventory

    Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be obser...

  13. Chlorine

    Integrated Risk Information System (IRIS)

    Chlorine ; CASRN 7782 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  14. Chlorine

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical chlorine, produced in small quantities in the laboratory, is presented. The profile summarizes physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  15. MODELING THE EFFECT OF CHLORINE EMISSIONS ON ATMOSPHERIC OZONE AND SECONDARY ORGANIC AEROSOL CONCENTRATIONS ACROSS THE UNITED STATES

    EPA Science Inventory

    This paper presents the modeled effects of natural and anthropogenic chlorine emissions on the atmospheric concentrations of ozone and secondary organic aerosol across the United States. The model calculations include anthropogenic molecular chlorine emissions, anthropogenic hypo...

  16. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    SciTech Connect

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-09-15

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules

  17. CHEMICAL ANALYSIS OF REVERSE OSMOSIS MEMBRANE AND XAD RESIN ADSORPTION CONCENTRATES OF WATER DISINFECTED BY CHLORINATION OR OZONATION/CHLORINATION PROCESSES

    EPA Science Inventory


    Chemical Analysis of Reverse Osmosis Membrane and XAD Resin Adsorption Concentrates of Water Disinfected by Chlorination or Ozonation/Chlorination Processes.

    J. E. Simmons1, S.D. Richardson2, K.M. Schenck3, T. F. Speth3, R. J. Miltner3 and A. D. Thruston2

    1 NHEE...

  18. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice - Release of active chlorine

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.; Tso, Tai-Ly; Molina, Luisa T.; Wang, Frank C.-Y.

    1987-01-01

    The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO2) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO2 on the surface of ice with HCl in the mole fraction range from about 0.003 to 0.010 is in the range from about 0.05 to 0.1 for temperatures near 200 K. Chlorine is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO3), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO3 and thus removes nitrogen dioxide from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals.

  19. Observed chlorine concentrations during Jack Rabbit I and Lyme Bay field experiments

    NASA Astrophysics Data System (ADS)

    Hanna, Steven; Chang, Joseph; Huq, Pablo

    2016-01-01

    As part of planning for a series of field experiments where large quantities (up to 20 tons) of pressurized liquefied chlorine will be released, observations from previous chlorine field experiments are analyzed to estimate the ranges of chlorine concentrations expected at various downwind distances. In five field experiment days during the summer 2010 Jack Rabbit I (JR I) field trials, up to two tons of chlorine were released and concentrations were observed at distances, x, from 25 to 500 m. In the 1927 Lyme Bay (LB) experiments, there were four days of trials, where 3-10 tons of chlorine were released in about 15 min from the back of a ship. Concentrations were sampled at LB from four ships sailing across the cloud path at downwind distances in the range from about 350 to 3000 m. Thus, the distances from which JR I concentrations were available slightly overlapped the LB distances. One-minute arc-maximum chlorine concentrations, C (g/m3), were analyzed from four JR I trials and two LB trials. Normalized concentrations (Cu/Q) were plotted versus x (m), where u (m/s) is measured wind speed at heights of 2-10 m and Q (g/s) is continuous mass release rate. It is found that the JR I and LB Cu/Q observations smoothly merge with each other and fall along a line with approximate slope of -2 at distances beyond about 200 m (i.e., Cu/Q is proportional to x-2). At x < 200 m, where dense gas effects are more important, the slope is less (about -1.5). Most of the data points are within a factor of two of the "best-fit" line.

  20. Concentrations of nitrifying bacteria in sewages, effluents, and a receiving stream and resistance of these organisms to chlorination.

    PubMed Central

    Strom, P F; Matulewich, V A; Finstein, M S

    1976-01-01

    Estimates of NH4+-and NO2-oxidizers in samples from four activated sludge plants treating mainly domestic sewage were obtained using a most-probable-number (MPN) technique. Ranges of concentrations per milliliter of each, respectively, were 1,010 to 3,880 and 79 to 145 in settled sewages, 32 to 7,420 and 2 to 1,010 in secondary effluents, and less than 0.1 to 622 and 0.1 to 70 in chlorinated secondary effluents. The results of this field study indicated that nitrifiers were more resistant to chlorination than fecal streptococci, which were also enumerated. In laboratory studies the survivals of these bacterial groups in secondary effluents were determined after exposure to chlorine residuals of up to 2 mg/liter for 0 to 60 min. The nitrifiers proved considerably more resistant than fecal streptococci, with NO2-oxidizers showing greater resistance than NH4+-oxidizers. Below the outfall of one of the plants that discharges heavily chlorinated unnitrified effluent, NH4+-oxidizers amounted to approximately 200 X 10(5) per g of slime scraped from stream-bed rocks. Upstream of the outfall this was approximatley 3 X 10(5)/G. PMID:818958

  1. Concentration levels of urea in swimming pool water and reactivity of chlorine with urea.

    PubMed

    De Laat, Joseph; Feng, Wentao; Freyfer, Diab Adams; Dossier-Berne, Florence

    2011-01-01

    This study investigated the reactivity of chlorine with urea which is the main nitrogen contaminant introduced into swimming pool water by bathers. In the first part of this study, analyses showed that the mean concentrations of urea and TOC determined from 50 samples of municipal swimming pool were equal to 18.0 μM (s.d. 11.7) and 3.5 mg C L(-1) (s.d. 1.6), respectively. The mean value for the urea contribution to the TOC content was 6.3% (s.d. 3.3). The rate of decomposition of urea in swimming pool water measured during the closure time of the facility was very slow (decay at the rate of ≈ 1% per hour in the presence of 1.6-1.8 mg L(-1) of free chlorine). In the second part of this work, experiments carried out with phosphate buffered solutions of urea ([Urea](0) = 1 mM; [Cl(2)](0)/[Urea](0): 0.5-15 mol/mol; pH 7.4 ± 0.2; reaction time: 0-200 h) showed that long term chlorine demand of urea was about 5 mol Cl(2)/mol of urea. Chlorination led to a complete mineralization of organic carbon into CO(2) for a chlorine dose of 3.5 mol/mol and to the formation of 0.7-0.8 mol NO(3)(-)/mol of urea for chlorine dose of 8-10 mol/mol. Experiments conducted with dilute solutions of urea ([Urea](0) = 50 μM; pH ≈ 7.3) confirmed that the degradation rate of urea by chlorine is very slow under conditions simulating real swimming pool water.

  2. Concentration-dependence of the explosion characteristics of chlorine dioxide gas.

    PubMed

    Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao

    2009-07-30

    The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.

  3. Effects of Chlorinated Paraffin and ZDDP Concentrations on Boundary Lubrication Properties of Mineral and Soybean Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of chlorinated paraffin (CP) and zinc di-ethylhexyl dithio phosphate (ZDDP) concentration in polar and non-polar base fluids on boundary lubrication properties was investigated. The non-polar fluid was a solvent refined low sulfur heavy paraffinic mineral oil (150N oil); and the polar fl...

  4. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  5. Blood Pressure in Relation to Concentrations of PCB Congeners and Chlorinated Pesticides

    PubMed Central

    Goncharov, Alexey; Pavuk, Marian; Foushee, Herman R.; Carpenter, David O.

    2011-01-01

    Background Residents of Anniston, Alabama, live near a Monsanto plant that manufactured polychlorinated biphenyls (PCBs) from 1929 to 1971 and are relatively heavily exposed. Objectives The goal of this study was to determine the relationship, if any, between blood pressure and levels of total serum PCBs, several PCB groups with common actions or structure, 35 individual PCB congeners, and nine chlorinated pesticides. Methods Linear regression analysis was used to determine the relationships between blood pressure and serum levels of the various contaminants after adjustment for age, body mass index, sex, race, smoking, and exercise in 394 Anniston residents who were not taking antihypertensive medication. Results Other than age, total serum PCB concentration was the strongest determinant of blood pressure of the covariates studied. We found the strongest associations for those PCB congeners that had multiple ortho chlorines. We found the associations over the full range of blood pressure as well as in those subjects whose blood pressure was in the normal range. The chlorinated pesticides showed no consistent relationship to blood pressure. Conclusions In this cross-sectional study, serum concentrations of PCBs, especially those congeners with multiple ortho chlorines, were strongly associated with both systolic and diastolic blood pressure. PMID:21362590

  6. Activation of stratospheric chlorine by reactions in liquid sulphuric acid

    SciTech Connect

    Cox, R.A.; MacKenzie, A.R. ); Mueller, R.H.; Peter, Th.; Crutzen, P.J. )

    1994-06-22

    The authors discuss activation mechanisms for chlorine compounds in the stratosphere, based on laboratory measurements for the solubility and reaction rates of HOCl and HCl in H[sub 2]SO[sub 4] solutions, as found on aerosols in the stratosphere. Their interest is in the impact of the large increase in aerosol loading in the stratosphere in the winter on 1991-92 due to the Mt. Pinatubo eruption. While laboratory data is not available for the temperature range close to 190 K, they argue that should the solubility and hydrolysis rates be high enough, this excess aerosol density could have contributed a significant additional amount of reactive chlorine to the stratosphere.

  7. Effects of Carbon Source, Carbon Concentration, and Chlorination on Growth Related Parameters of Heterotrophic Biofilm Bacteria.

    PubMed

    Ellis; Butterfield; Jones; McFeters; Camper

    1999-11-01

    To investigate growth of heterotrophic biofilm bacteria, a model biofilm reactor was developed to simulate a drinking water distribution system. Controlled addition of three different carbon sources (amino acids, carbohydrates, and humics) at three different concentrations (500, 1,000, and 2,000 ppb carbon) in the presence and absence of chlorine were used in separate experiments. An additional experiment was run with a 1:1:2 mixture of the above carbon sources. Biofilm and effluent total and culturable cells in addition to total and dissolved organic carbon were measured in order to estimate specific growth rates (SGRs), observed yields, population densities, and bacterial carbon production rates. Bacterial carbon production rates (µg C/L day) were extremely high in the control biofilm communities (range = 295-1,738). Both growth rate and yield decreased with increasing carbon concentrations. Therefore, biofilm growth rates were zero-order with respect to the carbon concentrations used in these experiments. There was no correlation between growth rate and carbon concentration, but there was a significant negative correlation between growth rate and biofilm cell density (r = -0.637, p = 0.001 control and r = -0.57, p = 0.021 chlorinated biofilms). Growth efficiency was highest at the lowest carbon concentration (range = 12-4.5%, amino acids and humics respectively). Doubling times ranged from 2.3-15.4 days in the control biofilms and 1-12.3 days in the chlorinated biofilms. Growth rates were significantly higher in the presence of chlorine for the carbohydrates, humics, and mixed carbon sources (p = 0.004, < 0.0005, 0.013, respectively). The concept of r/K selection theory was used to explain the results with respect to specific growth rates and yields. Humic removal by the biofilm bacteria (78% and 56% for the control and chlorinated biofilms, respectively) was higher than previously reported literature values for planktonic bacteria. A number of control

  8. Effect of variation in indium concentration on the photosensitivity of chlorine doped In2S3 thin films

    NASA Astrophysics Data System (ADS)

    Cherian, Angel Susan; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-01

    Consequence of variation in Indium concentration in chlorine doped In2S3 thin films deposited by spray pyrolysis technique was studied. Chlorine was incorporated in the spray solution, using HCl and Indium concentration was varied by adjusting In/S ratio Interestingly, the photo response of all chlorine doped samples augmented compared to pristine samples; but the highest photosensitivity value of ˜2300 was obtained only when 36ml 0.5M HCl was added to the solution of In2S3 having In/S=2/8. It was also observed that samples with high photosensitivity possess higher band gap and variation in sub band gap absoption levels were observed with increase in Indium concentration. The present study proved that concentration of Indium plays an important role in controlling the crystallinity and photosensitivity of chlorine doped samples.

  9. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Le Berre, S.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2017-04-01

    Chlorine can play an important role in the process of stress corrosion cracking of dry cask storage canisters for used nuclear fuel, which are frequently located in marine environments. It is of significant interest to determine the surface concentration of chlorine on the stainless steel canister surface, but measurements are often limited by difficult access and challenging conditions, such as high temperature and high radiation fields. Laser-induced breakdown spectroscopy (LIBS) could enable chlorine concentration measurements while meeting the other constraints of this application, but suffers from high excitation energy of chlorine and the interference of the atomic emission lines of iron, thus limiting the sensitivity of detection, especially when LIBS has to be delivered over an optical fiber. We demonstrate that chlorine surface concentrations in the range of 0.5-100 mg/m2 can be inferred by the detection and quantification of sodium contained in chlorine salts if the speciation and neutralization of salts are not of major concern, whereas minor components of sea salt such as magnesium and potassium are less attractive as surrogates for chlorine due to the lower sensitivity of LIBS for their detection and quantification. The limit of detection, measurement accuracy, and other features and limitations of this surrogate measurement approach are discussed.

  10. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.

    PubMed

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2015-10-20

    The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.

  11. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    PubMed

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4). These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.

  12. Determination of chlorine concentration using single temperature modulated semiconductor gas sensor

    NASA Astrophysics Data System (ADS)

    Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.

    2016-11-01

    A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.

  13. Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens.

    PubMed

    Santacruz, Germán; Bandala, Erick R; Torres, Luis G

    2005-01-01

    Degradation of two chlorinated pesticides (2,4-D and DDT) using a 54-mL glass column packed with tezontle (a low-cost basaltic scoria) was tested. Bacteria were cultured in YPG (yeast, peptone, and glucose) liquid medium at 32 degrees C. The rich medium was pumped during 24 h through the column to inoculate it. Later, the wasted medium was discharged and the pesticide added. Optical densities, TOC, and pesticide concentration were determined. Pesticide removals for 2,4-D (with initial concentration between 100 and 500 mg/L) were about 99%. DDT removal (at initial concentration of up to 150 mg/L) was as high as 55-99%. TOC removals for 2,4-D was in the 36-87% interval, whereas for DDT they were as high as 36-78%.

  14. The effects of active chlorine on photooxidation of 2-methyl-2-butene.

    PubMed

    Im, Yunseok; Jang, Myoseon; Delcomyn, Carrie A; Henley, Michael V; Hearn, John D

    2011-06-01

    Active chlorine comprising hypochlorite (OCl⁻), hypochlorous acid (HOCl) and chlorine (Cl₂) is the active constituent in bleach formulations for a variety of industrial and consumer applications. However, the strong oxidative reactivity of active chlorine can cause adverse effects on both human health and the environment. In this study, aerosolized Oxone® [2KHSO₅, KHSO₄, K₂SO₄] with saline solution has been utilized to produce active chlorine (HOCl and Cl₂). To investigate the impact of active chlorine on volatile organic compound (VOC) oxidation, 2-methyl-2-butene (MB) was photoirradiated in the presence of active chlorine using a 2-m³ Teflon film indoor chamber. The resulting carbonyl products produced from photooxidation of MB were derivatized with O-(2,3,4,5,6-pentafluorobenzyl) hydroxyamine hydrochloride (PFBHA) and analyzed using gas chromatograph-ion trap mass spectrometer (GC/ITMS). The photooxidation of MB in the presence of active chlorine was simulated with an explicit kinetic model using a chemical solver (Morpho) which included both Master Chemical Mechanism (MCM) and Cl radical reactions. The reaction rate constants of a Cl radical with MB and its oxidized products were estimated using a Structure-Reactivity Relationship method. Under dark conditions no effect of active chlorine on MB oxidation was apparent, whereas under simulated daylight conditions (UV irradiation) rapid MB oxidation was observed due to photo-dissociation of active chlorine. The model simulation agrees with chamber data showing rapid production of oxygenated products that are characterized using GC/ITMS. Ozone formation was enhanced when MB was oxidized in the presence of irradiated active chlorine and NO(x).

  15. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study.

    PubMed

    Narotsky, Michael G; Klinefelter, Gary R; Goldman, Jerome M; Best, Deborah S; McDonald, Anthony; Strader, Lillian F; Suarez, Juan D; Murr, Ashley S; Thillainadarajah, Inthirany; Hunter, E Sidney; Richardson, Susan D; Speth, Thomas F; Miltner, Richard J; Pressman, Jonathan G; Teuschler, Linda K; Rice, Glenn E; Moser, Virginia C; Luebke, Robert W; Simmons, Jane Ellen

    2013-09-17

    Some epidemiological studies report associations between drinking water disinfection byproducts (DBPs) and adverse reproductive/developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. Using a multigenerational rat bioassay, we evaluated an environmentally relevant "whole" mixture of DBPs representative of chlorinated drinking water, including unidentified DBPs as well as realistic proportions of known DBPs at low-toxicity concentrations. Source water from a water utility was concentrated 136-fold, chlorinated, and provided as drinking water to Sprague-Dawley rats. Timed-pregnant females (P0 generation) were exposed during gestation and lactation. Weanlings (F1 generation) continued exposures and were bred to produce an F2 generation. Large sample sizes enhanced statistical power, particularly for pup weight and prenatal loss. No adverse effects were observed for pup weight, prenatal loss, pregnancy rate, gestation length, puberty onset in males, growth, estrous cycles, hormone levels, immunological end points, and most neurobehavioral end points. Significant, albeit slight, effects included delayed puberty for F1 females, reduced caput epidydimal sperm counts in F1 adult males, and increased incidences of thyroid follicular cell hypertrophy in adult females. These results highlight areas for future research, while the largely negative findings, particularly for pup weight and prenatal loss, are notable.

  16. Constraining Rates of Biodegradation of Chlorinated Ethenes at Steep Concentration Gradients Using Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Morrill, P. L.; Seepersad, D. J.; Lacrampe-Couloume, G.; Edwards, E. A.; Sleep, B. E.; McMaster, M. L.; Major, D. W.; Sherwood Lollar, B.

    2005-12-01

    Enhanced biodegradation of emplaced dense non-aqueous phase liquid (DNAPL) sources of tetrachloroethene (PCE) was monitored in a 2-dimensional model aquifer and in a Dover Air Force Base pilot field study. The stable carbon isotope values of PCE and its biodegradation products were monitored along steep concentration gradients near the PCE source zones to quantify first order biodegradation rate constants during a study that assessed the potential for biological enhancement of PCE DNAPL dissolution . Stable carbon isotope measurements are an ideal tool to assess the relative rate of biodegradation versus dissolution since while biodegradation of chlorinated ethenes involves a substantial carbon isotope fractionation, dissolution of chlorinated ethenes is a largely non-fractionating process. Within the dissolved plumes that developed down gradient from the emplaced sources, the isotopic fractionation of PCE and its degradation products in both the model aquifer and field study were consistent with those previously observed in batch laboratory studies. A maximum isotope fractionation of 2.3 permil was observed in the dissolved PCE downgradient, while close to the source zone the carbon isotopic signature of the dissolved PCE remained largely unchanged, due to the continuing dissolution of unfractionated PCE DNAPL. Significant carbon isotopic fractionation was observed adjacent to and/or downstream from the source in the degradation products trichloroethene (TCE), 1,2-dichloroethene (cDCE), and vinyl chloride (VC). Therefore, close to the source zone, confirmation of PCE degradation is based primarily on the appearance of the lesser chlorinated ethene degradation products and isotopic signatures of those products consistent with biodegradation. This trend was observed on a small scale in the model aquifer and similar trends were observed in the field at a larger scale. In both cases biodegradation was correlated with enhanced rates of DNAPL dissolution compared to non

  17. ASCORBIC ACID REDUCTION ON RESIDUAL ACTIVE CHLORINE IN POTABLE WATER PRIOR TO HALOCARBOXYLATE DETERMINATION

    EPA Science Inventory

    In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (odxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time . Such research projects often have distinct needs from requi...

  18. ASCORBIC ACID REDUCTION OF RESIDUAL ACTIVE CHLORINE IN POTABLE WATER PRIOR TO HALOCARBOXYLATE DETERMINATION

    EPA Science Inventory

    In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (oxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time. Thus, methods designed for compliance monitoring are not alway...

  19. Effect of alfalfa seed washing on the organic carbon concentration in chlorinated and ozonated water.

    PubMed

    Rajkowski, Kathleen T; Rice, Eugene W

    2004-04-01

    The bioassays assimilable organic carbon (AOC) and coliform growth response are better indexes than biological oxygen demand to determine water quality and water's ability to support the growth of bacteria. Ozonated (5 mg/liter) and chlorinated tap water were used to wash alfalfa seeds for 30 min. After washing in the ozonated tap water, the AOC concentration increased 25-fold, whereas the dissolved ozone decreased to undetectable levels. The AOC levels for the chlorinated water after washing the seeds also increased. These increases are due to ozone's strong oxidizing ability to break down refractory, large-molecular-weight compounds, forming smaller ones, which are readily used as nutrient sources for microorganisms. This same phenomenon was observed when using ozone in the treatment of drinking water. The AOC value increased from 1,176 to 1,758 micrograms C-eq/liter after the reconditioned wastewater was ozonated. When the ozonated wastewater was inoculated with Salmonella serotypes, the cells survived and increased generation times were observed. The increased nutrients would now become more readily available to any pathogenic microorganisms located on alfalfa seed surface as seen with the increase in the inoculated levels of Salmonella in the ozonated wastewater. If the washing process using ozonated water is not followed by the recommended hypochlorite treatment or continually purged with ozone, pathogen growth is still possible.

  20. The effect of photochemical dissociation on downwind chlorine dioxide plume concentrations

    SciTech Connect

    Michalowicz, R.; Alp, E.

    1997-12-31

    The pulp and paper industry handles toxic gases which may present an inherent hazard to the safety of the general public in the surrounding area. One such toxic gas that may pose a hazard is chlorine dioxide. Spills of chlorine dioxide solution result in the gassing off of toxic clouds of chlorine dioxide. Under daytime dry conditions, chlorine dioxide decomposes photolytically to form chlorine and oxygen and intermediates, chlorine trioxide and chlorine hexoxide. Air dispersion modeling of chlorine dioxide releases which does not properly account for its photochemical decomposition will lead to overly conservative hazard zone estimates. Under these conditions, risk control measures and emergency response evacuation zones based on such estimates will be unnecessarily expensive, perhaps prohibitive. This paper investigates the photolytic rate of dissociation of chlorine dioxide under various atmospheric conditions. It was found that modeling based on the decomposition of chlorine dioxide gas, resulted in downwind distances to TLV-Short Term Exposure Limits which are considerably shorter than modeling based on chlorine dioxide dispersion with no decomposition.

  1. Analysis of the sporicidal activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain)

    PubMed Central

    Chatuev, B.A.; Peterson, J.W.

    2009-01-01

    Summary Routine surface decontamination is an essential hospital and laboratory procedure, but the list of effective, noncorrosive disinfectants that kill spores is limited. We investigated the sporicidal potential of an aqueous chlorine dioxide solution and encountered some unanticipated problems. Quantitative bacteriological culture methods were used to determine the log10 reduction of Bacillus anthracis (Sterne strain) spores following 3 min exposure to various concentrations of aqueous chlorine dioxide solutions at room temperature in sealed tubes, as well as spraying onto plastic and stainless steel surfaces in a biological safety cabinet. Serial 10-fold dilutions of the treated spores were then plated on 5% sheep blood agar plates, and the survivor colonies were enumerated. Disinfection of spore suspensions with aqueous chlorine dioxide solution in sealed microfuge tubes was highly effective, reducing the viable spore counts by 8 log10 in only 3 min. By contrast, the process of spraying or spreading the disinfectant onto surfaces resulted in only a 1 log10 kill because the chlorine dioxide gas was rapidly vaporised from the solutions. Full potency of the sprayed aqueous chlorine dioxide solution was restored by preparing the chlorine dioxide solution in 5% bleach (0.3% sodium hypochlorite). The volatility of chlorine dioxide can cause treatment failures that constitute a serious hazard for unsuspecting users. Supplementation of the chlorine dioxide solution with 5% bleach (0.3% sodium hypochlorite) restored full potency and increased stability for one week. PMID:20061062

  2. Analysis of the sporicidal activity of chlorine dioxide disinfectant against Bacillus anthracis (Sterne strain).

    PubMed

    Chatuev, B M; Peterson, J W

    2010-02-01

    Routine surface decontamination is an essential hospital and laboratory procedure, but the list of effective, noncorrosive disinfectants that kill spores is limited. We investigated the sporicidal potential of an aqueous chlorine dioxide solution and encountered some unanticipated problems. Quantitative bacteriological culture methods were used to determine the log(10) reduction of Bacillus anthracis (Sterne strain) spores following 3min exposure to various concentrations of aqueous chlorine dioxide solutions at room temperature in sealed tubes, as well as spraying onto plastic and stainless steel surfaces in a biological safety cabinet. Serial 10-fold dilutions of the treated spores were then plated on 5% sheep blood agar plates, and the survivor colonies were enumerated. Disinfection of spore suspensions with aqueous chlorine dioxide solution in sealed microfuge tubes was highly effective, reducing the viable spore counts by 8log(10) in only 3min. By contrast, the process of spraying or spreading the disinfectant onto surfaces resulted in only a 1log(10) kill because the chlorine dioxide gas was rapidly vaporised from the solutions. Full potency of the sprayed aqueous chlorine dioxide solution was restored by preparing the chlorine dioxide solution in 5% bleach (0.3% sodium hypochlorite). The volatility of chlorine dioxide can cause treatment failures that constitute a serious hazard for unsuspecting users. Supplementation of the chlorine dioxide solution with 5% bleach (0.3% sodium hypochlorite) restored full potency and increased stability for one week.

  3. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    PubMed

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  4. Short-Chain Chlorinated Paraffins in Zurich, Switzerland--Atmospheric Concentrations and Emissions.

    PubMed

    Diefenbacher, Pascal S; Bogdal, Christian; Gerecke, Andreas C; Glüge, Juliane; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad

    2015-08-18

    Short-chain chlorinated paraffins (SCCPs) are of concern due to their potential for adverse health effects, bioaccumulation, persistence, and long-range transport. Data on concentrations of SCCPs in urban areas and underlying emissions are still scarce. In this study, we investigated the levels and spatial distribution of SCCPs in air, based on two separate, spatially resolved sampling campaigns in the city of Zurich, Switzerland. SCCP concentrations in air ranged from 1.8 to 17 ng·m(-3) (spring 2011) and 1.1 to 42 ng·m(-3) (spring 2013) with medians of 4.3 and 2.7 ng·m(-3), respectively. Both data sets show that atmospheric SCCP levels in Zurich can vary substantially and may be influenced by a number of localized sources within this urban area. Additionally, continuous measurements of atmospheric concentrations performed at one representative sampling site in the city center from 2011 to 2013 showed strong seasonal variations with high SCCP concentrations in summer and lower levels in winter. A long-term dynamic multimedia environmental fate model was parametrized to simulate the seasonal trends of SCCP concentrations in air and to back-calculate urban emissions. Resulting annual SCCP emissions in the city of Zurich accounted for 218-321 kg, which indicates that large SCCP stocks are present in urban areas of industrialized countries.

  5. Application of activated carbons from coal and coconut shell for removing free residual chlorine.

    PubMed

    Ogata, Fumihiko; Tominaga, Hisato; Ueda, Ayaka; Tanaka, Yuko; Iwata, Yuka; Kawasaki, Naohito

    2013-01-01

    This study investigated the removal of free residual chlorine by activated carbon (AC). ACs were prepared from coal (AC1) and coconut shell (AC2). The specific surface area of AC1 was larger than that of AC2. The removal of free residual chlorine increased with elapsed time and amount of adsorbent. The removal mechanism of free residual chlorine was the dechlorination reaction between hypochlorous acid or hypochlorite ion and AC. Moreover, AC1 was useful in the removal of free residual chlorine in tap water. The optimum condition for the removal of free residual chlorine using a column is space velocity 306 1/h; liner velocity 6.1 m/h.

  6. Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents.

    PubMed

    Boudjellaba, D; Dron, J; Revenko, G; Démelas, C; Boudenne, J-L

    2016-01-15

    Chlorination is one of the most widely used techniques for biofouling control in large industrial units, leading to the formation of halogenated chlorination by-products (CBPs). This study was carried out to evaluate the distribution and the dispersion of these compounds within an industrialised bay hosting multiple chlorination discharges issued from various industrial processes. The water column was sampled at the surface and at 7 m depth (or bottom) in 24 stations for the analysis of CBPs, and muscle samples from 15 conger eel (Conger conger) were also investigated. Temperature and salinity profiles supported the identification of the chlorination releases, with potentially complex patterns. Chemical analyses showed that bromoform was the most abundant CBP, ranging from 0.5 to 2.2 μg L(-1) away from outlets (up to 10 km distance), and up to 18.6 μg L(-1) in a liquefied natural gas (LNG) regasification plume. However, CBP distributions were not homogeneous, halophenols being prominent in a power station outlet and dibromoacetonitrile in more remote stations. A seasonal effect was identified as fewer stations revealed CBPs in summer, probably due to the air and water temperatures increases favouring volatilisation and reactivity. A simple risk assessment of the 11 identified CBPs showed that 7 compounds concentrations were above the potential risk levels to the local marine environment. Finally, conger eel muscles presented relatively high levels of 2,4,6-tribromophenol, traducing a generalised impregnation of the Gulf of Fos to CBPs and a global bioconcentration factor of 25 was determined for this compound.

  7. Trajectory Hunting: Analysis of UARS Measurements showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M.Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approximately 46 mb) and 585 K (approximately 22 mb) levels. A detailed sensitivity study with the AER. photochemical box model along these trajectories leads to the following conclusions for the episode considered: (1) model results are in better agreement with UARS measurements at these levels if the UKMO temperature is decreased by at least 1-2 K; (2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; (3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  8. Trajectory Hunting: Analysis of UARS Measurements Showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec. 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approx. 46 mb) and 585 K (approxi. 22 mb) levels. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the following conclusions for the episode considered: 1) model results are in better agreement with UARS measurements at these levels if the U.K. Meteorological Office (UKMO) temperature is decreased by at least 1-2 K; 2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; 3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  9. [Combined use of active chlorine and coagulants for drinking water purification and disinfection].

    PubMed

    Rakhmanin, Iu A; Zholdakova, Z I; Poliakova, E E; Kir'ianova, L F; Miasnikov, I N; Tul'skaia, E A; Artemova, T Z; Ivanova, L V; Dmitrieva, R A; Doskina, T V

    2004-01-01

    The authors made an experimental study of the efficiency of water purification procedures based on the combined use of active chlorine and coagulants and hygienically evaluated the procedures. The study included the evaluation of water disinfection with various coagulants and active chlorine; the investigation of the processes of production of deleterious organic chlorine compounds; the assessment of the quality of water after its treatment. The coagulants representing aluminum polyoxychloride: RAX-10 (AQUA-AURATE 10) and RAX-18 (AQUA-AURATE 18), and aluminum sulfate, technically pure grade were tested. The treatment of river water with the coagulants RAX-10 and RAX-18, followed by precipitation, filtration, and chlorination under laboratory conditions, was shown to result in water disinfection to the levels complying with the requirements described in SanPiN 2.1.4.1074-01. RAX-18 showed the best disinfecting activity against total and heat-tolerant coliform bacteria, but also to the highly chlorine-resistant microrganisms--the spores of sulfite-reducing Clostridia, phages, and viruses. Since the coagulants have an increased sorptive capacity relative to humus and other organic substances, substitution of primary chlorination for coagulant treatment may induce a reduction in the risk of formation of oncogenically and mutagenically hazardous chlorinated hydrocarbons.

  10. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    NASA Astrophysics Data System (ADS)

    Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin

    2015-10-01

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.

  11. Concentrations of selected chlorinated pesticides in shrimp collected from the Calcasieu River/Lake Complex, Louisiana

    SciTech Connect

    Murray, H.E.; Beck, J.N. )

    1990-05-01

    For several decades inland and coastal aquatic ecosystems have been affected by a multitude of synthetic chemical substances. This is a consequence of population growth and increased industrial and agricultural activity. Many of these chemicals, the by-products of their production, and degradation products ultimately find their way into the aquatic environment as pollutants. The extent to which these pollutants affect the environment and its inhabitants depends largely upon the quantity and nature of the particular compounds involved. Halogenated hydrocarbons, particularly polychlorinated biphenyls (PCBs), and the pesticide DDT and its degradation products have received much attention as environmental pollutants. Because of the economic importance of the shrimping industry to southwest Louisiana, the objective of this study was to analyze shrimp collected from the Calcasieu River/Lake Complex for the presence of selected chlorinated pesticides. The presence of these compounds within shrimp tissues would serve as an indicator for the extent of pollution throughout this important estuarine system.

  12. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.

    PubMed

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P

    2014-03-01

    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide.

  13. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Tuan Vodinh.

    1993-12-21

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figures.

  14. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1993-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds.

  15. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, T.

    1994-06-07

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds. 14 figs.

  16. Enhanced photo-activated luminescence for screening polychlorobiphenyls (PCBs) and other related chlorinated compounds

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    The presence of polychlorinated biphenyls and other chlorinated compounds in a sample is determined by treating the sample with a photo-activator and then exposing the treated sample to a UV light source. The UV light produces a photo-product complex, which is subsequently excited with UV light to cause luminescence of the complex. The luminescence is detected and characteristics of the luminescence spectra are used to determine the presence of chlorinated compounds and also the quantity of the chlorine in the compounds

  17. Differences in antimicrobial activity of chlorine against twelve most prevalent poultry-associated Salmonella serotypes.

    PubMed

    Paul, Narayan C; Sullivan, Tarah S; Shah, Devendra H

    2017-06-01

    Chlorine is the most widely used carcass sanitizer in poultry processing in the USA. The objective of this study was to determine the effects of varying concentrations of organic matter on the susceptibility of twelve most prevalent poultry-associated Salmonella serotypes (MPPSTs) to chlorine. To mimic the microenvironment of the water used for immersion chilling, we manipulated organic matter contamination levels in pre-chilled (pH∼6, T∼4 °C) chlorinated (50 ppm) water using varying concentrations (0, 1, 2, 3, 4, and 5%) of chicken-meat-extract (CME) produced from frozen chicken carcasses. This CME-based in vitro model was challenged with ∼1 × 10(5) CFUs of each MPPST isolate and the bacterial survival was tested at 5, 30, 60 and 90 min post-challenge. In this model, the decimal reduction time (D90-values) of each MPPST was linearly correlated with the concentration of CME. Significant inter-serotype differences in the D90-values were observed. The results show that the pH, concentration of total- and free-chlorine were also linearly correlated with the presence of CME in a concentration-dependent manner. The findings of this study indicate that the serotype and the levels of organic matter contamination significantly influence Salmonella survival and that both variables should be included in models that predict effectiveness of chlorine treatment in immersion chilling.

  18. Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride.

    PubMed

    Raff, Jonathan D; Njegic, Bosiljka; Chang, Wayne L; Gordon, Mark S; Dabdub, Donald; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2009-08-18

    Gaseous HCl generated from a variety of sources is ubiquitous in both outdoor and indoor air. Oxides of nitrogen (NO(y)) are also globally distributed, because NO formed in combustion processes is oxidized to NO(2), HNO(3), N(2)O(5) and a variety of other nitrogen oxides during transport. Deposition of HCl and NO(y) onto surfaces is commonly regarded as providing permanent removal mechanisms. However, we show here a new surface-mediated coupling of nitrogen oxide and halogen activation cycles in which uptake of gaseous NO(2) or N(2)O(5) on solid substrates generates adsorbed intermediates that react with HCl to generate gaseous nitrosyl chloride (ClNO) and nitryl chloride (ClNO(2)), respectively. These are potentially harmful gases that photolyze to form highly reactive chlorine atoms. The reactions are shown both experimentally and theoretically to be enhanced by water, a surprising result given the availability of competing hydrolysis reaction pathways. Airshed modeling incorporating HCl generated from sea salt shows that in coastal urban regions, this heterogeneous chemistry increases surface-level ozone, a criteria air pollutant, greenhouse gas and source of atmospheric oxidants. In addition, it may contribute to recently measured high levels of ClNO(2) in the polluted coastal marine boundary layer. This work also suggests the potential for chlorine atom chemistry to occur indoors where significant concentrations of oxides of nitrogen and HCl coexist.

  19. Semi-synthesis and PDT activities of a new amphiphilic chlorin derivative.

    PubMed

    Moritz, Milene N O; Gonçalves, Joyce L S; Linares, Irwin A P; Perussi, Janice R; de Oliveira, Kleber T

    2016-10-18

    An amphiphilic chlorin derivative (CHL-T) was prepared from methylpheophorbide a (CHL) and 2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRISMA(®)). The new chlorin was compared to other dyes (CHL and Hypericin) in relation to photophysical and photobiological activities in tumor and non-tumor cell lines. Cytotoxicity and cell death target were determined to evaluate the CHL-T efficiency, comparing to the precursor CHL and to the well-known dye hypericin (HY). All of the studied compounds exhibited absorption bands in the therapeutic window and presented a small fluorescence quantum yield compared to the reference dye (rhodamine B). CHL-T was about three times more efficient on singlet oxygen generation than the others photosensitizers. The lipophilicity order of the photosensitizers was CHL>HY>CHL-T. The tumoral HeLa cells presented improved accumulation for CHL and CHL-T compared to HY. The phototoxicity presented by the CHL-T was about ten times higher than by CHL, as demonstrated by the MTT assay. CHL-T showed more cytotoxicity to tumoral cell, comparing to non-tumoral cell in short incubation time. The cell death rises proportionally with increasing PSs concentrations, mainly by necrosis. These findings suggest that CHL-T is a potential new photosensitizer for PDT.

  20. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen concentrations and chlorine isotope compositions

    NASA Astrophysics Data System (ADS)

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-09-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and δ37Cl values range from + 0.2 ‰ to + 1.9 ‰ (average = + 1.0 ± 0.4 ‰), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004, 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. δ37Cl values of the lavas range from -0.1 to + 0.8 ‰ (average = + 0.4 ± 0.3 ‰). Our results suggest that the predominantly positive δ37Cl values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with δ37Cl values > + 1.0 ‰ also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor-liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid-rock interaction in order to improve volatile flux estimates through subduction zones.

  1. Detection of chlorine with concentration of 0.18 kg/m{sup 3} in concrete by laser-induced breakdown spectroscopy

    SciTech Connect

    Sugiyama, K.; Fujii, T.; Matsumura, T.; Shiogama, Y.; Yamaguchi, M.; Nemoto, K.

    2010-05-01

    The chlorine concentration in concrete samples was measured by laser-induced breakdown spectroscopy (LIBS). One or two pulsed second harmonic Nd:YAG lasers ({lambda}=532 nm) were used for the generation of laser-induced breakdown, and an intensified CCD camera, spectrometer, and optical bundle fiber were used for spectral measurement. To maximize the spectral intensity of the chlorine fluorescence line at a wavelength of 837.59 nm, the time delay between laser irradiation and spectral measurement, the time delay between the two laser pulses in double-pulse measurement, and the gate width of the spectral measurement were optimized. The linear relationship between the spectral intensity of the chlorine fluorescence line and the chlorine concentration was verified for pressed samples with chlorine concentrations from 0.18 to 5.4 kg/m{sup 3}. The signal-to-noise ratio was higher than 2 for the sample with a chlorine concentration of 0.18 kg/m{sup 3} (0.008 wt. %). Thus, a chlorine concentration of 0.6 kg/m{sup 3}, at which the reinforcing bars in concrete structures start to corrode, can be detected. These results show that LIBS is effective for the quantitative measurement of chlorine concentration in concrete with high sensitivity.

  2. Ambient aerosol chlorine concentrations and artefacts during the MEGAPOLI Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay; Crippa, Monica; Poulain, Laurent; Sciare, Jean; Flechsig, Uwe; Prévôt, André; Baltensperger, Urs

    2015-04-01

    Trace elements, especially those that are toxic, can affect the environment in significant ways. Studying them is advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially useful in urban environments with numerous time-variant emission sources distributed across a relatively narrow space. Two field campaigns took place in the framework of the MEGAPOLI project in Paris, France: one in the summer of 2009 (1-31 July), the other in the winter of 2010 (11 Jan - 10 Feb). Rotating drum impactors (RDI) were operated at an urban and a suburban site in each campaign. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facility of the Paul Scherrer Institute (SLS), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for different weather situations and urban environments. Quality assurance was performed partly by intercomparison with independent measurements. An exceptional behavior was observed for chlorine (Cl), where periods with zero RDI concentration alternated with periods of normal load. Zero concentrations were not observed in particle-into-liquid (PILS) measurements. This identifies the observed behavior as a RDI sampling artefact. Nevertheless, the non-zero periods of Cl concentrations are still a gain in information compared to conventional sampling techniques, mainly due to the high time resolution.

  3. Inactivation of Airborne Bacteria and Viruses Using Extremely Low Concentrations of Chlorine Dioxide Gas.

    PubMed

    Ogata, Norio; Sakasegawa, Miyusse; Miura, Takanori; Shibata, Takashi; Takigawa, Yasuhiro; Taura, Kouichi; Taguchi, Kazuhiko; Matsubara, Kazuki; Nakahara, Kouichi; Kato, Daisuke; Sogawa, Koushirou; Oka, Hiroshi

    2016-01-01

    Infectious airborne microbes, including many pathological microbes that cause respiratory infections, are commonly found in medical facilities and constitute a serious threat to human health. Thus, an effective method for reducing the number of microbes floating in the air will aid in the minimization of the incidence of respiratory infectious diseases. Here, we demonstrate that chlorine dioxide (ClO2) gas at extremely low concentrations, which has no detrimental effects on human health, elicits a strong effect to inactivate bacteria and viruses and significantly reduces the number of viable airborne microbes in a hospital operating room. In one set of experiments, a suspension of Staphylococcus aureus, bacteriophage MS2, and bacteriophage ΦX174 were released into an exposure chamber. When ClO2 gas at 0.01 or 0.02 parts per million (ppm, volume/volume) was present in the chamber, the numbers of surviving microbes in the air were markedly reduced after 120 min. The reductions were markedly greater than the natural reductions of the microbes in the chamber. In another experiment, the numbers of viable airborne bacteria in the operating room of a hospital collected over a 24-hour period in the presence or absence of 0.03 ppm ClO2 gas were found to be 10.9 ± 6.7 and 66.8 ± 31.2 colony-forming units/m3 (n = 9, p < 0.001), respectively. Taken together, we conclude that ClO2 gas at extremely low concentrations (≤0.03 ppm) can reduce the number of viable microbes floating in the air in a room. These results strongly support the potential use of ClO2 gas at a non-toxic level to reduce infections caused by the inhalation of pathogenic microbes in nursing homes and medical facilities.

  4. Comparison of chlorine and ammonia concentration field trial data with calculated results from a Gaussian atmospheric transport and dispersion model.

    PubMed

    Bauer, Timothy J

    2013-06-15

    The Jack Rabbit Test Program was sponsored in April and May 2010 by the Department of Homeland Security Transportation Security Administration to generate source data for large releases of chlorine and ammonia from transport tanks. In addition to a variety of data types measured at the release location, concentration versus time data was measured using sensors at distances up to 500 m from the tank. Release data were used to create accurate representations of the vapor flux versus time for the ten releases. This study was conducted to determine the importance of source terms and meteorological conditions in predicting downwind concentrations and the accuracy that can be obtained in those predictions. Each source representation was entered into an atmospheric transport and dispersion model using simplifying assumptions regarding the source characterization and meteorological conditions, and statistics for cloud duration and concentration at the sensor locations were calculated. A detailed characterization for one of the chlorine releases predicted 37% of concentration values within a factor of two, but cannot be considered representative of all the trials. Predictions of toxic effects at 200 m are relevant to incidents involving 1-ton chlorine tanks commonly used in parts of the United States and internationally.

  5. Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes.

    PubMed

    Zanoni, Maria Valnice B; Sene, Jeosadaque J; Selcuk, Huseyin; Anderson, Marc A

    2004-06-01

    The production of chlorine and hypochlorite is of great economical and technological interest due to their large-scale use in many kinds of commercial applications. Yet, the current processes are not without problems such as inevitable side reactions and the high cost of production. This work reports the photoelectrocatalytic oxidation of chloride ions to free chlorine as it has been investigated by using titanium dioxide (TiO2) and several metal-doped titanium dioxide (M-TiO2) material electrodes. An average concentration of 800 mg L(-1) of free chlorine was obtained in an open-air reactor using a TiO2 thin-film electrode biased at +1.0 V (SCE) and illuminated by UV light. The M-doped electrodes have performed poorly compared with the pure TiO2 counterpart. Test solutions containing 0.05 mol L(-1) NaCl pH 2.0-4.0 were found to be the best conditions for fast production of free chlorine. A complete investigation of all parameters that influence the global process of chlorine production by the photo electrocatalytic method such as applied potential, concentration of NaCl, pH solution, and time is presented in detail. In addition, photocurrent vs potential curves and the reaction order are also discussed.

  6. Catalytic destruction of chloramine to nitrogen using chlorination and activated carbon--case study.

    PubMed

    Kochany, J; Lipczynska-Kochany, E

    2008-04-01

    The paper presents the results of laboratory and pilot studies on the removal of chloramine from potable water using chlorination with a less-than-breakpoint dosage of chlorine, followed by treatment with catalytic activated carbon. The effect of the chlorine-to-nitrogen ratio, temperature, and carbon contact time were investigated to optimize conditions for chloramines removal and minimize the production of ammonia. Results demonstrated that prechlorination of water, followed by treatment with catalytic activated carbon, can degrade monochloramine to nitrogen gas as a main product. For all chlorine-to-ammonia ratios studied, the observed rates of monochloramine removal were higher at a temperature of 20 degrees C than they were at 5 degrees C. Generation of ammonia was slightly higher at the lower temperature. However, at both temperatures, practically all monochloramine was destroyed, and only insignificant amounts of ammonia were formed when a chlorine-to-ammonia ratio of 7:1 was applied. The described method is simple and cost-effective, because it eliminates the requirement of removal of ammonia, typically formed during the treatment of chloramines with activated carbon.

  7. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  8. [In vitro study of the antifungal activity of two chlorine derivatives to be used in antisepsis].

    PubMed

    Bianchi, P; Repetto, A; Bulletti, S; Mattiacci, P; Rossi, J; Pagiotti, R; Ribaldi, M; Schiaffella, F

    1989-01-01

    The activity of two chlorine derivates, sodium hypochlorite in water solution with NaCl (product A) and electrolytic chloroxidant (product B) has been tested in vitro against potentially human pathogenic fungi (Aspergillus niger, Aspergillus fumigatus, Microsporum gypseum, Candida albicans, Cryptococcus neoformans, Trichophyton mentagrophytes, Microsporum canis, Epidermophyton floccosum, Trichophyton rubrum, Sporotrix schenkii). For A. niger, the relation of the two compounds has also been considered between mycelial and sporidial forms. Dilutions used ranged from 0.15 to 10% (corresponding to 17.2-1150 ppm of active principle for product A, and to 18.3-1220 ppm of active principle for product B). These were applied for different times in order to assess the minimal inhibitory concentration (M.I.C.) and to evaluate the survival time of the microorganisms tested, which were strains from the collection of the Institute of Mycology, (Faculty of Agrarian Science, Perugia) and recently isolated ones from animal and vegetable tissues, cultivated on Sabouraud medium. The cell suspension to be tested was obtained on nutrient broth in shaken flasks (120 rpm) at 28 degrees C for 48 h, and was separated by centrifugation and 10000 rpm at 5 degrees C for 20 min, repeatedly washed with sterile physiologic saline and resuspended in sterile water where it was submitted to delicate pressure in order to fragment the mycelium. Activity tests were carried out on Sabouraud broth and Sabouraud agar with controls for every case without the active principle. Aliquots of the suspensions (microrganism++ + disinfectant) were transferred at regular intervals (1, 3, 5 and 10 minutes) to the two substrates in liquid and solid state, and the growth of microorganisms was followed at 28 degrees C for 48-72 h in the case of yeasts, and for up to 21 days in the case of sower growing fungi. The cell content of the different suspensions was found to range from 10(4) to 10(9) UFC/ml. The active

  9. Dechlorination of chlorinated compounds by Trametes versicolor ATCC 200801 crude laccase and quantitative structure-activity relationship of toxicity.

    PubMed

    Çabuk, Ahmet; Sidir, Yadigar G; Aytar, Pinar; Gedikli, Serap; Sidir, İsa

    2012-01-01

    Chlorinated compounds constitute an important class of xenobiotics. Crude laccase was produced using Trametes versicolor ATCC (200801) in potato dextrose broth, with wheat bran as an inducing medium, and its ability to dechlorinate eight compounds was determined. The compounds were 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, heptachlor and pentachlorophenol. A range of parameters for the dechlorination of some compounds was tested, including incubation period, pH, initial substrate concentration, temperature, and enzyme quantity. The oxygen consumption was determined during each dechlorination process, under pre-determined optimum conditions. The changes in chemical structure of the compounds were also determined, by using FTIR analysis, following dechlorination of test chlorophenolics. Strong interactions were found to lead to the reactivity of hydroxyl groups in some cases and chlorine atoms were released from the benzene ring. The changes in compound toxicity were monitored before and after enzymatic treatment, using Microtox. Quantitative structure-activity relationships for the toxicity of the chlorinated compounds were developed. Consequently, the toxic activity of the test compounds was controlled by electrophilic index and electronic properties.

  10. Effect of variation in indium concentration on the photosensitivity of chlorine doped In{sub 2}S{sub 3} thin films

    SciTech Connect

    Cherian, Angel Susan; Kartha, C. Sudha; Vijayakumar, K. P.

    2014-01-28

    Consequence of variation in Indium concentration in chlorine doped In2S{sub 3} thin films deposited by spray pyrolysis technique was studied. Chlorine was incorporated in the spray solution, using HCl and Indium concentration was varied by adjusting In/S ratio Interestingly, the photo response of all chlorine doped samples augmented compared to pristine samples; but the highest photosensitivity value of ∼2300 was obtained only when 36ml 0.5M HCl was added to the solution of In{sub 2}S{sub 3} having In/S=2/8. It was also observed that samples with high photosensitivity possess higher band gap and variation in sub band gap absoption levels were observed with increase in Indium concentration. The present study proved that concentration of Indium plays an important role in controlling the crystallinity and photosensitivity of chlorine doped samples.

  11. Comparative antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solutions evaluated using a novel standardized assay.

    PubMed

    Thorn, R M S; Robinson, G M; Reynolds, D M

    2013-05-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces.

  12. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    PubMed Central

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  13. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.

    2002-01-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  14. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils.

    PubMed

    Freitas, Marisa; Ribeiro, Daniela; Tomé, Sara M; Silva, Artur M S; Fernandes, Eduarda

    2014-10-30

    Neutrophils are considered the central cells of acute inflammation. Flavonoids have been suggested as therapeutic agents to avoid damages induced by inflammatory processes. It is well known the reactivity of flavonoids with hypochlorous acid produced by neutrophils, to form stable mono and dichlorinated products. In this study, we synthesized novel chlorinated flavonoids and investigated their effect in neutrophils' oxidative burst and in its lifespan, in comparison with the parent non-chlorinated flavonoids. The obtained results demonstrate that chlorinated flavonoids were more efficient than their parent compounds in modulating neutrophils' oxidative burst in phorbol myristate acetate-activated neutrophils. Some of the tested flavonoids drive neutrophil apoptosis in a caspase 3-dependent fashion. The present data showed that 8-chloro-3',4',5,7-tetrahydroxyflavone (4a) constitute an alternative anti-inflammatory therapy, due to the proven ability to suppress mechanisms engaged at the onset and progression of inflammation.

  15. Sulfonate activation of the electrophilic reactivity of chlorine and alkyl hypochlorides by the insertion of sulfur trioxide at the C1-C1 and O-C1 bonds. Addition of chlorine chloro- and ethoxysulfate to olefins

    SciTech Connect

    Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D.; Zhdankin, V.V.

    1986-10-10

    At low temperatures (-40 to -80/sup 0/C) sulfur trioxide enters the chlorine molecule (with the formation of chlorine chlorosulfate) and the ethyl hypochlorite molecule (giving chlorine ethoxysulfate). Both new compounds are highly reactive electrophilic chlorinating reagents and add to ethylene, activated alkenes (1-hexene and cyclohexene), and deactivated olefins (methyl methacrylate, tri- and tetrachloroethylene) in methylene chloride solution at low temperatures. The addition of chlorine chlorosulfate leads to the formation of ..beta..-chloroalkyl chlorosulfates with yields of 24-85%, and the addition of chlorine ethoxysulfate leads to ..beta..-chloroalkyl ethylsulfates with yields of 65-85%. The reactions with unsymmetrical olefins lead to mixtures of the regioisomers with a preference for the products from addition according to the Markovnikov rule; the addition to cyclohexene is trans-stereospecific. The investigated processes represent a new simple approach to the production of sulfate-activated chlorinating reagents and extend the possibilities for functional substitution of olefins.

  16. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  17. Correlation of Conformational Changes and Protein Degradation with Loss of Lysozyme Activity Due to Chlorine Dioxide Treatment.

    PubMed

    Ooi, Beng Guat; Branning, Sharon Alyssa

    2016-12-13

    Chlorine dioxide (ClO2) is a potent oxidizing agent used for the treatment of drinking water and decontamination of facilities and equipment. The purpose of this research is to elucidate the manner in which ClO2 destroys proteins by studying the effects of ClO2 on lysozyme. The degree of enzyme activity lost can be correlated to the treatment time and levels of the ClO2 used. Lysozyme activity was drastically reduced to 45.3% of original enzyme activity when exposed to 4.3 mM ClO2 in the sample after 3 h. Almost all activities were lost in 3 h after exposure to higher ClO2 concentrations of up to 16.8 and 21.9 mM. Changes in protein conformation and amount as a result of ClO2 treatment were determined using the Raman spectroscopy and gel electrophoresis. Raman shifts and the alteration of spectral features observed in the ClO2-treated lysozyme samples are associated with loss of the α-helix secondary structure, tertiary structure, and disulfide bond. Progressive degradation of the denatured lysozyme by increasing levels of chlorine dioxide was also observed in gel electrophoresis. Hence, ClO2 can effectively cause protein denaturation and degradation resulting in loss of enzyme activity.

  18. Effect of fluctuating low-level chlorine concentrations on valve-movement behavior of the asiatic clam (corbicula fluminea)

    SciTech Connect

    Ham, K.D. . Graduate Program in Ecology); Peterson, M.J. )

    1994-03-01

    Asiatic clams (Corbicula fluminea) exposed to water from the upstream section of East Fork Popular Creek (Oak Ridge, TN), a stream receiving chlorine-containing industrial discharges, were monitored for changes in valve movement patterns. Individual clams were attached to an automated valve-movement monitoring apparatus and suspended in flow-through tanks located streamside. Valve-closure behavior of two clams exposed to untreated water was compared to that of two clams exposed to dechlorinated water for two 18-d periods. Chlorine concentrations in untreated water exhibited a pronounced diurnal cycle, fluctuating between a mean daily minimum of 0.02 mg/L total residual chlorine (TRC) during the day and a mean daily maximum of 0.07 mg/L TRC at night during the second monitoring period. In over 2,300 fifteen-minute intervals, clams closed for 0.70 of the intervals while exposed to untreated water, but closed for only 0.22 of the intervals while exposed to dechlorinated water. Treatment differences in valve closure were tested by repeated-measures ANOVA. A significant treatment effect on valve closure was found in the first monitoring period. Graphical analysis of valve-closure records revealed duel cycles that differed between treatments. Clams in untreated water usually opened only near midday, when TRC concentrations were lowest. Clams in dechlorinated water opened more often, for longer periods, and appeared to respond to dawn and dusk changes in light. The valve-closure behavior of clams in untreated water effectively minimized tissue exposure to waterborne TRC, presumably reducing toxic effects. Valve-closure monitoring in conjunction with other studies may help estimate the effect of tissue isolation on the toxicity or bioaccumulation of waterborne chemicals. Such estimates could improve prediction of toxicological or ecological consequences of stressful conditions on bivalves.

  19. The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products.

    PubMed

    Li, Man; Xu, Bi; Liungai, Zhiqi; Hu, Hong-Ying; Chen, Chao; Qiao, Juan; Lu, Yun

    2016-04-15

    As a recently developed disinfection technology, ultraviolet (UV)/chlorine treatment has received much attention. Many studies have evaluated its effects on pathogen inactivation, contaminant removal, and formation of disinfection by-products (DBPs), but its potential for environmental estrogen removal and estrogenic DBP generation, which can also be a risk to both ecosystem and human health, have not been evaluated. In this study, UV/chlorine treatment resulted in a greater removal of estrogenic activity in synthetic effluent samples containing 17β-estradiol (E2) than did UV or chlorine treatment alone regardless of the water quality. For both the UV/chlorine and chlorine treatments, there was significant interference from NH3-N, although the UV/chlorine treatment was less affected. Estrogen receptor based affinity chromatography was used to isolate the specific estrogenic DBPs, and a novel product, with high estrogenic activity compared to E2, Δ9(11)-dehydro-estradiol, was identified. It was generated by all three treatments, and might be previously mistakenly recognized as estrone (E1). This study demonstrated that UV/chlorine is a better treatment for the removal of 17β-estradiol than chlorine and UV alone. The new identified estrogenic DBP, Δ9(11)-dehydro-estradiol, which can be isolated by affinity chromatography, could be an emerging concern in the future.

  20. Determination of bromine, chlorine and iodine in environmental aqueous samples by epithermal neutron activation analysis and Compton suppression

    USGS Publications Warehouse

    Landsberger, S.; O'Kelly, D. J.; Braisted, J.; Panno, S.

    2006-01-01

    Halides, particularly Br- and Cl-, have been used as indicators of potential sources of Na+ and Cl- in surface water and groundwater with limited success. Contamination of groundwater and surface water by Na+ and Cl- is a common occurrence in growing urban areas and adversely affects municipal and private water supplies in Illinois and other states, as well as vegetation in environmentally sensitive areas. Neutron activation analysis (NAA) can be effectively used to determine these halogens, but often the elevated concentrations of sodium and chlorine in water samples can give rise to very high detection limits for bromine and iodine due to elevated backgrounds from the activation process. We present a detailed analytical scheme to determine Cl, Br and I in aqueous samples with widely varying Na and Cl concentrations using epithermal NAA in conjunction with Compton suppression. ?? 2006 Akade??miai Kiado??.

  1. The Jack Rabbit chlorine release experiments: implications of dense gas removal from a depression and downwind concentrations.

    PubMed

    Hanna, Steven; Britter, Rex; Argenta, Edward; Chang, Joseph

    2012-04-30

    The Jack Rabbit (JR) field experiment, involving releases of one or two tons of pressurized liquefied chlorine and ammonia into a depression, took place in 2010 at Dugway Proving Ground, Utah, USA. The releases, of duration about 30 s from a short pipe at a height of 2m, were directed towards the ground. The dense two phase cloud was initially confined in a depression of 2 m depth and 50 m diameter. With wind speedsabout 1.5 m s(-1), the initial cloud was not well-confined in the depression and moved downwind. Formulas suggested by Briggs et al. in 1990 in this journal satisfactorily predict the time durations of confinement. Sensitivity runs with the SLAB dense gas model show that the effect of a long confinement on maximum downwind concentrations is strongest near the depression. The model-predicted and observed maximum 20 s chlorine concentrations agree within a factor of two most of the time, as long as the release times based on Briggs' theory are used.

  2. ASCORBIC ACID REDUCTION OF ACTIVE CHLORINE PRIOR TO DETERMINING AMES MUTAGENICITY OF CHLORINATED NATURAL ORGANIC MATTER (NOM)

    EPA Science Inventory

    Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all com...

  3. Dynamic headspace: a single-step extraction for isotopic analysis of microg/L concentrations of dissolved chlorinated ethenes.

    PubMed

    Morrill, Penny L; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood

    2004-01-01

    In this study a dynamic headspace method was developed to measure the carbon isotope values of dissolved chlorinated ethenes at microg/L concentrations. A gas chromatograph/combustion/isotope ratio mass spectrometer (GC/C/IRMS) was modified to include a headspace extraction system followed by a cryogenic trap. Extracting headspace from a 160 mL vial with 80 mL of aqueous solution and 40 g of NaCl for 8-12 min resulted in accurate and reproducible delta13C values for trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE) at concentrations of 50-75 microg/L. Based on these results a conservative lower limit of quantitation of 38 microg/L can be calculated for these compounds. For more volatile compounds such as tetrachloroethene (PCE) and vinyl chloride (VC), field data analyzed using this method indicate a lower limit of quantitation in the tens of microg /L range.

  4. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    NASA Astrophysics Data System (ADS)

    Nakajima, Hideaki; Wohltmann, Ingo; Wegner, Tobias; Takeda, Masanori; Pitts, Michael C.; Poole, Lamont R.; Lehmann, Ralph; Santee, Michelle L.; Rex, Markus

    2016-03-01

    We examined observations of polar stratospheric clouds (PSCs) by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT) and super-cooled ternary solution (STS) mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  5. Reduction of Escherichia coli on surfaces of utensils and development of a predictive model as a function of concentration and exposure time of chlorine.

    PubMed

    Baek, Seung-Bum; Kim, Seok-Won; Ha, Sang-Do

    2012-01-01

    Cross-contamination to fruit and vegetables can readily occur through contaminated surfaces; thus, there is a need to develop methods to inactivate microorganisms on the surfaces of various materials. The aim of this study was to develop methods to reduce the levels of Escherichia coli on the surfaces of various materials and to develop a predictive model as a function of chlorine concentration and exposure time. The reduction of E. coli on the surfaces of stainless steel, plastic, wood, rubber, glass, and ceramic at various chlorine concentrations (0-200 ppm) after a 0-5-min exposure was evaluated. The surface treatment at the maximum chlorine concentration (200 ppm) over a 5-min exposure reduced the E. coli contamination levels to 5.30, 5.18, 3.34, 4.69, 5.05, and 5.53 log CFU/cm(2) on the surfaces of stainless steel, plastic, wood, rubber, glass, and ceramic, respectively. Using these results, predictive models for the reduction of E. coli on surfaces of various materials using chlorine treatment were developed. Each model was significant (p<0.05) and defined as fit by the lack of fit and probability of normal residuals. It has measured the R(2) value to 0.9746. Therefore, the models presented in this study could be used to determine the minimum concentrations of chlorine and exposure times needed to control E. coli on the surfaces of various materials.

  6. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  7. Contribution of chlorination to the mutagenic activity of drinking water extracts in Salmonella and Chinese hamster ovary cells

    SciTech Connect

    Douglas, G.R.; Nestmann, E.R.; Lebel, G.

    1986-11-01

    The production of chlorinated by-products through chlorine disinfection of drinking water has been well documented. Natural organic precursors for these chemicals include fulvic and humic acids, the chlorination of which leads to the production of mutagenic compounds. Comparisons of extracts of raw versus treated waters have confirmed that clorination during water treatment produces mutagenic activity in the Salmonella (Ames) test. Present work on XAD-2 extracts of raw and chlorinated water from six municipalities in the Great Lakes region of Canada has involved a battery of mutagenicity assays for various genetic endpoints: the Salmonella test, the sister-chromatid exchange (SCE) and the micronucleus (MN) induction in Chinese hamster ovary (CHO) cells. All extracts of treated (chlorinated), but none of untreated, water were mutagenic in the Salmonella assay. On the other hand, extracts of both treated and untreated water samples showed activity in the SCE and MN assays, but no consistent pattern of response with regard to treatment (chlorination) was evident. These data show that chlorination contributes mutagens to drinking water and suggest that mammalian in vitro assays may be more sensitive for detecting mutagenicity in water samples than the Salmonella test.

  8. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    PubMed

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  9. Adsorption equilibria of chlorinated organic solvents onto activated carbon

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-04-01

    Adsorption equilibria of dichloromethane, 1,1,1-trichloroethane, and trichloroethylene on activated carbon were obtained by a static volumetric technique. Isotherms were measured for the pure vapors in the temperature range from 283 to 363 K and pressures up to 60 kPa for dichloromethane, 16 kPa for 1,1,1-trichloroethane, and 7 kPa for trichloroethylene, respectively. The Toth and Dubinin-Radushkevich equations were used to correlate experimental isotherms. Thermodynamic properties such as the isosteric heat of adsorption and the henry`s constant were calculated. It was found that the values of isosteric heat of adsorption were varied with surface loading. Also, the Henry`s constant showed that the order of adsorption affinity is 1,1,1-trichloroethane, trichloroethylene, and dichloromethane. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals micropore volume, was determined, and its value was found to be approximately independent of adsorbates.

  10. Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixtures health effects research: U.S. EPA's Four Lab Study.

    PubMed

    Pressman, Jonathan G; Richardson, Susan D; Speth, Thomas F; Miltner, Richard J; Narotsky, Michael G; Hunter, E Sidney; Rice, Glenn E; Teuschler, Linda K; McDonald, Anthony; Parvez, Shahid; Krasner, Stuart W; Weinberg, Howard S; McKague, A Bruce; Parrett, Christopher J; Bodin, Nathalie; Chinn, Russell; Lee, Chih-Fen T; Simmons, Jane Ellen

    2010-10-01

    The U.S. Environmental Protection Agency's "Four Lab Study" involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia. The study evaluated toxicological effects of complex disinfection byproduct (DBP) mixtures, with an emphasis on reproductive and developmental effects that have been associated with DBP exposures in some human epidemiologic studies. This paper describes a new procedure for producing chlorinated drinking water concentrate for animal toxicology experiments, comprehensive identification of >100 DBPs, and quantification of 75 priority and regulated DBPs. In the research reported herein, complex mixtures of DBPs were produced by concentrating a natural source water with reverse osmosis membranes, followed by addition of bromide and treatment with chlorine. By concentrating natural organic matter in the source water first and disinfecting with chlorine afterward, DBPs (including volatiles and semivolatiles) were formed and maintained in a water matrix suitable for animal studies. DBP levels in the chlorinated concentrate compared well to those from EPA's Information Collection Rule (ICR) and a nationwide study of priority unregulated DBPs when normalized by total organic carbon (TOC). DBPs were relatively stable over the course of the animal studies (125 days) with multiple chlorination events (every 5-14 days), and a significant portion of total organic halogen was accounted for through a comprehensive identification approach. DBPs quantified included regulated DBPs, priority unregulated DBPs, and additional DBPs targeted by the ICR. Many DBPs are reported for the first time, including previously undetected and unreported haloacids and haloamides. The new concentration procedure not only produced a concentrated drinking water suitable for animal experiments, but also provided a greater TOC concentration factor (136

  11. The effects of free chlorine concentration, organic load, and exposure time on the inactivation of Salmonella, Escherichia coli O157:H7 and non-O157 STEC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of free chlorine (FC) concentration, contact time, and organic load on the inactivation of Salmonella, E. coli O157:H7, and non-O157 STEC in suspension. Four strains each of Salmonella, E. coli O157:H7, or non-O157 STEC cells were inoculated separately or as a multi-...

  12. Free Chlorine and Monochloramine Application to Nitrifying Biofilm: Comparison of Biofilm Penetration, Activity, and Viability

    EPA Science Inventory

    Biofilm in drinking water systems is undesirable and effective biofilm control maintains public health. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. ...

  13. Concentrations of Metals, Metalloids, and Chlorinated Pollutants in Blood and Plasma of White Stork (Ciconia ciconia) Nestlings From Spain.

    PubMed

    Pérez-López, M; De la Casa-Resino, I; Hernández-Moreno, D; Galeano, J; Míguez-Santiyán, M P; de Castro-Lorenzo, A; Otero-Filgueiras, M; Rivas-López, O; Soler, F

    2016-10-01

    The aim of this study was to determine the levels of different inorganic elements (lead [Pb], mercury [Hg], and arsenic [As]) and persistent chlorinated pollutants (including polychlorinated biphenyls [PCBs] and organochlorine pesticides [OCPs]) in blood and plasma of White stork (Ciconia ciconia) nestlings from northwest (NW) Spain. The concentrations of PCBs were lower than the limit of detection in all samples. The OCPs γ-HCH, 4,4'-DDE, HCB, and endosulfan were detected most frequently in plasma from White stork nestlings. These OCPs were detected in 98, 54, 39, and 37 % of all samples, respectively. However, the concentrations of organic pollutants were lower than the risk thresholds for birds. The mean levels of the inorganic elements Pb, Hg, and As were found to be 36.92 ± 33.48, 16.48 ± 12.87, and 9.813 ± 13.84 µg/L, respectively. These levels were also lower than the risk thresholds for birds. This study not only provides a snapshot of the levels of both inorganic and organic contaminants in wild White storks in NW Spain, it also provides a useful baseline for biomonitoring levels of the measured contaminants in this area.

  14. Chlorine Clues

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot shows that levels of the element chlorine rise dramatically in the deeper rocks lining the walls of the crater dubbed 'Endurance.' The data shown here were taken by the Mars Exploration Rover Opportunity's alpha particle X-ray spectrometer at Endurance and 'Eagle Crater,' the site where Opportunity first landed at Meridiani Planum.

    Opportunity has been inching down the walls of Endurance Crater, investigating distinct layers of rock as it goes for clues to Mars' buried past. The various Endurance layers have been informally labeled 'A' through 'F.' Targets within these layers are listed on the graph along with previous targets from Eagle Crater. All the rocks listed here were observed after they had been drilled by the rover's rock abrasion tool.

    The observations indicate that the elements making up the shallow rock layers of Endurance Crater resemble those of Eagle, while the deeper layers of Endurance possess increasingly higher concentrations of the element chlorine.

    Opportunity will continue to roll deeper into Endurance to see if this puzzling trend continues. Scientists hope the new data will help them figure out how the presence of chlorine fits into the history of water at Endurance Crater.

  15. Alkyl Nitrates and Oxidized Volatile Organic Compounds during NACHTT: Influence on Reactive Chlorine Activation

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Sive, B. C.; Russo, R. S.; Zhou, Y.

    2011-12-01

    Recent studies have suggested that reactive chlorine species can contribute substantially to the oxidative capacity of the atmosphere and also influence tropospheric ozone chemistry in areas far from dominant marine sources. The photochemical processing of polluted air masses containing can potentially affect the formation of chlorine radical (Cl) through various processes involving hydrocarbons and NOx (NO + NO2). Organic peroxy radicals can react with nitric oxide (NO) to form alkyl nitrates or to produce nitrogen dioxide (NO2) and oxygenated volatile organic compounds (OVOCs), including alcohols, aldehydes and ketones. Aldehydes can further react with NO2 to form peroxyacyl nitrates (PAN). Alkyl nitrates and PAN can serve as reservoirs for long range transport of NOx and can influence Cl production in remote areas. In order to further elucidate the influence of OVOCs and alkyl nitrates on chlorine activation processes, whole air samples were collected hourly during the Nitrogen, Aerosol Composition and Halogens on a Tall Tower (NACHTT) campaign at the Boulder Atmospheric Observatory in Erie, Colorado from February 18 through March 11, 2011. Profile samples up to 250 m were also collected throughout the campaign. Samples were analyzed for a comprehensive suite of volatile organic compounds, including OVOCs and C1 to C5 alkyl nitrates, using a five channel gas chromatographic analytical system. Alkyl nitrates and OVOCs were abundant throughout the campaign. Total alkyl nitrate mixing ratios ranged from 13 to 227 pptv with 2-butyl nitrate and 2-propyl nitrate accounting for over half of this total. Ethanol was the most abundant OVOC followed by methanol with median mixing ratios of 8.5 ppbv and 5.6 ppbv, respectively. This presentation will focus on the influence the observed alkyl nitrate and OVOC mixing ratios and air mass photochemical processing on Cl cycling.

  16. Changes in maternal serum chlorinated pesticide concentrations across critical windows of human reproduction and development.

    PubMed

    Bloom, Michael S; Buck-Louis, Germaine M; Schisterman, Enrique F; Kostyniak, Paul J; Vena, John E

    2009-01-01

    Investigators often employ a single cross-sectional measure of in utero exposure when evaluating associations between organochlorine (OCs) pesticides/metabolites and adverse reproductive outcomes. Few data are available on the stability of exposures to OCs over critical windows of human reproduction and development inclusive of the periconception window. Our objective was to measures changes in OC concentrations prior to conception and throughout pregnancy or after 12 unsuccessful months attempting pregnancy. Seventy-nine women planning pregnancy were prospectively enrolled and followed for up to 12 menstrual cycles. Blood specimens were obtained for toxicologic analysis of seven OCs from participating women at baseline (preconception, n=79), at the first prenatal visit following a positive pregnancy test leading to a live birth (n=54) or after pregnancy loss (n=10), at approximately 6 weeks post-partum (n=53), and after 12 unsuccessful cycles (n=9). Overall and daily rate of change in OCs concentration (ng/gserum) were estimated adjusting for serum lipids and baseline concentration. Significant (P<0.05) decreases in the overall and daily rate of change in OCs concentrations (ng/mLserum) were observed from baseline to pregnancy for HCB (-0.032, -0.001, respectively) and trans-nonachlor (-0.050, -0.002, respectively) while oxychlordane demonstrated an increase during this critical window (0.029, 0.001, respectively). Significant decreases in aldrin (-0.002, -1.47x10(-4), respectively), HCB (-0.069, -0.003, respectively), and trans-nonachlor (-0.045, -0.002, respectively), and an overall increase for oxychlordane (0.015) were seen for women with pregnancy losses. Significant decreases also were observed among infertile women for aldrin (-0.003, -3.52x10(-6), respectively), DDE (-0.210, -4.29x10(-4), respectively), and HCB (-0.096, -2.03x10(-4), respectively), along with an increase for trans-nonachlor (0.034, 7.59x10(-5), respectively). These data, though limited by

  17. Synthesis, characterization, and antifungal activity of novel inulin derivatives with chlorinated benzene.

    PubMed

    Guo, Zhanyong; Li, Qing; Wang, Gang; Dong, Fang; Zhou, Haoyuan; Zhang, Jing

    2014-01-01

    A group of novel inulin derivatives containing benzene or chlorinated benzene were synthesized by reaction of chloracetyl inulin (CAIL) with the Schiff bases of 4-amino-pyridine, including (2-pyridyl)acetyl inulin chloride (PAIL), 2-[4-(2-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2CPAIL), 2-[4-(4-chlorobenzylideneamino)-pyridyl]acetyl inulin chloride (4CPAIL), and 2-[4-(2,4-dichlorobenzylideneamino)-pyridyl]acetyl inulin chloride (2,4DCPAIL). Their antifungal activity against three kinds of phytopathogens was estimated by hypha measurement in vitro. Of all the synthesized chitosan derivatives, 2,4DCPAIL inhibited the growth of the tested phytopathogens with inhibitory indices of 67%, 47%, and 43% against Colletotrichum lagenarium (Pass) Ell.et halst, Phomopsis asparagi (Sacc.) Bubak and Fusarium oxysporum (schl.) F.sp. niveum (F. oxysporum) respectively at 1.0 mg/mL. The results indicate that all the inulin derivatives have better antifungal activity than inulin, and the inhibitory index is affected by the chlorine atom grafted to the inulin derivatives.

  18. Concentration trends and bioavailability of chlorinated dioxins to crabs from B.C. pulp mills and harbours

    SciTech Connect

    Yunker, M.B.; Cretney, W.J.

    1995-12-31

    Since 1990 approximately 100 synchronous samples of sediment and Dungeness crab (Cancer magister) hepatopancreas have been collected from B.C. harbours and pulp mill sites and analyzed for chlorinated dibenzo-p-dioxin and dibenzofuran congeners. Mean sediment/crab bioconcentration factors (BSAFs) for both dioxins and furans decrease uniformly from approximately log 0.5 for the tetrachloro congeners to log {minus}2 for the octachloro congeners. Individual pairs of samples vary, but no systematic trends are apparent either over time or between mill sites or depositional environments. Differences in dioxin and furan sources that are apparent as principal components analysis (PCA) class separations in both the sediment and crab data sets also are not reflected in differences in BSAFS. Partial least squares (PLS) path modeling reveals little correspondence in congener patterns between sediments and crabs and rules out a direct pathway for contaminant transfer. Results suggest some food chain bioaccumulation for the tetra and pentachloro congeners, but bioavailability to the crabs decreases from the penta to octachloro congeners, Concentration trends over time for both sediment and crabs from the mill sites suggest that the mill-related dioxin and furans are preferentially associated with a suspended particulate or near-bottom nepheloid fraction that is easily buried over time in quiescent areas (e.g., fjords), but has remained available for accumulation in locations that are well flushed by tidal action.

  19. Reaction products of chlorine dioxide.

    PubMed Central

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  20. Chlorination strategies for direct groundwater recharge of tertiary effluent

    SciTech Connect

    Fox, P.; Wang, L.; Johnson, P.C.; Houston, S.; Houston, W.N.; Brown, P.

    1998-07-01

    Chlorination for the control of biological activity during direct recharge of tertiary effluent was studied in bench-scale simulated aquifers. Both free chlorine and chloramine were studied at darcy velocities of 360 cm/d to 720 cm/d. A free chlorine residual of 5 mg/L or above inhibited biological activity in the 1.2 m of soil that was studied. A free chlorine residual concentration of 2 mg/L prevented biological activity in the first 0.9 m of exposed soil and significant biological clogging was observed in soil greater than 0.9 m from the injection point. A 2 mg/L residual concentration of chloramine resulted in biological clogging over the 0.9 m of soil adjacent to the injection point. No chlorine addition resulted in clogging adjacent to the injection point indicating that the chloramine inhibited biological activity and allowed biological activity to occur over a greater distance from the injection point. Dissolved oxygen levels decreased to zero in aquifers where significant biological activity was observed and trihalomethane concentrations decreased in these aquifers. Free chlorine appears to effectively control biological clogging adjacent to the injection point while permitting biological activity to develop after the chlorine has decayed.

  1. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Technical Reports Server (NTRS)

    Leone, D. M.; Turns, S. R.

    1994-01-01

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  2. The occurrence of chlorine in serpentine minerals

    USGS Publications Warehouse

    Miura, Y.; Rucklidge, J.; Nord, G.L.

    1981-01-01

    Partially serpentinized dunites containing small amounts of Chlorine (< 0.5%) from Dumont, Quebec, and Horoman, Hokkaido, Japan, and one containing less than 0.05% Chlorine from Higashi-Akaishi-Yama, Ehime, Japan have been examined using the electron probe microanalyzer and scanning transmission electron microscope with X-ray analytical capabilities. Chlorine was found together with Si, Mg, Ca and Fe in the serpentine minerals of the Dumont and Hokkaido dunites but not in the Ehime dunite. Chlorine is found associated only with the most finely crystalline facies of the serpentine (grain size less than 10 nm). The Ehime dunite contained no such fine grained serpentine, and was thus effectively chlorine-free, as are the coarser grained serpentines of the other samples. The finegrained chlorine-bearing serpentine also has a much higher concentration of Fe, and can contain smaller amounts of Ca, Ni and Mn than the coarse-grained variety as well as minute awaruite (FeNi3) grains. This fine-grained serpentine probably represents an early stage in the transformation of olivine to serpentine, with chlorine from hydrothermal solutions assisting the necessary chemical changes. The Cl increases the reaction rate by lowering the activation barrier to reaction by the introduction of reaction steps. ?? 1981 Springer-Verlag.

  3. Activated Persulfate Treatment of 1,4-Dioxane in the Presence of Chlorinated Solvent Co-contaminants

    NASA Astrophysics Data System (ADS)

    Boving, T. T.; Eberle, D. E. H.; Ball, R.

    2014-12-01

    1,4-dioxane is an emerging groundwater contaminant and a likely human carcinogen. Due to its history as a stabilizer in chlorinated solvents, 1,4-dioxane is often found as a co-contaminant at solvent releases sites such as landfills, solvent recycling facilities, vapor decreasing operations, and fire-training areas. Historically, 1,4-dioxane was not routinely analyzed for at solvent release sites. The lack of analyses and the limitations of the analyses that were performed (i.e. high reporting limits) means that the scale of 1,4-dioxane subsurface contamination is still emerging. With the number of known 1,4-dioxane sites increasing, the need for cost effective 1,4-dioxane remediation technologies is rising as well. Remediation strategies that are capable of treating both 1,4-dioxane as well as chlorinated co-contaminants are of particular importance, especially when treating mixed-waste source zones. In the present study, we examined the fate of 1,4-dioxane during the targeted remediation of aqueous phase volatile organic compounds (VOC) using an activated persulfate based ISCO method (OxyZone®). Bench scale laboratory experiments are used to evaluate the treatability of 1,4-dioxane both as a single compound and in the presence of trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA). Possible dependencies on oxidant concentration and reaction kinetics were studied. Preliminary results are promising and show that OxyZone® is persistent and long lived, with oxidation of 1,4-dioxane continuing more than 12 days after initial dosage, even at dilute oxidant concentrations. The oxidative destruction of 1,4-dioxane, TCE and 1,1,1-TCA in single compound batch systems followed pseudo first order reaction kinetics. The rate of oxidation for each contaminant increased linearly with increasing persulfate concentration over the range of oxidant concentrations tested. The rate of oxidative destruction, from most easily degraded to least was: TCE > 1,4-Dioxane > 1

  4. Chlorine Incorporation in the CH3NH3PbI3 Perovskite: Small Concentration, Big Effect.

    PubMed

    Quarti, Claudio; Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo

    2017-01-03

    The role of chlorine doping in CH3NH3PbI3 represents an important open issue in the use of hybrid perovskites for photovoltaic applications. In particular, even if a positive role of chlorine doping on perovskite film formation and on material morphology has been demonstrated, an inherent positive effect on the electronic and photovoltaic properties cannot be excluded. Here we carried out periodic density functional theory and Car-Parrinello molecular dynamics simulations, going down to ∼1% doping, to investigate the effect of chlorine on CH3NH3PbI3. We found that such a small doping has important effects on the dynamics of the crystalline structure, both with respect to the inorganic framework and with respect to the cation libration motion. Together, we observe a dynamic spatial localization of the valence and conduction states in separated spatial material regions, which takes place in the 10(-1) ps time scale and which could be the key to ease of exciton dissociation and, likely, to small charge recombination in hybrid perovskites. Moreover, such localization is enhanced by chlorine doping, demonstrating an inherent positive role of chlorine doping on the electronic properties of this class of materials.

  5. Trajectory Hunting: A Case Study of Rapid Chlorine Activation in December 1992 as Seen by UARS

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriguez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.; Livesey, N. J.

    2000-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the Atmospheric and Environmental Research, Inc. (AER) photochemical box model. As a case study, we investigate rapid chlorine activation in the Arctic lower stratosphere on December 29, 1992 associated with a polar stratospheric cloud (PSC) event. Eleven air parcels that have been sampled several times along five-day trajectories at the 465 K (approx. 46 hPa), 520 K (approx. 31 hPa), and 585 K (approx. 22 hPa) levels were investigated. For the first time, the latest versions of the Cryogenic Limb Array Etalon Spectrometer (CLAES, version 9) and Microwave Limb Sounder (MLS, version 5) data sets are analyzed, and their consistency is assessed. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the conclusion that for the December 24-29, 1992 episode: (1) the individual CLAES ClONO2 and MLS ClO measurements are self-consistent within their uncertainties; and (2) most of the time, UARS measurements of ClO, ClONO2, HNO3, and aerosol extinction at 780 cm(exp -1) agree within the range of their uncertainties with the model calculations. It appears that the HNO3 and aerosol extinction measurements for four parcels at 520 K look more supportive for the nitric acid trihydrate (NAT) scheme, However, the uncertainties in the individual UARS measurements and UK Meteorological Office temperature do not allow a definite discrimination between the NAT and supercooled ternary solution (STS) PSC schemes for this chlorine activation episode in December 1992.

  6. Trajectory Hunting: A Case Study of Rapid Chlorine Activation in December 1992 as Seen by UARS

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.; Livesey

    2000-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the Atmospheric and Environmental Research, Inc. (AER) photochemical box model. As a case study, we investigate rapid chlorine activation in the Arctic lower stratosphere on December 29, 1992 associated with a polar stratospheric cloud (PSC) event. Eleven air parcels that have been sampled several times along 5-day trajectories at the 465 K (approx. 46 hPa), 520 K (approx. 31 hPa), and 585 K (approx. 22 hPa) levels were investigated. For the first time, the latest versions of the Cryogenic Limb Array Etalon Spectrometer (CLAES, version 9) and Microwave Limb Sounder (MLS, version 5) data sets are analyzed, and their consistency is assessed. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the conclusion that for the December 24-29, 1992 episode (1) the individual CLAES version 9 ClONO2 and MLS version 5 ClO measurements are self-consistent within their uncertainties; and (2) most of the time, UARS measurements of ClO, ClONO2, HNO3, and aerosol extinction at 780 cm (exp -1) agree within the range of their uncertainties with the model calculations. It appears that the HNO3 and aerosol extinction measurements for four parcels at 520 K look more supportive for the nitric acid trihydrate (NAT) scheme. However, the uncertainties in the individual UARS measurements and U.K. Meteorological Office temperature do not allow a definite discrimination between the NAT and supercooled ternary solution (STS) PSC schemes for this chlorine activation episode in December 1992.

  7. Effects of starvation on physiological activity and chlorine disinfection resistance in Escherichia coli O157:H7

    NASA Technical Reports Server (NTRS)

    Lisle, J. T.; Broadaway, S. C.; Prescott, A. M.; Pyle, B. H.; Fricker, C.; McFeters, G. A.

    1998-01-01

    Escherichia coli O157:H7 can persist for days to weeks in microcosms simulating natural conditions. In this study, we used a suite of fluorescent, in situ stains and probes to assess the influence of starvation on physiological activity based on membrane potential (rhodamine 123 assay), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-di-4-tolyl-tetrazolium chloride assay), intracellular esterase activity (ScanRDI assay), and 16S rRNA content. Growth-dependent assays were also used to assess substrate responsiveness (direct viable count [DVC] assay), ATP activity (MicroStar assay), and culturability (R2A agar assay). In addition, resistance to chlorine disinfection was assessed. After 14 days of starvation, the DVC values decreased, while the values in all other assays remained relatively constant and equivalent to each other. Chlorine resistance progressively increased through the starvation period. After 29 days of starvation, there was no significant difference in chlorine resistance between control cultures that had not been exposed to the disinfectant and cultures that had been exposed. This study demonstrates that E. coli O157:H7 adapts to starvation conditions by developing a chlorine resistance phenotype.

  8. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus.

    PubMed

    Sanekata, Takeshi; Fukuda, Toshiaki; Miura, Takanori; Morino, Hirofumi; Lee, Cheolsung; Maeda, Ken; Araki, Kazuko; Otake, Toru; Kawahata, Takuya; Shibata, Takashi

    2010-06-01

    We evaluated the antiviral activity of a chlorine dioxide gas solution (CD) and sodium hypochlorite (SH) against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. CD at concentrations ranging from 1 to 100 ppm produced potent antiviral activity, inactivating >or= 99.9% of the viruses with a 15 sec treatment for sensitization. The antiviral activity of CD was approximately 10 times higher than that of SH.

  9. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    PubMed

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × timereaction) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, Ea, induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (CODMn) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and CODMn concentrations contributed to the inactivation of T. tubifex.

  10. Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity

    PubMed Central

    Ahmad, Aftab; Hendry-Hofer, Tara B.; Loader, Joan E.; Claycomb, William C.; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L.; Chandler, Joshua D.; Day, Brian J.; Veress, Livia A.; White, Carl W.

    2015-01-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure. PMID:25188881

  11. Sarcoendoplasmic reticulum Ca(2+) ATPase. A critical target in chlorine inhalation-induced cardiotoxicity.

    PubMed

    Ahmad, Shama; Ahmad, Aftab; Hendry-Hofer, Tara B; Loader, Joan E; Claycomb, William C; Mozziconacci, Olivier; Schöneich, Christian; Reisdorph, Nichole; Powell, Roger L; Chandler, Joshua D; Day, Brian J; Veress, Livia A; White, Carl W

    2015-04-01

    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.

  12. Optimizing the Activation of Chlorin e6 Utilizing Upconversion Energy Transfer

    NASA Astrophysics Data System (ADS)

    Avalos, Julio C.; Pedraza, Francisco J.; Sardar, Dhiraj K.

    2015-03-01

    Current cancer therapy techniques, such as chemotherapy and radiation therapy, possess several drawbacks including lack of selectivity resulting in harmful side effects. Photodynamic therapy (PDT) is one of the fastest emerging techniques due to its many advantages, including the use of nonionizing radiation, targeted delivery, and controlled doses. In PDT, photosensitizers (PSs) are activated inside targeted cells to produce irreversible damage inducing cell death. Since most PSs operate in the visible range, it is difficult to activate them due to the high attenuation of soft tissue. Upconverting nanoparticles (UCNP) are able to absorb in the NIR region, where light is less attenuated, and emit in the visible range, resulting in deeper tissue penetration. UCNPs are able to assist with the activation of the PS by energy transfer when the PS is conjugated onto the UCNP. Chlorin e6 (Ce6) is a commonly used PSs due to its ability to release reactive oxygen species (ROS), which is one of the main processes utilized in PDT. The UCNP studied contain a combination of rare earth doped ions including Erbium, Thulium, and Holmium precisely doped into the host nanocrystal to improve upconversion emission and energy transfer. The work presented will focus on exploring the factors that affect the activation of Ce6. The results will include the enhancement of Ce6 activation and ROS release when conjugated onto a rare earth-doped UCNP. This research was funded by NSF-PREM Grant No. DMR -0934218 and RISE Grant No. GM 060655.

  13. Integrated disinfection by-products mixtures research: assessment of developmental toxicity in Sprague-Dawley rats exposed to concentrates of water disinfected by chlorination and ozonation/postchlorination.

    PubMed

    Narotsky, Michael G; Best, Deborah S; Rogers, Ellen H; McDonald, Anthony; Sey, Yusupha M; Simmons, Jane Ellen

    2008-01-01

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) found in drinking water. The classes and concentrations of DBPs are influenced by the choice of disinfection process (e.g., chlorination, ozonation) as well as source water characteristics (e.g., pH, total organic carbon, bromide content). Disinfected waters were found to contain more than 500 compounds, many of which remain unidentified. Therefore, a "whole-mixture" approach was used to evaluate the toxic potential of alternative disinfection scenarios. An in vivo developmental toxicity screen was used to evaluate the adverse developmental effects of the complex mixtures produced by two different disinfection processes. Water was obtained from East Fork Lake, Ohio; spiked with iodide and bromide; and disinfected either by chlorination or by ozonation/postchlorination, producing finished drinking water suitable for human consumption. These waters were concentrated approximately 130-fold by reverse osmosis membrane techniques. To the extent possible, volatile DBPs lost in the concentration process were spiked back into the concentrates. These concentrates were then provided as drinking water to Sprague-Dawley rats on gestation days 6-16; controls received boiled, distilled, deionized water. The dams (19-20 per group) were allowed to deliver and their litters were examined on postnatal days (PD) 1 and 6. All dams delivered normally, with parturition occurring significantly earlier in the ozonation/postchlorination group. However, no effects on prenatal survival, postnatal survival, or pup weight were evident. Skeletal examination of the PD-6 pups also revealed no treatment effects. Thus, approximately 130-fold higher concentrates of both ozonated/postchlorinated and chlorinated water appeared to exert no adverse developmental effects in this study.

  14. Effect of moisture, charge size, and chlorine concentration on PCDD/F emissions from simulated open burning of forest biomass

    EPA Science Inventory

    Loblolly pine (Pinus taeda) was combusted at different charge sizes, fuel moisture, and chlorine content to determine the effect on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated diberizofurans (PCDDslFs) as well as co-pollutants CO, PM, and total hydrocarbons...

  15. Comparison of ozone and chlorine in low concentrations as sanitizing agents of chicken carcasses in the water immersion chiller.

    PubMed

    Trindade, Marco Antonio; Kushida, Marta Mitsui; Montes Villanueva, Nilda D; dos Santos Pereira, David Uenaka; De Oliveira, Andcelso Eduardo Lins

    2012-06-01

    The aim of this study was to investigate the effects of the use of chlorine or ozone as sanitizing agents in the water of chicken immersion chilling, using the residual levels usually applied in Brazil (1.5 ppm), comparing the effects of these treatments on the microbiological, physicochemical, and sensory characteristics of carcasses. Chicken carcasses were chilled in water (4°C) with similar residual levels of ozone and chlorine until reaching temperatures below 7°C (around 45 min). The stability of carcasses was assessed during 15 days of storage at 2 ± 1°C. Microbiological, surface color (L*, a*, b* parameters), pH value, lipid oxidation (thiobarbituric acid reactive substances index), and sensory evaluation (on a 9-point hedonic scale for odor and appearance) analyses were carried out. The presence of Salmonella was not detected, coagulase-positive staphylococci counts were below 10(2) CFU/ml of rinse fluid, and Escherichia coli and total coliform counts were below 10(5) CFU/ml of rinse fluid until the end of the storage period for both treatments. Psychrotrophic microorganism counts did not differ (P > 0.05) between chlorine and ozone treatments, and both values were near 10(9) CFU/ml of rinse fluid after 15 days at 4 ± 1°C. pH values did not differ between treatments (P > 0.05) or during the storage period (P > 0.05). In addition, neither chlorine nor ozone treatment showed differences (P > 0.05) in the lipid oxidation of carcasses; however, the thiobarbituric acid reactive substances index of both treatments increased (P ≤ 0.05) during the storage period, reaching values of approximately 0.68 mg of malonaldehyde per kg. Samples from both treatments did not differ (P > 0.05) in their acceptance scores for odor and overall appearance, but in the evaluation of color, ozone showed an acceptance score significantly higher (P ≤ 0.05) than that for the chlorine treatment. In general, under the conditions tested, ozone showed results similar to the

  16. Movement and fate of chlorinated solvents in ground water: Research activities at Picatinny Arsenal, New Jersey

    SciTech Connect

    Fusillo, T.V.; Ehlke, T.A.; Martin, M.

    1987-01-01

    The USGS, through its Toxic Waste - Groundwater Contamination Program, is undertaking an interdisciplinary research study of contaminants. The purpose of the study is to gain a better understanding of the chemical, physical, and biological processes that affect the movement and fate of these contaminants in groundwater. The study is being conducted at Picatinny Arsenal, New Jersey, where metal plating and metal etching wastes have contaminated part of the glacial stratified drift aquifers. Major areas of research at the site are described, including: distribution and movement of chlorinated solvents in groundwater, behavior of chlorinated solvents in the unsaturated zone, geochemistry of the contaminated groundwater, and microbial transformations of chlorinated solvents. 7 refs., 5 figs.

  17. Chlorine isotope variability in subglacial glasses from Iceland

    NASA Astrophysics Data System (ADS)

    Halldorsson, S. A.; Barnes, J.; Stefansson, A.; Hilton, D. R.; Hauri, E. H.

    2014-12-01

    Chlorine concentrations tend to be significantly enriched in surface reservoirs relative to that of the mantle. This large contrast in chlorine contents makes primary asthenospheric melts, highly susceptible to contamination by surficial chlorine in shallow-level crustal environments. Indeed, on the basis of both chlorine abundance systematics [e.g., 1], and chlorine isotopes [2], previous researchers have argued for a surficial chlorine component in controlling the chlorine systematics of MORB. In contrast, other studies suggest recycling of ancient chlorine via a subducted, altered oceanic lithospheric component as a means of controlling the chlorine isotope composition of the mantle [3]. So far, very few high precision chlorine isotope data are available from key oceanic islands, which potentially provide access to deeper parts of the mantle and thus allow for testing of the relative role of these ideas. We report new chlorine isotope (reported as δ37Cl; n=22) and abundance data (SIMS) derived from fresh subglacial glasses from Iceland. The glasses, which cover all the currently active volcanic zones of Iceland, span a wide range in their major element composition with MgO contents between 2.1 and 10.0 wt% and chlorine contents, that vary by almost two orders of magnitude, of 17 to 1270 ppm. Chlorine contents show significant correlations (R2 > 0.9) with incompatible elements such as potassium, consistent with earlier observations from Iceland and the adjacent Reykjanes Ridge [4, 5]. δ37Cl values range from -0.6‰ to +1.4‰. Significantly, δ37Cl values strongly correlate with Cl and MgO contents, with low δ37Cl values in samples with low Cl and high MgO concentrations. The data are consistent with mixing between two different reservoirs: a upper mantle reservoir with low Cl concentration and a slightly negative δ37Cl value and a crustal reservoir with a high Cl concentration and enriched in 37Cl. To further investigate the origin of these chlorine isotope

  18. Carbon isotope fractionation of chlorinated ethenes during oxidation by Fe2+ activated persulfate.

    PubMed

    Marchesi, Massimo; Aravena, Ramon; Sra, Kanwartej S; Thomson, Neil R; Otero, Neus; Soler, Albert; Mancini, Silvia

    2012-09-01

    The increased use of persulfate (S(2)O(8)(2-)) for in situ chemical oxidation to treat groundwater and soils contaminated by chlorinated hydrocarbon compounds (CHCs) requires unbiased methods to assess treatment performance. Stable carbon isotope analysis offers a potential tool for assessing the in situ treatment performance of persulfate at sites contaminated with CHCs. This study investigated the extent of C isotope fractionation during oxidation of tetrachloroethene (PCE), trichloroethene (TCE) and cis-dichloroethene (cis-DCE) by persulfate activated by ferrous ion (Fe(2+)). An average carbon isotope enrichment factor ε(bulk) of -4.9‰ for PCE, -3.6‰ for TCE and -7.6‰ for cis-DCE were obtained in batch experiments. Variations in the initial S(2)O(8)(2-)/Fe(2+)/CHC molar ratios did not result in any significant differences in carbon isotope fractionation. The occurrence of carbon isotope fractionation during oxidation and the lack of dependence of enrichment factors upon the S(2)O(8)(2-)/Fe(2+)/CHC molar ratio demonstrate that carbon isotope analysis can potentially be used at contaminated sites as an additional technique to estimate treatment efficacy during oxidation of CHCs by Fe(2+) activated persulfate.

  19. Evaluation of chlorinated benz[a]anthracene on hepatic toxicity in rats and mutagenic activity in Salmonella typhimurium.

    PubMed

    Kido, T; Sakakibara, H; Ohura, T; Guruge, K S; Kojima, M; Hasegawa, J; Iwamura, T; Yamanaka, N; Masuda, S; Sakaguchi, M; Amagai, T; Shimoi, K

    2013-01-01

    Chlorinated benz[a]anthracenes (Cl-BaA) are halogenated aromatic compounds (typified by dioxins) found in the environment at relatively high concentrations. Fischer 344 rats were intragastrically administered 0, 1, or 10 mg of Cl-BaA or its parent compound benz[a]anthracene (BaA) per kg of body weight for 14 consecutive days. Both chemicals at 10 mg/kg/day inhibited the gain in body weight, and consequent increase in relative liver weight. Hepatic gene expression of cytochrome P450 (CYP) 1A1, 1A2, and 1B1 was significantly stimulated by administration of BaA (10 mg/kg/day) compared with the control. After administration of Cl-BaA, only the CYP1A2 gene was significantly induced, even at the lower dosage; CYP1A1 and 1B1 mRNA levels remained unchanged in Cl-BaA-treated rats compared with controls. To elucidate the role of such Cl-BaA exposure and induced CYPs at toxicity onset, we investigated the mutagenicity of BaA and Cl-BaA using Salmonella typhimurium TA98 and TA100. BaA and Cl-BaA at 10 μg/plate produced positive results in both strains in the presence of rat S-9. Incubation of Cl-BaA with recombinant rat CYP1A2 produced a significantly higher number of revertant colonies in TA98 and TA100 than in controls, but no such change was observed for BaA. In conclusion, BaA changes its own physiological and toxicological actions by its chlorination; (1) daily exposure to Cl-BaA selectively induces hepatic CYP1A2 in rats and (2) Cl-BaA induces frameshift mutations in the presence of CYP1A2, although BaA does not exert mutagenicity. This indicates that CYP1A2 may metabolize Cl-BaA to active forms.

  20. Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.

  1. Process for Photochemical Chlorination of Hydrocarbons

    DOEpatents

    Beanblossom, W S

    1951-08-28

    A process for chlorination of a major portion of the hydrogen atoms of paraffinic hydrocarbons of five or more carbon atoms may be replaced by subjecting the hydrocarbon to the action of chlorine under active light. The initial chlorination is begun at 25 to 30 deg C with the chlorine diluted with HCl. The later stages may be carried out with undiluted chlorine and the temperature gradually raised to about 129 deg C.

  2. Diabetes Prevalence in Relation to Serum Concentrations of Polychlorinated Biphenyl (PCB) Congener Groups and Three Chlorinated Pesticides in a Native American Population

    PubMed Central

    Aminov, Zafar; Haase, Richard; Rej, Robert; Schymura, Maria J.; Santiago-Rivera, Azara; Morse, Gayle; DeCaprio, Anthony; Carpenter, David O.

    2016-01-01

    Background: Exposure to persistent organic pollutants (POPs) is known to increase risk of diabetes. Objective: To determine which POPs are most associated with prevalence of diabetes in 601 Akwesasne Native Americans. Methods: Multiple logistic regression analysis was used to assess associations between quartiles of concentrations of 101 polychlorinated biphenyl (PCBs) congeners, congener groups and three chlorinated pesticides [dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB) and mirex] with diabetes. In Model 1, the relationship between quartiles of exposure and diabetes were adjusted only for sex, age, body mass index (BMI), and total serum lipids. Model 2 included additional adjustment for either total PCBs or total pesticides. Results: Total serum PCB and pesticide concentrations were each significantly associated with prevalence of diabetes when adjusted only for covariates (Model 1), but neither showed a significant OR for highest to lowest quartiles after additional adjustment for the other (Model 2). When applying Model 2 to PCB congener groups and individual pesticides, there were significant omnibus differences between the four quartiles (all ps < 0.042) for most groups, with the exception of penta- and hexachlorobiphenyls, DDE and mirex. However, when comparing highest to lowest quartiles only non- and mono-ortho PCBs [OR = 4.55 (95% CI: 1.48, 13.95)], tri- and tetrachloro PCBs [OR = 3.66 (95% CI: 1.37, –9.78)] and HCB [OR = 2.64 (95% CI: 1.05, 6.61)] showed significant associations with diabetes. Among the non- and mono-ortho congeners, highest to lowest quartile of dioxin TEQs was not significant [OR = 1.82 (95% CI: 0.61, 5.40)] but the OR for the non-dioxin-like congeners was [OR = 5.01 (95% CI: 1.76, 14.24)]. Conclusion: The associations with diabetes after adjustment for other POPs were strongest with the more volatile, non-dioxin-like, low-chlorinated PCB congeners and HCB. Because low-chlorinated congeners are more volatile

  3. Prompt gamma analysis of chlorine in concrete for corrosion study.

    PubMed

    Naqvi, A A; Nagadi, M M; Al-Amoudi, O S B

    2006-02-01

    Measurement of chlorine in concrete is very important for studying of corrosion of reinforcing steel in concrete. Corrosion of reinforcing steel is primarily ascribed to the penetration of chloride ions to the steel surface. Preventive measures for avoiding concrete structure reinforcement corrosion requires monitoring the chloride ion concentration in concrete so that its concentration does not exceed a threshold limit to initiate reinforcement concrete corrosion. An accelerator based prompt gamma neutron activation analysis (PGNAA) setup has been developed for non-destructive analysis of elemental composition of concrete samples. The setup has been used to measure chlorine concentration in concrete samples over a 1-3 wt% concentration range. Although a strong interference has been observed between the chlorine gamma-rays and calcium gamma-rays from concrete, the chlorine concentration in concrete samples has been successfully measured using the 1.164 and 7.643 MeV chlorine gamma-rays. The experimental data were compared with the results of the Monte Carlo simulations. An excellent agreement has been achieved between the experimental data and results of Monte Carlo simulations. The study has demonstrated the successful use of the accelerator-based PGNAA setup in non-destructive analysis of chlorine in concrete samples.

  4. Myeloperoxidase-Related Chlorination Activity Is Positively Associated with Circulating Ceruloplasmin in Chronic Heart Failure Patients: Relationship with Neurohormonal, Inflammatory, and Nutritional Parameters

    PubMed Central

    Cabassi, Aderville; Binno, Simone Maurizio; Tedeschi, Stefano; Graiani, Gallia; Galizia, Cinzia; Bianconcini, Michele; Coghi, Pietro; Fellini, Federica; Ruffini, Livia; Govoni, Paolo; Piepoli, Massimo; Perlini, Stefano; Regolisti, Giuseppe; Fiaccadori, Enrico

    2015-01-01

    Rationale. Heart failure (HF) is accompanied by the development of an imbalance between oxygen- and nitric oxide-derived free radical production leading to protein nitration. Both chlorinating and peroxidase cycle of Myeloperoxidase (MPO) contribute to oxidative and nitrosative stress and are involved in tyrosine nitration of protein. Ceruloplasmin (Cp) has antioxidant function through its ferroxidase I (FeOxI) activity and has recently been proposed as a physiological defense mechanism against MPO inappropriate actions. Objective. We investigated the relationship between plasma MPO-related chlorinating activity, Cp and FeOxI, and nitrosative stress, inflammatory, neurohormonal, and nutritional biomarkers in HF patients. Methods and Results. In chronic HF patients (n = 81, 76 ± 9 years, NYHA Class II (26); Class III (29); Class IV (26)) and age-matched controls (n = 17, 75 ± 11 years, CTR), plasma MPO chlorinating activity, Cp, FeOxI, nitrated protein, free Malondialdehyde, BNP, norepinephrine, hsCRP, albumin, and prealbumin were measured. Plasma MPO chlorinating activity, Cp, BNP, norepinephrine, and hsCRP were increased in HF versus CTR. FeOxI, albumin, and prealbumin were decreased in HF. MPO-related chlorinating activity was positively related to Cp (r = 0.363, P < 0.001), nitrated protein, hsCRP, and BNP and inversely to albumin. Conclusions. Plasma MPO chlorinated activity is increased in elderly chronic HF patients and positively associated with Cp, inflammatory, neurohormonal, and nitrosative parameters suggesting a role in HF progression. PMID:26539521

  5. Movement and fate of chlorinated solvents in ground water; research activities at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Fusillo, T.V.; Ehlke, T.A.; Martin, Mary

    1987-01-01

    The USGS, through its Toxic Waste--Ground-Water Contamination Program, is undertaking an interdisciplinary research study of contaminants. The purpose of the study is to gain a better understanding of the chemical, physical, and biological processes that affect the movement and fate of these contaminants in groundwater. The study is being conducted at Picatinny Arsenal, New Jersey, where metal plating and metal etching wastes have contaminated part of the glacial stratified drift aquifers. Major areas of research at the site are described, including: (1) distribution and movement of chlorinated solvents in groundwater, (2) behavior of chlorinated solvents in the unsaturated zone, (3) geochemistry of the contaminated groundwater, and (4) microbial transformations of chlorinated solvents. (Author 's abstract)

  6. Microcosm Studies to Evaluate Aerobic Cometabolism of Low Concentrations of 1,4-Dioxane by Isobutane-utilizing Microorganisms in the Presence of Chlorinated Solvent Co-contaminants

    NASA Astrophysics Data System (ADS)

    Rolston, H. M.; Azizian, M.; Hyman, M. R.; Semprini, L.

    2015-12-01

    Due to its use as a stabilizer for chlorinated solvents, 1,4-dioxane (1,4D), a probable human carcinogen, is a common co-contaminant in solvent spills at industrial and military sites and landfills. Its persistence in large groundwater plumes at low concentrations makes it a relevant candidate for in-situ bioremediation via cometabolism. Microcosm studies are being performed to evaluate the capability of aerobic microorganisms to cometabolize mixtures of 1,4D and chlorinated solvents, such as trichloroethylene (TCE), 1,1,1-trichloroethane (1,1,1TCA), and 1,1-dichloroethene (1,1DCE), with isobutane as the primary substrate. Microcosms were constructed using aquifer solids from Fort Carson, Colorado, a site contaminated with 1,4D and TCE, to assess the isobutane uptake and transformation of 1,4D and chlorinated solvents by microorganisms native to the site. Additional microcosms were augmented with Rhodococcus rhodochrous, a bacterium shown to cometabolize 1,4D and chlorinated solvents. Results indicate that native microcosms cometabolized 1,4D upon stimulation with isobutane after a lag period of about 15 days. TCE was also transformed, but at significantly slower rates. The presence of 1,4D and TCE at 500 and 300 ppb, respectively, did not inhibit the growth of native microorganisms on isobutane, with isobutane uptake and 1,4D transformation occurring simultaneously. Bioaugmented microcosms transformed 1,4D immediately after inoculation with R. rhodochrous. Tests in bioaugmented microorganisms indicated that the presence of TCE at low concentrations inhibits but does not block the transformation of 1,4D. Results from the microcosms will be used to design field tests to be performed at Fort Carson. Additional microcosm studies will compare the stimulation of native and bioaugmented microcosms and the transformation of mixtures of 1,4D, 1,1,1TCA and 1,1DCE. Molecular methods will analyze the monoxygenase enzymes expressed in the native and bioaugmented microcosms.

  7. Effect of chlorine substituent on cytotoxic activities: Design and synthesis of systematically modified 2,4-diphenyl-5H-indeno[1,2-b]pyridines.

    PubMed

    Kadayat, Tara Man; Park, Seojeong; Jun, Kyu-Yeon; Magar, Til Bahadur Thapa; Bist, Ganesh; Shrestha, Aarajana; Na, Younghwa; Kwon, Youngjoo; Lee, Eung-Seok

    2016-04-01

    In continuation of our previous work, six hydroxylated 2,4-diphenyl-5H-indeno[1,2-b]pyridine analogs were modified by introducing one chlorine functionality at ortho, meta or para position of the 2- or 4-phenyl ring. Eighteen new chlorinated compounds were thus prepared and assessed for topoisomerase inhibitory activity and cytotoxicity against HCT15, T47D, and HeLa cancer cell lines. All of the chlorinated compounds displayed significant cytotoxic effect, revealing potent anticancer activity against T47D breast cancer cells. This functional group modification allowed us to explore the importance of chlorine group substitution for the cytotoxic properties. The information reported here provides valuable insight for further study to develop new anticancer agents using related scaffolds.

  8. Evaluation of estrogenic activity of parabens and their chlorinated derivatives by using the yeast two-hybrid assay and the enzyme-linked immunosorbent assay.

    PubMed

    Terasaki, Masanori; Kamata, Ryo; Shiraishi, Fujio; Makino, Masakazu

    2009-01-01

    We assessed the estrogen agonist activities of 21 parabens and their chlorinated derivatives by using yeast two-hybrid assays incorporating either the human or medaka (Oryzias latipes) estrogen receptor alpha (hERalpha and medERalpha, respectively), and by using hERalpha competitive enzyme-linked immunosorbent assay (ER-ELISA). In the two-hybrid assay with hERalpha, five parabens and three chlorinated derivatives exhibited estrogenic activity, and their relative activity (17beta-estradiol [E2] = 1) ranged from 2.0 x 10(-5) to 2.0 x 10(-4), with the highest activity observed in i-butylparaben. In the medERalpha assay, six parabens and six chlorinated derivatives exhibited estrogenic activity and their relative activity ranged from 2.7 x 10(-5) to 3.5 x 10(-3), with the highest activity observed in benzylparaben, its monochlorinated derivative, i-butylparaben, and n-butylparaben. Although medERalpha demonstrated an activity to E2 that was three times lower than that demonstrated by hERalpha, medERalpha has a higher sensitivity to parabens than hERa (1.3-8.9 times). Five parabens and two chlorinated derivatives exhibited a binding affinity to ERa in the ER-ELISA; of the parabens, i-butylparaben exhibited the strongest binding affinity. The yeast two-hybrid assay and the ER-ELISA also revealed that many of the assayed chlorinated parabens were much weaker than the parent compound. In addition, the results mainly showed that parabens with a bulk substituent (e.g., i-butyl and benzyl groups) had a higher activity than those with a sterically small substituent. It is considered that derivatization masks the apparent estrogenic activity of parabens, but the resulting chlorinated compounds may represent a potential hazard and therefore other toxicity tests should be performed to determine the toxicity of the chlorinated derivatives.

  9. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of chlorine dioxide (ClO2) on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 water direct contact killed food pathogen bacterium, Escherichia coli and fruit decay pathogen fungus, Colletotrichum acutatum. In vivo studies...

  10. Ligand Exchange-Mediated Activation and Stabilization of a Re-Based Olefin Metathesis Catalyst by Chlorinated Alumina.

    PubMed

    Gallo, Alessandro; Fong, Anthony; Szeto, Kai C; Rieb, Julia; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Peters, Baron; Scott, Susannah L

    2016-10-05

    Extensive chlorination of γ-Al2O3 results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support. More specifically, Re LIII-edge EXAFS and DFT calculations support facile ligand exchange between MTO and Cl-Al2O3 to generate [CH3ReO2Cl(+)] fragments that interact with a bridging oxygen of the support via a Lewis acid-base interaction. According to IR and solid-state NMR, the methyl group remains intact, and does not evolve spontaneously to a stable methylene tautomer. Nevertheless, the chloride-promoted metathesis catalyst is far more active and productive than MTO/γ-Al2O3, easily achieving a TON of 100 000 for propene metathesis in a flow reactor at 10 °C (compared to TON < 5000 for the nonchlorinated catalyst). Increased activity is a consequence of both a larger fraction of active sites and a higher intrinsic activity for the new sites. Increased stability is tentatively attributed to a stronger interaction between MTO and chlorinated surface regions, as well as extensive depletion of the Brønsted acidic surface hydroxyl population. The reformulated catalyst represents a major advance for Re-based metathesis catalysts, whose widespread use has thus far been severely hampered by their instability.

  11. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  12. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    PubMed

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models.

  13. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; Garwan, M A; Nagadi, M M; Al-Amoudi, O S B; Raashid, M; Khateeb-ur-Rehman

    2010-03-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  14. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study

    PubMed Central

    Taneja, Sonali; Mishra, Neha; Malik, Shubhra

    2014-01-01

    Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration. PMID:25506141

  15. THE ROLE OF CHLORINE IN DIOXIN FORMATION

    EPA Science Inventory

    There is poor correlation between total chlorine in waste streams and formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) during waste combustion. This is because the active chlorine (Cl) species are strongly dependent upon combustion conditions. ...

  16. Enhancement of toxicity and enzyme-repressing activity of p-dioxane by chlorination: stereoselective effects.

    PubMed

    Woo, Y T; Neuburger, B J; Arcos, J C; Argus, M F; Nishiyama, K; Griffin, G W

    1980-01-01

    The acute toxicity of p-dioxane may be enhanced up to 1000-fold by chlorination of the compound. The effect was stereoselective. Of the stereoisomers tested, tetrachloro-p-dioxane, isomer I (2r, 3t, 5t, 6c) was over 80 times more toxic than isomer II (2r, 3c, 5t, 6t). The latter compound was also a potent repressor of hepatic dimethylnitrosamine-demethylase I (DMN-d) and aryl hydrocarbon hydroxylase (AHH).

  17. Regulation of Turing patterns in a spatially extended chlorine-iodine-malonic-acid system with a local concentration-dependent diffusivity.

    PubMed

    Li, Wei-Shen; Hu, Wen-Yong; Pang, Ya-Chun; Liu, Tai-Ran; Zhong, Wei-Rong; Shao, Yuan-Zhi

    2012-06-01

    A chlorine-iodine-malonic-acid Turing system involving a local concentration-dependent diffusivity (LCDD) has fundamental significance for physical, chemical, and biological systems with inhomogeneous medium. We investigated such a system by both numerical computation and mathematical analysis. Our research reveals that a variable local diffusivity has an evident effect on regulating the Turing patterns for different modes. An intrinsic square-root law is given by λ ∼ (c(1)+c(2)k)(1/2), which relates the pattern wavelength (λ) with the LCDD coefficient (k). This law indicates that the system pattern has the properties of an equivalent Turing pattern. The current study confirms that, for the Turing system with LCDD, the system pattern form retains the basic characteristics of a traditional Turing pattern in a wide range of LCDD coefficients.

  18. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7

    NASA Technical Reports Server (NTRS)

    Lisle, J. T.; Pyle, B. H.; McFeters, G. A.

    1999-01-01

    A suite of fluorescent intracellular stains and probes was used, in conjunction with viable plate counts, to assess the effect of chlorine disinfection on membrane potential (rhodamine 123; Rh123 and bis-(1,3-dibutylbarbituric acid) trimethine oxonol; DiBAC4(3)), membrane integrity (LIVE/DEAD BacLight kit), respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride; CTC) and substrate responsiveness (direct viable counts; DVC) in the commensal pathogen Escherichia coli O157:H7. After a 5 min exposure to the disinfectant, physiological indices were affected in the following order: viable plate counts > substrate responsiveness > membrane potential > respiratory activity > membrane integrity. In situ assessment of physiological activity by examining multiple targets, as demonstrated in this study, permits a more comprehensive determination of the site and extent of injury in bacterial cells following sublethal disinfection with chlorine. This approach to assessing altered bacterial physiology has application in various fields where detection of stressed bacteria is of interest.

  19. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  20. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    PubMed Central

    Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264

  1. Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity

    SciTech Connect

    Xu Hua; Zheng Zhi; Zhang Lizhi Zhang Hailu; Deng Feng

    2008-09-15

    In this study, we report the synthesis of hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm). The resulting sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, {sup 1}H solid magic-angle spinning nuclear magnetic resonance (MAS-NMR) and photoluminescence spectroscopy. On the basis of characterization results, we found that the doping of chlorine resulted in red shift of absorption and higher surface acidity as well as crystal defects in the photocatalyst, which were the reasons for high photocatalytic activity of chlorine-doped TiO{sub 2} under visible light ({lambda}>420 nm). These hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods are very attractive in the fields of environmental pollutants removal and solar cell because of their easy separation and high activity. - Graphical abstract: Hierarchical chlorine-doped rutile TiO{sub 2} spherical clusters of nanorods photocatalyst were synthesized on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light ({lambda}>420 nm)

  2. Atmospheric Release of Organic Chlorinated Compounds from the Activated-Sludge Wastewater Treatment Process.

    DTIC Science & Technology

    1980-05-01

    the uncertainties of --y were considerably less. Ii 24 2.0 EXPERIMENTAL METHODS The study was comprised of two aspects: field surveys of an activated...Tables 29 and 31. Neither survey generated detectable levels for Hex-BCH, Hex-VCL or chlordene with the charcoal tubes. With the Chromosorb 102 tube...two wastewater samples. N/D refers to None Detected Table 18 Air Sample Results of Aeration Basin Survey (IV) (March 24, 1979 9AM-1PM) Concentration

  3. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    NASA Astrophysics Data System (ADS)

    Huck, P. E.; Bodeker, G. E.; Kremser, S.; McDonald, A. J.; Rex, M.; Struthers, H.

    2013-03-01

    Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2×Cl2O2 + ClO + Cl) into the active forms (here: ClOx = 2×Cl2O2 + ClO), and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD) in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  4. Chlorination of Betacyanins in Several Hypochlorous Acid Systems.

    PubMed

    Wybraniec, Sławomir; Starzak, Karolina; Pietrzkowski, Zbigniew

    2016-04-13

    This study presents a comparative evaluation of chlorination of betanin, betanidin, and neobetanin exposed to sodium hypochlorite and myeloperoxidase (MPO)/H2O2/Cl(-) systems. For betanin/betanidin, the chlorination takes place at the aglycone unit, but for neobetanin, no chlorinated products in the reaction mixtures can be detected. In the RP-HPLC system, monochloro-betanin/-betanidin were eluted earlier than their corresponding nonchlorinated substrates. An influence of Cl(-) concentration on betanin/betanidin chlorination efficiency in sodium hypochlorite and MPO systems was investigated. At pH 3-5, the yields of formed monochloro-betanin/-betanidin decrease dramatically at higher Cl(-) concentrations, indicating that generated Cl2 is not the chlorinating agent in the presence of sodium hypochlorite. The intriguing low activity of Cl2 in betanin/betanidin chlorination compared to HOCl and/or Cl2O can be explained by a special position of the attack by molecules of HOCl and/or Cl2O. In the MPO/H2O2/Cl(-) system, the highest efficiency of monochloro-betanin/-betanidin generation is observed at pH 5.

  5. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments.

    PubMed

    Zhao, Zhen-Ye; Gu, Ji-Dong; Fan, Xiao-Jun; Li, Hai-Bo

    2006-06-30

    River water sample was collected from Guangzhou section of the Pearl River to investigate soluble organic fractions and formation of trihalomethane (THMs) after chlorine and chlorine dioxide treatments. The water sample was passed through Amicon YC-05, YM-1, YM-3, YM-10, YM-30, YM-100 and ZM-500 series membranes after a pre-treatment. The molecular weight distribution and the specific ultra-violet absorbance (SUVA(254)) of each fraction obtained from membrane were analyzed, and these fractions were further disinfected with chlorine and chlorine dioxide. The results showed that reverse osmosis (RO) fraction contained mainly dissolved organic matter (DOM) from the water sample, suggesting that the water has been highly contaminated by anthropogenic activities. Meanwhile, the THMs concentration and SUVA(254) increased gradually as the molecular weight of the obtained fractions reduced, indicating that the low molecular weight DOM was the major THMs precursor in the disinfection process with chlorine and chlorine dioxide. The results suggest that THMs in source water of Pearl River could be effectively reduced when pollution of human activity is greatly controlled. Between the two disinfection processes tested, chlorine dioxide produced less THMs than chlorine in this study.

  6. Concentrations of chlorinated organic compounds in biota and bed sediment in streams of the San Joaquin Valley, California

    USGS Publications Warehouse

    Brown, L.R.

    1997-01-01

    Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 15 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of ??DDT (sum of o,p'- and p, p' forms of DDD, DDE, and DDT) were statistically different among groups of sites for both tissue and sediment (Kruskal- Wallis, p < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of ??DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (p < 0.05), which are indicators of the proportion of irrigation return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total organic carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (p < 0.05). Regressions of the concentration of ??DDT in tissue, as a function of ??DDT in bed sediment, were significant and explained up to 76% of the variance in the data. The concentration of ??DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment. The results of this study did not indicate any clear advantage to using either bed sediment or tissues in studies of organochlorine chemicals in the environment. Some guidelines for protection of fish and wildlife were exceeded. Concentrations of organochlorine chemicals in biota, and perhaps sediment, have declined from concentrations measured in the 1970s and 1980s, but remain high compared to other regions of the United States.

  7. Concentration and temperature effects on ovostatin activity

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1994-01-01

    Light scattering experiments performed at Mississippi State University using MSFC ovostatin preparations indicated that at low ovostatin concentrations, below 0.2 mg/ml, the protein was dissociating from a tetramer into dimers. Since the proposed mechanism of action involved the tetrameric form of the protein, we hypothesized that perhaps under the conditions of our assays at various O/T ratios the ovostatin was becoming dissociated into an inactive dimer. To examine this possibility we assayed the ovostatin activity as a function of ovostatin concentration and of temperature of the assay. Data are presented that show the results of these assays at 23 C, 30 C, 37 C and 42 C respectively. The data are highly suggestive that there is a decrease in ovostatin activity as the concentration of the protein falls below 0.06 mg/ml. This may not be of any physiological importance, however, since the concentration of ovostatin in the egg is about 0.5 mg/ml. Curiously, the dissociation of the tetramer into dimers does not show a significant temperature dependence as would be expected for an equilibrium reaction. Whether this is in fact the case, or whether the differences are so small as to not be discerned from the current data remains to be seen. Another aspect to consider is that in the egg the primary role of the ovostatin may or may not be as a protease inhibitor. Although the inhibition of collagenase by ovostatin may be an important aspect of embryogenesis, it is also possible that it functions as a binding protein for some substance. In this regard, all ovostatin preparations from MSFC have shown an approximately 88,000 MW protein associated with the ovostatin. The identity of this protein is not currently known and may be the subject of future studies.

  8. Effect of chlorine-containing bleaching agents on diffuse reflection of light by cellulose pulp

    NASA Astrophysics Data System (ADS)

    Belov, N. P.; Pokoptseva, O. K.; Sherstobitova, A. S.; Yas'kov, A. D.

    2010-07-01

    We have studied diffuse reflectance in the spectral range λ = 380-760 nm of sulfate cellulose pulp with initial hardness G = 30-70 after it was treated with a chlorine-containing bleaching agent with active chlorine concentration C = 0%-10% for different time intervals. We determined the general behavior and basic features of the concentration and time dependences of the brightness B and the diffuse reflectance spectral ratio ( R 437/ R 650)ṡ100% at λ = 457 nm and 650 nm. Based on the data obtained, we propose an optimal algorithm for using optical spectral technologies for metered addition of chlorine-containing bleaching agents.

  9. Evaluation of Disinfection Byproducts Formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source - Poster

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  10. Evaluation of Disinfection Byproducts formed from the Chlorination of Lyophilized and Reconstituted NOM Concentrate from a Drinking Water Source

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by difficulties in shipping large water quantities and NOM geographical and temporal variability. Access to a drinking water representative, shelf-stable, concentrated NOM source would solve th...

  11. INTEGRATED DISINFECTION BYPRODUCTS MIXTURES RESEARCH: COMPREHENSIVE CHARACTERIZATION OF WATER CONCENTRATES PREPARED FROM CHLORINATED AND OZONATED/POSTCHLORINATED DRINKING WATER

    EPA Science Inventory

    This article describes the disinfection byproduct (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking water concentrates containing highly complex mixtures of DBP. This project, called the Four...

  12. Concentrations of chlorinated organic compounds in biota and bed sediment in streams of the lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, Larry R.

    1998-01-01

    Samples of resident biota and bed sediments were collected in 1992 from 18 sites on or near the floor of the San Joaquin Valley, California, for analysis of 33 organochlorine compounds. The sites were divided into five groups on the basis of physiographic region and land use. Ten compounds were detected in tissue, and 16 compounds were detected in bed sediment. The most frequently detected compound in both media was p,p'-DDE. Concentrations of total DDT (sum of o,p'- and p,p'-forms of DDD, DDE, and DDT) were statistically different among groups of sites for tissue and sediment (Kruskal-Wallis, P < 0.05). Concentrations in both media were highest in streams draining the west side of the valley. Concentrations of total DDT in tissue were significantly correlated with specific conductance, pH, and total alkalinity (P < 0.05), which are indicators of the proportion of irrigation-return flows in stream discharge. Concentrations in sediment on a dry-weight basis were not correlated with these water-quality parameters, but total-organic- carbon (TOC) normalized concentrations were significantly correlated with specific conductance and pH (P < 0.05). Regressions of the concentration of total DDT in tissue as a function of total DDT in bed sediment were significant and explained as much as 76 percent of the variance in the data. The concentration of total DDT in sediment may be related to mechanisms of soil transport to surface water with bioavailability of compounds related to the concentration of TOC in sediment.

  13. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 00 / 007 TOXICOLOGICAL REVIEW OF CHLORINE DIOXIDE AND CHLORITE ( CAS Nos . 10049 - 04 - 4 and 7758 - 19 - 2 ) In Support of Summary Information on the ( IRIS ) Integrated Risk Information System September 2000 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This docu

  14. Chlorine cyanide

    Integrated Risk Information System (IRIS)

    Chlorine cyanide ; CASRN 506 - 77 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  15. Kinetics and Mechanism of Bacterial Disinfection by Chlorine Dioxide1

    PubMed Central

    Benarde, Melvin A.; Snow, W. Brewster; Olivieri, Vincent P.; Davidson, Burton

    1967-01-01

    Survival data are presented for a fecal strain of Escherichia coli exposed to three concentrations of chlorine dioxide at four temperatures. Chick's first-order reaction equation is generalized to a pseudo nth-order model. Nonlinear least squares curve-fitting of the survival data to the nth order model was performed on an analogue computer. The data were observed to follow fractional order kinetics with respect to survival concentration, with an apparent activation energy of 12,000 cal/mole. Initial experiments support the thesis that the mechanism of chlorine dioxide kill occurs via disruption of protein synthesis. Images Fig. 1 Fig. 2 Fig. 3 PMID:5339839

  16. Chlorine demand of Savannah River water

    SciTech Connect

    Wilde, E.W.

    1989-01-01

    Savannah River water used for cooling SRS reactors was tested for chlorine demand and the rate of decay for both free and total residual chlorine on seven quarterly dates between 1986 and 1988. Test conditions included chlorine dosages of 1, 3, and 5 mg/l and a variety of contact times ranging from less than 1 minute to one day. Statistically significant differences were detected in the chlorine demand for the seven dates; however, there was no discernible seasonality to the variation. The chlorine demand, amount of combined residual chlorine formed and the persistence of total residual chlorine following a dose of 5 mg/l was significantly greater on one of the seven sampling dates (February, 1988) compared to all of the other dates. These differences could not be attributed to water temperature, pH, ammonia nitrogen concentration, or the amount of rainfall prior to or during the collection of the cooling water. Except as noted above, dissipation of chlorine was similar among the sampling dates. Most reactions of available chlorine with other constituents in the cooking water occurred in the first minute of contact, although measurable total chlorine residuals generally persisted for 24 hours after the dose had been administered. The results of this study indicate that, with occasional exceptions, a chlorine dose of between 3 and 5 mg/l will provide a free chlorine residual of 1 mg/l in Savannah River water. 14 refs., 3 figs., 4 tabs.

  17. [Evaluation of chlorine dioxide concentrations needed to effectively control contamination by Legionella spp in hospital hot water distribution systems].

    PubMed

    Fusaroli, Paolo; Ravaioli, Cinzia; Gabutti, Giovanni; Caroli, Maria; Stefanati, Armando

    2016-01-01

    This aim of the study was to identify effective levels of ClO2 for control of Legionella spp. contamination in the hot water (45-55 °C.) distribution system of a 579-bed hospital in Ravenna (Italy). Overall, 663 hot water samples were collected from the hospital's sinks and shower taps and were analyzed. Trend line analysis, which describes the trend in the number of positive samples collected according to disinfectant concentration, shows that the lowest number of positive samples was achieved with concentrations of ClO2 between 0.22 and 0, 32 mg /l.

  18. Formation of mutagens following chlorination of humic acid. A model for mutagen formation during drinking water treatment.

    PubMed

    Meier, J R; Lingg, R D; Bull, R J

    1983-07-01

    Aqueous chlorination of humic acids results in the formation of compounds with direct-acting mutagenic activity in the Ames/Salmonella plate assay for tester strains TA98, TA100, TA1535, TA1537 and TA1538. The addition of a rat-liver microsomal fraction (S9) plus cofactors causes a substantial decrease of activity, the extent of which is tester strain dependent. The non-chlorinated humic acids are not mutagenic either in the presence or absence of S9. Formation of mutagenic activity and of total organic halogen (TOX) is linearly related to humic concentration in the range of 0.2-1.6 mg/ml total organic carbon (TOC), and to chlorine concentration in the range of 0.1-1.0 chlorine equivalents per mole of carbon. The mutagenic activity is due predominantly to non-volatile compounds. Mutagenic activity is also detectable, after sample concentration by lyophilization, upon chlorination at a humic acid level of 0.02 mg/ml TOC. The specific mutagenic activities (per mg TOX), and also the degree of chlorine incorporation into humic acid, at 0.02 mg/ml TOC are similar to those present after chlorination at 1 mg/ml TOC. Production of mutagens is greatly dependent on the chlorination pH, with a pattern of decreasing mutagenic activity with increasing pH. This order of activity can be at least partially explained by the alkali liability of the compounds. Chlorination of commercial humic acids is proposed as a model for examination of mutagen formation during water chlorination.

  19. Indoor air: Spatial variations of chlorinated pesticides

    NASA Astrophysics Data System (ADS)

    Anderson, David J.; Hites, Ronald A.

    The concentrations of two classes of chlorinated pesticides were measured in various locations within four homes. The prevalent compounds were chlorinated derivatives of cyclopentadiene which had been used as termiticides. These compounds were found in basement areas at higher concentrations than in upstairs areas of the homes. Another class of chlorinated pesticide was represented by chlorpyrifos; its spatial profile was consistent with its application in upstairs areas.

  20. Trends in 2,3,7,8-TCDD concentrations in fish tissues downstream of pulp mills bleaching with chlorine

    SciTech Connect

    Abbott, J.D.; Hinton, S.W.

    1996-07-01

    Field measurements of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) concentrations in fish tissues from riverine environments impacted by treated pulp and paper industry effluent in the US were analyzed. Data from 39 sites in 14 states across the four major US paper-making regions were assembled and analyzed to determine the annual change in lipid-normalized concentrations of TCDD in fish tissue. The results provide strong evidence of a nationwide trend of decreasing lipid-normalized TCDD concentrations in fish tissue, with 84% of the examined sites showing a decrease. While the paucity of data currently limits any conclusions regarding the statistical significance at individual sites, the overall median rate calculated indicates a 0.36 annual fractional decrease in lipid-normalized concentrations of TCDD in fish tissue (0.18 to 0.51, 95% confidence interval); the average annual fractional decrease was 0.35 (0.23 to 0.47, 95% confidence interval). Subdividing fish into benthic and nonbenthic categories resulted in rates which were not significantly different from one another for both the median and mean statistics.

  1. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  2. Zebra mussel mortality with chlorine

    SciTech Connect

    Van Benschoten, J.E.; Jensen, J.N.; Harrington, D.; DeGirolamo, D.J.

    1995-05-01

    The rate of mortality of the zebra mussel in response to chlorine is described by a kinetic model that combines a statistical characterization of mussel mortality with a disinfection-type modeling approach. Parameter estimates were made with nine sets of data from experiments conducted in Niagara River water. From the kinetic model, an operational diagram was constructed that describes the time to 95% mortality as a function of chlorine concentration and temperature. Either the model or the diagram can be used to assist utilities in planning chlorination treatments for controlling zebra mussels.

  3. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    PubMed

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  4. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    PubMed

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  5. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%.

  6. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    PubMed

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  7. Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China

    NASA Astrophysics Data System (ADS)

    Li, Qinyi; Zhang, Li; Wang, Tao; Tham, Yee Jun; Ahmadov, Ravan; Xue, Likun; Zhang, Qiang; Zheng, Junyu

    2016-12-01

    The uptake of dinitrogen pentoxide (N2O5) on aerosol surfaces and the subsequent production of nitryl chloride (ClNO2) can have a significant impact on the oxidising capability and thus on secondary pollutants such as ozone. The range of such an impact, however, has not been well quantified in different geographical regions. In this study, we applied the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model to investigate the impact of the N2O5 uptake processes in the Hong Kong-Pearl River Delta (HK-PRD) region, where the highest ever reported N2O5 and ClNO2 concentrations were observed in our recent field study. We first incorporated into the WRF-Chem an aerosol thermodynamics model (ISORROPIA II), recent parameterisations for N2O5 heterogeneous uptake and ClNO2 production and gas-phase chlorine chemistry. The revised model was then used to simulate the spatiotemporal distribution of N2O5 and ClNO2 over the HK-PRD region and the impact of N2O5 uptake and Cl activation on ozone and reactive nitrogen in the planetary boundary layer (PBL). The updated model can generally capture the temporal variation of N2O5 and ClNO2 observed at a mountaintop site in Hong Kong, but it overestimates N2O5 uptake and ClNO2 production. The model results suggest that under average conditions, elevated levels of ClNO2 (> 0.25 ppb within the PBL) are present in the south-western PRD, with the highest values (> 1.00 ppb) predicted near the ground surface (0-200 m above ground level; a.g.l.). In contrast, during the night when very high levels of ClNO2 and N2O5 were measured in well-processed plumes from the PRD, ClNO2 is mostly concentrated within the residual layer ( ˜ 300 m a.g.l.). The addition of N2O5 heterogeneous uptake and Cl activation reduces the NO and NO2 levels by as much as 1.93 ppb ( ˜ 7.4 %) and 4.73 ppb ( ˜ 16.2 %), respectively, and it increases the total nitrate and ozone concentrations by up to 13.45 µg m-3 ( ˜ 57.4 %) and 7.23 ppb ( ˜ 16

  8. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    PubMed

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils.

  9. Subsurface occurrence and potential source areas of chlorinated ethenes identified using concentrations and concentration ratios, Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    USGS Publications Warehouse

    Garcia, C. Amanda

    2005-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Air Force Aeronautical Systems Center, Environmental Management Directorate, conducted a study during 2003-05 to characterize the subsurface occurrence and identify potential source areas of the volatile organic compounds classified as chlorinated ethenes at U.S. Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS-JRB) at Fort Worth, Texas. The solubilized chlorinated ethenes detected in the alluvial aquifer originated as either released solvents (tetrachloroethene [PCE], trichloroethene [TCE], and trans-1,2-dichloroethene [trans-DCE]) or degradation products of the released solvents (TCE, cis-1,2-dichloroethene [cis-DCE], and trans-DCE). The combined influences of topographic- and bedrock-surface configurations result in a water table that generally slopes away from a ground-water divide approximately coincident with bedrock highs and the 1-mile-long aircraft assembly building at AFP4. Highest TCE concentrations (10,000 to 920,000 micrograms per liter) occur near Building 181, west of Building 12, and at landfill 3. Highest PCE concentrations (500 to 920 micrograms per liter) occur near Buildings 4 and 5. Highest cis-DCE concentrations (5,000 to 710,000 micrograms per liter) occur at landfill 3. Highest trans-DCE concentrations (1,000 to 1,700 micrograms per liter) occur just south of Building 181 and at landfill 3. Ratios of parent-compound to daughter-product concentrations that increase in relatively short distances (tens to 100s of feet) along downgradient ground-water flow paths can indicate a contributing source in the vicinity of the increase. Largest increases in ratio of PCE to TCE concentrations are three orders of magnitude from 0.01 to 2.7 and 7.1 between nearby wells in the northeastern part of NAS-JRB. In the northern part of NAS-JRB, the largest increases in TCE to total DCE concentration ratios relative to ratios at upgradient wells are from 17 to

  10. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection

    PubMed Central

    Mishra, Om P.; Popov, Anatoliy V.; Pietrofesa, Ralph A.; Christofidou-Solomidou, Melpo

    2017-01-01

    Background Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. Methods The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3′-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3′-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton 1H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO− and radiation. Purine base chlorination by ClO− and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Results: Chloride anions (Cl−) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by 1H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO− or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO− generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl•) and dichloro radical anions (Cl2−•)), which were trapped by SDG and its structural analog dopamine. Conclusion We demonstrate that γ-radiation induces the generation of ACS in

  11. Studies on the chlorination of zircon: Part I. Static bed investigations

    NASA Astrophysics Data System (ADS)

    Bidaye, A. C.; Gupta, C. K.; Venkatachalam, S.

    1999-04-01

    Carbochlorination is an important unit operation in the processing of zirconium resources. In the article, the use of different reducing agents in zircon chlorination, to produce zirconium tetrachloride, has been examined on thermodynamic and other considerations. While numerous workers have investigated zircon chlorination, a literature survey shows that there is a wide variation in the reported effect of various process parameters on the chlorination rate and a wide scatter in the values for kinetic parameters such as order of reaction, activation energy, rate constant as also the rate law expression. This work is an extensive study on zircon chlorination and the article discusses the effect of process parameters such as charge particle size, gas and solid composition, gas flow rate, temperature, reaction duration, etc. on the chlorination rate, over a much wider range of the parameter values. During investigations in the static bed chlorinator, it was noticed that the initial rate and the total extent of chlorination are proportional to the exposed surface of the solid zircon-coke charge but independent of the depth or amount of the charge. Further, the stalled chlorination could be reactivated by remixing the solid charge. Also, while the reaction rate in general increased as the charge became finer, the effect of zircon particle size was much more predominant. The activation energy value for the chlorination showed a wide variation with other operating conditions. Likewise, the order of reaction with respect to chlorine decreased from two to zero as the chlorine concentration in the gaseous atmosphere increased. Interestingly, the chlorination rate initially increased with gas flow rate, then decreased, before finally becoming independent of the gas flow rate. Results also indicated that there is an optimum charge composition that yields the maximum chlorination rate and the article discusses the effect of the zircon to coke particle number ratio in the

  12. Chlorine in Lunar Basalts

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Anand, M.; Franchi, I. A.

    2017-01-01

    In the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs, and P, collectively called KREEP, and in its primitive form - urKREEP, [1]), given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO (e.g., [2]). When compared to chondritic meteorites and terrestrial rocks (e.g., [3-4]), lunar samples often display heavy chlorine isotope compositions [5-9]. Boyce et al. [8] found a correlation between delta Cl-37 (sub Ap) and bulk-rock incompatible trace elements (ITEs) in lunar basalts, and used this to propose that early degassing of Cl (likely as metal chlorides) from the LMO led to progressive enrichment in remaining LMO melt in Cl-37over Cl-35- the early degassing model. Barnes et al. [9] suggested that relatively late degassing of chlorine from urKREEP (to yield delta Cl-37 (sub urKREEP greater than +25 per mille) followed by variable mixing between KREEPy melts and mantle cumulates (characterized by delta Cl-370 per mille) could explain the majority of Cl isotope data from igneous lunar samples. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed an in situ study of chlorine isotopes and abundances of volatiles in lunar apatite from a diverse suite of lunar basalts spanning a range of geochemical types.

  13. Micelles Protect and Concentrate Activated Acetic Acid

    NASA Astrophysics Data System (ADS)

    Todd, Zoe; House, C.

    2014-01-01

    As more and more exoplanets are discovered and the habitability of such planets is considered, one can turn to searching for the origin of life on Earth in order to better understand what makes a habitable planet. Activated acetic acid, or methyl thioacetate, has been proposed to be central to the origin of life on Earth, and also as an important energy currency molecule in early cellular evolution. We have investigated the hydrolysis of methyl thioacetate under various conditions. Its uncatalyzed rate of hydrolysis is about three orders of magnitude faster (K = 0.00663 s^-1; 100°C, pH 7.5, concentration = 0.33mM) than published rates for its catalyzed production making it unlikely to accumulate under prebiotic conditions. However, we also observed that methyl thioacetate was protected from hydrolysis when inside its own hydrophobic droplets. We found that methyl thioacetate protection from hydrolysis was also possible in droplets of hexane and in the membranes of nonanoic acid micelles. Thus, the hydrophobic regions of prebiotic micelles and early cell membranes could have offered a refuge for this energetic molecule increasing its lifetime in close proximity to the reactions for which it would be needed. Methyl thioacetate could thus be important for the origin of life on Earth and perhaps for better understanding the potential habitability of other planets.

  14. Chlorination of humic materials: Byproduct formation and chemical interpretations

    USGS Publications Warehouse

    Reckhow, D.A.; Singer, P.C.; Malcolm, R.L.

    1990-01-01

    Ten aquatic humic and fulvic acids were isolated and studied with respect to their reaction with chlorine. Yields of TOX, chloroform, trichloroacetic acid, dichloroacetic acid, dichloroacetonitrile, and 1,1,1-trichloropropanone were measured at pH 7 and 12. Humic acids produced higher concentrations than their corresponding fulvic acids of all byproducts except 1,1,1-trichloropropanone. Chlorine consumption and byproduct formation were related to fundamental chemical characteristics of the humic materials. A statistical model was proposed for activated aromatic content based on 13C NMR and base titration data. The values estimated from this model were found to be well correlated with chlorine consumption. Specific byproduct formation was related to UV absorbance, nitrogen content, or the activated aromatic content. ?? 1990 American Chemical Society.

  15. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    PubMed

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products.

  16. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries.

    PubMed

    Sun, Xiuxiu; Bai, Jinhe; Ference, Christopher; Wang, Zhe; Zhang, Yifan; Narciso, Jan; Zhou, Kequan

    2014-07-01

    The effect of chlorine dioxide (ClO2) gas on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 direct contact in water killed food pathogen bacterium Escherichia coli and fruit decay pathogen fungus Colletotrichum acutatum. In vivo studies were conducted using noninoculated berries and berries inoculated with postharvest decay and foodborne pathogens. Berries were inoculated with either E. coli (5.2 log CFU/g) or C. acutatum (3.9 log CFU/g). Inoculated fruit were dried for 2 h at room temperature in a climate-controlled laboratory and packed in perforated commercial clamshells, with or without ClO2 pads, and stored at 10°C for up to 9 days. The effects of ClO2 on microbial populations and fruit firmness were monitored during storage. In the inoculation experiment, treatment with ClO2 reduced populations of E. coli and C. acutatum by 2.2 to 3.3 and 1.3 to 2.0 log CFU/g, respectively. For the noninoculated blueberries, the initial total aerobic bacteria count and the yeast and mold count were 4.2 and 4.1 log CFU/g, respectively. ClO2 treatment reduced total aerobic bacteria count and yeast and mold count by 1.5 to 1.8 and 1.3 to 1.7 log CFU/g, respectively. The firmness of both inoculated and noninoculated blueberries was maintained by ClO2 treatment. Thus, controlled-release ClO2 gas fumigation technology shows promise as an effective and practical antimicrobial agent in commercial clamshell packaging of blueberry and other fruits.

  17. Atomic chlorine concentrations derived from ethane and hydroxyl measurements over the equatorial Pacific Ocean: Implication for dimethyl sulfide and bromine monoxide

    NASA Astrophysics Data System (ADS)

    Wingenter, Oliver W.; Sive, Barkley C.; Blake, Nicola J.; Blake, Donald R.; Rowland, F. Sherwood

    2005-10-01

    Atomic chlorine and bromine monoxide concentrations ([Cl] and [BrO]) and dimethyl sulfide (DMS) sea-air fluxes are estimated from data collected during a Lagrangian flight made near Christmas Island (2°N, 157°W) during August 1996 aboard the NASA P3-B aircraft. Intensive hydrocarbon sampling began in the surface layer (SL) one-half hour after sunrise and continued until ˜1300 local solar time. Our empirical model includes in situ observations of hydroxyl [HO] and precise measurements of ethane (C2H6) mixing ratios. Ethane was ˜40 pptv higher in the buffer layer (BuL) than in the SL, thus vertical exchange tended to replace any C2H6 that was photochemically removed in the SL. In spite of this, SL C2H6 mixing ratios decreased significantly during the flight. Using only the measured [HO] and estimated vertical mixing, our mass balance equation cannot explain all of the observed SL C2H6 loss. However, when an initial [Cl] of 8.4 (±2.0) × 104 Cl cm-3, decreasing to 5.7 (±2.0) × 104 Cl cm-3 at midday, is included, the observed and estimated C2H6 values are in excellent agreement. Using our [Cl], we estimate a DMS flux a factor of 2 higher than when HO is the only oxidant considered. This flux estimate, when compared to that derived by Lenschow et al. (1999), suggests that if the differences are real, we may be missing a loss term. Best agreement occurs when an average BrO mixing ratio of 1.3 (±1.3) pptv is included in our mass balance equation.

  18. Comment to “Chlorine stable isotopes and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean” by Wei et al. A review of the Cl isotope composition of serpentinites and the global chlorine cycle

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Barnes, J. D.

    2008-10-01

    Wei et al. [Wei, W., Kastner, M., Spivack, A., 2008. Chlorine stable isotope and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean. Earth Planet. Sci. Lett. 266, 90-104] published chlorine isotope data for pore fluids and serpentinites from three subduction zones and two obducted serpentinites. The measured δ37Cl values of serpentinites ranged from 1.2 to 6.0‰ (vs. SMOC), far higher than all other published data for serpentinites. The explanation for these high δ37Cl values defies known fractionation mechanisms. Instead, the anomalous δ37Cl values are almost certainly due to analytical artifacts known to exist for the method the authors employed. Wei et al. [Wei, W., Kastner, M., Spivack, A., 2008. Chlorine stable isotope and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean. Earth Planet. Sci. Lett. 266, 90-104] concluded that if high δ37Cl serpentinites (˜ 6‰) were subducted into the mantle, then a change in the δ37Cl value of the crustal reservoir would be observed in the evaporite record over the last 200Ma. Because the Cl isotope composition of the crustal reservoirs has been constant over this time period, as constrained by evaporites, they argue that Cl in serpentinites is recycled back to the oceans. This argument is flawed for two reasons. First, the δ37Cl values of serpentinites is close to 0‰, not 6‰ as suggested in their paper. Second, the δ37Cl value of the crustal reservoir would change immeasurably over 200Ma even if serpentinites of 6‰ were subducted into the mantle. In fact, it has been shown that the crust, mantle and chondritic reservoir all have δ37Cl values close to 0‰ [Sharp, Z.D., Barnes, J.D., Brearley, A.J., Fischer, T.P., Chaussidon, M., Kamenetsky, V.S., 2007. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446, 1062-1065]. No secular variation in the δ37Cl value of the crust

  19. Heterogeneous Chemistry of HONO on Liquid Sulfuric Acid: A New Mechanism of Chlorine Activation on Stratospheric Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1996-01-01

    Heterogeneous chemistry of nitrous acid (HONO) on liquid sulfuric acid (H2SO4) Was investigated at conditions that prevail in the stratosphere. The measured uptake coefficient (gamma) of HONO on H2SO4 increased with increasing acid content, ranging from 0.03 for 65 wt % to about 0.1 for 74 wt %. In the aqueous phase, HONO underwent irreversible reaction with H2SO4 to form nitrosylsulfuric acid (NO(+)HSO4(-). At temperatures below 230 K, NO(+)HSO4(-) was observed to be stable and accumulated in concentrated solutions (less than 70 wt % H2SO4) but was unstable and quickly regenerated HONO in dilute solutions (less than 70 wt %). HCl reacted with HONO dissolved in sulfuric acid, releasing gaseous nitrosyl chloride (ClNO). The reaction probability between HCl and HONO varied from 0.01 to 0.02 for 60-72 wt % H2SO4. In the stratosphere, ClNO photodissociates rapidly to yield atomic chlorine, which catalytically destroys ozone. Analysis of the laboratory data reveals that the reaction of HCl with HONO on sulfate aerosols can affect stratospheric ozone balance during elevated sulfuric acid loadings after volcanic eruptions or due to emissions from the projected high-speed civil transport (HSCT). The present results may have important implications on the assessment of environmental acceptability of HSCT.

  20. Laboratory and pilot-scale dead-end ultrafiltration concentration of sanitizer-free and chlorinated lettuce wash water for improved detection of Escherichia coli O157:H7.

    PubMed

    Magaña, Sonia; Schlemmer, Sarah M; Davidson, Gordon R; Ryser, Elliot T; Lim, Daniel V

    2014-08-01

    An automated dead-end (single pass, no recirculation) ultrafiltration device, the Portable Multi-use Automated Concentration System (PMACS), was evaluated as a means to concentrate Escherichia coli O157:H7 from 40 liters of simulated commercial lettuce wash water. The assessment included generating, sieving, and concentrating sanitizer-free lettuce wash water, either uninoculated or inoculated with green fluorescent protein-transformed E. coli O157:H7 at a high (1.00 log CFU/ml) or low (-1.00 log CFU/ml) concentration. Cells collected within the filters were recovered in approximately 400 ml of buffer to create lettuce wash retentates. The extent of concentration was determined by viable plate counts using a medium selective for the transformed E. coli O157:H7. The samples were qualitatively analyzed for E. coli O157:H7 according to the U. S. Food and Drug Administration Bacteriological Analytical Manual enrichment method and with an electrochemiluminescence immunoassay. This concentration method was then evaluated in a pilot-scale production line at Michigan State University using chlorinated (100, 30, and 10 ppm of available chlorine) lettuce wash water. The total PMACS processing times were 82 ± 6 and 65 ± 5 min for sanitizer-free and chlorinated washes, respectively. Overall, E. coli O157:H7 populations were approximately 2 log higher in retentates than in unconcentrated lettuce wash samples. The higher E. coli O157:H7 levels in the retentates enabled cultural and electrochemiluminescence immunoassay detection in some samples when the corresponding lettuce wash samples were negative. When combined with standard and rapid detection methods, the PMACS concentration method may provide a means to enhance pathogen monitoring of produce wash water.

  1. Decomposition of free chlorine with tertiary ammonium.

    PubMed

    Katano, Hajime; Uematsu, Kohei; Tatsumi, Hirosuke; Tsukatani, Toshihide

    2010-01-01

    The reaction of free chlorine with tertiary ammonium or amine compounds in aqueous solution was studied by the amperometry at a rotating Pt-disk electrode. The amperometric method can be applied to follow the concentration of free chlorine (c(Cl)) even in the presence of chloramine species. By addition of mono- and dibutylammonium to the solution containing free chlorine, the step-like decrease in c(Cl) was observed, indicating the rapid formation of the stable chloramine species. By addition of tributylammonium, the c(Cl) was decreased exponentially to nearly zero even if the free chlorine was present initially in excess. The c(Cl)-t curves can be explained by tributylammonium-species-catalyzed decomposition of free chlorine to chloride ion. The catalytic decomposition was observed also with the tertiary-ammonium-based anion-exchange resins. Furthermore, the anion-exchange resins exhibited the decomposition of not only free chlorine but also chloramines in water.

  2. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    PubMed

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety.

  3. Reevaluation of the toxicity of chlorinated water and the usefulness of MX as an index.

    PubMed

    Itoh, Sadahiko; Nakano, Atsushi; Araki, Toshiaki

    2006-12-01

    Changes in the toxicity in chlorinated water after chlorine addition were examined. For toxicity evaluation, the chromosomal aberration test and the transformation test were conducted as indexes of initiation activity and promotion activity, respectively, in the carcinogenesis process. Activity inducing chromosomal aberrations in chlorinated Lake Biwa water gradually decreased over time after chlorination. In contrast, activity inducing transformations determined by the two-stage assay gradually increased. Thus, toxicity that decreases or increases is present in chlorinated water. Furthermore, activity inducing transformations determined by the non-two-stage assay gradually decreased over time. This direction of change is opposite to that of activity inducing transformations determined by the two-stage assay and is consistent with that of activity inducing chromosomal aberrations. The drastic decrease in initiation activity detected as activity inducing chromosomal aberrations could be the main cause for the decrease in activity inducing transformations determined by the non-two-stage assay (an index of the sum of initiation and promotion activity). MX change was quantitatively consistent with those of activity inducing chromosomal aberrations and transformations determined by the non-two-stage assay. On the other hand, directions of changes in concentrations of typical by-products such as chloroform were consistent only with that of activity inducing transformations determined by the two-stage assay. Findings of this study suggest that MX is appropriate as an index for comparing the carcinogenicity of tap water near and far from a water purification plant.

  4. The Biocide Chlorine Dioxide Stimulates Biofilm Formation in Bacillus subtilis by Activation of the Histidine Kinase KinC▿ †

    PubMed Central

    Shemesh, Moshe; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacillus subtilis forms biofilms in response to signals that remain poorly defined. We report that biofilm formation is stimulated by sublethal doses of chlorine dioxide (ClO2), an extremely effective and fast-acting biocide. ClO2 accelerated biofilm formation in B. subtilis as well as in other bacteria, suggesting that biofilm formation is a widely conserved response to sublethal doses of the agent. Biofilm formation depends on the synthesis of an extracellular matrix that holds the constituent cells together. We show that the transcription of the major operons responsible for the matrix production in B. subtilis, epsA-epsO and yqxM-sipW-tasA, was enhanced by ClO2, in a manner that depended on the membrane-bound kinase KinC. Activation of KinC appeared to be due to the ability of ClO2 to collapse the membrane potential. Importantly, strains unable to make a matrix were hypersensitive to ClO2, indicating that biofilm formation is a defensive response that helps protect cells from the toxic effects of the biocide. PMID:20971918

  5. Highly efficient active optical interconnect incorporating a partially chlorinated ribbon POF in conjunction with a visible VCSEL.

    PubMed

    Lee, Hak-Soon; Lee, Sang-Shin; Kim, Bong-Seok; Son, Yung-Sung

    2014-05-19

    A low-loss 4-ch active optical interconnect (AOI) enabling passive alignment was proposed and built resorting to a transmitter (Tx) incorporating a red 680-nm VCSEL, which is linked to a receiver (Rx) module via a partially chlorinated ribbon POF. The POF was observed to exhibit an extremely low loss of ~0.24 dB/m at λ = 680 nm, in comparison to ~1.29 dB/m at λ = 850 nm, and a large numerical aperture of ~0.42. Both the Tx and Rx, which taps into a beam router based on collimated beam optics involving a pair of spherical lenses, were meant to be substantially alignment tolerant and compact. The achieved tolerance for the constructed modules was beyond 40 μm in terms of the positioning of VCSEL and photodetector. The proposed AOI was completed by linking the Tx with the Rx via a 3-m long ribbon POF, incurring a transmission loss of as small as 3.2 dB. The AOI was practically assessed in terms of a high-speed data transmission over a wide range of temperatures and then exploited to convey full HD video signals.

  6. Chemistry of combined residual chlorination

    SciTech Connect

    Leao, S.F.; Selleck, R.E.

    1982-01-01

    The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

  7. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  8. Disappearance of chloramines in the presence of bromide and nitrite. [Ammoniacal monochloramine, diethylchloramine, and chloramines produced by chlorinating a real and synthetic secondary (activated sludge) municipal waste effluent

    SciTech Connect

    Valentine, R.L.

    1982-01-01

    Batch experiments were used to study the reduction of chloramines in the presence of bromide and nitrite. Chloramines studies were ammoniacal monochloramine, diethylchloramine (DECA), and those produced by chlorinating a real and synthetic secondary (activated sludge) municipal waste effluent. Oxidant concentrations were measured using the DPD-FAS (N,N-diethyl-p-phenylenediamine, Ferrous Ammonium Sulfate) titrimetric procedure and/or spectrophotometrically. The degradation of NH/sub 2/Cl in the presence of bromide was found to occur via a mechanism consistent with a rate limiting step involving monochlorammonium ion (NH/sub 3/Cl/sup +/) and bromide ion. Experimental evidence suggests that the mixed haloamine, NHBrCl, was produced as an unstable intermediate. The oxidation of bromide by DECA did not occur by a mechanism similar to that describing the oxidation of bromide by NH/sub 2/Cl. The rate was not affected by added ammonia and was slower than that observed for comparable NH/sub 2/Cl-Br/sup -/ reactions. Chloramine loss in organic rich effluents was greatly accelerated by bromide addition. The reaction is not dependent on excess ammonia and is slower than that observed for a pure NH/sub 2/Cl-Br/sup -/ solution. Monochloramine can rapidly disappear in the presence of nitrite. The rates are too fast to be due solely to the hydrolysis of monochloramine. The presence of relatively small concentrations of nitrite can greatly accelerate the loss of NH/sub 2/Cl in the presence of bromide. Nitrite is not significantly consumed. Nitrite appears to increase the rate of bromide oxidation in a parallel acid catalyzed reaction mechanism which involves a rate limiting step described by a first order dependence on nitrite but no dependence on bromide. Empirical rate expressions and rate constants were determined for each reaction. 54 figures, 17 tables.

  9. Inactivation of Renibacterium salmoninarum by free chlorine

    USGS Publications Warehouse

    Pascho, Ronald J.; Landolt, Marsha L.; Ongerth, Jerry E.

    1995-01-01

    Salmonid fishes contract bacterial kidney disease by vertical or horizontal transmission of the pathogenic bacterium, Renibacterium salmoninarum. Procedures to reduce vertical transmission are under evaluation, but methods are still needed to eliminate sources of waterborne R. salmoninarum. We examined the efficacy of chlorine to inactivate R. salmoninarum. The bacterium was exposed to various levels of chlorine at pH 6, 7, or 8, and at 7.5 °C or 15 °C. At pH 7 and 15 °C, 99% inactivation occurred within 18 s, even at free chlorine concentrations as low as 0.05 mg/l. Chlorine was most effective at neutral or acidic pH, and 15 °C. The inactivation curves for 7.5 °C and pH 7, or 15 °C and pH 8, deviated from first-order kinetics by exhibiting shoulders or a tailing-off effect, suggesting that chlorine and the bacterial cells were not the sole reactants. A plot of the concentration-time (Ct) products for free chlorine at pH 7 and 15 °C produced a line with a slope less than 1, indicating that the duration of exposure was more important than the concentration of free chlorine. These data indicate that R. salmoninarum is very sensitive to chlorine, and that this disinfectant may be appropriate for use in fish hatcheries rearing salmonids affected by bacterial kidney disease.

  10. Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene.

    PubMed

    Klasson, K Thomas; Wartelle, Lynda H; Lima, Isabel M; Marshall, Wayne E; Akin, Danny E

    2009-11-01

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is to show that flax shive and cotton gin waste can serve as a precursor for activated carbon that can be used for adsorption of trichloroethylene (TCE) from both the liquid and gas phases. Testing was conducted on carbon activated with phosphoric acid or steam. The results show that activated carbon made from flax shive performed better than select commercial activated carbons, especially at higher TCE concentrations. The activation method employed had little effect on TCE adsorption in gas or vapor phase studies but liquid phase studies suggested that steam activation is slightly better than phosphoric acid activation. As expected, the capacity for the activated carbons depended on the fluid phase equilibrium concentration. At a fluid concentration of 2 mg of TCE/L of fluid, the capacity of the steam activated carbon made from flax shive was similar at 64 and 80 mg TCE/g of carbon for the vapor and liquid phases, respectively. Preliminary cost estimates suggest that the production costs of such carbons are $1.50 to $8.90 per kg, depending on activation method and precursor material; steam activation was significantly less expensive than phosphoric acid activation.

  11. Use of lysis and recycle to control excess sludge production in activated sludge treatment: bench scale study and effect of chlorinated organic compounds.

    PubMed

    Nolasco, M A; Campos, A L O; Springer, A M; Pires, E C

    2002-01-01

    The most widely used treatment system in the pulp and paper industry--the activated sludge--produces high quantities of sludge which need proper disposal. In this paper a modified activated sludge process is presented. A synthetic wastewater, prepared to simulate the effluent of bleached and unbleached pulp and paper plant wastewater, was submitted to treatment in a bench scale aerobic reactor. The excess sludge was lysed in a mechanical mill--Kaddy mill--and totally recycled to the aeration tank. In the first phase the synthetic wastewater, without the chlorinated compounds, was fed to the reactor. In the second phase increasing dosages of the chlorinated compounds were used. Total recycle of excess sludge after disintegration did not produce adverse effects. During the first phase average COD removal efficiency was 65% for the control unit, which operated in a conventional way, and 63% for the treatment unit, which operated with total recycle. During the second phase the COD removal efficiency increased to 77% in the control unit and 75% in the treatment unit. Chlorinated organics removal was 85% in the treatment unit and 86% for the control unit. These differences are not significant.

  12. Alkaline pretreatment for chlorine removal from high-chlorine rhodochrosite

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-ran; Liu, Zuo-hua; Li, Wen-sheng; Cheng, Ya-ya; Du, Jun; Tao, Chang-yuan

    2016-11-01

    Chloride in manganese ore adversely affects mineral extraction. The mechanisms and the factors that influence an alkali pretreatment to removal chlorine from manganese ore were explored to eliminate hazards posed by chlorine during the electrolysis of manganese. The results showed that sodium carbonate, when used as an alkaline additive, promoted the dissolution of insoluble chloride, enhanced the migration of chloride ions, and effectively stabilized Mn2+. The optimal conditions were a sodium carbonate concentration of 0.45 mol·L-1, a liquid-solid ratio of 5:1 mL·g-1, a reaction time of 1 h, and a temperature of 25°C. The chlorine removal efficiency was greater than 95%, and the ore grade (Mn) was increased by 2.7%.

  13. Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes.

    PubMed

    Park, Hoon; Hung, Yen-Con; Chung, Donghwan

    2004-02-15

    The effects of chlorine and pH on the bactericidal activity of electrolyzed (EO) water were examined against Escherichia coli O157:H7 and Listeria monocytogenes. The residual chlorine concentration of EO water ranged from 0.1 to 5.0 mg/l, and the pH effect was examined at pH 3.0, 5.0, and 7.0. The bactericidal activity of EO water increased with residual chlorine concentration for both pathogens, and complete inactivation was achieved at residual chlorine levels equal to or higher than 1.0 mg/l. The results showed that both pathogens are very sensitive to chlorine, and residual chlorine level of EO water should be maintained at 1.0 mg/l or higher for practical applications. For each residual chlorine level, bactericidal activity of EO water increased with decreasing pH for both pathogens. However, with sufficient residual chlorine (greater than 2 mg/l), EO water can be applied in a pH range between 2.6 (original pH of EO water) and 7.0 while still achieving complete inactivation of E. coli O157:H7 and L. monocytogenes.

  14. Radiolytic dechlorination of chlorinated organics

    NASA Astrophysics Data System (ADS)

    Taghipour, Fariborz; Evans, Greg J.

    1997-02-01

    The radiolytic dechlorination of 12 low molecular weight chlorinated organic compounds present in pulp mill effluent was investigated. For most of these chloro-organic compounds more than 90% dechlorination was obtained for gamma doses up to 20 kGy. Parameters such as the number of chlorine atoms and aqueous solution concentration were found to affect the dechlorination rate. A reaction set was also created to model the behavior of irradiated 0.49-49 mol m -3 chloroform solutions, giving good agreement with experimental results.

  15. Colorectal cancers and chlorinated water.

    PubMed

    El-Tawil, Ahmed Mahmoud

    2016-04-15

    Published reports have revealed increased risk of colorectal cancers in people exposed to chlorinated drinking water or chemical derivatives of chlorination. Oestrogen plays a dual positive functions for diminishing the possibilities of such risk by reducing the entrance, and increasing the excretion, of these chemicals. In addition, there are supplementary measures that could be employed in order to reduce this risk further, such as boiling the drinking water, revising the standard concentrations of calcium, magnesium and iron in the public drinking water and prescribing oestrogen in susceptible individuals. Hypo-methylation of genomic DNA could be used as a biological marker for screening for the potential development of colorectal cancers.

  16. Colorectal cancers and chlorinated water

    PubMed Central

    El-Tawil, Ahmed Mahmoud

    2016-01-01

    Published reports have revealed increased risk of colorectal cancers in people exposed to chlorinated drinking water or chemical derivatives of chlorination. Oestrogen plays a dual positive functions for diminishing the possibilities of such risk by reducing the entrance, and increasing the excretion, of these chemicals. In addition, there are supplementary measures that could be employed in order to reduce this risk further, such as boiling the drinking water, revising the standard concentrations of calcium, magnesium and iron in the public drinking water and prescribing oestrogen in susceptible individuals. Hypo-methylation of genomic DNA could be used as a biological marker for screening for the potential development of colorectal cancers. PMID:27096035

  17. Toxicity of chlorine to zebrafish embryos.

    PubMed

    Kent, Michael L; Buchner, Cari; Barton, Carrie; Tanguay, Robert L

    2014-01-16

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish Danio rerio research laboratories. Most laboratories use approximately 25 to 50 ppm unbuffered chlorine solution for 5 to 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, but is less effective against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbuffered and buffered chlorine solutions to embryos exposed at 6 or 24 h post-fertilization (hpf) to determine whether higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pH, and chlorine causes elevated pH. Consistent with this, we found that unbuffered chlorine solutions (pH ca. 8-9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf embryos for 5 min with unbuffered chlorine solution at 100 ppm.

  18. Mobilization of lead and other trace elements following shock chlorination of wells

    USGS Publications Warehouse

    Seiler, R.L.

    2006-01-01

    Many owners of domestic wells shock chlorinate their wells to treat for bacterial contamination or control bad odors from sulfides. Analysis of well water with four wells from Fallon, Nevada, showed that following recommended procedures for shock chlorinating wells can cause large, short-lasting increases in trace-element concentrations in ground water, particularly for Cu, Fe, Pb, and Zn. Lead concentrations increased up to 745 fold between samples collected just before the well was shock chlorinated and the first sample collected 22-24??h later; Zn concentrations increased up to 252 fold, Fe concentrations increased up to 114 fold, and Cu concentrations increased up to 29 fold. Lead concentrations returned to near background levels following pumping of about one casing volume, however, in one well an estimated 120??mg of excess Pb were pumped before concentrations returned to prechlorination levels. Total Pb concentrations were much greater than filtered (0.45????m) concentrations, indicating the excess Pb is principally particulate. Recommended procedures for purging treated wells following shock chlorination may be ineffective because a strong NaOCl solution can remain in the casing above the pump even following extended pumping. Only small changes in gross alpha and beta radioactivity occurred following shock chlorination. USEPA has not promulgated drinking-water standards for 210Pb, however, measured 210Pb activities in the study area typically were less than the Canadian Maximum Acceptable Concentration of 100??mBq/L. By consuming well water shortly after shock chlorination the public may inadvertently be exposed to levels of Pb, and possibly 210Pb, that exceed drinking-water standards.

  19. Transformation of Organophosphorus Pesticides in the Presence of Aqueous Chlorine: Kinetics, Pathways, and Structure-Activity Relationships

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of aqueous chlorine was investigated under simulated drinking water treatment conditions. Intrinsic rate coefficients were found for the reaction of hypochlorous acid (kHOCl,OP) and hypochlorite ion (kOCl,OP) for eight...

  20. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine.

    PubMed Central

    Berman, D; Hoff, J C

    1984-01-01

    The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s. Both virus preparations were inactivated more rapidly at pH 6 than at pH 10. With chlorine dioxide, however, the opposite was true. Both virus preparations were inactivated more rapidly at pH 10 than at pH 6. With 0.5 mg of chlorine dioxide per liter at pH 10, more than 4 logs of the single-virus preparation were inactivated in less than 15 s. The cell-associated virus was more resistant to inactivation by the three disinfectants than was the preparation of single virions. Chlorine and chlorine dioxide, each at a concentration of 0.5 mg/liter and at pH 6 and 10, respectively, inactivated 99% of both virus preparations within 4 min. Monochloramine at a concentration of 10 mg/liter and at pH 8 required more than 6 h for the same amount of inactivation. Images PMID:6091546

  1. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    PubMed

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-06

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  2. Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells.

    PubMed

    Yuan, Jing; Wu, Xin-Jiang; Lu, Wen-Qing; Cheng, Xiao-Li; Chen, Dan; Li, Xiao-Yan; Liu, Ai-Lin; Wu, Jian-Jun; Xie, Hong; Stahl, Thorsten; Mersch-Sundermann, Volker

    2005-01-01

    Consumption of chlorinated drinking water is suspected to be associated with adverse health effects, including mutations and cancer. In the present study, the genotoxic potential of water from Donghu lake, Yangtze river and Hanjiang river in Wuhan, an 8-million metropolis in China, was investigated using HepG2 cells and the alkaline version of the comet assay. It could be shown that all water extracts caused dose-dependent DNA migration in concentrations corresponding to dried extracts of 0.167-167 ml chlorinated drinking water per ml medium. To explore whether the intracellular redox status is regulated by chlorinated drinking water, we determined lipid peroxidation (LPO) and depletion of reduced glutathione (GSH). The malondialdehyde (thiobarbituric acid (TBA)-reactive aldehydes) concentration increased after chlorinated drinking water treatment of HepG2 cells in a dose-dependent manner, the GSH content decreased. The activity of lactate dehydrogenase (LDH) increased in chlorinated drinking water treated HepG2 cells indicating cytotoxicity. In accordance with former studies which dealt with in vivo and in vitro micronucleus induction the present study shows that chlorinated drinking water from polluted raw water may entail genetic risks.

  3. Differential toxicity of drinking water disinfected with combinations of ultraviolet radiation and chlorine.

    PubMed

    Plewa, Michael J; Wagner, Elizabeth D; Metz, Deborah H; Kashinkunti, Ramesh; Jamriska, Katherine J; Meyer, Maria

    2012-07-17

    Alternative technologies to disinfect drinking water such as ultraviolet (UV) disinfection are becoming more widespread. The benefits of UV disinfection include reduced risk of microbial pathogens such as Cryptosporidium and reduced production of regulated drinking water disinfection byproducts (DBPs). The objective of this research was to determine if mammalian cell cytotoxicity and genotoxicity varied in response to different chlorination protocols with and without polychromatic medium pressure UV (MPUV) and monochromatic low pressure UV (LPUV) disinfection technologies. The specific aims were to analyze the mammalian cell cytotoxicity and genotoxicity of concentrated organic fractions from source water before and after chlorination and to determine the cytotoxicity and genotoxicity of the concentrated organic fractions from water samples treated with UV alone or UV before or after chlorination. Exposure of granular activated carbon-filtered Ohio River water to UV alone resulted in the lowest levels of mammalian cell cytotoxicity and genotoxicity. With combinations of UV and chlorine, the lowest levels of cytotoxicity and genotoxicity were observed with MPUV radiation. The best combined UV plus chlorine methodology that generated the lowest cytotoxicity and genotoxicity employed chlorination first followed by MPUV radiation. These data may prove important in the development of multibarrier methods of pathogen inactivation of drinking water, while limiting unintended toxic consequences.

  4. Biodegration of chlorinated ethenes

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Francis H.

    2010-01-01

    Biodegradation of chlorinated ethenes by naturally occurring or artificially enhanced processes is an important component of current site remediation strategies. At this writing, several microbial mechanisms for chlorinated ethene transformation and degradation have been identified. The purpose of this chapter is to briefly summarize the current understanding of those processes that lead to the biodegradation of chlorinated ethenes.

  5. The Chlorination Quandary

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Current use of chlorination technology to disinfect water supplies can cause the production of undesirable products, among them chloroform and chlorobenzene. Alternatives to this methodology include the use of ozone, chlorine dioxide, and bromine chloride in place of chlorine. Presently, the methods are feasible in developed countries only. (MA)

  6. Factors Regulating Soil Organic Matter Chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Gustavsson, M.; Reyier, H.; Rietz, K.; Karlsson, S.; Göransson, C.; Andersson, M.; Öberg, G.; Bastviken, D.

    2013-12-01

    Natural chlorination of organic matter is a common process in various soils. Despite the widespread abundance of soil organic chlorine, knowledge on the processes and regulation of soil organic matter chlorination are modest. The purpose of this study is to elucidate how environmental factors may influence chlorination of organic matter in soil. Four factors were chosen for this study; water content, and nitrogen, organic carbon, and chloride concentrations. The variables are all known in different ways as important for microbes and transformation of chlorine in soil. The soil was collected from 5-15 cm depth in a coniferous forest southeast of Sweden. To test how the selected factors influenced chlorination of organic matter, we used soil laboratory incubations using 36Cl-chloride as a radioisotopic marker. A multivariate factorial design with two levels of i) soil moisture, ii) chloride amendment, iii) nitrogen amendment, and iv) glucose and maltose addition was used to simultaneously test for possible combination effects for all factors. A known radioactivity of 36chloride was added to the soil samples and incubated with four different factor treatments during an incubation period of 15 and 60 days. This presentation will discuss the results of this study including what combination of factors enhanced or hampered chlorination and thereby discuss previous observed variability of organic chlorine and chloride in soil.

  7. Efficacy and Safety Evaluation of a Chlorine Dioxide Solution.

    PubMed

    Ma, Jui-Wen; Huang, Bin-Syuan; Hsu, Chu-Wei; Peng, Chun-Wei; Cheng, Ming-Long; Kao, Jung-Yie; Way, Tzong-Der; Yin, Hao-Chang; Wang, Shan-Shue

    2017-03-22

    In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO₂ concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports.

  8. Kinetics and mechanisms of formation of bromophenols during drinking water chlorination: assessment of taste and odor development.

    PubMed

    Acero, Juan L; Piriou, Philippe; von Gunten, Urs

    2005-08-01

    Halophenols are often reported as off-flavor causing compounds responsible for medicinal taste and odor episodes in drinking water. To better understand and minimize the formation of 2-bromophenol and 2,6-dibromophenol which have low odor threshold concentrations (OTCs, 30 and 0.5 ng/L, respectively) a kinetic data base for the chlorination and bromination of phenols was established by combination of kinetic measurements and data from literature. Second-order rate constants for the reactions of chloro- and bromophenols with chlorine and bromine were determined over a wide pH range. The second-order rate constants for bromination of phenols are about three orders of magnitude higher than for chlorination. A quantitative structure activity relationship (QSAR) showed a good comparability of second-order rate constants from this study with those published previously for different phenol derivatives. The quantification of product distribution of the formed halophenols demonstrated that chlorine or bromine attack in ortho position is favored with respect to the para position. A kinetic model was formulated allowing us to investigate the influence of chlorine dose and some water quality parameters such as the concentration of phenol, ammonia, bromide and the pH on the product distribution of halophenols. The kinetic model can be applied to optimize drinking water chlorination with respect to phenol-born taste and odor problems. In general, high chlorine doses lead to low concentrations of intermediate odorous chlorophenols and bromophenols. An increase in the ammonia or phenol concentration leads to a higher consumption of HOCl and therefore greater final concentration of intermediate bromophenols. The presence of higher bromide than phenol concentration also facilitates the rapid bromination pathway which leads to further bromination of 2,6-dibromophenol to higher brominated phenols. Laboratory-scale experiments on taste and odor formation due to the chlorination of

  9. Influence of chlorine on the decomposition of ethylene over iron and cobalt particles

    SciTech Connect

    Chambers, A,; Baker, R.T.K.

    1997-02-27

    The interaction of cobalt and iron powders with ethylene and ethylene/hydrogen mixtures containing trace concentrations of chlorine has been studied using a combination of flow reactor and transmission electron microscopy techniques. Detailed analysis of both the gaseous products and the amount of solid carbon (a filamentous form) deposited on the metal surfaces has permitted us to gain an insight into some of the factors surrounding the promotional effect of low concentrations of chlorine on the catalytic action of both cobalt and iron. The optimum carbon deposition activity was achieved when either of these metals was treated at 400{degree}C in an ethylene/hydrogen environment containing 75-100 ppm chlorine. If the halogen was removed from the reactant, then the high activity for carbon filament growth could not be sustained. Reintroduction of chlorine after a suitable period of time resulted in restoration of the carbon deposition activity to its original level, demonstrating the reversible nature of the `activation-deactivation` processes. The results of this study are rationalized according to the notion that the presence of adsorbed chlorine species is responsible for causing reconstruction of the metal surface; however, the possibility that the halogen is capable of inducing a perturbation in the electronic properties of the particles is also considered. 40 refs., 16 figs., 4 tabs.

  10. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  11. Complex Spontaneous Flows and Concentration Banding in Active Polar Films

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; Marchetti, M. Cristina; Liverpool, Tanniemola B.

    2008-11-01

    We study the dynamical properties of active polar liquid crystalline films. Like active nematic films, active polar films undergo a dynamical transition to spontaneously flowing steady states. Spontaneous flow in polar fluids is, however, always accompanied by strong concentration inhomogeneities or “banding” not seen in nematics. In addition, a spectacular property unique to polar active films is their ability to generate spontaneously oscillating and banded flows even at low activity. The oscillatory flows become increasingly complicated for strong polarity.

  12. Chlorine detection in fly ash concrete using a portable neutron generator.

    PubMed

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies.

  13. Non-destructive analysis of chlorine in fly ash cement concrete

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Garwan, M. A.; Nagadi, M. M.; Maslehuddin, M.; Al-Amoudi, O. S. B.; Khateeb-ur-Rehman

    2009-08-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  14. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared the efficacy of chlorine (20 – 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 – 200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20 – 200 ppm chlorite ion concentration, TriNova) washes in reducing population...

  15. Effect of UV irradiation on the proportion of organic chloramines in total chlorine in subsequent chlorination.

    PubMed

    Zhang, Tian-Yang; Lin, Yi-Li; Xu, Bin; Xia, Sheng-Ji; Tian, Fu-Xiang; Gao, Nai-Yun

    2016-02-01

    This study investigated the changes of chlorine species and proportion of organic chloramines during the chlorination process after UV irradiation pretreatment in drinking water. It was found that the UV pretreatment could enhance the percentage of organic chloramines by increasing free chlorine consumption in the chlorination of raw waters. The percentage of organic chloramines in total chlorine increased with UV intensity and irradiation time in raw waters. However, for the humic acid synthesized water, the percentage of organic chloramines increased first and then decreased with the increase of UV irradiation time. The value of SUVA declined in both raw and humic acid synthesized waters over the UV irradiation time, which indicated that the decomposition of aromatic organic matter by UV could be a contributor to the increase of free chlorine consumption and organic chloramine proportion. The percentage of organic chloramines during chlorination of raw waters after 30-min UV irradiation pretreatment varied from 20.2% to 41.8%. Total chlorine decreased obviously with the increase of nitrate concentration, but the percentage of organic chloramines increased and was linearly correlated to nitrate concentration.

  16. Surface passivation of natural graphite electrode for lithium ion battery by chlorine gas.

    PubMed

    Suzuki, Satoshi; Mazej, Zoran; Zemva, Boris; Ohzawa, Yoshimi; Nakajima, Tsuyoshi

    2013-01-01

    Surface lattice defects would act as active sites for electrochemical reduction of propylene carbonate (PC) as a solvent for lithium ion battery. Effect of surface chlorination of natural graphite powder has been investigated to improve charge/discharge characteristics of natural graphite electrode in PC-containing electrolyte solution. Chlorination of natural graphite increases not only surface chlorine but also surface oxygen, both of which would contribute to the decrease in surface lattice defects. It has been found that surface-chlorinated natural graphite samples with surface chlorine concentrations of 0.5-2.3 at% effectively suppress the electrochemical decomposition of PC, highly reducing irreversible capacities, i.e. increasing first coulombic efficiencies by 20-30% in 1 mol L-1 LiClO4-EC/DEC/PC (1:1:1 vol.). In 1 mol L-1 LiPF6-EC/EMC/PC (1:1:1 vol.), the effect of surface chlorination is observed at a higher current density. This would be attributed to decrease in surface lattice defects of natural graphite powder by the formation of covalent C-Cl and C=O bonds.

  17. Chlorine isn't Just for Swimming Pools Anymore... Chlorination of Organic Compounds in the Arctic

    NASA Astrophysics Data System (ADS)

    Han, A.; Raab, T. K.

    2013-12-01

    The cycling of chlorine between its organic and inorganic forms is known to occur in forest soils, but little is known about the generality of this mechanism, which soil components chlorine attaches to, and at what rate chlorination occurs. The study uses peat-rich tundra soils from Barrow, Alaska varying in age since formation of 50 yrs - 5500 yrs BP, and seeks to measure the rate at which organic molecules are chlorinated and to understand what changes those molecules undergo once chlorinated. Soil abundance of chlorine and bromine was estimated in soils of varying age using X-ray fluorescence, and org-Cl levels were measured using pyro-hydrolysis [Table 1]. We considered activity of the enzyme Chloroperoxidase, and data was gathered using absorbance scans of the organic molecule monochlorodimedone to determine whether it had been chlorinated and if so, at what rate. Additional information was gathered from the chlorination of small organic components of the macromolecule lignin, whose constituent molecules make up a large portion of humic materials critical to soil health, through emission scans and fluorescence scans. The results showed that the enzyme chloroperoxidase, which is found in nature and is associated with fungi or bacteria, attaches a chlorine atom to monochlorodimedone and that similar enzymes found in Arctic soils act on it, as well as the lignin model subunits cinnamaldehyde ((2E)-3-phenylprop-2-enal) and naringenin-7-rhamnoglucoside. The results may provide more information on chlorination rates in the Arctic and may contribute to an understanding of how and at what rate chlorine changes form in nature, and answer questions about ozone deterioration or anthropogenic chlorine impact(s) on the environment.Average Halogen Abundance in Arctic Soils xrf=Energy Dispersive X-Ray Fluorescencepyro= TOX Pyro-Hydrolysis

  18. Liquid-phase chlorination of perchloroethylene

    SciTech Connect

    Levanova, S.V.; Evstigneev, O.V.; Rodova, R.M.; Berlin, E.R.; Ul'yanov, A.A.

    1988-06-01

    The relationships in the liquid-phase chlorination of perchloroethylene to hexachlorethane in a thermal process and in the presence of an initiator have been studied. The rate constants and the activation parameters of the process have been determined.

  19. Prompt gamma ray evaluation for chlorine analysis in blended cement concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; Kalakada, Zameer; Al-Amoudi, O S B

    2014-12-01

    Single prompt gamma ray energy has been evaluated to measure chlorine concentration in fly ash (FA), Super-Pozz (SPZ) and blast furnace slag (BFS) cement concrete specimens using a portable neutron generator-based Prompt Gamma Neutron Activation (PGNAA) setup. The gamma ray yield data from chloride concentration measurement in FA, SPZ and BFS cement concretes for 2.86-3.10, 5.72 and 6.11MeV chlorine gamma rays were analyzed to identify a gamma ray with common slope (gamma ray yield/Cl conc. wt%) for the FA, BFS and SPZ cement concretes. The gamma ray yield data for FA and SPZ cement concretes with varying chloride concentration were measured previously using a portable neutron generator-based PGNAA setup. In the current study, new data have been measured for chlorine detection in the BFS cement concrete using a portable neutron generator-based PGNAA setup for 2.86-3.10, 5.72, and 6.11MeV chlorine gamma rays. The minimum detection limit of chlorine in BFS cement concrete (MDC) was found to be 0.034±0.010, 0.032±0.010, 0.033±0.010 for 2.86-3.10, 5.72 and 6.11MeV gamma ray, respectively. The new BFS cement concrete data, along with the previous measurements for FA and SPZ cement concretes, have been utilized to identify a gamma ray with a common slope to analyze the Cl concentration in all of these blended cement concretes. It has been observed that the 6.11MeV chlorine gamma ray has a common slope of 5295±265 gamma rays/wt % Cl concentration for the portable neutron generator-based PGNAA setup. The minimum detectable concentration (MDC) of chlorine in blended cement concrete was measured to be 0.033±0.010wt % for the portable neutron generator-based PGNAA. Thus, the 6.11MeV chlorine gamma ray can be used for chlorine analysis of blended cement concretes.

  20. The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes).

    PubMed

    Tabata, A; Watanabe, N; Yamamoto, I; Ohnishi, Y; Itoh, M; Kamei, T; Magara, Y; Terao, Y

    2004-01-01

    2,2-bis (4-hydroxyphenyl) propane or Bisphenol A (BPA), has been reported to behave as an endocrine disrupter below acute toxic levels, and is widely present in the water environment. Although BPA is easily chlorinated, very little is reported on the effect of chlorinated BPA to the aquatic organisms. In this study, the estrogenic activities of BPA and its chlorinated derivatives were evaluated by the induction of vitellogenin (VTG) in the serum of mature male Japanese medaka. In addition, the effect of sodium hypochlorite on the decomposition of BPA was tested. The relative potencies of estrogenic activities of chlorinated BPA descended in the order 3,3'-diCIBPA>BPA> or =3-CIBPA>3,3',5-triCIBPA, and no estrogenic activity was observed in 3,3',5,5'-tetraCIBPA. Lowest Observed Effect Concentration (LOEC) and No Observed Effect Concentration (NOEC) for both 3-CIBPA and 3,3'-diCIBPA were 500 microg/L and 200 microg/L, respectively. LOEC for 3,3',5-triCIBPA was >500 microg/L. When BPA was reacted with sodium hypochlorite (24 hours; residual chlorine at 1 ppm), however, complete decomposition of BPA and its chlorinated derivatives was observed. The decrease in BPA and its chlorinated derivatives paralleled the decrease in estrogenic potency evaluated by the induction of vitellogenin (VTG) in the serum of mature male Japanese medaka.

  1. Halogenase‐Inspired Oxidative Chlorination Using Flavin Photocatalysis

    PubMed Central

    Hering, Thea; Mühldorf, Bernd

    2016-01-01

    Abstract Chlorine gas or electropositive chlorine reagents are used to prepare chlorinated aromatic compounds, which are found in pharmaceuticals, agrochemicals, and polymers, and serve as synthetic precursors for metal‐catalyzed cross‐couplings. Nature chlorinates with chloride anions, FAD‐dependent halogenases, and O2 as the oxidant. A photocatalytic oxidative chlorination is described based on the organic dye riboflavin tetraacetate mimicking the enzymatic process. The chemical process allows within the suitable arene redox potential window a broader substrate scope compared to the specific activation in the enzymatic binding pocket. PMID:26991557

  2. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  3. Microbial based chlorinated ethene destruction

    DOEpatents

    Bagwell, Christopher E.; Freedman, David L.; Brigmon, Robin L.; Bratt, William B.; Wood, Elizabeth A.

    2009-11-10

    A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes.

  4. Chlorine disinfection of recreational water for Cryptosporidium parvum.

    PubMed Central

    Carpenter, C.; Fayer, R.; Trout, J.; Beach, M. J.

    1999-01-01

    We examined the effects of chlorine on oocyst viability, under the conditions of controlled pH and elevated calcium concentrations required for most community swimming pools. We found that fecal material may alter the Ct values (chlorine concentration in mg/L, multiplied by time in minutes) needed to disinfect swimming pools or other recreational water for Cryptosporidium parvum. PMID:10458969

  5. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  6. Antiandrogenic activity of phthalate mixtures: Validity of concentration addition

    SciTech Connect

    Christen, Verena; Crettaz, Pierre; Oberli-Schrämmli, Aurelia; Fent, Karl

    2012-03-01

    Phthalates and bisphenol A have very widespread use leading to significant exposure of humans. They are suspected to interfere with the endocrine system, including the androgen, estrogen and the thyroid hormone system. Here we analyzed the antiandrogenic activity of six binary, and one ternary mixture of phthalates exhibiting complete antiandrogenic dose–response curves, and binary mixtures of phthalates and bisphenol A at equi-effective concentrations of EC{sub 10}, EC{sub 25} and EC{sub 50} in MDA-kb2 cells. Mixture activity followed the concentration addition (CA) model with a tendency to synergism at high and antagonism at low concentrations. Isoboles and the toxic unit approach (TUA) confirmed the additive to synergistic activity of the binary mixtures BBP + DBP, DBP + DEP and DEP + BPA at high concentrations. Both methods indicate a tendency to antagonism for the EC{sub 10} mixtures BBP + DBP, BBP + DEP and DBP + DEP, and the EC{sub 25} mixture of DBP + BPA. A ternary mixture revealed synergism at the EC{sub 50}, and weak antagonistic activity at the EC{sub 25} level by the TUA. A mixture of five phthalates representing a human urine composition and reflecting exposure to corresponding parent compounds showed no antiandrogenic activity. Our study demonstrates that CA is an appropriate concept to account for mixture effects of antiandrogenic phthalates and bisphenol A. The interaction indicates a departure from additivity to antagonism at low concentrations, probably due to interaction with the androgen receptor and/or cofactors. This study emphasizes that a risk assessment of phthalates should account for mixture effects by applying the CA concept. -- Highlights: ► Antiandrogenic activity of mixtures of 2 and 3 phthalates are assessed in MDA-kb2 cells. ► Mixture activities followed the concentration addition model. ► A tendency to synergism at high and antagonism at low levels occurred.

  7. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine.

    PubMed

    Cai, Meiquan; Zhang, Liqiu; Qi, Fei; Feng, Li

    2013-01-01

    Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  8. Scenarios Evaluation Tool for Chlorinated Solvent MNA

    SciTech Connect

    Vangelas, Karen; Michael J. Truex; Charles J. Newell; Brian Looney

    2007-02-28

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well

  9. Terminating pre-ozonation prior to biological activated carbon filtration results in increased formation of nitrogenous disinfection by-products upon subsequent chlorination.

    PubMed

    Chu, Wenhai; Li, Changjun; Gao, Naiyun; Templeton, Michael R; Zhang, Yanshen

    2015-02-01

    Previous research demonstrated that ozone dosed before biological activated carbon (BAC) filtration reduces the formation of disinfection by-products (DBPs) upon subsequent chlorination. The current work aimed to evaluate the impact of terminating this pre-ozonation on the ability of the BAC to remove the precursors of N-DBPs. More N-DBP precursors passed into the post-BAC water when the pre-ozonation was terminated, resulting in greater formation of N-DBPs when the water was subsequently chlorinated, compared to a parallel BAC filter when the pre-ozonation was run continuously. Moreover, the N-DBP formation potential was significantly increased in the effluent of the BAC filter after terminating pre-ozonation, compared with the influent of the BAC filter (i.e. the effluent from the sand filter). Therefore, while selectively switching pre-ozonation on/off may have cost and other operational benefits for water suppliers, these should be weighed against the increased formation of N-DBPs and potential associated health risks.

  10. Athletic Activity and Hormone Concentrations in High School Female Athletes

    PubMed Central

    Wojtys, Edward M.; Jannausch, Mary L.; Kreinbrink, Jennifer L.; Harlow, Siobán D.; Sowers, MaryFran R.

    2015-01-01

    Context: Physical activity may affect the concentrations of circulating endogenous hormones in female athletes. Understanding the relationship between athletic and physical activity and circulating female hormone concentrations is critical. Objective: To test the hypotheses that (1) the estradiol-progesterone profile of high school adolescent girls participating in training, conditioning, and competition would differ from that of physically inactive, age-matched adolescent girls throughout a 3-month period; and (2) athletic training and conditioning would alter body composition (muscle, bone), leading to an increasingly greater lean–body-mass to fat–body-mass ratio with accompanying hormonal changes. Design: Cohort study. Settings: Laboratory and participants' homes. Patients or Other Participants: A total of 106 adolescent girls, ages 14–18 years, who had experienced at least 3 menstrual cycles in their lifetime. Main Outcome Measure(s): Participants were prospectively monitored throughout a 13-week period, with weekly physical activity assessments and 15 urine samples for estrogen, luteinizing hormone, creatinine, and progesterone concentrations. Each girl underwent body-composition measurements before and after the study period. Results: Seventy-four of the 98 girls (76%) who completed the study classified themselves as athletes. Body mass index, body mass, and fat measures remained stable, and 17 teenagers had no complete menstrual cycle during the observation period. Mean concentrations of log(estrogen/creatinine) were slightly greater in nonathletes who had cycles of <24 or >35 days. Mean log(progesterone/creatinine) concentrations in nonathletes were less in the first half and greater in the second half of the cycle, but the differences were not statistically significant. Conclusions: A moderate level of athletic or physical activity did not influence urine concentrations of estrogen, progesterone, or luteinizing hormones. However, none of the

  11. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    NASA Astrophysics Data System (ADS)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  12. Direct measurement of chlorine penetration into biofilms during disinfection.

    PubMed Central

    De Beer, D; Srinivasan, R; Stewart, P S

    1994-01-01

    Transient chlorine concentration profiles were measured in biofilms during disinfection by use of a microelectrode developed for this investigation. The electrode had a tip diameter of ca. 10 microm and was sensitive to chlorine in the micromolar range. The biofilms contained Pseudomonas aeruginosa and Klebsiella pneumoniae. Chlorine concentrations measured in biofilms were typically only 20% or less of the concentration in the bulk liquid. Complete equilibration with the bulk liquid did not occur during the incubation time of 1 to 2 h. The penetration depth of chlorine into the biofilm and rate of penetration varied depending on the measurement location, reflecting heterogeneity in the distribution of biomass and in local hydrodynamics. The shape of the chlorine profiles, the long equilibration times, and the dependence on the bulk chlorine concentration showed that the penetration was a function of simultaneous reaction and diffusion of chlorine in the biofilm matrix. Frozen cross sections of biofilms, stained with a redox dye and a DNA stain, showed that the area of chlorine penetration overlapped with nonrespiring zones near the biofilm-bulk fluid interface. These data indicate that the limited penetration of chlorine into the biofilm matrix is likely to be an important factor influencing the reduced efficacy of this biocide against biofilms as compared with its action against planktonic cells. PMID:7811074

  13. Combined Treatment with Low Concentrations of Aqueous and Gaseous Chlorine Dioxide Inactivates Escherichia coli O157:H7 and Salmonella Typhimurium Inoculated on Paprika.

    PubMed

    Kim, Hyun-Gyu; Song, Kyung Bin

    2017-03-28

    Combined treatment with gaseous and aqueous chlorine dioxide (ClO2) was performed to improve the microbiological safety and quality of paprika. A single treatment of 50 ppmv ClO2 gas for 30 min decreased the populations of Escherichia coli O157:H7 and Salmonella Typhimurium by 2.33 and 2.91 log CFU/g, respectively. In addition, a single treatment of aqueous ClO2 (50 ppm) for 5 min decreased these populations by 1.86 and 1.37, respectively. The most dramatic effects were achieved by combined treatment of 50 ppm aqueous and gaseous ClO2 for 30 min, which decreased populations of E. coli O157:H7 and S. Typhimurium by 4.11 and 3.61 log CFU/g, respectively. With regard to the qualities of paprika, no adverse effects were elicited by the combined treatment. Thus, combined treatment with aqueous and gaseous ClO2 is a suitable approach that can be used to improve the microbial safety and quality of paprika.

  14. Chlorinated hydrocarbons in peat

    SciTech Connect

    Rapaport, R.A.

    1985-01-01

    Concentrations (ng/g), accumulation rates (ug/m/sup 2/=yr) and burdens were determined for DDT (1,1,1-trichlorophenyl2-2'bis(p-chlorophenyl)ethane), polychlorinated biphenyls. Toxaphene, hexachlorobenzene (HCB) and a,b,g-hexachlorocyclohexanes (HCHs) in peat cores taken across the mid-latitudes of North America. Because peat bogs are ombrotrophic, thereby receiving all contaminant inputs from the atmosphere and because peat cores were dated, atmospheric input functions were constructed for all of the compounds listed above excepting the HCHs. Compound inventories (burdens) in peat cores of PCBs, HCB, HCHs, Toxaphene, DDT, Pb and Zn were compared, indicating a strong influence from areas proximate to industrial sources and the atmospheric transport from source regions. Untransformed parent DDT (p,p' and o,p'-DDT) in surface peat and in precipitation provides evidence for the long range transport of DDT from neighboring countries where use has increased over the past 10-15 years. Present accumulation rates of DDT in peat are about 10-20% of maximum levels associated with peak use in the US around 1960. The DDT input function that was developed can be used to date peat cores. Transformations of DDT and PCBs were also examined in peat cores. First order transformation rates of DDT (p,p' and o,p') to DDD in anaerobic peat core environments ranged from 0.03 to 0.09 yr/sup -1/ with differences related to temperature. Aerobic transformation of PCB congeners in peat cores and microcosms was rapid for 2,3 and several 4 chlorinated congeners (T/sub 1/2 less than or equal to 0.2 to 3 years) and declined with increasing chlorine number.

  15. Inactivation dynamics of Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 in wash water during simulated chlorine depletion and replenishment processes.

    PubMed

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Lyu, Shuxia; Wang, Qin

    2015-09-01

    Maintaining effective sanitizer concentration is of critical importance for preventing pathogen survival and transference during fresh-cut produce wash operation and for ensuring the safety of finished products. However, maintaining an adequate level of sanitizer in wash water can be challenging for processors due to the large organic load in the wash system. In this study, we investigated how the survival of human pathogens was affected by the dynamic changes in water quality during chlorine depletion and replenishment in simulated produce washing operations. Lettuce extract was added incrementally into water containing pre-set levels of free chlorine to simulate the chlorine depletion process, and sodium hypochlorite was added incrementally into water containing pre-set levels of lettuce extract to simulate chlorine replenishment. Key water quality parameters were closely monitored and the bactericidal activity of the wash water was evaluated using three-strain cocktails of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes. In both chlorine depletion and replenishment processes, no pathogen survival was observed when wash water free chlorine level was maintained above 3.66 mg/L, irrespective of the initial free chlorine levels (10, 50, 100 and 200 mg/L) or organic loading (chemical oxidation demand levels of 0, 532, 1013 and 1705 mg/L). At this free chlorine concentration, the measured ORP was 843 mV and pH was 5.12 for the chlorine depletion process; the measured ORP was 714 mV and pH was 6.97 for the chlorine replenishment process. This study provides quantitative data needed by the fresh-cut produce industry and the regulatory agencies to establish critical operational control parameters to prevent pathogen survival and cross-contamination during fresh produce washing.

  16. Acute toxicity evaluation for quinolone antibiotics and their chlorination disinfection processes.

    PubMed

    Li, Min; Wei, Dongbin; Du, Yuguo

    2014-09-01

    Acute toxicity of 21 quinolone antibiotics was monitored using photobacterium Vibrio fischeri assay. The minimum IC20 (inhibitory concentration for 20% luminescence elimination) was obtained at the least 18.86μmol/L for the tested quinolones. A quantitative structure-activity relationship model was established to investigate the possible mechanism for the acute toxicity. The critical physicochemical descriptors, describing σ and π atom electronegativity, implied that the electron transfer might occur between the quinolones and photobacterium V. fischeri. Although the quinolones exhibited limited acute toxicity to photobacterium, toxicity elevation was detected after their chlorination. Hence, chlorination disinfection treatment of quinolone-containing water should be of concerns.

  17. Antioxidant Activities of Functional Beverage Concentrates Containing Herbal Medicine Extracts

    PubMed Central

    Park, Seon-Joo; Kim, Mi-Ok; Kim, Jung Hoan; Jeong, Sehyun; Kim, Min Hee; Yang, Su-Jin; Lee, Jongsung; Lee, Hae-Jeung

    2017-01-01

    This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P<0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.

  18. Natural activity concentrations in bottled drinking water and consequent doses.

    PubMed

    Kabadayi, Önder; Gümüs, Hasan

    2012-07-01

    The radioactivity concentrations of nuclides (238)U, (232)Th and (40)K in bottled drinking water from six different manufacturers from Turkey were measured using high-resolution gamma-ray spectrometry. The measurement was done using a coaxial high-purity germanium detector system coupled to Ortec-Dspect jr digital MCA system. The average measured activity concentrations of the nuclides (238)U, (232)Th and (40)K are found to be 0.781, 1.05 and 2.19 Bq l(-1), respectively. The measured activity concentrations have been compared with similar studies from different locations. The annual effective doses for ingestion of radionuclides in the water are found to be 0.0246 mSv for (238)U and 0.169 mSv for (232)Th.

  19. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification.

    PubMed

    Soufan, M; Deborde, M; Delmont, A; Legube, B

    2013-09-15

    Carbamazepine reactivity and fate during chlorination was investigated in this study. From a kinetic standpoint, a third-order reaction (first-order relative to the CBZ concentration and second-order relative to the free chlorine concentration) was observed at neutral and slightly acidic pH, whereas a second-order reaction (first order relative to the CBZ concentration and first order relative to the free chlorine concentration) was noted under alkaline conditions. In order to gain insight into the observed pH-dependence of the reaction order, elementary reactions (i.e. reactions of Cl2, Cl2O, HOCl with CBZ and of ClO(-) with CBZ or of HOCl with the ionized form of CBZ) were highlighted and second order rate constants of each of them were calculated. Close correlations between the experimental and modeled values were obtained under these conditions. Cl2 and Cl2O were the main chlorination agents at neutral and acidic pH. These results indicate that, for a 1 mg/L free chlorine concentration and 1-10 mg/L chloride concentration at pH 7, halflives about 52-69 days can be expected. A low reactivity of chlorine with CBZ could thus occur under the chlorination steps used during water treatment. From a mechanistic viewpoint, several transformation products were observed during carbamazepine chlorination. As previously described for the chlorination of polynuclear aromatic or unsaturated compounds, we proposed monohydroxylated, epoxide, diols or chlorinated alcohol derivatives of CBZ for the chemical structures of these degradation products. Most of these compounds seem to accumulate in solution in the presence of excess chlorine.

  20. Chlorine residuals and haloacetic acid reduction in rapid sand filtration.

    PubMed

    Chuang, Yi-Hsueh; Wang, Gen-Shuch; Tung, Hsin-hsin

    2011-11-01

    It is quite rare to find biodegradation in rapid sand filtration for drinking water treatment. This might be due to frequent backwashes and low substrate levels. High chlorine concentrations may inhibit biofilm development, especially for plants with pre-chlorination. However, in tropical or subtropical regions, bioactivity on the sand surface may be quite significant due to high biofilm development--a result of year-round high temperature. The objective of this study is to explore the correlation between biodegradation and chlorine concentration in rapid sand filters, especially for the water treatment plants that practise pre-chlorination. In this study, haloacetic acid (HAA) biodegradation was found in conventional rapid sand filters practising pre-chlorination. Laboratory column studies and field investigations were conducted to explore the association between the biodegradation of HAAs and chlorine concentrations. The results showed that chlorine residual was an important factor that alters bioactivity development. A model based on filter influent and effluent chlorine was developed for determining threshold chlorine for biodegradation. From the model, a temperature independent chlorine concentration threshold (Cl(threshold)) for biodegradation was estimated at 0.46-0.5mgL(-1). The results imply that conventional filters with adequate control could be conducive to bioactivity, resulting in lower HAA concentrations. Optimizing biodegradable disinfection by-product removal in conventional rapid sand filter could be achieved with minor variation and a lower-than-Cl(threshold) influent chlorine concentration. Bacteria isolation was also carried out, successfully identifying several HAA degraders. These degraders are very commonly seen in drinking water systems and can be speculated as the main contributor of HAA loss.

  1. Water Treatment Technology - Chlorination.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  2. Aqueous chlorination of resorcinol

    USGS Publications Warehouse

    Heasley, V.L.; Burns, M.D.; Kemalyan, N.A.; Mckee, T.C.; Schroeter, H.; Teegarden, B.R.; Whitney, S.E.; Wershaw, R. L.

    1989-01-01

    An investigation of the aqueous chlorination (NaOCl) of resorcinol is reported. The following intermediates were detected in moderate to high yield at different pH values and varying percentages of chlorination: 2-chloro-, 4-chloro-, 2,4-dichloro-, 4,6-dichloro- and 2,4,6-trichlororesorcinol. Only trace amounts of the intermediates were detected when the chlorination was conducted in the presence of phosphate buffer. This result has significant implications since resorcinol in phosphate buffer has been used as a model compound in several recent studies on the formation of chlorinated hydrocarbons during chlorination of drinking water. Relative rates of chlorination were determined for resorcinol and several of the chlorinated resorcinols. Resorcinol was found to chlorinate only three times faster than 2,4,6-trichlororesorcinol. The structure 2,4,6-trichlororesorcinol was established as a monohydrate even after sublimation. A tetrachloro or pentachloro intermediate was not detected, suggesting that the ring-opening step of such an intermediate must be rapid. ?? 1989.

  3. Probabilistic approach to estimating indoor air concentrations of chlorinated volatile organic compounds from contaminated groundwater: a case study in San Antonio, Texas.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2011-02-01

    This paper describes a probabilistic model, based on the Johnson-Ettinger algorithm, developed to characterize the current and historic exposure to tricholorethylene (TCE) and tetrachlorethylene (PCE) in indoor air from plumes of groundwater contamination emanating from the former Kelly Air Force Base in San Antonio, Texas. We estimate indoor air concentration, house by house, in 30 101 homes and compare the estimated concentrations with measured values in a small subset of homes. We also compare two versions of the Johnson-Ettinger model: one used by the Environmental Protection Agency (EPA) and another based on an alternative parametrization. The modeled mean predicted PCE concentration historically exceeded PCE screening levels (0.41 ug/m(3)) in 5.5% of houses, and the 95th percentile of the predicted concentration exceeded screening levels in 85.3% of houses. For TCE, the mean concentration exceeded the screening level (0.25 ug/m(3)) in 49% of homes, and the 95th percentile of the predicted concentration exceeded the screening level in 99% of homes. The EPA model predicts slightly lower indoor concentrations than the alternative parametrization. Comparison with measured samples suggests both models, with the inputs selected, underestimate indoor concentrations and that the 95th percentiles of the predicted concentrations are closer to measured concentrations than predicted mean values.

  4. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine.

    PubMed Central

    Taylor, G. R.; Butler, M.

    1982-01-01

    Chlorine dioxide, bromine chloride and iodine were compared with chlorine as virucidal agents. Under optimal conditions all disinfectants were effective at low concentrations, but each disinfectant responded differently to acidity and alkalinity. Disinfection by chlorine was impaired by the presence of ammonia, but the other disinfectants retained much of their potency. Disinfection of poliovirus by iodine resulted in structural changes in the virions as seen by electron micrroscopy, but the other disinfectants were able to inactivate poliovirus without causing any apparent structural changes. Images Plate 1 PMID:6290566

  5. Results of long-term carcinogenicity studies of chlorine in rats.

    PubMed

    Soffritti, M; Belpoggi, F; Lenzi, A; Maltoni, C

    1997-12-26

    Four groups, each of 50 male and 50 female Sprague-Dawley rats, of the colony used in the Cancer Research Center of Bentivoglio of the Ramazzini Foundation, 12 weeks old at the start of the study, received drinking water containing sodium hypochlorite, resulting in concentrations of active chlorine of 750, 500, and 100 mg/l (treated groups), and tap water (active chlorine < 0.2 mg/l) (control group), respectively, for 104 weeks. Among the female rats of the treated groups, an increased incidence of lymphomas and leukemias has been observed, although this is not clearly dose related. Moreover, sporadic cases of some tumors, the occurrence of which is extremely unusual among the untreated rats of the colony used (historical controls), were detected in chlorine-exposed animals. The results of this study confirm the results of the experiment of the United States National Toxicology Program (1991), which showed an increase of leukemia among female Fischer 344/N rats following the administration of chlorine (in the form of sodium hypochlorite and chloramine) in their drinking water. The data here presented call for further research aimed at quantifying the oncogenic risks related to the chlorination of drinking water, to be used as a basis for consequent public health measures.

  6. The concentration of criminal victimization and patterns of routine activities.

    PubMed

    Kuo, Shih-Ya; Cuvelier, Steven J; Sheu, Chuen-Jim; Zhao, Jihong Solomon

    2012-06-01

    Although many repeat victimization studies have focused on describing the prevalence of the phenomenon, this study attempted to explain variations in the concentration of victimization by applying routine activities as a theoretical model. A multivariate analysis of repeat victimization based on the 2005 Taiwan criminal victimization data supported the general applicability of the routine activity model developed in Western culture for predicting repeat victimization. Findings that diverged from Western patterns included family income to assault, gender to robbery, and marital status, family income, and major activity to larceny incidents. These disparities illustrated the importance of considering the broader sociocultural context in the association between risk predictors and the concentration of criminal victimization. The contradictory results and nonsignificant variance also reflected untapped information on respondents' biological features and psychological tendencies. Future victimization research would do well to integrate measurements that are sensitive to salient sociocultural elements of the society being studied and individuals' biological and psychological traits.

  7. Polychlorinated biphenyl toxicity to Japanese quail as related to degree of chlorination

    USGS Publications Warehouse

    Hill, E.F.; Heath, R.G.; Spann, J.W.; Williams, J.D.

    1974-01-01

    To learn if the percentage of chlorine in a mixture of polychlorinated biphenyls (PCB's) alone determines toxicity, Japanese quail were fed diets containing Aroelor 1248, 1254, or 1260 at levels that added equal amounts of chlorine to the feed. The experiment comprised two consecutive 5-day periods; three sublethal concentrations of chlorine were evaluated during the first period and three lethal concentrations during the second period. Evaluations utilized comparisons of mortality, time to death, weight change, and food consumption. Sublethal concentrations produced no detectable effects. Lethal concentrations with equal Chlorine showed Aroelor 1248 to be less toxic at the highest chlorine concentrations, but at lower concentrations Aroelor 1254 was more toxic than Aroclor 1260. Although chlorine percentage of a PCB is positively correlated with its avian toxicity, PCB toxicity is apparently not simply a function of chlorination.

  8. Monitoring cell concentration and activity by multiple excitation fluorometry.

    PubMed

    Li, J K; Asali, E C; Humphrey, A E; Horvath, J J

    1991-01-01

    Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.

  9. [Factors affecting formation of THMs during dissolved organic nitrogen acetamide chlorination in drinking water].

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Zhao, Shi-Jia; Li, Qing-Song

    2009-05-15

    Chlorination disinfection greatly reduced bacteria and virus in drinking water. However, there is an unintended consequence of disinfection, the generation of chemical disinfection by-products (DBPs). Dissolved organic nitrogen (DON) as the important precursor of DBPs is of current concern. As acetamide (AcAm) occur in important bimolecular, we studied formation pathways for THMs during chlorination of model AcAm. The experiments are designed by Plackett-Burman and Box-Behnken methods. Factors affecting formation of THMs such as AcAm initial concentration, chlorine dosage, pH, temperature, Br(-) concentration and contact time were investigated. The results indicate that AcAm initial concentration, pH and temperature have little effects on formation of THMs. On the contrary, three other factors have important effects on formation of THMs, especially Br(-) concentration. The capacity of THMs generation varies very little when Br(-) has a constant concentration. Generation amount of THMs attach maximum under the condition that dosage of active chlorine, Br(-) concentration and contact time is 8.77 mg/L, 0.77 mg/L and 6.20 h respectively. Bromine ion plays a catalysis role on THMs formation. Controlling the concentration of bromine ion can reduce total generation amount of THMs via AcAm. Bromine partition coefficient tends to increasing along with contact time lapse. Controlling chlorination reaction time can lower the cancer risk. At last, the pathway is proposed for THMs formation via AcAm, and the catalysis mechanism of Br(-) was addressed.

  10. Preparation of gold- and chlorine-impregnated bead-type activated carbon for a mercury sorbent trap.

    PubMed

    Song, Young Cheol; Lee, Tai Gyu

    2016-12-01

    This study aimed to develop a mercury (Hg) adsorption trap, which can be used to measure the concentration of elemental Hg in emissions from a Hg discharge facility, and evaluate its adsorption efficiency. The Hg spiking efficiency was compared by impregnating metallic and halogen materials that have high affinity for Hg into activated carbon (AC) to determine an accurate spiking method for Hg on AC. The Hg spiking efficiency was compared according to the type and content of the impregnated substances. AC impregnated with Cl and Au had a 15-20% higher Hg spiking efficiency compared to virgin AC. For Au impregnation at weight ratios of 0-20 wt% of adsorbent, spiking efficiencies of over 97% were observed under certain conditions. The Hg adsorption properties of the above adsorbent were determined experimentally, and the results were used to test the adsorption performance of Hg adsorption traps.

  11. Contaminants in fishes from Great Lakes-influenced sections and above dams of three Michigan rivers. I: Concentrations of organo chlorine insecticides, polychlorinated biphenyls, dioxin equivalents, and mercury

    USGS Publications Warehouse

    Giesy, J.P.; Verbrugge, D.A.; Othoudt, R. A.; Bowerman, W.W.; Mora, M.A.; Jones, P.D.; Newsted, J.L.; Vandervoort, C.; Heaton, S. N.; Aulerich, R.J.; Bursian, S.J.; Ludwig, J. P.; Ludwig, M.; Dawson, G. A.; Kubiak, T.J.; Best, D. A.; Tillitt, D. E.

    1994-01-01

    Fishes of the Great Lakes contain hazardous chemicals such as synthetic halogenated hydrocarbons and metals. These fish can move from the lakes into the Great Lakes tributaries of Michigan. In doing so, they transport concentrationsof contaminants which may represent a risk to wildlife. Concentrations of mercury (Hg), total polychlorinated biphenyls (PCBs), 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ), total DDT complex, aldrin, endrin, dieldrin, heptachlor, heptachlor epoxide, lindane, hexachlorobenzene, cis-chlordane, oxychlordane, endosulfan-I, methoxychlor, trans-chlordane, and trans-nonachlor were determined in composite samples of fishes from above and below Michigan hydroelectric dams, which separate the fishes which have access to the Great Lakes from fishes that do not. Mean concentrations of total PCBs, TCDD-EQ, DDT, and most of the other pesticides were greater in composite samples of six species of fishes from below than above the dams on the Au Sable, Manistee, and Muskegon Rivers. Concentrations of mercury, were the same or greater above the dams than below. However, this difference was statistically significant only on the Au Sable. Mercury concentrations ranged from less than 0.05 mg/kg to 0.73 mg Hg/kg, ww. Total concentrations of PCBs ranged from 0.02 to 1.7 mg/kg, ww. Concentrations of 2,3,7,8-tetrachlordibenzo-p-dioxin equivalents varied among fishes and locations. The concentrations of TCDD-EQ ranged from 2.4 to 71 μg/kg, ww, with concentrations in carp being the greatest. Concentrations of TCDD-EQ were greater than the concentrations which would be expected to occur, due solely to the presence of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and technical mixtures of PCBs.

  12. Highly chlorinated Escherichia coli cannot be stained by propidium iodide.

    PubMed

    Phe, M-H; Dossot, M; Guilloteau, H; Block, J-C

    2007-05-01

    Several studies have shown that the staining by fluorochromes (DAPI, SYBR Green II, and TOTO-1) of bacteria is altered by chlorination. To evaluate the effect of chlorine (bleach solution) on propidium iodide (PI) staining, we studied Escherichia coli in suspension and biomolecules in solution (DNA, RNA, BSA, palmitic acid, and dextran) first subjected to chlorine and then neutralized by sodium thiosulphate. The suspensions and solutions were subsequently stained with PI. The fluorescence intensity of the PI-stained DNA and RNA in solution dramatically decreased with an increase in the chlorine concentration applied. These results explain the fact that for chlorine concentrations higher than 3 micromol/L Cl2, the E. coli cells were too damaged to be properly stained by PI. In the case of highly chlorinated bacteria, it was impossible to distinguish healthy cells (with a PI-impermeable membrane and undamaged nucleic acids), which were nonfluorescent after PI staining, from cells severely injured by chlorine (with a PI-permeable membrane and damaged nucleic acids) that were also nonfluorescent, as PI penetrated but did not stain chlorinated nucleic acids. Our results suggest that it would be prudent to be cautious in interpreting the results of PI staining, as PI false-negative cells (cells with compromised membranes but not stained by PI because of nucleic acid damage caused by chlorine) are obtained as a result of nucleic acid damage, leading to an underestimation of truly dead bacteria.

  13. Soil peroxidase-mediated chlorination of fulvic acid

    NASA Astrophysics Data System (ADS)

    Asplund, Gunilla; Borén, Hans; Carlsson, Uno; Grimvall, Anders

    Humic matter has recently been shown to contain considerable quantities of naturally produced organohalogens. The present study investigated the possibility of a non-specific, enzymatically mediated halogenation of organic matter in soil. The results showed that, in the presence of chloride and hydrogen peroxide, the enzyme chloroperoxidase (CPO) from the fungus Caldariomyces fumago catalyzes chlorination of fulvic acid. At pH 2.5 - 6.0, the chlorine to fulvic acid ratio in the tested sample was elevated from 12 mg/g to approximately 40-50 mg/g. It was also shown that this reaction can take place at chloride and hydrogen peroxide concentrations found in the environment. An extract from spruce forest soil was shown to have a measurable chlorinating capacity. The activity of an extract of 0.5 kg soil corresponded to approximately 0.3 enzyme units, measured as CPO activity. Enzymatically mediated halogenation of humic substances may be one of the mechanisms explaining the widespread occurrence of adsorbable organic halogens (AOX) in soil and water.

  14. Imidazole catalyzes chlorination by unreactive primary chloramines.

    PubMed

    Roemeling, Margo D; Williams, Jared; Beckman, Joseph S; Hurst, James K

    2015-05-01

    fluorescein chlorination by HOCl. Time-dependent imidazole-catalyzed HPA chlorination by NH2Cl was also demonstrated by product analyses. Quantitative assessment of the data suggests that physiological levels of histidyl groups will react with primary chloramines to generate a flux of imidazole chloramine sufficient to catalyze biological chlorination via HImCl(+), particularly in environments that generate high concentrations of HOCl such as the neutrophil phagosome.

  15. Effects of short-chain chlorinated paraffins on soil organisms.

    PubMed

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  16. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    PubMed

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.

  17. Unexpected products and reaction mechanisms of the aqueous chlorination of cimetidine.

    PubMed

    Buth, Jeffrey M; Arnold, William A; McNeill, Kristopher

    2007-09-01

    Many pharmaceuticals and personal care products (PPCPs) resist degradation in wastewater treatment plants. Thus, they may be transformed by chemical disinfectants in the final treatment stage, generating products that may possess enhanced toxicity/biological activity relative to the parent compounds. For this reason, the reaction of cimetidine, an over-the-counter antacid, with the frequently used disinfectant, free chlorine, was investigated. Cimetidine degraded rapidly in the presence of excess free chlorine, indicating that it will likely undergo significant transformation during wastewater disinfection. Four major products were isolated and extensively characterized by comparison of liquid chromatographic retention times to known standards, mass spectrometry, 1H- and 2D-nuclear magnetic resonance spectroscopy, and infrared spectroscopy. An expected sulfur oxidation product, cimetidine sulfoxide, was identified along with three unexpected products: 4-hydroxymethyl-5-methyl-1H-imidazole, 4-chloro-5-methyl-1H-imidazole, and a product proposed to be either a beta- or delta-sultam. The last three products are formed by transformations not frequently observed in free chlorine reactions of PPCPs such as C-C bond cleavage and intramolecular nucleophilic substitution. The unexpected transformations yielded compounds with more substantial structural changes than would be observed in common free chlorine reactions such as N-chlorination or electrophilic halogenation. The reaction pathway was elucidated by kinetic analysis and by independently treating isolated intermediates with free chlorine, and reaction mechanisms were proposed. Finally, the predicted no-effect concentration (PNEC) of the chlorination products was estimated, and the products 4-hydroxymethyl-5-methyl-1H-imidazole and 4-chloro-5-methyl-1H-imidazole were estimated to have lower PNECs than cimetidine.

  18. Quantification of bisphenol A, 353-nonylphenol and their chlorinated derivatives in drinking water treatment plants.

    PubMed

    Dupuis, Antoine; Migeot, Virginie; Cariot, Axelle; Albouy-Llaty, Marion; Legube, Bernard; Rabouan, Sylvie

    2012-11-01

    Bisphenol A (BPA) and nonylphenols (NP) are of major concern to public health due to their high potential for human exposure and to their demonstrated toxicity (endocrine disruptor effect). A limited number of studies have shown that BPA and NP are present in drinking water. The chlorinated derivatives that may be formed during the chlorination step in drinking water treatment plants (DWTP) exhibit a higher level of estrogenic activity than their parent compounds. The aim of this study was to investigate BPA, 353NP, and their chlorinated derivative concentrations using an accurate and reproducible method of quantification. This method was applied to both surface and treated water samples from eight French DWTPs producing from surface water. Solid-phase extraction followed by liquid chromatography-tandem mass spectrometry was developed in order to quantify target compounds from water samples. The limits of detection ranged from 0.3 to 2.3 ng/L for BPA and chlorinated BPA and from 1.4 to 63.0 ng/L for 353NP and chlorinated 353NP. BPA and 353NP were found in most analyzed water samples, at a level ranging from 2.0 to 29.7 ng/L and from 0 to 124.9 ng/L, respectively. In most of DWTPs a decrease of BPA and 353NP was observed between surface water and treated water (36.6 to 78.9 % and 2.2 to 100.0 % for BPA and 353NP, respectively). Neither chlorinated BPA nor chlorinated 353NP was detected. Even though BPA and 353NP have been largely removed in the DWTPs studied, they have not been completely eliminated, and drinking water may consequently remain a source of human exposure.

  19. Hydrochloric Acid and the Chlorine Budget of the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Webster, C.; May, R.; Jaegle, L.; Hu, H.; Sander, S.; Gunson, M.; Toon, G.; Russell, J., III; Stimpfle, R.; Koplow, J.; Salawitch, R.; Michelsen, H.

    1994-01-01

    Concentrations of hc1 measured in the lower stratosphere in 1993 by the ALIAS instrument on the ER-2 aircraft reveal that only 40% of inorganic chlorine (CL sub y, inferred from in situ measurements of organic chlorinated source gases) is present as HC1, significantly lower than model predictions.

  20. The influence of thoron on instruments measuring radon activity concentration.

    PubMed

    Michielsen, N; Bondiguel, S

    2015-11-01

    Thoron, the isotope 220 of radon, is a radionuclide whose concentration may influence the measurement of the activity concentration of (222)Rn in the air. If in the case of continuous and active sampling measuring instruments, using a pump for example, the influence of thoron on radon measurement is obvious and is taken into account in the apparatus, it is often assumed that in the case of a passive sampling, by diffusion through a filter for example, this thoron influence is negligible. This is due to the very short radioactive half-life of thoron, 55.6 s (3.82 d for (222)Rn), and the assumption that the diffusion time of thoron in the detection chamber is long enough beside that of the thoron half-life. The objective of this study is to check whether this assumption is true or not for different kinds of commercial electronic apparatus used to measure radon activity concentration from soil to dwellings. First of all, the devices were calibrated in activity concentration of radon, and then they were exposed to a controlled thoron atmosphere. The experiments concerning the thoron aimed to investigate the sensitivity to thoron in the radon measuring mode of the apparatus. Results of these experiments show that all devices have a very quick answer to thoron atmosphere, even though the sensitivities vary from one instrument to another. Results clearly show that this influence on radon measurement due to the thoron is observed also after the exposition because of the decay of (212)Pb and its progenies. In conclusion, the sensitivity to thoron in the radon measuring mode depends strongly on the type of instruments. The results of the present investigation show that for some apparatus, the influence of thoron cannot be disregarded especially when measuring radon in soil.

  1. Activity concentrations and dose rates from decorative granite countertops.

    PubMed

    Llope, W J

    2011-06-01

    The gamma radiation emitted from a variety of commercial decorative granites available for use in U.S. homes has been measured with portable survey meters as well as an NaI(Th) gamma spectrometer. The (40)K, U-nat, and (232)Th activity concentrations were determined using a full-spectrum analysis. The dose rates that would result from two different arrangements of decorative granite slabs as countertops were explored in simulations involving an adult anthropomorphic phantom.

  2. Chlorination and chloramination of bisphenol A, bisphenol F, and bisphenol A diglycidyl ether in drinking water.

    PubMed

    Lane, Rachael F; Adams, Craig D; Randtke, Stephen J; Carter, Ray E

    2015-08-01

    Bisphenol A (BPA), bisphenol F (BPF), and bisphenol A diglycidyl ether (BADGE) are common components of epoxy coatings used in food packaging and in drinking water distribution systems. Thus, leachates from the epoxy may be exposed to the disinfectants free chlorine (Cl2/HOCl/OCl(-)) and monochloramine (MCA, NH2Cl). Bisphenols are known endocrine disrupting chemicals (EDC) with estrogenic activity. Chlorination by-products have the potential to have reduced or enhanced estrogenic qualities, and are, therefore, of interest. In this work, chlorination reactions for bisphenols and BADGE were explored (via LC/MS/MS) and kinetic modeling (using a pseudo-first order approach) was conducted to predict the fate of these compounds in drinking water. The half-lives of BPA and BPF with 1 mg/L of free chlorine ranged from 3 to 35 min over the pH range from 6 to 11 and the temperature range of 10-25 °C. Half-lives for reactions of BPA and BPF with a nominal MCA concentration of 3.5 mg/L as Cl2 were from 1 to 10 days and were greater at higher pH and lower temperature. Formation of chlorinated bisphenol A by-products was observed during the kinetic studies. BADGE was found unreactive with either oxidant.

  3. The application of high-concentration short-time chlorine dioxide treatment for selected specialty crops including Roma tomatoes (Lycopersicon esculentum), cantaloupes (Cucumis melo ssp. melo var. cantaloupensis) and strawberries (Fragaria×ananassa).

    PubMed

    Trinetta, V; Linton, R H; Morgan, M T

    2013-06-01

    The effects of high-concentration short-time chlorine dioxide (ClO2) gas treatment on food-borne pathogens inoculated onto the surface of tomatoes, cantaloupes, and strawberries were studied. Produce were spot-inoculated with a mixture of Salmonella enterica (serotypes Montevideo, Javiana and Baildon), Escherichia coli O157:H7 (serotypes 204 P, EDL 933 and C792) or Listeria monocytogenes (serotypes Scott A, F 5069 and LCDC 81-861), and treated with ClO2 gas at 10 mg/l for 180 s. After ClO2 gas treatment, surviving populations were determined and shelf-life studies were conducted (microbial spoilage population, change in color and overall appearance). Significant microbial reduction (p < 0.05) was observed for all treated samples. Nearly a 5LogCFU/cm(2)Salmonella reduction was found on tomatoes, cantaloupe and strawberries, while a ~3LogCFU/cm(2) reduction was observed for E. coli and Listeria on all produce surfaces. E. coli and Listeria appeared to be more resistant to ClO2 gas as compared to Salmonella spp. Treatments significantly (p < 0.05) reduced initial microflora population, while produce color surface was not significantly influenced, as compared to the control (p > 0.05). Results obtained suggest the potential use of high-concentration short-time ClO2 gas treatment as an effective online pathogen inactivation technology for specialty crops in large-scale produce packing operations.

  4. Inhibition of Geobacter dechlorinators at elevated trichloroethene concentrations is explained by a reduced activity rather than by an enhanced cell decay.

    PubMed

    Philips, Jo; Haest, Pieter Jan; Springael, Dirk; Smolders, Erik

    2013-02-05

    Microbial dechlorination of trichloroethene (TCE) is inhibited at elevated TCE concentrations. A batch experiment and modeling analysis were performed to examine whether this self-inhibition is related to an enhanced cell decay or a reduced dechlorination activity at increasing TCE concentrations. The batch experiment combined four different initial TCE concentrations (1.4-3.0 mM) and three different inoculation densities (4.0 × 10(5) to 4.0 × 10(7)Geobacter cells·mL(-1)). Chlorinated ethene concentrations and Geobacter 16S rRNA gene copy numbers were measured. The time required for complete conversion of TCE to cis-DCE increased with increasing initial TCE concentration and decreasing inoculation density. Both an enhanced decay and a reduced activity model fitted the experimental results well, although the reduced activity model better described the lag phase and microbial decay in some treatments. In addition, the reduced activity model succeeded in predicting the reactivation of the dechlorination reaction in treatments in which the inhibiting TCE concentration was lowered after 80 days. In contrast, the enhanced decay model predicted a Geobacter cell density that was too low to allow recovery for these treatments. Conclusively, our results suggest that TCE self-inhibition is related to a reduced dechlorination activity rather than to an enhanced cell decay at elevated TCE concentrations.

  5. Chlorine dioxide treatment for zebra mussel control

    SciTech Connect

    Rybarik, D.; Byron, J.; Germer, M.

    1995-06-01

    Chlorine is recognized and commonly used biocide for power plant cooling water and service water treatment programs, including the control of zebra mussels. Chlorine dioxide has recently become a popular method of zebra mussel control because of its economy, safety, environmental acceptability, and effectiveness when compared to other mussel control methods. This control technique was recently demonstrated at Dairyland Power Cooperative`s Alma Generating Station on the east bank of the upper Mississippi River in Alma, Wisconsin. The project was assisted with EPRI Tailored Collaboration Program funds. The Dairyland Power Alam Generating Station consists of five generating units that utilize raw, untreated Mississippi River water for condenser, circulating, and service water supplies. The first units were built in 1947, with the final and largest unit being completed in 1960. Total station generating capacity is 200 MW. Because of recent increases in the zebra mussel density at the station intake, Dairyland Power selected the team of Nalco and Rio Linda to perform a chlorine dioxide treatment of the station`s new water systems to eradicate and control the mussels before their presence created operational difficulties. This paper will present the results of the treatment including treatment theory, design and construction of the treatment system, the method of chlorine dioxide generation, treatment concentration, analytical methods o monitoring chlorine dioxide generation, residuals and trihalomethane (THM) concentrations, protocol for monitoring treatment mortality, and the effects of chlorine dioxide and detoxification on other water chemistry parameters and equipment materials. The goal of this paper is to inform and assist users with establishing consistent and uniform practices for safely utilizing and monitoring chlorine dioxide in the eradication and control of zebra mussels.

  6. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  7. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  8. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  9. Trace element, semivolatile organic, and chlorinated organic compound concentrations in bed sediments of selected streams at Fort Gordon, Georgia, February-April 2010

    USGS Publications Warehouse

    Thomas, Lashun K.; Journey, Celeste; Stringfield, Whitney J.; Clark, Jimmy M.; Bradley, Paul M.; Wellborn, John B.; Ratliff, Hagan; Abrahamsen, Thomas A.

    2011-01-01

    A spatial survey of streams was conducted from February to April 2010 to assess the concentrations of major ions, selected trace elements, semivolatile organic compounds, organochlorine pesticides, and polychlorinated biphenyls associated with the bed sediments of surface waters at Fort Gordon military installation near Augusta, Georgia. This investigation expanded a previous study conducted in May 1998 by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, that evaluated the streambed sediment quality of selected surface waters at Fort Gordon. The data presented in this report are intended to help evaluate bed sediment quality in relation to guidelines for the protection of aquatic life, and identify temporal trends in trace elements and semivolatile organic compound concentrations at streambed sites previously sampled. Concentrations of 34 major ions and trace elements and 102 semivolatile organic, organochlorine pesticide, and polychlorinated biphenyl compounds were determined in the fine-grained fraction of bed sediment samples collected from 13 of the original 29 sites in the previous study, and 22 additional sites at Fort Gordon. Three of the sites were considered reference sites as they were presumed to be located away from potential sources of contaminants and were selected to represent surface waters flowing onto the fort, and the remaining 32 nonreference sites were presumed to be located within the contamination area at the fort. Temporal trends in trace elements and semivolatile organic compound concentrations also were evaluated at 13 of the 32 nonreference sites to provide an assessment of the variability in the number of detections and concentrations of constituents in bed sediment associated with potential sources, accumulation, and attenuation processes. Major ion and trace element concentrations in fine-grained bed

  10. Effect of chlorine, biodegradable dissolved organic carbon and suspended bacteria on biofilm development in drinking water systems.

    PubMed

    Codony, Francesc; Morato, Jordi; Ribas, Ferran; Mas, Jordi

    2002-01-01

    The influence of chlorine levels, the concentration of dissolved organic carbon and the abundance of bacteria in suspension, on the formation of biofilms on experimental glass surfaces were evaluated. Twelve reactors, packed with glass spheres, were continuously perfused with tap water. The properties of water were altered in different ways: chlorine was neutralized by the addition of thiosulfate, the levels of assimilable organic carbon were increased through the addition of acetate, and the bacterial load was modified by means of the continuous inoculation of a growing active culture of Pseudomonas aeruginosa. Continuous addition of bacteria to water containing 0.5 mg/l of free chlorine, did not result in the formation of detectable biofilms even after one month. When bacteria were added simultaneously with thiosulfate as a chlorine neutralizer, a community of attached bacteria appeared in less than 24 hours. Addition of acetate with the presence of 0.5 mg/l of chlorine did not stimulate the formation of biofilms. On the contrary, neutralization of chlorine with thiosulfate allowed the formation of biofilms with 10(6) cfu/cm(2) in about two weeks.

  11. Efficacy and Safety Evaluation of a Chlorine Dioxide Solution

    PubMed Central

    Ma, Jui-Wen; Huang, Bin-Syuan; Hsu, Chu-Wei; Peng, Chun-Wei; Cheng, Ming-Long; Kao, Jung-Yie; Way, Tzong-Der; Yin, Hao-Chang; Wang, Shan-Shue

    2017-01-01

    In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84.65 ± 0.64, 95.91 ± 11.61, and 46.39 ± 1.97 ppm, respectively. A 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test revealed that the cell viability of mouse lung fibroblast L929 cells was 93.7% at a 200 ppm UC-1 concentration that is over that anticipated in routine use. Moreover, 50 ppm UC-1 showed no significant symptoms in a rabbit ocular irritation test. In an inhalation toxicity test, treatment with 20 ppm UC-1 for 24 h showed no abnormality and no mortality in clinical symptoms and normal functioning of the lung and other organs. A ClO2 concentration of up to 40 ppm in drinking water did not show any toxicity in a subchronic oral toxicity test. Herein, UC-1 showed favorable disinfection activity and a higher safety profile tendency than in previous reports. PMID:28327506

  12. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    EPA Science Inventory

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  13. Bugs digest chlorinated organics

    SciTech Connect

    Not Available

    1993-02-01

    This article describes a new bioreactor that uses a consortium of aerobic bacteria to biodegrade chlorinated aromatic hydrocarbons. Methanotrophic bacteria are cultivated for their MMO enzyme. After the MMO enzyme breaks down the chlorinated organics by oxidation, non-methanotrophic bacteria consume the byproducts. Pilot-scale testing has demonstrated successful treatment of groundwater containing coal-tar constituents, toluene, trichloroethylene, vinyl chlorides, chlorobenzene, and methyl methacrylate from three Superfund sites.

  14. [Inactivation and removal of chlorine dioxide on cyclops of zooplankton].

    PubMed

    Zhao, Zhi-Wei; Cui, Fu-Yi; Lin, Tao; Liu, Guo-Ping

    2007-08-01

    Comparative experiments on the inactivation of cyclops by chlorine dioxide and chlorine were conducted. Batch experiments were performed in order to analyze the influence of pH value, organic precursor concentration on the rate of inactivation of cyclops with chlorine dioxide. In addition, the synergistic effect of different pre-oxidation followed by coagulation process on removal of cyclops in raw water was evaluated. It was found that chlorine dioxide possessed better inactivation effect than chlorine. Cyclops can be completely inactivated after 30 min of contact time by low dosage of chlorine dioxide (1.0 mg/L). The rate of inactivation was essentially the same at pH 5.7 and 8.0, and pH 9.8 resulted in the 10% of decrease in inactivation rate of cyclops than pH 5.7 - 8.0 in same contact time. The organic precursor concentration had negative effects on inactivation, and the higher the organic precursor concentration was, the lower inactivation rate of cyclops was achieved. The coagulation jar test showed that cyclops in the raw water could be completely removed by synergistic effect of chlorine dioxide pre-oxidation followed by coagulation process at chlorine dioxide dosage of 0.9 mg/L.

  15. A comparison of iodinated trihalomethane formation from chlorine, chlorine dioxide and potassium permanganate oxidation processes.

    PubMed

    Zhang, Tian-Yang; Xu, Bin; Hu, Chen-Yan; Lin, Yi-Li; Lin, Lin; Ye, Tao; Tian, Fu-Xiang

    2015-01-01

    This study compared the formation of iodinated trihalomethanes (I-THMs) from iodide-containing raw waters oxidized by chlorine, chlorine dioxide (ClO₂) and potassium permanganate (KMnO₄) at different oxidant concentrations, reaction times, pHs, initial iodide concentrations and bromide to iodide mass ratios. Among the six investigated I-THMs, iodoform was the major species formed during the oxidation using chlorine, ClO₂ and KMnO₄. When oxidant concentration increased from 0.1 to 3.0 mg/L, the formation of I-THMs increased and then decreased for chlorine and ClO₂, but kept increasing for KMnO₄. As the reaction time went by, I-THM concentration increased to a plateau within 10 h (ClO₂ within only 1 h, especially) for all the three oxidants. I-THM formation gradually increased from pH 3.0 to 9.0 and remained stable at pH values higher than 7.5 for chlorine; however, for ClO₂ and KMnO₄ the highest I-THM formation showed at pH 7.0 and 7.5, respectively. As initial iodide concentration increased from 20 to 800 μg/L, the total amount and species of I-THMs increased for the three oxidants. Iodide contributed to I-THM formation much more significantly than bromide.

  16. Plasma renin activities, angiotensin II concentrations, atrial natriuretic peptide concentrations and cardiopulmonary function values in dogs with severe heartworm disease.

    PubMed

    Kitagawa, H; Kitoh, K; Inoue, H; Ohba, Y; Suzuki, F; Sasaki, Y

    2000-04-01

    Relationships among plasma renin activities (PRA), plasma angiotensin II (ATII) concentrations, atrial natriuretic peptide (ANP) concentrations and cardiopulmonary function values were examined in dogs with ascitic pulmonary heartworm disease and acute- and chronic-vena caval syndrome (CS). PRA, plasma ATII concentration and plasma ANP concentration tended to be higher or were significantly higher in dogs with ascites, acute- and chronic-CS. PRA correlated significantly with plasma ATII concentration, WBC count, ALP activity, plasma concentrations of urea nitrogen, creatinine, sodium, potassium, and chloride, right ventricular endodiastolic pressure and right atrial pressure. Plasma ATII concentration correlated significantly with WBC count, plasma concentrations of urea nitrogen, sodium, and potassium, right ventricular endodiastolic pressure and right atrial pressure. Plasma ANP concentration did not correlate with PRA or ATII concentration, but correlated significantly only with pulmonary arterial pressure.

  17. N-chlorinated poly(N-isopropylacrylamide) microgels.

    PubMed

    Wang, Zuohe; Lam, Wing Yan; Pelton, Robert

    2013-10-22

    The treatment of poly(N-isopropylacrylamide) (PNIPAM) microgels with aqueous bleach (NaClO) at pH 10.5 resulted in the partial conversion of the amide hydrogen to the corresponding chloramide. N-Chlorinated microgels poly(NIPAM-co-NIPAMCl) are more hydrophobic than the parent PNIPAM microgels. Thus, the volume phase transition temperature decreases with increasing chlorination. During chlorination, the microgels coagulate once they undergo a volume phase transition. The chlorination reaction stops once the microgels dehydrate and coagulate, presumably as a result of the decreased diffusion rate of the ClO(-) anion into the microgels. The microgels are reversibly dechlorinated by glutathione (GSH), first giving PNIPAM shell + poly(NIPAM-co-NIPAMCl) core microgels. Because GSH is an important redox actor in biological cells, this work suggests that chlorinated microgels may be employed to deliver active chlorine to targeted cells.

  18. Thermal treatment for chlorine removal from coal. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-12-31

    It was the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Reaction rate constants and activation energy have been determined, and energy and mass balances performed. Substitution of a synthetic flue gas (7% 0{sub 2}, 12% CO{sub 2}, 81% N{sub 2}) for nitrogen in the tube furnace resulted in at least equivalent chlorine removal (85.5%) compared to nitrogen. The fluidized bed dechlorination system modifications have resulted in a steady increase in performance, the most recent run providing 64% reduction in chlorine concentration. Addition of supplemental heat to the column should permit attainment of the slightly higher temperatures required to attain over 80% removal of the chlorine. Calcium chloride by-product of 67% purity has been produced. A bench scale catenary grid concentrator with supplemental heating coils and limited insulation is capable of concentrating CaCl{sub 2} solution up to essentially 40%, with no sign of scale or plugging. Further development of the process should include a thorough evaluation of the use of combustion gases to serve as the fluidizing medium and to provide the energy for the thermal dechlorination process.

  19. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract.

    PubMed

    Wybraniec, Sławomir; Starzak, Karolina; Szneler, Edward; Pietrzkowski, Zbigniew

    2016-11-15

    A comparative chromatographic evaluation of chlorinated decarboxylated betanins and betanidins generated under activity of hypochlorous acid exerted upon these highly antioxidative potent decarboxylated pigments derived from natural sources was performed by LC-DAD-ESI-MS/MS. Comparison of the chromatographic profiles of the chlorinated pigments revealed two different directions of retention changes in relation to the corresponding substrates. Chlorination of all betacyanins that are decarboxylated at carbon C-17 results in an increase of their retention times. In contrast, all other pigments (the non-decarboxylated betacyanins as well as 2-decarboxy- and 15-decarboxy-derivatives) exhibit lower retention after chlorination. During further chromatographic experiments based upon chemical transformation of the related pigments (decarboxylation and deglucosylation), the compounds' structures were confirmed. The elaborated method for determination of chlorinated pigments enabled analysis of a chlorinated red beet root extract that was submitted to the MPO/H2O2/Cl(-) system acting under inflammation-like conditions (pH 5). This indicates a promising possibility for measurement of these chlorinated pigments as indicators of specific inflammatory states wherein betacyanins and decarboxylated betacyanins act as hypochlorite scavengers.

  20. Electrochemical Evidence for Neuroglobin Activity on NO at Physiological Concentrations.

    PubMed

    Trashin, Stanislav; de Jong, Mats; Luyckx, Evi; Dewilde, Sylvia; De Wael, Karolien

    2016-09-02

    The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe(3+)) and ferrous (Fe(2+)) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example, in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.

  1. Low-Cost Graphite-Based Free Chlorine Sensor.

    PubMed

    Pan, Si; Deen, M Jamal; Ghosh, Raja

    2015-11-03

    Pencil lead was used to fabricate a graphite-based electrode for sensing applications. Its surface was electrochemically modified using ammonium carbamate to make it suitable for sensing free chlorine in water samples. Chlorine is widely used as a disinfectant in the water industry, and the residual free chlorine concentration in water distributed to the consumers must be lower than that stipulated by regulatory bodies. The graphite-based amperometric sensor gave a selective and linear response to free chlorine in the relevant concentration range and no response to commonly interfering ions. It was evaluated further for storage stability, response time, and hysteresis. This sensor is being proposed as a low-cost device for determining free chlorine in water samples. Its ease-of-use, limitations, and feasibility for mass-production and application is discussed.

  2. Formation of organic chloramines during water disinfection: chlorination versus chloramination.

    PubMed

    Lee, Wontae; Westerhoff, Paul

    2009-05-01

    Many of the available studies on formation of organic chloramines during chlorination or chloramination have involved model organic nitrogen compounds (e.g., amino acids), but not naturally occurring organic nitrogen in water. This study assessed organic chloramine formation during chlorination and chloramination of 16 natural organic matter (NOM) solutions and 16 surface waters which contained dissolved organic nitrogen (DON). Chlorination rapidly formed organic chloramines within 10 min, whereas chloramination formed organic chloramination much more slowly, reaching the maximum concentration between 2 and 120 h after the addition of monochloramine into the solutions containing DON. The average organic chloramine formation upon addition of free chlorine and monochloramine into the NOM solutions were 0.78 mg-Cl(2)/mg-DON at 10 min and 0.16 mg-Cl(2)/mg-DON at 24h, respectively. Organic chloramine formation upon chlorination and chloramination increased as the dissolved organic carbon/dissolved organic nitrogen (DOC/DON) ratio decreased (i.e., DON contents increased). Chlorination of molecular weight (10,000 Da) fractionated water showed that molecular weight of DON would not impact the amount of organic chloramines produced. Comparison of three different disinfection schemes at water treatment plants (free chlorine, preformed monochloramine, and chlorine/ammonia additions) indicated organic chloramine formation could lead to a possible overestimation of disinfection capacity in many chloraminated water systems that add chlorine followed by an ammonia addition to form monochloramine.

  3. Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Kinnison, Doug; Garcia, Rolando R.; Bandoro, Justin; Mills, Michael; Wilka, Catherine; Neely, Ryan R.; Schmidt, Anja; Barnes, John E.; Vernier, Jean-Paul; Höpfner, Michael

    2016-12-01

    Model simulations presented in this paper suggest that transport processes associated with the summer monsoons bring increased abundances of hydrochloric acid into contact with liquid sulfate aerosols in the cold tropical lowermost stratosphere, leading to heterogeneous chemical activation of chlorine species. The calculations indicate that the spatial and seasonal distributions of chlorine monoxide and chlorine nitrate near the monsoon regions of the northern hemisphere tropical and subtropical lowermost stratosphere could provide indicators of heterogeneous chlorine processing. In the model, these processes impact the local ozone budget and decrease ozone abundances, implying a chemical contribution to longer-term northern tropical ozone profile changes at 16-19 km.

  4. Variability of Burkholderia pseudomallei strain sensitivities to chlorine disinfection.

    PubMed

    O'Connell, Heather A; Rose, Laura J; Shams, Alicia; Bradley, Meranda; Arduino, Matthew J; Rice, Eugene W

    2009-08-01

    Burkholderia pseudomallei is a select agent and the causative agent of melioidosis. Variations in previously reported chlorine and monochloramine concentration time (Ct) values for disinfection of this organism make decisions regarding the appropriate levels of chlorine in water treatment systems difficult. This study identified the variation in Ct values for 2-, 3-, and 4-log(10) reductions of eight environmental and clinical isolates of B. pseudomallei in phosphate-buffered water. The greatest calculated Ct values for a 4-log(10) inactivation were 7.8 mg.min/liter for free available chlorine (FAC) at pH 8 and 5 degrees C and 550 mg.min/liter for monochloramine at pH 8 and 5 degrees C. Ionic strength of test solutions, culture hold times in water, and cell washing were ruled out as sources of the differences in prior observations. Tolerance to FAC was correlated with the relative amount of extracellular material produced by each isolate. Solid-phase cytometry analysis using an esterase-cleaved fluorochrome assay detected a 2-log(10)-higher level of organisms based upon metabolic activity than did culture, which in some cases increased Ct values by fivefold. Despite strain-to-strain variations in Ct values of 17-fold for FAC and 2.5-fold for monochloramine, standard FAC disinfection practices utilized in the United States should disinfect planktonic populations of these B. pseudomallei strains by 4 orders of magnitude in less than 10 min at the tested temperatures and pH levels.

  5. Accumulation of chlorinated benzenes in earthworms

    USGS Publications Warehouse

    Beyer, W.N.

    1996-01-01

    Chlorinated benzenes are widespread in the environment. Hexachlorobenzene, pentachlorobenzene and all isomers of dichlorobenzenes, trichlorobenzenes, and tetrachlorobenzenes, have been detected in fish, water, and sediments from the Great Lakes. This paper describes a long-term (26 week) experiment relating the concentrations of chlorinated benzenes in earthworms to 1) the length of exposure, and it describes three 8-week experiments relating concentrations of chlorinated benzenes in earthworms to 2) their concentration in soil 3) the soil organic matter content and, 4) the degree of chlorination. In the 26-week experiment, the concentration of 1,2,4 - trichlorobenzene in earthworms fluctuated only slightly about a mean of 0.63 ppm (Fig. 1). Although a statistically significant decrease can be demonstrated over the test (Pearson correlation coefficient, r = -0.62 p < 0.05), the decrease was minor. Hexachlorobenzene in earthworms showed a cyclical trend that coincided with replacement of the media, and a slight but statistically significant tendency to increase from about 2 to 3 ppm over the 26 weeks (r = 0.55, p < 0.05). Concentrations of both trichlorobenzene and hexachlorobenzene in earthworms increased as the concentrations in the soil increased (Fig. 2), but leveled off at the highest soil concentrations. The most surprising result of this study was the relatively low concentrations in earthworms compared to those in soils. The average concentration of each of the six isomers of trichlorobenzene and tetrachlorobenzene in earthworms was only about 1 ppm (Table 2); the isomeric structure did not affect accumulation. The concentration of organic matter in soil had a prominent effect on hexachlorobenzene concentrations in earthworms (Fig. 3). Hexachlorobenzene concentrations decreased steadily from 9.3 ppm in earthworms kept in soil without any peat moss added to about 1 ppm in soil containing 16 or 32% organic matter.

  6. Breakpoint chlorination curves of greywater.

    PubMed

    March, J G; Gual, M

    2007-08-01

    A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results.

  7. Cleaning without chlorinated solvents

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  8. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  9. How strong is the relationship between chlorine and dioxin emissions from waste combustor stacks

    SciTech Connect

    Rigo, H.G.; Chandler, A. J.; Lanier, W.S.

    1995-12-31

    More than 1,700 PCDD/F emissions test runs were analyzed to determine the relationship between PCDD/F emissions and chlorine in waste combustion systems. Using data assembled from the study, dioxin concentrations measured at commercial installations were plotted against appropriate chlorine measurements to display the relationship that exists between dioxin and chlorine. Statistical analyses were also performed to determine if chlorine affects either the character of quantity of PCDD/Fs. Data from hazardous and municipal waste combustors, biomass combustors, and medical waste incinerators were analyzed. Available data indicated that there is no strong relationship between feed chlorine and stack PCDD/F concentrations.

  10. High Levels of Molecular Chlorine found in the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Beine, H.; Wang, Y.; Ingall, E. D.; Thompson, C. R.; Hornbrook, R. S.; Apel, E. C.; Fried, A.; Mauldin, L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B.

    2014-12-01

    Chlorine radicals are a strong atmospheric oxidant, particularly in polar regions where levels of hydroxyl radicals can be quite low. In the atmosphere, chlorine radicals expedite the degradation of methane and tropospheric ozone and the oxidation of mercury to more toxic forms. Here, we present direct measurements of molecular chlorine levels in the Arctic marine boundary layer in Barrow, Alaska, collected in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. We detected high levels of molecular chlorine of up to 400 pptv. Concentrations peaked in the early morning and late afternoon and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone are required for molecular chlorine formation. Using a time-dependent box model, we estimated that the chlorine radicals produced from the photolysis of molecular chlorine on average oxidized more methane than hydroxyl radicals and enhanced the abundance of short-lived peroxy radicals. Elevated hydroperoxyl radical levels, in turn, promoted the formation of hypobromous acid, which catalyzed mercury oxidation and the breakdown of tropospheric ozone. Therefore, we propose that molecular chlorine exerts a significant effect on the atmospheric chemistry in the Arctic. While the formation mechanisms of molecular chlorine are not yet understood, the main potential sources of chlorine include snowpack, sea salt, and sea ice. There is recent evidence of molecular halogen (Br2 and Cl2) formation in the Arctic snowpack. The coverage and composition of the snow may control halogen chemistry in the Arctic. Changes of sea ice and snow cover in the changing climate may affect air-snow-ice interaction and have a significant impact on the levels of radicals, ozone, mercury and methane in the Arctic troposphere.

  11. Development of an algorithm for feed-forward chlorine dosing of lettuce wash operations and correlation of chlorine profile with Escherichia coli O157:H7 inactivation.

    PubMed

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Millner, Patricia

    2014-04-01

    The dynamic interactions of chlorine and organic matter during a simulated fresh-cut produce wash process and the consequences for Escherichia coli O157:H7 inactivation were investigated. An algorithm for a chlorine feed-forward dosing scheme to maintain a stable chlorine level was further developed and validated. Organic loads with chemical oxygen demand of 300 to 800 mg/liter were modeled using iceberg lettuce. Sodium hypochlorite (NaOCl) was added to the simulated wash solution incrementally. The solution pH, free and total chlorine, and oxidation-reduction potential were monitored, and chlorination breakpoint and chloramine humps determined. The results indicated that the E. coli O157:H7 inactivation curve mirrored that of the free chlorine during the chlorine replenishment process: a slight reduction in E. coli O157:H7 was observed as the combined chlorine hump was approached, while the E. coli O157:H7 cell populations declined sharply after chlorination passed the chlorine hump and decreased to below the detection limit (<0.75 most probable number per ml) after the chlorination breakpoint was reached. While the amounts of NaOCl required for reaching the chloramine humps and chlorination breakpoints depended on the organic loads, there was a linear correlation between NaOCl input and free chlorine in the wash solution once NaOCl dosing passed the chlorination breakpoint, regardless of organic load. The data obtained were further exploited to develop a NaOCl dosing algorithm for maintaining a stable chlorine concentration in the presence of an increasing organic load. The validation tests results indicated that free chlorine could be maintained at target levels using such an algorithm, while the pH and oxidation-reduction potential were also stably maintained using this system.

  12. Bromine and Chlorine Go Separate Ways

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative concentrations of bromine and chlorine at various locations on Earth and Mars. Typically, bromine and chlorine stick together in a fixed ratio, as in martian meteorites and Earth seawater. But sometimes the elements split apart and their relative quantities diverge. This separation is usually caused by evaporation processes, as in the Dead Sea on Earth. On Mars, at Meridiani Planum and Gusev Crater, this split has been observed to an even greater degree than seen on Earth. This puzzling result is currently being further explored by Mars Exploration Rover scientists. Data for the Mars locations were taken by the rover's alpha particle X-ray spectrometer.

  13. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  14. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  15. Competing chlorination of 1,1-dichloroethane and chlorobenzene

    SciTech Connect

    Aver'yanov, V.A.

    1988-04-20

    The competition between the substitutive chlorination of 1,1-dichloroethane and the additive chlorination of chlorobenzene under photoinitiation conditions with wide variation of the temperature (248-323/degree/K), the chlorine concentration (O-1.23 M), and the ratio of the competitors was investigated. The fraction of the substitutive chlorination of 1,1-dichloroethane increases with increase in the temperature and the (CH/sub 3/CHCl/sub 2/)/(C/sub 6/H/sub 5/Cl) ratio and with decrease in the concentration of molecular chlorine. The results were interpreted by a free-radical mechanism of chlorination involving the formation of /pi/ complexes between the chlorine atoms and the chlorobenzene molecules ArH /yields/ /dot char/Cl and rearrangement of the latter into /sigma/ complexes. On the basis of the proposed mechanism an equation was obtained for the selectivity of the chlorination of the system with parameters reflecting the complexing characteristics of the aromatic solvent. A comparative analysis of these parameters for chlorobenzene and o-dichlorobenzene in terms of the structure of these solvents is given.

  16. Metal concentration and antioxidant activity of edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Kocak, Mehmet Sefa; Uren, Mehmet Cemil

    2015-05-15

    This study presents information on the antioxidant activity and heavy metal concentrations of Polyporus sulphureus, Macrolepiota procera, Lycoperdon perlatum and Gomphus clavatus mushrooms collected from the province of Mugla in the South-Aegean Region of Turkey. Antioxidant activities of mushroom samples were evaluated by four complementary tests. All tests showed L. perlatum and G. clavatus to possess extremely high antioxidant potential. Antioxidant activity of the samples was strongly correlated with total phenolic-flavonoid content. In terms of heavy metal content, L. perlatum exceeded the legal limits for daily intake of Pb, Fe, Mn, Cr, Ni and Co contents (0.461, 738.00, 14.52, 1.27, 1.65, 0.417 mg/day, respectively) by a 60-kg consumer. Co contents of M. procera (0.026 mg/day) and P. sulphureus (0.030 mg/day) and Cd contents of G. clavatus (0.071 mg/day) were also above the legal limits. According to these results, L. perlatum should not be consumed, despite the potentially beneficial antioxidant activity. Additionally, M. procera and G. clavatus should not be consumed daily due to their high levels of Cd and Co.

  17. Effects of isocyanuric acid on the monochlorodimedone chlorinating rates with free chlorine and ammonia chloramine in water.

    PubMed

    Tachikawa, Mariko; Sayama, Chiharu; Saita, Kiyotaka; Tezuka, Masakatsu; Sawamura, Ryoji

    2002-05-01

    Changes in monochlorodimedone (MCD) chlorinating rates with free chlorine (mixture of HOCl and OCl-) and ammonia monochloramine (NH2Cl) in water at pH 7 by the addition of isocyanuric acid (H3Cy) were determined at room temperature. Decreases in MCD absorbance at 290nm in equimolar (0.04mM) reactions of MCD and free available chlorine solutions containing H3Cy (0.01-1.60 mM) were recorded in a stopped-flow spectrophotometer. The rates indicate second-order reactions. Since the rate with free chlorine was high (> 7.6 x 10(6) M(-1) s(-1)), the amounts of free chlorine in the solutions could be distinguished from that of chlorinated cyanurates. The chlorinating rates with chlorinated cyanurates decreased with an increase in H3Cy concentrations. Plotting the rates against the molar ratio of chlorine to H3Cy showed a linear correlation and the rates with chlorinated cyanurates (H2ClCy) was estimated at 0.5 x 10(5) M(-1) s(-1). In contrast, the rates with the NH2Cl solution containing H3Cy increased with an increase in H3Cy concentrations, increasing from 1.2 x 10 to 2.7 x 10 M(-1) s(-1) by the addition of 1.55 mM H3Cy. The DPD color development rates (OD512/t1/2/M) with free available chlorine (0.015mM) declined from 1.3 x 10(5) to 0.9 x 10(5)M(-1) by the addition of 0.61 mM H3Cy.

  18. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    SciTech Connect

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle

    2007-07-01

    =(Dt)1/2, the diffusion distance after 3 years is L=17 {mu}m. It results that there is a great probability for the chlorine contained in the UO{sub 2} grains to have reached the grain boundaries after 3 years, in the core of the fuel rod as well as at its periphery. Moreover, diffusion and concentration of chlorine at grain boundaries has been evidenced using SIMS mapping. Our results indicate therefore, that, during reactor operation and after, the majority of {sup 36}Cl is likely to have moved to grain boundaries, rim and gap. This fraction might then significantly contribute to the rapid or instant release of chlorine. This could have important consequences for safety assessment. During reactor operation, chlorine ({sup 35}Cl), an impurity of the nuclear fuel, is activated into {sup 36}Cl, a long lived mobile isotope. Because of its long half life and its mobility, this isotope may contribute significantly to the instant release fraction under disposal conditions. Thermal annealing of Cl implanted UO{sub 2} sintered pellets show that it is mobile from temperatures as low as 1273 K (E{sub a} = 4.3 eV). Chlorine diffusion induced by irradiation with fission products preserves a thermally activated contribution. The radiation induced defects significantly enhance chlorine migration. (authors)

  19. The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991-2007.

    PubMed

    McKinney, Melissa A; Stirling, Ian; Lunn, Nick J; Peacock, Elizabeth; Letcher, Robert J

    2010-11-15

    Adipose tissue was sampled from the western Hudson Bay (WHB) subpopulation of polar bears at intervals from 1991 to 2007 to examine temporal trends of PCB and OCP levels both on an individual and sum-(∑-)contaminant basis. We also determined levels and temporal trends of emerging polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyls (PBBs) and other current-use brominated flame retardants. Over the 17-year period, ∑DDT (and p,p'-DDE, p,p'-DDD, p,p'-DDT) decreased (-8.4%/year); α-hexachlorocyclohexane (α-HCH) decreased (-11%/year); β-HCH increased (+8.3%/year); and ∑PCB and ∑chlordane (CHL), both contaminants at highest concentrations in all years (>1ppm), showed no distinct trends even when compared to previous data for this subpopulation dating back to 1968. Some of the less persistent PCB congeners decreased significantly (-1.6%/year to -6.3%/year), whereas CB153 levels tended to increase (+3.3%/year). Parent CHLs (c-nonachlor, t-nonachlor) declined, whereas non-monotonic trends were detected for metabolites (heptachlor epoxide, oxychlordane). ∑chlorobenzene, octachlorostyrene, ∑mirex, ∑MeSO(2)-PCB and dieldrin did not significantly change. Increasing ∑PBDE levels (+13%/year) matched increases in the four consistently detected congeners, BDE47, BDE99, BDE100 and BDE153. Although no trend was observed, total-(α)-HBCD was only detected post-2000. Levels of the highest concentration brominated contaminant, BB153, showed no temporal change. As long-term ecosystem changes affecting contaminant levels may also affect contaminant patterns, we examined the influence of year (i.e., aging or "weathering" of the contaminant pattern), dietary tracers (carbon stable isotope ratios, fatty acid patterns) and biological (age/sex) group on congener/metabolite profiles. Patterns of PCBs, CHLs and PBDEs were correlated with dietary tracers and biological group, but only PCB and CHL patterns were correlated with year. DDT

  20. Formation and speciation of haloacetamides and haloacetonitriles for chlorination, chloramination, and chlorination followed by chloramination.

    PubMed

    Huang, Huang; Chen, Bo-Yi; Zhu, Zi-Ru

    2017-01-01

    The formation of haloacetamides (HAcAms) and haloacetonitriles (HANs) from a solution containing natural organic matter and a secondary effluent sample was evaluated for disinfection by chlorination, chloramination, and chlorination followed by chloramination (Cl2NH2Cl process). The use of preformed monochloramine (NH2Cl) produced higher concentrations of HAcAms and lower concentrations of HANs than chlorination, while the Cl2NH2Cl process produced the highest concentrations of HAcAms and HANs. These results indicate that the Cl2NH2Cl process, which inhibited the formation of regulated trihalomethanes compared with chlorination, enhanced the formation of HAcAms and HANs. For disinfection in the presence of bromide, brominated dihaloacetamides and dihaloacetonitriles were formed, and the trends were similar to those observed for chlorinated species in the absence of bromide. The degrees of bromine substitution of dihaloacetamides and dihaloacetonitriles were highest for chlorination, followed by the Cl2NH2Cl process and then by the NH2Cl process. For the Cl2NH2Cl process, HAN formation kept gradually increasing with prechlorination time increasing from 0 to 120 min, while HAcAm formation increased only until it reached a maximum at around 10-30 min. These results suggest that the prechlorination time could be reduced to control the formation of HAcAms and HANs. During chloramination, the formation of HAcAms and HANs was lower when using preformed NH2Cl than when chloramines were formed in situ, with higher formation of HAcAms and HANs when chlorine was added before ammonia than vice versa for the secondary effluent; this finding suggests that preformed NH2Cl could be used to inhibit the formation of HAcAms and HANs during chloramination.

  1. Nonionic surfactants enhancing bactericidal activity at their critical micelle concentrations.

    PubMed

    Tobe, Seiichi; Majima, Toshiaki; Tadenuma, Hirohiko; Suekuni, Tomonari; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2015-01-01

    Bactericidal activities of benzalkonium chloride [also known as alkyldimethylbenzylammonium chloride (ADBAC)] containing nonionic surfactants such as methyl ester ethoxylates (MEE) with the alkyl group C8-C14 and oxyethylene (EO) group of average adduct number 3-15 were measured against Escherichia coli and Staphylococcus aureus. Sample solutions containing MEE in the vicinity of the critical micelle concentration exhibited a dramatic decrease in viable bacterial counts. MEE with an alkyl group of C12 and an oxyethylene group of lower adduct number exhibited little viable bacterial counts than those having higher EO adduct numbers. MEE with reduced EO adduct numbers increased fluorescence intensity in E. coli using the viability stain SYTO 9. Our results show that MEE molecules with low EO adduct numbers exhibited bactericidal activity by increasing the permeability of the E. coli cell membrane. Sample solution containing ADBAC and MEE molecules with lower EO adduct numbers also displayed higher zeta potentials. Moreover, ADBAC molecules incorporated into micelles of MEE with lower EO adduct numbers were adsorbed onto the surface of E. coli, which augmented bactericidal activity.

  2. Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water.

    PubMed

    Sisti, Maurizio; Brandi, Giorgio; De Santi, Mauro; Rinaldi, Laura; Schiavano, Giuditta F

    2012-03-01

    The aim of the present study was to evaluate the fungicidal activity of chlorine and peracetic acid in drinking water against various pathogenic Aspergillus spp. and Candida albicans strains. A. nidulans exhibited the greatest resistance, requiring 10 ppm of chlorine for 30 min contact time for a complete inactivation. Under the same experimental conditions, peracetic acid was even less fungicidal. In this case, A. niger proved to be the most resistant species (50 ppm for 60 min for complete inactivation). All Aspergillus spp. were insensitive to 10 ppm even with extended exposure (>5 h). The combination of chlorine and peracetic acid against Aspergillus spp. did not show synergistic effects except in the case of A. flavus. Complete growth inhibition of C. albicans was observed after about 3 h contact time with 0.2 ppm. C. albicans was less sensitive to peracetic acid. Hence the concentrations of chlorine that are usually present in drinking water distribution systems are ineffective against several Aspergillus spp. and peracetic acid cannot be considered an alternative to chlorine for disinfecting drinking water. The combination of the two biocides is not very effective in eliminating filamentous fungi at the concentrations permitted for drinking water disinfection.

  3. Assessment of thrombogenicity of activated and non-activated prothrombin concentrates in a rat model.

    PubMed Central

    Silberman, S.; Fareed, J.; Walenga, J.

    1986-01-01

    In vitro clotting activity of rats injected with different preparations of prothrombin concentrates was measured. Animals rendered deficient in vitamin K-dependent coagulation factors by early coumadin (warfarin) pretreatment, followed by injections of concentrate preparations were also evaluated. Findings indicate a dose-related response in abnormal coagulation changes demonstrable with each preparation and lack of protection of intravascular coagulation by coumadin anticoagulation. Furthermore, a role for in vivo factor VII activation of haemostasis following concentrate administration could not be elicited. PMID:3091059

  4. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  5. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  6. QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes to fish.

    PubMed

    Zvinavashe, Elton; van den Berg, Hans; Soffers, Ans E M F; Vervoort, Jacques; Freidig, Andreas; Murk, Albertinka J; Rietjens, Ivonne M C M

    2008-03-01

    Quantitative structure-activity relationship (QSAR) models are expected to play a crucial role in reducing the number of animals to be used for toxicity testing resulting from the adoption of the new European Union chemical control system called Registration, Evaluation, and Authorization of Chemicals (REACH). The objective of the present study was to generate in vitro acute toxicity data that could be used to develop a QSAR model to describe acute in vivo toxicity of chlorinated alkanes. Cytotoxicity of a series of chlorinated alkanes to Chinese hamster ovary (CHO) cells was observed at concentrations similar to those that have been shown previously to be toxic to fish. Strong correlations exist between the acute in vitro toxicity of the chlorinated alkanes and (i) hydrophobicity [modeled by the calculated log K ow (octanol-water partition coefficient); r (2) = 0.883 and r int (2) = 0.854] and (ii) in vivo acute toxicity to fish ( r (2) = 0.758). A QSAR model has been developed to predict in vivo acute toxicity to fish, based on the in vitro data and even on in silico log K ow data only. The developed QSAR model is applicable to chlorinated alkanes with up to 10 carbon atoms, up to eight chlorine atoms, and log K ow values lying within the range from 1.71 to 5.70. Out of the 100204 compounds on the European Inventory of Existing Chemicals (EINECS), our QSAR model covers 77 (0.1%) of them. Our findings demonstrate that in vitro experiments and even in silico calculations can replace animal experiments in the prediction of the acute toxicity of chlorinated alkanes.

  7. Bromine-Chlorine Coupling in the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.; Prather, Michael J.

    1996-01-01

    The contribution from the chlorine and bromine species in the formation of the Antarctic ozone hole is evaluated. Since chlorine and bromine compounds are of different industrial origin, it is desirable, from a policy point of view, to be able to attribute chlorine-catalyzed loss of ozone with those reactions directly involving chlorine species, and likewise for bromine-catalyzed loss. In the stratosphere, however, most of the chemical families are highly coupled, and, for example, changes in the chlorine abundance will alter the partitioninig in other families and thus the rate of ozone loss. This modeling study examines formation of the Antarctic ozone hole for a wide range of bromine concentrations (5 - 25 pptv) and for chlorine concentrations typical of the last two decades (1.5, 2.5 and 3.5 ppbv). We follow the photochemical evolution of a single parcel of air, typical of the inner Antarctic vortex (50 mbar, 70 deg. S, NO(sub y) = 2 ppbv, with Polar Stratospheric Clouds(PSC)) from August 1 to November 1. For all of these ranges of chlorine and bromine loading, we would predict a substantial ozone hole (local depletion greater than 90%) within the de-nitrified, PSC- perturbed vortex. The contributions of the different catalytic cycles responsible for ozone loss are tabulated. The deep minimum in ozone is driven primarily by the chlorine abundance. As bromine levels decrease, the magnitude of the chlorine-catalyzed ozone loss increases to take up the slack. This is because bromine suppresses ClO by accelerating the conversion of ClO an Cl2O2 back to HCI. For this range of conditions, the local relative efficiency of ozone destruction per bromine atom to that per chlorine atom (alpha-factor) ranges from 33 to 55, decreasing with increase of bromine.

  8. Increase of cytotoxicity during wastewater chlorination: Impact factors and surrogates.

    PubMed

    Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying; Yang, Yang; Liu, Rui; Liu, Feng

    2017-02-15

    Toxic and harmful disinfection byproducts (DBPs) were formed during wastewater chlorination. It was recently suggested that cytotoxicity to mammalian cells reflects risks posed by chlorinated wastewater. Here, ATP assays were performed to evaluate the cytotoxicity to mammalian cells. Chlorination significantly increased cytotoxicity of treated wastewater. Factors affecting cytotoxicity formation during wastewater chlorination were investigated. Quenching with sodium thiosulfate and ascorbic acid decreased the formed cytotoxicity, while ammonium kept the cytotoxicity stable. The chlorine dose required for the maximum cytotoxicity increase was dramatically affected by DOC and ammonia concentrations. The maximum cytotoxicity increase, defined as the cytotoxicity formation potential (CtFP), occurred when wastewater was treated for 48h with a chlorine dose of 2·DOC+11·NH3N+10 (mg-Cl2/L). During chlorination, the amounts of AOX formation was found to be significantly correlated with cytotoxicity formation when no DBPs were destroyed. AOX formation could be used as a surrogate to estimate cytotoxicity increase during wastewater chlorination. Besides, the CtFP of 14 treated wastewater samples was assessed ranged from 5.4-20.4mg-phenol/L. The CtFP could be estimated from UV254 of treated wastewater because CtFP and UV254 were strongly correlated.

  9. Intrinsic chemical sensor fibers for extended-length chlorine detection

    NASA Astrophysics Data System (ADS)

    Cordero, Steven R.; Ruiz, David; Huang, Weijie; Cohen, Leonard G.; Lieberman, Robert A.

    2004-12-01

    A fiber optic chlorine sensor having its entire length as the sensing element is reported here. The fiber consists of a silica core and a chlorine-sensitive cladding. Upon exposure to chlorine, the cladding very rapidly changes color resulting in attenuation of the light throughput of the fiber. A two-meter portion of sensor fiber responds to 10-ppm chlorine in milliseconds and to 1 ppm in several seconds. Furthermore, response to 100 ppb chlorine is realized in minutes. The high sensitivity suggests that the propagating modes of the light interact strongly with the cladding, and that these interactions are massively increased (Beers Law) due to the extended sensor length. The sensitivity to 1 ppm chlorine gas as a function of the length of fiber exposed between 0.3-30 meters is presented. The sensitivity to concentrations of chlorine from 0.1ppm-10ppm has been determined for a fixed 2 meter length of fiber. Pre-exposure fiber attenuation measures 70 dB/km (@ 633 nm) making it possible to detect chlorine on a continuous length of fiber on the scale of one hundred meters or more using standard detection methods (e.g. laser and photodetectors). This will replace the need of having a collection of point-detectors to cover large areas.

  10. Chlorination and chloramination of tetracycline antibiotics: disinfection by-products formation and influential factors.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Zhu, Shumin; Ma, Yan; Deng, Jing

    2014-09-01

    Formation of disinfection by-products (DBPs) from chlorination and chloramination of tetracycline antibiotics (TCs) was comprehensively investigated. It was demonstrated that a connection existed between the transformation of TCs and the formation of chloroform (CHCl3), carbon tetrachloride (CCl4), dichloroacetonitrile (DCAN) and dichloroacetone (DCAce). Factors evaluated included chlorine (Cl2) and chloramine(NH2Cl) dosage, reaction time, solution pH and disinfection modes. Increased Cl2/NH2Cl dosage and reaction time improved the formation of CHCl3 and DCAce. Formation of DCAN followed an increasing and then decreasing pattern with increasing Cl2 dosage and prolonged reaction time. pH affected DBPs formation differently, with CHCl3 and DCAN decreasing in chlorination, and having maximum concentrations at pH 7 in chloramination. The total concentrations of DBPs obeyed the following order: chlorination>chloramination>pre-chlorination (0.5h)>pre-chlorination (1h)>pre-chlorination (2h).

  11. Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays.

    PubMed

    Svobodová, K; Placková, M; Novotná, V; Cajthaml, T

    2009-11-01

    Investigations of environmental pollution by endocrine-disrupting chemicals are now in progress. Up to now, several in vitro bioassays have been developed for evaluation of the endocrine disruptive activity; however, there is still a lack of comparative studies of their sensitivity. In this work comparison of the estrogen screening assay based on beta-galactosidase expression and a bioluminescent estrogen screen revealed differences in the sensitivity and specificity of the two tests. With the beta-galactosidase screen a slight estrogen-like activity of Delor 103, a commercial mixture of PCB congeners, and a fungicide triclosan was measured whereas no activity was detected using the bioluminescent assay. A bioluminescent androgen test negated previously suggested androgenic potential of triclosan. Further, this work demonstrates the androgenic activity of Delor 103, with an EC(50) value of 2.29 x 10(-2)mg/L. On the other hand, chlorobenzoic acids (CBAs), representing potential PCB degradation metabolites, exhibited no androgenic activity but were slightly estrogenic. Their estrogenicity varied with their chemical structure, with 2,3-CBA, 2,3,6-CBA, 2,4,6-CBA and monochlorinated compounds exhibiting the highest activity. Thus the results indicated possible transitions of the hormonal activity of PCBs during bacterial degradation.

  12. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties.

  13. Ground water chlorinated ethenes in tree trunks: Case studies, influence of recharge, and potential degradation mechanism

    USGS Publications Warehouse

    Vroblesky, D.A.; Clinton, B.D.; Vose, J.M.; Casey, C.C.; Harvey, G.J.; Bradley, P.M.

    2004-01-01

    Trichloroethene (TCE) was detected in cores of trees growing above TCE-contaminated ground at three sites: the Carswell Golf Course in Texas, Air Force Plant PJKS in Colorado, and Naval Weapons Station Charleston in South Carolina. This was true even when the depth to water was 7.9 m or when the contaminated aquifer was confined beneath ???3 m of clay. Additional ground water contaminants detected in the tree cores were cis-1,2-dichloroethene at two sites and tetrachloroethene at one site. Thus, tree coring can be a rapid and effective means of locating shallow subsurface chlorinated ethenes and possibly identifying zones of active TCE dechlorination. Tree cores collected over time were useful in identifying the onset of ground water contamination. Several factors affecting chlorinated ethene concentrations in tree cores were identified in this investigation. The factors include ground water chlorinated ethene concentrations and depth to ground water contamination. In addition, differing TCE concentrations around the trunk of some trees appear to be related to the roots deriving water from differing areas. Opportunistic uptake of infiltrating rainfall can dilute prerain TCE concentrations in the trunk. TCE concentrations in core headspace may differ among some tree species. In some trees, infestation of bacteria in decaying heartwood may provide a TCE dechlorination mechanism within the trunk.

  14. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  15. Chlorinated phenols control the expression of the multi-drug resistance efflux pump MexAB-OprM in Pseudomonas aeruginosa by activating NalC

    PubMed Central

    Ghosh, Sudeshna; Cremers, Claudia M.; Jakob, Ursula; Love, Nancy G.

    2011-01-01

    Summary NalC is a TetR type regulator that represses the multidrug efflux pump MexAB-OprM in Pseudomonas aeruginosa. Here we explain the mechanism of NalC mediated regulation of MexAB-OprM. We show that NalC non-covalently binds chlorinated phenols and chemicals containing chlorophenol sidechains such as triclosan. NalC-chlorinated phenol binding results in its dissociation from promoter DNA and up-regulation of NalC’s downstream targets, including the MexR antirepressor ArmR. ArmR up-regulation and MexR-ArmR complex formation have previously been shown to upregulate MexAB-OprM. In vivo mexB and armR expression analyses were used to corroborate in vitro NalC chlorinated phenol binding. We also show that the interaction between chlorinated phenols and NalC is reversible, such that removal of these chemicals restored NalC promoter DNA binding. Thus, the NalC-chlorinated phenol interaction is likely a pertinent physiological mechanism that P. aeruginosa uses to control expression of the MexAB-OprM efflux pump. PMID:21231970

  16. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  17. Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations?

    PubMed

    Hammarlund-Udenaes, Margareta

    2010-03-01

    Active-site concentrations can be defined as the concentrations of unbound, pharmacologically active substances at the site of action. In contrast, the total concentrations of the drug in plasma/organ/tissue also include the protein- or tissue-bound molecules that are pharmacologically inactive. Plasma and whole tissue concentrations are used as predictors of effects and side effects because of their ease of sampling, while the concentrations of unbound drug in tissue are more difficult to measure. However, with the introduction of microdialysis and subsequently developed techniques, it has become possible to test the free drug hypothesis. The brain is an interesting organ in this regard because of the presence of the blood-brain barrier with its tight junctions and active efflux and influx transporters. We have proposed that research into brain drug delivery be divided into three main areas: the rate of delivery (PS, CL(in)), the extent of delivery (K(p,uu)) and the non-specific affinity of the drug to brain tissue, described by the volume of distribution of unbound drug in the brain (V(u,brain)). In this way, the concentration of unbound drug at the target site can be estimated from the total brain concentration and the plasma concentration after measuring the fraction of unbound drug. Results so far fully support the theory that active site concentrations are the best predictors when active transport is present. However, there is an urgent need to collect more relevant data for predicting active site concentrations in tissues with active transporters in their plasma membranes.

  18. Chlorine Dioxide (Gas)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide (ClO2) gas is registered by the U.S. Environmental Protection Agency (EPA) as a sterilant for use in manufacturing, laboratory equipment, medical devices, environmental surfaces, tools and clean rooms. Aqueous ClO2 is registered by the EPA as a surface disinfectant and sanitizer fo...

  19. Chlorination of lanthanum oxide.

    PubMed

    Gaviría, Juan P; Navarro, Lucas G; Bohé, Ana E

    2012-03-08

    The reactive system La(2)O(3)(s)-Cl(2)(g) was studied in the temperature range 260-950 °C. The reaction course was followed by thermogravimetry, and the solids involved were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the reaction leads to the formation of solid LaOCl, and for temperatures above 850 °C, the lanthanum oxychloride is chlorinated, producing LaCl(3)(l). The formation of the oxychloride progresses through a nucleation and growth mechanism, and the kinetic analysis showed that at temperatures below 325 °C the system is under chemical control. The influence of diffusive processes on the kinetics of production of LaOCl was evaluated by studying the effect of the reactive gas flow rate, the mass of the sample, and the chlorine diffusion through the boundary layer surrounding the solid sample. The conversion curves were analyzed and fitted according to the Johnson-Mehl-Avrami description, and the reaction order with respect to the chlorine partial pressure was obtained by varying this partial pressure between 10 and 70 kPa. The rate equation was obtained, which includes the influence of the temperature, chlorine partial pressure, and reaction degree.

  20. Impacts of Water Chlorination

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    To learn the consequences of one aspect of technology on man and his surroundings, scientists meeting at the Oak Ridge National Laboratory discussed what is known about the impacts of water chlorination. The conference produced state-of-the-art information about the technology and attempted to summarize all the information on the subject. (BT)

  1. Chlorine dioxide and hemodialysis

    SciTech Connect

    Smith, R.P. . Dept. of Pharmacology and Toxicology)

    1989-05-01

    Because it has little or no tendency to generate carcinogenic trihalomethanes such as chloroform, chlorine dioxide is an attractive alternative to chlorine for drinking water disinfection. There are, however, concerns about its acute toxicity, and the toxic effects of its by-products, chlorite and chlorate. The human experience with chlorine dioxide in both controlled, prospective studies and in actual use situations in community water supplies have as yet failed to reveal adverse health effects. The EPA has recommended standards of 0.06 mg/L for chlorine dioxide and standards of 0.007 mg/L for chlorite and chlorate in drinking water. Among groups who may be at special risk from oxychlorines in drinking water are patients who must undergro chronic extracorporeal hemodialysis. Although even units for home hemodialysis are supposed to be equipped with devices which effectively remove oxychlorines, there is a always a possibility of operator error or equipment failure. When the equipment is adequately maintained, it is likely that dialysis patients will have more intensive exposures from drinking water than from dialysis fluids despite the much larger volumes of water that are involved in dialysis. This paper discusses a hemodialysis and the standards and effects of oxychlorines. 90 refs., 2 tabs.

  2. Platelet activating factor raises intracellular calcium ion concentration in macrophages

    PubMed Central

    1986-01-01

    Peritoneal cells from thioglycollate-stimulated mice were allowed to adhere to coverglasses for 2 h to give a dense monolayer of adherent cells greater than 95% of which were macrophages. After incubation with the tetra-acetoxymethyl ester of quin2, coverglasses were rinsed with Ca2+-free saline, oriented at a 45 degree angle in square cuvettes containing a magnetically driven stir bar, and analyzed for changes in quin2 fluorescence in a spectrofluorimeter. Such fluorescence, taken as an indication of intracellular calcium ion concentration ([Ca2+]i), increased as exogenous calcium ion concentration ([Ca2+]o) was raised to 1 mM. At [Ca2+]o approximately equal to 10 microM, [Ca2+]i = 72 +/- 14 nM (n = 26); at [Ca2+]o = 1 mM, [Ca2+]i = 140-220 nM, levels not increased by N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine, a membrane-permeant chelator of heavy metals than can quench quin2. Addition of mouse alpha + beta fibroblast interferon, lipopolysaccharide, thrombin, collagen, vasopressin, ADP, compound 48/80, or U46619 did not change [Ca2+]i. However, addition of platelet activating factor (PAF) (2-20 ng/ml) raised [Ca2+]i by 480 nM within 1 min if [Ca2+]o = 1 mM. In the presence of 5 mM EGTA, PAF raised [Ca2+]i by 25 nM. This suggests that PAF causes influx of exogenous Ca2+, as well as releasing some Ca2+ from intracellular stores. Consistent with these results, when PAF was added to 1 mM Ca2+ in the presence of 100 microM Cd2+ or Mn2+ to block Ca2+ influx, [Ca2+]i increased by only intermediate amounts; at the times of such dampened peak response, [Ca2+]i could be raised within 1 min to normal PAF-stimulated levels by chelation of the exogenous heavy metals with diethylenetriaminepentaacetic acid. Normal PAF responses were observed in the presence of indomethacin. The lowest dose of PAF observed to raise [Ca2+]i was 0.1 ng/ml. Response of [Ca2+]i to 2-20 ng/ml PAF was transient, and second applications had no effect. The PAF response also was seen in

  3. Evaluation of acrodontiolamide, a chlorinated compound produced by Acrodontium salmoneum de Hoog for cytotoxicity and antimicrobial activity.

    PubMed

    Steiman, R; Benoit-Guyod, J L; Guiraud, P; Seigle-Murandi, F

    1995-10-01

    A new antifungal compound has been isolated from the culture medium of Acrodontium salmoneum de Hoog. Its structure was previously elucidated and was named acrodontiolamide. However, this compound is not characteristically produced by the genus Acrodontium, it is rather a feature of one isolate of A. Salmoneum coming from the soil of the grotto of La Pierre Saint Martin (France). Production, purification, cytotoxicity and antimicrobial activities of acrodontiolamide are described. Concerning microorganisms, inhibitory activity seems to be specifically restricted to phytopathogenic and entomapathogenic fungi. Acrodontiolamide is not cytotoxic to either normal human cultured cells or tumor cells.

  4. Activated Carbons from Flax Shive and Cotton Gin Waste as Environmental Adsorbents for the Chlorinated Hydrocarbon Trichloroethylene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as a starting material for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this...

  5. Catalytic Role Of Palladium And Relative Reactivity Of Substituted Chlorines During Adsorption And Treatment Of PCBs On Reactive Activated Carbon

    EPA Science Inventory

    The adsorption-mediated dechlorination of polychlorinated biphenyls (PCBs) is a unique feature of reactive activated cabon (RAC). Here, we address the RAC system, containing a tunable amount of Fe as a primary electron donor coupled with Pd as an electrochemical catalyst to pote...

  6. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect

    Chou, C.L.; Hackley, K.C.; Cao, J.; Frost, R.R.; Ruch, R.R.; Pan, W.P.; Upchurch, M.L.; Cao, H.B.; Shao, D.; Ho, H.H.

    1993-05-01

    The goals of this project is to investigate the behavior of sulfur and chlorine during pyrolysis and combustion of Illinois coals, the chemistry of boiler deposits and the process of ash formation, and remedial measures to reduce the sulfur and chlorine compounds in combustion gases. The chemistry of boiler deposits provides information about the behavior of sulfur, chlorine, and ash particles during coal combustion. We report results obtained during this quarter on mineralogical and chemical compositions of twelve samples of boiler deposits collected from superheater and reheater tubes of an Illinois power plant. Scanning electron microscopy shows microscopic calcium sulfate droplets on cenospheres. There is a considerable variation of chemical composition among the samples. While eight out of twelve samples consist predominantly of quartz, mullite, and glass; the remaining four contain an appreciable amount additional phases (calcium sulfate and alkali iron sulfate) . The chlorine content in the samples is determined by neutron activation analysis. one sample contains 37 ppM chlorine, and the chlorine concentration is below the detection limit in other eleven samples (<15--45 ppM), indicating that most of the chlorine in feed coal is lost during combustion. In a separate set of experiments, the effects of composite gases containing Hcl, SO{sub 2}, and HCl+SO{sub 2} on six metals are determined. Chromium-nickel steel and alloy show higher resistance to corrosion than carbon-manganese steels and chromium-molybdenum steels when metal coupons are exposed to hot gases at 600{degree}C for 24 hours.

  7. Effect of free ammonia concentration on monochloramine penetration within a nitrifying biofilm and its effect on activity, viability, and recovery.

    PubMed

    Pressman, Jonathan G; Lee, Woo Hyoung; Bishop, Paul L; Wahman, David G

    2012-03-01

    Chloramine has replaced free chorine for secondary disinfection at many water utilities because of disinfection by-product (DBP) regulations. Because chloramination provides a source of ammonia, there is a potential for nitrification when using chloramines. Nitrification in drinking water distribution systems is undesirable and may result in degradation of water quality and subsequent non-compliance with existing regulations. Thus, nitrification control is a major issue and likely to become increasingly important as chloramine use increases. In this study, monochloramine penetration and its effect on nitrifying biofilm activity, viability, and recovery was investigated and evaluated using microelectrodes and confocal laser scanning microscopy (CLSM). Monochloramine was applied to nitrifying biofilm for 24 h at two different chlorine to nitrogen (Cl(2):N) mass ratios (4:1 [4.4 mg Cl(2)/L] or 1:1 Cl(2):N [5.3 mg Cl(2)/L]), resulting in either a low (0.23 mg N/L) or high (4.2 mg N/L) free ammonia concentration. Subsequently, these biofilm samples were allowed to recover without monochloramine and receiving 4.2 mg N/L free ammonia. Under both monochloramine application conditions, monochloramine fully penetrated into the nitrifying biofilm within 24 h. Despite this complete monochloramine penetration, complete viability loss did not occur, and both biofilm samples subsequently recovered aerobic activity when fed only free ammonia. When monochloramine was applied with a low free ammonia concentration, dissolved oxygen (DO) fully penetrated, but with a high free ammonia concentration, complete cessation of aerobic activity (i.e., oxygen utilization) did not occur and subsequent analysis indicated that oxygen consumption still remained near the substratum. During the ammonia only recovery phase, different spatial recoveries were seen in each of the samples, based on oxygen utilization. It appears that the presence of higher free ammonia concentration allowed a

  8. Biochars made from agro-industrial by-products remove chlorine and lower water toxicity

    NASA Astrophysics Data System (ADS)

    Tzachristas, Andreas; Xirou, Maria; Manariotis, Ioannis D.; Dailianis, Stefanos; Karapanagioti, Hrissi K.

    2016-04-01

    Chlorination is the most common disinfection process for water and treated wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination efficiency and kinetics of the different raw and biochar materials as well as those of commercial activated carbons. As chlorine concentration increases the removal also increases linearily. After 1 and 24 hours of contact the chlorine relative removal efficiencies for the biochar made from olive seeds are 50 and 77 ± 4%, respectively. It seems that the removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0

  9. [Change in genotoxicity of wastewater during chlorine dioxide and ahlorine disinfections and the influence of ammonia nitrogen].

    PubMed

    Wang, Li-Sha; Hu, Hong-Ying; Ta, Chun-Hong; Tian, Jie; Wang, Chao; Koichi, Fujie

    2007-03-01

    The effects of chlorine dioxide and chlorine disinfections on genotoxicity of different biologically treated sewage wastewater samples were studied by umu-test. The experiment results showed that when chlorine dioxide dosage increased from 0 mg/L to 30 mg/L, the genotoxicity of wastewater first decreased rapidly and then tended to be stable, while when the chlorine dosage increased from 0 mg/L to 30 mg/L, the genotoxicity of wastewater changed diversely for different samples. It was then found that ammonia nitrogen did not affect the change of genotoxicity during chlorine dioxide disinfection of wastewater, while it greatly affected the change of genotoxicity during chlorine disinfection of wastewater. When the concentration of ammonia nitrogen was low (< 10 - 20 mg/L), the genotoxicity of wastewater decreased after chlorine disinfection, and when the concentration of ammonia nitrogen was high (> 10 - 20 mg/L), the genotoxicity of wastewater increased after chlorine disinfection.

  10. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    PubMed

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment.

  11. α-Halogenoacetanilides as hydrogen-bonding organocatalysts that activate carbonyl bonds: fluorine versus chlorine and bromine.

    PubMed

    Koeller, Sylvain; Thomas, Coralie; Peruch, Fréderic; Deffieux, Alain; Massip, Stéphane; Léger, Jean-Michel; Desvergne, Jean-Pierre; Milet, Anne; Bibal, Brigitte

    2014-03-03

    α-Halogenoacetanilides (X=F, Cl, Br) were examined as H-bonding organocatalysts designed for the double activation of CO bonds through NH and CH donor groups. Depending on the halide substituents, the double H-bond involved a nonconventional CH⋅⋅⋅O interaction with either a HCXn (n=1-2, X=Cl, Br) or a HCAr bond (X=F), as shown in the solid-state crystal structures and by molecular modeling. In addition, the catalytic properties of α-halogenoacetanilides were evaluated in the ring-opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α-dichloro- and α-dibromoacetanilides containing electron-deficient aromatic groups afforded the most attractive double H-bonding properties towards CO bonds, with a NH⋅⋅⋅O⋅⋅⋅HCX2 interaction.

  12. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  13. Method and apparatus for producing chlorine dioxide

    SciTech Connect

    Santillie, P.W.; Ramras, D.M.

    1984-05-29

    A continuous method and apparatus are described for the efficient production of gaseous chlorine dioxide by the reaction between gaseous sulfur dioxide and an aqueous solution of a metallic chlorate. The chlorate solution and a highly concentrated sulfur dioxide gas are introduced into a packed columnar chamber at closely adjacent locations at the bottom of the chamber so as to flood the chamber and maximize both the contact area and contact time of the two reactants. Throughout the reaction the chamber is subjected to high vacuum imposed by an eductor which exhausts the chlorine dioxide gas and spent reactants. For use of the chlorine dioxide to produce potable water or treat foodstuffs, the chlorine dioxide and spent reactants are exhausted from the chamber separately by respective eductors substantially balanced with respect to each other to impose comparable vacuums upon the chamber. Because of the high efficency of the reaction, substantial heat is generated therefrom which is absorbed by a coolant flowing through a jacket surrounding the chamber. The flow rate of the coolant and flow rate of the reactants into the chamber are porportional due to the dependency of the reactant flow rate on the coolant flow rate.

  14. Chlorinated organic compounds in urban river sediments

    SciTech Connect

    Soma, Y.; Shiraishi, H.; Inaba, K.

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  15. Snapping Turtles (Chelydra serpentina) from Canadian Areas of Concern across the southern Laurentian Great Lakes: Chlorinated and brominated hydrocarbon contaminants and metabolites in relation to circulating concentrations of thyroxine and vitamin A.

    PubMed

    Letcher, Robert J; Lu, Zhe; de Solla, Shane R; Sandau, Courtney D; Fernie, Kimberly J

    2015-11-01

    The metabolites of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), as well as other halogenated phenolic contaminants (HPCs) have been shown to have endocrine-disrupting properties, and have been reported with increasing frequency in the blood of wildlife, and mainly in mammals and birds. However, little is known about the persistence, accumulation and distribution of these contaminants in long-lived freshwater reptiles. In the present study, in addition to a large suite of chlorinated and brominated contaminants, metabolites and HPCs, we assessed and compared hydroxylated (OH) PCBs and OH-PBDEs relative to PCBs and PBDEs, respectively, in the plasma of adult male common snapping turtles (Chelydra serpentina). Blood samples were collected from 62 snapping turtles (2001-2004) at 12 wetland sites between the Detroit River and the St. Lawrence River on the Canadian side of the Laurentian Great Lakes of North America. Turtles were sampled from sites designated as Areas of Concern (AOCs) and from a relatively clean reference site in southern Georgian Bay (Tiny Marsh), Lake Huron. Plasma concentrations of Σ46PCB (10-340 ng/g wet weight (ww)) and Σ28OH-PCB (3-83 ng/g ww) were significantly greater (p<0.05) in turtles from the Turkey Creek and Muddy Creek-Wheatley Harbour sites in Lake Erie compared with the reference site turtles. The HPC, pentachlorophenol (PCP), had a mean concentration of 9.6±1.1 ng/g ww. Of the 28 OH-CB congeners screened for, 4-OH-CB187 (42±7 ng/g ww) was the most concentrated of all HPCs measured. Of the 14 OH-BDE congeners examined, four (4'-OH-BDE17, 3-OH-BDE47, 5-OH-BDE47 and 4'-OH-BDE49) were consistently found in all plasma samples. p,p'-DDE was the most concentrated of the 18 organochlorine pesticides (OCPs) examined. The mean concentrations of circulating total thyroxine (TT4), dehydroretinol and retinol in the plasma of the male snapping turtles regardless of sampling site were 5.4±0.3, 81±4.7 and 291±13

  16. Enhanced photocatalytic activity of degrading short chain chlorinated paraffins over reduced graphene oxide/CoFe2O4/Ag nanocomposite.

    PubMed

    Chen, Xin; Zhao, Qidong; Li, Xinyong; Wang, Dong

    2016-10-01

    Short chain chlorinated paraffins have recently attracted great attention because of their environmental persistence and biological toxicity as an important organic pollutant. In this work, reduced graphene oxide/CoFe2O4/Ag (RGO/CoFe2O4/Ag) nanocomposite was prepared and employed for photocatalytic degradation of short chain chlorinated paraffins. The process of photocatalytic degradation of short chain chlorinated paraffins over RGO/CoFe2O4/Ag under visible light (λ>400nm) was investigated by in situ Fourier transform infrared spectroscopy and the related mechanisms were proposed. An apparent degradation ratio of 91.9% over RGO/CoFe2O4/Ag could be obtained under visible light illumination of 12h, while only about 21.7% was obtained with commercial P25 TiO2 under the same experimental conditions, which demonstrates that the RGO/CoFe2O4/Ag nanocomposite is a potential candidate for effective photocatalytic removal of short chain chlorinated paraffins.

  17. [Comparison of the quality and toxicity of wastewater after chlorine and chlorine dioxide disinfections].

    PubMed

    Wang, Li-sha; Zhang, Tong; Hu, Hong-ying

    2005-11-01

    The effects of chlorine and chlorine dioxide disinfections on quality and toxicity of wastewater were compared. The experiment results showed that chlorine disinfection had no obvious effect on wastewater color, while chlorine dioxide disinfection decreased wastewater color observably. The DOC of wastewater did not change much after chlorine and chlorine dioxide disinfections. Chlorine disinfection significantly increased UV230 of wastewater and chlorine dioxide disinfection slightly decreased UV230 of wastewater. When the disinfectants dosage was 30 mg/L, UV230 increased about 0.7 cm(-1) after chlorine disinfection and decreased about 0.05 cm(-1) after chlorine dioxide disinfection. The acute toxicity of wastewater increased with increasing disinfectants dosage for both chlorine and chlorine dioxide disinfections and the acute toxicity after chlorine disinfection is much stronger than that after chlorine dioxide disinfection. The genotoxicity of wastewater increased slightly after chlorine disinfection and decreased slightly after chlorine dioxide disinfection.

  18. Bromoform production in tropical open-ocean waters: OTEC chlorination

    SciTech Connect

    Hartwig, E.O.; Valentine, R.

    1981-09-01

    The bromoform, and other volatile organics produced while chlorinating both the evaporator and condenser seawater during operation of the one megawatt (1 MW) OTEC-1 test facility are reported. Although many halogenated compounds might be produced as a result of chlorination, the quantitative analyses in this study focused on volatile EPA priority pollutants. Bromoform is the compound specifically recognized as a potential pollutant. Its concentration may be indicative of other halogenated species.

  19. Soil gas screening for chlorinated solvents at three contaminated karst sites in Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Williams, S.D.

    2002-01-01

    Soil gas was sampled using active sampling techniques and passive collectors at three sites in Tennessee to evaluate the effectiveness of these techniques for locating chlorinated solvent sources and flowpaths in karst aquifers. Actively collected soil gas samples were analyzed in the field with a portable gas chromatograph, and the passive soil gas collectors were analyzed in the lab with gas chromatography/mass spectrometry. Results of the sampling indicate that the effectiveness of both techniques is highly dependent on the distribution of the contaminants in the subsurface, the geomorphic and hydrogeologic characteristics of the site, and, in one case, on seasonal conditions. Both active and passive techniques identified areas of elevated subsurface chlorinated solvent concentrations at a landfill site where contamination remains concentrated in the regolith. Neither technique detected chlorinated solvents known to be moving in the bedrock at a manufacturing site characterized by thick regolith and an absence of surficial karst features. Passive soil gas sampling had varied success detecting flowpaths for chloroform in the bedrock at a train derailment site characterized by shallow regolith and abundant surficial karst features. At the train derailment site, delineation of the contaminant flowpath through passive soil gas sampling was stronger and more detailed under Winter conditions than summer.

  20. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log10 control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log10 reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations.

  1. The relation of seismic activity and radon concentration

    SciTech Connect

    Kulali, Feride E-mail: iskender@fef.sdu.edu.tr; Akkurt, İskender E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios

    2014-10-06

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  2. Comparison of susceptibility of cystic-fibrosis-related and non-cystic-fibrosis-related Pseudomonas aeruginosa to chlorine-based disinfecting solutions: implications for infection prevention and ward disinfection.

    PubMed

    Moore, John E; Rendall, Jacqueline C

    2014-09-01

    Multidrug-resistant (MDR) Pseudomonas aeruginosa isolated from cystic fibrosis (CF) sputum was shown to be more tolerant to the most commonly used chlorine-based disinfecting agent in the UK, with approximately 7 out of 10 isolates surviving a residual free chlorine (RFC) concentration of 500 p.p.m., when compared with antibiotic-sensitive invasive P. aeruginosa from a non-CF blood culture source, where 8 out of 10 isolates were killed at a RFC concentration of 100 p.p.m. All CF isolates were killed at 1000 p.p.m. chlorine. Additional studies were performed to examine factors that influenced the concentration of RFC from chlorine-based (sodium dichloroisocyanurate) disinfecting agents in contact with CF sputum and their components (bacterial cells, glycocalyx) to assess the reduction of the bactericidal activity of such disinfecting agents. Pseudomonas glycocalyx had a greater inhibitory effect of chlorine deactivation than bacterial cells. Calibration curves demonstrated the relative deactivating capacity on RFC from clinical soils, in the order pus>CF sputum>wound discharge fluid/synovial fluid>ascites fluid>bile, where quantitatively each 1 % (w/v) CF sputum reduced the RFC by 43 p.p.m. Sublethal stressing of P. aeruginosa with chlorine resulted in lowered susceptibility to colistin (P = 0.0326) but not to meropenem, tobramycin or ciprofloxacin. In conclusion, heavy contamination of healthcare fomites with CF sputum containing MDR P. aeruginosa may result in exhaustion of RFC, and this, combined with an increased resistance to chlorine with such strains, may lead to their survival and increased antibiotic resistance in such environments. CF infection prevention strategies in such scenarios should therefore target interventions with increased concentrations of chlorine to ensure the eradication of MDR P. aeruginosa from the CF healthcare environment.

  3. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  4. Chlorine resistance patterns of bacteria from two drinking water distribution systems.

    PubMed Central

    Ridgway, H F; Olson, B H

    1982-01-01

    The relative chlorine sensitivities of bacteria isolated from chlorinated and unchlorinated drinking water distribution systems were compared by two independent methods. One method measured the toxic effect of free chlorine on bacteria, whereas the other measured the effect of combined chlorine. Bacteria from the chlorinated system were more resistant to both the combined and free forms of chlorine than those from the unchlorinated system, suggesting that there may be selection for more chlorine-tolerant microorganisms in chlorinated waters. Bacteria retained on the surfaces of 2.0-microns Nuclepore membrane filters were significantly more resistant to free chlorine compared to the total microbial population recovered on 0.2-micron membrane filters, presumably because aggregated cells or bacteria attached to suspended particulate matter exhibit more resistance than unassociated microorganisms. In accordance with this hypothesis, scanning electron microscopy of suspended particulate matter from the water samples revealed the presence of attached bacteria. The most resistant microorganisms were able to survive a 2-min exposure to 10 mg of free chlorine per liter. These included gram-positive spore-forming bacilli, actinomycetes, and some micrococci. The most sensitive bacteria were readily killed by chlorine concentrations of 1.0 mg liter-1 or less, and included most gram-positive micrococci, Corynebacterium/Arthrobacter, Klebsiella, Pseudomonas/Alcaligenes, Flavobacterium/Moraxella, and Acinetobacter. Images PMID:7149722

  5. Bioremediation of chlorinated organics

    SciTech Connect

    Strong-Gunderson, J.M.

    1995-12-31

    The use of lux bioreporters to measure enhanced bioavailability due to surfactants is briefly described in this paper. The bioreporters are engineered microorganisms that produce light during contaminant degradation, providing a real-time measure of microbial activity. The results of two experiments using bioreporters are summarized. The first experiment showed that the surfactant concentration that best enhanced the overall rate of toluene degradation was below the critical micelle concentration (CMC). A second experiment showed that surfactants at the CMC interfered with or inhibited the biodegradation of trichloroethylene.

  6. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways.

    PubMed

    Wu, Zihao; Fang, Jingyun; Xiang, Yingying; Shang, Chii; Li, Xuchun; Meng, Fangang; Yang, Xin

    2016-11-01

    The UV/chlorine process, which forms several reactive species including hydroxyl radicals (HO) and reactive chlorine species (RCS) to degrade contaminants, is being considered to be an advanced oxidation process. This study investigated the kinetics and mechanism of the degradation of trimethoprim (TMP) by the UV/chlorine process. The degradation of TMP was much faster by UV/chlorine compared to UV/H2O2. The degradation followed pseudo first-order kinetics, and the rate constant (k') increased linearly as the chlorine dosage increased from 20 μM to 200 μM and decreased as pH rose from 6.1 to 8.8. k' was not affected by chloride and bicarbonate but decreased by 50% in the presence of 1-mg/L NOM. The contribution of RCS, including Cl, Cl2(-) and ClO, to the degradation removal rate was much higher than that of HO and increased from 67% to 87% with increasing pH from 6.1 to 8.8 under the experimental condition. The increasing contribution of RCS to the degradation with increasing pH was attributable to the increase in the ClO concentration. Kinetic modeling and radical scavenging tests verified that ClO mainly attacked the trimethoxybenzyl moiety of TMP. RCS reacted with TMP much faster than HOCl/OCl(-) to form chlorinated products (i.e., m/z 325) and chlorinated disinfection byproducts such as chloroform, chloral hydrate, dichloroacetonitrile and trichloronitromethane. The hydroxylation and demethylation of m/z 325 driven by HO generated m/z 327 and m/z 341. Meanwhile, reactions of m/z 325 with HO and RCS/HOCl/OCl(-) generated dichlorinated and hydroxylated products (i.e., m/z 377). All the chlorinated products could be further depleted to produce products with less degree of halogenation in the UV/chlorine process, compared to dark chlorination. The acute toxicity to Vibrio fischeri by UV/chlorine was lower than chlorination at the same removal rate of TMP. This study demonstrated the importance of RCS, in particular, ClO, in the degradation of micropollutants

  7. The active titration method for measuring local hydroxyl radical concentration

    NASA Technical Reports Server (NTRS)

    Sprengnether, Michele; Prinn, Ronald G.

    1994-01-01

    We are developing a method for measuring ambient OH by monitoring its rate of reaction with a chemical species. Our technique involves the local, instantaneous release of a mixture of saturated cyclic hydrocarbons (titrants) and perfluorocarbons (dispersants). These species must not normally be present in ambient air above the part per trillion concentration. We then track the mixture downwind using a real-time portable ECD tracer instrument. We collect air samples in canisters every few minutes for roughly one hour. We then return to the laboratory and analyze our air samples to determine the ratios of the titrant to dispersant concentrations. The trends in these ratios give us the ambient OH concentration from the relation: dlnR/dt = -k(OH). A successful measurement of OH requires that the trends in these ratios be measureable. We must not perturb ambient OH concentrations. The titrant to dispersant ratio must be spatially invariant. Finally, heterogeneous reactions of our titrant and dispersant species must be negligible relative to the titrant reaction with OH. We have conducted laboratory studies of our ability to measure the titrant to dispersant ratios as a function of concentration down to the few part per trillion concentration. We have subsequently used these results in a gaussian puff model to estimate our expected uncertainty in a field measurement of OH. Our results indicate that under a range of atmospheric conditions we expect to be able to measure OH with a sensitivity of 3x10(exp 5) cm(exp -3). In our most optimistic scenarios, we obtain a sensitivity of 1x10(exp 5) cm(exp -3). These sensitivity values reflect our anticipated ability to measure the ratio trends. However, because we are also using a rate constant to obtain our (OH) from this ratio trend, our accuracy cannot be better than that of the rate constant, which we expect to be about 20 percent.

  8. Variance of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) concentrations in activated, concentrated platelets from healthy male donors

    PubMed Central

    2014-01-01

    Background The use of autologous blood concentrates, such as activated, concentrated platelets, in orthopaedic clinical applications has had mixed results. Research on this topic has focused on growth factors and cytokines, with little directed towards matrix metalloproteinases (MMPs) which are involved in post-wound tissue remodeling. Methods In this study, the authors measured the levels of MMP-2, MMP-9 and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), in activated platelets derived from blood of healthy, male volunteers (n = 92), 19 to 60 years old. The levels of the natural inhibitors of these proteases, tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2 and TIMP-4 were also assessed. Results Notably, there was no significant change in concentration with age in four of six targets tested. However, TIMP-2 and TIMP-4 demonstrated a statistically significant increase in concentration for subjects older than 30 years of age compared to those 30 years and younger (P = 0.04 and P = 0.04, respectively). Conclusion TIMP-2 and TIMP-4 are global inhibitors of MMPs, including MMP-2 (Gelatinase A). MMP-2 targets native collagens, gelatin and elastin to remodel the extracellular matrix during wound healing. A decreased availability of pharmacologically active MMP-2 may diminish the effectiveness of the use of activated, concentrated platelets from older patients, and may also contribute to longer healing times in this population. PMID:24766991

  9. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... chlorinated polyethylene contains a maximum of 60 percent by weight of total chlorine, as determined by ASTM 1method D1303-55 (Reapproved 1979), “Standard Test Method for Total Chlorine in Vinyl Chloride...

  10. Concentration dependent differential activity of signalling molecules in Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caenorhabditis elegans employs specific glycosides of the dideoxysugar ascarylose (the ‘ascarosides’) for monitoring population density/ dauer formation and finding mates. A synergistic blend of three ascarosides, called ascr#2, ascr#3 and ascr#4 acts as a dauer pheromone at a high concentration na...

  11. Three-Dimensional Concentration Measurements around Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.; Webster, D. R.

    2006-11-01

    Many aquatic arthropods locate food, suitable habitats, and mates solely through information extracted by chemical signals in their environment. Chemical plumes detected by larger animals are influenced by turbulence that creates an intermittent and unpredictable chemical stimulus environment. To link the stimulus pattern to behavior, we have developed a measurement system to quantify the instantaneous odor concentration surrounding a freely tracking blue crab through three-dimensional laser-induced fluorescence (3DLIF). A blue crab receives chemical stimulus at several locations, including the antennules near the mouth region and the distal tips of the legs and claws. Hence, three-dimensional measurements of the concentration field are required to link behavior to plume structure. During trials, crabs began their search 150 cm downstream of a source, and walking kinematics were recording simultaneously. The crabs were reversibly ``blindfolded'' during tracking to prevent aversive reactions to the intense laser light. Our experiments allow us to examine how hypothesized navigational cues, such as concentration bursts at the antennules and spatial asymmetry in concentration at the distributed chemosensory organs on the legs and claws, results in particular decisions during navigation.

  12. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells.

    PubMed

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A

    2009-04-01

    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  13. The effect of low concentrations of tetrachloroethylene on H2 adsorption and activation on Pt in a fuel cell catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Jack Z.; Colón-Mercado, Héctor R.; Goodwin, James G.

    2011-10-01

    The poisoning effect of tetrachloroethylene (TTCE) on the activity of a Pt fuel cell catalyst for the adsorption and activation of H2 was investigated at 60 °C and 2 atm using hydrogen surface concentration measurements. The impurity was chosen as a model compound for chlorinated cleaning and degreasing agents that may be introduced into a fuel cell as a contaminant at a fueling station and/or during vehicle maintenance. In the presence of only H2, introduction of up to 540 ppm TTCE in H2 to Pt/C resulted in a reduction of available Pt surface atoms (measured by H2 uptake) by ca. 30%, which was not enough to shift the H2-D2 exchange reaction away from being equilibrium limited. Exposure of TTCE to Pt/C in a mixed redox environment (hydrogen + oxygen), similar to that at the cathode of a fuel cell, resulted in a much more significant loss of Pt surface atom availability, suggesting a role in TTCE decomposition and/or Cl poisoning. Regeneration of catalyst activity of poisoned Pt/C showed the highest level of recovery when regenerated in only H2, with much less recovery in H2 + O2 or O2. The results from this study are in good agreement with those found in a fuel cell study by Martínez-Rodríguez et al. [2] and confirm that the majority of the poisoning from TTCE on fuel cell performance is most likely at the cathode, rather than the anode.

  14. GENE EXPRESSION ALTERATIONS OBSERVED IN PRIMARY CULTURED RAT HEPATOCYTES AFTER TREATMENT WITH CHLORINATED OR CHLORINATED AND OZONATED DRINKING WATER FROM EAST FORK LAKE, OHIO

    EPA Science Inventory

    Drinking water from East Fork Lake was spiked with iodide and bromide, disinfected with chlorine or ozone + chlorine, concentrated ~100-fold using reverse osmosis, and volatile disinfection by-products (DBPs) added back. Primary rat hepatocytes were exposed to full-strength, 1:10...

  15. Chlorination of bisphenol A: non-targeted screening for the identification of transformation products and assessment of estrogenicity in generated water.

    PubMed

    Bourgin, Marc; Bichon, Emmanuelle; Antignac, Jean-Philippe; Monteau, Fabrice; Leroy, Gaëla; Barritaud, Lauriane; Chachignon, Mathilde; Ingrand, Valérie; Roche, Pascal; Le Bizec, Bruno

    2013-11-01

    Besides the performance of water treatments on the removal of micropollutants, concern about the generation of potential biologically active transformation products has been growing. Thus, the detection and structural elucidation of micropollutants transformation products have turned out to be major issues to evaluate comprehensively the efficiency of the processes implemented for drinking water treatment. However, most of existing water treatment studies are carried out at the bench scale with high concentrations and simplified conditions and thus do not reflect realistic conditions. Conversely, this study describes a non-targeted profiling approach borrowed from metabolomic science, using liquid chromatography coupled to high-resolution mass spectrometry, in order to reveal potential chlorination products of bisphenol A (BPA) in real water samples spiked at 50μgL(-1). Targeted measurements first evidenced a fast removal of BPA (>99%) by chlorination with sodium hypochlorite (0.8mgL(-1)) within 10min. Then, the developed differential global profiling approach enabled to reveal 21 chlorination products of BPA. Among them, 17 were brominated compounds, described for the first time, demonstrating the potential interest of this innovative methodology applied to environmental sciences. In parallel to the significant removal of BPA, the estrogenic activity of water samples, evaluated by ER-CALUX assay, was found to significantly decrease after 10min of chlorination. These results confirm that chlorination is effective at removing BPA in drinking water and they may indicate that the generated compounds have significantly lower estrogenic activity.

  16. A comparison of chlorinated organic material produced by chlorine and chlorine dioxide bleaching

    SciTech Connect

    McKaque, A.B.; Reeve, D.W.

    1995-12-31

    Chlorine and chlorine dioxide react differently with pulp during bleaching and produce different types of organic by-products. The main differences are the large reduction in the amount of AOX (adsorbable organic halogen) in the effluent and EOX (extractable organic halogen) in the pulp. This talk reviews the differences in the amounts and types of chlorinated organic by-products produced by the two different bleaching agents.

  17. The effect of chlorination of estrogenic chemicals on the level of serum vitellogenin of Japanese medaka (Oryzias latipes).

    PubMed

    Tabata, A; Miyamoto, N; Ohnishi, Y; Itoh, M; Yamada, T; Kamei, T; Magara, Y

    2003-01-01

    Mature male medaka were continually exposed to four chemicals, p-n-nonylphenol (p-n-NP), nonylphenol (p-NP), bisphenol-A (BPA) and 17beta-estradiol (E2) to evaluate their estrogenic activities in the laboratory. In order to understand the effect of the chlorination that is applied widely in water and wastewater treatment, the above chemicals were chlorinated and then exposed to mature male medaka. Furthermore, in the case of vitellogenin, a is a female specific protein induced by the exposure to test waters containing the above chemicals after 5 weeks, medaka was returned to uncontaminated tap water to determine whether male medaka have a self recovery function from the effect of estrogenic chemicals. Much greater vitellogenin compared to the background levels were induced in the male medaka by separate exposure to 100 microg/L of p-NP, 1,000 microg/L of BPA and 0.05 microg/L of E2. The levels of vitellogenin increased with increasing exposure periods. The relative potencies of these chemicals descended in the order of E2>p-NP>BPA. Vitellogenin levels inducible by these chemicals were drastically reduced as a result of the chlorination for 24 hours. However, a moderate increase in hepatocyte somatic index (HSI) meant the hepatic fatness was observed as a result of chlorination. It is not clear at this stage whether or not the formation of chlorination byproducts is responsible for this moderate increase in HSI. The vitellogenin concentration of male medaka exposed to chemicals for 5 weeks decreased gradually after return to the uncontaminated water. However, the vitellogenin concentration did not return to the initial normal levels even after 5 weeks. A clear relationship between the serum vitellogenin concentration and the hepatic vitellogenin concentration was also found. Since quantitative analytical procedures for hepatic vitellogenin are easier than those of the serum vitellogenin, measuring the estrogenic effect using the measurement of vitellogenin in liver

  18. Examination of the potential of chlorine dioxide for use in zebra mussel veliger control

    SciTech Connect

    Rusznak, L.; Smolik, N.; Hale, L.; Freymark, S.

    1995-06-01

    Dreissena polymorpha (zebra mussel) veligers were treated with various concentrations of chlorine dioxide and exposed at several time intervals to determine the effectiveness of this oxidant as a veliger control agent. The direction of this testing was based on previous studies which determined the effectiveness of chlorine dioxide as a molluscicide for adult zebra mussel control. Zebra mussel veligers were collected from the Niagara River shoreline at an untreated site and tested using filtered river water from the same source. All testing was conducted on site at an industrial plant in order to insure the integrity of veligers collected for this study. The plankton wheel method was used to examine the effects of chlorine dioxide. This methodology involves intense microscopic examination of the test organism prior to and after chemical exposure todeterminen molluscicidal efficacy. Veliger mortality was determined based on observations of veliger movement. Typical criteria for the determination of mortality was expanded to include four categories; veliger actively swimming, internal musculature movement, no internal musculature movement observed, however not necessarily indicating a mortality and obviously a mortality. The treatment levels ranged from 0.75 ppm - 2.0 ppm which are considered to simulate treatment levels in actual applications. Mortality levels ranged on average from 16%-42% based on 30 minute or 60 minute exposure times. The determination exposure time was based on water flow time intervals in actural applications. Sodium hypochlorite was also evaluated in order to compare the effectiveness of chlorine dioxide against this known veliger control agent. Testing resulted in chlorine dioxide providing significantly better veliger control than sodium hypochlorite under similar conditions.

  19. Kinetics and mechanism of the chlorine dioxide-trithionate reaction.

    PubMed

    Cseko, György; Horváth, Attila K

    2012-03-22

    The trithionate-chlorine dioxide reaction has been studied spectrophotometrically in a slightly acidic medium at 25.0 ± 0.1 °C in acetate/acetic acid buffer monitoring the decay of chlorine dioxide at constant ionic strength (I = 0.5 M) adjusted by sodium perchlorate. We found that under our experimental conditions two limiting stoichiometries exist and the pH, the concentration of the reactants, and even the concentration of chloride ion affects the actual stoichiometry of the reaction that can be augmented by an appropriate linear combination of these limiting processes. It is also shown that although the formal kinetic order of trithionate is strictly one that of chlorine dioxide varies between 1 and 2, depending on the actual chlorine dioxide excess and the pH. Moreover, the otherwise sluggish chloride ion, which is also a product of the reaction, slightly accelerates the initial rate of chlorine dioxide consumption and may therefore act as an autocatalyst. In addition to that, overshoot-undershoot behavior is also observed in the [(·)ClO(2)]-time curves in the presence of chloride ion at chlorine dioxide excess. On the basis of the experiments, a 13-step kinetic model with 6 fitted kinetic parameter is proposed by nonlinear parameter estimation.

  20. Susceptibility of Legionella pneumophila to chlorine in tap water.

    PubMed

    Kuchta, J M; States, S J; McNamara, A M; Wadowsky, R M; Yee, R B

    1983-11-01

    A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.

  1. Chlorine transfer hose failure.

    PubMed

    Joseph, Giby

    2004-11-11

    On the morning of 14 August 2002, a 1 in. transfer hose used in a rail tank car unloading operation at DPC Enterprises, near Festus, Missouri, catastrophically ruptured and initiated a sequence of events that led to the release of 48,000 pounds of chlorine--a toxic gas--into neighboring areas. The facility repackages bulk dry liquid chlorine into 1 ton containers and 150 pound cylinders for commercial, industrial, and municipal use in the St. Louis metropolitan area. Fortunately, the wind direction on the day of the release limited the effects of the chlorine plume on the surrounding community. However, 63 people sought hospital treatment due to exposure, and hundreds of others were affected by the release (the community was advised to shelter-in-place for 4 h, and traffic was halted on Interstate 55 for 1.5 h). The US Chemical Safety and Hazard Investigation Board (CSB) investigated this incident for the following reasons: This paper presents the lesson-learned from this incident to help prevent similar occurrences. This paper is based on US Chemical Safety and Hazard Investigation Board Report Number 2002-04-I-MO, which was approved by the Board on 1 May 2003. This paper has not been independently approved by the Board and is published for general informational purposes only. Every effort has been made to accurately present the contents of the Board-approved report in this paper. Any material in the paper that did not originate in the Board-approved report is solely the responsibility of the author and does not represent an official finding, conclusion, or position of the Board. A complete copy of the Board investigation report upon which this paper is based is available on the CSB website at "Completed Investigations."

  2. Environmental occurrence and distribution of short chain chlorinated paraffins in sediments and soils from the Liaohe River Basin, P. R. China.

    PubMed

    Gao, Yuan; Zhang, Haijun; Su, Fan; Tian, Yuzeng; Chen, Jiping

    2012-04-03

    Chlorinated paraffins (CPs) are industrially produced in large quantities in the Liaohe River Basin. Their discharge inevitably causes environmental contamination. However, very limited information is available on their environmental levels and distributions in this typical industrial region. In this study, short chain CPs (SCCPs) were analyzed in sediments, paddy soils, and upland soils from the Liaohe River Basin, with concentrations ranging from 39.8 to 480.3 ng/g dry weight. A decreasing trend in SCCP concentrations was found with increasing distance from the cities, suggesting that local industrial activity was the major source of SCCP contamination. A preliminary sediment inventory of SCCPs indicated approximately 30.82 tonnes of SCCPs residual in the sediments from the Liaohe River. The average discharge of SCCPs was estimated to be about 74.4 mg/tonne industrial wastewater. The congener group profiles showed that the relative abundances of shorter chain and lower chlorinated CP congeners (C(10)-CPs with 5 or 6 chlorine atoms) in soils in rural areas were higher than in sites near cities, which demonstrated that long-range atmospheric transportation could be the major transport pathway. Environmental degradation of SCCPs might occur, where higher chlorinated congeners could dechlorinate to form the lower chlorinated congeners.

  3. Rapid Response Concentration-Controlled Desorption of Activated Carbon to Dampen Concentration Fluctuations

    DTIC Science & Technology

    2007-01-01

    Z A E M A M I P O U R , D I E G O C E V A L L O S , A N D M A R K J . R O O D * Department of Civil & Environmental Engineering, University of...such as granular activated carbon (GAC) have been used as biofilter packing material on which biofilm was grown to assist with buffering of the...efficiencies were attributed to the thickness of the biofilm on the GAC. GAC was also used in a separate vessel to dampen the fluctuations of the

  4. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1980-01-01

    The optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays are discussed, and the two types of cooling are compared. Passive cooling is more cost effective than active for Fresnel lens arrays while the reverse is true for parabolic trough arrays. The analysis produced several other conclusions of interest which are also discussed.

  5. In vitro mutagenicity and genotoxicity study of a number of short-chain chlorinated hydrocarbons using the micronucleus test and the alkaline single cell gel electrophoresis technique (Comet assay) in human lymphocytes: a structure-activity relationship (QSAR) analysis of the genotoxic and cytotoxic potential.

    PubMed

    Tafazoli, M; Baeten, A; Geerlings, P; Kirsch-Volders, M

    1998-03-01

    Using the micronucleus (MN) test and the alkaline single cell gel electrophoresis (Comet) assay, potential mutagenicity (MN formation), genotoxicity (DNA breakage capacity) and cytotoxicity (cell proliferation reduction) of five chlorinated hydrocarbons (carbon tetrachloride, hexachloroethane, 1,2-dichloroethane, 1-chlorohexane and 2,3-dichlorobutane) have been evaluated in isolated human lymphocytes. With the MN test a low but statistically significant mutagenic activity was detected for all tested substances (except 2,3-dichlorobutane) with one out of the two donors and in the presence or absence of an exogenous metabolic activation system (S9 mix). However, at the concentration ranges tested none of the positive compounds induced a clear dose-dependent mutagenic effect. The Comet assay detected a strong DNA damaging effect for 1-chlorohexane, 2,3-dichlorobutane and 1,2-dichloroethane, but not for carbon tetrachloride and hexachloroethane. The influence of metabolism on the genotoxic activity of the chemicals was more clear in the Comet assay than in the MN test. The experimental genotoxicity and cytotoxicity data obtained in this study, together with data on five more related chemicals previously investigated, and their physico-chemical descriptors or electronic parameters have been used for QSAR analysis. The QSAR analysis high-lighted that the toxicity of the tested compounds was influenced by different parameters, like lipophilicity (logP), electron donor ability (charge) and longest carbon-chlorine (LBC-Cl) bond length. In addition, steric parameters, like molar refractivity (MR) and LBC-Cl, and electronic parameters, like ELUMO (energy of the lowest unoccupied molecular orbital, indicating electrophilicity), were predominant factors discriminating genotoxins from non-genotoxins in the presence but not in the absence of S9 mix. Although a limited number of compounds have been examined and cytotoxicity and genotoxicity were identified in two different

  6. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1981-10-01

    Optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays is discussed, and the two types of cooling are compared. Passive cooling is more cost-effective for Fresnel lens arrays while the reverse is true for parabolic-trough arrays.

  7. Russian Activities in Space Photovoltaic Power Modules with Concentrators

    NASA Technical Reports Server (NTRS)

    Andreev, Vyacheslav M.; Rumyantsev, Valeri D.

    2004-01-01

    Space concentrator modules with point-and line-focus Fresnel lenses and with reflective parabolic troughs have been developed recently at Ioffe Physico-Technical Institute. PV receivers for these modules are based: on the single junction LPE and MOCVD AlGaAs/GaAs solar cells characterized by AM0 efficiencies of 23.5 - 24% at 20 - 50 suns and 24 - 24.75 at 50 - 200 suns; on the mechanically stacked tandem AlGaAs/GaAs-GaSb cells with efficiency of 27 - 28 at 20 - 100 suns. MOCVD AlGaAs/GaAs cells with internal Bragg reflector have shown a higher radiation resistance as compared to a traditional structure. Monolithic two-terminal tandems AlGaAs (top)-GaAs (bottom) for space application and GaSb (top) - InGaAsSb (bottom) for TRV application are under development as well.

  8. Disinfection kinetics of murine norovirus using chlorine and chlorine dioxide.

    PubMed

    Lim, Mi Young; Kim, Ju-Mi; Ko, Gwangpyo

    2010-05-01

    We determined the disinfection efficiency of chlorine and chlorine dioxide (ClO(2)) using murine norovirus (MNV) and coliphage MS2 as surrogates for human norovirus. Experiments were performed in oxidant demand-free buffer (pH 7.2) at 5 degrees C and 20 degrees C. The extent of virus inactivation by a disinfectant was quantified using three different analytical methods: plaque, short template real-time TaqMan reverse transcriptase-polymerase chain reaction (RT-PCR), and long template RT-PCR assays. Rapid inactivation of MNV by both chlorine and chlorine dioxide was observed by the plaque assay. According to the efficiency factor Hom model, Ct values of 0.314mg/Lmin and 0.247mg/Lmin were required for a 4-log reduction of MNV at 5 degrees C by chlorine and chlorine dioxide, respectively. Lower Ct values were required at 20 degrees C. Both long template and short template RT-PCR assays significantly underestimated the virus inactivation compared to the plaque assay. Our study demonstrates that adequate treatment of water with either chlorine or ClO(2) is likely to effectively control the waterborne transmission of human norovirus.

  9. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    PubMed

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself).

  10. Comparison of Chlorinated Ethenes DNAPL Reductive Dechlorination by Indigenous and Evanite culture with Surfactant Tween-80

    NASA Astrophysics Data System (ADS)

    Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.

  11. PCB's and chlorinated hydrocarbon pesticides in Antarctic atmosphere and hydrosphere

    SciTech Connect

    Tanabe, S.; Hidaka, H.; Tatsukawa, R.

    1983-01-01

    PCBs and chlorinated hydrocarbon pesticides such as DDTs and HCHs (BHCs) were measured in air, water, ice and snow samples collected around the Japanese research stations in Antarctica and adjacent oceans during December 1980 to March 1982. The atmospheric concentrations of chlorinated hydrocarbons decreased in the transport process from northern lands to Antarctica, but the compositions of PCBs, DDT compounds and HCH isomers were relatively uniform throughout this process. Regional and seasonal variations were found in aerial concentrations of these pollutants at Syowa Station and adjacent seas in Antarctica. Chlorinated hydrocarbons were also detected in snow, ice, lake water and sea water samples, in which rather high concentrations were found in snow and ice samples. This suggests that snow and ice serve as media of supply of these pollutants into Antarctic marine environment.

  12. Mechanism of chloroform formation by chlorine and its inhibition by chlorine dioxide.

    PubMed

    Suh, D H; Abdel-Rahman, M S

    1985-04-01

    Chlorination of drinking waters leads to the formation of trihalomethanes arising from the reaction of chlorine and organic substances. Therefore, chlorine dioxide (ClO2) which does not produce trihalomethanes is being considered as an alternative disinfectant. It has been reported that rat blood chloroform levels were significantly decreased after treatment with ClO2. Studies were conducted to investigate the mechanisms of chloroform formation by chlorine (HOCl) and its inhibition by ClO2 (5 mg/liter) in the presence of HOCl (5, 10, 20 mg/liter) using sodium citrate (1 mM) as an organic substance. When citrate was reacted with HOCl, beta-ketoglutaric acid, monochloroacetone, dichloroacetone, and trichloroacetone were produced as reaction intermediates and chloroform as a final product. There was a linear relationship between the concentrations of HOCl and the formation of chloroform. When ClO2 was substituted for HOCl, neither chloroform was formed nor citrate concentration was changed. Further, chloroform formation was inhibited by ClO2 in the presence of HOCl and citrate and the degree of inhibition depends on the ratio of ClO2/HOCl. Gas chromatograph/mass spectrometer analysis indicates that this inhibition is related to the reaction of ClO2 with beta-ketoglutaric acid to form malonic acid. Chlorine dioxide also oxidizes other intermediates such as monochloroacetone and dichloroacetone to acetic acid. These studies indicate that ClO2 inhibits chloroform formation from citrate and HOCl by the oxidation of the intermediates which were involved in the reaction of chloroform formation.

  13. Characteristics of salt taste and free chlorine or chloramine in drinking water.

    PubMed

    Wiesenthal, K E; McGuire, M J; Suffet, I H

    2007-01-01

    Salty taste with or without chlorine or chloramine flavour is one of the major consumer complaints to water utilities. The flavour profile analysis (FPA) taste panel method determined the average taste threshold concentration for salt (NaCl) in Milli-Q water to be 640 +/- 3 mg/L at pH 8. Chlorine and chloramine disinfectants have no antagonistic or synergistic effects on the taste of NaCl, salt, in Milli-Q water. The flavour threshold concentrations for chlorine or chloramine in Milli-Q water alone or in the presence of NaCl could not be estimated by the Weber-Fechner curves due to the chlorine or chloramine flavour outliers in the 0.2-0.8 mg/L concentration range. Apparently, NaCl is not equilibrated with the concentration of ions in the saliva in the mouth and the concentration of free chlorine or chloramines cannot be tasted correctly. Therefore, dechlorinated tap water may be the best background water to use for a particular drinking water evaluation of chlorine and chloramine thresholds. Laboratory FPA studies of free chlorine found that a 67% dilution of Central Arizona Project (CAP) (Tucson, AZ) water with Milli-O water was required to reduce the free chlorine flavour to a threshold value instead of a theoretical value of 80% (Krasner and Barrett, 1980). No synergistic effect was found for chlorine flavour on the dilution of CAP water with Milli-Q water. When Central Avra Valley (AVRA) groundwater was used for the dilution of CAP water, a synergistic effect of the TDS present was observed for the chlorine flavour. Apparently, the actual mineral content of drinking water, and not just NaCl in Milli-Q water, is needed for comparative flavour tests for chlorine and chloramines.

  14. SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

    SciTech Connect

    Vangelas, K; Brian02 Looney, B; Michael J. Truex; Charles J. Newell

    2006-08-16

    Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well

  15. Toxicity, pharmacokinetics, and photodynamic properties of chlorin e6

    NASA Astrophysics Data System (ADS)

    Kostenich, Gennady; Zhuravkin, Ivan N.; Gurinovich, G. P.; Zhavrid, Edvard A.

    1993-03-01

    Toxicity, pharmacokinetics, and the tumor damage effect of chlorin e6 after light irradiation were studied. The results show that chlorin e6 LD50 value in C57Bl mice was 189 +/- 10 mg/kg, in non-inbred white rats it was 99 +/- 14 mg/kg 14 days after the agent iv injection. The concentration of chlorin e6 in blood, liver, kidney, spleen, and tumors (sarcoma M-1 and sarcoma 45) of the rats was determined by the fluorescence method 3, 6, 12, 18, 24, 48, and 72 hours after the agent iv injection at the dose of 10 mg/kg. For this purpose chlorin e6 was extracted from tissues by detergent triton X-100. The depth of necrosis spreading in tumor tissue was evaluated after chlorin e6 injection at the doses of 1 - 10 mg/kg and subsequent irradiation by a krypton laser with light energy density of 90 J/cm2, using the method of vital staining with Evans blue. It was found that depending on the agent dose and time interval between chlorin e6 injection and photoradiation, the depth of tumor necrosis varied from 4.0 to 16.6 mm in sarcoma M-1 and from 5.0 to 15.0 in sarcoma 45.

  16. UV-induced effects on chlorination of creatinine.

    PubMed

    Weng, Shih Chi; Li, Jing; Wood, Karl V; Kenttämaa, Hilkka I; Williams, Peggy E; Amundson, Lucas M; Blatchley, Ernest R

    2013-09-15

    Ultraviolet (UV) irradiation is commonly employed for water treatment in swimming pools to complement conventional chlorination, and to reduce the concentration of inorganic chloramine compounds. The approach of combining UV irradiation and chlorination has the potential to improve water quality, as defined by microbial composition. However, relatively little is known about the effects of this process on water chemistry. To address this issue, experiments were conducted to examine the effects of sequential UV254 irradiation/chlorination, as will occur in recirculating system of swimming pools, on disinfection byproduct (DBP) formation. Creatinine, which is present in human sweat and urine, was selected as the target precursor for these experiments. Enhanced formation of dichloromethylamine (CH3NCl2) and inorganic chloramines was observed to result from post-chlorination of UV-irradiated samples. Chlorocreatinine was found to be more sensitive to UV254 irradiation than creatinine; UV254 irradiation of chlorocreatinine resulted in opening of the ring structure, thereby yielding a series of intermediates that were more susceptible to free chlorine attack than their parent compound. The quantum yields for photodegradation of creatinine and chlorocreatinine at 254 nm were estimated at 0.011 ± 0.002 mol/E and 0.144 ± 0.011 mol/E, respectively. The N-Cl bond was found to be common to UV-sensitive chlorinated compounds (e.g., inorganic chloramines, CH3NCl2, and chlorocreatinine); compounds that were less susceptible to UV-based attack generally lacked the N-Cl bond. This suggested that the N-Cl bond is susceptible to UV254 irradiation, and cleavage of the N-Cl bond appears to open or promote reaction pathways that involve free chlorine, thereby enhancing formation of some DBPs and promoting loss of free chlorine. Proposed reaction mechanisms to describe this behavior based on creatinine as a precursor are presented.

  17. Foetal growth and duration of gestation relative to water chlorination

    PubMed Central

    Jaakkola, J; Magnus, P; Skrondal, A; Hwang, B; Becher, G; Dybing, E

    2001-01-01

    OBJECTIVE—To assess the effect of exposure to chlorination byproducts during pregnancy on foetal growth and duration of pregnancy.
METHODS—A population based study was conducted of 137 145 Norwegian children born alive in 1993-5. Information was obtained from the Norwegian medical birth registry, waterwork registry, and social science data service. The outcomes of interest were birth weight, low birth weight (<2500 g), small for gestational age, and preterm delivery (gestational age <37 weeks). The exposure assessment was based on quality of drinking water in the municipality where the mother lived during pregnancy. Municipal exposure was calculated with information on chlorination and the amount of natural organic matter in raw water measured as colour in mg precipitate/l. The main exposure category was high colour and chlorination, which was contrasted with the reference category of low colour and no chlorination.
RESULTS—In logistic regression analysis adjusting for confounding, the risks of low birth weight (odds ratio (OR) 0.97, 95% confidence interval (95% CI) 0.89 to 1.06) and small for gestational age (OR 1.00, 95% CI 0.91 to 1.10) were not related to exposure. Contrary to the hypothesis, the risk of preterm delivery was slightly lower among the exposed than the reference category (OR 0.91, 95% CI 0.84 to 0.99). The risks of the studied outcomes were similar in newborn infants exposed to high colour drinking water without chlorination and chlorinated drinking water with low colour compared with the reference category.
CONCLUSIONS—The present study did not provide evidence that prenatal exposure to chlorination byproducts at the relatively low concentrations encountered in Norwegian drinking water increases the risk of the studied outcomes.


Keywords: water chlorination; foetal growth; gestational age PMID:11404447

  18. Calculating Capstone depleted uranium aerosol concentrations from beta activity measurements.

    PubMed

    Szrom, Frances; Falo, Gerald A; Parkhurst, Mary Ann; Whicker, Jeffrey J; Alberth, David P

    2009-03-01

    Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the DU source term for the subsequent Human Health Risk Assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short-lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Values for the equilibrium fraction ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92. This paper describes the process used and adjustments necessary to calculate uranium mass from proportional counting measurements.

  19. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC.

  20. The synergistic effect of Escherichia coli inactivation by sequential disinfection with low level chlorine dioxide followed by free chlorine.

    PubMed

    Yang, Wu; Yang, Dong; Zhu, Sui-Yi; Chen, Bo-Yan; Huo, Ming-Xin; Li, Jun-Wen

    2012-12-01

    To the best of our knowledge, there was little information available on pathogen removal using low level disinfectant followed by free chlorine in sequential disinfection (SD). This study investigated Escherichia coli inactivation by four types of disinfection: single step disinfection (SSD), SD, traditional sequential disinfection (TSD) and mixed disinfectant disinfection (MDD). Results indicated that SD had higher ability to inactivate E. coli than the others, indicating there was a positive synergistic effect on chlorine disinfection by prior dosing with a low level of chlorine dioxide (ClO(2)). The ONPG assay suggested that the permeability of cell wall rather than the viability of E. coli were changed under 0.02 mg/l ClO(2) treatment. The coexistence of residual ClO(2) and free chlorine also plays an active synergistic effect. Additionally, temperature had a positive effect on E. coli inactivation in SD, while inactivation was reduced in alkaline compared to neutral and acidic conditions.

  1. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  2. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  3. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  4. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  5. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  6. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  7. 46 CFR 151.50-31 - Chlorine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Chlorine. 151.50-31 Section 151.50-31 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-31 Chlorine. (a) Chlorine barges. Subparts 98.03 and 98.20 of Part 98 of this chapter have been revoked. However, chlorine barges that...

  8. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  9. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food... the following methods: (i) Treating an aqueous solution of sodium chlorite with either chlorine gas...

  10. Chlorine Monoxide in the Antarctic Spring Stratosphere.

    NASA Astrophysics Data System (ADS)

    Jaramillo-Ayerbe, Mauricio

    1988-06-01

    A series of observations of stratospheric chlorine monoxide (ClO) were carried out during the austral springs of 1986 and 1987 in McMurdo Station, Antarctica, as part of two experimental campaigns sent to investigate the seasonal decrease in ozone over the antarctic continent (the ozone "hole"). Measurements of the vertical distribution of ClO were obtained by high resolution ground-based emission spectroscopy at 278 GHz, using the Stony Brook mm-wave receiver. They show the presence of an anomalous layer of lower stratospheric ClO which is not observed at other latitudes. This anomalous layer is centered at ~20 km altitude and exhibits a pronounced diurnal variation, reaching a maximum at midday and disappearing at night. During the period of Sep. 20-24, 1987, the lower-stratospheric ClO had a maximum volume mixing ratio of 1.8_sp{+0cdot5}{ -0cdot9} ppbv. A normal ClO layer centered at ~36 km was also observed, with concentrations and diurnal behavior similar to those seen in tropical latitudes. These findings are evidence of anomalous chlorine chemistry taking place in the lower stratosphere during the antarctic spring, and indicate that increasing anthropogenic chlorine is a prime causative agent in the formation of the ozone hole.

  11. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  12. Bacterial responses to reactive chlorine species.

    PubMed

    Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research.

  13. EFFECT OF THE DECHLORINATING AGENT, ASCORBIC ACID, ON THE MUTAGENICITY OF CHLORINATED WATER SAMPLES

    EPA Science Inventory

    XAD resin adsorption has been widely used to concentrate the organic compounds present in chlorinated drinking waters prior to mutagenicity testing. Previous work has shown that mutagenic artifcats can arise due to the reaction of residual chlorine with the resins. Althrough the ...

  14. Chlorine inactivation of H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two Asian strains of H5N1 highly pathogenic avian influenza virus were studied to determine their resistance to chlorination. Experiments were conducted at two pH levels (pH 7 and 8) at 5 C. CT (chlorine concentration x exposure time) values were calculated for different levels of inactivation. R...

  15. Strontium Content and Variable Strontium-Chlorinity Relationship of Sargasso Sea Water.

    PubMed

    Mackenzie, F T

    1964-10-23

    Sargasso Sea water has a variable strontium-chlorinity relationship. This observation is contrary to the view that strontium in the ocean is in constant proportion to chlorinity. It is suggested that the increase in strontium concentration at 500 to 800 meters in Sargasso Sea water results from interaction between organic aggregates and the water.

  16. [Water disinfection by means of chlorine: killing of aggregate bacteria (author's transl)].

    PubMed

    Carlson, S; Hässelbarth, U; Langer, R

    1975-12-01

    Rising water demands ask for an increasing utilization of more or less contaminated surface water that has to be chlorinated prior to treatment. Especially during periods of lake bloom, the desired disinfecting effect is not achieved in spite of high concentrations of chlorine present. This is due to a coating of bacterial surfaces by substances such as algal products having a protective effect as demonstrated in experimental studies by the authors. Bacteria in a central position within bacterial aggregates as e. g. formed by the addition of flocculants in the process of water treatment, are also protected against the action of chlorine. In cases of inadequate filter backwashing, such aggregates may penetrate into clean water. Accumulations of bacteria in the shape of widespread growth may also form on activated carbon filters, ion exchangers, at walls of tanks under unfavourable hydraulic concitions, and in stagnant parts of supply pipes. Curves depiciting the kill of dyspectic E. coli differentiated by O-agglutination and S. anatum were exhibiting longer survival periods as compared with non-aggregate bacteria. For organisms differentiated by H-agglutination, kill was between these values. The killing rate was found to be a function of the oxidation-reduction poteential. Furthermore, survival times for E. coli and S. anatum were found to be different. It has been confirmed by these experiments that chlorine concentrations as common in the practice of water works frequently do not suffice to kill bacteria within aggregates and that a colony count does not permit conclusions as to the bacterial count if bacterial aggregates are present.

  17. Highly enantioselective alpha-chlorination of cyclic beta-ketoesters catalyzed by N,N'-dioxide using NCS as the chlorine source.

    PubMed

    Cai, Yunfei; Wang, Wentao; Shen, Ke; Wang, Jun; Hu, Xiaolei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2010-02-28

    A simple and highly efficient N,N'-dioxide organocatalyst system was developed for the asymmetric alpha-chlorination of cyclic beta-ketoesters using easily available NCS as the chlorine source to provide a series of optically active alpha-chloro-beta-ketoesters in excellent yields with 90-98% ee.

  18. Evolution in the concentration of activities in lithography

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2016-03-01

    From a perusal of the proceedings of the SPIE Advanced Lithography Symposium, the progression of new concepts in lithographic technology can be seen. A new idea first appears in a few papers, and over time, there is an increase in the number of papers on the same topic. Eventually the method becomes commonplace, and the number of papers on the topic declines, as the idea becomes part of our industry's working knowledge. For example, one or two papers on resolution enhancement techniques (RETs) appeared in the proceedings of the Optical Microlithography Conference in 1989 and 1990. By 1994, the total number of papers had increased to 35. Early lithographers focused on practical issues, such as adhesion promotion and resist edge bead. The introduction of simulation software brought on the next era of lithography. This was followed by a period of time in which RETs were developed and brought to maturity. The introduction of optical proximity corrections (OPC) initiated the next major era of lithography. The traditional path for scaling by using shorter wavelengths, decreasing k1 and increasing numerical aperture has given way to the current era of optical multiple patterning and lithography-design co-optimization. There has been sufficient activity in EUV lithography R and D to justify a separate EUV Lithography Conference as part of the annual Advanced Lithography Symposium. Each era builds on the cumulative knowledge gained previously. Over time, there have been parallel developments in optics, exposure tools, resist, metrology and mask technology, many of which were associated with changes in the wavelength of light used for leading-edge lithography.

  19. Gaseous, chlorine-free chlorine dioxide for drinking water

    SciTech Connect

    Gordon, G.; Rosenblatt, A.

    1996-11-01

    The benefits of applying chlorine dioxide (ClO{sub 2}) for the oxidative treatment of drinking water are well established. Chlorine dioxide treated finished water typically has substantially lower trihalomethane (THM) levels because ClO{sub 2} will not form chlorinated organic species as a by-product of disinfection. The THMs that are formed are probably due to chlorine from the generator or chlorine used to maintain a post-disinfection residual. An emerging regulatory issue concerning the formation of disinfection by-products (DBPs) is causing the water industry to set standards for the generation and delivery of ClO{sub 2}. The Federal Register (11 February 1994) contains language developed to limit the production of the unwanted inorganic by-products chlorite (ClO{sub 2}{sup -}), chlorate (ClO{sub 3}{sup -}), and bromate (BrO{sub 3}{sup -}) ions by requiring utilities to maintain high (95%) generation efficiencies and by limiting the amount of excess Cl{sub 2} that can be used during the generation process. The efficiency and excess Cl{sub 2} regulations may be problematic for utilities that over-chlorinate to attain chlorine dioxide high yields. Many utilities will have to decide either to reduce the amount of Cl{sub 2} used to react with sodium chlorite (NaClO{sub 2}), thereby increasing the ClO{sub 2}{sup -} residual in finished water, or over-chlorinate to increase yields and surpass the excess Cl{sub 2} limits.

  20. The toxicity and enzyme activity of a chlorine and sulfate containing aeruginosin isolated from a non-microcystin-producing Planktothrix strain

    PubMed Central

    Kohler, Esther; Grundler, Verena; Häussinger, Daniel; Kurmayer, Rainer; Gademann, Karl; Pernthaler, Jakob; Blom, Judith F.

    2017-01-01

    The toxicity of six different Planktothrix strains was examined in acute toxicity assays with the crustacean Thamnocephalus platyurus. The presence of toxicity in two strains could be explained by the occurrence of microcystins. The other four Planktothrix strains were not able to produce microcystins due to different mutations in the microcystin synthetase (mcy) gene cluster. In these strains, toxicity was attributed to the presence of chlorine and sulfate containing compounds. The main representative, called aeruginosin 828A, of such a compound in the Planktothrix strain 91/1 was isolated, and structure elucidation by 2D-NMR and MS methods revealed the presence of phenyllactic acid (Pla), chloroleucine (Cleu), 2-carboxy-6-(4’-sulfo-xylosyl)-octahydroindole (Choi), and 3-aminoethyl-1-N-amidino-Δ-3-pyrroline (Aeap) residues. Aeruginosin 828A was found to be toxic for Thamnocephalus platyurus with a LC50 value of 22.4 µM, which is only slightly higher than the toxicity found for microcystins. Additionally, very potent inhibition values for thrombin (IC50 = 21.8 nM) and for trypsin (IC50 = 112 nM) have been determined for aeruginosin 828A. These data support the hypothesis that aeruginosins containing chlorine and sulfate groups, which were found in microcystin-deficient Planktothrix strains, can be considered as another class of toxins. PMID:28100989

  1. Classical Nuclear Hormone Receptor Activity as a Mediator of Complex Concentration Response Relationships for Endocrine Active Compounds

    PubMed Central

    Cookman, Clifford J.; Belcher, Scott M.

    2014-01-01

    Nonmonotonic concentration response relationships are frequently observed for endocrine active ligands that act via nuclear receptors. The curve of best fit for nonmonotonic concentration response relationships are often inverted U-shaped with effects at intermediate concentrations that are different from effects at higher or lower concentrations. Cytotoxicity is a major mode of action responsible for inverted U-shaped concentration response relationships. However, evidence suggests that ligand selectivity, activation of multiple molecular targets, concerted regulation of multiple opposing endpoints, and multiple ligand binding sites within nuclear receptors also contribute to nonmonotonic concentration response relationships of endocrine active ligands. This review reports the current understanding of mechanisms involved in classical nuclear receptor mediated nonmonotonic concentration response relationships with a focus on studies published between 2012 and 2014. PMID:25299165

  2. Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water

    PubMed Central

    Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1×105 cells.mL-1 to 2.6×104 cells.mL-1 at an initial free chlorine dose of 0.6 mg.L-1 to 4.8×104 cells.mL-1 at an initial free chlorine dose of 0.3 mg.L-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network. PMID:26034988

  3. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    PubMed

    Liu, Xiaolu; Wang, Jingqi; Liu, Tingting; Kong, Weiwen; He, Xiaoqing; Jin, Yi; Zhang, Bolin

    2015-01-01

    Assimilable organic carbon (AOC) is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM). The initial AOC concentration was 168 μg.L(-1) in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5) cells.mL(-1) to 2.6 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.6 mg.L(-1) to 4.8 × 10(4) cells.mL(-1) at an initial free chlorine dose of 0.3 mg.L(-1) due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  4. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter.

    PubMed

    Kristiana, Ina; Tan, Jace; Joll, Cynthia A; Heitz, Anna; von Gunten, Urs; Charrois, Jeffrey W A

    2013-02-01

    higher concentrations of NDMA and total N-nitrosamines. The precursor materials of N-nitrosamines appeared to be more abundant in the low to medium MW fractions of NOM, which correspond to the fractions that are most difficult to remove using conventional drinking water treatment processes. Alternative or advanced treatment processes that target the removal of low to medium MW NOM including activated carbon adsorption, biofiltration, reverse osmosis, and nanofiltration, can be employed to minimise the formation of N-nitrosamines.

  5. Spectroscopic and structural characterization of chlorine loading effects on Mo/Si:Ti catalysts in oxidative dehydrogenation of ethane.

    PubMed

    Liu, Chang; Ozkan, Umit S

    2005-02-17

    The structural changes induced in a silica-titania mixed-oxide support (1:1 molar ratio) by chlorine addition at different loading levels, their relation to the structural characteristics of supported MoOx species over the support, and their correlation with ethane oxidative dehydrogenation (ODH) activity have been examined. The molybdenum and chlorine precursors are incorporated into the Si/Ti support network as it forms during gelation by using a "one-pot" modified sol-gel/coprecipitation technique. In situ X-ray diffraction during calcination shows the Si/Ti 1:1 mixed-oxide support is in a state of nanodispersed anatase titania over amorphous silica. With the addition of molybdenum and chlorine modifier, this anatase feature becomes more pronounced, indicating a decreased dispersion of titania. The effective titania surface area on the chlorine-doped Si:Ti support obtained from 2-propanol temperature-programmed reaction supports this observation. Raman spectra of dehydrated samples point to an enhanced interaction of MoOx species with silica at the expense of titania. X-ray photoelectron spectroscopic results show that, without forming a molybdenum chloride, the presence of chlorine significantly alters the relative surface concentration of Si vs Ti, the electronic structure of the surface MoOx species, and the oxygen environment around supported MoOx species in the Si/Ti network. Secondary ion mass spectrometry detected the existence of SiCl fragments from the mass spectra, which provides molecular insight into the location of chlorine in Mo/Si:Ti catalysts. The observed increase in ethane ODH selectivity with chlorine modification may be ascribed to the MoOx species sharing more complex ligands with silica and titania with the indirect participation of chlorine. Steady-state isotopic transient kinetic analysis (SSITKA) is used to to examine the oxygen insertion and exchange mechanisms. The catalysts show very little oxygen exchange with the gas phase in the

  6. Chlorinated didemnins from the tunicate Trididemnum solidum.

    PubMed

    Ankisetty, Sridevi; Khan, Shabana I; Avula, Bharathi; Gochfeld, Deborah; Khan, Ikhlas A; Slattery, Marc

    2013-11-11

    Chemical investigation of the tunicate Trididemnum solidum resulted in the isolation of two new chlorinated compounds belonging to the didemnin class, along with two known compounds didemnin A and didemnin B. The structural determination of the compounds was based on extensive NMR and mass spectroscopic analysis. The isolated compounds 1-4 were tested for their anti-inflammatory activity using in vitro assays for inhibition of inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) activity. The anti-cell proliferative activity of the above compounds was also evaluated against four solid tumor cell lines.

  7. CHLORINATION OF AMINO ACIDS: REACTION PATHWAYS AND REACTION RATES.

    PubMed

    How, Zuo Tong; Linge, Kathryn; Busetti, Francesco; Joll, Cynthia A

    2017-03-15

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  8. Low-temperature formation and degradation of chlorinated benzenes, PCDD and PCDF in dust from steel production.

    PubMed

    Oberg, Tomas

    2007-08-15

    Dust from thermal processes may catalytically enhance the formation of chlorinated aromatic compounds under oxygen-rich conditions. The activities of two dust samples from electric arc furnaces and one from iron ore-based steelmaking (oxygen converter) were investigated in a laboratory experiment. The dust samples were heated at 300 degrees C for 2 h in an air atmosphere. The concentrations of chlorinated benzenes did not change greatly upon heating, while the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans decreased. The addition of copper in parallel runs resulted in a substantial increase in the concentration of chlorinated benzenes, thus indicating that the experimental setup was suitable for the evaluation of low-temperature catalysis. The outcome of the experiment seems to suggest that results cannot easily be extrapolated between different thermal and metallurgical processes. Some measures to reduce emissions, such as inhibition of catalytic activity and rapid cooling, could possibly be counterproductive when applied to off-gases from the steelmaking processes investigated here.

  9. Performance of chlorination process during nanofiltration of sulfonamide antibiotic.

    PubMed

    Ramli, Mohd Redzuan; Sulaiman, Nik Meriam Nik; Mohd, Mustafa Ali; Rabuni, Mohamad Fairus

    2015-01-01

    The effectiveness of combined nanofiltration and disinfection processes was studied by comparing the pre-disinfection and post-disinfection when in combination with nanofiltration. Four types of sulfonamide (sulfanilamide, sulfadiazine, sulfamethoxazole, and sulfadimethoxine) were chosen as substrates, with sodium hypochlorite as a disinfectant. A laboratory-scale nanofiltration system was used to conduct the following sets of experiment: (1) a pre-chlorination system, where the free active chlorine (FAC) was added to the membrane influent; and (2), a post-chlorination system, where the FAC was added to the membrane effluent. Overall, the pre-disinfection nanofiltration system showed higher sulfonamide removal efficiency compared to the post-chlorination nanofiltration system (>99.5% versus >89.5%). In the case of limited FAC ([FAC]0: [sulfonamide]0≤1), the removal efficiency for the post-chlorination nanofiltration system was higher, due to the prior nanofiltration process that could remove 12.5% to 80% of sulfonamide. The flux of the treated feed system was considerably higher than in the untreated feed system; however, the membrane was observed to be slightly damaged due to residual chlorine attack.

  10. Dechloriation mechanisms of chlorinated olefins.

    PubMed Central

    Van Dyke, R A

    1977-01-01

    The dechlorination of chlorinated hydrocarbons has been examined in detail. The reaction is catalyzed by cytochrome P-450 and occurs optimally in the presence of oxygen although some dechlorination may occur under anaerobic conditions. Halothane has been shown to undergo an oxidative dechlorination and a reductive defluorination. Enzymatic attack of chlorinated olefins and hydrocarbons is not on the carbon--halogen bond. Oxidative dechlorination of hydrocarbons is apparently initiated by an attack on the carbon atom and the halogen is then released from the oxidized carbon. The chlorinated olefins, on the other hand, are not easily dechlorinated enzymatically. The chlorines migrate readily across the double bond, therefore, cyclic chloronium ions must occur as intermediates. It is not clear at this time if epoxides are also intermediates in this conversion. PMID:612436

  11. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  12. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  13. EFFECTS OF OZONE, CHLORINE DIOXIDE, CHLORINE, AND MONOCHLORAMINE ON CRYTOSPORIDIUM PARVUM OOCYST VIABILITY

    EPA Science Inventory

    Purified Cryptosporiodium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were compareatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlor...

  14. IDENTIFICATION OF NEW DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfection methods are being explored. Ozone, chlorine dioxide, and chloramine are currently popular alternatives to ...

  15. Elevated blood active ghrelin and normal total ghrelin and obestatin concentrations in uterine leiomyoma.

    PubMed

    Markowska, A; Ziolkowska, A; Nowinka, K; Malendowicz, L K

    2009-01-01

    Ghrelin and obestatin originate from the same peptide precursor, preproghrelin. Both peptides are secreted in the blood. We investigated serum active and total ghrelin and obestatin concentrations in women with uterine myomatosis. Serum concentrations of active ghrelin in uterine leiomyoma were significantly higher compared to women in the control group (86 +/- 3 vs 56 +/- 9 pg/ml, respectively; p < 0.02). On the other hand, serum concentrations of total ghrelin and obestatin in uterine leiomyoma did not differ from those in the control group. In the control group the ratio of active to total ghrelin concentrations amounted to 0.62, while in women with uterine myoma it was 0.95, pointing to a prevalence of the active form of ghrelin in women with uterine myoma. Also the ratio of active ghrelin concentration to obestatin concentration was higher in the latter group while the ratio of total circulating ghrelin to obestatin concentrations was similar in the two groups. The data may suggest a role of active ghrelin in the development of a myoma. Moreover, the results indicate that increased blood ratios of active to total ghrelin and to obestatin concentrations are not specific for cachexia.

  16. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    SciTech Connect

    Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.

    2015-02-09

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5–2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously.

  17. A carbon nanotube based resettable sensor for measuring free chlorine in drinking water

    NASA Astrophysics Data System (ADS)

    Hsu, Leo H. H.; Hoque, Enamul; Kruse, Peter; Ravi Selvaganapathy, P.

    2015-02-01

    Free chlorine from dissolved chlorine gas is widely used as a disinfectant for drinking water. The residual chlorine concentration has to be continuously monitored and accurately controlled in a certain range around 0.5-2 mg/l to ensure drinking water safety and quality. However, simple, reliable, and reagent free monitoring devices are currently not available. Here, we present a free chlorine sensor that uses oxidation of a phenyl-capped aniline tetramer (PCAT) to dope single wall carbon nanotubes (SWCNTs) and to change their resistance. The oxidation of PCAT by chlorine switches the PCAT-SWCNT system into a low resistance (p-doped) state which can be detected by probing it with a small voltage. The change in resistance is found to be proportional to the log-scale concentration of the free chlorine in the sample. The p-doping of the PCAT-SWCNT film then can be electrochemically reversed by polarizing it cathodically. This sensor not only shows good sensing response in the whole concentration range of free chlorine in drinking water but is also able to be electrochemically reset back many times without the use of any reagents. This simple sensor is ideally suited for measuring free chlorine in drinking water continuously.

  18. Low-Chlorinated Non-Dioxin-like Polychlorinated Biphenyls Present in Blood and Breast Milk Induce Higher Levels of Reactive Oxygen Species in Neutrophil Granulocytes than High-Chlorinated Congeners.

    PubMed

    Berntsen, Hanne Friis; Fonnum, Frode; Walaas, Sven Ivar; Bogen, Inger Lise

    2016-12-01

    Despite their ban several decades ago, polychlorinated biphenyls (PCBs) still pose a health threat to human beings due to their persistent and accumulative nature and continued presence in the environment. Non-dioxin-like (NDL)-PCBs have earlier been found to have effects on the immune system, including human neutrophil granulocytes. The aim of this study was to investigate the differences between ortho-chlorinated NDL-PCBs with a low or high degree of chlorination in their capability to induce the production of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro. We used some of the congeners occurring at the highest levels in blood, breast milk and food: PCB 52 representing the low-chlorinated congeners and PCB 180 the high-chlorinated congeners. In addition, the extensively studied PCB 153 was included as a reference compound. ROS production was assessed with the luminol-amplified chemiluminescence and DCF fluorescence assays. The involvement of intracellular signalling mechanisms was investigated using different pharmacological substances. At high concentrations (10-20 μM), PCB 52 induced more ROS than PCB 153 and PCB 180. The role of extracellular signal-regulated kinase (ERK) 1/2 and/or ERK 5 signalling in PCB-induced ROS production was implicated through the reduction in ROS in the presence of the specific inhibitor U0126, whereas reduced ROS production after the use of SB203580 and SP600125 indicated the involvement of the p38 mitogen-activated protein kinase (MAPK) and c-Jun amino-terminal kinase (JNK) pathways, respectively. In addition, the calcineurin inhibitor FK-506, the intracellular calcium chelator BAPTA-AM and the antioxidant vitamin E reduced the levels of ROS. The intracellular signalling mechanisms involved in ROS production in human neutrophil granulocytes appeared to be similar for PCB 52, PCB 153 and PCB 180. Based on the results from the present and previous studies, we conclude that for abundant ortho-chlorinated PCBs

  19. Chlorine chemistry and the potential for ozone depletion in the Arctic stratosphere in the winter of 1991/92

    SciTech Connect

    Mueller, R.; Peter, Th.; Crutzen, P.J. ); Oelhaf, H.; Adrian, G.P.; Clarmann, Th.V.; Wegner, A. ); Schmidt, U. ); Lary, D. )

    1994-06-22

    The authors use a chemical box model to study the interaction of atmospheric chemistry processes in the arctic stratosphere, as related to chlorine chemistry. Their objective is to apply this model to study the implications of chlorine chemistry for possible chemical destruction of ozone during the 1991-92 winter. Two major observations from the model were an almost complete conversion of available chlorine to activated forms during the winter, and finally a return of this chlorine to ClONO[sub 2], and after about another month to HCl, as the major reservoir molecular species for chlorine.

  20. Screening of organic halogens and identification of chlorinated benzoic acids in carbonaceous meteorites.

    PubMed

    Schöler, Heinz F; Nkusi, Gerard; Niedan, Volker W; Müller, German; Spitthoff, Bianca

    2005-09-01

    The occurrence of halogenated organic compounds measured as a sum parameter and the evidence of chlorinated benzoic acids in four carbonaceous meteorites (Cold Bokkeveld, Murray, Murchison and Orgueil) from four independent fall events is reported. After AOX (Adsorbable organic halogen) and EOX (Extractable organic halogen) screening to quantify organically bound halogens, chlorinated organic compounds were analyzed by gas chromatography. AOX concentrations varying from 124 to 209 microg Cl/g d.w. were observed in carbonaceous meteorites. Ion chromatographic analysis of the distribution of organically bound halogens performed on the Cold Bokkeveld meteorite revealed that chlorinated and brominated organic compounds were extractable, up to 70%, whereas only trace amounts of organofluorines could be extracted. Chlorinated benzoic acids have been identified in carbonaceous meteorite extracts. Their presence and concentrations raise the question concerning the origin of halogenated, especially chlorinated, organic compounds in primitive planetary matter.

  1. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time.

    PubMed

    Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee

    2007-02-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.

  2. Comparative evaluation of effects of ozonated and chlorinated thermal discharges on estuarine and freshwater organisms

    SciTech Connect

    Guerra, C.R.; Sugam, R.; Meldrim, J.W.; Holmstrom, E.R.; Balog, G.E.

    1980-08-01

    As a part of a program at PSE and G designed to examine the feasibility of ozonation as an alternative to chlorination for control of biofouling in once-through cooling systems, the biological effects of ozonated and chlorinated thermal discharges were evaluated with estuarine and freshwater organisms. Mortality at salinities between 0.5 to 2.5 ppt with mummichog and white perch indicated greater toxicity for chlorine while the alewife, spottail shiner, rainbow trout and white perch in freshwater were more sensitive to ozone. Behavioral and physograhic results were consistent with those observed in toxicity studies. Initial cough response and avoidance concentrations of mummicog and white perch in estuarine waters were lower when exposed to chlorine than to ozone. In freshwater, blueback herring, alewife, rainbow trout, spottail shiner, banded killifish, and white perch avoided lower concentrations of ozone than chlorine.

  3. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Shrivastava, Richa; Upreti, R K; Jain, S R; Prasad, K N; Seth, P K; Chaturvedi, U C

    2004-06-01

    The present study was undertaken to investigate the spectrum of bacteria present in the River Gomti water before and after chlorination for drinking purposes. We observed that the strains of Pseudomonas aeruginosa that survived chlorination on three out of seven occasions were resistant to almost all the antibiotics tested. The chlorine-resistant bacteria had mucoid colonies and grew better at 24 degrees C. All attempts to isolate the plasmid responsible for chlorine resistance were unsuccessful. Laboratory experiments using different strains of the P. aeruginosa in distilled water showed that only the resistant strain survived chlorine treatment at a dose of < or =500 microg/L. Similar results were obtained when water collected from seven different sites on the River Gomti was treated with graded doses of chlorine. At the higher dose of chlorine, all the bacteria died in 30 min, whereas with lower doses all the bacteria survived. The present study underscores the importance of measuring water chlorine concentrations to assure they are sufficiently high to remove pathogenic bacteria from drinking water. To our knowledge, this is the first report in the literature of the selection of multidrug-resistant bacteria by suboptimal chlorine treatment of water.

  4. Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli.

    PubMed

    Huang, Jing-Jing; Hu, Hong-Ying; Wu, Yin-Hu; Wei, Bin; Lu, Yun

    2013-02-01

    Antibiotic-resistant bacteria are an emerging threat to public health during drinking water consumption and reclaimed water reuse. Several studies have shown that the proportions of antibiotic-resistant bacteria in waters may increase when exposed to low doses of UV light or chlorine. In this study, inactivation of tetracycline-resistant Escherichia coli and antibiotic-sensitive E. coli by UV disinfection and chlorination was compared to determine the tolerance of tetracycline-resistant E. coli to UV light and chlorine, and tetracycline resistance of a tetracycline-resistant E. coli population was studied under different doses of the disinfectants. Our results showed that relative to antibiotic-sensitive E. coli, tetracycline-resistant E. coli had the same tolerance to UV light and a potentially higher tolerance to chlorination. The mortality frequency distributions of tetracycline-resistant E. coli exposed to tetracycline were shifted by both chlorination and UV disinfection. When compared to the hemi-inhibitory concentrations (IC(50)) of tetracycline-resistant E. coli with no exposure to UV or chlorination, the IC(50) of tetracycline-resistant E. coli treated with tetracycline was 40% lower when inactivation by UV light or chlorination reached 3-log but was 1.18 times greater when inactivation by chlorination reached 4.3-log. Chlorination applied to drinking water or reclaimed water treatment may increase the risk of selection for highly tetracycline-resistant E. coli.

  5. Exposure levels to brominated compounds in seawater swimming pools treated with chlorine.

    PubMed

    Parinet, Julien; Tabaries, Sophie; Coulomb, Bruno; Vassalo, Laurent; Boudenne, Jean-Luc

    2012-03-01

    Despite evidence of formation of brominated compounds in seawater swimming pools treated with chlorine, no data about exposure levels to these compounds have been reported. To address this issue, a survey has been carried out in four establishments (representing 8 pools) fed with seawater and devoted to relaxing and cure treatments (thalassotherapy centres located in Southeast of France). Carcinogenic and mutagenic brominated disinfection byproducts (trihalomethanes -THM- and halogenated acetic acids -HAA-) were quantified at varying levels, statistically related to organic loadings brought by bathers, and not from marine organic matter, and also linked to activities carried out in the pools (watergym vs swimming). Bromoform and dibromoacetic acid, the most abundant THM and HAA detected, were measured at levels up to 18-fold greater than the maximum contaminant levels of 60 and 80 μg/L fixed by US.EPA in drinking waters. The correlations between these disinfection byproducts and other environmental factors such as nitrogen, pH, temperature, free residual chlorine, UV(254), chloride and bromide concentrations, and daily frequentation were examined. Because thalassotherapy and seawater swimming pools (hotels, cruise ships,…) are increasing in use around the world and because carcinogenic and mutagenic brominated byproducts may be produced in chlorinated seawater swimming pools, specific care should be taken to assure cleanliness of users (swimmers and patients taking the waters) and to increase water circulation through media filters to reduce levels of brominated byproducts.

  6. Chlorinated ethenes from groundwater in tree trunks

    USGS Publications Warehouse

    Vroblesky, Don A.; Nietch, C.T.; Morris, J.T.

    1999-01-01

    The purpose of this investigation was to determine whether tree-core analysis could be used to delineate shallow groundwater contamination by chlorinated ethenes. Analysis of tree cores from bald cypress [Taxodium distichum (L.) Rich], tupelo (Nyssa aquatica L.), sweet gum (Liquidambar stryaciflua L.), oak (Quercus spp.), sycamore (Platanus occidentalis L.), and loblolly pine (Pinus taeda L.) growing over shallow groundwater contaminated with cis-1,2-dichloroethene (cDCE) and trichloroethene (TCE) showed that those compounds also were present in the trees. The cores were collected and analyzed by headspace gas chromatography. Bald cypress, tupelo, and loblolly pine contained the highest concentrations of TCE, with lesser amounts in nearby oak and sweet gum. The concentrations of cDCE and TCE in various trees appeared to reflect the configuration of the chlorinated-solvent groundwater contamination plume. Bald cypress cores collected along 18.6-m vertical transects of the same trunks showed that TCE concentrations decline by 30−70% with trunk height. The ability of the tested trees to take up cDCE and TCE make tree coring a potentially cost-effective and simple approach to optimizing well placement at this site. 

  7. Differences in the action of lower and higher chlorinated polychlorinated naphthalene (PCN) congeners on estrogen dependent breast cancer cell line viability and apoptosis, and its correlation with Ahr and CYP1A1 expression.

    PubMed

    Gregoraszczuk, Ewa L; Barć, Justyna; Falandysz, Jerzy

    2016-07-29

    There are data showing that exposition to PCNs mixture increased incidence of gastrointestinal and respiratory neoplasms, but data regarding incidence of hormone-dependent cancer so far not shown. The objective was to determine if exposure to single lower and higher chlorinated PCN congeners is associated with altered proliferation and apoptosis of estrogen dependent breast cancer cells, and whether such effects are related to induction of AhR and CYP1A1 protein expression. MCF-7 cells were exposed to PCN 34, 39, 42, 46, 48, 52, 53, 54, 66, 67, 70, 71, 73 and 74 at concentrations of 100-10,000pg/ml. We evaluated the action of these PCN congeners on cell proliferation, DNA fragmentation and caspase-8,-9 activity. AhR and CYP1A1 protein expression and CYP1A1 activity was evaluated at a concentration of 1000pg/ml. An opposite action of tri- to tetraCNs than of penta-to heptaCNs on cell proliferation and apoptosis was evident. Tetra PCNs increased cell proliferation, but had no effect on DNA fragmentation nor caspase activity. Fast induction of CYP1A1 protein expression under the influence of lower chlorinated PCNs suggests faster metabolism and a possible stimulatory action of locally formed metabolites on cell proliferation. None of the higher chlorinated PCNs affected cell proliferation but all higher chlorinated PCNs increased caspase-8 activity, and hexa PCNs also increased caspase-9 activity. The rapid activation of the Ah receptor and CYP1A1 protein expression by higher chlorinated PCNs point to their toxicity; however, it is not sufficient for potential carcinogenicity. Action of lower chlorinated naphthalenes metabolites should be explored.

  8. Effect of the active-ion concentration on the lasing dynamics of holmium fibre lasers

    SciTech Connect

    Kurkov, Andrei S; Sholokhov, E M; Marakulin, A V; Minashina, L A

    2010-12-09

    The lasing dynamics of fibre lasers with a core based on quartz glass doped with holmium ions to concentrations in the range of 10{sup 19}-10{sup 20} cm{sup -3} is investigated. It is shown that fibre lasers with a high concentration of active holmium ions generate pulses, but a decrease in the holmium concentration changes the lasing from pulsed to cw regime. At the same time, a decrease in the active-ion concentration and the corresponding increase in the fibre length in the cavity reduce the lasing efficiency. (lasers)

  9. Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzyme activities and capillary supply.

    PubMed

    Tesch, P A; Thorsson, A; Colliander, E B

    1990-12-01

    This study compared the skeletal muscle metabolic adaptations in response to combined eccentric and concentric or concentric resistance training regimens. Twenty-six physically active males were assigned to either the combined eccentric and concentric group (n = 10), the concentric group (n = 10) or the control group (n = 6). The combined eccentric and concentric and the concentric groups performed four to five sets of maximal, voluntary bilateral quadriceps muscle actions at 1.05 rad s-1 using a speed-controlled dynamometer three times per week for 12 weeks. The concentric group performed 12 concentric actions per set, whereas the combined eccentric and concentric group performed six coupled eccentric and concentric actions per set. Bilateral percutaneous muscle biopsies were obtained from m. vastus lateralis at rest pre- and post-training. Tissue samples were analysed for contents of adenosine triphosphate, creatine phosphate and creatine and for enzyme activities of citrate synthase, lactate dehydrogenase, myokinase, phosphofructokinase, hexokinase and Mg2(+)-ATPase using fluorometric techniques. Histochemical staining procedures were employed to determine capillary supply. The overall increase (P less than 0.05) in muscle strength was greater (P less than 0.05) for the combined eccentric and concentric group than for the concentric group. Enzyme or substrate contents and capillary supply were unaltered after either type of training. It is suggested that substantial increases in muscle strength may occur in response to resistance training without enhancing or compromising metabolic function of skeletal muscle.

  10. Disinfection of bacteria in water systems by using electrolytically generated copper:silver and reduced levels of free chlorine.

    PubMed

    Yahya, M T; Landeen, L K; Messina, M C; Kutz, S M; Schulze, R; Gerba, C P

    1990-02-01

    As an alternative disinfectant to chlorination, electrolytically generated copper:silver (400 and 40 micrograms/L copper and silver, respectively) with and without free chlorine (0.3 mg/L) was evaluated over a period of 4 weeks in indoor and outdoor water systems (100 L tap water with natural body flora and urine). Numbers of total coliform, pseudomonas, and staphylococci were all less than drinking water standards in systems treated with copper:silver and free chlorine and systems treated with free chlorine alone (1.0 mg/L). No significant differences (p less than or equal to 0.05) in bacterial numbers were observed between systems with copper:silver and free chlorine and those with free chlorine alone. Overall, free-chlorine treatments (0.3 or 1.0 mg/L) showed significantly lower heterotrophic plate numbers than those without free chlorine. When challenged with a natural Staphylococcus sp. isolate, water with copper:silver and free chlorine had a 2.4 log10 reduction in bacterial numbers within 2 min, while free chlorine alone or copper:silver alone showed 1.5 and 0.03 log10 reductions, respectively. Addition of copper:silver to water systems may allow the concentration of free chlorine to be reduced while still providing comparable sanitary quality of the water.

  11. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  12. A membrane process to recover chlorine from chloralkali plant tail gas

    SciTech Connect

    Lokhandwala, K.A.; Segelke, S.; Nguyen, P.; Baker, R.W.; Su, T.T.; Pinnau, I.

    1999-10-01

    Chlorine is manufactured by the electrolysis of brine. The chlorine product is a gas, which is collected, dried, compressed, and cooled to produce a liquid. This paper describes the development and field demonstration of a membrane process to recover chlorine from the liquefaction tail gas of chloralkali plants. The tail gas consists of about 20% chlorine and 50--70% air, with the balance being hydrogen and carbon dioxide. A number of membrane materials can achieve a selectivity of 20 or more for chlorine from nitrogen, but degradation of the membrane materials in the presence of high concentrations of chlorine gas often occurs. However, modified silicone rubber membranes are stable to chlorine gas streams. Silicone rubber composite membranes were prepared and formed into modules of 1--2 m{sup 2} membrane area. The modules were tested in the laboratory and in a field test on a slip stream from a chlorine liquefaction unit. In the laboratory, chlorine/nitrogen membrane selectivities of more than 40 were obtained, but selectivities of 6--10 were measured in the field test. This decrease in selectivity was caused by low gas flow rates through the modules, which resulted in concentration polarization effects. However, the membrane maintained essentially constant fluxes and selectivities in field tests lasting more than 1 month. Calculated plant designs based on a selectivity of 8 are able to recover more than 95% of the chlorine in the tail gas. Typical project payback times based on the value of the recovered chlorine and avoided caustic scrubber chemical use are expected to be 1--2 years.

  13. Variability of atmospheric krypton-85 activity concentrations observed close to the ITCZ in the southern hemisphere.

    PubMed

    Bollhöfer, A; Schlosser, C; Ross, J O; Sartorius, H; Schmid, S

    2014-01-01

    Krypton-85 activity concentrations in surface air have been measured at Darwin, which is located in northern Australia and is influenced by seasonal monsoonal activity. Measurements between August 2007 and May 2010 covered three wet seasons. The mean activity concentration of krypton-85 measured during this period was 1.31±0.02Bqm(-3). A linear model fitted to the average monthly data, using month and monsoon as predictors, shows that krypton-85 activity concentration measured during the sampling period has declined by 0.01Bqm(-3) per year. Although there is no statistically significant difference in mean activity concentration of krypton-85 between wet and dry season, the model implies that activity concentration is higher by about 0.015Bqm(-3) during months influenced by the monsoon when a north westerly flow prevails. Backward dispersion runs using the Lagrangian particle dispersion model Hysplit4 highlight possible source regions during an active monsoon located deep in the northern hemisphere, and include reprocessing facilities in Japan and India. However, the contribution of these facilities to krypton-85 activity concentrations in Darwin would be less than 0.003Bqm(-3).

  14. Disinfection byproduct relationships and speciation in chlorinated nanofiltered waters.

    PubMed

    Chellam, S; Krasner, S W

    2001-10-01

    The formation and speciation of disinfection byproducts (DBPs) resulting from chlorination of nanofilter permeates obtained from various source water locations and membrane types are examined. Specific ultraviolet absorbance and bromide utilization are shown to decrease following nanofiltration. Both dissolved organic carbon (DOC) concentration and ultraviolet absorbance at 254 nm were found to correlate strongly with trihalomethane (THM), haloacetic acid (HAA), and total organic halide (TOX) concentrations in chlorinated nanofilter permeates, suggesting that they can be employed as surrogates for DBPs in nanofiltered waters. Because smooth curves were obtained for individual THM and HAA species as well as bromine and chlorine incorporation into THMs and HAAs as a function of Br-/DOC molar ratio, it is likely that mole fractions of these DBPs are more strongly influenced by chlorination conditions, Br-, and DOC concentrations than NOM source and membrane type. Mole fractions of mono-, di-, and trihalogenated HAAs were found to be independent of Br-/DOC. Even at a very low Br-/DOC of 2.9microM/mM, the mixed bromochloro- and tribromoacetic acids constituted 20% of total HAAs on a molar basis. This increased to approximately 50% as Br-/DOC increased to approximately 25microM/mM or more, proving that a large fraction of HAAs may not be covered under existing federal regulations. Total THM and HAA9 concentrations decreased in permeate waters with increasing Br-/DOC suggesting that nanofilter permeates are limited with respect to DBP precursors.

  15. SUBACUTE MECHANISTIC STUDIES OF INHALED CHLORINE IN F344 RATS

    EPA Science Inventory

    Chlorine (C12) is very reactive in water and a respiratory tract irritant. Lesions in the respiratory tract show a proximal to distal distribution determined by concentration, but roles for airflow, mucus flow and tissue susceptibility have been indicated. Our hypothesis for the ...

  16. Chlorine and ozone disinfection of Encephalitozoon intestinalis spores.

    PubMed

    John, David E; Haas, Charles N; Nwachuku, Nena; Gerba, Charles P

    2005-06-01

    Microsporidia are intracellular eukaryotic parasites which have the potential for zoonotic and environmental, including waterborne, transmission. Encephalitozoon intestinalis is a microsporidian pathogen of humans and animals and has been detected in surface water. It is also on the Contaminant Candidate List of potential emerging waterborne pathogens for the US EPA. We performed disinfection studies using chlorine and ozone on E. intestinalis spores with a cell-culture most-probable-number assay to determine infectivity. Chlorine experiments were performed at 5 degrees C at pH of 6, 7, and 8 with 1mg/L initial chlorine concentrations, while ozone experiments were performed at 5 degrees C and pH 7 with initial ozone doses of 1 and 0.5mg/L, both in buffered water. A derivation of Hom's model for disinfection kinetics under dynamic disinfectant concentrations was used to fit observed data and calculate concentration-time product (C*t) values. Chlorine C*t values varied with pH such that 99% (2-log(10)) C*t ranged from 12.8 at pH 6 to 68.8 at pH 8 (mg min/L). Ozone C*t values were approximately an order of magnitude less at 0.59--0.84 mg min/L, depending on initial concentration.

  17. Electricity Storage and the Hydrogen-Chlorine Fuel Cell

    NASA Astrophysics Data System (ADS)

    Rugolo, Jason Steven

    Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to respond to every flick of a switch, constantly adjusting power production to meet demand. The dispatchable electricity production technologies that currently enable this type of market are growing unpopular because of their carbon emissions. Popular methods to move away from fossil fuels are wind and solar power. These sources also happen to be the least dispatchable. Electricity storage can solve that problem. By overproducing during sunlight to store energy for evening use, or storing during windy periods for delivery in future calm ones, electricity storage has the potential to allow intermittent renewable sources to constitute a large portion of our electricity mix. I investigate the variability of wind in Chapter 2, and show that the variability is not significantly reduced by geographically distributing power production over the entire country of the Netherlands. In Chapter 3, I calculate the required characteristics of a linear-response, constant activity storage technology to map wind and solar production scenarios onto several different supply scenarios for a range of specified system efficiencies. I show that solid electrode batteries have two orders of magnitude too little energy per unit power to be well suited for renewable balancing and emphasize the value of the modular separation between the power and energy components of regenerative fuel cell technologies. In Chapter 4 I introduce the regenerative hydrogen-chlorine fuel cell (rHCFC), which is a specific technology that shows promise for the above applications. In collaboration with Sustainable Innovations, we have made and tested 6 different rHCFCs. In order to understand the relative importance of the different inefficiencies in the rHCFC, Chapter 5 introduces a complex temperature and concentration dependent model of the r

  18. Chlorine isotope and Cl-Br fractionation in fluids of Poás volcano (Costa Rica): Insight into an active volcanic-hydrothermal system

    NASA Astrophysics Data System (ADS)

    Rodríguez, Alejandro; Eggenkamp, H. G. M.; Martínez-Cruz, María; van Bergen, Manfred J.

    2016-10-01

    Halogen-rich volcanic fluids issued at the surface carry information on properties and processes operating in shallow hydrothermal systems. This paper reports a long-term record of Cl-Br concentrations and δ37Cl signatures of lake water and fumaroles from the active crater of Poás volcano (Costa Rica), where surface expressions of magmatic-hydrothermal activity have shown substantial periodic changes over the last decades. Both the hyperacid water of its crater lake (Laguna Caliente) and subaerial fumaroles show significant temporal variability in Cl-Br concentrations, Br/Cl ratios and δ37Cl, reflecting variations in the mode and magnitude of volatile transfer. The δ37Cl signatures of the lake, covering the period 1985-2012, show fluctuations between + 0.02 ± 0.06‰ and + 1.15 ± 0.09‰. Condensate samples from adjacent fumaroles on the southern shore, collected during the interval (2010-2012) with strong changes in gas temperature (107-763°C), display a much larger range from - 0.43 ± 0.09‰ to + 14.09 ± 0.08‰. Most of the variations in Cl isotope, Br/Cl and concentration signals can be attributed to interaction between magma-derived gas and liquid water in the volcanic-hydrothermal system below the crater. The δ37Cl were lowest and closest to magmatic values in (1) fumarolic gas that experienced little or no interaction with subsurface water and followed a relatively dry pathway, and (2) water that captured the bulk of magmatic halogen output so that no phase separation could induce fractionation. In contrast, elevated δ37Cl can be explained by partial scavenging and fractionation during subsurface gas-liquid interaction. Hence, strong Cl isotope fractionation leading to very high δ37Cl in Poás' fumaroles indicates that they followed a wet pathway. Highest δ37Cl values in the lake water were found mostly in periods when it received a significant input from subaqueous fumaroles or when high temperatures and low pH caused HCl evaporation. It is

  19. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment.

    PubMed

    Kulkarni, Pranav; Chellam, Shankararaman

    2010-09-01

    Artificial neural network (ANN) models were developed to predict disinfection by-product (DBP) formation during municipal drinking water treatment using the Information Collection Rule Treatment Studies database complied by the United States Environmental Protection Agency. The formation of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halide (TOX) upon chlorination of untreated water, and after conventional treatment, granular activated carbon treatment, and nanofiltration were quantified using ANNs. Highly accurate predictions of DBP concentrations were possible using physically meaningful water quality parameters as ANN inputs including dissolved organic carbon (DOC) concentration, ultraviolet absorbance at 254nm and one cm path length (UV(254)), bromide ion concentration (Br(-)), chlorine dose, chlorination pH, contact time, and reaction temperature. This highlights the ability of ANNs to closely capture the highly complex and non-linear relationships underlying DBP formation. Accurate simulations suggest the potential use of ANNs for process control and optimization, comparison of treatment alternatives for DBP control prior to piloting, and even to reduce the number of experiments to evaluate water quality variations when operating conditions are changed. Changes in THM and HAA speciation and bromine substitution patterns following treatment are also discussed.

  20. Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data.

    PubMed

    Sekimoto, Shun; Ebihara, Mitsuru

    2013-07-02

    Trace amounts of three halogens (chlorine, bromine, and iodine) were determined using radiochemical neutron activation analysis (RNAA) for nine sedimentary rocks and three rhyolite samples. To obtain high-quality analytical data, the radiochemical procedure of RNAA was improved by lowering the background in gamma-ray spectrometry and completing the chemical procedure more rapidly than in conventional procedures. A comparison of the RNAA data of Br and I with corresponding inductively coupled plasma mass spectrometry (ICPMS) literature data revealed that the values obtained by ICPMS coupled with pyrohydrolysis preconcentration were systematically lower than the RNAA data for some reference samples, suggesting that the quantitative collection of Br and I cannot always be achieved by the pyrohydrolysis for some solid samples. The RNAA data of three halogens can classify sedimentary rock reference samples into two groups (the samples from inland water and those from seawater), implying the geochemical significance of halogen data.

  1. [Inactivation of the chlorine-resistant bacteria isolated from the drinking water distribution system].

    PubMed

    Chen, Yu-Qiao; Duan, Xiao-Di; Lu, Pin-Pin; Wang, Qian; Zhang, Xiao-Jian; Chen, Chao

    2012-01-01

    Inactivation experiments of seven strains of chlorine-resistant bacteria, isolated from a drinking water distribution system, were conducted with four kinds of disinfectants. All the bacteria showed high resistance to chlorine, especially for Mycobacterium mucogenicum. The CT value of 99.9% inactivation for M. mucogenicum, Sphingomonas sanguinis and Methylobacterium were 120 mg x (L x min)(-1), 7 mg x (L x min)(-1) and 4 mg x (L x min)(-1), respectively. The results of inactivation experiments showed that chlorine dioxide and potassium monopersulfate could inactive 5 lg of M. mucogenicum within 30 min, which showed significantly higher efficiency than free chlorine and monochloramine. Free chlorine was less effective because the disinfectant decayed very quickly. Chloramination needed higher concentration to meet the disinfection requirements. The verified dosage of disinfectants, which could effectively inactivate 99.9% of the highly chlorine-resistant M. mucogenicum within 1 h, were 3.0 mg/L monochloramine, 1.0 mg/L chlorine dioxide (as Cl2), and 1.0 mg/L potassium monopersulfate (as Cl2). It was suggested that the water treatment plants increase the concentration of monochloramine or apply chlorine dioxide intermittently to control the disinfectant-resistant bacteria.

  2. Chlorine Dioxide Gas Sterilization under Square-Wave Conditions

    PubMed Central

    Jeng, David K.; Woodworth, Archie G.

    1990-01-01

    Experiments were designed to study chlorine dioxide (CD) gas sterilization under square-wave conditions. By using controlled humidity, gas concentration, and temperature at atmospheric pressure, standard biological indicators (BIs) and spore disks of environmental isolates were exposed to CD gas. The sporicidal activity of CD gas was found to be concentration dependent. Prehumidification enhanced the CD activity. The D values (time required for 90% inactivation) of Bacillus subtilis subsp. niger ATCC 9372 BIs were estimated to be 1.5, 2.5, and 4.2 min when exposed to CD concentrations of 30, 15, and 7 mg/liter, respectively, at 23°C and ambient (20 to 40%) relative humidity (RH). Survivor tailings were observed. Prehumidification of BIs to 70 to 75% RH in an environmental chamber for 30 min resulted in a D value of 1.6 min after exposure to a concentration of 6 to 7 mg of CD per liter at 23°C and eliminated survivor tailing. Prolonging prehumidification at 70 to 75% RH for up to 16 h did not further improve the inactivation rate. Prehumidification by ultrasonic nebulization was found to be more effective than prehumidification in the environmental chamber, improving the D value to 0.55 min at a CD concentration of 6 to 7 mg/liter. Based on the current observations, CD gas is estimated, on a molar concentration basis, to be 1,075 times more potent than ethylene oxide as a sterilant at 30°C. A comparative study showed B. subtilis var. niger BIs were more resistant than other types of BIs and most of the tested bacterial spores of environmental isolates. PMID:16348127

  3. Chill water additive controls transfer of Salmonella and Campylobacter by improved chlorine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In earlier work, we showed that a proprietary additive (T-128) maintains chlorine activity in the presence of organic material such as broiler parts. T-128 improves the efficacy of chlorine to control transfer of Campylobacter and Salmonella from inoculated wings to un-inoculated wings during immer...

  4. [The effectiveness of ultralow doses and concentrations of biologically active compounds].

    PubMed

    Ashmarin, I P; Lelekova, T V; Sanzhieva, L Ts

    1992-01-01

    Numerous data of literature are analysed on the biological activity of ultra-low (10(-12)-10(-19) M) concentrations and corresponding doses of same bioregulators. Our own data are presented on the modulation of lymphatic vessel contractility by peptides (thyroliberin, defensin, and tuftsin) in concentrations ranging from 10(-13) to 10(-16) M. Hypothetic mechanisms of these phenomena are discussed.

  5. Chlorinated Biphenyl Quinones and Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid Sulfotransferase hSULT2A1

    PubMed Central

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M.; Robertson, Larry W.; Duffel, Michael W.

    2013-01-01

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2′-chlorophenyl-2,5-benzoquinone (2′-Cl-BQ), 4′-chlorophenyl-2,5-benzoquinone (4′-Cl-BQ), 4′-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4′-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1. PMID:24059442

  6. Changes in HTO and OBT activity concentrations in the Perch Lake aquatic ecosystem.

    PubMed

    Kim, S B; Farrow, F; Bredlaw, M; Stuart, M

    2016-12-01

    Perch Lake, a small shallow shield lake located on the Chalk River Laboratories (CRL) site, contains elevated levels of tritium due to inputs from a nearby nuclear waste management area. The releases have been going on for many years but tritium levels in Perch Lake have been gradually decreasing since about year 2000. Lake water, sediments, aquatic plants, clams and fish were collected during the summer and fall of 2003 and 2013 at three locations in the lake. HTO activity concentrations were measured in all samples and OBT activity concentrations were measured in sediments, plants, clams and fish. In 2003, 2013, HTO activity concentrations in lake water were roughly uniform in time and space, except close to the shoreline where concentrations were fluctuating according to stream water and groundwater tritium levels in streams entering the lake. HTO activity concentrations of biota were similar to concentrations in lake water at the site where they were collected. OBT activity concentrations in biota were not always correlating with the lake water HTO levels. OBT to HTO ratios were found to be less than 1 for aquatic plants, around 1 for clams and fish and above 1 for birds reared on the shore of the lake.

  7. In Situ Thermal Treatment of Chlorinated Solvents: Fundamentals and Field Applications

    EPA Pesticide Factsheets

    This report contains information about the use of in situ thermal treatment technologies to treat chlorinated solvents in source zones containing free-phase contamination or high concentrations of contaminants.

  8. Altered Biomarkers of Mucosal Immunity and Reduced Vaginal Lactobacillus Concentrations in Sexually Active Female Adolescents

    PubMed Central

    Madan, Rebecca Pellett; Carpenter, Colleen; Fiedler, Tina; Kalyoussef, Sabah; McAndrew, Thomas C.; Viswanathan, Shankar; Kim, Mimi; Keller, Marla J.; Fredricks, David N.; Herold, Betsy C.

    2012-01-01

    Background Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. Methodology/Principal Findings Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15–18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. Conclusions/Significance Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females. PMID:22808157

  9. Distribution of chlorine in chlorinated spruce and birch wood as determined by TEM-EDXA. [Transmission electron microscopy - energy dispersive x-ray analysis

    SciTech Connect

    Kuang, S.J.; Saka, S.; Goring, D.A.I.

    1983-01-01

    The chlorine concentrations of lignin in the cell corner middle lamella and secondary wall of chlorinated spruce tracheids and birch fibers were determined by the TEM-EDXA technique. In both woods, the chlorine reacted very rapidly with lignin, but the extent of the reaction was greater in the secondary wall than in the cell corner middle lamella. The chlorolignin in the cell corner middle lamella was more easily removed by alkali extraction than that in the secondary wall for both spruce tracheids and birch fibers. 19 references, 1 figure, 6 tables.

  10. Inactivation of Giardia lamblia and Giardia canis cysts by combined and free chlorine.

    PubMed Central

    Kong, L I; Swango, L J; Blagburn, B L; Hendrix, C M; Williams, D E; Worley, S D

    1988-01-01

    Free chlorine and a combined organic N-chloramine (3-chloro-4,4-dimethyl-2-oxazolidinone, compound 1) were compared for efficacy as disinfectants against an admixture of cysts of Giardia lamblia and Giardia canis in water solution under a variety of test conditions; variables were pH, temperature, and water quality. In general, compound 1 was found to reduce the giardial excystation in the solutions at lower concentration or shorter contact time at a given total chlorine concentration than did free chlorine. PMID:3202635

  11. Reactions of aqueous chlorine and chlorine dioxide with model food compounds.

    PubMed Central

    Fukayama, M Y; Tan, H; Wheeler, W B; Wei, C I

    1986-01-01

    Chlorine and chlorine dioxide (ClO2), common disinfecting and bleaching chemicals used in the food industry, are potent oxidizing and chlorinating agents. Unfortunately, little is known about the nature of the reactions of chlorine with organic food constituents. This presentation reviews published information concerning the reactions of chlorine gas (Cl2[g]), aqueous chlorine, and ClO2 with model food compounds, the fate of chlorine during the chlorination of specific food products, and the potential toxicity of the reaction products. Fatty acids and their methyl esters react with chlorine with the degree of incorporation corresponding to their degree of unsaturation. Aqueous chlorine oxidizes and chlorinates lipids and amino acids much more readily than ClO2. Several amino acids are highly susceptible to oxidation and chlorination by chlorine compounds. Reactions of chlorine and ClO2 with several food products, including flour and shrimp, have also been characterized. In one model system, 99% of Cl2(g) either reacted with components of flour or was consumed by oxidation/chlorination reactions. The lipids extracted from the chlorinated flour contained significant amounts of chlorine. Exposure of shrimp to hypochlorous acid (HOCl) solution resulted in significant incorporation of chlorine into the edible portion. Although significant quantities of chlorine can be incorporated into specific model compounds and food products, the health risks associated with exposure to chlorinated organic products are unknown. Preliminary studies using the Ames Salmonella/microsome mutagenicity assay indicate that the reaction products from mixtures of aqueous chlorine and various lipids or tryptophan are nonmutagenic. Nevertheless, additional studies are warranted, so that the toxicological significance of these reaction products can be understood more fully. PMID:3545804

  12. On the calculation of activity concentrations and nuclide ratios from measurements of atmospheric radioactivity.

    PubMed

    Axelsson, A; Ringbom, A

    2014-09-01

    Motivated by the need for consistent use of concepts central to the reporting of results from measurements of atmospheric radioactivity, we discuss some properties of the methods commonly used. Different expressions for decay correction of the activity concentration for parent-daughter decay pairs are presented, and it is suggested that this correction should be performed assuming parent-daughter ingrowth in the sample during the entire measurement process. We note that, as has already been suggested by others, activities rather than activity concentrations should be used when nuclide ratios are calculated. In addition, expressions that can be used to transform activity concentrations to activity ratios are presented. Finally we note that statistical uncertainties for nuclide ratios can be properly calculated using the exact solution to the problem of confidence intervals for a ratio of two jointly normally distributed variables, the so-called Fieller׳s theorem.

  13. 40 CFR 704.43 - Chlorinated naphthalenes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weight of chlorine. (2) Import means to import in bulk form or as part of a mixture. (3) Isomeric ratio... the chlorine atom(s) on the naphthalene. (4) Polychlorinated biphenyl means any chemical...

  14. Chlorinous flavor perception in drinking water.

    PubMed

    Piriou, P; Mackey, E D; Suffet, I H; Bruchet, A

    2004-01-01

    Chlorinous flavors at the tap are the leading cause of customers' complaints and dissatisfaction with drinking water. To characterize consumer perception and acceptance to chlorinous tastes, extensive taste testing was performed with both trained panelists and average consumers. Taste testing with trained panelists showed that chlorine perception is underestimated by disinfectant flavor thresholds reported in the literature. However, trained panelists significantly overestimate the average consumer's ability to perceive chlorine. In addition, consumer perception seems to be influenced by the chlorination practices of the country they live in. Among water quality characteristics that may influence chlorine perception, temperature was not found to induce any significant change. The influence of total dissolved solids (TDS) on chlorine perception remains unclear and, as reported elsewhere, background tastes such as musty, may significantly impact chlorine threshold.

  15. Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina

    PubMed Central

    2014-01-01

    On the basis of X-ray diffraction and mass spectrometric analysis of carrier γ-Al2O3 and catalysts CuCl2/CuCl on its surface, the chemical structure of the active centers of two types oxidative chlorination catalysts applied and permeated type of industrial brands “Harshow” and “MEDС-B” was investigated. On the basis of quantum-mechanical theory of the crystal, field complexes were detected by the presence of CuCl2 cation stoichiometry and structure of the proposed model crystal quasichemical industrial catalyst permeated type MEDС-B for oxidative chlorination of ethylene. On the basis of quantum-mechanical calculations, we propose a new mechanism of catalysis crystal quasichemical oxidative chlorination of ethylene reaction for the catalysts of this type (MEDС-B) and confirmed the possibility of such a mechanism after the analysis of mass spectrometric studies of the active phase (H2 [CuCl4]) catalyst oxidative chlorination of ethylene. The possibility of the formation of atomic and molecular chlorine on the oxidative chlorination of ethylene catalyst surface during Deacon reaction was displaying, which may react with ethylene to produce 1,2-dichloroethane. For the active phase (H [CuCl2]), catalyst offered another model of the metal complex catalyst oxidative chlorination of ethylene deposited type (firm ‘Harshow,’ USA) and the mechanism of catalysis of oxidative chlorination of ethylene with this catalyst. PMID:25258594

  16. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Semiz, Deniz Karsli; Solak, M Halil

    2010-05-01

    This study is designed for the determination of metal concentrations, antioxidant activity potentials and total phenolics of Amanita caesarea, Clitocybe geotropa and Leucoagaricus pudicus. Concentrations of four heavy metals (Pb, Cd, Cr, Ni) and five minor elements (Zn, Fe, Mn, Cu, Co) are determined. In the case of A. caesarea, Cr and Ni concentrations are found in a high level. Concentrations of the metals are found to be within safe limits for C. geotropa. In beta-carotene/linoleic acid test, L. pudicus showed the highest activity potential. In DPPH system, A. caesarea showed 79.4% scavenging ability. Additionally, reducing power and chelating capacity of the mushrooms increased with concentration. The strongest super-oxide anion scavenger was A. caesarea. In the case of total phenolics, L. pudicus found to have the highest content.

  17. Activation of the Escherichia coli marA/soxS/rob regulon in response to transcriptional activator concentration.

    PubMed

    Martin, Robert G; Bartlett, Emily S; Rosner, Judah L; Wall, Michael E

    2008-07-04

    The paralogous transcriptional activators MarA, SoxS, and Rob activate a common set of promoters, the marA/soxS/rob regulon of Escherichia coli, by binding a cognate site (marbox) upstream of each promoter. The extent of activation varies from one promoter to another and is only poorly correlated with the in vitro affinity of the activator for the specific marbox. Here, we examine the dependence of promoter activation on the level of activator in vivo by manipulating the steady-state concentrations of MarA and SoxS in Lon protease mutants and by measuring promoter activation using lacZ transcriptional fusions. We found that: (i) the MarA concentrations needed for half-maximal stimulation varied by at least 19-fold among the 10 promoters tested; (ii) most marboxes were not saturated when there were 24,000 molecules of MarA per cell; (iii) the correlation between the MarA concentration needed for half-maximal promoter activity in vivo and marbox binding affinity in vitro was poor; and (iv) the two activators differed in their promoter activation profiles. The marRAB and sodA promoters could both be saturated by MarA and SoxS in vivo. However, saturation by MarA resulted in greater marRAB and lesser sodA transcription than did saturation by SoxS, implying that the two activators interact with RNA polymerase in different ways at the different promoters. Thus, the concentration and nature of activator determine which regulon promoters are activated, as well as the extent of their activation.

  18. Perchlorate production by photodecomposition of aqueous chlorine solutions.

    PubMed

    Rao, Balaji; Estrada, Nubia; McGee, Shelly; Mangold, Jerry; Gu, Baohua; Jackson, W Andrew

    2012-11-06

    Aqueous chlorine solutions (defined as chlorine solutions (Cl(2,T)) containing solely or a combination of molecular chlorine (Cl(2)), hypochlorous acid (HOCl), and hypochlorite (OCl(-))) are known to produce toxic inorganic disinfection byproduct (e.g., chlorate and chlorite) through photoactivated transformations. Recent reports of perchlorate (ClO(4)(-)) production-a well-known thyroid hormone disruptor- from stored bleach solutions indicates the presence of unexplored transformation pathway(s). The evaluation of this potential ClO(4)(-) source is important given the widespread use of aqueous chlorine as a disinfectant. In this study, we perform detailed rate analysis of ClO(4)(-) generation from aqueous chlorine under varying environmental conditions including ultraviolet (UV) light sources, intensity, solution pH, and Cl(2,T) concentrations. Our results show that ClO(4)(-) is produced upon UV exposure of aqueous chlorine solutions with yields ranging from 0.09 × 10(-3) to 9.2 × 10(-3)% for all experimental conditions. The amount of ClO(4)(-) produced depends on the starting concentrations of Cl(2,T) and ClO(3)(-), UV source wavelength, and solution pH, but it is independent of light intensity. We hypothesize a mechanistic pathway derived from known reactions of Cl(2,T) photodecomposition that involves the reaction of Cl radicals with ClO(3)(-) to produce ClO(4)(-) with calculated rate coefficient (k(ClO4-)) of (4-40) × 10(5) M(-1) s(-1) and (3-250) × 10(5) M(-1) s(-1) for UV-B/C and UV-A, respectively. The measured ClO(4)(-) concentrations for both UV-B and UV-C experiments agreed well with our model (R(2) = 0.88-0.99), except under UV-A light exposure (R(2) = 0.52-0.93), suggesting the possible involvement of additional pathways at higher wavelengths. Based on our results, phototransformation of aqueous chlorine solutions at concentrations relevant to drinking water treatment would result in ClO(4)(-) concentrations (~0.1 μg L(-1)) much below the proposed

  19. Zinc and iron concentration and SOD activity in human semen and seminal plasma.

    PubMed

    Marzec-Wróblewska, Urszula; Kamiński, Piotr; Lakota, Paweł; Szymański, Marek; Wasilow, Karolina; Ludwikowski, Grzegorz; Kuligowska-Prusińska, Magdalena; Odrowąż-Sypniewska, Grażyna; Stuczyński, Tomasz; Michałkiewicz, Jacek

    2011-10-01

    The aim of the present study was to measure zinc (Zn) and iron (Fe) concentration in human semen and superoxide dismutase (SOD) activity in seminal plasma and correlate the results with sperm quality. Semen samples were obtained from men (N = 168) undergoing routine infertility evaluation. The study design included two groups based on the ejaculate parameters. Group I (n = 39) consisted of males with normal ejaculate (normozoospermia), and group II (n = 129) consisted of males with pathological spermiogram. Seminal Zn and Fe were measured in 162 samples (group I, n = 38; group II, n = 124) and SOD activity in 149 samples (group I, n = 37; group II, n = 112). Correlations were found between SOD activity and Fe and Zn concentration, and between Fe and Zn concentration. SOD activity was negatively associated with volume of semen and positively associated with rapid progressive motility, nonprogressive motility, and concentration. Negative correlation was stated between Fe concentration and normal morphology. Mean SOD activity in seminal plasma of semen from men of group I was higher than in seminal plasma of semen from men of group II. Fe concentration was higher in teratozoospermic males than in males with normal morphology of spermatozoa in group II. Our results suggest that Fe may influence spermatozoa morphology.

  20. Behavior of a chlorinated ethene plume following source-area treatment with Fenton's reagent

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Casey, C.C.

    2005-01-01

    Monitoring data collected over a 6-year period show that a plume of chlorinated ethene-contaminated ground water has contracted significantly following treatment of the contaminant source area using in situ oxidation. Prior to treatment (1998), concentrations of perchloroethene (PCE) exceeded 4500 ??g/L in a contaminant source area associated with a municipal landfill in Kings Bay, Georgia. The plume emanating from this source area was characterized by vinyl chloride (VC) concentrations exceeding 800 ??g/L. In situ oxidation using Fenton's reagent lowered PCE concentrations in the source area below 100 ??g/L, and PCE concentrations have not rebounded above this level since treatment. In the 6 years following treatment, VC concentrations in the plume have decreased significantly. These concentration declines can be attributed to the movement of Fenton's reagent-treated water downgradient through the system, the cessation of a previously installed pump-and-treat system, and the significant natural attenuation capacity of this anoxic aquifer. While in situ oxidation briefly decreased the abundance and activity of microorganisms in the source area, this activity rebounded in <6 months. Nevertheless, the shift from sulfate-reducing to Fe(III)-reducing conditions induced by Fenton's treatment may have decreased the efficiency of reductive dechlorination in the injection zone. The results of this study indicate that source-area removal actions, particularly when applied to ground water systems that have significant natural attenuation capacity, can be effective in decreasing the areal extent and contaminant concentrations of chlorinated ethene plumes. Copyright ?? 2005 National Ground Water Association.

  1. STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS

    EPA Science Inventory

    The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...

  2. Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool.

    PubMed

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2016-11-15

    Ultraviolet (UV) irradiation and chlorination are commonly used together in treatment of swimming pool water because they function as complementary disinfectants and because UV-based processes have been shown to promote photodecay of chloramines. However, UV-based treatment also has the potential to promote formation of some disinfection byproducts (DBPs). As a result, the overall effects of UV irradiation with chlorination on swimming pool chemistry remain unclear. To address this issue, a three-year study was conducted in a chlorinated, indoor swimming pool under three different operating conditions: conventional chlorination (1st year) which served as a control, chlorination augmented by MP UV irradiation (2nd year), and chlorination augmented by LP UV irradiation (3rd year). Water samples were collected from the pool for measurement of pH, temperature, total alkalinity, free and combined chlorine, eleven volatile DBPs, and urea concentration. After installation of MP UV, the concentrations of most volatile DBPs decreased; similar effects were observed after inclusion of LP UV. Collectively, these results imply an overall improvement in water quality as a result of the inclusion of the both UV systems. In general, MP UV was more efficient than LP UV for reducing the concentrations of most of the volatile DBPs measured in this pool. However, a need exists to standardize the application of UV systems in recreational water settings.

  3. Impact of chlorine disinfectants on dissolution of the lead corrosion product PbO2.

    PubMed

    Xie, Yanjiao; Wang, Yin; Giammar, Daniel E

    2010-09-15

    Plattnerite (β-PbO(2)) is a corrosion product that develops on lead pipes that have been in contact with free chlorine present as a residual disinfectant. The reductive dissolution of PbO(2) can cause elevated lead concentrations in tap water when the residual disinfectant is switched from free chlorine to monochloramine. The objectives of this study were to quantify plattnerite dissolution rates in the presence of chlorine disinfectants, gain insights into dissolution mechanisms, and measure plattnerite's equilibrium solubility in the presence of free chlorine. The effects of free chlorine and monochloramine on the dissolution rates of plattnerite were quantified in completely mixed continuous-flow reactors at relevant pH and dissolved inorganic carbon conditions. Plattnerite dissolution rates decreased in the following order: no disinfectant > monochloramine > chlorine, which was consistent with the trend in the redox potential. Compared with experiments without disinfectant, monochloramine inhibited plattnerite dissolution in continuous-flow experiments. Although free chlorine maintained steady-state lead concentrations below the action level of 15 μg/L in flow-through experiments, in batch experiments lead concentrations exceeded the action level for longer residence times and approached an equilibrium value that was several orders of magnitude higher than that predicted from available thermodynamic data.

  4. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  5. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  6. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  7. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated polyethylene identified in this section may be safely used as articles or components of articles that...

  8. BOOSTER CHLORINATION FOR MANAGING DISINFECTANT RESIDUALS

    EPA Science Inventory

    Booster chlorination is an approach to residual maintenance in which chlorine is applied at strategic locations within the distribution system. Situations in which booster chlorination may be most effective for maintaining a residual are explained informally in the context of a ...

  9. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  10. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chlorine. 179.102-2 Section 179.102-2... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must...

  11. 21 CFR 173.300 - Chlorine dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Chlorine dioxide. 173.300 Section 173.300 Food and... FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.300 Chlorine dioxide. Chlorine dioxide (CAS Reg. No. 10049-04-4) may be safely used in food in accordance with...

  12. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  13. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  14. 49 CFR 179.102-2 - Chlorine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Chlorine. 179.102-2 Section 179.102-2... Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-2 Chlorine. (a) Each tank car used to transport chlorine must comply with all of the following: (1) Tanks must be fabricated from carbon...

  15. 40 CFR 704.45 - Chlorinated terphenyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... No. 61788-33-6, comprised of chlorinated ortho-, meta-, and paraterphenyl. (2) Extent of chlorination means the percent by weight of chlorine for each isomer (ortho, meta, and para). (3) Isomeric ratio means the ratios of ortho-, meta-, and parachlorinated terphenyls. (4) Polychlorinated biphenyl...

  16. An Easy Way To Make Chlorine Water

    NASA Astrophysics Data System (ADS)

    Holmes, L. H., Jr.

    1997-11-01

    Chlorine water can be made easily by mixing hypochlorite and hydrochloric acid. The equilibrium lies toward Cl2 in the reaction HOCl + HCl -> Cl2 + H2O and this can be used to make chlorine water from sodium hypochlorite and hydrochloric acid if the presence of NaCl in the chlorine water does not interfere with its use.

  17. Effect of chloride on the formation of volatile disinfection byproducts in chlorinated swimming pools.

    PubMed

    E, Yue; Bai, Hui; Lian, Lushi; Li, Jing; Blatchley, Ernest R

    2016-11-15

    Chloride can accumulate in chlorinated swimming pool water. Although substantial efforts have been made to examine the effects of halide ions on the formation of volatile disinfection byproducts (DBPs), most have focused on bromide. The effects of chloride ion concentration on the formation of volatile DBPs in swimming pools remain largely unstudied. In this study, chlorination of typical precursors and body fluid analogue (BFA) were investigated with variable chloride concentration and pH. The formation of three volatile DBPs (NCl3, CHCl3 and CNCHCl2) was observed to be linearly correlated with chloride concentration, both in bench experiments and in actual swimming pool water samples. Free chlorine consumption was also observed to increase with chloride concentration. These behaviors appear to be attributable to shifts in speciation of free chlorine, with higher chloride resulting in higher concentration of molecular chlorine (Cl2), which is much more reactive than HOCl. The results of this work suggest that changes in pool management strategies to promote low chloride concentration could be important for control of volatile DBPs in pools and to economize free chlorine usage.

  18. Influence of Concentration and Activation on Hydrogen Peroxide Diffusion through Dental Tissues In Vitro

    PubMed Central

    Torres, Carlos R. G.; Souza, Cristiane S.; Borges, Alessandra B.; Huhtala, Maria Filomena R. L.; Caneppele, Taciana M. F.

    2013-01-01

    This study evaluated the effect of physical and chemical activation on the diffusion time of different concentrations of hydrogen peroxide (HP) bleaching agents through enamel and dentin. One hundred and twenty bovine cylindrical specimens were divided into six groups (n = 20): 20% HP; 20% HP with light activation; 20% HP with manganese gluconate; 35% HP; 35% HP with light activation; and 35% HP with manganese gluconate. The specimens were fixed over transparent epoxy wells with internal cavities to simulate a pulpal chamber. This chamber was filled with an enzymatic reagent to simulate pulpal fluid. The bleaching gels were applied on enamel surface and the image of the pulpal fluid was captured by a video camera to monitor the time of peroxide penetration in each specimen. ANOVA analysis showed that concentration and type of activation of bleaching gel significantly influenced the diffusion time of HP (P < 0.05). 35% HP showed the lowest diffusion times compared to the groups with 20% HP gel. The light activation of HP decreased significantly the diffusion time compared to chemical activation. The highest diffusion time was obtained with 20% HP chemically activated. The diffusion time of HP was dependent on activation and concentration of HP. The higher concentration of HP diffused through dental tissues more quickly. PMID:24163616

  19. A Comparison of Barley Malt Amylolytic Enzyme Activities and Malt Sugar Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to test the hypothesis that barley malt alpha-amylase activity would correlate better with malt sugar concentrations than the activities of beta-amylase, or limit dextrinase. Seeds of four two-row and four six-row North American elite barley cultivars were steeped and germin...

  20. A Comparison of Barley Malt Amylolytic Enzyme Activities and Malt Sugar Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to test the hypothesis that barley malt alpha-amylase activity would correlate better with malt sugar concentrations than the activities of beta-amylase, or limit dextrinase. Seeds of four two-row and four six-row North American elite barley cultivars were steeped and germi...

  1. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater.

    PubMed

    Camacho-Muñoz, Dolores; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2014-09-01

    The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295μgL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater.

  2. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

  3. Comparative Toxicity of Chlorinated Saline and Freshwater Wastewater Effluents to Marine Organisms.

    PubMed

    Yang, Mengting; Liu, Jiaqi; Zhang, Xiangru; Richardson, Susan D

    2015-12-15

    Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms.

  4. Characterization of organic precursors for chlorinous odor before and after ozonation by a fractionation technique.

    PubMed

    Phattarapattamawong, Songkeart; Echigo, Shinya; I