Sample records for active chromatin hub

  1. An anti-silencer– and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development

    PubMed Central

    Hao, Bingtao; Naik, Abani Kanta; Watanabe, Akiko; Tanaka, Hirokazu; Chen, Liang; Richards, Hunter W.; Kondo, Motonari; Taniuchi, Ichiro; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2015-01-01

    Rag1 and Rag2 gene expression in CD4+CD8+ double-positive (DP) thymocytes depends on the activity of a distant anti-silencer element (ASE) that counteracts the activity of an intergenic silencer. However, the mechanistic basis for ASE activity is unknown. Here, we show that the ASE physically interacts with the distant Rag1 and Rag2 gene promoters in DP thymocytes, bringing the two promoters together to form an active chromatin hub. Moreover, we show that the ASE functions as a classical enhancer that can potently activate these promoters in the absence of the silencer or other locus elements. In thymocytes lacking the chromatin organizer SATB1, we identified a partial defect in Tcra gene rearrangement that was associated with reduced expression of Rag1 and Rag2 at the DP stage. SATB1 binds to the ASE and Rag promoters, facilitating inclusion of Rag2 in the chromatin hub and the loading of RNA polymerase II to both the Rag1 and Rag2 promoters. Our results provide a novel framework for understanding ASE function and demonstrate a novel role for SATB1 as a regulator of Rag locus organization and gene expression in DP thymocytes. PMID:25847946

  2. LCR 5' hypersensitive site specificity for globin gene activation within the active chromatin hub.

    PubMed

    Peterson, Kenneth R; Fedosyuk, Halyna; Harju-Baker, Susanna

    2012-12-01

    The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (β(m)), coupled to an intact LCR, a 5'HS3 complete deletion (5'ΔHS3) or a 5'HS3 core deletion (5'ΔHS3c). The 5'ΔHS3c mice expressed β(m)-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5'HS3 core was not required for β(m)-globin expression, previous work showed that the 5'HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5'HS complete deletion mice, except β(m)-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction.

  3. LCR 5′ hypersensitive site specificity for globin gene activation within the active chromatin hub

    PubMed Central

    Peterson, Kenneth R.; Fedosyuk, Halyna; Harju-Baker, Susanna

    2012-01-01

    The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (βm), coupled to an intact LCR, a 5′HS3 complete deletion (5′ΔHS3) or a 5′HS3 core deletion (5′ΔHS3c). The 5′ΔHS3c mice expressed βm-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5′HS3 core was not required for βm-globin expression, previous work showed that the 5′HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5′HS complete deletion mice, except βm-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction. PMID:23042246

  4. Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Boulos, R. E.; Arneodo, A.; Jensen, P.; Audit, B.

    2013-09-01

    We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome—“master” replication origins—corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.

  5. Chromatin insulation by a transcriptional activator

    PubMed Central

    Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.

    2003-01-01

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916

  6. Nucleolar chromatin organization at different activities of soybean root meristematic cell nucleoli.

    PubMed

    Stępiński, Dariusz

    2013-06-01

    Nucleolar chromatin, including nucleolus-associated chromatin as well as active and inactive condensed ribosomal DNA (rDNA) chromatin, derives mostly from secondary constrictions known as nucleolus organizer regions containing rDNA genes on nucleolus-forming chromosomes. This chromatin may occupy different nucleolar positions being in various condensation states which may imply different rDNA transcriptional competence. Sections of nucleoli originating from root meristematic cells of soybean seedlings grown at 25 °C (the control), then subjected to chilling stress (10 °C), and next transferred again to 25 °C (the recovery) were used to measure profile areas occupied by nucleolar condensed chromatin disclosed with sodium hydroxide methylation-acetylation plus uranyl acetate technique. The biggest total area of condensed chromatin was found in the nucleoli of chilled plants, while the smallest was found in those of recovered plants in relation to the amounts of chromatin in the control nucleoli. The condensed nucleolar chromatin, in the form of different-sized and different-shaped clumps, was mainly located in fibrillar centers. One can suppose that changes of condensed rDNA chromatin amounts might be a mechanism controlling the number of transcriptionally active rDNA genes as the nucleoli of plants grown under these experimental conditions show different transcriptional activity and morphology.

  7. Location of an intermediate hub for port activities

    NASA Astrophysics Data System (ADS)

    Burciu, Ş.; Ştefănică, C.; Roşca, E.; Dragu, V.; Ruscă, F.

    2015-11-01

    An intermediate hub might increase the accessibility level of ports but also hinterland and so it can be considered more than a facility with a transhipment role. These hubs might lead to the development of other transport services and enhance their role in gathering and covering economic centres within hinterlands and also getting the part of logistic facility for the ports, with effects on port utilization and its connectivity to global economy. A new location for a hub terminal leads to reduced transport distances within hinterland, with decreased transport costs and external effects, so with gains in people's life quality. Because the production and distribution systems are relatively fixed on short and medium term and the location decisions are strategic and on long term, the logistic chains activities location models have to consider the uncertainties regarding the possible future situations. In most models, production costs are considered equal, the location problem reducing itself to a problem that aims to minimize the total transport costs, meaning the transport problem. The main objective of the paper is to locate a hub terminal that links the producers of cereals that are going to be exported by naval transportation with the Romanian fluvial-maritime ports (Galaţi, Brăila). GIS environment can be used to integrate and analyse a great amount of data and has the ability of using functions as location - allocation models necessary both to private and public sector, being able to determine the optimal location for services like factories, warehouses, logistic platforms and other public services.

  8. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster

    PubMed Central

    Tsai, Yu-Cheng; Cooke, Nancy E.; Liebhaber, Stephen A.

    2016-01-01

    Abstract The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR ‘loops’ over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed ‘hCS chromatin hub’. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355

  9. Chromatin hydrodynamics.

    PubMed

    Bruinsma, Robijn; Grosberg, Alexander Y; Rabin, Yitzhak; Zidovska, Alexandra

    2014-05-06

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory-the two-fluid model-in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model-the Maxwell fluid-for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Chromatin Hydrodynamics

    PubMed Central

    Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra

    2014-01-01

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919

  11. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling

    PubMed Central

    Torigoe, Sharon E; Patel, Ashok; Khuong, Mai T; Bowman, Gregory D; Kadonaga, James T

    2013-01-01

    Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.00863.001 PMID:23986862

  12. CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation.

    PubMed

    Smith, Rebecca; Sellou, Hafida; Chapuis, Catherine; Huet, Sébastien; Timinszky, Gyula

    2018-05-04

    One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.

  13. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    PubMed Central

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2015-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336

  14. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  15. The activities of eukaryotic replication origins in chromatin.

    PubMed

    Weinreich, Michael; Palacios DeBeer, Madeleine A; Fox, Catherine A

    2004-03-15

    DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.

  16. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains

    PubMed Central

    Ulianov, Sergey V.; Khrameeva, Ekaterina E.; Gavrilov, Alexey A.; Flyamer, Ilya M.; Kos, Pavel; Mikhaleva, Elena A.; Penin, Aleksey A.; Logacheva, Maria D.; Imakaev, Maxim V.; Chertovich, Alexander; Gelfand, Mikhail S.; Shevelyov, Yuri Y.; Razin, Sergey V.

    2016-01-01

    Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)+ RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin. PMID:26518482

  17. Ribonucleic Acid Synthesis by Cucumber Chromatin

    PubMed Central

    Johnson, Kenneth D.; Purves, William K.

    1970-01-01

    When intact etiolated 2-day cucumber (Cucumis sativus) embryos were treated with indoleacetic acid (IAA), gibberellin A7 (GA7), or kinetin, chromatin derived from the embryonic axes exhibited an increased capacity to support RNA synthesis in either the presence or the absence of bacterial RNA polymerase. An IAA effect on cucumber RNA polymerase activity was evident after 4 hours of hormone treatment; the IAA effect on DNA template activity (bacterial RNA polymerase added) occurred after longer treatments (12 hours). GA7 also promoted template activity, but again only after a prior stimulation of endogenous chromatin activity. After 12 hours of kinetin treatment, both endogenous chromatin and DNA template activities were substantially above control values, but longer kinetin treatments caused these activities to decline in magnitude. When chromatin was prepared from hypocotyl segments that were floated on a GA7 solution, a GA-induced increase in endogenous chromatin activity occurred, but only if cotyledon tissue was left attached to the segments during the period of hormone treatment. Age of the seedling tissue had a profound influence on the chromatin characteristics. With progression of development from the 2-day to the 4-day stage, the endogenous chromatin activity declined while the DNA template activity increased. PMID:16657509

  18. Changes of Template Activity and Proteins of Chromatin during Wheat Germination

    PubMed Central

    Yoshida, Kouichi; Sasaki, Kimiko

    1977-01-01

    Relationships between changes in template activity and composition of chromatin during germination of wheat embyros (Triticum aestivum L.) were investigated. The template activity of chromatin was determined with exogenous DNA-dependent RNA polymerase II (EC 2.7.7.6) prepared from wheat embryos. It was essentially constant for 18 hours of germination, corresponding to 2.5% of that of a native calf thymus DNA. Thereafter, the activity increased 2-fold and 5-fold at 24 and 60 hours of germination, respectively. Chromatin-associated proteins were separated into at least 22 distinct bands by sodium dodecyl sulfate gel electrophoresis throughout 60 hours of germination. Significant changes were observed in two nonhistone proteins, approximate molecular weights 59,000 and 39,000: the amount of the former was constant up to 18 hours, reduced for the period from 18 to 60 hours, and that of the latter was decreased for the period from 18 to 60 hours of germination. No change was observed in the number of histone components by acid-urea gel electrophoresis. Images PMID:16659879

  19. Application of Sequential Quadratic Programming to Minimize Smart Active Flap Rotor Hub Loads

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Leyland, Jane

    2014-01-01

    In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code (NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of practical constraints on the flap deflections have been considered. To validate the current application, two other optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind tunnel environment.

  20. Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system.

    PubMed

    Robinson, Karen M; Schultz, Michael C

    2005-03-22

    Major insights into the regulation of chromatin organization have stemmed from biochemical studies using Gal4-VP16, a chimeric transcriptional activator in which the DNA binding domain of Gal4p is fused to the activation domain of viral protein VP16. Unexpectedly, given previous intensive efforts to understand how Gal4-VP16 functions in the context of chromatin, we have uncovered a new mode of chromatin reorganization that is dependent on Gal4-VP16. This reorganization is performed by an activity in a crude DEAE (CD) fraction from budding yeast which also supports ATP-dependent assembly of physiologically spaced nucleosome arrays. Biochemical analysis reveals that the activity tightly associates with chromatin and reorganizes nucleosome arrays by a mechanism which is insensitive to ATP depletion after nucleosome assembly. It generates a chromatin organization in which a nucleosome is stably positioned immediately adjacent to Gal4p binding sites in the template DNA. Individual deletion of genes previously implicated in chromatin assembly and remodeling, namely, the histone chaperones NAP1, ASF1, and CAC1 and the SNF2-like DEAD/H ATPases SNF2, ISW1, ISW2, CHD1, SWR1, YFR038w, and SPT20, does not significantly perturb reorganization. Therefore, Gal4-VP16-directed chromatin reorganization in yeast can occur by an ATP-independent mechanism that does not require SAGA, SWI/SNF, Isw1, or Isw2 chromatin remodeling complexes.

  1. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

    PubMed Central

    Giresi, Paul G.; Lieb, Jason D.

    2009-01-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047

  2. Cooperativeness of the higher chromatin structure of the beta-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR.

    PubMed

    Fang, Xiangdong; Xiang, Ping; Yin, Wenxuan; Stamatoyannopoulos, George; Li, Qiliang

    2007-01-05

    High-level transcription of the globin genes requires the enhancement by a distant element, the locus control region (LCR). Such long-range regulation in vivo involves spatial interaction between transcriptional elements, with intervening chromatin looping out. It has been proposed that the clustering of the HS sites of the LCR, the active globin genes, as well as the remote 5' hypersensitive sites (HSs) (HS-60/-62 in mouse, HS-110 in human) and 3'HS1 forms a specific spatial chromatin structure, termed active chromatin hub (ACH). Here we report the effects of the HS3 deletions of the LCR on the spatial chromatin structure of the beta-globin locus as revealed by the chromatin conformation capture (3C) technology. The small HS3 core deletion (0.23 kb), but not the large HS3 deletion (2.3 kb), disrupted the spatial interactions among all the HS sites of the LCR, the beta-globin gene and 3'HS1. We have previously demonstrated that the large HS3 deletion barely impairs the structure of the LCR holocomplex, while the structure is significantly disrupted by the HS3 core deletion. Taken together, these results suggest that the formation of the ACH is dependent on a largely intact LCR structure. We propose that the ACH indeed is an extension of the LCR holocomplex.

  3. Chromatin Remodeling Factors Isw2 and Ino80 Regulate Checkpoint Activity and Chromatin Structure in S Phase

    PubMed Central

    Lee, Laura; Rodriguez, Jairo; Tsukiyama, Toshio

    2015-01-01

    When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism. PMID:25701287

  4. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters.

    PubMed

    Jessen, Walter J; Hoose, Scott A; Kilgore, Jessica A; Kladde, Michael P

    2006-03-01

    Transcriptional activation is often associated with chromatin remodeling. However, little is known about the dynamics of remodeling of nucleosome arrays in vivo. Upon induction of Saccharomyces cerevisiae PHO5, a novel kinetic assay of DNA methyltransferase accessibility showed that nucleosomes adjacent to the histone-free upstream activating sequence (UASp1) are disrupted earlier and at higher frequency in the cell population than are those more distal. Individually cloned molecules, each representing the chromatin state of a full promoter from a single cell, revealed multiple promoter classes with either no remodeling or variable numbers of disrupted nucleosomes. Individual promoters in the remodeled fraction were highly enriched for contiguous blocks of disrupted nucleosomes, the majority of which overlapped the UAS region. These results support a probabilistic model in which chromatin remodeling at PHO5 spreads from sites of transactivator association with DNA and attenuates with distance.

  5. Mutations close to a hub residue affect the distant active site of a GH1 β-glucosidase.

    PubMed

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2018-01-01

    The tertiary structure of proteins has been represented as a network, in which residues are nodes and their contacts are edges. Protein structure networks contain residues, called hubs or central, which are essential to form short connection pathways between any pair of nodes. Hence hub residues may effectively spread structural perturbations through the protein. To test whether modifications nearby to hub residues could affect the enzyme active site, mutations were introduced in the β-glycosidase Sfβgly (PDB-ID: 5CG0) directed to residues that form an α-helix (260-265) and a β-strand (335-337) close to one of its main hub residues, F251, which is approximately 14 Å from the Sfβgly active site. Replacement of residues A263 and A264, which side-chains project from the α-helix towards F251, decreased the rate of substrate hydrolysis. Mutation A263F was shown to weaken noncovalent interactions involved in transition state stabilization within the Sfβgly active site. Mutations placed on the opposite side of the same α-helix did not show these effects. Consistently, replacement of V336, which side-chain protrudes from a β-strand face towards F251, inactivated Sfβgly. Next to V336, mutation S337F also caused a decrease in noncovalent interactions involved in transition state stabilization. Therefore, we suggest that mutations A263F, A264F, V336F and S337F may directly perturb the position of the hub F251, which could propagate these perturbations into the Sfβgly active site through short connection pathways along the protein network.

  6. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin

    PubMed Central

    Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.

    2007-01-01

    DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217

  7. Hub Protein Controversy: Taking a Closer Look at Plant Stress Response Hubs

    PubMed Central

    Vandereyken, Katy; Van Leene, Jelle; De Coninck, Barbara; Cammue, Bruno P. A.

    2018-01-01

    Plant stress responses involve numerous changes at the molecular and cellular level and are regulated by highly complex signaling pathways. Studying protein-protein interactions (PPIs) and the resulting networks is therefore becoming increasingly important in understanding these responses. Crucial in PPI networks are the so-called hubs or hub proteins, commonly defined as the most highly connected central proteins in scale-free PPI networks. However, despite their importance, a growing amount of confusion and controversy seems to exist regarding hub protein identification, characterization and classification. In order to highlight these inconsistencies and stimulate further clarification, this review critically analyses the current knowledge on hub proteins in the plant interactome field. We focus on current hub protein definitions, including the properties generally seen as hub-defining, and the challenges and approaches associated with hub protein identification. Furthermore, we give an overview of the most important large-scale plant PPI studies of the last decade that identified hub proteins, pointing out the lack of overlap between different studies. As such, it appears that although major advances are being made in the plant interactome field, defining hub proteins is still heavily dependent on the quality, origin and interpretation of the acquired PPI data. Nevertheless, many hub proteins seem to have a reported role in the plant stress response, including transcription factors, protein kinases and phosphatases, ubiquitin proteasome system related proteins, (co-)chaperones and redox signaling proteins. A significant number of identified plant stress hubs are however still functionally uncharacterized, making them interesting targets for future research. This review clearly shows the ongoing improvements in the plant interactome field but also calls attention to the need for a more comprehensive and precise identification of hub proteins, allowing a more

  8. Assembly of transcriptionally inactive chromatin in vitro.

    PubMed

    Shanahan, M M; Kmiec, E B

    1989-07-01

    We have successfully uncoupled the previously interlocked activities of chromatin assembly and in vitro transcription promoted by the Xenopus oocyte S-150 cell-free extract. Our isolated fraction catalyzes extensive chromatin assembly measured both by changes in DNA topology and Micrococcal nuclease digestions. The assembly of chromatin is slowed by the exogenous addition of ATP. In the absence of exogenously added ATP, the fraction forms a chromatin template that is transcriptionally inert. Addition of small amounts of the HeLa cell extract (S-100) converts these templates into transcriptionally active ones without disrupting the chromatin structure. Our protocol defines a method for the isolation of a fraction from the Xenopus cell free extract that catalyzes the assembly of transcriptionally inactive chromatin. We characterize this reaction and establish conditions for the transcriptional activation of these inactive minichromosomes.

  9. Peptide Epitalon activates chromatin at the old age.

    PubMed

    Khavinson, Vladimir Kh; Lezhava, Teimuraz A; Monaselidze, Jamlet R; Jokhadze, Tinatin A; Dvalishvili, Nana A; Bablishvili, Nino K; Trofimova, Svetlana V

    2003-10-01

    OBJECTIVES and design. We have studied the effect of synthetic peptide Epitalon on the activity of ribosomal genes, denaturation parameters of total heterochromatin, polymorphism of structural C-heterochromatin and the variability of facultative heterochromatin in cultured lymphocytes of persons aged 76-80 years. The obtained data demonstrate that Epitalon induces the activation of ribosomal genes, decondensation of pericentromeric structural heterochromatin and the release of genes repressed due to the age-related condensation of euchromatic chromosome regions. Epitalon has shown its ability to activate chromatin by modifying heterochromatin and heterochromatinized chromosome regions in the cells of older persons.

  10. Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila

    PubMed Central

    Lim, Su Jun; Boyle, Patrick J.; Chinen, Madoka; Dale, Ryan K.; Lei, Elissa P.

    2013-01-01

    Chromatin insulators are functionally conserved DNA–protein complexes situated throughout the genome that organize independent transcriptional domains. Previous work implicated RNA as an important cofactor in chromatin insulator activity, although the precise mechanisms are not yet understood. Here we identify the exosome, the highly conserved major cellular 3′ to 5′ RNA degradation machinery, as a physical interactor of CP190-dependent chromatin insulator complexes in Drosophila. Genome-wide profiling of exosome by ChIP-seq in two different embryonic cell lines reveals extensive and specific overlap with the CP190, BEAF-32 and CTCF insulator proteins. Colocalization occurs mainly at promoters but also boundary elements such as Mcp, Fab-8, scs and scs′, which overlaps with a promoter. Surprisingly, exosome associates primarily with promoters but not gene bodies of active genes, arguing against simple cotranscriptional recruitment to RNA substrates. Similar to insulator proteins, exosome is also significantly enriched at divergently transcribed promoters. Directed ChIP of exosome in cell lines depleted of insulator proteins shows that CTCF is required specifically for exosome association at Mcp and Fab-8 but not other sites, suggesting that alternate mechanisms must also contribute to exosome chromatin recruitment. Taken together, our results reveal a novel positive relationship between exosome and chromatin insulators throughout the genome. PMID:23358822

  11. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    NASA Astrophysics Data System (ADS)

    Boulos, Rasha E.; Julienne, Hanna; Baker, Antoine; Chen, Chun-Long; Petryk, Nataliya; Kahli, Malik; dʼAubenton-Carafa, Yves; Goldar, Arach; Jensen, Pablo; Hyrien, Olivier; Thermes, Claude; Arneodo, Alain; Audit, Benjamin

    2014-11-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome.

  12. Chromatin potentiates transcription

    PubMed Central

    Nagai, Shigeki; Davis, Ralph E.; Mattei, Pierre Jean; Eagen, Kyle Patrick; Kornberg, Roger D.

    2017-01-01

    Chromatin isolated from the chromosomal locus of the PHO5 gene of yeast in a transcriptionally repressed state was transcribed with 12 pure proteins (80 polypeptides): RNA polymerase II, six general transcription factors, TFIIS, the Pho4 gene activator protein, and the SAGA, SWI/SNF, and Mediator complexes. Contrary to expectation, a nucleosome occluding the TATA box and transcription start sites did not impede transcription but rather, enhanced it: the level of chromatin transcription was at least sevenfold greater than that of naked DNA, and chromatin gave patterns of transcription start sites closely similar to those occurring in vivo, whereas naked DNA gave many aberrant transcripts. Both histone acetylation and trimethylation of H3K4 (H3K4me3) were important for chromatin transcription. The nucleosome, long known to serve as a general gene repressor, thus also performs an important positive role in transcription. PMID:28137832

  13. How Big is Too Big for Hubs: Marginal Profitability in Hub-and-Spoke Networks

    NASA Technical Reports Server (NTRS)

    Ross, Leola B.; Schmidt, Stephen J.

    1997-01-01

    Increasing the scale of hub operations at major airports has led to concerns about congestion at excessively large hubs. In this paper, we estimate the marginal cost of adding spokes to an existing hub network. We observe entry/non-entry decisions on potential spokes from existing hubs, and estimate both a variable profit function for providing service in markets using that spoke as well as the fixed costs of providing service to the spoke. We let the fixed costs depend upon the scale of operations at the hub, and find the hub size at which spoke service costs are minimized.

  14. Chromatin immunoprecipitation of mouse embryos.

    PubMed

    Voss, Anne K; Dixon, Mathew P; McLennan, Tamara; Kueh, Andrew J; Thomas, Tim

    2012-01-01

    During prenatal development, a large number of different cell types are formed, the vast majority of which contain identical genetic material. The basis of the great variety in cell phenotype and function is the differential expression of the approximately 25,000 genes in the mammalian genome. Transcriptional activity is regulated at many levels by proteins, including members of the basal transcriptional apparatus, DNA-binding transcription factors, and chromatin-binding proteins. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency, with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method to assess if chromatin modifications or proteins are present at a specific locus. ChIP involves the cross linking of DNA and associated proteins and immunoprecipitation using specific antibodies to DNA-associated proteins followed by examination of the co-precipitated DNA sequences or proteins. In the last few years, ChIP has become an essential technique for scientists studying transcriptional regulation and chromatin structure. Using ChIP on mouse embryos, we can document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development. Here, we describe a ChIP technique adapted for mouse embryos.

  15. Evidence for hubs in human functional brain networks

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E

    2013-01-01

    Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601

  16. Stator hub treatment study

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Hilvers, D. E.

    1974-01-01

    The results of an experimental research program to investigate the potential of improving compressor stall margin by the application of hub treatment are presented. Extensive tuft probing showed that the two-stage, 0.5 radius ratio compressor selected for the test was indeed hub critical. Circumferential groove and baffled wide blade angle slot hub treatments under the stators were tested. Performance measurements were made with total and static pressure probes, wall static pressure taps, flow angle measuring instrumentation and hot film anemometers. Stator hub treatment was not found to be effective in improving compressor stall margin by delaying the point of onset of rotating stall or in modifying compressor performance for any of the configurations tested. Extensive regions of separated flow were observed on the suction surface of the stators near the hub. However, the treatment did not delay the point where flow separation in the stator hub region becomes apparent.

  17. Sequence-Specific Targeting of Dosage Compensation in Drosophila Favors an Active Chromatin Context

    PubMed Central

    Gelbart, Marnie; Tolstorukov, Michael Y.; Plachetka, Annette; Kharchenko, Peter V.; Jung, Youngsook L.; Gorchakov, Andrey A.; Larschan, Erica; Gu, Tingting; Minoda, Aki; Riddle, Nicole C.; Schwartz, Yuri B.; Elgin, Sarah C. R.; Karpen, Gary H.; Pirrotta, Vincenzo; Kuroda, Mitzi I.; Park, Peter J.

    2012-01-01

    The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at “entry sites” that contain a consensus sequence motif (“MSL recognition element” or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome. PMID:22570616

  18. Chromatin condensation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Yang, Jing; Ji, Peng

    2016-09-02

    Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.

  19. Multiple-Localization and Hub Proteins

    PubMed Central

    Ota, Motonori; Gonja, Hideki; Koike, Ryotaro; Fukuchi, Satoshi

    2016-01-01

    Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing. PMID:27285823

  20. Aircraft Propeller Hub Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, Thomas R.; Peter, William H.

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spraymore » coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.« less

  1. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  2. A new fractionation assay, based on the size of formaldehyde-crosslinked, mildly sheared chromatin, delineates the chromatin structure at promoter regions

    PubMed Central

    Ishihara, Satoru; Varma, Rajat; Schwartz, Ronald H.

    2010-01-01

    To explore the higher order structure of transcribable chromatin in vivo, its local configuration was assessed through the accessibility of the chromatin to crosslinking with formaldehyde. The application of crosslinked and mildly sheared chromatin to sedimentation velocity centrifugation followed by size-fractionation of the DNA enabled us to biochemically distinguish between chromatin with heavily versus sparsely crosslinkable structures. The separated fractions showed a good correlation with gene expression profiles. Genes with poor crosslinking around the promoter region were actively transcribed, while transcripts were hardly detected from genes with extensive crosslinking in their promoter regions. For the inducible gene, Il2, the distribution of the promoter shifted in the gradient following T-cell receptor stimulation, consistent with a change in structure at this locus during activation. The kinetics of this switch preceded the chromatin change observed in a DNase I accessibility assay. Thus, this new chromatin fractionation technique has revealed a change in chromatin structure that has not been previously characterized. PMID:20371521

  3. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  4. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα.

    PubMed

    Ratman, Dariusz; Mylka, Viacheslav; Bougarne, Nadia; Pawlak, Michal; Caron, Sandrine; Hennuyer, Nathalie; Paumelle, Réjane; De Cauwer, Lode; Thommis, Jonathan; Rider, Mark H; Libert, Claude; Lievens, Sam; Tavernier, Jan; Staels, Bart; De Bosscher, Karolien

    2016-12-15

    Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters.

    PubMed

    Cremer, Marion; Schmid, Volker J; Kraus, Felix; Markaki, Yolanda; Hellmann, Ines; Maiser, Andreas; Leonhardt, Heinrich; John, Sam; Stamatoyannopoulos, John; Cremer, Thomas

    2017-08-07

    The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed

  6. Hubs versus Hub-Nots: A Comparison of Various U.S. Airports

    DOT National Transportation Integrated Search

    1996-01-01

    One of the major impacts of deregulation is the creation of major airport hubs. Deregulation helped to create an environment where major airlines benefit by using the hub system. The purpose of this paper is to examine possible differences between hu...

  7. Chromatin Computation

    PubMed Central

    Bryant, Barbara

    2012-01-01

    In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this “chromatin computer” to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal – and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines. PMID:22567109

  8. Ectopically tethered CP190 induces large-scale chromatin decondensation

    NASA Astrophysics Data System (ADS)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  9. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    PubMed Central

    Jégu, Teddy; Domenichini, Séverine; Blein, Thomas; Ariel, Federico; Christ, Aurélie; Kim, Soon-Kap; Crespi, Martin; Boutet-Mercey, Stéphanie; Mouille, Grégory; Bourge, Mickaël; Hirt, Heribert; Bergounioux, Catherine; Raynaud, Cécile; Benhamed, Moussa

    2015-01-01

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression. PMID:26457678

  10. The Centromere: Chromatin Foundation for the Kinetochore Machinery

    PubMed Central

    Fukagawa, Tatsuo; Earnshaw, William C.

    2014-01-01

    Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function. PMID:25203206

  11. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    PubMed

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-06-01

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. A Computer Lab Exploring Evolutionary Aspects of Chromatin Structure and Dynamics for an Undergraduate Chromatin Course

    ERIC Educational Resources Information Center

    Eirin-Lopez, Jose M.

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a…

  13. Runner hub construction for propeller type turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyster, P.J.; Yanek, E.J.

    1976-08-10

    A runner hub is described for a propeller type hydraulic turbine wherein the hub is constructed of at least a pair of arcuate segments. When the arcuate segments are assembled together, they form a hollow hub. Turnbuckles are provided within the hub attached to opposite hub segments and are adjustable to forcibly hold the hub segments in the assembled position.

  14. Nucleoporins and chromatin metabolism.

    PubMed

    Ptak, Christopher; Wozniak, Richard W

    2016-06-01

    Mounting evidence has implicated a group of proteins termed nucleoporins, or Nups, in various processes that regulate chromatin structure and function. Nups were first recognized as building blocks for nuclear pore complexes, but several members of this group of proteins also reside in the cytoplasm and within the nucleus. Moreover, many are dynamic and move between these various locations. Both at the nuclear envelope, as part of nuclear pore complexes, and within the nucleoplasm, Nups interact with protein complexes that function in gene transcription, chromatin remodeling, DNA repair, and DNA replication. Here, we review recent studies that provide further insight into the molecular details of these interactions and their role in regulating the activity of chromatin modifying factors. Copyright © 2016. Published by Elsevier Ltd.

  15. Participant Adherence Indicators Predict Changes in Blood Pressure, Anthropometric Measures, and Self-Reported Physical Activity in a Lifestyle Intervention: HUB City Steps

    ERIC Educational Resources Information Center

    Thomson, Jessica L.; Landry, Alicia S.; Zoellner, Jamie M.; Connell, Carol; Madson, Michael B.; Molaison, Elaine Fontenot; Yadrick, Kathy

    2015-01-01

    The objective of this secondary analysis was to evaluate the utility of several participant adherence indicators for predicting changes in clinical, anthropometric, dietary, fitness, and physical activity (PA) outcomes in a lifestyle intervention, HUB City Steps, conducted in a southern, African American cohort in 2010. HUB City Steps was a…

  16. Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency

    PubMed Central

    Yang, Yul W; Flynn, Ryan A; Chen, Yong; Qu, Kun; Wan, Bingbing; Wang, Kevin C; Lei, Ming; Chang, Howard Y

    2014-01-01

    The WDR5 subunit of the MLL complex enforces active chromatin and can bind RNA; the relationship between these two activities is unclear. Here we identify a RNA binding pocket on WDR5, and discover a WDR5 mutant (F266A) that selectively abrogates RNA binding without affecting MLL complex assembly or catalytic activity. Complementation in ESCs shows that WDR5 F266A mutant is unable to accumulate on chromatin, and is defective in gene activation, maintenance of histone H3 lysine 4 trimethylation, and ESC self renewal. We identify a family of ESC messenger and lncRNAs that interact with wild type WDR5 but not F266A mutant, including several lncRNAs known to be important for ESC gene expression. These results suggest that specific RNAs are integral inputs into the WDR5-MLL complex for maintenance of the active chromatin state and embryonic stem cell fates. DOI: http://dx.doi.org/10.7554/eLife.02046.001 PMID:24521543

  17. A computer lab exploring evolutionary aspects of chromatin structure and dynamics for an undergraduate chromatin course*.

    PubMed

    Eirín-López, José M

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription.

    PubMed

    Lai, Fan; Orom, Ulf A; Cesaroni, Matteo; Beringer, Malte; Taatjes, Dylan J; Blobel, Gerd A; Shiekhattar, Ramin

    2013-02-28

    Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms. Although the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X-chromosome inactivation and imprinting, different classes of lncRNAs may have varied biological functions. We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their neighbouring genes using a cis-mediated mechanism. To define the precise mode by which such enhancer-like RNAs function, we depleted factors with known roles in transcriptional activation and assessed their role in RNA-dependent activation. Here we report that depletion of the components of the co-activator complex, Mediator, specifically and potently diminished the ncRNA-induced activation of transcription in a heterologous reporter assay using human HEK293 cells. In vivo, Mediator is recruited to ncRNA-a target genes and regulates their expression. We show that ncRNA-a interact with Mediator to regulate its chromatin localization and kinase activity towards histone H3 serine 10. The Mediator complex harbouring disease- displays diminished ability to associate with activating ncRNAs. Chromosome conformation capture confirmed the presence of DNA looping between the ncRNA-a loci and its targets. Importantly, depletion of Mediator subunits or ncRNA-a reduced the chromatin looping between the two loci. Our results identify the human Mediator complex as the transducer of activating ncRNAs and highlight the importance of Mediator and activating ncRNA association in human disease.

  19. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils.

    PubMed

    Zimmermann, Maili; Aguilera, Francisco Bianchetto; Castellucci, Monica; Rossato, Marzia; Costa, Sara; Lunardi, Claudio; Ostuni, Renato; Girolomoni, Giampiero; Natoli, Gioacchino; Bazzoni, Flavia; Tamassia, Nicola; Cassatella, Marco A

    2015-01-23

    Controversy currently exists about the ability of human neutrophils to produce IL-6. Here, we show that the chromatin organization of the IL-6 genomic locus in human neutrophils is constitutively kept in an inactive configuration. However, we also show that upon exposure to stimuli that trigger chromatin remodelling at the IL-6 locus, such as ligands for TLR8 or, less efficiently, TLR4, highly purified neutrophils express and secrete IL-6. In TLR8-activated neutrophils, but not monocytes, IL-6 expression is preceded by the induction of a latent enhancer located 14 kb upstream of the IL-6 transcriptional start site. In addition, IL-6 induction is potentiated by endogenous TNFα, which prolongs the synthesis of the IκBζ co-activator and sustains C/EBPβ recruitment and histone acetylation at IL-6 regulatory regions. Altogether, these data clarify controversial literature on the ability of human neutrophils to generate IL-6 and uncover chromatin-dependent layers of regulation of IL-6 in these cells.

  20. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies

    PubMed Central

    Chan, Siu Chiu; Selth, Luke A.; Li, Yingming; Nyquist, Michael D.; Miao, Lu; Bradner, James E.; Raj, Ganesh V.; Tilley, Wayne D.; Dehm, Scott M.

    2015-01-01

    Androgen receptor (AR) variants (AR-Vs) expressed in prostate cancer (PCa) lack the AR ligand binding domain (LBD) and function as constitutively active transcription factors. AR-V expression in patient tissues or circulating tumor cells is associated with resistance to AR-targeting endocrine therapies and poor outcomes. Here, we investigated the mechanisms governing chromatin binding of AR-Vs with the goal of identifying therapeutic vulnerabilities. By chromatin immunoprecipitation and sequencing (ChIP-seq) and complementary biochemical experiments, we show that AR-Vs display a binding preference for the same canonical high-affinity androgen response elements (AREs) that are preferentially engaged by AR, albeit with lower affinity. Dimerization was an absolute requirement for constitutive AR-V DNA binding and transcriptional activation. Treatment with the bromodomain and extraterminal (BET) inhibitor JQ1 resulted in inhibition of AR-V chromatin binding and impaired AR-V driven PCa cell growth in vitro and in vivo. Importantly, this was associated with a novel JQ1 action of down-regulating AR-V transcript and protein expression. Overall, this study demonstrates that AR-Vs broadly restore AR chromatin binding events that are otherwise suppressed during endocrine therapy, and provides pre-clinical rationale for BET inhibition as a strategy for inhibiting expression and chromatin binding of AR-Vs in PCa. PMID:25908785

  1. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    PubMed

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  2. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function

    PubMed Central

    Ahringer, Julie; Gasser, Susan M.

    2018-01-01

    Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals. PMID:29378810

  3. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.

    PubMed

    Thibodeau, Asa; Márquez, Eladio J; Luo, Oscar; Ruan, Yijun; Menghi, Francesca; Shin, Dong-Guk; Stitzel, Michael L; Vera-Licona, Paola; Ucar, Duygu

    2016-06-01

    Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. QuIN's web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/.

  4. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks

    PubMed Central

    Thibodeau, Asa; Márquez, Eladio J.; Luo, Oscar; Ruan, Yijun; Shin, Dong-Guk; Stitzel, Michael L.; Ucar, Duygu

    2016-01-01

    Recent studies of the human genome have indicated that regulatory elements (e.g. promoters and enhancers) at distal genomic locations can interact with each other via chromatin folding and affect gene expression levels. Genomic technologies for mapping interactions between DNA regions, e.g., ChIA-PET and HiC, can generate genome-wide maps of interactions between regulatory elements. These interaction datasets are important resources to infer distal gene targets of non-coding regulatory elements and to facilitate prioritization of critical loci for important cellular functions. With the increasing diversity and complexity of genomic information and public ontologies, making sense of these datasets demands integrative and easy-to-use software tools. Moreover, network representation of chromatin interaction maps enables effective data visualization, integration, and mining. Currently, there is no software that can take full advantage of network theory approaches for the analysis of chromatin interaction datasets. To fill this gap, we developed a web-based application, QuIN, which enables: 1) building and visualizing chromatin interaction networks, 2) annotating networks with user-provided private and publicly available functional genomics and interaction datasets, 3) querying network components based on gene name or chromosome location, and 4) utilizing network based measures to identify and prioritize critical regulatory targets and their direct and indirect interactions. AVAILABILITY: QuIN’s web server is available at http://quin.jax.org QuIN is developed in Java and JavaScript, utilizing an Apache Tomcat web server and MySQL database and the source code is available under the GPLV3 license available on GitHub: https://github.com/UcarLab/QuIN/. PMID:27336171

  5. Quantification of chromatin condensation level by image processing.

    PubMed

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Chromatin reprogramming in breast cancer.

    PubMed

    Swinstead, Erin E; Paakinaho, Ville; Hager, Gordon

    2018-04-24

    Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions, and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions and reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single cell approaches enable the coupling of population based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.

  7. Chromatin Structure and the Cell Cycle

    PubMed Central

    Pederson, Thoru

    1972-01-01

    Pancreatic DNase I is used to probe the structure of chromatin isolated from synchronized HeLa cells. The degree to which DNA in chromatin is protected from DNase attack varies during the G1, S, and G2 phases of the cell cycle. In addition, the DNase sensitivity of chromatin from contact-inhibited African green monkey kidney cells differs from that of actively dividing, subconfluent cultures. These cell cycle-dependent chromatin changes were observed consistently at all enzyme concentrations (5000-fold range) and incubation times (15 min-2 hr) tested. The results indicate that the degree of complexing between DNA and chromosomal proteins changes during interphase, and they suggest that the chromosome coiling cycle of visible mitosis may extend in more subtle form over the entire cell cycle. PMID:4626402

  8. p53 targets chromatin structure alteration to repress alpha-fetoprotein gene expression.

    PubMed

    Ogden, S K; Lee, K C; Wernke-Dollries, K; Stratton, S A; Aronow, B; Barton, M C

    2001-11-09

    Many of the functions ascribed to p53 tumor suppressor protein are mediated through transcription regulation. We have shown that p53 represses hepatic-specific alpha-fetoprotein (AFP) gene expression by direct interaction with a composite HNF-3/p53 DNA binding element. Using solid-phase, chromatin-assembled AFP DNA templates and analysis of chromatin structure and transcription in vitro, we find that p53 binds DNA and alters chromatin structure at the AFP core promoter to regulate transcription. Chromatin assembled in the presence of hepatoma extracts is activated for AFP transcription with an open, accessible core promoter structure. Distal (-850) binding of p53 during chromatin assembly, but not post-assembly, reverses transcription activation concomitant with promoter inaccessibility to restriction enzyme digestion. Inhibition of histone deacetylase activity by trichostatin-A (TSA) addition, prior to and during chromatin assembly, activated chromatin transcription in parallel with increased core promoter accessibility. Chromatin immunoprecipitation analyses showed increased H3 and H4 acetylated histones at the core promoter in the presence of TSA, while histone acetylation remained unchanged at the site of distal p53 binding. Our data reveal that p53 targets chromatin structure alteration at the core promoter, independently of effects on histone acetylation, to establish repressed AFP gene expression.

  9. Empirical analysis on the human dynamics of blogging behavior on GitHub

    NASA Astrophysics Data System (ADS)

    Yan, Deng-Cheng; Wei, Zong-Wen; Han, Xiao-Pu; Wang, Bing-Hong

    2017-01-01

    GitHub is a social collaborative coding platform on which software developers not only collaborate on codes but also share knowledge through blogs using GitHub Pages. In this article, we analyze the blogging behavior of software developers on GitHub Pages. The results show that both the commit number and the inter-event time of two consecutive blogging actions follow heavy-tailed distribution. We further observe a significant variety of activity among individual developers, and a strongly positive correlation between the activity and the power-law exponent of the inter-event time distribution. We also find a difference between the user behaviors of GitHub Pages and other online systems which is driven by the diversity of users and length of contents. In addition, our result shows an obvious difference between the majority of developers and elite developers in their burstiness property.

  10. USDA Southwest climate hub for climate change

    USDA-ARS?s Scientific Manuscript database

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...

  11. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin.

    PubMed

    Dyson, M H; Rose, S; Mahadevan, L C

    2001-08-01

    Acetylated histones are generally associated with active chromatin. The bromodomain has recently been identified as a protein module capable of binding to acetylated lysine residues, and hence is able to mediate the recruitment of factors to acetylated chromatin. Functional studies of bromodomain-containing proteins indicate how this domain contributes to the activity of a number of nuclear factors including histone acetyltransferases and chromatin remodelling complexes. Here, we review the characteristics of acetyllysine-binding by bromodomains, discuss associated domains found in these proteins, and address the function of the bromodomain in the context of chromatin. Finally, the modulation of bromodomain binding by neighbouring post-translational modifications within histone tails might provide a mechanism through which combinations of covalent marks could exert control on chromatin function.

  12. Southwest Regional Climate Hub and California Subsidiary Hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Treesearch

    Emile Elias; Caiti Steele; Kris Havstad; Kerri Steenwerth; Jeanne Chambers; Helena Deswood; Amber Kerr; Albert Rango; Mark Schwartz; Peter Stine; Rachel Steele

    2015-01-01

    This report is a joint effort of the Southwest Regional Climate Hub and the California Subsidiary Hub (Sub Hub). The Southwest Regional Climate Hub covers Arizona, California, Hawai‘i and the U.S. affiliated Pacific Islands, Nevada, New Mexico, and Utah and contains vast areas of western rangeland, forests, and high-value specialty crops (Figure 1). The California Sub...

  13. PolarHub: A Global Hub for Polar Data Discovery

    NASA Astrophysics Data System (ADS)

    Li, W.

    2014-12-01

    This paper reports the outcome of a NSF project in developing a large-scale web crawler PolarHub to discover automatically the distributed polar dataset in the format of OGC web services (OWS) in the cyberspace. PolarHub is a machine robot; its goal is to visit as many webpages as possible to find those containing information about polar OWS, extract this information and store it into the backend data repository. This is a very challenging task given huge data volume of webpages on the Web. Three unique features was introduced in PolarHub to make it distinctive from earlier crawler solutions: (1) a multi-task, multi-user, multi-thread support to the crawling tasks; (2) an extensive use of thread pool and Data Access Object (DAO) design patterns to separate persistent data storage and business logic to achieve high extendibility of the crawler tool; (3) a pattern-matching based customizable crawling algorithm to support discovery of multi-type geospatial web services; and (4) a universal and portable client-server communication mechanism combining a server-push and client pull strategies for enhanced asynchronous processing. A series of experiments were conducted to identify the impact of crawling parameters to the overall system performance. The geographical distribution pattern of all PolarHub identified services is also demonstrated. We expect this work to make a major contribution to the field of geospatial information retrieval and geospatial interoperability, to bridge the gap between data provider and data consumer, and to accelerate polar science by enhancing the accessibility and reusability of adequate polar data.

  14. Differential Chromatin Structure Encompassing Replication Origins in Transformed and Normal Cells

    PubMed Central

    Di Paola, Domenic; Rampakakis, Emmanouil; Chan, Man Kid

    2012-01-01

    This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator

  15. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  16. Experimental Investigation of a Helicopter Rotor Hub Wake

    NASA Astrophysics Data System (ADS)

    Reich, David; Elbing, Brian; Schmitz, Sven

    2013-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The main objectives of the experiment were to understand the spatial- and temporal content of the unsteady wake downstream of a rotor hub up to a distance corresponding to the empennage. Primary measurements were the total hub drag and velocity measurements at three nominal downstream locations. Various flow structures were identified and linked to geometric features of the hub model. The most prominent structures were two-per-revolution (hub component: scissors) and four-per-revolution (hub component: main hub arms) vortices shed by the hub. Both the two-per-revolution and four-per-revolution structures persisted far downstream of the hub, but the rate of dissipation was greater for the four-per-rev structures. This work provides a dataset for enhanced understanding of the fundamental physics underlying rotor hub flows and serves as validation data for future CFD analyses.

  17. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  18. Epigenomic regulation of oncogenesis by chromatin remodeling.

    PubMed

    Kumar, R; Li, D-Q; Müller, S; Knapp, S

    2016-08-25

    Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.

  19. Chromatin Immunoprecipitation in Early Mouse Embryos.

    PubMed

    García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel

    2018-01-01

    Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.

  20. Parasite-Drag Measurements of Five Helicopter Rotor Hubs

    NASA Technical Reports Server (NTRS)

    Churchill, Gary B.; Harrington, Robert D.

    1959-01-01

    An investigation has been conducted in the Langley full-scale tunnel to determine the parasite drag of five production-type helicopter rotor hubs. Some simple fairing arrangements were attempted in an effort to reduce the hub drag. The results indicate that, within the range of the tests, changes in angle of attack, hub rotational speed, and forward speed generally had only a small effect on the equivalent flat-plate area representing parasite drag. The drag coefficients of the basic hubs, based on projected hub frontal area, increased with hub area and varied from 0.5 to 0.76 for the hubs tested.

  1. Rapid and reversible epigenome editing by endogenous chromatin regulators.

    PubMed

    Braun, Simon M G; Kirkland, Jacob G; Chory, Emma J; Husmann, Dylan; Calarco, Joseph P; Crabtree, Gerald R

    2017-09-15

    Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9-MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes.Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.

  2. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability

    PubMed Central

    Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.

    2016-01-01

    Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the

  3. Composite hub/metal blade compressor rotor

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  4. Experimental Investigation of a Helicopter Rotor Hub Flow

    NASA Astrophysics Data System (ADS)

    Reich, David

    The rotor hub system is by far the largest contributor to helicopter parasite drag and a barrier to increasing helicopter forward-flight speed and range. Additionally, the hub sheds undesirable vibration- and instability-inducing unsteady flow over the empennage. The challenges associated with rotor hub flows are discussed, including bluff body drag, interactional aerodynamics, and the effect of the turbulent hub wake on the helicopter empennage. This study was conducted in three phases to quantify model-scale rotor hub flows in water tunnels at The Pennsylvania State University Applied research lab. The first phase investigated scaling and component interaction effects on a 1:17 scale rotor hub model in the 12-inch diameter water tunnel. Effects of Reynolds number, advance ratio, and hub geometry configuration on the drag and wake shed from the rotor hub were quantified using load cell measurements and particle-image velocimetry (PIV). The second phase focused on flow visualization and measurement on a rotor hub and rotor hub/pylon geometry in the 12-inch diameter water tunnel. Stereo PIV was conducted in a cross plane downstream of the hub and flow visualization was conducted using oil paint and fluorescent dye. The third phase concentrated on high accuracy load measurement and prediction up to full-scale Reynolds number on a 1:4.25 scale model in the 48-inch diameter water tunnel. Measurements include 6 degree of freedom loads on the hub and two-component laser-Doppler velocimetry in the wake. Finally, results and conclusions are discussed, followed by recommendations for future investigations.

  5. Helicopter hub fairing and pylon interference drag

    NASA Technical Reports Server (NTRS)

    Graham, D. R.; Sung, D. Y.; Young, L. A.; Louie, A. W.; Stroub, R. H.

    1989-01-01

    A wind tunnel test was conducted to study the aerodynamics of helicopter hub and pylon fairings. The test was conducted in the 7-by 10 Foot Subsonic Wind Tunnel (Number 2) at Ames Research Center using a 1/5-scale XH-59A fuselage model. The primary focus of the test was on the rotor hub fairing and pylon mutual interference drag. Parametric studies of pylon and hub fairing geometry were also conducted. This report presents the major findings of the test as well as tabulated force and moment data, flow visualization photographs, and graphical presentations of the drag data. The test results indicate that substantial drag reduction can be attained through the use of a cambered hub fairing with circular arc upper surface and flat lower surface. Furthermore, a considerable portion of the overall drag reduction is attributed to the reduction in the hub-on-pylon interference drag. It is also observed that the lower surface curvature of the fairing has a strong influence on the hub fairing and on pylon interference drag. However, the drag reduction benefit that was obtained by using the cambered hub fairing with a flat lower surface was adversely affected by the clearance between the hub fairing and the pylon.

  6. The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin.

    PubMed

    Brown, David A; Di Cerbo, Vincenzo; Feldmann, Angelika; Ahn, Jaewoo; Ito, Shinsuke; Blackledge, Neil P; Nakayama, Manabu; McClellan, Michael; Dimitrova, Emilia; Turberfield, Anne H; Long, Hannah K; King, Hamish W; Kriaucionis, Skirmantas; Schermelleh, Lothar; Kutateladze, Tatiana G; Koseki, Haruhiko; Klose, Robert J

    2017-09-05

    Chromatin modifications and the promoter-associated epigenome are important for the regulation of gene expression. However, the mechanisms by which chromatin-modifying complexes are targeted to the appropriate gene promoters in vertebrates and how they influence gene expression have remained poorly defined. Here, using a combination of live-cell imaging and functional genomics, we discover that the vertebrate SET1 complex is targeted to actively transcribed gene promoters through CFP1, which engages in a form of multivalent chromatin reading that involves recognition of non-methylated DNA and histone H3 lysine 4 trimethylation (H3K4me3). CFP1 defines SET1 complex occupancy on chromatin, and its multivalent interactions are required for the SET1 complex to place H3K4me3. In the absence of CFP1, gene expression is perturbed, suggesting that normal targeting and function of the SET1 complex are central to creating an appropriately functioning vertebrate promoter-associated epigenome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, Jenna; Ekwall, Karl, E-mail: karl.ekwall@ki.se; School of Life Sciences, University College Sodertorn, NOVUM, Huddinge

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that canmore » arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.« less

  8. The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells.

    PubMed

    Xu, Bowen; Cai, Ling; Butler, Jason M; Chen, Dongliang; Lu, Xiongdong; Allison, David F; Lu, Rui; Rafii, Shahin; Parker, Joel S; Zheng, Deyou; Wang, Gang Greg

    2018-03-13

    Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC "stemness" genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of "stemness" gene-expression programs and proper function of adult HSCs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus

    PubMed Central

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-01-01

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. PMID:25588787

  10. Role of chromatin in water stress responses in plants

    PubMed Central

    Han, Soon-Ki; Wagner, Doris

    2014-01-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth. PMID:24302754

  11. Coffee Shops, Classrooms and Conversations: public engagement and outreach in a large interdisciplinary research Hub

    NASA Astrophysics Data System (ADS)

    Holden, Jennifer A.

    2014-05-01

    Public engagement and outreach activities are increasingly using specialist staff for co-ordination, training and support for researchers, they are also becoming expected for large investments. Here, the experience of public engagement and outreach a large, interdisciplinary Research Hub is described. dot.rural, based at the University of Aberdeen UK, is a £11.8 million Research Councils UK Rural Digital Economy Hub, funded as part of the RCUK Digital Economy Theme (2009-2015). Digital Economy research aims to realise the transformational impact of digital technologies on aspects of the environment, community life, cultural experiences, future society, and the economy. The dot.rural Hub involves 92 researchers from 12 different disciplines, including Geography, Hydrology and Ecology. Public Engagement and Outreach is embedded in the dot.rural Digital Economy Hub via an Outreach Officer. Alongside this position, public engagement and outreach activities are compulsory part of PhD student contracts. Public Engagement and Outreach activities at the dot.rural Hub involve individuals and groups in both formal and informal settings organised by dot.rural and other organisations. Activities in the realms of Education, Public Engagement, Traditional and Social Media are determined by a set of Underlying Principles designed for the Hub by the Outreach Officer. The underlying Engagement and Outreach principles match funding agency requirements and expectations alongside researcher demands and the user-led nature of Digital Economy Research. All activities include researchers alongside the Outreach Officer are research informed and embedded into specific projects that form the Hub. Successful public engagement activities have included participation in Café Scientifique series, workshops in primary and secondary schools, and online activities such as I'm a Scientist Get Me Out of Here. From how to engage 8 year olds with making hydrographs more understandable to members of

  12. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.

    PubMed

    Malik, Sohail; Roeder, Robert G

    2010-11-01

    The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.

  13. Soft hub for bearingless rotors

    NASA Technical Reports Server (NTRS)

    Dixon, Peter G. C.

    1991-01-01

    Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.

  14. Roles of chromatin insulator proteins in higher-order chromatin organization and transcription regulation

    PubMed Central

    Vogelmann, Jutta; Valeri, Alessandro; Guillou, Emmanuelle; Cuvier, Olivier; Nollmann, Marcelo

    2013-01-01

    Eukaryotic chromosomes are condensed into several hierarchical levels of complexity: DNA is wrapped around core histones to form nucleosomes, nucleosomes form a higher-order structure called chromatin, and chromatin is subsequently compartmentalized in part by the combination of multiple specific or unspecific long-range contacts. The conformation of chromatin at these three levels greatly influences DNA metabolism and transcription. One class of chromatin regulatory proteins called insulator factors may organize chromatin both locally, by setting up barriers between heterochromatin and euchromatin, and globally by establishing platforms for long-range interactions. Here, we review recent data revealing a global role of insulator proteins in the regulation of transcription through the formation of clusters of long-range interactions that impact different levels of chromatin organization. PMID:21983085

  15. 76 FR 10328 - Grant of Authority for Subzone Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs, Blades and Towers), Brighton, Denver...-purpose subzone at the wind turbine nacelle, hub, blade and tower manufacturing and warehousing facilities... status for activity related to the manufacturing and warehousing of wind turbine nacelles, hubs, blades...

  16. Dynamics of the Ternary Complex Formed by c-Myc Interactor JPO2, Transcriptional Co-activator LEDGF/p75, and Chromatin*

    PubMed Central

    Hendrix, Jelle; van Heertum, Bart; Vanstreels, Els; Daelemans, Dirk; De Rijck, Jan

    2014-01-01

    Lens epithelium-derived growth factor (LEDGF/p75) is a transcriptional co-activator involved in targeting human immunodeficiency virus (HIV) integration and the development of MLL fusion-mediated acute leukemia. A previous study revealed that LEDGF/p75 dynamically scans the chromatin, and upon interaction with HIV-1 integrase, their complex is locked on chromatin. At present, it is not known whether LEDGF/p75-mediated chromatin locking is typical for interacting proteins. Here, we employed continuous photobleaching and fluorescence correlation and cross-correlation spectroscopy to investigate in vivo chromatin binding of JPO2, a LEDGF/p75- and c-Myc-interacting protein involved in transcriptional regulation. In the absence of LEDGF/p75, JPO2 performs chromatin scanning inherent to transcription factors. However, whereas the dynamics of JPO2 chromatin binding are decelerated upon interaction with LEDGF/p75, very strong locking of their complex onto chromatin is absent. Similar results were obtained with the domesticated transposase PogZ, another cellular interaction partner of LEDGF/p75. We furthermore show that diffusive JPO2 can oligomerize; that JPO2 and LEDGF/p75 interact directly and specifically in vivo through the specific interaction domain of JPO2 and the C-terminal domain of LEDGF/p75, comprising the integrase-binding domain; and that modulation of JPO2 dynamics requires a functional PWWP domain in LEDGF/p75. Our results suggest that the dynamics of the LEDGF/p75-chromatin interaction depend on the specific partner and that strong chromatin locking is not a property of all LEDGF/p75-binding proteins. PMID:24634210

  17. A role for chromatin topology in imprinted domain regulation.

    PubMed

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  18. [Biochemical characterization of fractionated rat liver chromatin in experimental D-hypovitaminosis and after administration of steroidal drugs].

    PubMed

    Levitskiĭ, E L; Kholodova, Iu D; Gubskiĭ, Iu I; Primak, R G; Chabannyĭ, V N; Kindruk, N L; Mozzhukhina, T G; Lenchevskaia, L K; Mironova, V N; Saad, L M

    1993-01-01

    Marked changes in the structural and functional characteristics of liver nuclear chromatin fractions are observed under experimental D-hypovitaminosis, which differ in the degree of transcriptional activity. DNA-polymerase activity and activity of the fraction, enriched with RNA-polymerase I, increases in the active fraction. Free radical LPO reactions are modified in the chromatin fraction with low activity and to the less degree in the active one. Disturbances of chromatine structural properties are caused with the change in the protein and lipid components of chromatin. Administration of ecdysterone preparations (separately and together with vitamin D3) has a partial corrective effect on structural and functional organization of nuclear chromatine. At the action of ecdysterone normalization of LPO reactions modified by pathological changes is observed in the chromatin fraction with low activity and to the less degree in the active one. This kind of influence corrects to the less degree chromatin functional activity and quantitative and qualitative modifications of its protein component. Simultaneous influence of ecdysterone and vitamin D3 leads to the partial normalization of the biochemical indices studied (except for those which characterize LPO reactions) mainly in the active chromatin fraction.

  19. Predicting highly-connected hubs in protein interaction networks by QSAR and biological data descriptors

    PubMed Central

    Hsing, Michael; Byler, Kendall; Cherkasov, Artem

    2009-01-01

    Hub proteins (those engaged in most physical interactions in a protein interaction network (PIN) have recently gained much research interest due to their essential role in mediating cellular processes and their potential therapeutic value. It is straightforward to identify hubs if the underlying PIN is experimentally determined; however, theoretical hub prediction remains a very challenging task, as physicochemical properties that differentiate hubs from less connected proteins remain mostly uncharacterized. To adequately distinguish hubs from non-hub proteins we have utilized over 1300 protein descriptors, some of which represent QSAR (quantitative structure-activity relationship) parameters, and some reflect sequence-derived characteristics of proteins including domain composition and functional annotations. Those protein descriptors, together with available protein interaction data have been processed by a machine learning method (boosting trees) and resulted in the development of hub classifiers that are capable of predicting highly interacting proteins for four model organisms: Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. More importantly, through the analyses of the most relevant protein descriptors, we are able to demonstrate that hub proteins not only share certain common physicochemical and structural characteristics that make them different from non-hub counterparts, but they also exhibit species-specific characteristics that should be taken into account when analyzing different PINs. The developed prediction models can be used for determining highly interacting proteins in the four studied species to assist future proteomics experiments and PIN analyses. Availability The source code and executable program of the hub classifier are available for download at: http://www.cnbi2.ca/hub-analysis/ PMID:20198194

  20. Concerted Perturbation Observed in a Hub Network in Alzheimer’s Disease

    PubMed Central

    Liang, Dapeng; Han, Guangchun; Feng, Xuemei; Sun, Jiya; Duan, Yong; Lei, Hongxing

    2012-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease involving the alteration of gene expression at the whole genome level. Genome-wide transcriptional profiling of AD has been conducted by many groups on several relevant brain regions. However, identifying the most critical dys-regulated genes has been challenging. In this work, we addressed this issue by deriving critical genes from perturbed subnetworks. Using a recent microarray dataset on six brain regions, we applied a heaviest induced subgraph algorithm with a modular scoring function to reveal the significantly perturbed subnetwork in each brain region. These perturbed subnetworks were found to be significantly overlapped with each other. Furthermore, the hub genes from these perturbed subnetworks formed a connected hub network consisting of 136 genes. Comparison between AD and several related diseases demonstrated that the hub network was robustly and specifically perturbed in AD. In addition, strong correlation between the expression level of these hub genes and indicators of AD severity suggested that this hub network can partially reflect AD progression. More importantly, this hub network reflected the adaptation of neurons to the AD-specific microenvironment through a variety of adjustments, including reduction of neuronal and synaptic activities and alteration of survival signaling. Therefore, it is potentially useful for the development of biomarkers and network medicine for AD. PMID:22815752

  1. A Simulation Based Approach for Contingency Planning for Aircraft Turnaround Operation System Activities in Airline Hubs

    NASA Technical Reports Server (NTRS)

    Adeleye, Sanya; Chung, Christopher

    2006-01-01

    Commercial aircraft undergo a significant number of maintenance and logistical activities during the turnaround operation at the departure gate. By analyzing the sequencing of these activities, more effective turnaround contingency plans may be developed for logistical and maintenance disruptions. Turnaround contingency plans are particularly important as any kind of delay in a hub based system may cascade into further delays with subsequent connections. The contingency sequencing of the maintenance and logistical turnaround activities were analyzed using a combined network and computer simulation modeling approach. Experimental analysis of both current and alternative policies provides a framework to aid in more effective tactical decision making.

  2. Epigenetic regulation of open chromatin in pluripotent stem cells

    PubMed Central

    Kobayashi, Hiroshi; Kikyo, Nobuaki

    2014-01-01

    The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues that had been unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, eventually alter the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is globally open to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells. This includes microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genome-wide nucleosome accessibility and nucleosome positioning. Further understanding of the epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem. PMID:24695097

  3. Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin.

    PubMed

    Selvi B, Ruthrotha; Pradhan, Suman Kalyan; Shandilya, Jayasha; Das, Chandrima; Sailaja, Badi Sri; Shankar G, Naga; Gadad, Shrikanth S; Reddy, Ashok; Dasgupta, Dipak; Kundu, Tapas K

    2009-02-27

    DNA-binding anticancer agents cause alteration in chromatin structure and dynamics. We report the dynamic interaction of the DNA intercalator and potential anticancer plant alkaloid, sanguinarine (SGR), with chromatin. Association of SGR with different levels of chromatin structure was enthalpy driven with micromolar dissociation constant. Apart from DNA, it binds with comparable affinity with core histones and induces chromatin aggregation. The dual binding property of SGR leads to inhibition of core histone modifications. Although it potently inhibits H3K9 methylation by G9a in vitro, H3K4 and H3R17 methylation are more profoundly inhibited in cells. SGR inhibits histone acetylation both in vitro and in vivo. It does not affect the in vitro transcription from DNA template but significantly represses acetylation-dependent chromatin transcription. SGR-mediated repression of epigenetic marks and the alteration of chromatin geography (nucleography) also result in the modulation of global gene expression. These data, conclusively, show an anticancer DNA binding intercalator as a modulator of chromatin modifications and transcription in the chromatin context.

  4. An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics

    NASA Technical Reports Server (NTRS)

    Sung, D. Y.; Lance, M. B.; Young, L. A.; Stroub, R. H.

    1989-01-01

    A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack.

  5. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  6. Effects of short peptides on lymphocyte chromatin in senile subjects.

    PubMed

    Khavinson, V Kh; Lezhava, T A; Malinin, V V

    2004-01-01

    Effects of synthetic short peptides (Vilon, Epithalon, Livagen, Prostamax, and Cortagen) on activity of ribosome genes, parameters of common heterochromatin melting, polymorphism of structural heterochromatin (C segments) of chromosomes 1, 9, and 16, and variability of facultative heterochromatin were studied in leukocytes of subjects aged 75-88 years. All the studied peptides induced activation of ribosome genes, decondensation of densely packed chromatin fibrils, and release of genes repressed as a result of age-specific condensation of the cellular euchromatin regions (deheterochromatinization of facultative chromatin). Treatment with Epithalon, Livagen, and Prostamax led to decondensation of chromosome 1 pericentromeric structural chromatin, while Epithalon and Livagen treatment led to changes in chromosome 9 as well. Hence, short peptides activate heterochromatin and heterochromatinized regions of cell chromosomes in senile subjects.

  7. Cohesin organizes chromatin loops at DNA replication factories

    PubMed Central

    Guillou, Emmanuelle; Ibarra, Arkaitz; Coulon, Vincent; Casado-Vela, Juan; Rico, Daniel; Casal, Ignacio; Schwob, Etienne; Losada, Ana; Méndez, Juan

    2010-01-01

    Genomic DNA is packed in chromatin fibers organized in higher-order structures within the interphase nucleus. One level of organization involves the formation of chromatin loops that may provide a favorable environment to processes such as DNA replication, transcription, and repair. However, little is known about the mechanistic basis of this structuration. Here we demonstrate that cohesin participates in the spatial organization of DNA replication factories in human cells. Cohesin is enriched at replication origins and interacts with prereplication complex proteins. Down-regulation of cohesin slows down S-phase progression by limiting the number of active origins and increasing the length of chromatin loops that correspond with replicon units. These results give a new dimension to the role of cohesin in the architectural organization of interphase chromatin, by showing its participation in DNA replication. PMID:21159821

  8. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ren; Nelson, Celeste M.; Muschler, John L.

    2009-06-03

    Epithelial cells, once dissociated and placed in two-dimensional (2D) cultures, rapidly lose tissue-specific functions. We showed previously that in addition to prolactin, signaling by laminin-111 was necessary to restore functional differentiation of mammary epithelia. Here, we elucidate two additional aspects of laminin-111 action. We show that in 2D cultures, the prolactin receptor is basolaterally localized and physically segregated from its apically placed ligand. Detachment of the cells exposes the receptor to ligation by prolactin leading to signal transducers and activators of transcription protein 5 (STAT5) activation, but only transiently and not sufficiently for induction of milk protein expression. We showmore » that laminin-111 reorganizes mammary cells into polarized acini, allowing both the exposure of the prolactin receptor and sustained activation of STAT5. The use of constitutively active STAT5 constructs showed that the latter is necessary and sufficient for chromatin reorganization and {beta}-casein transcription. These results underscore the crucial role of continuous laminin signaling and polarized tissue architecture in maintenance of transcription factor activation, chromatin organization, and tissue-specific gene expression.« less

  9. The development of hub architecture in the human functional brain network.

    PubMed

    Hwang, Kai; Hallquist, Michael N; Luna, Beatriz

    2013-10-01

    Functional hubs are brain regions that play a crucial role in facilitating communication among parallel, distributed brain networks. The developmental emergence and stability of hubs, however, is not well understood. The current study used measures of network topology drawn from graph theory to investigate the development of functional hubs in 99 participants, 10-20 years of age. We found that hub architecture was evident in late childhood and was stable from adolescence to early adulthood. Connectivity between hub and non-hub ("spoke") regions, however, changed with development. From childhood to adolescence, the strength of connections between frontal hubs and cortical and subcortical spoke regions increased. From adolescence to adulthood, hub-spoke connections with frontal hubs were stable, whereas connectivity between cerebellar hubs and cortical spoke regions increased. Our findings suggest that a developmentally stable functional hub architecture provides the foundation of information flow in the brain, whereas connections between hubs and spokes continue to develop, possibly supporting mature cognitive function.

  10. The ''self-stirred'' genome: Bulk and surface dynamics of the chromatin globule

    NASA Astrophysics Data System (ADS)

    Zidovska, Alexandra

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood. In interphase, time between two cell divisions, chromatin fills the cell nucleus in its minimally condensed polymeric state. Chromatin serves as substrate to a number of biological processes, e.g. gene expression and DNA replication, which require it to become locally restructured. These are energy-consuming processes giving rise to non-equilibrium dynamics. Chromatin dynamics has been traditionally studied by imaging of fluorescently labeled nuclear proteins and single DNA-sites, thus focusing only on a small number of tracer particles. Recently, we developed an approach, displacement correlation spectroscopy (DCS) based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. DCS revealed that chromatin movement was coherent across large regions (4-5 μm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP-dependent and unidirectional for several seconds. Following these observations, we developed a hydrodynamic theory of active chromatin dynamics, using the two-fluid model and describing the content of cell nucleus as a chromatin solution, which is subject to both passive thermal fluctuations and active (ATP-consuming) scalar and vector events. In this work we continue in our efforts to elucidate the mechanism and function of the chromatin dynamics in interphase. We investigate the chromatin interactions with the nuclear envelope and compare the surface dynamics of the chromatin globule with its bulk dynamics.

  11. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  12. Dynamic hub load predicts cognitive decline after resective neurosurgery.

    PubMed

    Carbo, Ellen W S; Hillebrand, Arjan; van Dellen, Edwin; Tewarie, Prejaas; de Witt Hamer, Philip C; Baayen, Johannes C; Klein, Martin; Geurts, Jeroen J G; Reijneveld, Jaap C; Stam, Cornelis J; Douw, Linda

    2017-02-07

    Resective neurosurgery carries the risk of postoperative cognitive deterioration. The concept of 'hub (over)load', caused by (over)use of the most important brain regions, has been theoretically postulated in relation to symptomatology and neurological disease course, but lacks experimental confirmation. We investigated functional hub load and postsurgical cognitive deterioration in patients undergoing lesion resection. Patients (n = 28) underwent resting-state magnetoencephalography and neuropsychological assessments preoperatively and 1-year after lesion resection. We calculated stationary hub load score (SHub) indicating to what extent brain regions linked different subsystems; high SHub indicates larger processing pressure on hub regions. Dynamic hub load score (DHub) assessed its variability over time; low values, particularly in combination with high SHub values, indicate increased load, because of consistently high usage of hub regions. Hypothetically, increased SHub and decreased DHub relate to hub overload and thus poorer/deteriorating cognition. Between time points, deteriorating verbal memory performance correlated with decreasing upper alpha DHub. Moreover, preoperatively low DHub values accurately predicted declining verbal memory performance. In summary, dynamic hub load relates to cognitive functioning in patients undergoing lesion resection: postoperative cognitive decline can be tracked and even predicted using dynamic hub load, suggesting it may be used as a prognostic marker for tailored treatment planning.

  13. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators

    PubMed Central

    Polstein, Lauren R.; Perez-Pinera, Pablo; Kocak, D. Dewran; Vockley, Christopher M.; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Reddy, Timothy E.; Gersbach, Charles A.

    2015-01-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. PMID:26025803

  14. Transcription upregulation via force-induced direct stretching of chromatin

    NASA Astrophysics Data System (ADS)

    Tajik, Arash; Zhang, Yuejin; Wei, Fuxiang; Sun, Jian; Jia, Qiong; Zhou, Wenwen; Singh, Rishi; Khanna, Nimish; Belmont, Andrew S.; Wang, Ning

    2016-12-01

    Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.

  15. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities*

    PubMed Central

    Yao, Wei; Beckwith, Sean L.; Zheng, Tina; Young, Thomas; Dinh, Van T.; Ranjan, Anand; Morrison, Ashby J.

    2015-01-01

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement. PMID:26306040

  16. Identification and classification of hubs in brain networks.

    PubMed

    Sporns, Olaf; Honey, Christopher J; Kötter, Rolf

    2007-10-17

    Brain regions in the mammalian cerebral cortex are linked by a complex network of fiber bundles. These inter-regional networks have previously been analyzed in terms of their node degree, structural motif, path length and clustering coefficient distributions. In this paper we focus on the identification and classification of hub regions, which are thought to play pivotal roles in the coordination of information flow. We identify hubs and characterize their network contributions by examining motif fingerprints and centrality indices for all regions within the cerebral cortices of both the cat and the macaque. Motif fingerprints capture the statistics of local connection patterns, while measures of centrality identify regions that lie on many of the shortest paths between parts of the network. Within both cat and macaque networks, we find that a combination of degree, motif participation, betweenness centrality and closeness centrality allows for reliable identification of hub regions, many of which have previously been functionally classified as polysensory or multimodal. We then classify hubs as either provincial (intra-cluster) hubs or connector (inter-cluster) hubs, and proceed to show that lesioning hubs of each type from the network produces opposite effects on the small-world index. Our study presents an approach to the identification and classification of putative hub regions in brain networks on the basis of multiple network attributes and charts potential links between the structural embedding of such regions and their functional roles.

  17. Osmotic Challenge Drives Rapid and Reversible Chromatin Condensation in Chondrocytes

    PubMed Central

    Irianto, Jerome; Swift, Joe; Martins, Rui P.; McPhail, Graham D.; Knight, Martin M.; Discher, Dennis E.; Lee, David A.

    2013-01-01

    Changes in extracellular osmolality have been shown to alter gene expression patterns and metabolic activity of various cell types, including chondrocytes. However, mechanisms by which physiological or pathological changes in osmolality impact chondrocyte function remain unclear. Here we use quantitative image analysis, electron microscopy, and a DNase I assay to show that hyperosmotic conditions (>400 mOsm/kg) induce chromatin condensation, while hypoosmotic conditions (100 mOsm/kg) cause decondensation. Large density changes (p < 0.001) occur over a very narrow range of physiological osmolalities, which suggests that chondrocytes likely experience chromatin condensation and decondensation during a daily loading cycle. The effect of changes in osmolality on nuclear morphology (p < 0.01) and chromatin condensation (p < 0.001) also differed between chondrocytes in monolayer culture and three-dimensional agarose, suggesting a role for cell adhesion. The relationship between condensation and osmolality was accurately modeled by a polymer gel model which, along with the rapid nature of the chromatin condensation (<20 s), reveals the basic physicochemical nature of the process. Alterations in chromatin structure are expected to influence gene expression and thereby regulate chondrocyte activity in response to osmotic changes. PMID:23442954

  18. Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus.

    PubMed

    Lieber, Arnon; Leis, Andrew; Kushmaro, Ariel; Minsky, Abraham; Medalia, Ohad

    2009-03-01

    The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus, a member of the phylum Planctomycetes, exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.

  19. Human Genome Replication Proceeds through Four Chromatin States

    PubMed Central

    Julienne, Hanna; Zoufir, Azedine; Audit, Benjamin; Arneodo, Alain

    2013-01-01

    Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a

  20. Understanding farmers' preferences for artificial insemination services provided through dairy hubs.

    PubMed

    Omondi, I A; Zander, K K; Bauer, S; Baltenweck, I

    2017-04-01

    Africa has a shortage of animal products but increasing demand because of population growth, urbanisation and changing consumer patterns. Attempts to boost livestock production through the use of breeding technologies such as artificial insemination (AI) have been failing in many countries because costs have escalated and success rates have been relatively low. One example is Kenya, a country with a relatively large number of cows and a dairy industry model relevant to neighbouring countries. There, an innovative dairy marketing approach (farmer-owned collective marketing systems called dairy hubs) has been implemented to enhance access to dairy markets and dairy-related services, including breeding services such as AI. So far, the rate of participation in these dairy hubs has been slow and mixed. In order to understand this phenomenon better and to inform dairy-related development activities by the Kenyan government, we investigated which characteristics of AI services, offered through the dairy hubs, farmers prefer. To do so, we applied a choice experiment (CE), a non-market valuation technique, which allowed us to identify farmers' preferences for desired characteristics should more dairy hubs be installed in the future. This is the first study to use a CE to evaluate breeding services in Kenya and the results can complement findings of studies of breeding objectives and selection criteria. The results of the CE reveal that dairy farmers prefer to have AI services offered rather than having no service. Farmers prefer AI services to be available at dairy hubs rather than provided by private agents not affiliated to the hubs, to have follow-up services for pregnancy detections, and to use sexed semen rather than conventional semen. Farmers would further like some flexibility in payment systems which include input credit, and are willing to share the costs of any AI repeats that may need to occur. These results provide evidence of a positive attitude to AI services

  1. 16 CFR 1512.12 - Requirements for wheel hubs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Requirements for wheel hubs. 1512.12 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other... hub retention test, § 1512.18(j)(3), to assure that when the locking devices are released the wheel...

  2. 16 CFR 1512.12 - Requirements for wheel hubs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for wheel hubs. 1512.12 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other... hub retention test, § 1512.18(j)(3), to assure that when the locking devices are released the wheel...

  3. Macronuclear chromatin structure dynamics in Colpoda inflata (Protista, Ciliophora) resting encystment.

    PubMed

    Tiano, L; Chessa, M G; Carrara, S; Tagliafierro, G; Delmonte Corrado, M U

    1999-01-01

    The chromatin structure dynamics of the Colpoda inflata macronucleus have been investigated in relation to its functional condition, concerning chromatin body extrusion regulating activity. Samples of 2- and 25-day-old resting cysts derived from a standard culture, and of 1-year-old resting cysts derived from a senescent culture, were examined by means of histogram analysis performed on acquired optical microscopy images. Three groups of histograms were detected in each sample. Histogram classification, clustering and matching were assessed in order to obtain the mean histogram of each group. Comparative analysis of the mean histogram showed a similarity in the grey level range of 25-day- and 1-year-old cysts, unlike the wider grey level range found in 2-day-old cysts. Moreover, the respective mean histograms of the three cyst samples appeared rather similar in shape. All this implies that macronuclear chromatin structural features of 1-year-old cysts are common to both cyst standard cultures. The evaluation of the acquired images and their respective histograms evidenced a dynamic state of the macronuclear chromatin, appearing differently condensed in relation to the chromatin body extrusion regulating activity of the macronucleus. The coexistence of a chromatin-decondensed macronucleus with a pycnotic extrusion body suggests that chromatin unable to decondense, thus inactive, is extruded. This finding, along with the presence of chromatin structural features common to standard and senescent cyst populations, supports the occurrence of 'rejuvenated' cell lines from 1-year-old encysted senescent cells, a phenomenon which could be a result of accomplished macronuclear renewal.

  4. Radial chromatin positioning is shaped by local gene density, not by gene expression

    PubMed Central

    2009-01-01

    G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional

  5. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    NASA Astrophysics Data System (ADS)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  6. Interplay between chromatin modulators and histone acetylation regulates the formation of accessible chromatin in the upstream regulatory region of fission yeast fbp1.

    PubMed

    Adachi, Akira; Senmatsu, Satoshi; Asada, Ryuta; Abe, Takuya; Hoffman, Charles S; Ohta, Kunihiro; Hirota, Kouji

    2018-05-03

    Numerous noncoding RNA transcripts are detected in eukaryotic cells. Noncoding RNAs transcribed across gene promoters are involved in the regulation of mRNA transcription via chromatin modulation. This function of noncoding RNA transcription was first demonstrated for the fission yeast fbp1 gene, where a cascade of noncoding RNA transcription events induces chromatin remodeling to facilitate transcription factor binding. We recently demonstrated that the noncoding RNAs from the fbp1 upstream region facilitate binding of the transcription activator Atf1 and thereby promote histone acetylation. Histone acetylation by histone acetyl transferases (HATs) and ATP-dependent chromatin remodelers (ADCRs) are implicated in chromatin remodeling, but the interplay between HATs and ADCRs in this process has not been fully elucidated. Here, we examine the roles played by two distinct ADCRs, Snf22 and Hrp3, and by the HAT Gcn5 in the transcriptional activation of fbp1. Snf22 and Hrp3 redundantly promote disassembly of chromatin in the fbp1 upstream region. Gcn5 critically contributes to nucleosome eviction in the absence of either Snf22 or Hrp3, presumably by recruiting Hrp3 in snf22∆ cells and Snf22 in hrp3∆ cells. Conversely, Gcn5-dependent histone H3 acetylation is impaired in snf22∆/hrp3∆ cells, suggesting that both redundant ADCRs induce recruitment of Gcn5 to the chromatin array in the fbp1 upstream region. These results reveal a previously unappreciated interplay between ADCRs and histone acetylation in which histone acetylation facilitates recruitment of ADCRs, while ADCRs are required for histone acetylation.

  7. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    PubMed

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  8. Condensation of chromatin in transcriptional regions of an inactivated plant transgene: evidence for an active role of transcription in gene silencing.

    PubMed

    van Blokland, R; ten Lohuis, M; Meyer, P

    1997-12-01

    The chromatin structures of two epigenetic alleles of a transgene were investigated by measuring the local accessibility of transgene chromatin to endonucleases. The two epialleles represented the active, hypomethylated state of a transgene in line 17-I of Petunia hybrida, and a transcriptionally inactive, hypermethylated derivative of the same transgene in line 17-IV. In nuclear preparations the inactive epiallele was significantly less sensitive to DNasel digestion and nuclease S7 digestion than the transcriptionally active epiallele, whereas no significant differences in accessibility were observed between naked DNA samples of the two epialleles. Our data suggest that a condensed chromatin structure is specifically imposed on transcribed regions of the construct in line 17-IV. In contrast, in both epialleles the plasmid region of the transgene, which is not transcriptionally active in plants, retains the same accessibility to endonucleases as the chromosomal integration site. These data suggest that transcriptional inactivation is linked to the process of transcription, and imply that control of transgene expression via the use of inducible or tissue-specific promoters might prevent transgene silencing and conserve the active state of transgenes during sexual propagation.

  9. Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex.

    PubMed

    Kato, Shigeaki; Fujiki, Ryoji; Kitagawa, Hirochika

    2004-05-01

    We have purified nuclear complexes for Vitamin D receptor (VDR), and identified one of them as a novel ATP-dependent chromatine remodeling containing Williams syndrome transcription factor (WSTF), that is supposed to be responsible for Williams syndrome. This complex (WSTF including nucleosome assembly complex (WINAC)) exhibited an ATP-dependent chromatin remodeling activity in vitro. Transient expression assays revealed that WINAC potentiates ligand-induced function of VDR in gene activation and repression. Thus, this study describes a molecular basis of the VDR function on chromosomal DNA through chromatine remodeling.

  10. The hubs of the human connectome are generally implicated in the anatomy of brain disorders.

    PubMed

    Crossley, Nicolas A; Mechelli, Andrea; Scott, Jessica; Carletti, Francesco; Fox, Peter T; McGuire, Philip; Bullmore, Edward T

    2014-08-01

    more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  11. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  12. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin

    PubMed Central

    Bandaria, Jigar N.; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet

    2016-01-01

    SUMMARY Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, and not by DNA methylation, histone deacetylation or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres become more accessible to telomere-associated proteins and accumulate DDR signals. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633

  13. Plant chromatin warms up in Madrid

    PubMed Central

    Jarillo, José A; Gaudin, Valerie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-01-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC. PMID:24504145

  14. Systematic Determination of Replication Activity Type Highlights Interconnections between Replication, Chromatin Structure and Nuclear Localization

    PubMed Central

    Polten, Andreas; Hezroni, Hadas; Eldar, Yonina C.; Meshorer, Eran; Yakhini, Zohar; Simon, Itamar

    2012-01-01

    DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR). Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs) in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs) in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR). Our algorithm, ARTO (Analysis of Replication Timing and Organization), uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10–25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are associated with

  15. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing.

    PubMed

    Lesne, Annick; Bécavin, Christophe; Victor, Jean-Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  16. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  17. A parametric study of harmonic rotor hub loads

    NASA Technical Reports Server (NTRS)

    He, Chengjian

    1993-01-01

    A parametric study of vibratory rotor hub loads in a nonrotating system is presented. The study is based on a CAMRAD/JA model constructed for the GBH (Growth Version of Blackhawk Helicopter) Mach-scaled wind tunnel rotor model with high blade twist (-16 deg). The theoretical hub load predictions are validated by correlation with available measured data. Effects of various blade aeroelastic design changes on the harmonic nonrotating frame hub loads at both low and high forward flight speeds are investigated. The study aims to illustrate some of the physical mechanisms for change in the harmonic rotor hub loads due to blade design variations.

  18. Toxic effects of lead and nickel nitrate on rat liver chromatin components.

    PubMed

    Rabbani-Chadegani Iii, Azra; Fani, Nesa; Abdossamadi, Sayeh; Shahmir, Nosrat

    2011-01-01

    The biological activity of heavy metals is related to their physicochemical interaction with biological receptors. In the present study, the effect of low concentrations of nickel nitrate and lead nitrate (<0.3 mM) on rat liver soluble chromatin and histone proteins was examined. The results showed that addition of various concentrations of metals to chromatin solution preceded the chromatin into aggregation and precipitation in a dose-dependant manner; however, the extent of absorbance changes at 260 and 400 nm was different between two metals. Gel electrophoresis of histone proteins and DNA of the supernatants obtained from the metal-treated chromatin and the controls revealed higher affinity of lead nitrate to chromatin compared to nickel nitrate. Also, the binding affinity of lead nitrate to histone proteins free in solution was higher than nickel. On the basis of the results, it is concluded that lead reacts with chromatin components even at very low concentrations and induce chromatin aggregation through histone-DNA cross-links. Whereas, nickel nitrate is less effective on chromatin at low concentrations, suggesting higher toxicity of lead nitrate on chromatin compared to nickel. Copyright © 2010 Wiley Periodicals, Inc.

  19. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    PubMed

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. © 2015 Polstein et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Insulation of the Chicken β-Globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT

    PubMed Central

    Istomina, Natalia E.; Shushanov, Sain S.; Springhetti, Evelyn M.; Karpov, Vadim L.; A. Krasheninnikov, Igor; Stevens, Kimberly; Zaret, Kenneth S.; Singh, Prim B.; Grigoryev, Sergei A.

    2003-01-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken β-globin domain. We observed two sharp transitions of MENT concentration coinciding with the β-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation. PMID:12944473

  1. Links between genome replication and chromatin landscapes.

    PubMed

    Sequeira-Mendes, Joana; Gutierrez, Crisanto

    2015-07-01

    Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  2. Future of Colombo Airport (CMB) as an Airline Hub

    NASA Technical Reports Server (NTRS)

    Jayalath, J. T. D.; Bandara, J. M. S. J.

    2001-01-01

    Aviation throughout the world has seen profound changes within the last two decades. Today more and more airports are looking for hub operations. However, as the success of hub operation would depend on a number of parameters such as geographic location, route network, facilities available, passengers' acceptance etc., not all airports would be able to operate as successful hubs. This paper investigates the possibility for (he Bandaranayake international airport, Colombo, Sri Lanka (CMB) to emerge as a hub airport in the South Asian region. It is found that CMB is situated in a geographically advantageous position in the region with respect to the airline route network. Comparison of travel distances between CMB and prominent O-D pairs and evaluation of airline schedules at relevant established hub airports indicates that CMB could operate as a directional hub serving the South Asian market if the number of destinations with daily flights could be increased.

  3. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  4. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  5. Ubiquitin Utilizes an Acidic Surface Patch to Alter Chromatin Structure

    PubMed Central

    Debelouchina, Galia T.; Gerecht, Karola; Muir, Tom W.

    2016-01-01

    Ubiquitylation of histone H2B, associated with gene activation, leads to chromatin decompaction through an unknown mechanism. We used a hydrogen-deuterium exchange strategy coupled with nuclear magnetic resonance spectroscopy to map the ubiquitin surface responsible for its structural effects on chromatin. Our studies revealed that a previously uncharacterized acidic patch on ubiquitin comprising residues Glu16 and Glu18 is essential for decompaction. These residues mediate promiscuous electrostatic interactions with the basic histone proteins, potentially positioning the ubiquitin moiety as a dynamic “wedge” that prevents the intimate association of neighboring nucleosomes. Using two independent cross-linking strategies and an oligomerization assay, we also showed that ubiquitin-ubiquitin contacts occur in the chromatin environment and are important for the solubilization of the chromatin polymers. Our work highlights a novel, chromatin-related aspect of the “ubiquitin code”, and sheds light on how the information rich ubiquitin modification can orchestrate different biochemical outcomes using different surface features. PMID:27870837

  6. The Groucho Co-repressor Is Primarily Recruited to Local Target Sites in Active Chromatin to Attenuate Transcription

    PubMed Central

    Jennings, Barbara H.

    2014-01-01

    Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation

  7. Flow Structures within a Helicopter Rotor Hub Wake

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  8. Reynolds Number Effects on Helicopter Rotor Hub Flow

    NASA Astrophysics Data System (ADS)

    Reich, David; Willits, Steve; Schmitz, Sven

    2015-11-01

    The 12 inch diameter water tunnel at the Pennsylvania State University Applied Research Laboratory was used with the objective of quantifying effects of Reynolds number scaling on drag and shed wake of model helicopter rotor hub flows. Hub diameter-based Reynolds numbers ranged from 1.06 million to 2.62 million. Measurements included steady and unsteady hub drag, as well as Particle Image Velocimetry. Results include time-averaged, phase-averaged, and spectral analysis of the drag and wake flow-field. A strong dependence of steady and unsteady drag on Reynolds number was noted, alluding to the importance of adequate Reynolds scaling for model helicopter rotor hubs that exhibit interaction between various bluff bodies.

  9. Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans

    PubMed Central

    McDaniell, Ryan; Lee, Bum-Kyu; Song, Lingyun; Liu, Zheng; Boyle, Alan P.; Erdos, Michael R.; Scott, Laura J.; Morken, Mario A.; Kucera, Katerina S.; Battenhouse, Anna; Keefe, Damian; Collins, Francis S.; Willard, Huntington F.; Lieb, Jason D.; Furey, Terrence S.; Crawford, Gregory E.; Iyer, Vishwanath R.; Birney, Ewan

    2010-01-01

    The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans. PMID:20299549

  10. Development of monofilar rotor hub vibration absorber

    NASA Technical Reports Server (NTRS)

    Duh, J.; Miao, W.

    1983-01-01

    A design and ground test program was conducted to study the performance of the monofilar absorber for vibration reduction on a four-bladed helicopter. A monofilar is a centrifugal tuned two degree-of-freedom rotor hub absorber that provides force attenuation at two frequencies using the same dynamic mass. Linear and non-linear analyses of the coupled monofilar/airframe system were developed to study tuning and attenuation characteristics. Based on the analysis, a design was fabricated and impact bench tests verified the calculated non-rotating natural frequencies and mode shapes. Performance characteristics were measured using a rotating absorber test facility. These tests showed significant attenuation of fixed-system 4P hub motions due to 3P inplane rotating-system hub forces. In addition, detuning effects of the 3P monofilar modal response were small due to the nonlinearities and tuning pin slippage. However, attenuation of 4P hub motions due to 5P inplane hub forces was poor. The performance of the 5P monofilar modal response was degraded by torsional motion of the dynamic mass relative to the support arm which resulted in binding of the dynamic components. Analytical design studies were performed to evaluate this torsional motion problem. An alternative design is proposed which may alleviate the torsional motion of the dynamic mass.

  11. Human tRNA genes function as chromatin insulators

    PubMed Central

    Raab, Jesse R; Chiu, Jonathan; Zhu, Jingchun; Katzman, Sol; Kurukuti, Sreenivasulu; Wade, Paul A; Haussler, David; Kamakaka, Rohinton T

    2012-01-01

    Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes. PMID:22085927

  12. Common ground: small RNA programming and chromatin modifications.

    PubMed

    Lejeune, Erwan; Allshire, Robin C

    2011-06-01

    Epigenetic mechanisms regulate genome structure and expression profiles in eukaryotes. RNA interference (RNAi) and other small RNA-based chromatin-modifying activities can act to reset the epigenetic landscape at defined chromatin domains. Centromeric heterochromatin assembly is a RNAi-dependent process in the fission yeast Schizosaccharomyces pombe, and provides a paradigm for detailed examination of such epigenetic processes. Here we review recent progress in understanding the mechanisms that underpin RNAi-mediated heterochromatin formation in S. pombe. We discuss recent analyses of the events that trigger RNAi and manipulations which uncouple RNAi and chromatin modification. Finally we provide an overview of similar molecular machineries across species where related small RNA pathways appear to drive the epigenetic reprogramming in germ cells and/or during early development in metazoans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Interphase Chromosome Conformation and Chromatin-chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Hada, Megumi; Wu, Honglu

    2014-01-01

    On a multi-mega base pair scale of the DNA, the arrangement of chromatin is non-random. In M10 epithelial cells, both telomere regions tend to be located towards the exterior of the chromosome domain, whereas the rest p-arm of the chromatin region towards the interior. In contrast, most of the q-arm of the chromatin is found in the peripheral of the domain. In lymphocytes, the p-arm chromatin regions towards the interior in close proximity with each other, whereas two q-arm regions are nearness in space. It indicates that G0 lymphocytes may lack secondary 3D chromatin folding. There chromatin folding patterns are consistent with our previous finding of non-random distribution of intra-chromosomal exchanges. In simulated microgravity conditions, the chromosome conformation may be altered and new regions in close proximity, especially to region 2 are suggested.

  14. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates.

    PubMed

    Gamble, Matthew J; Erdjument-Bromage, Hediye; Tempst, Paul; Freedman, Leonard P; Fisher, Robert P

    2005-01-01

    To uncover factors required for transcription by RNA polymerase II on chromatin, we fractionated a mammalian cell nuclear extract. We identified the histone chaperone TAF-I (also known as INHAT [inhibitor of histone acetyltransferase]), which was previously proposed to repress transcription, as a potent activator of chromatin transcription responsive to the vitamin D3 receptor or to Gal4-VP16. TAF-I associates with chromatin in vitro and can substitute for the related protein NAP-1 in assembling chromatin onto cloned DNA templates in cooperation with the remodeling enzyme ATP-dependent chromatin assembly factor (ACF). The chromatin assembly and transcriptional activation functions are distinct, however, and can be dissociated temporally. Efficient transcription of chromatin assembled with TAF-I still requires the presence of TAF-I during the polymerization reaction. Conversely, TAF-I cannot stimulate transcript elongation when added after the other factors necessary for assembly of a preinitiation complex on naked DNA. Thus, TAF-I is required to facilitate transcription at a step after chromatin assembly but before transcript elongation.

  15. Nucleosomal chromatin in the mature sperm of Drosophila melanogaster.

    PubMed

    Elnfati, Abdul Hakim; Iles, David; Miller, David

    2016-03-01

    During spermiogenesis in mammals and many other vertebrate classes, histone-containing nucleosomes are replaced by protamine toroids, which can repackage chromatin at a 10 to 20-fold higher density than in a typical somatic nucleus. However, recent evidence suggests that sperm of many species, including human and mouse retain a small compartment of nucleosomal chromatin, particularly near genes important for embryogenesis. As in mammals, spermiogenesis in the fruit fly, Drosophila melanogaster has also been shown to undergo a programmed substitution of nucleosomes with protamine-like proteins. Using chromatin immunoprecipitation (ChIP) and whole-genome tiling array hybridization (ChIP-chip), supported by immunocytochemical evidence, we show that in a manner analogous to nucleosomal chromatin retention in mammalian spermatozoa, distinct domains packaged by the canonical histones H2A, H2B, H3 and H4 are present in the fly sperm nucleus. We also find evidence for the retention of nucleosomes with specific histone H3 trimethylation marks characteristic of chromatin repression (H3K9me3, H3K27me3) and active transcription (H3K36me3). Raw and processed data from the experiments are available at GEO, accession GSE52165.

  16. Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability.

    PubMed

    Husain, Afzal; Begum, Nasim A; Taniguchi, Takako; Taniguchi, Hisaaki; Kobayashi, Maki; Honjo, Tasuku

    2016-02-04

    Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage.

  17. CHD chromatin remodelers and the transcription cycle

    PubMed Central

    Murawska, Magdalena

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by “opening” or “closing” chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but also are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts. PMID:22223048

  18. A multiplexed system for quantitative comparisons of chromatin landscapes

    PubMed Central

    van Galen, Peter; Viny, Aaron D.; Ram, Oren; Ryan, Russell J.H.; Cotton, Matthew J.; Donohue, Laura; Sievers, Cem; Drier, Yotam; Liau, Brian B.; Gillespie, Shawn M.; Carroll, Kaitlin M.; Cross, Michael B.; Levine, Ross L.; Bernstein, Bradley E.

    2015-01-01

    Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of P300, EZH2 or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions and drug treatments. PMID:26687680

  19. Regional HIV knowledge hubs: a new approach by the health sector to transform knowledge into practice.

    PubMed

    Mostafavi, Ehsan; Haghdoost, Aliakbar; Mirzazadeh, Ali; Riedner, Gabriele; Weis, Peter; Kloss, Kristina; Zolala, Farzaneh

    2014-03-01

    This study aims to introduce the knowledge hub (KH) as an initiative to facilitate transformation of knowledge into practice and to highlight the activity and limitations with this new policy. The study was conducted through a review of articles; expert views in this field were sought for further information. Regional human immunodeficiency virus (HIV) KHs were developed by the World Health Organization and GTZ. A series of activities including capacity building, development of training models, technical assistance, and application of studies are provided through these hubs. However, financial limitations are the main obstacle in achieving these aims. This piece of work introduces these HIV hubs in order to help countries, particularly developing countries, provide the support needed to fight the progression of HIV.

  20. Declining functional connectivity and changing hub locations in Alzheimer's disease: an EEG study.

    PubMed

    Engels, Marjolein M A; Stam, Cornelis J; van der Flier, Wiesje M; Scheltens, Philip; de Waal, Hanneke; van Straaten, Elisabeth C W

    2015-08-20

    EEG studies have shown that patients with Alzheimer's disease (AD) have weaker functional connectivity than controls, especially in higher frequency bands. Furthermore, active regions seem more prone to AD pathology. How functional connectivity is affected in AD subgroups of disease severity and how network hubs (highly connected brain areas) change is not known. We compared AD patients with different disease severity and controls in terms of functional connections, hub strength and hub location. We studied routine 21-channel resting-state electroencephalography (EEG) of 318 AD patients (divided into tertiles based on disease severity: mild, moderate and severe AD) and 133 age-matched controls. Functional connectivity between EEG channels was estimated with the Phase Lag Index (PLI). From the PLI-based connectivity matrix, the minimum spanning tree (MST) was derived. For each node (EEG channel) in the MST, the betweenness centrality (BC) was computed, a measure to quantify the relative importance of a node within the network. Then we derived color-coded head plots based on BC values and calculated the center of mass (the exact middle had x and y values of 0). A shifting of the hub locations was defined as a shift of the center of mass on the y-axis across groups. Multivariate general linear models with PLI or BC values as dependent variables and the groups as continuous variables were used in the five conventional frequency bands. We found that functional connectivity decreases with increasing disease severity in the alpha band. All, except for posterior, regions showed increasing BC values with increasing disease severity. The center of mass shifted from posterior to more anterior regions with increasing disease severity in the higher frequency bands, indicating a loss of relative functional importance of the posterior brain regions. In conclusion, we observed decreasing functional connectivity in the posterior regions, together with a shifted hub location from

  1. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    PubMed

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Generic Features of Tertiary Chromatin Structure as Detected in Natural Chromosomes

    PubMed Central

    Müller, Waltraud G.; Rieder, Dietmar; Kreth, Gregor; Cremer, Christoph; Trajanoski, Zlatko; McNally, James G.

    2004-01-01

    Knowledge of tertiary chromatin structure in mammalian interphase chromosomes is largely derived from artificial tandem arrays. In these model systems, light microscope images reveal fibers or beaded fibers after high-density targeting of transactivators to insertional domains spanning several megabases. These images of fibers have lent support to chromonema fiber models of tertiary structure. To assess the relevance of these studies to natural mammalian chromatin, we identified two different ∼400-kb regions on human chromosomes 6 and 22 and then examined light microscope images of interphase tertiary chromatin structure when the regions were transcriptionally active and inactive. When transcriptionally active, these natural chromosomal regions elongated, yielding images characterized by a series of adjacent puncta or “beads”, referred to hereafter as beaded images. These elongated structures required transcription for their maintenance. Thus, despite marked differences in the density and the mode of transactivation, the natural and artificial systems showed similarities, suggesting that beaded images are generic features of transcriptionally active tertiary chromatin. We show here, however, that these images do not necessarily favor chromonema fiber models but can also be explained by a radial-loop model or even a simple nucleosome affinity, random-chain model. Thus, light microscope images of tertiary structure cannot distinguish among competing models, although they do impose key constraints: chromatin must be clustered to yield beaded images and then packaged within each cluster to enable decondensation into adjacent clusters. PMID:15485905

  3. The RNA-binding protein Rumpelstiltskin antagonizes gypsy chromatin insulator function in a tissue-specific manner

    PubMed Central

    King, Matthew R.; Matzat, Leah H.; Dale, Ryan K.; Lim, Su Jun; Lei, Elissa P.

    2014-01-01

    ABSTRACT Chromatin insulators are DNA–protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity. PMID:24706949

  4. Hub and pylon fairing integration for helicopter drag reduction

    NASA Technical Reports Server (NTRS)

    Martin, D. M.; Mort, R. W.; Squires, P. K.; Young, L. A.

    1991-01-01

    The results of testing hub and pylon fairings mounted on a one-fifth scale helicopter with the goal of reducing parasite drag are presented. Lift, drag, and pitching moment, as well as side force and yawing moment, were measured. The primary objective of the test was to validate the drag reduction capability of integrated hub and pylon configurations in the aerodynamic environment produced by a rotating hub in forward flight. In addition to the baseline helicopter without fairings, three hub fairings and three pylon fairings were tested in various combinations. The three hub fairings tested reflect two different conceptual design approaches to implementing an integrated fairing configuration on an actual aircraft. The design philosophy is discussed in detail and comparisons are made between the wind tunnel models and potential full-scale prototypes. The data show that model drag can be reduced by as much as 20.8 percent by combining a small hub fairing with circular arc upper and flat lower surfaces and a nontapered 34-percent thick pylon fairing. Aerodynamic effects caused by the fairings, which may have a significant impact on static longitudinal and directional stability, were observed. The results support previous research which showed that the greatest reduction in model drag is achieved if the hub and pylon fairings are integrated with minimum gap between the two.

  5. DNA replication through a chromatin environment.

    PubMed

    Bellush, James M; Whitehouse, Iestyn

    2017-10-05

    Compaction of the genome into the nuclear space is achieved by wrapping DNA around octameric assemblies of histone proteins to form nucleosomes, the fundamental repeating unit of chromatin. Aside from providing a means by which to fit larger genomes into the cell, chromatinization of DNA is a crucial means by which the cell regulates access to the genome. While the complex role that chromatin plays in gene transcription has been appreciated for a long time, it is now also apparent that crucial aspects of DNA replication are linked to the biology of chromatin. This review will focus on recent advances in our understanding of how the chromatin environment influences key aspects of DNA replication.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  6. Dissecting the chromatin interactome of microRNA genes.

    PubMed

    Chen, Dijun; Fu, Liang-Yu; Zhang, Zhao; Li, Guoliang; Zhang, Hang; Jiang, Li; Harrison, Andrew P; Shanahan, Hugh P; Klukas, Christian; Zhang, Hong-Yu; Ruan, Yijun; Chen, Ling-Ling; Chen, Ming

    2014-03-01

    Our knowledge of the role of higher-order chromatin structures in transcription of microRNA genes (MIRs) is evolving rapidly. Here we investigate the effect of 3D architecture of chromatin on the transcriptional regulation of MIRs. We demonstrate that MIRs have transcriptional features that are similar to protein-coding genes. RNA polymerase II-associated ChIA-PET data reveal that many groups of MIRs and protein-coding genes are organized into functionally compartmentalized chromatin communities and undergo coordinated expression when their genomic loci are spatially colocated. We observe that MIRs display widespread communication in those transcriptionally active communities. Moreover, miRNA-target interactions are significantly enriched among communities with functional homogeneity while depleted from the same community from which they originated, suggesting MIRs coordinating function-related pathways at posttranscriptional level. Further investigation demonstrates the existence of spatial MIR-MIR chromatin interacting networks. We show that groups of spatially coordinated MIRs are frequently from the same family and involved in the same disease category. The spatial interaction network possesses both common and cell-specific subnetwork modules that result from the spatial organization of chromatin within different cell types. Together, our study unveils an entirely unexplored layer of MIR regulation throughout the human genome that links the spatial coordination of MIRs to their co-expression and function.

  7. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    PubMed

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  8. Kinases and chromatin structure

    PubMed Central

    Miotto, Benoit

    2013-01-01

    Chromatin structure is regulated by families of proteins that are able to covalently modify the histones and the DNA, as well as to regulate the spacing of nucleosomes along the DNA. Over the years, these chromatin remodeling factors have been proven to be essential to a variety of processes, including gene expression, DNA replication, and chromosome cohesion. The function of these remodeling factors is regulated by a number of chemical and developmental signals and, in turn, changes in the chromatin structure eventually contribute to the response to changes in the cellular environment. Exciting new research findings by the laboratories of Sharon Dent and Steve Jackson indicate, in two different contexts, that changes in the chromatin structure may, in reverse, signal to intracellular signaling pathways to regulate cell fate. The discoveries clearly challenge our traditional view of ‘epigenetics’, and may have important implications in human health. PMID:23917692

  9. Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.

    PubMed

    Borysov, Sergiy; Bryant, Victoria L; Alexandrow, Mark G

    2015-01-01

    Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze

  10. Histone octamer trans-transfer: a signature mechanism of ATP-dependent chromatin remodelling unravelled in wheat nuclear extract

    PubMed Central

    Raut, Vishal V.; Pandey, Shashibhal M.; Sainis, Jayashree K.

    2011-01-01

    Background and Scope In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from bioinformatics studies and analysis of mutants, the biochemical existence of such complexes has remained unexplored. Methods Histone H1-depleted donor chromatin was prepared by micrococcal nuclease digestion of wheat nuclei and fractionation by exclusion chromatography. Nuclear extract was partially purified by cellulose phosphate ion exchange chromatography. Histone octamer trans-transfer activity was analysed using the synthetic nucleosome positioning sequence in the absence and presence of ATP and its analogues. ATPase activity was measured as 32Pi released using liquid scintillation counting. Key Results ATP-dependent histone octamer trans-transfer activity, partially purified from wheat nuclei using cellulose phosphate, showed ATP-dependent octamer displacement in trans from the H1-depleted native donor chromatin of wheat to the labelled synthetic nucleosome positioning sequence. It also showed nucleosome-dependent ATPase activity. Substitution of ATP by ATP analogues, namely ATPγS, AMP-PNP and ADP abolished the octamer trans-transfer, indicating the requirement of ATP hydrolysis for this activity. Conclusions ATP-dependent histone octamer transfer in trans is a recognized activity of chromatin remodelling complexes required for chromatin structure dynamics in non-plant species. Our results suggested that wheat nuclei also possess a typical chromatin remodelling activity, similar to that in other eukaryotes. This is the first report on chromatin remodelling activity in vitro from plants. PMID:21896571

  11. A chromatin remodelling complex that loads cohesin onto human chromosomes

    NASA Astrophysics Data System (ADS)

    Hakimi, Mohamed-Ali; Bochar, Daniel A.; Schmiesing, John A.; Dong, Yuanshu; Barak, Orr G.; Speicher, David W.; Yokomori, Kyoko; Shiekhattar, Ramin

    2002-08-01

    Nucleosomal DNA is arranged in a higher-order structure that presents a barrier to most cellular processes involving protein DNA interactions. The cellular machinery involved in sister chromatid cohesion, the cohesin complex, also requires access to the nucleosomal DNA to perform its function in chromosome segregation. The machineries that provide this accessibility are termed chromatin remodelling factors. Here, we report the isolation of a human ISWI (SNF2h)-containing chromatin remodelling complex that encompasses components of the cohesin and NuRD complexes. We show that the hRAD21 subunit of the cohesin complex directly interacts with the ATPase subunit SNF2h. Mapping of hRAD21, SNF2h and Mi2 binding sites by chromatin immunoprecipitation experiments reveals the specific association of these three proteins with human DNA elements containing Alu sequences. We find a correlation between modification of histone tails and association of the SNF2h/cohesin complex with chromatin. Moreover, we show that the association of the cohesin complex with chromatin can be regulated by the state of DNA methylation. Finally, we present evidence pointing to a role for the ATPase activity of SNF2h in the loading of hRAD21 on chromatin.

  12. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems.

    PubMed

    Hirakawa, Takeshi; Matsunaga, Sachihiro

    2016-01-01

    In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.

  13. Molecular structures guide the engineering of chromatin

    PubMed Central

    Tekel, Stefan J.

    2017-01-01

    Abstract Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. PMID:28609787

  14. Titration and hysteresis in epigenetic chromatin silencing

    NASA Astrophysics Data System (ADS)

    Dayarian, Adel; Sengupta, Anirvan M.

    2013-06-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs.

  15. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci

    PubMed Central

    Noordermeer, Daan; Leleu, Marion; Schorderet, Patrick; Joye, Elisabeth; Chabaud, Fabienne; Duboule, Denis

    2014-01-01

    Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels. DOI: http://dx.doi.org/10.7554/eLife.02557.001 PMID:24843030

  17. Clique of Functional Hubs Orchestrates Population Bursts in Developmentally Regulated Neural Networks

    PubMed Central

    Luccioli, Stefano; Ben-Jacob, Eshel; Barzilai, Ari; Bonifazi, Paolo; Torcini, Alessandro

    2014-01-01

    It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity. PMID:25255443

  18. Combinatorial Control of Light Induced Chromatin Remodeling and Gene Activation in Neurospora

    PubMed Central

    Sancar, Cigdem; Ha, Nati; Yilmaz, Rüstem; Tesorero, Rafael; Fisher, Tamas; Brunner, Michael; Sancar, Gencer

    2015-01-01

    Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression. PMID:25822411

  19. Comparative analysis of metazoan chromatin organization.

    PubMed

    Ho, Joshua W K; Jung, Youngsook L; Liu, Tao; Alver, Burak H; Lee, Soohyun; Ikegami, Kohta; Sohn, Kyung-Ah; Minoda, Aki; Tolstorukov, Michael Y; Appert, Alex; Parker, Stephen C J; Gu, Tingting; Kundaje, Anshul; Riddle, Nicole C; Bishop, Eric; Egelhofer, Thea A; Hu, Sheng'en Shawn; Alekseyenko, Artyom A; Rechtsteiner, Andreas; Asker, Dalal; Belsky, Jason A; Bowman, Sarah K; Chen, Q Brent; Chen, Ron A-J; Day, Daniel S; Dong, Yan; Dose, Andrea C; Duan, Xikun; Epstein, Charles B; Ercan, Sevinc; Feingold, Elise A; Ferrari, Francesco; Garrigues, Jacob M; Gehlenborg, Nils; Good, Peter J; Haseley, Psalm; He, Daniel; Herrmann, Moritz; Hoffman, Michael M; Jeffers, Tess E; Kharchenko, Peter V; Kolasinska-Zwierz, Paulina; Kotwaliwale, Chitra V; Kumar, Nischay; Langley, Sasha A; Larschan, Erica N; Latorre, Isabel; Libbrecht, Maxwell W; Lin, Xueqiu; Park, Richard; Pazin, Michael J; Pham, Hoang N; Plachetka, Annette; Qin, Bo; Schwartz, Yuri B; Shoresh, Noam; Stempor, Przemyslaw; Vielle, Anne; Wang, Chengyang; Whittle, Christina M; Xue, Huiling; Kingston, Robert E; Kim, Ju Han; Bernstein, Bradley E; Dernburg, Abby F; Pirrotta, Vincenzo; Kuroda, Mitzi I; Noble, William S; Tullius, Thomas D; Kellis, Manolis; MacAlpine, David M; Strome, Susan; Elgin, Sarah C R; Liu, Xiaole Shirley; Lieb, Jason D; Ahringer, Julie; Karpen, Gary H; Park, Peter J

    2014-08-28

    Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.

  20. Extraversion modulates functional connectivity hubs of resting-state brain networks.

    PubMed

    Pang, Yajing; Cui, Qian; Duan, Xujun; Chen, Heng; Zeng, Ling; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2017-09-01

    Personality dimension extraversion describes individual differences in social behaviour and socio-emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy-efficient hubs associated with extraversion. The resting-state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short-range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk-taking. Long-range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed-based resting-state functional connectivity (RSFC) analyses revealed that a decreased long-range FCD in individuals with high extraversion scores showed a low long-range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self-esteem, self-evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long-range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion. © 2015 The British Psychological Society.

  1. Promyelocytic extracellular chromatin exacerbates coagulation and fibrinolysis in acute promyelocytic leukemia

    PubMed Central

    Cao, Muhua; Li, Tao; He, Zhangxiu; Wang, Lixiu; Yang, Xiaoyan; Kou, Yan; Zou, Lili; Dong, Xue; Novakovic, Valerie A.; Bi, Yayan; Kou, Junjie; Yu, Bo; Fang, Shaohong; Wang, Jinghua; Zhou, Jin

    2017-01-01

    Despite routine treatment of unselected acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA), early death because of hemorrhage remains unacceptably common, and the mechanism underlying this complication remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin. However, the role of promyelocytic extracellular chromatin in APL-associated coagulation remains unclear. Our objectives were to identify the novel role of ATRA-promoted extracellular chromatin in inducing a hypercoagulable and hyperfibrinolytic state in APL and to evaluate its interaction with fibrin and endothelial cells (ECs). Results from a series of coagulation assays have shown that promyelocytic extracellular chromatin increases thrombin and plasmin generation, causes a shortening of plasma clotting time of APL cells, and increases fibrin formation. DNase I but not anti-tissue factor antibody could inhibit these effects. Immunofluorescence staining showed that promyelocytic extracellular chromatin and phosphatidylserine on APL cells provide platforms for fibrin deposition and render clots more resistant to fibrinolysis. Additionally, coincubation assays revealed that promyelocytic extracellular chromatin is cytotoxic to ECs, converting them to a procoagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C by 31%. Our current results thus delineate the pathogenic role of promyelocytic extracellular chromatin in APL coagulopathy. Furthermore, the remaining coagulation disturbance in high-risk APL patients after ATRA administration may be treatable by intrinsic pathway inhibition via accelerating extracellular chromatin degradation. PMID:28053193

  2. A high-resolution map of the three-dimensional chromatin interactome in human cells.

    PubMed

    Jin, Fulai; Li, Yan; Dixon, Jesse R; Selvaraj, Siddarth; Ye, Zhen; Lee, Ah Young; Yen, Chia-An; Schmitt, Anthony D; Espinoza, Celso A; Ren, Bing

    2013-11-14

    A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-α signalling in these cells. Unexpectedly, we found that TNF-α-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.

  3. Molecular structures guide the engineering of chromatin.

    PubMed

    Tekel, Stefan J; Haynes, Karmella A

    2017-07-27

    Chromatin is a system of proteins, RNA, and DNA that interact with each other to organize and regulate genetic information within eukaryotic nuclei. Chromatin proteins carry out essential functions: packing DNA during cell division, partitioning DNA into sub-regions within the nucleus, and controlling levels of gene expression. There is a growing interest in manipulating chromatin dynamics for applications in medicine and agriculture. Progress in this area requires the identification of design rules for the chromatin system. Here, we focus on the relationship between the physical structure and function of chromatin proteins. We discuss key research that has elucidated the intrinsic properties of chromatin proteins and how this information informs design rules for synthetic systems. Recent work demonstrates that chromatin-derived peptide motifs are portable and in some cases can be customized to alter their function. Finally, we present a workflow for fusion protein design and discuss best practices for engineering chromatin to assist scientists in advancing the field of synthetic epigenetics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Structure and Dynamic Properties of a Glucocorticoid Receptor-Induced Chromatin Transition

    PubMed Central

    Fletcher, Terace M.; Ryu, Byung-Woo; Baumann, Christopher T.; Warren, Barbour S.; Fragoso, Gilberto; John, Sam; Hager, Gordon L.

    2000-01-01

    Activation of the mouse mammary tumor virus (MMTV) promoter by the glucocorticoid receptor (GR) is associated with a chromatin structural transition in the B nucleosome region of the viral long terminal repeat (LTR). Recent evidence indicates that this transition extends upstream of the B nucleosome, encompassing a region larger than a single nucleosome (G. Fragoso, W. D. Pennie, S. John, and G. L. Hager, Mol. Cell. Biol. 18:3633–3644). We have reconstituted MMTV LTR DNA into a polynucleosome array using Drosophila embryo extracts. We show binding of purified GR to specific GR elements within a large, multinucleosome array and describe a GR-induced nucleoprotein transition that is dependent on ATP and a HeLa nuclear extract. Previously uncharacterized GR binding sites in the upstream C nucleosome region are involved in the extended region of chromatin remodeling. We also show that GR-dependent chromatin remodeling is a multistep process; in the absence of ATP, GR binds to multiple sites on the chromatin array and prevents restriction enzyme access to recognition sites. Upon addition of ATP, GR induces remodeling and a large increase in access to enzymes sites within the transition region. These findings suggest a dynamic model in which GR first binds to chromatin after ligand activation, recruits a remodeling activity, and is then lost from the template. This model is consistent with the recent description of a “hit-and-run” mechanism for GR action in living cells (J. G. McNally, W. G. Müller, D. Walker, and G. L. Hager, Science 287:1262–1264, 2000). PMID:10938123

  5. [Automated morphometric evaluation of the chromatin structure of liver cell nuclei after vagotomy].

    PubMed

    Butusova, N N; Zhukotskiĭ, A V; Sherbo, I V; Gribkov, E N; Dubovaia, T K

    1989-05-01

    The morphometric analysis of the interphase chromatine structure of the hepatic cells nuclei was carried out on the automated TV installation for the quantitative analysis of images "IBAS-2" (by the OPTON firm, the FRG) according to 50 optical and geometric parameters during various periods (1.2 and 4 weeks) after the vagotomy operation. It is determined that upper-molecular organisation of chromatine undergoes the biggest changes one week after operation, and changes of granular component are more informative than changes of the nongranular component (with the difference 15-20%). It was also revealed that chromatine components differ in tinctorial properties, which are evidently dependent on physicochemical characteristics of the chromatine under various functional conditions of the cell. As a result of the correlation analysis the group of morphometric indices of chromatine structure was revealed, which are highly correlated with level of transcription activity of chromatine during various terms after denervation. The correlation quotient of these parameters is 0.85-0.97. The summing up: vagus denervation of the liver causes changes in the morphofunctional organisation of the chromatine.

  6. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations

    PubMed Central

    Szczurek, Aleksander; Klewes, Ludger; Xing, Jun; Gourram, Amine; Birk, Udo; Knecht, Hans; Dobrucki, Jurek W.; Mai, Sabine

    2017-01-01

    Abstract Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions. PMID:28082388

  7. Restraint of angiogenesis by zinc finger transcription factor CTCF-dependent chromatin insulation

    PubMed Central

    Tang, Ming; Chen, Bo; Pardo, Carolina; Pampo, Christine; Chen, Jing; Lien, Ching-Ling; Wu, Lizi; Wang, Heiman; Yao, Kai; Oh, S. Paul; Seto, Edward; Smith, Lois E. H.; Siemann, Dietmar W.; Kladde, Michael P.; Cepko, Constance L.; Lu, Jianrong

    2011-01-01

    Angiogenesis is meticulously controlled by a fine balance between positive and negative regulatory activities. Vascular endothelial growth factor (VEGF) is a predominant angiogenic factor and its dosage is precisely regulated during normal vascular formation. In cancer, VEGF is commonly overproduced, resulting in abnormal neovascularization. VEGF is induced in response to various stimuli including hypoxia; however, very little is known about the mechanisms that confine its induction to ensure proper angiogenesis. Chromatin insulation is a key transcription mechanism that prevents promiscuous gene activation by interfering with the action of enhancers. Here we show that the chromatin insulator-binding factor CTCF binds to the proximal promoter of VEGF. Consistent with the enhancer-blocking mode of chromatin insulators, CTCF has little effect on basal expression of VEGF but specifically affects its activation by enhancers. CTCF knockdown cells are sensitized for induction of VEGF and exhibit elevated proangiogenic potential. Cancer-derived CTCF missense mutants are mostly defective in blocking enhancers at the VEGF locus. Moreover, during mouse retinal development, depletion of CTCF causes excess angiogenesis. Therefore, CTCF-mediated chromatin insulation acts as a crucial safeguard against hyperactivation of angiogenesis. PMID:21896759

  8. The Regional Dimension of Education Hubs: Leading and Brokering Geopolitics

    ERIC Educational Resources Information Center

    Lee, Jack T.

    2015-01-01

    Several education hubs have emerged in the last decade in Asia and the Middle East. These ambitious policy initiatives share a common interest in cross-border higher education even though diverse rationales underpin their development. While some claim to be an international education hub, others claim to be a regional education hub or…

  9. USDA southwest regional hub for adaptation to and mitigation of climate change

    USDA-ARS?s Scientific Manuscript database

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made ...

  10. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation

    PubMed Central

    Deng, Huai; Kerppola, Tom K.

    2014-01-01

    Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription. PMID:25063457

  11. Numerical investigation of hub clearance flow in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Wu, H.; Feng, J. J.; Wu, G. K.; Luo, X. Q.

    2012-11-01

    In this paper, the flow field considering the hub clearance flow in a Kaplan turbine has been investigated through using the commercial CFD code ANSYS CFX based on high-quality structured grids generated by ANSYS ICEM CFD. The turbulence is simulated by k-ω based shear stress transport (SST) turbulence model together with automatic near wall treatments. Four kinds of simulations have been conducted for the runner geometry without hub clearance, with only the hub front clearance, with only the rear hub clearance, and with both front and rear clearance. The analysis of the obtained results is focused on the flow structure of the hub clearance flow, the effect on the turbine performance including hydraulic efficiency and cavitation performance, which can improve the understanding on the flow field in a Kaplan turbine.

  12. Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome

    NASA Astrophysics Data System (ADS)

    Ernst, Jason; Kellis, Manolis

    A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal chromatin states in human T cells, based on recurrent and spatially coherent combinations of chromatin marks.We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, largescale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

  13. Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation.

    PubMed

    Lima, A F; May, G; Colunga, J; Pedreiro, S; Paiva, A; Ferreira, L; Enver, T; Iborra, F J; Pires das Neves, R

    2018-05-08

    Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II (Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This technology was tested in model protocols of induced pluripotency and transdifferentiation in cells growing in suspension and adherent to substrates, CD34 + umbilical-cord-blood (UCB), fibroblasts and B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient hyposmotic modulation of the cell environment.

  14. Understanding RNA-Chromatin Interactions Using Chromatin Isolation by RNA Purification (ChIRP).

    PubMed

    Chu, Ci; Chang, Howard Y

    2016-01-01

    ChIRP is a novel and easy-to-use technique for studying long noncoding RNA (lncRNA)-chromatin interactions. RNA and chromatin are cross-linked in vivo using formaldehyde or glutaraldehyde, and purified using biotinylated antisense oligonucleotides that hybridize to the target RNA. Co-precipitated DNA is then purified and analyzed by quantitative PCR (qPCR) or high-throughput sequencing.

  15. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein

    PubMed Central

    Pivot-Pajot, Christophe; Caron, Cécile; Govin, Jérôme; Vion, Alexandre; Rousseaux, Sophie; Khochbin, Saadi

    2003-01-01

    The association between histone acetylation and replacement observed during spermatogenesis prompted us to consider the testis as a source for potential factors capable of remodelling acetylated chromatin. A systematic search of data banks for open reading frames encoding testis-specific bromodomain-containing proteins focused our attention on BRDT, a testis-specific protein of unknown function containing two bromodomains. BRDT specifically binds hyperacetylated histone H4 tail depending on the integrity of both bromodomains. Moreover, in somatic cells, the ectopic expression of BRDT triggered a dramatic reorganization of the chromatin only after induction of histone hyperacetylation by trichostatin A (TSA). We then defined critical domains of BRDT involved in its activity. Both bromodomains of BRDT, as well as flanking regions, were found indispensable for its histone acetylation-dependent remodelling activity. Interestingly, we also observed that recombinant BRDT was capable of inducing reorganization of the chromatin of isolated nuclei in vitro only when the nuclei were from TSA-treated cells. This assay also allowed us to show that the action of BRDT was ATP independent, suggesting a structural role for the protein in the remodelling of acetylated chromatin. This is the first demonstration of a large-scale reorganization of acetylated chromatin induced by a specific factor. PMID:12861021

  16. Hub loads analysis of the SA349/2 helicopter

    NASA Technical Reports Server (NTRS)

    Heffernan, R. M.; Yamauchi, G. K.; Gaubert, M.; Johnson, W.

    1988-01-01

    The forces and moments at the rotor hub of an Aerospatiale SA349/2 helicopter were investigated. The study included three main topics. First, measured hub forces and moments for a range of level flight conditions (mu = 0.14 to 0.37) were compared with predictions from a comprehensive rotorcraft analysis to examine the influence of the wake model on the correlations. Second, the effect of changing the blade mass distribution and blade chordwise center of gravity location on the 3/rev nonrotating frame hub loads was studied for a high-speed flight condition (mu = 0.37). Third, the use of higher harmonic control to reduce nonrotating frame 3/rev hub shear forces was investigated. The last two topics were theoretical studies only.

  17. A Community "Hub" Network Intervention for HIV Stigma Reduction: A Case Study.

    PubMed

    Prinsloo, Catharina D; Greeff, Minrie

    2016-01-01

    We describe the implementation of a community "hub" network intervention to reduce HIV stigma in the Tlokwe Municipality, North West Province, South Africa. A holistic case study design was used, focusing on community members with no differentiation by HIV status. Participants were recruited through accessibility sampling. Data analyses used open coding and document analysis. Findings showed that the HIV stigma-reduction community hub network intervention successfully activated mobilizers to initiate change; lessened the stigma experience for people living with HIV; and addressed HIV stigma in a whole community using a combination of strategies including individual and interpersonal levels, social networks, and the public. Further research is recommended to replicate and enhance the intervention. In particular, the hub network system should be extended, the intervention period should be longer, there should be a stronger support system for mobilizers, and the multiple strategy approach should be continued on individual and social levels. Copyright © 2016 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  18. International Education Hubs: Collaboration for Competitiveness and Sustainability

    ERIC Educational Resources Information Center

    Knight, Jane

    2014-01-01

    This chapter focuses on the development of education hubs, a recent phenomenon in international higher education. Three models of hubs are examined in relation to the forces, risks, and opportunities of globalization and how local and international collaborations are essential for both global competitiveness and sustainability.

  19. 16 CFR 1512.12 - Requirements for wheel hubs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for wheel hubs. 1512.12 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other than sidewalk bicycles) shall meet the following requirements: (a) Locking devices. Wheels shall be...

  20. 16 CFR 1512.12 - Requirements for wheel hubs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Requirements for wheel hubs. 1512.12 Section... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other than sidewalk bicycles) shall meet the following requirements: (a) Locking devices. Wheels shall be...

  1. Chromatin-associated HMG-17 is a major regulator of homeodomain transcription factor activity modulated by Wnt/β-catenin signaling

    PubMed Central

    Amen, Melanie; Espinoza, Herbert M.; Cox, Carol; Liang, Xiaowen; Wang, Jianbo; Link, Todd M. E.; Brennan, Richard G.; Martin, James F.; Amendt, Brad A.

    2008-01-01

    Homeodomain (HD) transcriptional activities are tightly regulated during embryogenesis and require protein interactions for their spatial and temporal activation. The chromatin-associated high mobility group protein (HMG-17) is associated with transcriptionally active chromatin, however its role in regulating gene expression is unclear. This report reveals a unique strategy in which, HMG-17 acts as a molecular switch regulating HD transcriptional activity. The switch utilizes the Wnt/β-catenin signaling pathway and adds to the diverse functions of β-catenin. A high-affinity HMG-17 interaction with the PITX2 HD protein inhibits PITX2 DNA-binding activity. The HMG-17/PITX2 inactive complex is concentrated to specific nuclear regions primed for active transcription. β-Catenin forms a ternary complex with PITX2/HMG-17 to switch it from a repressor to an activator complex. Without β-catenin, HMG-17 can physically remove PITX2 from DNA to inhibit its transcriptional activity. The PITX2/HMG-17 regulatory complex acts independently of promoter targets and is a general mechanism for the control of HD transcriptional activity. HMG-17 is developmentally regulated and its unique role during embryogenesis is revealed by the early embryonic lethality of HMG-17 homozygous mice. This mechanism provides a new role for canonical Wnt/β-catenin signaling in regulating HD transcriptional activity during development using HMG-17 as a molecular switch. PMID:18045789

  2. Chromatin in embryonic stem cell neuronal differentiation.

    PubMed

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  3. Expression and chromatin structures of cellulolytic enzyme gene regulated by heterochromatin protein 1.

    PubMed

    Zhang, Xiujun; Qu, Yinbo; Qin, Yuqi

    2016-01-01

    Heterochromatin protein 1 (HP1, homologue HepA in Penicillium oxalicum ) binding is associated with a highly compact chromatin state accompanied by gene silencing or repression. HP1 loss leads to the derepression of gene expression. We investigated HepA roles in regulating cellulolytic enzyme gene expression, as an increasingly number of studies have suggested that cellulolytic enzyme gene expression is not only regulated by transcription factors, but is also affected by the chromatin status. Among the genes that exhibited significant differences between the hepA deletion strain (Δ hepA ) and the wild type (WT), most (95.0 %) were upregulated in Δ hepA compared with WT. The expression of the key transcription factor for cellulolytic enzyme gene (e.g., repressor CreA and activator ClrB) increased significantly. However, the deletion of hepA led to downregulation of prominent extracellular cellulolytic enzyme genes. Among the top 10 extracellular glycoside hydrolases (Amy15A, Amy13A, Cel7A/CBHI, Cel61A, Chi18A, Cel3A/BGLI, Xyn10A, Cel7B/EGI, Cel5B/EGII, and Cel6A/CBHII), in which secretion amount is from the highest to the tenth in P . oxalicum secretome, eight genes, including two amylase genes ( amy15A and amy13A ), all five cellulase genes ( cel7A / cbh1 , cel6A / cbh2 , cel7B / eg1 , cel5B / eg2 , and cel3A / bgl1 ), and the cellulose-active LPMO gene ( cel61A ) expression were downregulated. Results of chromatin accessibility real-time PCR (CHART-PCR) showed that the chromatin of all three tested upstream regions opened specifically because of the deletion of hepA in the case of two prominent cellulase genes cel7A/cbh1 and cel7B/eg1 . However, the open chromatin status did not occur along with the activation of cellulolytic enzyme gene expression. The overexpression of hepA upregulated the cellulolytic enzyme gene expression without chromatin modification. The overexpression of hepA remarkably activated the cellulolytic enzyme synthesis, not only in WT (~150

  4. DataHub: Knowledge-based data management for data discovery

    NASA Astrophysics Data System (ADS)

    Handley, Thomas H.; Li, Y. Philip

    1993-08-01

    Currently available database technology is largely designed for business data-processing applications, and seems inadequate for scientific applications. The research described in this paper, the DataHub, will address the issues associated with this shortfall in technology utilization and development. The DataHub development is addressing the key issues in scientific data management of scientific database models and resource sharing in a geographically distributed, multi-disciplinary, science research environment. Thus, the DataHub will be a server between the data suppliers and data consumers to facilitate data exchanges, to assist science data analysis, and to provide as systematic approach for science data management. More specifically, the DataHub's objectives are to provide support for (1) exploratory data analysis (i.e., data driven analysis); (2) data transformations; (3) data semantics capture and usage; analysis-related knowledge capture and usage; and (5) data discovery, ingestion, and extraction. Applying technologies that vary from deductive databases, semantic data models, data discovery, knowledge representation and inferencing, exploratory data analysis techniques and modern man-machine interfaces, DataHub will provide a prototype, integrated environement to support research scientists' needs in multiple disciplines (i.e. oceanography, geology, and atmospheric) while addressing the more general science data management issues. Additionally, the DataHub will provide data management services to exploratory data analysis applications such as LinkWinds and NCSA's XIMAGE.

  5. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  6. E-hubs: the new B2B (business-to-business) marketplaces.

    PubMed

    Kaplan, S; Sawhney, M

    2000-01-01

    Electronic hubs--Internet-based intermediaries that host electronic marketplaces and mediate transactions among businesses--are generating a lot of interest. Companies like Ariba, Chemdex, and Commerce One have already attained breathtaking stock market capitalizations. Venture capitalists are pouring money into more business-to-business start-ups. Even industrial stalwarts like GM and Ford are making plans to set up their own Web markets. As new entrants with new business models pour into the business-to-business space, it's increasingly difficult to make sense of the landscape. This article provides a blueprint of the e-hub arena. The authors start by looking at the two dimensions of purchasing: what businesses buy--manufacturing inputs or operating inputs--and how they buy--through systematic sourcing or spot sourcing. They classify B2B e-hubs into four categories: MRO hubs, yield managers, exchanges, and catalog hubs, and they discuss each type in detail. Drilling deeper into this B2B matrix, the authors look at how e-hubs create value--through aggregation and matching--and explain when each mechanism works best. They also examine the biases of e-hubs. Although many e-hubs are neutral--they're operated by independent third parties--some favor the buyers or sellers. The authors explain the differences and discuss the pros and cons of each position. The B2B marketplace is changing rapidly. This framework helps buyers, sellers, and market makers navigate the landscape by explaining what the different hubs do and how they add the most value.

  7. Regulating the chromatin landscape: structural and mechanistic perspectives.

    PubMed

    Bartholomew, Blaine

    2014-01-01

    A large family of chromatin remodelers that noncovalently modify chromatin is crucial in cell development and differentiation. They are often the targets of cancer, neurological disorders, and other human diseases. These complexes alter nucleosome positioning, higher-order chromatin structure, and nuclear organization. They also assemble chromatin, exchange out histone variants, and disassemble chromatin at defined locations. We review aspects of the structural organization of these complexes, the functional properties of their protein domains, and variation between complexes. We also address the mechanistic details of these complexes in mobilizing nucleosomes and altering chromatin structure. A better understanding of these issues will be vital for further analyses of subunits of these chromatin remodelers, which are being identified as targets in human diseases by NGS (next-generation sequencing).

  8. Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression.

    PubMed

    Oh, Kyu-Seon; Gottschalk, Rachel A; Lounsbury, Nicolas W; Sun, Jing; Dorrington, Michael G; Baek, Songjoon; Sun, Guangping; Wang, Ze; Krauss, Kathleen S; Milner, Joshua D; Dutta, Bhaskar; Hager, Gordon L; Sung, Myong-Hee; Fraser, Iain D C

    2018-06-13

    Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1 -/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1 +/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.

  9. TOPICAL REVIEW: The physics of chromatin

    NASA Astrophysics Data System (ADS)

    Schiessel, Helmut

    2003-05-01

    Recent progress has been made in the understanding of the physical properties of chromatin - the dense complex of DNA and histone proteins that occupies the nuclei of plant and animal cells. Here I will focus on the two lowest levels of the hierarchy of DNA folding into the chromatin complex. (i) The nucleosome, the chromatin repeating unit consisting of a globular aggregate of eight histone proteins with the DNA wrapped around it: its overcharging, the DNA unwrapping transition, the 'sliding' of the octamer along the DNA. (ii) The 30 nm chromatin fibre, the necklace-like structure of nucleosomes connected via linker DNA: its geometry, its mechanical properties under stretching and its response to changing ionic conditions. I will stress that chromatin combines two seemingly contradictory features: (1) high compaction of DNA within the nuclear envelope and, at the same time, (2) accessibility to genes, promoter regions and gene regulatory sequences.

  10. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage

    PubMed Central

    Ortega-Atienza, Sara; Wong, Victor C.; DeLoughery, Zachary; Luczak, Michal W.; Zhitkovich, Anatoly

    2016-01-01

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA. PMID:26420831

  11. The Opportunities and Threats of Turning Airports into Hubs

    NASA Technical Reports Server (NTRS)

    Kraus, Andreas; Koch, Benjamin

    2006-01-01

    This paper examines the opportunities and threats which arise when turning origin/destination airports into hubs. The analysis focuses on market development trends, competitive structures, especially in the light of airline network strategies and the growing rivalry between airports, and finally the potential financial impacts for the airport, including both investment efforts and the financial results from hub operations. We argue that in most cases a decision against converting a traditional origin/destination airport into a major transfer point is preferable to the transformation into a hub.

  12. Chromatin remodelling: the industrial revolution of DNA around histones.

    PubMed

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  13. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development

    PubMed Central

    Bultman, Scott J.; Gebuhr, Thomas C.; Magnuson, Terry

    2005-01-01

    The Brg1 catalytic subunit of SWI/SNF-related complexes has been implicated in many developmental and physiological processes, but null homozygotes die as blastocysts prior to implantation. To circumvent this early embryonic lethality, we performed an ENU mutagenesis screen and generated a Brg1 hypomorph mutation in the ATPase domain. The mutant Brg1 protein is stable, assembles into SWI/SNF-related complexes, and exhibits normal ATPase activity but is unable to establish DNase I hypersensitivity sites characteristic of open chromatin. Mutant embryos develop normally until midgestation but then exhibit a distinct block in the development of the erythroid lineage, leading to anemia and death. The mutant Brg1 protein is recruited to the β-globin locus, but chromatin remodeling and transcription are perturbed. Histone acetylation and DNA methylation are also affected. To our knowledge, Brg1 is the first chromatin-modifying factor shown to be required for β-globin regulation and erythropoiesis in vivo. Not only does this mutation establish a role for Brg1 during organogenesis, it also demonstrates that ATPase activity can be uncoupled from chromatin remodeling. PMID:16287714

  14. ChIP-less analysis of chromatin states.

    PubMed

    Su, Zhangli; Boersma, Melissa D; Lee, Jin-Hee; Oliver, Samuel S; Liu, Shichong; Garcia, Benjamin A; Denu, John M

    2014-01-01

    Histone post-translational modifications (PTMs) are key epigenetic regulators in chromatin-based processes. Increasing evidence suggests that vast combinations of PTMs exist within chromatin histones. These complex patterns, rather than individual PTMs, are thought to define functional chromatin states. However, the ability to interrogate combinatorial histone PTM patterns at the nucleosome level has been limited by the lack of direct molecular tools. Here we demonstrate an efficient, quantitative, antibody-free, chromatin immunoprecipitation-less (ChIP-less) method for interrogating diverse epigenetic states. At the heart of the workflow are recombinant chromatin reader domains, which target distinct chromatin states with combinatorial PTM patterns. Utilizing a newly designed combinatorial histone peptide microarray, we showed that three reader domains (ATRX-ADD, ING2-PHD and AIRE-PHD) displayed greater specificity towards combinatorial PTM patterns than corresponding commercial histone antibodies. Such specific recognitions were employed to develop a chromatin reader-based affinity enrichment platform (matrix-assisted reader chromatin capture, or MARCC). We successfully applied the reader-based platform to capture unique chromatin states, which were quantitatively profiled by mass spectrometry to reveal interconnections between nucleosomal histone PTMs. Specifically, a highly enriched signature that harbored H3K4me0, H3K9me2/3, H3K79me0 and H4K20me2/3 within the same nucleosome was identified from chromatin enriched by ATRX-ADD. This newly reported PTM combination was enriched in heterochromatin, as revealed by the associated DNA. Our results suggest the broad utility of recombinant reader domains as an enrichment tool specific to combinatorial PTM patterns, which are difficult to probe directly by antibody-based approaches. The reader affinity platform is compatible with several downstream analyses to investigate the physical coexistence of nucleosomal PTM

  15. Connecting the dots: chromatin and alternative splicing in EMT

    PubMed Central

    Warns, Jessica A.; Davie, James R.; Dhasarathy, Archana

    2015-01-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process. PMID:26291837

  16. Connecting the dots: chromatin and alternative splicing in EMT.

    PubMed

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  17. Active and Repressive Chromatin Are Interspersed without Spreading in an Imprinted Gene Cluster in the Mammalian Genome

    PubMed Central

    Regha, Kakkad; Sloane, Mathew A.; Huang, Ru; Pauler, Florian M.; Warczok, Katarzyna E.; Melikant, Balázs; Radolf, Martin; Martens, Joost H.A.; Schotta, Gunnar; Jenuwein, Thomas; Barlow, Denise P.

    2010-01-01

    SUMMARY The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 ± HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome. PMID:17679087

  18. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  19. Chromatin boundaries in budding yeast: the nuclear pore connection.

    PubMed

    Ishii, Kojiro; Arib, Ghislaine; Lin, Clayton; Van Houwe, Griet; Laemmli, Ulrich K

    2002-05-31

    Chromatin boundary activities (BAs) were identified in Saccharomyces cerevisiae by genetic screening. Such BAs bound to sites flanking a reporter gene establish a nonsilenced domain within the silent mating-type locus HML. Interestingly, various proteins involved in nuclear-cytoplasmic traffic, such as exportins Cse1p, Mex67p, and Los1p, exhibit a robust BA. Genetic studies, immunolocalization, live imaging, and chromatin immunoprecipitation experiments show that these transport proteins block spreading of heterochromatin by physical tethering of the HML locus to the Nup2p receptor of the nuclear pore complex. Genetic deletion of NUP2 abolishes the BA of all transport proteins, while direct targeting of Nup2p to the bracketing DNA elements restores activity. The data demonstrate that physical tethering of genomic loci to the NPC can dramatically alter their epigenetic activity.

  20. Education Hubs: A Fad, a Brand, an Innovation?

    ERIC Educational Resources Information Center

    Knight, Jane

    2011-01-01

    The last decade has seen significant changes in all aspects of internationalization but most dramatically in the area of education and research moving across national borders. The most recent developments are education hubs. The term "education hub" is being used by countries who are trying to build a critical mass of local and foreign…

  1. Citrullination regulates pluripotency and histone H1 binding to chromatin

    NASA Astrophysics Data System (ADS)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  2. GRID-seq reveals the global RNA-chromatin interactome

    PubMed Central

    Li, Xiao; Zhou, Bing; Chen, Liang; Gou, Lan-Tao; Li, Hairi; Fu, Xiang-Dong

    2017-01-01

    Higher eukaryotic genomes are bound by a large number of coding and non-coding RNAs, but approaches to comprehensively map the identity and binding sites of these RNAs are lacking. Here we report a method to in situ capture global RNA interactions with DNA by deep sequencing (GRID-seq), which enables the comprehensive identification of the entire repertoire of chromatin-interacting RNAs and their respective binding sites. In human, mouse and Drosophila cells, we detected a large set of tissue-specific coding and non-coding RNAs that are bound to active promoters and enhancers, especially super-enhancers. Assuming that most mRNA-chromatin interactions indicate the physical proximity of a promoter and an enhancer, we constructed a three-dimensional global connectivity map of promoters and enhancers, revealing transcription activity-linked genomic interactions in the nucleus. PMID:28922346

  3. Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data.

    PubMed

    Fišerová, Jindřiška; Efenberková, Michaela; Sieger, Tomáš; Maninová, Miloslava; Uhlířová, Jana; Hozák, Pavel

    2017-06-15

    The nuclear periphery (NP) plays a substantial role in chromatin organization. Heterochromatin at the NP is interspersed with active chromatin surrounding nuclear pore complexes (NPCs); however, details of the peripheral chromatin organization are missing. To discern the distribution of epigenetic marks at the NP of HeLa nuclei, we used structured illumination microscopy combined with a new MATLAB software tool for automatic NP and NPC detection, measurements of fluorescent intensity and statistical analysis of measured data. Our results show that marks for both active and non-active chromatin associate differentially with NPCs. The incidence of heterochromatin marks, such as H3K27me2 and H3K9me2, was significantly lower around NPCs. In contrast, the presence of marks of active chromatin such as H3K4me2 was only decreased very slightly around the NPCs or not at all (H3K9Ac). Interestingly, the histone demethylases LSD1 (also known as KDM1A) and KDM2A were enriched within the NPCs, suggesting that there was a chromatin-modifying mechanism at the NPCs. Inhibition of transcription resulted in a larger drop in the distribution of H1, H3K9me2 and H3K23me2, which implies that transcription has a role in the organization of heterochromatin at the NP. © 2017. Published by The Company of Biologists Ltd.

  4. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudill, Christy

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  5. DDB2 promotes chromatin decondensation at UV-induced DNA damage

    PubMed Central

    Lindh, Michael; Acs, Klara; Vrouwe, Mischa G.; Pines, Alex; van Attikum, Haico; Mullenders, Leon H.

    2012-01-01

    Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains. PMID:22492724

  6. Functional sub-division of the Drosophila genome via chromatin looping

    PubMed Central

    Ahanger, Sajad H.; Shouche, Yogesh S.; Mishra, Rakesh K.

    2013-01-01

    Insulators help in organizing the eukaryotic genomes into physically and functionally autonomous regions through the formation of chromatin loops. Recent findings in Drosophila and vertebrates suggest that insulators anchor multiple loci through long-distance interactions which may be mechanistically linked to insulator function. Important to such processes in Drosophila is CP190, a common co-factor of insulator complexes. CP190 is also known to associate with the nuclear matrix, components of the RNAi machinery, active promoters and borders of the repressive chromatin domains. Although CP190 plays a pivotal role in insulator function in Drosophila, vertebrates lack a probable functional equivalent of CP190 and employ CTCF as the major factor to carry out insulator function/chromatin looping. In this review, we discuss the emerging role of CP190 in tethering genome, specifically in the perspective of insulator function in Drosophila. Future studies aiming genome-wide role of CP190 in chromatin looping is likely to give important insights into the mechanism of genome organization. PMID:23333867

  7. Delineation of metabolic gene clusters in plant genomes by chromatin signatures

    PubMed Central

    Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T.; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J.; Kumar, S. Vinod; Freemont, Paul S.; Osbourn, Anne

    2016-01-01

    Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. PMID:26895889

  8. Spatial organization of chromatin domains and compartments in single chromosomes

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian; Bintu, Bogdan; Moffitt, Jeffrey; Wu, Chao-Ting; Zhuang, Xiaowei

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.

  9. Macrogenomic engineering via modulation of the scaling of chromatin packing density.

    PubMed

    Almassalha, Luay M; Bauer, Greta M; Wu, Wenli; Cherkezyan, Lusik; Zhang, Di; Kendra, Alexis; Gladstein, Scott; Chandler, John E; VanDerway, David; Seagle, Brandon-Luke L; Ugolkov, Andrey; Billadeau, Daniel D; O'Halloran, Thomas V; Mazar, Andrew P; Roy, Hemant K; Szleifer, Igal; Shahabi, Shohreh; Backman, Vadim

    2017-11-01

    Many human diseases result from the dysregulation of the complex interactions between tens to thousands of genes. However, approaches for the transcriptional modulation of many genes simultaneously in a predictive manner are lacking. Here, through the combination of simulations, systems modelling and in vitro experiments, we provide a physical regulatory framework based on chromatin packing-density heterogeneity for modulating the genomic information space. Because transcriptional interactions are essentially chemical reactions, they depend largely on the local physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows for the predictable modulation of global patterns in gene expression. In particular, we show that the rational modulation of chromatin density fluctuations can lead to a decrease in global transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings represent a 'macrogenomic engineering' approach to modulating the physical structure of chromatin for whole-scale transcriptional modulation.

  10. Continuous integration for concurrent MOOSE framework and application development on GitHub

    DOE PAGES

    Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.; ...

    2015-11-20

    For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less

  11. Continuous integration for concurrent MOOSE framework and application development on GitHub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.

    For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less

  12. Education Hubs: International, Regional and Local Dimensions of Scale and Scope

    ERIC Educational Resources Information Center

    Knight, Jane

    2013-01-01

    Education hubs are important new developments. They represent a new generation of cross-border education activities where critical mass, co-location and connection between international, regional and local universities, students, research institutes and private industry are key. Different scales (city, zone and country) and types (student, talent,…

  13. Quantitative analysis of nucleolar chromatin distribution in the complex convoluted nucleoli of Didinium nasutum (Ciliophora).

    PubMed

    Leonova, Olga G; Karajan, Bella P; Ivlev, Yuri F; Ivanova, Julia L; Skarlato, Sergei O; Popenko, Vladimir I

    2013-01-01

    We have earlier shown that the typical Didinium nasutum nucleolus is a complex convoluted branched domain, comprising a dense fibrillar component located at the periphery of the nucleolus and a granular component located in the central part. Here our main interest was to study quantitatively the spatial distribution of nucleolar chromatin structures in these convoluted nucleoli. There are no "classical" fibrillar centers in D.nasutum nucleoli. The spatial distribution of nucleolar chromatin bodies, which play the role of nucleolar organizers in the macronucleus of D.nasutum, was studied using 3D reconstructions based on serial ultrathin sections. The relative number of nucleolar chromatin bodies was determined in macronuclei of recently fed, starved D.nasutum cells and in resting cysts. This parameter is shown to correlate with the activity of the nucleolus. However, the relative number of nucleolar chromatin bodies in different regions of the same convoluted nucleolus is approximately the same. This finding suggests equal activity in different parts of the nucleolar domain and indicates the existence of some molecular mechanism enabling it to synchronize this activity in D. nasutum nucleoli. Our data show that D. nasutum nucleoli display bipartite structure. All nucleolar chromatin bodies are shown to be located outside of nucleoli, at the periphery of the fibrillar component.

  14. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster

    PubMed Central

    Mishiro, Tsuyoshi; Ishihara, Ko; Hino, Shinjiro; Tsutsumi, Shuichi; Aburatani, Hiroyuki; Shirahige, Katsuhiko; Kinoshita, Yoshikazu; Nakao, Mitsuyoshi

    2009-01-01

    Long-range regulatory elements and higher-order chromatin structure coordinate the expression of multiple genes in cluster, and CTCF/cohesin-mediated chromatin insulator may be a key in this regulation. The human apolipoprotein (APO) A1/C3/A4/A5 gene region, whose alterations increase the risk of dyslipidemia and atherosclerosis, is partitioned at least by three CTCF-enriched sites and three cohesin protein RAD21-enriched sites (two overlap with the CTCF sites), resulting in the formation of two transcribed chromatin loops by interactions between insulators. The C3 enhancer and APOC3/A4/A5 promoters reside in the same loop, where the APOC3/A4 promoters are pointed towards the C3 enhancer, whereas the APOA1 promoter is present in the different loop. The depletion of either CTCF or RAD21 disrupts the chromatin loop structure, together with significant changes in the APO expression and the localization of transcription factor hepatocyte nuclear factor (HNF)-4α and transcriptionally active form of RNA polymerase II at the APO promoters. Thus, CTCF/cohesin-mediated insulators maintain the chromatin loop formation and the localization of transcriptional apparatus at the promoters, suggesting an essential role of chromatin insulation in controlling the expression of clustered genes. PMID:19322193

  15. Sci-Hub provides access to nearly all scholarly literature.

    PubMed

    Himmelstein, Daniel S; Romero, Ariel Rodriguez; Levernier, Jacob G; Munro, Thomas Anthony; McLaughlin, Stephen Reid; Greshake Tzovaras, Bastian; Greene, Casey S

    2018-03-01

    The website Sci-Hub enables users to download PDF versions of scholarly articles, including many articles that are paywalled at their journal's site. Sci-Hub has grown rapidly since its creation in 2011, but the extent of its coverage has been unclear. Here we report that, as of March 2017, Sci-Hub's database contains 68.9% of the 81.6 million scholarly articles registered with Crossref and 85.1% of articles published in toll access journals. We find that coverage varies by discipline and publisher, and that Sci-Hub preferentially covers popular, paywalled content. For toll access articles, we find that Sci-Hub provides greater coverage than the University of Pennsylvania, a major research university in the United States. Green open access to toll access articles via licit services, on the other hand, remains quite limited. Our interactive browser at https://greenelab.github.io/scihub allows users to explore these findings in more detail. For the first time, nearly all scholarly literature is available gratis to anyone with an Internet connection, suggesting the toll access business model may become unsustainable. © 2018, Himmelstein et al.

  16. The FRIGIDA Complex Activates Transcription of FLC, a Strong Flowering Repressor in Arabidopsis, by Recruiting Chromatin Modification Factors[C][W

    PubMed Central

    Choi, Kyuha; Kim, Juhyun; Hwang, Hyun-Ju; Kim, Sanghee; Park, Chulmin; Kim, Sang Yeol; Lee, Ilha

    2011-01-01

    The flowering of Arabidopsis thaliana winter annuals is delayed until the subsequent spring by the strong floral repressor FLOWERING LOCUS C (FLC). FRIGIDA (FRI) activates the transcription of FLC, but the molecular mechanism remains elusive. The fri mutation causes early flowering with reduced FLC expression similar to frl1, fes1, suf4, and flx, which are mutants of FLC-specific regulators. Here, we report that FRI acts as a scaffold protein interacting with FRL1, FES1, SUF4, and FLX to form a transcription activator complex (FRI-C). Each component of FRI-C has a specialized function. SUF4 binds to a cis-element of the FLC promoter, FLX and FES1 have transcriptional activation potential, and FRL1 and FES1 stabilize the complex. FRI-C recruits a general transcription factor, a TAF14 homolog, and chromatin modification factors, the SWR1 complex and SET2 homolog. Complex formation was confirmed by the immunoprecipitation of FRI-associated proteins followed by mass spectrometric analysis. Our results provide insight into how a specific transcription activator recruits chromatin modifiers to regulate a key flowering gene. PMID:21282526

  17. Mesoscale Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2009-03-01

    Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.

  18. Control networks and hubs.

    PubMed

    Gratton, Caterina; Sun, Haoxin; Petersen, Steven E

    2018-03-01

    Executive control functions are associated with frontal, parietal, cingulate, and insular brain regions that interact through distributed large-scale networks. Here, we discuss how fMRI functional connectivity can shed light on the organization of control networks and how they interact with other parts of the brain. In the first section of our review, we present convergent evidence from fMRI functional connectivity, activation, and lesion studies that there are multiple dissociable control networks in the brain with distinct functional properties. In the second section, we discuss how graph theoretical concepts can help illuminate the mechanisms by which control networks interact with other brain regions to carry out goal-directed functions, focusing on the role of specialized hub regions for mediating cross-network interactions. Again, we use a combination of functional connectivity, lesion, and task activation studies to bolster this claim. We conclude that a large-scale network perspective provides important neurobiological constraints on the neural underpinnings of executive control, which will guide future basic and translational research into executive function and its disruption in disease. © 2017 Society for Psychophysiological Research.

  19. Preliminary analysis of hub and spoke air freight distribution system

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is compared to a more conventional network using conventionally-designed long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs, including handling charges and pickup and delivery costs. The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous, but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes, and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system, however, that system is universally more economical than any conventional system employing smaller line-haul aircraft.

  20. USDA Southwest Regional Hub for Adaptation to and Mitigation of Climate Change

    NASA Astrophysics Data System (ADS)

    Rango, A.; Elias, E.; Steele, C. M.; Havstad, K.

    2014-12-01

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up of six states: New Mexico, Arizona, Utah, Nevada, California and Hawaii (plus the Trust Territories of the Pacific Islands). The SW Climate Hub has a subsidiary hub located in Davis, California. The Southwest region has high climatic diversity, with the lowest and highest average annual rainfall in the U.S.(6.0 cm in Death Valley, CA and 1168 cm at Mt. Waialeale, HI). There are major deserts in five of the six states, yet most of the states, with exception of Hawaii, depend upon the melting of mountain snowpacks for their surface water supply. Additionally, many of the agricultural areas of the SW Regional Hub depend upon irrigation water to maintain productivity. Scientific climate information developed by the Hub will be used for climate-smart decision making. To do this, the SW Regional Hub will rely upon existing infrastructure of the Cooperative Extension Service at Land-Grant State Universities. Extension service and USDA-NRCS personnel have existing networks to communicate with stakeholders (farmers, ranchers, and forest landowners) through meetings and workshops which have already started in the six states. Outreach through the development of a weather and climate impact modules designed for seventh grade students and their teachers will foster education of future generations of rural land managers. We will be synthesizing and evaluating existing reports, literature and information on regional climate projections, water resources, and agricultural adaptation strategies related to climate in the Southwest. The results will be organized in a spatial format and provided through the SW Hub website (http://swclimatehub.info) and peer-reviewed articles.

  1. Climate programs update: USDA Southwest Regional Climate Hub update

    USDA-ARS?s Scientific Manuscript database

    PROGRAM OVERVIEW: The overarching goal of the USDA SW Climate Hub is to assist farmers, ranchers and foresters in addressing the effects of climate change including prolonged drought, increased insect outbreaks and severe wildfires. In the first year of operations, the SW Climate Hub (est. Februa...

  2. Virtual Hubs for facilitating access to Open Data

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo; Latre, Miguel Á.; Ernst, Julia; Brumana, Raffaella; Brauman, Stefan; Nativi, Stefano

    2015-04-01

    set of five Virtual Hubs (VHs) at national level in France, Germany, Italy, Poland, Spain and an additional one at the European level. VHs will be provided according to the cloud Software-as-a-Services model. The main expected impact of VHs is the creation of new business opportunities opening up access to Research Data and Public Sector Information. Therefore, ENERGIC-OD addresses not only end-users, who will have the opportunity to access the VH through a geo-portal, but also application developers who will be able to access VH functionalities through simple Application Programming Interfaces (API). ENERGIC-OD Consortium will develop ten different applications on top of the deployed VHs. They aim to demonstrate how VHs facilitate the development of new and multidisciplinary applications based on the full exploitation of (open) GI, hence stimulating innovation and business activities.

  3. Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells

    PubMed Central

    Jullien, Denis; Vignard, Julien; Fedor, Yoann; Béry, Nicolas; Olichon, Aurélien; Crozatier, Michèle; Erard, Monique; Cassard, Hervé; Ducommun, Bernard; Salles, Bernard

    2016-01-01

    ABSTRACT Chromatin function is involved in many cellular processes, its visualization or modification being essential in many developmental or cellular studies. Here, we present the characterization of chromatibody, a chromatin-binding single-domain, and explore its use in living cells. This non-intercalating tool specifically binds the heterodimer of H2A–H2B histones and displays a versatile reactivity, specifically labeling chromatin from yeast to mammals. We show that this genetically encoded probe, when fused to fluorescent proteins, allows non-invasive real-time chromatin imaging. Chromatibody is a dynamic chromatin probe that can be modulated. Finally, chromatibody is an efficient tool to target an enzymatic activity to the nucleosome, such as the DNA damage-dependent H2A ubiquitylation, which can modify this epigenetic mark at the scale of the genome and result in DNA damage signaling and repair defects. Taken together, these results identify chromatibody as a universal non-invasive tool for either in vivo chromatin imaging or to manipulate the chromatin landscape. PMID:27206857

  4. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure.

    PubMed

    Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V

    2017-07-11

    In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing

  5. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation1

    PubMed Central

    Eichten, Steven R.; Schmitz, Robert J.; Springer, Nathan M.

    2014-01-01

    Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes. PMID:24872382

  6. Epigenetic regulation and chromatin remodeling in learning and memory.

    PubMed

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-13

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.

  7. Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor.

    PubMed

    Garai, Ashok; Mani, Jesrael; Chowdhury, Debashish

    2012-04-01

    Adenosine-triphosphate (ATP)-dependent chromatin remodeling enzymes (CREs) are biomolecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, ATP. CREs actively participate in many cellular processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp ∼ 50 nm of a double-stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also called "footprint." We investigate the mechanism of footprint traversal by a CRE that translocates along the dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechanochemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our predictions on the ATP dependence of the mean traversal time can be tested by carrying out in vitro experiments on mononucleosomes.

  8. 16 CFR § 1512.12 - Requirements for wheel hubs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Requirements for wheel hubs. § 1512.12... ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.12 Requirements for wheel hubs. All bicycles (other than sidewalk bicycles) shall meet the following requirements: (a) Locking devices. Wheels...

  9. A Method for Visualization of Incoming Adenovirus Chromatin Complexes in Fixed and Living Cells

    PubMed Central

    Komatsu, Tetsuro; Dacheux, Denis; Kreppel, Florian; Nagata, Kyosuke; Wodrich, Harald

    2015-01-01

    Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes. PMID:26332038

  10. Early effects of oestradiol-17β on the chromatin and activity of the deoxyribonucleic acid-dependent ribonucleic acid polymerases (I and II) of the rat uterus

    PubMed Central

    Glasser, S. R.; Chytil, F.; Spelsberg, T. C.

    1972-01-01

    Oestradiol-17β (1.0μg) was injected intravenously into ovariectomized rats. The earliest detectable hormonal response in isolated uterine nuclei was an increase (10–15min) in RNA polymerase II activity (DNA-like RNA synthesis), which reached a peak at 30min and then decreased to control values (by 1–2h) before displaying a second increase over control activity from 2 to 12h. The next response to oestradiol-17β was an increase (30–60min) in polymerase I activity (rRNA synthesis) and template capacity of the chromatin. The concentrations of acidic chromatin proteins did not begin to increase until 1h after injection of oestradiol-17β and histone concentrations showed no significant changes during the 8h period after administration. The early (15min) increase in RNA synthesis in `high-salt conditions' can be completely eliminated by α-amanitin, an inhibitor of the RNA polymerase II. The exact nature of this early increase in endogenous polymerase II activity remains to be determined, e.g. whether it is caused by the increased availability of transcribable DNA of the chromatin or via direct hormonal activation of the enzyme per se. PMID:4656807

  11. Fixed-axis electric sail deployment dynamics analysis using hub-mounted momentum control

    NASA Astrophysics Data System (ADS)

    Fulton, JoAnna; Schaub, Hanspeter

    2018-03-01

    The deployment dynamics of a spin stabilized electric sail (E-sail) with a hub-mounted control actuator are investigated. Both radial and tangential deployment mechanisms are considered to take the electric sail from a post-launch stowed configuration to a fully deployed configuration. The tangential configuration assumes the multi-kilometer tethers are wound up on the exterior of the spacecraft hub, similar to yo-yo despinner configurations. The deployment speed is controlled through the hub rate. The radial deployment configuration assumes each tether is on its own spool. Here both the hub and spool rate are control variables. The sensitivity of the deployment behavior to E-sail length, maximum rate and tension parameters is investigated. A constant hub rate deployment is compared to a time varying hub rate that maintains a constant tether tension condition. The deployment time can be reduced by a factor of 2 or more by using a tension controlled deployment configuration.

  12. Energy Innovation Hubs: A Home for Scientific Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computermore » modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical

  13. Energy Innovation Hubs: A Home for Scientific Collaboration

    ScienceCinema

    Chu, Steven

    2017-12-11

    Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy

  14. Mapping cortical hubs in tinnitus

    PubMed Central

    2009-01-01

    Background Subjective tinnitus is the perception of a sound in the absence of any physical source. It has been shown that tinnitus is associated with hyperactivity of the auditory cortices. Accompanying this hyperactivity, changes in non-auditory brain structures have also been reported. However, there have been no studies on the long-range information flow between these regions. Results Using Magnetoencephalography, we investigated the long-range cortical networks of chronic tinnitus sufferers (n = 23) and healthy controls (n = 24) in the resting state. A beamforming technique was applied to reconstruct the brain activity at source level and the directed functional coupling between all voxels was analyzed by means of Partial Directed Coherence. Within a cortical network, hubs are brain structures that either influence a great number of other brain regions or that are influenced by a great number of other brain regions. By mapping the cortical hubs in tinnitus and controls we report fundamental group differences in the global networks, mainly in the gamma frequency range. The prefrontal cortex, the orbitofrontal cortex and the parieto-occipital region were core structures in this network. The information flow from the global network to the temporal cortex correlated positively with the strength of tinnitus distress. Conclusion With the present study we suggest that the hyperactivity of the temporal cortices in tinnitus is integrated in a global network of long-range cortical connectivity. Top-down influence from the global network on the temporal areas relates to the subjective strength of the tinnitus distress. PMID:19930625

  15. Structured illumination to spatially map chromatin motions.

    PubMed

    Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre

    2018-05-01

    We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340  ±  30  nm, which simultaneously photoactivate a 7  ×  7 matrix pattern of GFP-labeled histones, with spots 1.70  μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Chromatin dynamics in plants.

    PubMed

    Fransz, Paul F; de Jong, J Hans

    2002-12-01

    Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.

  17. Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana

    PubMed Central

    Reimegård, Johan; Kundu, Snehangshu; Pendle, Ali; Irish, Vivian F.; Shaw, Peter

    2017-01-01

    Abstract Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation. PMID:28175342

  18. Perspectives on the Development of LNG Market Hubs in the Asia Pacific Region

    EIA Publications

    2017-01-01

    The report discusses current initiatives to establish regional liquefied natural gas (LNG) trading hubs and pricing benchmarks in Asia and assesses the prospects for the Asian gas hubs in the near future. The report examines the characteristics of successful natural gas trading hubs and develops qualitative and quantitative indicators of the components of effective hubs, with emphasis on applying these indicators to Asian markets

  19. Delineation of metabolic gene clusters in plant genomes by chromatin signatures.

    PubMed

    Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J; Kumar, S Vinod; Freemont, Paul S; Osbourn, Anne

    2016-03-18

    Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Spectral Analysis of the Wake behind a Helicopter Rotor Hub

    NASA Astrophysics Data System (ADS)

    Petrin, Christopher; Reich, David; Schmitz, Sven; Elbing, Brian

    2016-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48" Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. LDV and PIV measurements in the far-wake consistently showed a six-per-revolution flow structure, in addition to stronger two- and four-per-revolution structures. These six-per-revolution structures persisted into the far-field, and have no direct geometric counterpart on the hub model. The current study will examine the Reynolds number dependence of these structures and present higher-order statistics of the turbulence within the wake. In addition, current activity using the EFPL Large Water Tunnel at Oklahoma State University will be presented. This effort uses a more canonical configuration to identify the source for these six-per-revolution structures, which are assumed to be a non-linear interaction between the two- and four-per-revolution structures.

  1. Modeling of UH-60A Hub Accelerations with Neural Networks

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2002-01-01

    Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.

  2. Chromatin Ring Formation at Plant Centromeres.

    PubMed

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  3. Chromatin Ring Formation at Plant Centromeres

    PubMed Central

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037

  4. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  5. Developing a feasible neighbourhood search for solving hub location problem in a communication network

    NASA Astrophysics Data System (ADS)

    Rakhmawati, Fibri; Mawengkang, Herman; Buulolo, F.; Mardiningsih

    2018-01-01

    The hub location with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. This paper discusses how to model the polyhedral properties of the problems and develop a feasible neighbourhood search method to solve the model.

  6. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    PubMed

    Walley, Justin W; Rowe, Heather C; Xiao, Yanmei; Chehab, E Wassim; Kliebenstein, Daniel J; Wagner, Doris; Dehesh, Katayoon

    2008-12-01

    Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  7. The insulation of genes from external enhancers and silencing chromatin

    PubMed Central

    Burgess-Beusse, Bonnie; Farrell, Catherine; Gaszner, Miklos; Litt, Michael; Mutskov, Vesco; Recillas-Targa, Felix; Simpson, Melanie; West, Adam; Felsenfeld, Gary

    2002-01-01

    Insulators are DNA sequence elements that can serve in some cases as barriers to protect a gene against the encroachment of adjacent inactive condensed chromatin. Some insulators also can act as blocking elements to protect against the activating influence of distal enhancers associated with other genes. Although most of the insulators identified so far derive from Drosophila, they also are found in vertebrates. An insulator at the 5′ end of the chicken β-globin locus marks a boundary between an open chromatin domain and a region of constitutively condensed chromatin. Detailed analysis of this element shows that it possesses both enhancer blocking activity and the ability to screen reporter genes against position effects. Enhancer blocking is associated with binding of the protein CTCF; sites that bind CTCF are found at other critical points in the genome. Protection against position effects involves other properties that appear to be associated with control of histone acetylation and methylation. Insulators thus are complex elements that can help to preserve the independent function of genes embedded in a genome in which they are surrounded by regulatory signals they must ignore. PMID:12154228

  8. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea.

    PubMed

    Daniels, Jan-Peter; Kelly, Steven; Wickstead, Bill; Gull, Keith

    2009-07-29

    The transcription machineries of Archaea and eukaryotes are similar in many aspects, but little is understood about archaeal chromatin and its role in transcription. Here, we describe the identification in hyperthermophilic Crenarchaeota and a Korarchaeon of an orthologue of the eukaryotic transcription elongation factor Elf1, which has been shown to function in chromatin structure maintenance of actively transcribed templates. Our discovery has implications for the relationship of chromatin and transcription in Archaea and the evolution of these processes in eukaryotes.

  9. Histone Variant Regulates DNA Repair via Chromatin Condensation | Center for Cancer Research

    Cancer.gov

    Activating the appropriate DNA repair pathway is essential for maintaining the stability of the genome after a break in both strands of DNA. How a pathway is selected, however, is not well understood. Since these double strand breaks (DSBs) occur while DNA is packaged as chromatin, changes in its organization are necessary for repair to take place. Numerous alterations have been associated with DSBs, including modifications of histone tails and exchange of histone variants, some increasing chromatin accessibility, others reducing it. In fact, distinct domains flanking a single DSB have been observed that are bound by opposing repair pathway proteins 53BP1and BRCA1, which promote non-homologous end joining (NHEJ) and homologous recombination (HR), respectively. To investigate whether DSB-proximal chromatin reorganization affects repair pathway selection, Philipp Oberdoerffer, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues performed a high-throughput RNA interference (RNAi) screen for chromatin-related genes that modulate HR.

  10. Multiple Hub Network Choice in the Liberalized European Market

    NASA Technical Reports Server (NTRS)

    Berechman, Joseph; deWit, Jaap

    1997-01-01

    A key question that so far has received relatively little attention in the germane literature is that of the changes at various airports as a result of the EU liberalization policies. That is, presently, most major European airports still benefit from the so-called home-carrier phenomenon where the country's publicly or semi-publicly owned carrier uses the country's main airport as its gateway hub and, consequently, the home-carrier is also the principal user of this airport (in terms of proportion of total aircraft movements, number of passengers transported, connections, slots ownership, etc.). The country's main airport has substantially benefited from these monopoly conditions of airline captivity, strongly determined by the bilateral system of international air transport regulation. Therefore, European major airports were used to operate in essentially different markets, compared to the increasingly competitive markets of their home based carriers. This partly explains relative stability of transport volumes and financial results of European major airports compared to the relatively volatile financial results of most European national airlines. However, the liberalization of European aviation is likely to change this situation. Market access is open now to all community carriers, i.e. carriers with majority ownership and effective control in the hands of EU citizens. Ticket prices are free, governments can only intervene in case of dumping or excessive pricing. A community airline can choose its seat in any of the 15 member states. Licensing procedures are harmonized between member states. In the last few months community carriers have had unrestricted route access within the EU. Most probably this development will be extended to countries inside and outside Europe. Last year the European Commission got the mandate to start negotiations with 10 other European countries. In the meantime the EC has also started negotiations with the USA on so-called soft rights

  11. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    DTIC Science & Technology

    2017-03-01

    minimal differences were noted. As discussed above, a “dummy” four- bladed hub was fabricated to permit application of shaker loads to the ARES testbed...experimental data used for comparison was from wind-tunnel testing of a set of Active-Twist Rotor (ATR) blades , which had undergone extensive bench...experimental measurements, one low-speed and the other high-speed. Although these blades are capable of actively twisting during flight, in both of these

  12. TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling.

    PubMed

    Berson, Amit; Sartoris, Ashley; Nativio, Raffaella; Van Deerlin, Vivianna; Toledo, Jon B; Porta, Sílvia; Liu, Shichong; Chung, Chia-Yu; Garcia, Benjamin A; Lee, Virginia M-Y; Trojanowski, John Q; Johnson, F Brad; Berger, Shelley L; Bonini, Nancy M

    2017-12-04

    Regulation of chromatin structure is critical for brain development and function. However, the involvement of chromatin dynamics in neurodegeneration is less well understood. Here we find, launching from Drosophila models of amyotrophic lateral sclerosis and frontotemporal dementia, that TDP-43 impairs the induction of multiple key stress genes required to protect from disease by reducing the recruitment of the chromatin remodeler Chd1 to chromatin. Chd1 depletion robustly enhances TDP-43-mediated neurodegeneration and promotes the formation of stress granules. Conversely, upregulation of Chd1 restores nucleosomal dynamics, promotes normal induction of protective stress genes, and rescues stress sensitivity of TDP-43-expressing animals. TDP-43-mediated impairments are conserved in mammalian cells, and, importantly, the human ortholog CHD2 physically interacts with TDP-43 and is strikingly reduced in level in temporal cortex of human patient tissue. These findings indicate that TDP-43-mediated neurodegeneration causes impaired chromatin dynamics that prevents appropriate expression of protective genes through compromised function of the chromatin remodeler Chd1/CHD2. Enhancing chromatin dynamics may be a treatment approach to amyotrophic lateral scleorosis (ALS)/frontotemporal dementia (FTD). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microfluidic hubs, systems, and methods for interface fluidic modules

    DOEpatents

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  14. Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells

    PubMed Central

    Heo, Su-Jin; Thorpe, Stephen D.; Driscoll, Tristan P.; Duncan, Randall L.; Lee, David A.; Mauck, Robert L.

    2015-01-01

    Mechanical cues direct the lineage commitment of mesenchymal stem cells (MSCs). In this study, we identified the operative molecular mechanisms through which dynamic tensile loading (DL) regulates changes in chromatin organization and nuclear mechanics in MSCs. Our data show that, in the absence of exogenous differentiation factors, short term DL elicits a rapid increase in chromatin condensation, mediated by acto-myosin based cellular contractility and the activity of the histone-lysine N-methyltransferase EZH2. The resulting change in chromatin condensation stiffened the MSC nucleus, making it less deformable when stretch was applied to the cell. We also identified stretch induced ATP release and purinergic calcium signaling as a central mediator of this chromatin condensation process. Further, we showed that DL, through differential stabilization of the condensed chromatin state, established a ‘mechanical memory’ in these cells. That is, increasing strain levels and number of loading events led to a greater degree of chromatin condensation that persisted for longer periods of time after the cessation of loading. These data indicate that, with mechanical perturbation, MSCs develop a mechanical memory encoded in structural changes in the nucleus which may sensitize them to future mechanical loading events and define the trajectory and persistence of their lineage specification. PMID:26592929

  15. 14 CFR 398.2 - Number and designation of hubs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of three classifications: (1) A large hub is a place accounting for at least 1.00 percent of the total enplanements in the United States; (2) A medium hub is a place accounting for at least 0.25... a place accounting for at least 0.05 percent but less than 0.25 percent of the total enplanements in...

  16. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.

    PubMed

    Pancaldi, Vera; Carrillo-de-Santa-Pau, Enrique; Javierre, Biola Maria; Juan, David; Fraser, Peter; Spivakov, Mikhail; Valencia, Alfonso; Rico, Daniel

    2016-07-08

    Network analysis is a powerful way of modeling chromatin interactions. Assortativity is a network property used in social sciences to identify factors affecting how people establish social ties. We propose a new approach, using chromatin assortativity, to integrate the epigenomic landscape of a specific cell type with its chromatin interaction network and thus investigate which proteins or chromatin marks mediate genomic contacts. We use high-resolution promoter capture Hi-C and Hi-Cap data as well as ChIA-PET data from mouse embryonic stem cells to investigate promoter-centered chromatin interaction networks and calculate the presence of specific epigenomic features in the chromatin fragments constituting the nodes of the network. We estimate the association of these features with the topology of four chromatin interaction networks and identify features localized in connected areas of the network. Polycomb group proteins and associated histone marks are the features with the highest chromatin assortativity in promoter-centered networks. We then ask which features distinguish contacts amongst promoters from contacts between promoters and other genomic elements. We observe higher chromatin assortativity of the actively elongating form of RNA polymerase 2 (RNAPII) compared with inactive forms only in interactions between promoters and other elements. Contacts among promoters and between promoters and other elements have different characteristic epigenomic features. We identify a possible role for the elongating form of RNAPII in mediating interactions among promoters, enhancers, and transcribed gene bodies. Our approach facilitates the study of multiple genome-wide epigenomic profiles, considering network topology and allowing the comparison of chromatin interaction networks.

  17. Genetic Rearrangements Can Modify Chromatin Features at Epialleles

    PubMed Central

    Foerster, Andrea M.; Dinh, Huy Q.; Sedman, Laura; Wohlrab, Bonnie; Mittelsten Scheid, Ortrun

    2011-01-01

    Analogous to genetically distinct alleles, epialleles represent heritable states of different gene expression from sequence-identical genes. Alleles and epialleles both contribute to phenotypic heterogeneity. While alleles originate from mutation and recombination, the source of epialleles is less well understood. We analyze active and inactive epialleles that were found at a transgenic insert with a selectable marker gene in Arabidopsis. Both converse expression states are stably transmitted to progeny. The silent epiallele was previously shown to change its state upon loss-of-function of trans-acting regulators and drug treatments. We analyzed the composition of the epialleles, their chromatin features, their nuclear localization, transcripts, and homologous small RNA. After mutagenesis by T-DNA transformation of plants carrying the silent epiallele, we found new active alleles. These switches were associated with different, larger or smaller, and non-overlapping deletions or rearrangements in the 3′ regions of the epiallele. These cis-mutations caused different degrees of gene expression stability depending on the nature of the sequence alteration, the consequences for transcription and transcripts, and the resulting chromatin organization upstream. This illustrates a tight dependence of epigenetic regulation on local structures and indicates that sequence alterations can cause epigenetic changes at some distance in regions not directly affected by the mutation. Similar effects may also be involved in gene expression and chromatin changes in the vicinity of transposon insertions or excisions, recombination events, or DNA repair processes and could contribute to the origin of new epialleles. PMID:22028669

  18. The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways

    PubMed Central

    Walley, Justin W.; Rowe, Heather C.; Xiao, Yanmei; Chehab, E. Wassim; Kliebenstein, Daniel J.; Wagner, Doris; Dehesh, Katayoon

    2008-01-01

    Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks. PMID:19079584

  19. The noise generated by a landing gear wheel with hub and rim cavities

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Angland, David; Zhang, Xin

    2017-03-01

    Wheels are one of the major noise sources of landing gears. Accurate numerical predictions of wheel noise can provide an insight into the physical mechanism of landing gear noise generation and can aid in the design of noise control devices. The major noise sources of a 33% scaled isolated landing gear wheel are investigated by simulating three different wheel configurations using high-order numerical simulations to compute the flow field and the FW-H equation to obtain the far-field acoustic pressures. The baseline configuration is a wheel with a hub cavity and two rim cavities. Two additional simulations are performed; one with the hub cavity covered (NHC) and the other with both the hub cavity and rim cavities covered (NHCRC). These simulations isolate the effects of the hub cavity and rim cavities on the overall wheel noise. The surface flow patterns are visualised by shear stress lines and show that the flow separations and attachments on the side of the wheel, in both the baseline and the configuration with only the hub cavity covered, are significantly reduced by covering both the hub and rim cavities. A frequency-domain FW-H equation is used to identify the noise source regions on the surface of the wheel. The tyre is the main low frequency noise source and shows a lift dipole and side force dipole pattern depending on the frequency. The hub cavity is identified as the dominant middle frequency noise source and radiates in a frequency range centered around the first and second depth modes of the cylindrical hub cavity. The rim cavities are the main high-frequency noise sources. With the hub cavity and rim cavities covered, the largest reduction in Overall Sound Pressure Level (OASPL) is achieved in the hub side direction. In the other directivities, there is also a reduction in the radiated sound.

  20. Nucleosome occupancy as a novel chromatin parameter for replication origin functions

    PubMed Central

    Rodriguez, Jairo; Lee, Laura; Lynch, Bryony; Tsukiyama, Toshio

    2017-01-01

    Eukaryotic DNA replication initiates from multiple discrete sites in the genome, termed origins of replication (origins). Prior to S phase, multiple origins are poised to initiate replication by recruitment of the pre-replicative complex (pre-RC). For proper replication to occur, origin activation must be tightly regulated. At the population level, each origin has a distinct firing time and frequency of activation within S phase. Many studies have shown that chromatin can strongly influence initiation of DNA replication. However, the chromatin parameters that affect properties of origins have not been thoroughly established. We found that nucleosome occupancy in G1 varies greatly around origins across the S. cerevisiae genome, and nucleosome occupancy around origins significantly correlates with the activation time and efficiency of origins, as well as pre-RC formation. We further demonstrate that nucleosome occupancy around origins in G1 is established during transition from G2/M to G1 in a pre-RC-dependent manner. Importantly, the diminished cell-cycle changes in nucleosome occupancy around origins in the orc1-161 mutant are associated with an abnormal global origin usage profile, suggesting that proper establishment of nucleosome occupancy around origins is a critical step for regulation of global origin activities. Our work thus establishes nucleosome occupancy as a novel and key chromatin parameter for proper origin regulation. PMID:27895110

  1. Stability, chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle

    PubMed Central

    Okuno, Yukiko; McNairn, Adrian J.; den Elzen, Nicole; Pines, Jonathon; Gilbert, David M.

    2001-01-01

    We have examined the behavior of pre-replication complex (pre-RC) proteins in relation to key cell cycle transitions in Chinese Hamster Ovary (CHO) cells. ORC1, ORC4 and Cdc6 were stable (T1/2 >2 h) and associated with a chromatin-containing fraction throughout the cell cycle. Green fluorescent protein-tagged ORC1 associated with chromatin throughout mitosis in living cells and co-localized with ORC4 in metaphase spreads. Association of Mcm proteins with chromatin took place during telophase, ∼30 min after the destruction of geminin and cyclins A and B, and was coincident with the licensing of chromatin to replicate in geminin-supplemented Xenopus egg extracts. Neither Mcm recruitment nor licensing required protein synthesis throughout mitosis. Moreover, licensing could be uncoupled from origin specification in geminin-supplemented extracts; site-specific initiation within the dihydrofolate reductase locus required nuclei from cells that had passed through the origin decision point (ODP). These results demonstrate that mammalian pre-RC assembly takes place during telophase, mediated by post-translational modifications of pre-existing proteins, and is not sufficient to select specific origin sites. A subsequent, as yet undefined, step selects which pre-RCs will function as replication origins. PMID:11483529

  2. General method for rapid purification of native chromatin fragments.

    PubMed

    Kuznetsov, Vyacheslav I; Haws, Spencer A; Fox, Catherine A; Denu, John M

    2018-05-24

    Biochemical, proteomic and epigenetic studies of chromatin rely on the efficient ability to isolate native nucleosomes in high yield and purity. However, isolation of native chromatin suitable for many downstream experiments remains a challenging task. This is especially true for the budding yeast Saccharomyces cerevisiae, which continues to serve as an important model organism for the study of chromatin structure and function. Here, we developed a time- and cost-efficient universal protocol for isolation of native chromatin fragments from yeast, insect, and mammalian cells. The resulting protocol preserves histone posttranslational modification in the native chromatin state, and is applicable for both parallel multi-sample spin-column purification and large scale isolation. This protocol is based on the efficient and stable purification of polynucleosomes, features a combination of optimized cell lysis and purification conditions, three options for chromatin fragmentation, and a novel ion-exchange chromatographic purification strategy.  The procedure will aid chromatin researchers interested in isolating native chromatin material for biochemical studies, and as a mild, acid- and detergent-free sample preparation method for mass-spectrometry analysis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Guiding Principles for Data Architecture to Support the Pathways Community HUB Model

    PubMed Central

    Zeigler, Bernard P.; Redding, Sarah; Leath, Brenda A.; Carter, Ernest L.; Russell, Cynthia

    2016-01-01

    Introduction: The Pathways Community HUB Model provides a unique strategy to effectively supplement health care services with social services needed to overcome barriers for those most at risk of poor health outcomes. Pathways are standardized measurement tools used to define and track health and social issues from identification through to a measurable completion point. The HUB use Pathways to coordinate agencies and service providers in the community to eliminate the inefficiencies and duplication that exist among them. Pathways Community HUB Model and Formalization: Experience with the Model has brought out the need for better information technology solutions to support implementation of the Pathways themselves through decision-support tools for care coordinators and other users to track activities and outcomes, and to facilitate reporting. Here we provide a basis for discussing recommendations for such a data infrastructure by developing a conceptual model that formalizes the Pathway concept underlying current implementations. Requirements for Data Architecture to Support the Pathways Community HUB Model: The main contribution is a set of core recommendations as a framework for developing and implementing a data architecture to support implementation of the Pathways Community HUB Model. The objective is to present a tool for communities interested in adopting the Model to learn from and to adapt in their own development and implementation efforts. Problems with Quality of Data Extracted from the CHAP Database: Experience with the Community Health Access Project (CHAP) data base system (the core implementation of the Model) has identified several issues and remedies that have been developed to address these issues. Based on analysis of issues and remedies, we present several key features for a data architecture meeting the just mentioned recommendations. Implementation of Features: Presentation of features is followed by a practical guide to their implementation

  4. Chromatin organization regulates viral egress dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, Vesa; Myllys, Markko; Ruokolainen, Visa

    Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less

  5. Chromatin organization regulates viral egress dynamics

    DOE PAGES

    Aho, Vesa; Myllys, Markko; Ruokolainen, Visa; ...

    2017-06-16

    Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less

  6. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1

    PubMed Central

    Sun, Fei; Huang, Li

    2013-01-01

    Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation. PMID:23821667

  7. [Comparative investigation of the non-histone proteins of chromatin from pigeon erythroblasts and erythrocytes].

    PubMed

    Fedina, A B; Gazarian, G G

    1976-01-01

    Chromosomal non-histone proteins are obtained from nuclei of two types of pigeon erythroid cells: erythroblasts (cells active in RNA synthesis) and erythrocytes (cells with repressed RNA synthesis). They are well soluble in solutions of low ionic strength. Electrophoretic separation of the obtained non-histone proteins in polyacrylamide gels with urea and SDS shows the presence of qualitative differences in the pattern of non-histone proteins of chromatine from erythroblasts and erythrocytes. By electrophoresis in urea some protein bands of non-histone proteins of chromatine from erythroblasts were found which disappear with the aging of cells. At the same time two protein fractions were observed in chromatine from erythrocytes which were absent in that of erythroblasts. Disappearance of some high molecular weight protein fractions from erythrocyte chromatine as compared to erythroblasts was observed by separation of the non-histone proteins in the presence of SDS. These fractions of the non-histone proteins disappearing during aging of cells are well extractable from erythroblast chromatine by 0.35 M NaCl solution. In the in vitro system with E. coli RNA polymerase addition of non-histone proteins of chromatine from erythroblasts to chromatine from erythrocytes increases RNA synthesis 2--3 times. At the same time addition of non-histone proteins from erythrocytes is either without any influence on this process or somewhat inhibiting.

  8. The hub-and-spoke organization design: an avenue for serving patients well.

    PubMed

    Elrod, James K; Fortenberry, John L

    2017-07-11

    The healthcare industry is characterized by intensive, never-ending change occurring on a multitude of fronts. Success in such tumultuous environments requires healthcare providers to be proficient in myriad areas, including the manner in which they organize and deliver services. Less efficient designs drain precious resources and hamper efforts to deliver the best care possible to patients, making it imperative that optimal pathways are identified and pursued. One particular avenue that offers great potential for serving patients efficiently and effectively is known as the hub-and-spoke organization design. The hub-and-spoke organization design is a model which arranges service delivery assets into a network consisting of an anchor establishment (hub) which offers a full array of services, complemented by secondary establishments (spokes) which offer more limited service arrays, routing patients needing more intensive services to the hub for treatment. Hub-and-spoke networks afford many benefits for healthcare providers, but in order to capitalize fully, proper assembly is required. To advance awareness, knowledge, and use of the hub-and-spoke organization design, this article profiles Willis-Knighton Health System's service delivery network which has utilized the model for over three decades. Among other things, the hub-and-spoke organization design is defined, benefits are stipulated, and applications are discussed, permitting healthcare providers essential insights for the establishment and operation of these networks. The change-rich nature of the healthcare industry places a premium on incorporating advancements that permit health and medical providers to operate as optimally as possible. The hub-and-spoke organization design represents an option that, when deployed correctly, can greatly assist healthcare establishments in their quests to serve patients well.

  9. Sperm chromatin alterations in fertile and subfertile bulls.

    PubMed

    Souza, Elisson Terêncio; Silva, Cláudio Vieira; Travençolo, Bruno Augusto Nassif; Alves, Benner Geraldo; Beletti, Marcelo Emílio

    2018-06-01

    Alterations in sperm chromatin have been related with subfertility in several mammals. In this study, chromatin alteration types (Base, Basal half, Central axis, Dispersed, and Whole) were assessed by toluidine blue (TB) staining, 6-diamidino-2-fenilindole (DAPI) and anti-protamine 1 antibody (anti-PR1) labeling in sperm samples of fertile and subfertile bulls. Semen samples were obtained from bulls kept in Artificial Insemination Center (fertile bulls) or from bulls subjected to scrotal insulation (subfertile bulls). The percentage of chromatin alterations identified by TB was similar (P > 0.05) in semen samples of fertile and subfertile bulls. In contrast, a greater (P < 0.01) chromatin decondensation and heterogeneity were recorded in semen samples of subfertile bulls. In DAPI and anti-PR1 methods, the subfertile bulls samples had a higher (P < 0.05) percentage of alteration in the base as well as overall chromatin alterations (P < 0.05). Moreover, the chromatin alterations recorded with TB, DAPI, and anti-PR1 were compared in semen samples of fertile and subfertile bulls. In fertile bulls, the overall chromatin alterations were similar (P > 0.05) among the methods In contrast, semen samples of subfertile bulls had a higher (P < 0.05) percentage of overall chromatin alterations when labeled with DAPI. In conclusion, our findings shown that all dye tested had specific sperm stainability and can be feasible to monitor subfertility condition in bulls. Also, different chromatin alteration types in sperm samples of fertile and suberftile bulls were recorded. Copyright © 2018 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier B.V. All rights reserved.

  10. NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope

    PubMed Central

    de las Heras, Jose I.; Saiz-Ros, Natalia; Makarov, Alexandr A.; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A.; Schirmer, Eric C.

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  11. Environmental-stress-induced Chromatin Regulation and its Heritability

    PubMed Central

    Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K

    2014-01-01

    Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581

  12. Sci-Hub: What Librarians Should Know and Do about Article Piracy.

    PubMed

    Hoy, Matthew B

    2017-01-01

    The high cost of journal articles has driven many researchers to turn to a new way of getting access: "pirate" article sites. Sci-Hub, the largest and best known of these sites, currently offers instant access to more than 58 million journal articles. Users attracted by the ease of use and breadth of the collection may not realize that these articles are often obtained using stolen credentials and downloading them may be illegal. This article will briefly describe Sci-Hub and how it works, the legal and ethical issues it raises, and the problems it may cause for librarians. Librarians should be aware of Sci-Hub and the ways it may change their patrons' expectations. They should also understand the risks Sci-Hub can pose to their patrons and their institutions.

  13. Sci-Hub provides access to nearly all scholarly literature

    PubMed Central

    Romero, Ariel Rodriguez; Levernier, Jacob G; Munro, Thomas Anthony; McLaughlin, Stephen Reid; Greshake Tzovaras, Bastian

    2018-01-01

    The website Sci-Hub enables users to download PDF versions of scholarly articles, including many articles that are paywalled at their journal’s site. Sci-Hub has grown rapidly since its creation in 2011, but the extent of its coverage has been unclear. Here we report that, as of March 2017, Sci-Hub’s database contains 68.9% of the 81.6 million scholarly articles registered with Crossref and 85.1% of articles published in toll access journals. We find that coverage varies by discipline and publisher, and that Sci-Hub preferentially covers popular, paywalled content. For toll access articles, we find that Sci-Hub provides greater coverage than the University of Pennsylvania, a major research university in the United States. Green open access to toll access articles via licit services, on the other hand, remains quite limited. Our interactive browser at https://greenelab.github.io/scihub allows users to explore these findings in more detail. For the first time, nearly all scholarly literature is available gratis to anyone with an Internet connection, suggesting the toll access business model may become unsustainable. PMID:29424689

  14. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/Pi3K/AKT pathways during muscle differentiation

    PubMed Central

    Carlo, Serra; Daniela, Palacios; Chiara, Mozzetta; Sonia, Forcales; Ianessa, Morantte; Meri, Ripani; Jones David, R.; Keyong, Du; Jhala Ulupi, S.; Cristiano, Simone; Lorenzo, Puri Pier

    2009-01-01

    During muscle regeneration, the mechanism integrating environmental cues at the chromatin of muscle progenitors is unknown. We show that inflammation-activated MKK6-p38 and IGF1-induced Pi3K/AKT pathways converge on the chromatin of muscle genes to target distinct components of the muscle transcriptosome. p38 α/β kinases recruit the SWI/SNF chromatin-remodeling complex; AKT 1 and 2 promote the association of MyoD with p300 and PCAF acetyltransferases, via direct phosphorylation of p300. Pharmacological or genetic interference with either pathway led to partial assembly of discrete chromatin-bound complexes, which reflected two reversible and distinct cellular phenotypes. Remarkably, Pi3K/AKT blockade was permissive for chromatin recruitment of MEF2-SWI/SNF complex, whose remodeling activity was compromised in the absence of MyoD and acetyltransferases. The functional interdependence between p38 and IGF1/Pi3K/AKT pathways was further established by the evidence that blockade of AKT chromatin targets was sufficient to prevent the activation of the myogenic program triggered by deliberate activation of p38 signaling PMID:17964260

  15. Spectroscopic detection of etoposide binding to chromatin components: The role of histone proteins

    NASA Astrophysics Data System (ADS)

    Chamani, Elham; Rabbani-Chadegani, Azra; Zahraei, Zohreh

    2014-12-01

    Chromatin has been introduced as a main target for most anticancer drugs. Etoposide is known as a topoisomerase II inhibitor, but its effect on chromatin components is unknown. This report, for the first time, describes the effect of etoposide on DNA, histones and DNA-histones complex in the structure of nucleosomes employing thermal denaturation, fluorescence, UV absorbance and circular dichroism spectroscopy techniques. The results showed that the binding of etoposide decreased UV absorbance and fluorescence emission intensity, altered secondary structure of chromatin and hypochromicity was occurred in thermal denaturation profiles. The drug exhibited higher affinity to chromatin compared to DNA. Quenching of drug chromophores with tyrosine residues of histones indicated that globular domain of histones is the site of etoposide binding. Moreover, the binding of etoposide to histones altered their secondary structure accompanied with hypochromicity revealing compaction of histones in the presence of the drug. From the results it is concludes that apart from topoisomerase II, chromatin components especially its protein moiety can be introduced as a new site of etoposide binding and histone proteins especially H1 play a fundamental role in this process and anticancer activity of etoposide.

  16. Chromatin regulators as a guide for cancer treatment choice

    PubMed Central

    Gurard-Levin, Zachary A.; Wilson, Laurence O.W.; Pancaldi, Vera; Postel-Vinay, Sophie; Sousa, Fabricio G.; Reyes, Cecile; Marangoni, Elisabetta; Gentien, David; Valencia, Alfonso; Pommier, Yves; Cottu, Paul; Almouzni, Geneviève

    2016-01-01

    The limited capacity to predict a patient’s response to distinct chemotherapeutic agents is a major hurdle in cancer management. The efficiency of a large fraction of current cancer therapeutics (radio- and chemotherapies) is influenced by chromatin structure. Reciprocally, alterations in chromatin organization may impact resistance mechanisms. Here, we explore how the mis-expression of chromatin regulators—factors involved in the establishment and maintenance of functional chromatin domains—can inform about the extent of docetaxel response. We exploit gene Affymetrix and NanoString gene expression data for a set of chromatin regulators generated from breast cancer patient-derived xenograft (PDX) models and patient samples treated with docetaxel. Random Forest classification reveals specific panels of chromatin regulators, including key components of the SWI/SNF chromatin remodeler, which readily distinguish docetaxel high-responders and poor-responders. Further exploration of SWI/SNF components in the comprehensive NCI-60 dataset reveals that the expression inversely correlates with docetaxel sensitivity. Finally, we show that loss of the SWI/SNF subunit BRG1 (SMARCA4) in a model cell line leads to enhanced docetaxel sensitivity. Altogether, our findings point towards chromatin regulators as biomarkers for drug response as well as therapeutic targets to sensitize patients towards docetaxel and combat drug resistance. PMID:27196757

  17. Compact earth stations, hubs for energy industry expanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimabukuro, T.

    1992-02-01

    That paper reports that advances in gallium arsenide (GaAs) technology, monolithic microwave integrated circuits (MMIC) and large scale integrated (VLSF) circuits, have contributed to the mass production of very reliable small aperture terminals (VSATs). Less publicized, but equally important to multinational energy organizations, are recent developments in compact earth station design and solid-state hubs for VSAT networks made possible by the new technology. Many applications are suited for the energy industry that involve compact earth station terminals and hubs. The first group of applications describes the use of GTE's ACES earth station for the Zaire Gulf Oil Co. in Zairemore » and for AMOCO in Trinidad. The second group of applications describes the compact hub for VSAT networks, which could potentially have a number of data communication uses in the energy industry, such as, IBM/SNA, X.25, or supervisory control an data acquisition (SCADA) applications.« less

  18. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly

    PubMed Central

    MacAlpine, Heather K.; Lubelsky, Yoav; Hartemink, Alexander J.

    2015-01-01

    Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Although pre-RC assembly is well characterized in vitro, the process is poorly understood within the local chromatin environment surrounding replication origins. To reveal how the chromatin architecture modulates origin selection and activation, we “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. Our nucleotide-resolution protein occupancy profiles resolved a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1, suggesting that stable ORC chromatin association in G2 is a determinant of origin efficiency. G1 nucleosome remodeling concomitant with pre-RC assembly expanded the origin nucleosome-free region and enhanced activation efficiency. Finally, the local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ARS consensus sequence (ACS). PMID:25593310

  19. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload

    PubMed Central

    Kuipers, Marjorie A.; Stasevich, Timothy J.; Sasaki, Takayo; Wilson, Korey A.; Hazelwood, Kristin L.; McNally, James G.; Davidson, Michael W.

    2011-01-01

    The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles. PMID:21220507

  20. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  1. Nuclear location of a chromatin insulator in Drosophila melanogaster.

    PubMed

    Xu, Qinghao; Li, Mo; Adams, Jessica; Cai, Haini N

    2004-03-01

    Chromatin-related functions are associated with spatial organization in the nucleus. We have investigated the relationship between the enhancer-blocking activity and subnuclear localization of the Drosophila melanogaster suHw insulator. Using fluorescent in situ hybridization, we observed that genomic loci containing the gypsy retrotransposon were distributed closer to the nuclear periphery than regions without the gypsy retrotransposon. However, transgenes containing a functional 340 bp suHw insulator did not exhibit such biased distribution towards the nuclear periphery, which suggests that the suHw insulator sequence is not responsible for the peripheral localization of the gypsy retrotransposon. Antibody stains showed that the two proteins essential for the suHw insulator activity, SUHW and MOD(MDG4), are not restricted to the nuclear periphery. The enhancer-blocking activity of suHw remained intact under the heat shock conditions, which was shown to disrupt the association of gypsy, SUHW and MOD(MDG4) with the nuclear periphery. Our results indicate that the suHw insulator can function in the nuclear interior, possibly through local interactions with chromatin components or other nuclear structures.

  2. Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects.

    PubMed

    Glastad, Karl M; Goodisman, Michael A D; Yi, Soojin V; Hunt, Brendan G

    2015-12-04

    Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution. Copyright © 2016 Glastad et al.

  3. The Hub Population Health System: distributed ad hoc queries and alerts

    PubMed Central

    Anane, Sheila; Taverna, John; Amirfar, Sam; Stubbs-Dame, Remle; Singer, Jesse

    2011-01-01

    The Hub Population Health System enables the creation and distribution of queries for aggregate count information, clinical decision support alerts at the point-of-care for patients who meet specified conditions, and secure messages sent directly to provider electronic health record (EHR) inboxes. Using a metronidazole medication recall, the New York City Department of Health was able to determine the number of affected patients and message providers, and distribute an alert to participating practices. As of September 2011, the system is live in 400 practices and within a year will have over 532 practices with 2500 providers, representing over 2.5 million New Yorkers. The Hub can help public health experts to evaluate population health and quality improvement activities throughout the ambulatory care network. Multiple EHR vendors are building these features in partnership with the department's regional extension center in anticipation of new meaningful use requirements. PMID:22071531

  4. DataHub: Science data management in support of interactive exploratory analysis

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Rubin, Mark R.

    1993-01-01

    The DataHub addresses four areas of significant needs: scientific visualization and analysis; science data management; interactions in a distributed, heterogeneous environment; and knowledge-based assistance for these functions. The fundamental innovation embedded within the DataHub is the integration of three technologies, viz. knowledge-based expert systems, science visualization, and science data management. This integration is based on a concept called the DataHub. With the DataHub concept, science investigators are able to apply a more complete solution to all nodes of a distributed system. Both computational nodes and interactives nodes are able to effectively and efficiently use the data services (access, retrieval, update, etc), in a distributed, interdisciplinary information system in a uniform and standard way. This allows the science investigators to concentrate on their scientific endeavors, rather than to involve themselves in the intricate technical details of the systems and tools required to accomplish their work. Thus, science investigators need not be programmers. The emphasis on the definition and prototyping of system elements with sufficient detail to enable data analysis and interpretation leading to information. The DataHub includes all the required end-to-end components and interfaces to demonstrate the complete concept.

  5. DataHub - Science data management in support of interactive exploratory analysis

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Rubin, Mark R.

    1993-01-01

    DataHub addresses four areas of significant need: scientific visualization and analysis; science data management; interactions in a distributed, heterogeneous environment; and knowledge-based assistance for these functions. The fundamental innovation embedded within the DataHub is the integration of three technologies, viz. knowledge-based expert systems, science visualization, and science data management. This integration is based on a concept called the DataHub. With the DataHub concept, science investigators are able to apply a more complete solution to all nodes of a distributed system. Both computational nodes and interactive nodes are able to effectively and efficiently use the data services (access, retrieval, update, etc.) in a distributed, interdisciplinary information system in a uniform and standard way. This allows the science investigators to concentrate on their scientific endeavors, rather than to involve themselves in the intricate technical details of the systems and tools required to accomplish their work. Thus, science investigators need not be programmers. The emphasis is on the definition and prototyping of system elements with sufficient detail to enable data analysis and interpretation leading to information. The DataHub includes all the required end-to-end components and interfaces to demonstrate the complete concept.

  6. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  7. Surviving an Identity Crisis: A Revised View of Chromatin Insulators in the Genomics Era

    PubMed Central

    Matzat, Leah H.; Lei, Elissa P.

    2013-01-01

    The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. PMID:24189492

  8. Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons

    PubMed Central

    Setareh, Hesam; Deger, Moritz; Petersen, Carl C. H.; Gerstner, Wulfram

    2017-01-01

    Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiring and synaptic weight structure between neurons show statistics that differ from random networks. Here we study a network containing a subset of neurons which we call weight-hub neurons, that are characterized by strong inward synapses. We propose a connectivity structure for excitatory neurons that contain assemblies of densely connected weight-hub neurons, while the pairwise connection probability and synaptic weight distribution remain consistent with experimental data. Simulations of such a network with generalized integrate-and-fire neurons display regular and irregular slow oscillations akin to experimentally observed up/down state transitions in the activity of cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation of a model network in the presence or absence of assembly structure exhibits responses similar to light-evoked responses of cortical layers in optogenetically modified animals. We conclude that a high connection probability into and within assemblies of excitatory weight-hub neurons, as it likely is present in some but not all cortical layers, changes the dynamics of a layer of cortical microcircuitry significantly. PMID:28690508

  9. Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin.

    PubMed

    Chaya, D; Hayamizu, T; Bustin, M; Zaret, K S

    2001-11-30

    Nucleosome-like particles and acetylated histones occur near active promoters and enhancers, and certain transcription factors can recognize their target sites on the surface of a nucleosome in vitro; yet it has been unclear whether transcription factors can occupy target sites on nucleosomes in native chromatin. We developed a method for sequential chromatin immunoprecipitation of distinct nuclear proteins that are simultaneously cross-linked to nucleosome-sized genomic DNA segments. We find that core histone H2A co-occupies, along with the FoxA (hepatocyte nuclear factor-3) transcription factor, DNA for the albumin transcriptional enhancer in native liver chromatin, where the enhancer is active. Because histone H2A on nuclear DNA is only known to exist in nucleosomes, we conclude that transcription factors can form a stable complex on nucleosomes at an active enhancer element in vivo.

  10. Higher order chromatin structure: bridging physics and biology

    PubMed Central

    Fudenberg, Geoffrey; Mirny, Leonid A.

    2012-01-01

    Recent advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of high-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently-developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. PMID:22360992

  11. Regulation of chromatin structure in the cardiovascular system.

    PubMed

    Rosa-Garrido, Manuel; Karbassi, Elaheh; Monte, Emma; Vondriska, Thomas M

    2013-01-01

    It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease. 

  12. 76 FR 10581 - Moss Bluff Hub, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-87-000] Moss Bluff Hub, LLC; Notice of Filing Take notice that on February 11, 2011, Moss Bluff Hub, LLC filed to revise its... Rules 211 and 214 of the Commission's Rules of Practice and Procedure (18 CFR 385.211 and 385.214...

  13. Soft Power and Cultural Diplomacy: Emerging Education Hubs in Asia

    ERIC Educational Resources Information Center

    Lee, Jack T.

    2015-01-01

    Several education hubs have emerged in Asia and the Middle East in recent years with a specific focus on cross-border higher education. Through considerable efforts in policy planning and generous funding, these hubs aim to transform a country or city into an eminent destination for education, research, and training. The inherent design of these…

  14. Micron-scale coherence in interphase chromatin dynamics

    PubMed Central

    Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.

    2013-01-01

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504

  15. On the chromatin structure of eukaryotic telomeres

    PubMed Central

    Vaquero-Sedas, María I

    2011-01-01

    Telomeres prevent chromosome fusions and degradation by exonucleases and are implicated in DNA repair, homologous recombination, chromosome pairing and segregation. All these functions of telomeres require the integrity of their chromatin structure, which has been traditionally considered as heterochromatic. In agreement with this idea, different studies have reported that telomeres associate with heterochromatic marks. However, these studies addressed simultaneously the chromatin structures of telomeres and subtelomeric regions or the chromatin structure of telomeres and Interstitial Telomeric Sequences (ITSs). The independent analysis of Arabidopsis telomeres, subtelomeric regions and ITSs has allowed the discovery of euchromatic telomeres. In Arabidopsis, whereas subtelomeric regions and ITSs associate with heterochromatic marks, telomeres exhibit euchromatic features. We think that this scenario could be found in other model systems if the chromatin organizations of telomeres, subtelomeric regions and ITSs are independently analyzed. PMID:21822057

  16. Variable volume combustor with center hub fuel staging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  17. Hubs and authorities in the world trade network using a weighted HITS algorithm.

    PubMed

    Deguchi, Tsuyoshi; Takahashi, Katsuhide; Takayasu, Hideki; Takayasu, Misako

    2014-01-01

    We investigate the economic hubs and authorities of the world trade network (WTN) from 1992 to 2012, an era of rapid economic globalization. Using a well-defined weighted hyperlink-induced topic search (HITS) algorithm, we can calculate the values of the weighted HITS hub and authority for each country in a conjugate way. In the context of the WTN, authority values are large for countries with significant imports from large hub countries, and hub values are large for countries with significant exports to high-authority countries. The United States was the largest economic authority in the WTN from 1992 to 2012. The authority value of the United States has declined since 2001, and China has now become the largest hub in the WTN. At the same time, China's authority value has grown as China is transforming itself from the "factory of the world" to the "market of the world." European countries show a tendency to trade mostly within the European Union, which has decreased Europe's hub and authority values. Japan's authority value has increased slowly, while its hub value has declined. These changes are consistent with Japan's transition from being an export-driven economy in its high economic growth era in the latter half of the twentieth century to being a more mature, economically balanced nation.

  18. Hubs and Authorities in the World Trade Network Using a Weighted HITS Algorithm

    PubMed Central

    Deguchi, Tsuyoshi; Takahashi, Katsuhide; Takayasu, Hideki; Takayasu, Misako

    2014-01-01

    We investigate the economic hubs and authorities of the world trade network (WTN) from to , an era of rapid economic globalization. Using a well-defined weighted hyperlink-induced topic search (HITS) algorithm, we can calculate the values of the weighted HITS hub and authority for each country in a conjugate way. In the context of the WTN, authority values are large for countries with significant imports from large hub countries, and hub values are large for countries with significant exports to high-authority countries. The United States was the largest economic authority in the WTN from to . The authority value of the United States has declined since , and China has now become the largest hub in the WTN. At the same time, China's authority value has grown as China is transforming itself from the “factory of the world” to the “market of the world.” European countries show a tendency to trade mostly within the European Union, which has decreased Europe's hub and authority values. Japan's authority value has increased slowly, while its hub value has declined. These changes are consistent with Japan's transition from being an export-driven economy in its high economic growth era in the latter half of the twentieth century to being a more mature, economically balanced nation. PMID:25050940

  19. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation.

    PubMed

    Serra, Carlo; Palacios, Daniela; Mozzetta, Chiara; Forcales, Sonia V; Morantte, Ianessa; Ripani, Meri; Jones, David R; Du, Keyong; Jhala, Ulupi S; Simone, Cristiano; Puri, Pier Lorenzo

    2007-10-26

    During muscle regeneration, the mechanism integrating environmental cues at the chromatin of muscle progenitors is unknown. We show that inflammation-activated MKK6-p38 and insulin growth factor 1 (IGF1)-induced PI3K/AKT pathways converge on the chromatin of muscle genes to target distinct components of the muscle transcriptosome. p38 alpha/beta kinases recruit the SWI/SNF chromatin-remodeling complex; AKT1 and 2 promote the association of MyoD with p300 and PCAF acetyltransferases, via direct phosphorylation of p300. Pharmacological or genetic interference with either pathway led to partial assembly of discrete chromatin-bound complexes, which reflected two reversible and distinct cellular phenotypes. Remarkably, PI3K/AKT blockade was permissive for chromatin recruitment of MEF2-SWI/SNF complex, whose remodeling activity was compromised in the absence of MyoD and acetyltransferases. The functional interdependence between p38 and IGF1/PI3K/AKT pathways was further established by the evidence that blockade of AKT chromatin targets was sufficient to prevent the activation of the myogenic program triggered by deliberate activation of p38 signaling.

  20. New insights into chromatin folding and dynamics from multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Olson, Wilma

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of roughly 150 DNA base pairs and eight histone proteins-found on chromatin fibers. We have developed a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs with 3-25 evenly spaced nucleosomes. The correspondence between the predicted and observed effects of nucleosome composition, spacing, and numbers on long-range communication between regulatory proteins bound to the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We have extracted effective nucleosome-nucleosome potentials from the mesoscale simulations and introduced the potentials in a larger scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable influence of nucleosome spacing on chromatin flexibility. Small changes in the length of the DNA fragments linking successive nucleosomes introduce marked changes in the local interactions of the nucleosomes and in the spatial configurations of the fiber as a whole. The changes in nucleosome positioning influence the statistical properties of longer chromatin constructs with 100-10,000 nucleosomes. We are investigating the extent to which the `local' interactions of regularly spaced nucleosomes contribute to the corresponding interactions in chains with mixed spacings as a step toward the treatment of fibers with nucleosomes positioned at the sites mapped at base-pair resolution on genomic sequences. Support of the work by USPHS R01 GM 34809 is gratefully acknowledged.

  1. Histone H2B monoubiquitination is involved in the regulation of cutin and wax composition in Arabidopsis thaliana.

    PubMed

    Ménard, Rozenn; Verdier, Gaëtan; Ors, Mareva; Erhardt, Mathieu; Beisson, Fred; Shen, Wen-Hui

    2014-02-01

    The plant cuticle is a chemically heterogeneous lipophilic layer composed of a cutin polymer matrix and waxes which covers the aerial parts of plants. This layer plays an essential role in the survival of plants by protecting them from desiccation and (a)biotic stresses. Knowledge on the gene networks and mechanisms regulating the synthesis of cuticle components during organ expansion or stress response remains limited however. Here, using five loss-of-function mutants for histone monoubiquitination, we report on the role of two RING E3 ligases, namely HISTONE MONOUBIQUITINATION 1 and 2 (HUB1 and HUB2), in the selective transcriptional activation of four cuticle biosynthesis genes in Arabidopsis thaliana. Microscopy observations showed that in hub1-6 and hub2-2 mutants irregular epidermal cells and disorganized cuticle layers were present in rosette leaves. Water loss measurements on excised rosettes demonstrated that cuticular permeability was significantly increased in the mutants. Chemical analysis of cuticle components revealed that the wax composition was changed and that cutin 16:0 dicarboxylic acid was significantly reduced in all hub mutants. Analysis of transcript levels of selected genes indicated that LACS2, ATT1 and HOTHEAD involved in cutin biosynthesis and CER1 involved in wax biosynthesis were down-regulated in the hub mutants, while the expression of LACERATA, CER3, CER6 and CER10 remained unchanged. Chromatin immunoprecipitation assays further showed that hub mutants are impaired in dynamic changes of histone H2B monoubiquitination at several loci of down-regulated genes. Taken together, these data establish that the regulation of cuticle composition involves chromatin remodeling by H2B monoubiquitination.

  2. Higher-order chromatin structure: bridging physics and biology.

    PubMed

    Fudenberg, Geoffrey; Mirny, Leonid A

    2012-04-01

    Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The BioHub Knowledge Base: Ontology and Repository for Sustainable Biosourcing.

    PubMed

    Read, Warren J; Demetriou, George; Nenadic, Goran; Ruddock, Noel; Stevens, Robert; Winter, Jerry

    2016-06-01

    The motivation for the BioHub project is to create an Integrated Knowledge Management System (IKMS) that will enable chemists to source ingredients from bio-renewables, rather than from non-sustainable sources such as fossil oil and its derivatives. The BioHubKB is the data repository of the IKMS; it employs Semantic Web technologies, especially OWL, to host data about chemical transformations, bio-renewable feedstocks, co-product streams and their chemical components. Access to this knowledge base is provided to other modules within the IKMS through a set of RESTful web services, driven by SPARQL queries to a Sesame back-end. The BioHubKB re-uses several bio-ontologies and bespoke extensions, primarily for chemical feedstocks and products, to form its knowledge organisation schema. Parts of plants form feedstocks, while various processes generate co-product streams that contain certain chemicals. Both chemicals and transformations are associated with certain qualities, which the BioHubKB also attempts to capture. Of immediate commercial and industrial importance is to estimate the cost of particular sets of chemical transformations (leading to candidate surfactants) performed in sequence, and these costs too are captured. Data are sourced from companies' internal knowledge and document stores, and from the publicly available literature. Both text analytics and manual curation play their part in populating the ontology. We describe the prototype IKMS, the BioHubKB and the services that it supports for the IKMS. The BioHubKB can be found via http://biohub.cs.manchester.ac.uk/ontology/biohub-kb.owl .

  4. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

    PubMed Central

    Naughton, Catherine; Avlonitis, Nicolaos; Corless, Samuel; Prendergast, James G.; Mati, Ioulia K.; Eijk, Paul P.; Cockroft, Scott L.; Bradley, Mark; Ylstra, Bauke; Gilbert, Nick

    2013-01-01

    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes. PMID:23416946

  5. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes

    PubMed Central

    Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J

    2016-01-01

    Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745

  6. Aging by epigenetics-A consequence of chromatin damage?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedivy, John M.; Banumathy, Gowrishankar; Adams, Peter D.

    Chromatin structure is not fixed. Instead, chromatin is dynamic and is subject to extensive developmental and age-associated remodeling. In some cases, this remodeling appears to counter the aging and age-associated diseases, such as cancer, and extend organismal lifespan. However, stochastic non-deterministic changes in chromatin structure might, over time, also contribute to the break down of nuclear, cell and tissue function, and consequently aging and age-associated diseases.

  7. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism

    PubMed Central

    Lakisic, Goran; Wendling, Olivia; Libertini, Emanuele; Radford, Elizabeth J.; Le Guillou, Morwenna; Champy, Marie-France; Wattenhofer-Donzé, Marie; Soubigou, Guillaume; Ait-Si-Ali, Slimane; Feunteun, Jean; Sorg, Tania; Coppée, Jean-Yves; Ferguson-Smith, Anne C.; Cossart, Pascale; Bierne, Hélène

    2016-01-01

    BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases. PMID:26938916

  8. Features analysis for identification of date and party hubs in protein interaction network of Saccharomyces Cerevisiae.

    PubMed

    Mirzarezaee, Mitra; Araabi, Babak N; Sadeghi, Mehdi

    2010-12-19

    It has been understood that biological networks have modular organizations which are the sources of their observed complexity. Analysis of networks and motifs has shown that two types of hubs, party hubs and date hubs, are responsible for this complexity. Party hubs are local coordinators because of their high co-expressions with their partners, whereas date hubs display low co-expressions and are assumed as global connectors. However there is no mutual agreement on these concepts in related literature with different studies reporting their results on different data sets. We investigated whether there is a relation between the biological features of Saccharomyces Cerevisiae's proteins and their roles as non-hubs, intermediately connected, party hubs, and date hubs. We propose a classifier that separates these four classes. We extracted different biological characteristics including amino acid sequences, domain contents, repeated domains, functional categories, biological processes, cellular compartments, disordered regions, and position specific scoring matrix from various sources. Several classifiers are examined and the best feature-sets based on average correct classification rate and correlation coefficients of the results are selected. We show that fusion of five feature-sets including domains, Position Specific Scoring Matrix-400, cellular compartments level one, and composition pairs with two and one gaps provide the best discrimination with an average correct classification rate of 77%. We study a variety of known biological feature-sets of the proteins and show that there is a relation between domains, Position Specific Scoring Matrix-400, cellular compartments level one, composition pairs with two and one gaps of Saccharomyces Cerevisiae's proteins, and their roles in the protein interaction network as non-hubs, intermediately connected, party hubs and date hubs. This study also confirms the possibility of predicting non-hubs, party hubs and date hubs

  9. Open chromatin reveals the functional maize genome

    USDA-ARS?s Scientific Manuscript database

    Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...

  10. Functional Hubs in Mild Cognitive Impairment

    NASA Astrophysics Data System (ADS)

    Navas, Adrián; Papo, David; Boccaletti, Stefano; Del-Pozo, F.; Bajo, Ricardo; Maestú, Fernando; Martínez, J. H.; Gil, Pablo; Sendiña-Nadal, Irene; Buldú, Javier M.

    We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.

  11. Epidemics in Complex Networks: The Diversity of Hubs

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Gallos, Lazaros K.; Havlin, Shlomo; Stanley, H. Eugene; Makse, Hernan A.

    2009-03-01

    Many complex systems are believed to be vulnerable to spread of viruses and information owing to their high level of interconnectivity. Even viruses of low contagiousness easily proliferate the Internet. Rumors, fads, and innovation ideas are prone to efficient spreading in various social systems. Another commonly accepted standpoint is the importance of the most connected elements (hubs) in the spreading processes. We address following questions. Do all hubs conduct epidemics in the same manner? How does the epidemics spread depend on the structure of the network? What is the most efficient way to spread information over the system? We analyze several large-scale systems in the framework of of the susceptible/infective/removed (SIR) disease spread model which can also be mapped to the problem of rumor or fad spreading. We show that hubs are often ineffective in the transmission of virus or information owing to the highly heterogeneous topology of most networks. We also propose a new tool to evaluate the efficiency of nodes in spreading virus or information.

  12. Design of targeted libraries against the human Chk1 kinase using PGVL Hub.

    PubMed

    Peng, Zhengwei; Hu, Qiyue

    2011-01-01

    PGVL Hub is a Pfizer internal desktop tool for chemical library and singleton design. In this chapter, we give a short introduction to PGVL Hub, the core workflow it supports, and the rich design capabilities it provides. By re-creating two legacy targeted libraries against the human checkpoint kinase 1 (Chk1) as a showcase, we illustrate how PGVL Hub could be used to help library designers carry out the steps in library design and realize design objectives such as SAR expansion and improvement in both kinase selectivity and compound aqueous solubility. Finally we share several tips about library design and usage of PGVL Hub.

  13. USDA Northeast Climate Hub: delivering science-based knowledge and practical information

    USDA-ARS?s Scientific Manuscript database

    The USDA Northeast Climate Hub is one of seven regional hubs created in February 2014 and is a partnership among USDA and other federal agencies, universities, Tribal governments, and state and private organizations within the northeast region from Maine to West Virginia. The USDA Northeast Climate ...

  14. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.

    PubMed

    Gan, Hin Hark; Schlick, Tamar

    2010-10-20

    Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    NASA Astrophysics Data System (ADS)

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-03-01

    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.

  16. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  17. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  18. Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3′-OH Single-strand DNA Breaks*

    PubMed Central

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.

    2013-01-01

    Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749

  19. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice.

    PubMed

    Dong, Qianli; Li, Ning; Li, Xiaochong; Yuan, Zan; Xie, Dejian; Wang, Xiaofei; Li, Jianing; Yu, Yanan; Wang, Jinbin; Ding, Baoxu; Zhang, Zhibin; Li, Changping; Bian, Yao; Zhang, Ai; Wu, Ying; Liu, Bao; Gong, Lei

    2018-06-01

    The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants. © 2018 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  20. A role for the nucleoporin Nup170p in chromatin structure and gene silencing

    PubMed Central

    Van de Vosse, David W.; Wan, Yakun; Lapetina, Diego L.; Chen, Wei-Ming; Chiang, Jung-Hsien; Aitchison, John D.; Wozniak, Richard W.

    2013-01-01

    Embedded in the nuclear envelope, nuclear pore complexes (NPCs) not only regulate nuclear transport, but also interface with transcriptionally active euchromatin, largely silenced heterochromatin, as well as the boundaries between these regions. It is unclear what functional role NPCs play in establishing or maintaining these distinct chromatin domains. We report that the yeast NPC protein Nup170p interacts with regions of the genome containing ribosomal protein and subtelomeric genes. Here, it functions in nucleosome positioning and as a repressor of transcription. We show that the role of Nup170p in subtelomeric gene silencing is linked to its association with the RSC chromatin-remodeling complex and the silencing factor Sir4p, and that the binding of Nup170p and Sir4p to subtelomeric chromatin is cooperative and necessary for the association of telomeres with the nuclear envelope. Our results establish the NPC as an active participant in silencing and the formation of peripheral heterochromatin. PMID:23452847

  1. Role of ND10 nuclear bodies in the chromatin repression of HSV-1.

    PubMed

    Gu, Haidong; Zheng, Yi

    2016-04-05

    Herpes simplex virus (HSV) is a neurotropic virus that establishes lifelong latent infection in human ganglion sensory neurons. This unique life cycle necessitates an intimate relation between the host defenses and virus counteractions over the long course of infection. Two important aspects of host anti-viral defense, nuclear substructure restriction and epigenetic chromatin regulation, have been intensively studied in the recent years. Upon viral DNA entering the nucleus, components of discrete nuclear bodies termed nuclear domain 10 (ND10), converge at viral DNA and place restrictions on viral gene expression. Meanwhile the infected cell mobilizes its histones and histone-associated repressors to force the viral DNA into nucleosome-like structures and also represses viral transcription. Both anti-viral strategies are negated by various HSV countermeasures. One HSV gene transactivator, infected cell protein 0 (ICP0), is a key player in antagonizing both the ND10 restriction and chromatin repression. On one hand, ICP0 uses its E3 ubiquitin ligase activity to target major ND10 components for proteasome-dependent degradation and thereafter disrupts the ND10 nuclear bodies. On the other hand, ICP0 participates in de-repressing the HSV chromatin by changing histone composition or modification and therefore activates viral transcription. Involvement of a single viral protein in two seemingly different pathways suggests that there is coordination in host anti-viral defense mechanisms and also cooperation in viral counteraction strategies. In this review, we summarize recent advances in understanding the role of chromatin regulation and ND10 dynamics in both lytic and latent HSV infection. We focus on the new observations showing that ND10 nuclear bodies play a critical role in cellular chromatin regulation. We intend to find the connections between the two major anti-viral defense pathways, chromatin remodeling and ND10 structure, in order to achieve a better

  2. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression

    PubMed Central

    Libbrecht, Maxwell W.; Ay, Ferhat; Hoffman, Michael M.; Gilbert, David M.; Bilmes, Jeffrey A.; Noble, William Stafford

    2015-01-01

    The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term “specific expression domains.” We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data. PMID:25677182

  3. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression.

    PubMed

    Libbrecht, Maxwell W; Ay, Ferhat; Hoffman, Michael M; Gilbert, David M; Bilmes, Jeffrey A; Noble, William Stafford

    2015-04-01

    The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term "specific expression domains." We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data. © 2015 Libbrecht et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Wt1 Flip-Flops Chromatin in a CTCF Domain

    PubMed Central

    Gurudatta, B. V.; Corces, Victor G.

    2011-01-01

    CTCF plays diverse roles in nuclear organization and transcriptional regulation. In this issue of Developmental Cell, Essafi et al. (2011) report a mechanism by which the repressive or active state of chromatin in a domain defined by CTCF can be switched by the Wt1 transcription factor to regulate gene expression. PMID:21920307

  5. The Organization and Dissolution of Semantic-Conceptual Knowledge: Is the "Amodal Hub" the Only Plausible Model?

    ERIC Educational Resources Information Center

    Gainotti, Guido

    2011-01-01

    In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the "amodal semantic hub") supporting the interactive activation of semantic representations in all…

  6. 75 FR 33799 - Moss Bluff Hub, LLC; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-28-000] Moss Bluff Hub, LLC; Notice of Baseline Filing June 8, 2010. Take notice that on June 1, 2010, Moss Bluff Hub, LLC submitted a baseline filing of its Statement of General Terms and Standard Operations Conditions for storage...

  7. [Microcytomorphometric video-image detection of nuclear chromatin in ovarian cancer].

    PubMed

    Grzonka, Dariusz; Kamiński, Kazimierz; Kaźmierczak, Wojciech

    2003-09-01

    Technology of detection of tissue preparates precisious evaluates contents of nuclear chromatine, largeness and shape of cellular nucleus, indicators of mitosis, DNA index, ploidy, phase-S fraction and other parameters. Methods of detection of picture are: microcytomorphometry video-image (MCMM-VI), flow, double flow and activated by fluorescence. Diagnostic methods of malignant neoplasm of ovary are still nonspecific and not precise, that is a reason of unsatisfied results of treatment. Evaluation of microcytomorphometric measurements of nuclear chromatine histopathologic tissue preparates (HP) of ovarian cancer and comparison to normal ovarian tissue. Estimated 10 paraffin embedded tissue preparates of serous ovarian cancer, 4 preparates mucinous cancer and 2 cases of tumor Kruckenberg patients operated in Clinic of Perinatology and Gynaecology Silesian Medical Academy in Zabrze in period 2001-2002, MCMM-VI estimation based on computer aided analysis system: microscope Axioscop 20, camera tv JVCTK-C 1380, CarlZeiss KS Vision 400 rel.3.0 software. Following MCMM-VI parameters assessed: count of pathologic nucleus, diameter of nucleus, area, min/max diameter ratio, equivalent circle diameter (Dcircle), mean of brightness (mean D), integrated optical density (IOD = area x mean D), DNA index and 2.5 c exceeding rate percentage (2.5 c ER%). MCMM-VI performed on the 160 areas of 16 preparates of cancer and 100 areas of normal ovarian tissue. Statistical analysis was performed by used t-Student test. We obtained stastistically significant higher values parameters of nuclear chromatine, DI, 2.5 c ER of mucinous cancer and tumor Kruckenberg comparison to serous cancer. MCMM-VI parameters of chromatine malignant ovarian neoplasm were statistically significantly higher than normal ovarian tissue. Cytometric and karyometric parametres of nuclear chromatine estimated MCMM-VI are useful in the diagnostics and prognosis of ovarian cancer.

  8. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    PubMed Central

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  9. Characterizing the molecular architectures of chromatin-modifying complexes.

    PubMed

    Setiaputra, Dheva T; Yip, Calvin K

    2017-11-01

    Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A Bayesian mixture model for chromatin interaction data.

    PubMed

    Niu, Liang; Lin, Shili

    2015-02-01

    Chromatin interactions mediated by a particular protein are of interest for studying gene regulation, especially the regulation of genes that are associated with, or known to be causative of, a disease. A recent molecular technique, Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), that uses chromatin immunoprecipitation (ChIP) and high throughput paired-end sequencing, is able to detect such chromatin interactions genomewide. However, ChIA-PET may generate noise (i.e., pairings of DNA fragments by random chance) in addition to true signal (i.e., pairings of DNA fragments by interactions). In this paper, we propose MC_DIST based on a mixture modeling framework to identify true chromatin interactions from ChIA-PET count data (counts of DNA fragment pairs). The model is cast into a Bayesian framework to take into account the dependency among the data and the available information on protein binding sites and gene promoters to reduce false positives. A simulation study showed that MC_DIST outperforms the previously proposed hypergeometric model in terms of both power and type I error rate. A real data study showed that MC_DIST may identify potential chromatin interactions between protein binding sites and gene promoters that may be missed by the hypergeometric model. An R package implementing the MC_DIST model is available at http://www.stat.osu.edu/~statgen/SOFTWARE/MDM.

  11. A Chromatin Insulator-Like Element in the Herpes Simplex Virus Type 1 Latency-Associated Transcript Region Binds CCCTC-Binding Factor and Displays Enhancer-Blocking and Silencing Activities

    PubMed Central

    Amelio, Antonio L.; McAnany, Peterjon K.; Bloom, David C.

    2006-01-01

    A previous study demonstrated that the latency-associated transcript (LAT) promoter and the LAT enhancer/reactivation critical region (rcr) are enriched in acetyl histone H3 (K9, K14) during herpes simplex virus type 1 (HSV-1) latency, whereas all lytic genes analyzed (ICP0, UL54, ICP4, and DNA polymerase) are not (N. J. Kubat, R. K. Tran, P. McAnany, and D. C. Bloom, J. Virol. 78:1139-1149, 2004). This suggests that the HSV-1 latent genome is organized into histone H3 (K9, K14) hyperacetylated and hypoacetylated regions corresponding to transcriptionally permissive and transcriptionally repressed chromatin domains, respectively. Such an organization implies that chromatin insulators, similar to those of cellular chromosomes, may separate distinct transcriptional domains of the HSV-1 latent genome. In the present study, we sought to identify cis elements that could partition the HSV-1 genome into distinct chromatin domains. Sequence analysis coupled with chromatin immunoprecipitation and luciferase reporter assays revealed that (i) the long and short repeats and the unique-short region of the HSV-1 genome contain clustered CTCF (CCCTC-binding factor) motifs, (ii) CTCF motif clusters similar to those in HSV-1 are conserved in other alphaherpesviruses, (iii) CTCF binds to these motifs on latent HSV-1 genomes in vivo, and (iv) a 1.5-kb region containing the CTCF motif cluster in the LAT region possesses insulator activities, specifically, enhancer blocking and silencing. The finding that CTCF, a cellular protein associated with chromatin insulators, binds to motifs on the latent genome and insulates the LAT enhancer suggests that CTCF may facilitate the formation of distinct chromatin boundaries during herpesvirus latency. PMID:16474142

  12. An environmental transfer hub for multimodal atom probe tomography.

    PubMed

    Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E

    2017-01-01

    Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.

  13. Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation

    PubMed Central

    LITT, Michael; QIU, Yi; HUANG, Suming

    2017-01-01

    Synopsis PRMTs (protein arginine N-methyltransferases) specifically modify the arginine residues of key cellular and nuclear proteins as well as histone substrates. Like lysine methylation, transcriptional repression or activation is dependent upon the site and type of arginine methylation on histone tails. Recent discoveries imply that histone arginine methylation is an important modulator of dynamic chromatin regulation and transcriptional controls. However, under the shadow of lysine methylation, the roles of histone arginine methylation have been under-explored. The present review focuses on the roles of histone arginine methylation in the regulation of gene expression, and the interplays between histone arginine methylation, histone acetylation, lysine methylation and chromatin remodelling factors. In addition, we discuss the dynamic regulation of arginine methylation by arginine demethylases, and how dysregulation of PRMTs and their activities are linked to human diseases such as cancer. PMID:19220199

  14. The Complexities and Challenges of Regional Education Hubs: Focus on Malaysia

    ERIC Educational Resources Information Center

    Knight, Jane; Morshidi, Sirat

    2011-01-01

    The race to establish regional education hubs is a recent development in cross-border higher education. This article briefly examines the rationales and strategies used by three countries in the Middle East and three in South East Asia which are working towards positioning themselves as regional education hubs. The different approaches and…

  15. Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.

    PubMed

    Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2016-01-01

    The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.

  16. Nuclear size as estrogen-responsive chromatin quality parameter of mouse spermatozoa.

    PubMed

    Cacciola, Giovanna; Chioccarelli, Teresa; Altucci, Lucia; Viggiano, Andrea; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda

    2013-11-01

    Recently, we have investigated the endocannabinoid involvement in chromatin remodeling events occurring in male spermatids. Indeed, we have demonstrated that genetic inactivation of the cannabinoid receptor type 1 (Cnr1) negatively influences chromatin remodeling mechanisms, by reducing histone displacement and indices of sperm chromatin quality (chromatin condensation and DNA integrity). Conversely, Cnr1 knock-out (Cnr1(-/-)) male mice, treated with estrogens, replaced histones and rescued chromatin condensation as well as DNA integrity. In the present study, by exploiting Cnr1(+/+), Cnr(+/-) and Cnr1(-/-) epididymal sperm samples, we show that histone retention directly correlates with low values of sperm chromatin quality indices determining sperm nuclear size elongation. Moreover, we demonstrate that estrogens, by promoting histone displacement and chromatin condensation rescue, are able to efficiently reduce the greater nuclear length observed in Cnr1(-/-) sperm. As a consequence of our results, we suggest that nucleus length may be used as a morphological parameter useful to screen out spermatozoa with low chromatin quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Chk1 Promotes DNA Damage Response Bypass following Oxidative Stress in a Model of Hydrogen Peroxide-Associated Ulcerative Colitis through JNK Inactivation and Chromatin Binding

    PubMed Central

    Silver, Andrew; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert

    2017-01-01

    Dysregulation of c-Jun N-terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression. PMID:28751935

  18. Chk1 Promotes DNA Damage Response Bypass following Oxidative Stress in a Model of Hydrogen Peroxide-Associated Ulcerative Colitis through JNK Inactivation and Chromatin Binding.

    PubMed

    Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela

    2017-01-01

    Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.

  19. NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise

    PubMed Central

    Wong, Victor C.; Bass, Victor L.; Bullock, M. Elise; Chavali, Arvind K.; Lee, Robin E.C.; Mothes, Walther; Gaudet, Suzanne; Miller-Jensen, Kathryn

    2018-01-01

    SUMMARY Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF. PMID:29346759

  20. A collaborative scheduling model for the supply-hub with multiple suppliers and multiple manufacturers.

    PubMed

    Li, Guo; Lv, Fei; Guan, Xu

    2014-01-01

    This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment.

  1. Chromatin-unstable boar spermatozoa have little chance of reaching oocytes in vivo.

    PubMed

    Ardón, Florencia; Helms, Dietmar; Sahin, Evrim; Bollwein, Heinrich; Töpfer-Petersen, Edda; Waberski, Dagmar

    2008-04-01

    In the present study, the prevalence of chromatin instability in the fertilizing-competent sperm population in the porcine oviduct in vivo was examined through qualitative analysis of the chromatin structure status of accessory boar sperm found in in vivo-derived embryos. The binding of chromatin-unstable sperm to oviductal epithelium in vitro was also studied. To examine the sperm chromatin state, a modified fluorescence microscopic sperm chromatin structure assay was used. Among a population of 173 fertile boars, individuals were selected for according to their chromatin status: 25 animals showed more than 5% of chromatin-unstable sperm in their ejaculates, and 7 showed consistently elevated percentages of chromatin-unstable sperm in three successively collected semen samples. A positive correlation was found between incidence of chromatin instability and attached cytoplasmic droplets (r=0.44, P<0.01). Analyses of accessory spermatozoa from in vivo-derived embryos demonstrated that the proportion of chromatin-unstable sperm was significantly (P<0.05) reduced in the population of fertilizing-competent sperm in the oviduct compared with the inseminated sperm. Populations of sperm bound to the oviduct in vitro had significantly (P<0.05) lower percentages of chromatin instability than in the original diluted semen sample. In conclusion, numbers of sperm with unstable chromatin are reduced in the oviductal sperm reservoir, possibly because of associated changes in the plasma membrane that prevent sperm from binding to the oviductal epithelium. We conclude that in vivo the likelihood that sperm with unstable chromatin will reach the egg and fertilize it is low.

  2. The home hemodialysis hub: physical infrastructure and integrated governance structure.

    PubMed

    Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M

    2015-04-01

    An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes. © 2015 International Society for Hemodialysis.

  3. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes

    PubMed Central

    Khoroshko, Varvara A.; Levitsky, Viktor G.; Zykova, Tatyana Yu.; Antonenko, Oksana V.; Belyaeva, Elena S.; Zhimulev, Igor F.

    2016-01-01

    Late-replicating domains (intercalary heterochromatin) in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions) are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions) appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW), and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE) that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a gradient of

  4. The nuclear lamina as a gene-silencing hub.

    PubMed

    Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2012-01-01

    There is accumulating evidence that the nuclear periphery is a transcriptionally repressive compartment. A surprisingly large fraction of the genome is either in transient or permanent contact with nuclear envelope, where the majority of genes are maintained in a silent state, waiting to be awakened during cell differentiation. The integrity of the nuclear lamina and the histone deacetylase activity appear to be essential for gene repression at the nuclear periphery. However, the molecular mechanisms of silencing, as well as the events that lead to the activation of lamina-tethered genes, require further elucidation. This review summarizes recent advances in understanding of the mechanisms that link nuclear architecture, local chromatin structure, and gene regulation.

  5. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    PubMed

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fatigue based design and analysis of wheel hub for Student formula car by Simulation Approach

    NASA Astrophysics Data System (ADS)

    Gowtham, V.; Ranganathan, A. S.; Satish, S.; Alexis, S. John; Siva kumar, S.

    2016-09-01

    In the existing design of Wheel hub used for Student formula cars, the brake discs cannot be removed easily since the disc is mounted in between the knuckle and hub. In case of bend or any other damage to the disc, the replacement of the disc becomes difficult. Further using OEM hub and knuckle that are used for commercial vehicles will result in increase of unsprung mass, which should be avoided in Student formula cars for improving the performance. In this design the above mentioned difficulties have been overcome by redesigning the hub in such a way that the brake disc could be removed easily by just removing the wheel and the caliper and also it will have reduced weight when compared to existing OEM hub. A CAD Model was developed based on the required fatigue life cycles. The forces acting on the hub were calculated and linear static structural analysis was performed on the wheel hub for three different materials using ANSYS Finite Element code V 16.2. The theoretical fatigue strength was compared with the stress obtained from the structural analysis for each material.

  7. Chromatin assembly: Journey to the CENter of the chromosome

    PubMed Central

    Chen, Chin-Chi

    2016-01-01

    All eukaryotic genomes are packaged into basic units of DNA wrapped around histone proteins called nucleosomes. The ability of histones to specify a variety of epigenetic states at defined chromatin domains is essential for cell survival. The most distinctive type of chromatin is found at centromeres, which are marked by the centromere-specific histone H3 variant CENP-A. Many of the factors that regulate CENP-A chromatin have been identified; however, our understanding of the mechanisms of centromeric nucleosome assembly, maintenance, and reorganization remains limited. This review discusses recent insights into these processes and draws parallels between centromeric and noncentromeric chromatin assembly mechanisms. PMID:27377247

  8. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA.

    PubMed

    Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T

    2013-01-01

    The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.

  9. Chromatin Relaxation-Mediated Induction of p19INK4d Increases the Ability of Cells to Repair Damaged DNA

    PubMed Central

    Carcagno, Abel L.; Marazita, Mariela C.; Sonzogni, Silvina V.; Ceruti, Julieta M.; Cánepa, Eduardo T.

    2013-01-01

    The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies. PMID:23593412

  10. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    PubMed

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  11. SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair

    PubMed Central

    McCord, Ronald A.; Michishita, Eriko; Hong, Tao; Berber, Elisabeth; Boxer, Lisa D.; Kusumoto, Rika; Guan, Shenheng; Shi, Xiaobing; Gozani, Or; Burlingame, Alma L.; Bohr, Vilhelm A.; Chua, Katrin F.

    2009-01-01

    The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA-PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor with chromatin impacts on the efficiency of repair, and establish a link between chromatin regulation, DNA repair, and a mammalian Sir2 factor. PMID:20157594

  12. Chromatin Changes at the PPAR-γ2 Promoter During Bone Marrow-Derived Multipotent Stromal Cell Culture Correlate With Loss of Gene Activation Potential.

    PubMed

    Lynch, Patrick J; Thompson, Elaine E; McGinnis, Kathleen; Rovira Gonzalez, Yazmin I; Lo Surdo, Jessica; Bauer, Steven R; Hursh, Deborah A

    2015-07-01

    Bone marrow-derived multipotent stromal cells (BM-MSCs) display a broad range of therapeutically valuable properties, including the capacity to form skeletal tissues and dampen immune system responses. However, to use BM-MSCs in a clinical setting, amplification is required, which may introduce epigenetic changes that affect biological properties. Here we used chromatin immunoprecipitation to compare post-translationally modified histones at a subset of gene promoters associated with developmental and environmental plasticity in BM-MSCs from multiple donors following culture expansion. At many locations, we observed localization of both transcriptionally permissive (H3K4me3) and repressive (H3K27me3) histone modifications. These chromatin signatures were consistent among BM-MSCs from multiple donors. Since promoter activity depends on the relative levels of H3K4me3 and H3K27me3, we examined the ratio of H3K4me3 to H3K27me3 (K4/K27) at promoters during culture expansion. The H3K4me3 to H3K27me3 ratios were maintained at most assayed promoters over time. The exception was the adipose-tissue specific promoter for the PPAR-γ2 isoform of PPAR-γ, which is a critical positive regulator of adipogenesis. At PPAR-γ2, we observed a change in K4/K27 levels favoring the repressed chromatin state during culture. This change correlated with diminished promoter activity in late passage cells exposed to adipogenic stimuli. In contrast to BM-MSCs and osteoblasts, lineage-restricted preadipocytes exhibited levels of H3K4me3 and H3K27me3 that favored the permissive chromatin state at PPAR-γ2. These results demonstrate that locus-specific changes in H3K4me3 and H3K27me3 levels can occur during BM-MSC culture that may affect their properties. Stem Cells 2015;33:2169-2181. © 2015 AlphaMed Press.

  13. Distinct modes of DNA accessibility in plant chromatin.

    PubMed

    Shu, Huan; Wildhaber, Thomas; Siretskiy, Alexey; Gruissem, Wilhelm; Hennig, Lars

    2012-01-01

    The accessibility of DNA to regulatory proteins is a major property of the chromatin environment that favours or hinders transcription. Recent studies in flies reported that H3K9me2-marked heterochromatin is accessible while H3K27me3-marked chromatin forms extensive domains of low accessibility. Here we show that plants regulate DNA accessibility differently. H3K9me2-marked heterochromatin is the least accessible in the Arabidopsis thaliana genome, and H3K27me3-marked chromatin also has low accessibility. We see that very long genes without H3K9me2 or H3K27me3 are often inaccessible and generated significantly lower amounts of antisense transcripts than other genes, suggesting that reduced accessibility is associated with reduced recognition of alternative promoters. Low accessibility of H3K9me2-marked heterochromatin and long genes depend on cytosine methylation, explaining why chromatin accessibility differs between plants and flies. Together, we conclude that restriction of DNA accessibility is a local property of chromatin and not necessarily a consequence of microscopically visible compaction.

  14. Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Holley, W. R.; Mian, I. S.; Chatterjee, A.

    1998-01-01

    A new method was used to probe the conformation of chromatin in living mammalian cells. The method employs ionizing radiation and is based on the concept that such radiation induces correlated breaks in DNA strands that are in spatial proximity. Human dermal fibroblasts in G0 phase of the cell cycle and Chinese hamster ovary cells in mitosis were irradiated by X-rays or accelerated ions. Following lysis of the cells, DNA fragments induced by correlated breaks were end-labeled and separated according to size on denaturing polyacrylamide gels. A characteristic peak was obtained for a fragment size of 78 bases, which is the size that corresponds to one turn of DNA around the nucleosome. Additional peaks between 175 and 450 bases reflect the relative position of nearest-neighbor nucleosomes. Theoretical calculations that simulate the indirect and direct effect of radiation on DNA demonstrate that the fragment size distributions are closely related to the chromatin structure model used. Comparison of the experimental data with theoretical results support a zig-zag model of the chromatin fiber rather than a simple helical model. Thus, radiation-induced damage analysis can provide information on chromatin structure in the living cell. Copyright 1998 Academic Press.

  15. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes.

    PubMed

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-04-21

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes

    PubMed Central

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-01-01

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. PMID:28242760

  17. Surface--micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.

    2002-01-01

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  18. Surface-micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Krygowski, Thomas W.

    2003-11-18

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  19. Mechanism of retinoic acid-induced transcription: histone code, DNA oxidation and formation of chromatin loops.

    PubMed

    Zuchegna, Candida; Aceto, Fabiana; Bertoni, Alessandra; Romano, Antonella; Perillo, Bruno; Laccetti, Paolo; Gottesman, Max E; Avvedimento, Enrico V; Porcellini, Antonio

    2014-01-01

    Histone methylation changes and formation of chromatin loops involving enhancers, promoters and 3' end regions of genes have been variously associated with active transcription in eukaryotes. We have studied the effect of activation of the retinoic A receptor, at the RARE-promoter chromatin of CASP9 and CYP26A1 genes, 15 and 45 min following RA exposure, and we found that histone H3 lysines 4 and 9 are demethylated by the lysine-specific demethylase, LSD1 and by the JMJ-domain containing demethylase, D2A. The action of the oxidase (LSD1) and a dioxygenase (JMJD2A) in the presence of Fe++ elicits an oxidation wave that locally modifies the DNA and recruits the enzymes involved in base and nucleotide excision repair (BER and NER). These events are essential for the formation of chromatin loop(s) that juxtapose the RARE element with the 5' transcription start site and the 3' end of the genes. The RARE bound-receptor governs the 5' and 3' end selection and directs the productive transcription cycle of RNA polymerase. These data mechanistically link chromatin loops, histone methylation changes and localized DNA repair with transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. A Collaborative Scheduling Model for the Supply-Hub with Multiple Suppliers and Multiple Manufacturers

    PubMed Central

    Lv, Fei; Guan, Xu

    2014-01-01

    This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment. PMID:24892104

  1. NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.

    PubMed

    Parry, Aled J; Hoare, Matthew; Bihary, Dóra; Hänsel-Hertsch, Robert; Smith, Stephen; Tomimatsu, Kosuke; Mannion, Elizabeth; Smith, Amy; D'Santos, Paula; Russell, I Alasdair; Balasubramanian, Shankar; Kimura, Hiroshi; Samarajiwa, Shamith A; Narita, Masashi

    2018-05-09

    Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.

  2. [Mechanisms of genoprotective action of a phytoecdysteroid drug(BTK-8L) in chromatin damage by tetrachloromethane].

    PubMed

    Gubskiĭ, Iu I; Levitskiĭ, E L; Kholodova, Iu D; Goriushko, A G; Primak, R G; Vistunova, I E; Sachenko, L G

    1993-01-01

    Hepatoprotective action of prophylactic injection of aqueous solution of preparation BTK-8L from plant ecdysteroids to experimental animals with the liver damage by tetrachloromethane was revealed. This effect at least partially was connected with the genoprotective action of the given preparation. As a result, normalization of free radical chromatin lipid peroxidation reaction, modified at the intoxication, as well as partial correction of physical and chemical properties of chromatin protein-lipid complex were those molecular mechanisms of genoprotective action of BTK-8L, which were manifested by the influence of the preparation on such indices which characterized the depth structure of the complex as microviscosity and energy transfer from the protein to the lipid probe. Investigation of the interaction of the preparation with chromatin fractions in vitro and comparison of this interaction with the analogous process in model systems allowed revealing determinative participation of chromatin proteins and lipids in the given process. The preparation interacted more intensively with the active chromatin fraction, which contained a more marked protein-lipid complex, as comparing to the repressed one. Injection of the preparation also normalized such indices as relation between the chromatine fractions and protein/DNA ratio in them. On the contrary, injection of the alcoholic solution of the preparation to experimental animals, aggravated genotoxic tetrachloromethane action.

  3. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe

    PubMed Central

    Allshire, Robin C.; Ekwall, Karl

    2015-01-01

    This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres. PMID:26134317

  4. Steroid hormone receptor status defines the MMTV promoter chromatin structure in vivo.

    PubMed

    Archer, T K; Fryer, C J; Lee, H L; Zaniewski, E; Liang, T; Mymryk, J S

    1995-06-01

    The ability to respond to small signalling molecules such as steroid hormones is important for many physiological processes. Steroid hormones act through a group of high affinity receptors that regulate transcription by binding to hormone response elements (HREs) located within the promoters of target genes, which themselves are organized with nuclear proteins to form chromatin. To dissect the mechanisms(s) of steroid hormone action we have used the steroid inducible mouse mammary tumor virus (MMTV) promoter as a model system. The MMTV promoter is assembled into a phased array of nucleosomes that are specifically positioned in rodent cells. Induction of transcription by glucocorticoids is accompanied by the appearance of a hypersensitive region in the proximal promoter which allows the hormone dependent assembly of a preinitiation complex including transcription factors such as nuclear factor 1 (NF1) and the octamer transcription factor (OTF). Surprisingly, when introduced by transient transfection, the progesterone receptor (PR) is unable to activate this promoter in vivo, a finding that may result from its inability to alter MMTV promoter chromatin. In an attempt to investigate the failure of the PR to activate the promoter, we have stably introduced the MMTV promoter into human T47D breast cancer cells that express high levels of the PR. In contrast to what has been observed previously in rodent cells, the MMTV templates resident in human breast cancer cells adopt a novel and constitutively open chromatin structure. The constitutively open chromatin structure is accompanied by the hormone independent loading of transcription factors including the PR and NF1. In T47D cells that stably express the glucocorticoid receptor, the MMTV promoter responds to glucocorticoids, but not progestins, and displays glucocorticoid induced restriction enzyme hypersensitivity and transcription factor loading. These findings suggest that the organization of the MMTV chromatin

  5. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    PubMed

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification.

    PubMed

    Wang, Xindi; Lin, Qixiang; Xia, Mingrui; He, Yong

    2018-04-01

    Very little is known regarding whether structural hubs of human brain networks that enable efficient information communication may be classified into different categories. Using three multimodal neuroimaging data sets, we construct individual structural brain networks and further identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive characteristics and reproducibility analyses. We show the three categories of structural hubs in the brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct categories of hubs are primarily located in the default-mode system and additionally in the visual and limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit various distinct characteristics to support their differentiated roles, involving microstructural organization, wiring costs, topological vulnerability, functional modular integration, and cognitive flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three categories of hubs display high across-session spatial similarities and act as structural fingerprints with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we highlight three categories of brain hubs with differential microstructural, functional and, cognitive associations, which shed light on topological mechanisms of the human connectome. © 2018 Wiley Periodicals, Inc.

  7. The chromatin accessibility signature of human immune aging stems from CD8+ T cells.

    PubMed

    Ucar, Duygu; Márquez, Eladio J; Chung, Cheng-Han; Marches, Radu; Rossi, Robert J; Uyar, Asli; Wu, Te-Chia; George, Joshy; Stitzel, Michael L; Palucka, A Karolina; Kuchel, George A; Banchereau, Jacques

    2017-10-02

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8 + T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. © 2017 Ucar et al.

  8. The chromatin accessibility signature of human immune aging stems from CD8+ T cells

    PubMed Central

    Marches, Radu; Rossi, Robert J.; Uyar, Asli; Wu, Te-Chia; Stitzel, Michael L.; Palucka, A. Karolina

    2017-01-01

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. PMID:28904110

  9. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, D. V., E-mail: isaev@omrb.pnpi.spb.ru; Filatov, M. V.; Kuklin, A. I.

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10{sup -1} to 10{sup -4} A{sup -1} with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 {mu}m and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure ofmore » the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm.« less

  10. Chromatin isolation by RNA purification (ChIRP).

    PubMed

    Chu, Ci; Quinn, Jeffrey; Chang, Howard Y

    2012-03-25

    Long noncoding RNAs are key regulators of chromatin states for important biological processes such as dosage compensation, imprinting, and developmental gene expression (1,2,3,4,5,6,7). The recent discovery of thousands of lncRNAs in association with specific chromatin modification complexes, such as Polycomb Repressive Complex 2 (PRC2) that mediates histone H3 lysine 27 trimethylation (H3K27me3), suggests broad roles for numerous lncRNAs in managing chromatin states in a gene-specific fashion (8,9). While some lncRNAs are thought to work in cis on neighboring genes, other lncRNAs work in trans to regulate distantly located genes. For instance, Drosophila lncRNAs roX1 and roX2 bind numerous regions on the X chromosome of male cells, and are critical for dosage compensation (10,11). However, the exact locations of their binding sites are not known at high resolution. Similarly, human lncRNA HOTAIR can affect PRC2 occupancy on hundreds of genes genome-wide( 3,12,13), but how specificity is achieved is unclear. LncRNAs can also serve as modular scaffolds to recruit the assembly of multiple protein complexes. The classic trans-acting RNA scaffold is the TERC RNA that serves as the template and scaffold for the telomerase complex (14); HOTAIR can also serve as a scaffold for PRC2 and a H3K4 demethylase complex (13). Prior studies mapping RNA occupancy at chromatin have revealed substantial insights (15,16), but only at a single gene locus at a time. The occupancy sites of most lncRNAs are not known, and the roles of lncRNAs in chromatin regulation have been mostly inferred from the indirect effects of lncRNA perturbation. Just as chromatin immunoprecipitation followed by microarray or deep sequencing (ChIP-chip or ChIP-seq, respectively) has greatly improved our understanding of protein-DNA interactions on a genomic scale, here we illustrate a recently published strategy to map long RNA occupancy genome-wide at high resolution (17). This method, Chromatin Isolation by

  11. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope.

    PubMed

    Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility.

  12. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope

    PubMed Central

    Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility. PMID:29535683

  13. Processing of DNA double strand breaks by alternative non-homologous end-joining in hyperacetylated chromatin.

    PubMed

    Manova, Vasilissa; Singh, Satyendra K; Iliakis, George

    2012-08-22

    Mammalian cells employ at least two subpathways of non-homologous end-joining for the repair of ionizing radiation induced DNA double strand breaks: The canonical DNA-PK-dependent form of non-homologous end-joining (D-NHEJ) and an alternative, slowly operating, error-prone backup pathway (B-NHEJ). In contrast to D-NHEJ, which operates with similar efficiency throughout the cell cycle, B-NHEJ operates more efficiently in G2-phase. Notably, B-NHEJ also shows strong and as of yet unexplained dependency on growth activity and is markedly compromised in serum-deprived cells, or in cells that enter the plateau-phase of growth. The molecular mechanisms underpinning this response remain unknown. Since chromatin structure or changes in chromatin structure are prime candidate-B-NHEJ-modulators, we study here the role of chromatin hyperacetylation, either by HDAC2 knockdown or treatment with the HDAC inhibitor TSA, on the repair by B-NHEJ of IR-induced DSBs. siRNA-mediated knockdown of HDAC2 fails to provoke histone hyperacetylation in Lig4-/- MEFs and has no detectable effect on B-NHEJ function. Treatment with TSA that inhibits multiple HDACs causes efficient, reversible chromatin hyperacetylation in Lig4-/- MEFs, as well as in human HCT116 Lig4-/- cells and the human glioma cell line M059K. The IR yield of DSBs in TSA-treated cells remains similar to that of untreated cells despite the expected chromatin relaxation. In addition, chromatin hyperacetylation leaves unchanged repair of DSBs by B-NHEJ in irradiated exponentially growing, or plateau-phase cells. Notably, under the experimental conditions employed here, chromatin hyperacetylation fails to detectably modulate B-NHEJ in M059K cells as well. In summary, the results show that chromatin acetylation or deacetylation does not affect the kinetics of alternative NHEJ in all types of cells examined both in exponentially growing and serum deprived cultures. We conclude that parameters beyond chromatin acetylation determine B

  14. Processing of DNA double strand breaks by alternative non-homologous end-joining in hyperacetylated chromatin

    PubMed Central

    2012-01-01

    Background Mammalian cells employ at least two subpathways of non-homologous end-joining for the repair of ionizing radiation induced DNA double strand breaks: The canonical DNA-PK-dependent form of non-homologous end-joining (D-NHEJ) and an alternative, slowly operating, error-prone backup pathway (B-NHEJ). In contrast to D-NHEJ, which operates with similar efficiency throughout the cell cycle, B-NHEJ operates more efficiently in G2-phase. Notably, B-NHEJ also shows strong and as of yet unexplained dependency on growth activity and is markedly compromised in serum-deprived cells, or in cells that enter the plateau-phase of growth. The molecular mechanisms underpinning this response remain unknown. Since chromatin structure or changes in chromatin structure are prime candidate-B-NHEJ-modulators, we study here the role of chromatin hyperacetylation, either by HDAC2 knockdown or treatment with the HDAC inhibitor TSA, on the repair by B-NHEJ of IR-induced DSBs. Results siRNA-mediated knockdown of HDAC2 fails to provoke histone hyperacetylation in Lig4-/- MEFs and has no detectable effect on B-NHEJ function. Treatment with TSA that inhibits multiple HDACs causes efficient, reversible chromatin hyperacetylation in Lig4-/- MEFs, as well as in human HCT116 Lig4-/- cells and the human glioma cell line M059K. The IR yield of DSBs in TSA-treated cells remains similar to that of untreated cells despite the expected chromatin relaxation. In addition, chromatin hyperacetylation leaves unchanged repair of DSBs by B-NHEJ in irradiated exponentially growing, or plateau-phase cells. Notably, under the experimental conditions employed here, chromatin hyperacetylation fails to detectably modulate B-NHEJ in M059K cells as well. Conclusions In summary, the results show that chromatin acetylation or deacetylation does not affect the kinetics of alternative NHEJ in all types of cells examined both in exponentially growing and serum deprived cultures. We conclude that parameters beyond

  15. The coffee genome hub: a resource for coffee genomes

    PubMed Central

    Dereeper, Alexis; Bocs, Stéphanie; Rouard, Mathieu; Guignon, Valentin; Ravel, Sébastien; Tranchant-Dubreuil, Christine; Poncet, Valérie; Garsmeur, Olivier; Lashermes, Philippe; Droc, Gaëtan

    2015-01-01

    The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager. PMID:25392413

  16. On the physical and chemical dynamics of chromatin

    NASA Astrophysics Data System (ADS)

    Apratim, Manjul

    The research performed leading to this dissertation is an endeavor to explore two broad classes of developmental phenomena in the chromatin complex in eukaryotic cells---physical, for instance, long range interactions between enhancers and promoters, and chemical, such as epigenetic chromatin silencing. I begin by introducing the reader to both types of phenomena, and then set the stage for our strategy in the exploration of the physical side of these processes by creating a new machinery from existing pieces of polymer physics. I then make a brief foray into theoretical realms in an attempt to answer the question of what kinds of conformations of polymers dominate in what regimes. Subsequently, I proceed to consider the problem of analyzing and interpreting data from a major technique of probing the behavior of the chromatin complex in vivo --- Chromosome Conformation Capture --- towards which end we have developed and implemented a new and robust algorithm called 'G.R.O.M.A.T.I.N.'. Subsequently, I explore how similar ideas may be invoked in the analysis of direct microscopic observations of native chromatin structure via Fluorescence in situ Hybridization. Following this, I look at the problems of epigenetic chromatin silencing domain formation and stability in the presence of titration feedback and of stochastic noise, and demonstrate how the widely accepted polymerization model of silencing is consistent with Chromatin Immunoprecipitation data from silencing domains in budding yeast. I finally conclude with musings on recent evidence pinpointing the need to unify the physical and chemical pictures into one grand formulation.

  17. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    NASA Astrophysics Data System (ADS)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  18. In vitro bacteriological study of a new hub model for intravascular catheters and infusion equipment.

    PubMed Central

    Segura, M; Alía, C; Oms, L; Sancho, J J; Torres-Rodríguez, J M; Sitges-Serra, A

    1989-01-01

    We investigated in vitro the antibacterial properties of a simulated new hub model in which the female part has an antiseptic chamber through which the needle (male part) must pass before connection of the set and the catheter. To establish the time needed for disinfection, the magnitude of reduction of the contaminating inocula by the new hub model, and the antibacterial properties of the different components of the hub, we used needles contaminated with solutions containing high inocula (1.9 x 10(7) to 1.2 x 10(11) CFU/ml) of microorganisms involved in hub-related catheter sepsis. Sterilization of the needles was accomplished by allowing them to remain in the antiseptic chamber for 10 s in all assays with Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. The rubber closures limiting the antiseptic chamber and the dilution effect of the antiseptic itself accounted for a minor part of the inoculum reduction achieved by the new hub model. This simulated hub provides good protection against endoluminal contamination. Further studies seem warranted to prove its industrial viability and clinical efficacy. PMID:2512322

  19. Kinematic analyses of the golf swing hub path and its role in golfer/club kinetic transfers.

    PubMed

    Nesbit, Steven M; McGinnis, Ryan

    2009-01-01

    This study analyzed the fundamental geometric and kinematic characteristics of the swing hub path of the golf shot for four diverse subjects. In addition, the role of the hub path geometry in transferring the kinetic quantities from the golfer to the club were investigated. The hub path was found to have a complex geometry with significantly changing radii, and a constantly moving center-of-curvature during the downswing for all subjects. While the size and shape of the hub path differed considerably among the subjects, a three phase radius-based pattern was revealed that aligned with distinct stages of the downswing. Artificially controlling and optimizing the hub path of the better golfer in the group indicated that a non-circular hub path was superior to a constant radius path in minimizing the kinetic loading while generating the highest possible club head velocity. The shape and purpose of the hub path geometry appears to result from a complex combination of achieving equilibrium between the golfer and the club, and a purposeful configuring of the path to control the outward movement of the club while minimizing the kinetic loading on the golfer yet transferring the maximum kinetic quantities to the club. Describing the downswing relative to the hub path phasing is presented and was found to be informative since the phases align with significant swing, kinetic and kinematic markers. These findings challenge golf swing modeling methodologies which fix the center-of-curvature of the hub path thus constraining it to constant radius motion. Key pointsThe golf swing hub path was found to have a complex geometry with significantly changing radii, and a constantly moving center-of-curvature during the downswing.The hub path differed considerably among subjects, however a three phase radius-based pattern was revealed that aligned with distinct stages of the downswing.The shape and purpose of the hub path geometry appears to result from a complex combination of

  20. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  1. Orbital Hub: a concept for human spaceflight beyond ISS operations

    NASA Astrophysics Data System (ADS)

    Jahnke, Stephan S.; Maiwald, Volker; Philpot, Claudia; Quantius, Dominik; Romberg, Oliver; Seboldt, Wolfgang; Vrakking, Vincent; Zeidler, Conrad

    2018-04-01

    The International Space Station (ISS) is the greatest endeavour in low-Earth orbit since the beginning of the space age and the culmination of human outposts like Skylab and Mir. While a clear schedule has yet to be drafted, it is expected that ISS will cease operation in the 2020s. What could be the layout for a human outpost in LEO with lessons learnt from ISS? What are the use cases and applications of such an outpost in the future? The System Analysis Space Segment group of the German Aerospace Center investigated these and other questions and developed the Orbital Hub concept. In this paper an overview is presented of how the overall concept has been derived and its properties and layouts are described. Starting with a workshop involving the science community, the scientific requirements have been derived and Strawman payloads have been defined for use in further design activities. These design activities focused on Concurrent Engineering studies, where besides DLR employees participants from the industry and astronauts were involved. The result is an expandable concept that is composed of two main parts, the Base Platform, home for a permanent crew of up to three astronauts, and the Free Flyer, an uncrewed autonomous research platform. This modular approach provides one major advantage: the decoupling of the habitat and payload leading to increased quality of the micro-gravity environment. The former provides an environment for human physiology experiments, while the latter allows science without the perturbations caused by a crew, e.g. material experiments or Earth observation. The Free Flyer is designed to operate for up to 3 months on its own, but can dock with the space station for maintenance and experiment servicing. It also has a hybrid propulsion system, chemical and electrical, for different applications. The hub's design allows launch with just three launches, as the total mass of all the hub parts is about 60,000 kg. The main focus of the design is

  2. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).

    PubMed

    Soyer, Jessica L; Möller, Mareike; Schotanus, Klaas; Connolly, Lanelle R; Galazka, Jonathan M; Freitag, Michael; Stukenbrock, Eva H

    2015-06-01

    The presence or absence of specific transcription factors, chromatin remodeling machineries, chromatin modification enzymes, post-translational histone modifications and histone variants all play crucial roles in the regulation of pathogenicity genes. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) provides an important tool to study genome-wide protein-DNA interactions to help understand gene regulation in the context of native chromatin. ChIP-seq is a convenient in vivo technique to identify, map and characterize occupancy of specific DNA fragments with proteins against which specific antibodies exist or which can be epitope-tagged in vivo. We optimized existing ChIP protocols for use in the wheat pathogen Zymoseptoria tritici and closely related sister species. Here, we provide a detailed method, underscoring which aspects of the technique are organism-specific. Library preparation for Illumina sequencing is described, as this is currently the most widely used ChIP-seq method. One approach for the analysis and visualization of representative sequence is described; improved tools for these analyses are constantly being developed. Using ChIP-seq with antibodies against H3K4me2, which is considered a mark for euchromatin or H3K9me3 and H3K27me3, which are considered marks for heterochromatin, the overall distribution of euchromatin and heterochromatin in the genome of Z. tritici can be determined. Our ChIP-seq protocol was also successfully applied to Z. tritici strains with high levels of melanization or aberrant colony morphology, and to different species of the genus (Z. ardabiliae and Z. pseudotritici), suggesting that our technique is robust. The methods described here provide a powerful framework to study new aspects of chromatin biology and gene regulation in this prominent wheat pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin.

    PubMed

    Sun, Wei-Wei; Jiao, Shi; Sun, Li; Zhou, Zhaocai; Jin, Xia; Wang, Jian-Hua

    2018-05-01

    The postintegrational latency of HIV-1 is characterized by reversible silencing of long terminal repeat (LTR)-driven transcription of the HIV genome. It is known that the formation of repressive chromatin at the 5'-LTR of HIV-1 proviral DNA impedes viral transcription by blocking the recruitment of positive transcription factors. How the repressive chromatin is formed and modulated during HIV-1 infection remains elusive. Elucidation of which chromatin reassembly factor mediates the reorganization of chromatin is likely to facilitate the understanding of the host's modulation of HIV-1 transcription and latency. Here we revealed that "Sad1 and UNC84 domain containing 2" (SUN2), an inner nuclear membrane protein, maintained the repressive chromatin and inhibited HIV LTR-driven transcription of proviral DNA through an association with lamin A/C. Specifically, lamin A/C tethered SUN2 to the nucleosomes 1 and 2 of the HIV-1 5'-LTR to block the initiation and elongation of HIV-1 transcription. SUN2 knockdown converted chromatin to an active form and thus enhanced the phosphorylation of RNA polymerase II and its recruitment to the 5'-LTR HIV-1 proviral DNA, leading to reactivation of HIV-1 from latency. Conversely, the exogenous factors such as tumor necrosis factor alpha (TNF-α) induced reactivation, and the replication of HIV-1 led to the disassociation between SUN2 and lamin A/C, suggesting that disruption of the association between SUN2 and lamin A/C to convert the repressive chromatin to the active form might be a prerequisite for the initiation of HIV-1 transcription and replication. Together, our findings indicate that SUN2 is a novel chromatin reassembly factor that helps to maintain chromatin in a repressive state and consequently inhibits HIV-1 transcription. IMPORTANCE Despite the successful use of scores of antiretroviral drugs, HIV latency poses a major impediment to virus eradication. Elucidation of the mechanism of latency facilitates the discovery of new

  4. Wt1 flip-flops chromatin in a CTCF domain.

    PubMed

    Gurudatta, B V; Corces, Victor G

    2011-09-13

    CTCF plays diverse roles in nuclear organization and transcriptional regulation. In this issue of Developmental Cell, Essafi et al. (2011) report a mechanism by which the repressive or active state of chromatin in a domain defined by CTCF can be switched by the Wt1 transcription factor to regulate gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Research of Hubs Location Method for Weighted Brain Network Based on NoS-FA.

    PubMed

    Weng, Zhengkui; Wang, Bin; Xue, Jie; Yang, Baojie; Liu, Hui; Xiong, Xin

    2017-01-01

    As a complex network of many interlinked brain regions, there are some central hub regions which play key roles in the structural human brain network based on T1 and diffusion tensor imaging (DTI) technology. Since most studies about hubs location method in the whole human brain network are mainly concerned with the local properties of each single node but not the global properties of all the directly connected nodes, a novel hubs location method based on global importance contribution evaluation index is proposed in this study. The number of streamlines (NoS) is fused with normalized fractional anisotropy (FA) for more comprehensive brain bioinformation. The brain region importance contribution matrix and information transfer efficiency value are constructed, respectively, and then by combining these two factors together we can calculate the importance value of each node and locate the hubs. Profiting from both local and global features of the nodes and the multi-information fusion of human brain biosignals, the experiment results show that this method can detect the brain hubs more accurately and reasonably compared with other methods. Furthermore, the proposed location method is used in impaired brain hubs connectivity analysis of schizophrenia patients and the results are in agreement with previous studies.

  6. From neural development to cognition: unexpected roles for chromatin

    PubMed Central

    Ronan, Jehnna L.; Wu, Wei

    2014-01-01

    Recent genome-sequencing studies in human neurodevelopmental and psychiatric disorders have uncovered mutations in many chromatin regulators. These human genetic studies, along with studies in model organisms, are providing insight into chromatin regulatory mechanisms in neural development and how alterations to these mechanisms can cause cognitive deficits, such as intellectual disability. We discuss several implicated chromatin regulators, including BAF (also known as SWI/SNF) and CHD8 chromatin remodellers, HDAC4 and the Polycomb component EZH2. Interestingly, mutations in EZH2 and certain BAF complex components have roles in both neurodevelopmental disorders and cancer, and overlapping point mutations are suggesting functionally important residues and domains. We speculate on the contribution of these similar mutations to disparate disorders. PMID:23568486

  7. Prediction of Developmentally Competent Chromatin Conformation in Mouse Antral Oocytes.

    PubMed

    Daszkiewicz, Regina; Szymoniak, Magdalena; Gąsior, Łukasz; Polański, Zbigniew

    Mouse prophase oocytes isolated from antral follicles may possess two alternative types of chromatin configuration: NSN configuration represents more dispersed chromatin and is characteristic mainly for growing oocytes whereas SN configuration, attained upon oocyte growth, comprises more condensed chromatin with a significant fraction concentrated around the nucleolus. Importantly, fully grown oocytes isolated from antral follicles represent a non-homogenous population in which some oocytes posses NSN-type and others SN-type of chromatin conformation. From these two, only oocytes with SN configuration are able to complete full development upon fertilization. We show that among mouse oocytes isolated from antral follicles, those surrounded by cumulus cells were larger and more frequently possessed SN chromatin than oocytes lacking the complete cumulus cell layer. Females primed with PMSG gave a higher number of oocytes with a complete layer of cumulus cells and the frequency of oocytes with SN chromatin was also elevated. Within the whole population of isolated antral oocytes, we observed subtle variation in size which allowed fractionation of oocytes under a stereomicroscope into groups representing oocytes of slightly different sizes. The occurrence of SN chromatin configuration was highly dependent on the oocyte size and its frequency increased gradually in subsequent size groups reaching 95-100% in the group representing the largest oocytes. These findings demonstrate that the subtle differences in the size of antral oocytes allow prediction of the status of their chromatin, thus providing a simple, fast, non-invasive and non-expensive way to select good quality oocytes for ART purposes in mammals.

  8. Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack.

    PubMed

    Berr, Alexandre; Ménard, Rozenn; Heitz, Thierry; Shen, Wen-Hui

    2012-06-01

    Due to their sessile lifestyle, plants have to cope with an ever-changing environment and to defend themselves against a multitude of biotic aggressors that compromise their development and reproduction. Responses to various biotic stresses largely depend on the plant's capacity to modulate rapidly and specifically its transcriptome. In a stress type-dependent manner, external signals are translocated into the nucleus to activate transcription factors, resulting in the increased expression of particular sets of defence-related genes. Among mechanisms of transcriptional regulation, chromatin remodelling accomplished through the activity of histone-modifying enzymes and ATP-dependent chromatin-remodelling complexes is emerging as a key process in the orchestration of plant biotic stress responses. In this review, we summarize and discuss roles that chromatin-remodelling mechanisms may play in regulating Arabidopsis defence responses. © 2012 Blackwell Publishing Ltd.

  9. Wind turbine rotor hub and teeter joint

    DOEpatents

    Coleman, Clint; Kurth, William T.; Jankowski, Joseph

    1994-10-11

    A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

  10. The Competitive Position of Hub Airports in the Transatlantic Market

    NASA Technical Reports Server (NTRS)

    Burghouwt, Guillaume; Veldhuis, Jan

    2006-01-01

    This article puts forward the argument that the measurement of connectivity in hub-and-spoke networks has to take into account the quality and quantity of both direct and indirect connections. The NETSCAN model, which has been applied in this study, quantifies indirect connectivity and scales it into a theoretical direct connection. NETSCAN allows researchers, airports, airlines, alliances and airport regions to analyse their competitive position in an integrated way. Using NETSCAN, the authors analysed the developments on the market between northwest Europe and the United States (US) between May 2003 and May 2005. One of the most striking developments has certainly been the impact of the Air France-KLM merger and the effects of the integration of KLM and Northwest into the SkyTeam alliance on the connectivity of Amsterdam Schiphol. Direct as well as indirect connectivity (via European and North American hubs) from Amsterdam to the US increased substantially. The main reason for this increase is the integration of the former Wings and SkyTeam networks via the respective hub airports. Moreover, the extended SkyTeam alliance raised frequencies between Amsterdam and the SkyTeam hubs (Atlanta, Houston, for example), opened new routes (Cincinnati) and boosted the network between Amsterdam and France. As a result of the new routes and frequencies, Amsterdam took over Heathrow s position as the third best-connected northwest European airport to the US.

  11. RotCFD Analysis of the AH-56 Cheyenne Hub Drag

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Bass, Tal A.; Keith, Matthew D.; Oppenheim, Rebecca T.; Runyon, Bryan T.; Veras-Alba, Belen

    2016-01-01

    In 2016, the U.S. Army Aviation Development Directorate (ADD) conducted tests in the U.S. Army 7- by 10- Foot Wind Tunnel at NASA Ames Research Center of a nonrotating 2/5th-scale AH-56 rotor hub. The objective of the tests was to determine how removing the mechanical control gyro affected the drag. Data for the lift, drag, and pitching moment were recorded for the 4-bladed rotor hub in various hardware configurations, azimuth angles, and angles of attack. Numerical simulations of a selection of the configurations and orientations were then performed, and the results were compared with the test data. To generate the simulation results, the hardware configurations were modeled using Creo and Rhinoceros 5, three-dimensional surface modeling computer-aided design (CAD) programs. The CAD model was imported into Rotorcraft Computational Fluid Dynamics (RotCFD), a computational fluid dynamics (CFD) tool used for analyzing rotor flow fields. RotCFD simulation results were compared with the experimental results of three hardware configurations at two azimuth angles, two angles of attack, and with and without wind tunnel walls. The results help validate RotCFD as a tool for analyzing low-drag rotor hub designs for advanced high-speed rotorcraft concepts. Future work will involve simulating additional hub geometries to reduce drag or tailor to other desired performance levels.

  12. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis.

    PubMed

    Cortijo, Sandra; Charoensawan, Varodom; Roudier, François; Wigge, Philip A

    2018-01-01

    Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) is a powerful technique to investigate in vivo transcription factor (TF) binding to DNA, as well as chromatin marks. Here we provide a detailed protocol for all the key steps to perform ChIP-seq in Arabidopsis thaliana roots, also working on other A. thaliana tissues and in most non-ligneous plants. We detail all steps from material collection, fixation, chromatin preparation, immunoprecipitation, library preparation, and finally computational analysis based on a combination of publicly available tools.

  13. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification.

    PubMed

    Qin, Jiaolong; Wei, Maobin; Liu, Haiyan; Chen, Jianhuai; Yan, Rui; Hua, Lingling; Zhao, Ke; Yao, Zhijian; Lu, Qing

    2014-12-01

    Previous studies had explored the diagnostic and prognostic value of the structural neuroimaging data of MDD and treated the whole brain voxels, the fractional anisotropy and the structural connectivity as classification features. To our best knowledge, no study examined the potential diagnostic value of the hubs of anatomical brain networks in MDD. The purpose of the current study was to provide an exploratory examination of the potential diagnostic and prognostic values of hubs of white matter brain networks in MDD discrimination and the corresponding impaired hub pattern via a multi-pattern analysis. We constructed white matter brain networks from 29 depressions and 30 healthy controls based on diffusion tensor imaging data, calculated nodal measures and identified hubs. Using these measures as features, two types of feature architectures were established, one only included hubs (HUB) and the other contained both hubs and non hubs. The support vector machine classifiers with Gaussian radial basis kernel were used after the feature selection. Moreover, the relative contribution of the features was estimated by means of the consensus features. Our results presented that the hubs (including the bilateral dorsolateral part of superior frontal gyrus, the left middle frontal gyrus, the bilateral middle temporal gyrus, and the bilateral inferior temporal gyrus) played an important role in distinguishing the depressions from healthy controls with the best accuracy of 83.05%. Moreover, most of the HUB consensus features located in the frontal-parieto circuit. These findings provided evidence that the hubs could be served as valuable potential diagnostic measure for MDD, and the hub-concentrated lesion distribution of MDD was primarily anchored within the frontal-parieto circuit. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Capturing Structural Heterogeneity in Chromatin Fibers.

    PubMed

    Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas

    2017-10-13

    Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia

    PubMed Central

    Cole, John J.; Nelson, David M.; Dikovskaya, Dina; Faller, William J.; Vizioli, Maria Grazia; Hewitt, Rachael N.; Anannya, Orchi; McBryan, Tony; Manoharan, Indrani; van Tuyn, John; Morrice, Nicholas; Pchelintsev, Nikolay A.; Ivanov, Andre; Brock, Claire; Drotar, Mark E.; Nixon, Colin; Clark, William; Sansom, Owen J.; Anderson, Kurt I.; King, Ayala; Blyth, Karen

    2014-01-01

    Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression. PMID:25512559

  16. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia.

    PubMed

    Rai, Taranjit Singh; Cole, John J; Nelson, David M; Dikovskaya, Dina; Faller, William J; Vizioli, Maria Grazia; Hewitt, Rachael N; Anannya, Orchi; McBryan, Tony; Manoharan, Indrani; van Tuyn, John; Morrice, Nicholas; Pchelintsev, Nikolay A; Ivanov, Andre; Brock, Claire; Drotar, Mark E; Nixon, Colin; Clark, William; Sansom, Owen J; Anderson, Kurt I; King, Ayala; Blyth, Karen; Adams, Peter D

    2014-12-15

    Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression. © 2014 Rai et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson’s Disease

    PubMed Central

    Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E.; Houle, Sylvain; Strafella, Antonio P.

    2016-01-01

    The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD. PMID:27891090

  18. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    PubMed

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  19. Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing

    PubMed Central

    Manzano, David; Marquardt, Sebastian; Jones, Alexandra M. E.; Bäurle, Isabel; Liu, Fuquan; Dean, Caroline

    2009-01-01

    The role of RNA metabolism in chromatin silencing is now widely recognized. We have studied the Arabidopsis RNA-binding protein FCA that down-regulates an endogenous floral repressor gene through a chromatin mechanism involving histone demethylase activity. This mechanism needs FCA to interact with an RNA 3′ processing/polyadenylation factor (FY/Pfs2p), but the subsequent events leading to chromatin changes are unknown. Here, we show that this FCA–FY interaction is required for general chromatin silencing roles where hairpin transgenes induce DNA methylation of an endogenous gene. We also show 2 conserved RNA processing factors, AtCPSF100 and AtCPSF160, but not FCA, are stably associated with FY in vivo and form a range of different-sized complexes. A hypomorphic fy allele producing a shorter protein, able to provide some FY functions but unable to interact with FCA, reduces abundance of some of the larger MW complexes. Suppressor mutants, which specifically disrupt the FY motif through which FCA interacts, also lacked these larger complexes. Our data support a model whereby FCA, perhaps after recognition of a specific RNA feature, transiently interacts with FY, an integral component of the canonical RNA 3′ processing machinery, changing the interactions of the different RNA processing components. These altered interactions would appear to be a necessary step in this RNA-mediated chromatin silencing. PMID:19439664

  20. Altered interactions within FY/AtCPSF complexes required for Arabidopsis FCA-mediated chromatin silencing.

    PubMed

    Manzano, David; Marquardt, Sebastian; Jones, Alexandra M E; Bäurle, Isabel; Liu, Fuquan; Dean, Caroline

    2009-05-26

    The role of RNA metabolism in chromatin silencing is now widely recognized. We have studied the Arabidopsis RNA-binding protein FCA that down-regulates an endogenous floral repressor gene through a chromatin mechanism involving histone demethylase activity. This mechanism needs FCA to interact with an RNA 3' processing/polyadenylation factor (FY/Pfs2p), but the subsequent events leading to chromatin changes are unknown. Here, we show that this FCA-FY interaction is required for general chromatin silencing roles where hairpin transgenes induce DNA methylation of an endogenous gene. We also show 2 conserved RNA processing factors, AtCPSF100 and AtCPSF160, but not FCA, are stably associated with FY in vivo and form a range of different-sized complexes. A hypomorphic fy allele producing a shorter protein, able to provide some FY functions but unable to interact with FCA, reduces abundance of some of the larger MW complexes. Suppressor mutants, which specifically disrupt the FY motif through which FCA interacts, also lacked these larger complexes. Our data support a model whereby FCA, perhaps after recognition of a specific RNA feature, transiently interacts with FY, an integral component of the canonical RNA 3' processing machinery, changing the interactions of the different RNA processing components. These altered interactions would appear to be a necessary step in this RNA-mediated chromatin silencing.

  1. DNA Looping Facilitates Targeting of a Chromatin Remodeling Enzyme

    PubMed Central

    Yadon, Adam N; Singh, Badri Nath; Hampsey, Michael; Tsukiyama, Toshio

    2013-01-01

    Summary ATP-dependent chromatin remodeling enzymes are highly abundant and play pivotal roles regulating DNA-dependent processes. The mechanisms by which they are targeted to specific loci have not been well understood on a genome-wide scale. Here we present evidence that a major targeting mechanism for the Isw2 chromatin remodeling enzyme to specific genomic loci is through sequence-specific transcription factor (TF)-dependent recruitment. Unexpectedly, Isw2 is recruited in a TF-dependent fashion to a large number of loci without TF binding sites. Using the 3C assay, we show that Isw2 can be targeted by Ume6- and TFIIB-dependent DNA looping. These results identify DNA looping as a previously unknown mechanism for the recruitment of a chromatin remodeling enzyme and defines a novel function for DNA looping. We also present evidence suggesting that Ume6-dependent DNA looping is involved in chromatin remodeling and transcriptional repression, revealing a mechanism by which the three-dimensional folding of chromatin affects DNA-dependent processes. PMID:23478442

  2. Improving Healthcare in Pediatric Oncology: Development and Testing of Multiple Indicators to Evaluate a Hub-And-Spoke Model.

    PubMed

    Zucchetti, Giulia; Bertorello, Nicoletta; Angelastro, Angela; Gianino, Paola; Bona, Gianni; Barbara, Affif; Besenzon, Luigi; Brach Del Prever, Adalberto; Pesce, Fernando; Nangeroni, Marco; Fagioli, Franca

    2017-06-01

    Purpose The hub-and-spoke is a new innovation model in healthcare that has been adopted in some countries to manage rare pathologies. We developed a set of indicators to assess current quality practices of the hub-and-spoke model adopted in the Interregional Pediatric Oncology Network in Northwest Italy and to promote patient, family, and professional healthcare empowerment. Methods Literature and evidence-based clinical guidelines were reviewed and multiprofessional team workshops were carried out to highlight some important issues on healthcare in pediatric oncology and to translate them into a set of multiple indicators. For each indicator, specific questions were formulated and tested through a series of questionnaires completed by 80 healthcare professionals and 50 pediatric patients and their parents. Results The results highlighted a positive perception of healthcare delivered by the hub-and-spoke model (M HP = 156, M Pat = 93, M Par = 104). Based on the participants' suggestions, some quality improvements have been implemented. Conclusions This study represents the first attempt to examine this new model of pediatric oncology care through the active involvement of patients, families, and healthcare professionals. Suggestions for adopting a hub-and-spoke model in pediatric oncology in other regions and countries are also highlighted.

  3. Analysis and Modeling of Ground Operations at Hub Airports

    NASA Technical Reports Server (NTRS)

    Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.

    2000-01-01

    Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.

  4. RNA is an integral component of chromatin that contributes to its structural organization.

    PubMed

    Rodríguez-Campos, Antonio; Azorín, Fernando

    2007-11-14

    Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(-) and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s) are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  5. RNA Is an Integral Component of Chromatin that Contributes to Its Structural Organization

    PubMed Central

    Rodríguez-Campos, Antonio; Azorín, Fernando

    2007-01-01

    Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%–5% of total chromatin-associated nucleic acids, are polyA− and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s) are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with α-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity. PMID:18000552

  6. Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex

    PubMed Central

    Hulsman, Marc; Lelieveldt, Boudewijn P. F.; de Ridder, Jeroen; Reinders, Marcel

    2015-01-01

    The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale). PMID:25965262

  7. Tissue-Specific Chromatin Modifications at a Multigene Locus Generate Asymmetric Transcriptional Interactions

    PubMed Central

    Yoo, Eung Jae; Cajiao, Isabela; Kim, Jeong-Seon; Kimura, Atsushi P.; Zhang, Aiwen; Cooke, Nancy E.; Liebhaber, Stephen A.

    2006-01-01

    Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitarycell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome. PMID:16847312

  8. Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community?

    PubMed

    Saetnan, Eli Rudinow; Kipling, Richard Philip

    In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.

  9. Sperm chromatin maturity and integrity correlated to zygote development in ICSI program.

    PubMed

    Asmarinah; Syauqy, Ahmad; Umar, Liya Agustin; Lestari, Silvia Werdhy; Mansyur, Eliza; Hestiantoro, Andon; Paradowszka-Dogan, Agnieszka

    2016-10-01

    This study aimed to evaluate sperm chromatin maturity and integrity of that injected into good-quality oocytes in an in vitro fertilization-intra cytoplasmic sperm injection (IVF-ICSI) program. A cut-off value of sperm chromatin maturity and integrity was developed as a function of their correlation to the zygote development, i.e., embryo formation and cleavage rate. The study assessed sperm chromatin maturity using aniline blue (AB) staining, whereas toluidine blue (TB) staining was used to assess sperm chromatin integrity. Ejaculates from 59 patients undergoing ICSI and 46 fertile normozoospermic donors for determination of normal values of sperm chromatin status were used in this study. Embryo formation and cleavage rates were observed for the period of 3 days after ICSI. There was a significant difference in the percentage of sperm with mature chromatin between ejaculate from ICSI patients and fertile donor (p=0.020); while there was no significant difference in sperm chromatin integrity of both samples (p=0.120). There was no significant correlation between sperm chromatin maturity and either embryo formation or cleavage rate; as well as sperm chromatin integrity to both parameters of zygote development (p>0.05). Furthermore, we found that the cut-off value of sperm chromatin maturity and integrity of the fertile normozoospermic ejaculates were 87.2% and 80.2%, respectively. Using the cut-offs, we found that low sperm chromatin maturity at the level of <87% correlated significantly with the cleavage rate of the zygote (p=0.022; r=0.371); whereas poor sperm chromatin integrity at the level of <80% correlated with embryo formation (p=0.048; r=0,485). In conclusion, this study showed that poor maturity and integrity of sperm chromatin (AB<87% and TB<80%, respectively), could affect zygote development following ICSI. AB: aniline blue; CMA3: chromomycin A3; ICSI: intra cytoplasmic sperm injection; IVF: in vitro fertilization; PBS: phosphate buffer saline; SPSS

  10. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed Central

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions. PMID:23882282

  11. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks

    PubMed Central

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long – range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions. PMID:27857564

  12. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks.

    PubMed

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long - range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions.

  13. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.

    PubMed

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-03-24

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

  14. Functional sub-division of the Drosophila genome via chromatin looping: the emerging importance of CP190.

    PubMed

    Ahanger, Sajad H; Shouche, Yogesh S; Mishra, Rakesh K

    2013-01-01

    Insulators help in organizing the eukaryotic genomes into physically and functionally autonomous regions through the formation of chromatin loops. Recent findings in Drosophila and vertebrates suggest that insulators anchor multiple loci through long-distance interactions which may be mechanistically linked to insulator function. Important to such processes in Drosophila is CP190, a common co-factor of insulator complexes. CP190 is also known to associate with the nuclear matrix, components of the RNAi machinery, active promoters and borders of the repressive chromatin domains. Although CP190 plays a pivotal role in insulator function in Drosophila, vertebrates lack a probable functional equivalent of CP190 and employ CTCF as the major factor to carry out insulator function/chromatin looping. In this review, we discuss the emerging role of CP190 in tethering genome, specifically in the perspective of insulator function in Drosophila. Future studies aiming genome-wide role of CP190 in chromatin looping is likely to give important insights into the mechanism of genome organization.

  15. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complexmore » during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.« less

  16. Stress analysis of 27% scale model of AH-64 main rotor hub

    NASA Technical Reports Server (NTRS)

    Hodges, R. V.

    1985-01-01

    Stress analysis of an AH-64 27% scale model rotor hub was performed. Component loads and stresses were calculated based upon blade root loads and motions. The static and fatigue analysis indicates positive margins of safety in all components checked. Using the format developed here, the hub can be stress checked for future application.

  17. Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes

    PubMed Central

    Fournier, David; Redl, Stefan; Best, Gerrit; Borsos, Máté; Tiwari, Vijay K.; Tachibana-Konwalski, Kikuë; Ketting, René F.; Parekh, Sapun H.; Cremer, Christoph; Birk, Udo J.

    2015-01-01

    During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated. PMID:26561583

  18. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.

    PubMed

    Soto-Feliciano, Yadira M; Bartlebaugh, Jordan M E; Liu, Yunpeng; Sánchez-Rivera, Francisco J; Bhutkar, Arjun; Weintraub, Abraham S; Buenrostro, Jason D; Cheng, Christine S; Regev, Aviv; Jacks, Tyler E; Young, Richard A; Hemann, Michael T

    2017-05-15

    Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6 KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. © 2017 Soto-Feliciano et al.; Published by Cold Spring Harbor Laboratory Press.

  19. metaseq: a Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA.

    PubMed

    Dale, Ryan K; Matzat, Leah H; Lei, Elissa P

    2014-08-01

    Here we introduce metaseq, a software library written in Python, which enables loading multiple genomic data formats into standard Python data structures and allows flexible, customized manipulation and visualization of data from high-throughput sequencing studies. We demonstrate its practical use by analyzing multiple datasets related to chromatin insulators, which are DNA-protein complexes proposed to organize the genome into distinct transcriptional domains. Recent studies in Drosophila and mammals have implicated RNA in the regulation of chromatin insulator activities. Moreover, the Drosophila RNA-binding protein Shep has been shown to antagonize gypsy insulator activity in a tissue-specific manner, but the precise role of RNA in this process remains unclear. Better understanding of chromatin insulator regulation requires integration of multiple datasets, including those from chromatin-binding, RNA-binding, and gene expression experiments. We use metaseq to integrate RIP- and ChIP-seq data for Shep and the core gypsy insulator protein Su(Hw) in two different cell types, along with publicly available ChIP-chip and RNA-seq data. Based on the metaseq-enabled analysis presented here, we propose a model where Shep associates with chromatin cotranscriptionally, then is recruited to insulator complexes in trans where it plays a negative role in insulator activity. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. The effect of human sperm chromatin maturity on ICSI outcomes.

    PubMed

    Gill, Kamil; Rosiak, Aleksandra; Gaczarzewicz, Dariusz; Jakubik, Joanna; Kurzawa, Rafal; Kazienko, Anna; Rymaszewska, Anna; Laszczynska, Maria; Grochans, Elzbieta; Piasecka, Malgorzata

    2018-03-29

    Because sperm chromatin may play a key role in reproductive success, we verify the associations between sperm chromatin abnormalities, embryo development and the ability to achieve pregnancy. The evaluation of sperm chromatin maturity using aniline blue (AB), chromomycin A3 (CMA3) and toluidine blue (TB) staining were carried out in group of males from infertile couples that underwent ICSI. Low levels of sperm chromatin abnormalities (< 16%) were found in most subjects (> 50%). A higher percentage of TB-positive sperm cells were discovered in the men from couples who achieved ≤ 50% fertilized oocytes compared to men who achieved > 50%. No significant differences were discovered by the applied tests between the men from couples who achieved ≤ 50% and those who achieved > 50% high-quality embryos on the 3rd or 5th day after fertilization, nor between the men from couples who achieved pregnancy and those who failed. The sperm chromatin maturity did not correlate with the ICSI results. However, the ROC analysis revealed a significant predictive value of TB-positive spermatozoa only for fertilization. Therefore, the TB assay can be considered as a useful test for the prediction of fertilization. Our findings suggest that the level of sperm chromatin abnormalities of the examined men was not clinically significant. No found associations between sperm chromatin maturity and embryo development and the ability to achieve pregnancy. We could not exclude the effects of the repairing processes in the fertilized oocyte. The use of complementary tests that verify the status of the sperm chromatin seems justified.

  1. Mapping protein-DNA and protein-protein interactions of ATP-dependent chromatin remodelers.

    PubMed

    Hota, Swetansu K; Dechassa, Mekonnen Lemma; Prasad, Punit; Bartholomew, Blaine

    2012-01-01

    Chromatin plays a key regulatory role in several DNA-dependent processes as it regulates DNA access to different protein factors. Several multisubunit protein complexes interact, modify, or mobilize nucleosomes: the basic unit of chromatin, from its original location in an ATP-dependent manner to facilitate processes, such as transcription, replication, repair, and recombination. Knowledge of the interactions of chromatin remodelers with nucleosomes is a crucial requirement to understand the mechanism of chromatin remodeling. Here, we describe several methods to analyze the interactions of multisubunit chromatin-remodeling enzymes with nucleosomes.

  2. Chromatin regulation at the frontier of synthetic biology.

    PubMed

    Keung, Albert J; Joung, J Keith; Khalil, Ahmad S; Collins, James J

    2015-03-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including 'epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication.

  3. Chromatin regulation at the frontier of synthetic biology

    PubMed Central

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  4. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines.

    PubMed

    Boldyreva, Lidiya V; Goncharov, Fyodor P; Demakova, Olga V; Zykova, Tatyana Yu; Levitsky, Victor G; Kolesnikov, Nikolay N; Pindyurin, Alexey V; Semeshin, Valeriy F; Zhimulev, Igor F

    2017-04-01

    Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.

  5. Mapping of protein- and chromatin-interactions at the nuclear lamina.

    PubMed

    Kubben, Nard; Voncken, Jan Willem; Misteli, Tom

    2010-01-01

    The nuclear envelope and the lamina define the nuclear periphery and are implicated in many nuclear processes including chromatin organization, transcription and DNA replication. Mutations in lamin A proteins, major components of the lamina, interfere with these functions and cause a set of phenotypically diverse diseases referred to as laminopathies. The phenotypic diversity of laminopathies is thought to be the result of alterations in specific protein- and chromatin interactions due to lamin A mutations. Systematic identification of lamin A-protein and -chromatin interactions will be critical to uncover the molecular etiology of laminopathies. Here we summarize and critically discuss recent technology to analyze lamina-protein and-chromatin interactions.

  6. CYTOGENETIC ABNORMALITY IN MAN—Wider Implications of Theories of Sex Chromatin Origin

    PubMed Central

    Miles, Charles P.

    1962-01-01

    Female nuclei may be identified by means of sex chromatin. In general the number of sex chromatin bodies is one less than the number of X chromosomes. An exception to this rule is a case of sex chromatin-positive XO Turner's syndrome. This case suggests the possibility of sex chromatin-positive XY males, and it may be evidence for chromosomal differentiation. PMID:14473851

  7. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.

    PubMed

    Perišić, Ognjen; Schlick, Tamar

    2017-08-24

    The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers

  8. Histone modifications influence mediator interactions with chromatin

    PubMed Central

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  9. Histone H4 acetylation required for chromatin decompaction during DNA replication.

    PubMed

    Ruan, Kun; Yamamoto, Takaharu G; Asakawa, Haruhiko; Chikashige, Yuji; Kimura, Hiroshi; Masukata, Hisao; Haraguchi, Tokuko; Hiraoka, Yasushi

    2015-07-30

    Faithful DNA replication is a prerequisite for cell proliferation. Several cytological studies have shown that chromosome structures alter in the S-phase of the cell cycle. However, the molecular mechanisms behind the alteration of chromosome structures associated with DNA replication have not been elucidated. Here, we investigated chromatin structures and acetylation of specific histone residues during DNA replication using the meiotic nucleus of the fission yeast Schizosaccharomyces pombe. The S. pombe meiotic nucleus provides a unique opportunity for measuring the levels of compaction of chromatin along the chromosome in a defined orientation. By direct measurement of chromatin compaction in living cells, we demonstrated that decompaction of chromatin occurs during meiotic DNA replication. This chromatin decompaction was suppressed by depletion of histone acetyltransferase Mst1 or by arginine substitution of specific lysine residues (K8 and K12) of histone H4. These results suggest that acetylation of histone H4 residues K8 and K12 plays a critical role in loosening chromatin structures during DNA replication.

  10. RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function

    PubMed Central

    Moshkovich, Nellie; Nisha, Parul; Boyle, Patrick J.; Thompson, Brandi A.; Dale, Ryan K.; Lei, Elissa P.

    2011-01-01

    A major role of the RNAi pathway in Schizosaccharomyces pombe is to nucleate heterochromatin, but it remains unclear whether this mechanism is conserved. To address this question in Drosophila, we performed genome-wide localization of Argonaute2 (AGO2) by chromatin immunoprecipitation (ChIP)-seq in two different embryonic cell lines and found that AGO2 localizes to euchromatin but not heterochromatin. This localization pattern is further supported by immunofluorescence staining of polytene chromosomes and cell lines, and these studies also indicate that a substantial fraction of AGO2 resides in the nucleus. Intriguingly, AGO2 colocalizes extensively with CTCF/CP190 chromatin insulators but not with genomic regions corresponding to endogenous siRNA production. Moreover, AGO2, but not its catalytic activity or Dicer-2, is required for CTCF/CP190-dependent Fab-8 insulator function. AGO2 interacts physically with CTCF and CP190, and depletion of either CTCF or CP190 results in genome-wide loss of AGO2 chromatin association. Finally, mutation of CTCF, CP190, or AGO2 leads to reduction of chromosomal looping interactions, thereby altering gene expression. We propose that RNAi-independent recruitment of AGO2 to chromatin by insulator proteins promotes the definition of transcriptional domains throughout the genome. PMID:21852534

  11. Frequent Hub-Spoke Contact Is Associated with Improved Spoke Hospital Performance: Results from the Massachusetts General Hospital Telestroke Network.

    PubMed

    Moreno, Arianna; Schwamm, Lee H; Siddiqui, Khawja A; Viswanathan, Anand; Whitney, Cynthia; Rost, Natalia; Zachrison, Kori Sauser

    2017-12-22

    For acute ischemic stroke patients, shorter time to thrombolytic (tissue plasminogen activator [tPA]) is associated with improved outcomes. Telestroke increases tPA use at spoke hospitals, yet its effect on door-to-needle (DTN) times for tPA administration is unknown. We hypothesize that spoke hospitals with more frequent contact to a hub hospital will have shorter DTN times than those with less frequent contact. We identified 375 patients treated with tPA by conventional or telestroke methods in an academic hub-and-spoke telestroke network for whom date and time data were available. Strength of the spoke-hub connection was the primary predictor variable, defined as the number of all telestroke consults (tPA and non-tPA) done at each spoke hospital during the year of the patient's presentation. Patient-level regression analyses examined the relationship between DTN time and spoke-hub connection during the year of the patient's presentation, controlling for temporal trends and clustering within hospitals. Sixteen spoke hospitals contributed data on 375 tPA-treated patients from 2006-2015. Hospitals treated a median of 13.5 patients with tPA per year; median hospital-level DTN was 78.8 min (interquartile range [IQR] 71.3-85). Median number of telestroke consults per year was 34 (range 3-137). Among all 375 patients, median DTN was 76 min (IQR 60-97). Strength of spoke-hub connection was significantly associated with faster DTN time for patients (1.3 min gain per 10 additional consults, p = 0.048). More frequent contact between a telestroke spoke and its hub was associated with faster tPA delivery for patients, even after accounting for secular trends in DTN improvements.

  12. Role of the chromatin landscape and sequence in determining cell type-specific genomic glucocorticoid receptor binding and gene regulation

    PubMed Central

    Huska, Matthew R.; Jurk, Marcel; Schöpflin, Robert; Starick, Stephan R.; Schwahn, Kevin; Cooper, Samantha B.; Yamamoto, Keith R.; Thomas-Chollier, Morgane; Vingron, Martin

    2017-01-01

    Abstract The genomic loci bound by the glucocorticoid receptor (GR), a hormone-activated transcription factor, show little overlap between cell types. To study the role of chromatin and sequence in specifying where GR binds, we used Bayesian modeling within the universe of accessible chromatin. Taken together, our results uncovered that although GR preferentially binds accessible chromatin, its binding is biased against accessible chromatin located at promoter regions. This bias can only be explained partially by the presence of fewer GR recognition sequences, arguing for the existence of additional mechanisms that interfere with GR binding at promoters. Therefore, we tested the role of H3K9ac, the chromatin feature with the strongest negative association with GR binding, but found that this correlation does not reflect a causative link. Finally, we find a higher percentage of promoter–proximal GR binding for genes regulated by GR across cell types than for cell type-specific target genes. Given that GR almost exclusively binds accessible chromatin, we propose that cell type-specific regulation by GR preferentially occurs via distal enhancers, whose chromatin accessibility is typically cell type-specific, whereas ubiquitous target gene regulation is more likely to result from binding to promoter regions, which are often accessible regardless of cell type examined. PMID:27903902

  13. Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback.

    PubMed

    Freire, Joana G; Gallas, Jason A C

    2010-09-01

    Incomplete homoclinic scenarios were recently measured in a semiconductor laser with optoelectronic feedback. We show here that such a laser contains cascades of spirals of periodic oscillations and hubs which look identical to the familiar ones observed in complete homoclinic scenarios. This means that hubs are far more general than presumed so far, being not limited by Shilnikov's theorem. Laser hubs open the possibility of measuring complex distributions of non-Shilnikov laser oscillations, and we briefly discuss how to do it.

  14. A novel method to identify hub pathways of rheumatoid arthritis based on differential pathway networks.

    PubMed

    Wei, Shi-Tong; Sun, Yong-Hua; Zong, Shi-Hua

    2017-09-01

    The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein‑protein interaction (PPI) network was integrated with pathway‑pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene‑gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) degradation, HS‑GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.

  15. Analysis of Chromatin Organisation

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    Terms to be familiar with before you start to solve the test: chromatin, nucleases, sucrose density gradient centrifugation, melting point, gel electrophoresis, ethidium bromide, autoradiography, Southern blotting, Northern blotting, Sanger sequencing, restriction endonucleases, exonucleases, linker DNA, chloroform extraction, nucleosomes,…

  16. OTX2 activity at distal regulatory elements shapes the chromatin landscape of Group 3 medulloblastoma

    PubMed Central

    Boulay, Gaylor; Awad, Mary E.; Riggi, Nicolo; Archer, Tenley C.; Iyer, Sowmya; Boonseng, Wannaporn E.; Rossetti, Nikki E; Naigles, Beverly; Rengarajan, Shruthi; Volorio, Angela; Kim, James C.; Mesirov, Jill P.; Tamayo, Pablo; Pomeroy, Scott L.; Aryee, Martin J.; Rivera, Miguel N.

    2017-01-01

    Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as Wnt, SHH, Group 3 and Group 4. Here we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2 bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes we identified the kinase NEK2, whose knockdown and pharmacological inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes. PMID:28213356

  17. Minor Groove Binder Distamycin Remodels Chromatin but Inhibits Transcription

    PubMed Central

    Majumder, Parijat; Banerjee, Amrita; Shandilya, Jayasha; Senapati, Parijat; Chatterjee, Snehajyoti; Kundu, Tapas K.; Dasgupta, Dipak

    2013-01-01

    The condensed structure of chromatin limits access of cellular machinery towards template DNA. This in turn represses essential processes like transcription, replication, repair and recombination. The repression is alleviated by a variety of energy dependent processes, collectively known as “chromatin remodeling”. In a eukaryotic cell, a fine balance between condensed and de-condensed states of chromatin helps to maintain an optimum level of gene expression. DNA binding small molecules have the potential to perturb such equilibrium. We present herein the study of an oligopeptide antibiotic distamycin, which binds to the minor groove of B-DNA. Chromatin mobility assays and circular dichroism spectroscopy have been employed to study the effect of distamycin on chromatosomes, isolated from the liver of Sprague-Dawley rats. Our results show that distamycin is capable of remodeling both chromatosomes and reconstituted nucleosomes, and the remodeling takes place in an ATP-independent manner. Binding of distamycin to the linker and nucleosomal DNA culminates in eviction of the linker histone and the formation of a population of off-centered nucleosomes. This hints at a possible corkscrew type motion of the DNA with respect to the histone octamer. Our results indicate that distamycin in spite of remodeling chromatin, inhibits transcription from both DNA and chromatin templates. Therefore, the DNA that is made accessible due to remodeling is either structurally incompetent for transcription, or bound distamycin poses a roadblock for the transcription machinery to advance. PMID:23460895

  18. Epigenetic chromatin silencing: bistability and front propagation

    NASA Astrophysics Data System (ADS)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  19. Whole-brain MEG connectivity-based analyses reveals critical hubs in childhood absence epilepsy.

    PubMed

    Youssofzadeh, Vahab; Agler, William; Tenney, Jeffrey R; Kadis, Darren S

    2018-06-04

    Absence seizures are thought to be linked to abnormal interplays between regions of a thalamocortical network. However, the complexity of this widespread network makes characterizing the functional interactions among various brain regions challenging. Using whole-brain functional connectivity and network analysis of magnetoencephalography (MEG) data, we explored pre-treatment brain hubs ("highly connected nodes") of patients aged 6 to 12 years with childhood absence epilepsy. We analyzed ictal MEG data of 74 seizures from 16 patients. We employed a time-domain beamformer technique to estimate MEG sources in broadband (1-40 Hz) where the greatest power changes between ictal and preictal periods were identified. A phase synchrony measure, phase locking value, and a graph theory metric, eigenvector centrality (EVC), were utilized to quantify voxel-level connectivity and network hubs of ictal > preictal periods, respectively. A volumetric atlas containing 116 regions of interests (ROIs) was utilized to summarize the network measures. ROIs with EVC (z-score) > 1.96 were reported as critical hubs. ROIs analysis revealed functional-anatomical hubs in a widespread network containing bilateral precuneus (right/left, z = 2.39, 2.18), left thalamus (z = 2.28), and three anterior cerebellar subunits of lobule "IV-V" (z = 3.9), vermis "IV-V" (z = 3.57), and lobule "III" (z = 2.03). Findings suggest that highly connected brain areas or hubs are present in focal cortical, subcortical, and cerebellar regions during absence seizures. Hubs in thalami, precuneus and cingulate cortex generally support a theory of rapidly engaging and bilaterally distributed networks of cortical and subcortical regions responsible for seizures generation, whereas hubs in anterior cerebellar regions may be linked to terminating motor automatisms frequently seen during typical absence seizures. Whole-brain network connectivity is a powerful analytic tool to reveal focal

  20. 76 FR 18753 - Jefferson Island Storage & Hub, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-97-000] Jefferson Island Storage & Hub, L.L.C.; Notice of Filing Take notice that on March 28, 2011, Jefferson Island Storage & Hub, L.L.C. (Jefferson Island) submitted a revised Statement of Operating Conditions (SOC) for...

  1. When is hub gene selection better than standard meta-analysis?

    PubMed

    Langfelder, Peter; Mischel, Paul S; Horvath, Steve

    2013-01-01

    Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to

  2. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation

    PubMed Central

    Le Dily, François; Baù, Davide; Pohl, Andy; Vicent, Guillermo P.; Serra, François; Soronellas, Daniel; Castellano, Giancarlo; Wright, Roni H.G.; Ballare, Cecilia; Filion, Guillaume; Marti-Renom, Marc A.

    2014-01-01

    The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as “regulons” to enable spatially proximal genes to be coordinately transcribed in response to hormones. PMID:25274727

  3. Aldosterone alters the chromatin structure of the murine endothelin-1 gene.

    PubMed

    Welch, Amanda K; Jeanette Lynch, I; Gumz, Michelle L; Cain, Brian D; Wingo, Charles S

    2016-08-15

    Aldosterone increases sodium reabsorption in the renal collecting duct and systemic blood pressure. Paradoxically, aldosterone also induces transcription of the endothelin-1 (Edn1) gene to increase protein (ET-1) levels, which inhibits sodium reabsorption. Here we investigated changes in the chromatin structure of the Edn1 gene of collecting duct cell lines in response to aldosterone treatment. The Edn1 gene has a CpG island that encompasses the transcription start site and four sites in the 5' regulatory region previously linked to transcriptional regulation. The chromatin structure of the Edn1 gene was investigated using a quantitative PCR-based DNaseI hypersensitivity assay in murine hepatocyte (AML12), renal cortical collecting duct (mpkCCDC14), outer medullary collecting duct1 (OMCD1), and inner medullary collecting duct-3 (IMCD-3) cell lines. The CpG island was uniformly accessible. One calcium-responsive NFAT element remained at low chromatin accessibility in all cell lines under all conditions tested. However, the second calcium responsive NFAT element located at -1563bp upstream became markedly more accessible in IMCD-3 cells exposed to aldosterone. Importantly, one established aldosterone hormone response element HRE at -671bp relative to the transcription start site was highly accessible, and another HRE (-551bp) became more accessible in aldosterone-treated IMCD-3 and OMCD1 cells. The evidence supports a model in which aldosterone activation of the mineralocorticoid receptor (MR) results in the MR-hormone complex binding at HRE at -671bp to open chromatin structure around other regulatory elements in the Edn1 gene. Published by Elsevier Inc.

  4. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex

    PubMed Central

    Vorobyeva, Nadezhda E.; Soshnikova, Nataliya V.; Nikolenko, Julia V.; Kuzmina, Julia L.; Nabirochkina, Elena N.; Georgieva, Sofia G.; Shidlovskii, Yulii V.

    2009-01-01

    Transcription activation by RNA polymerase II is a complicated process driven by combined, precisely coordinated action of a wide array of coactivator complexes, which carry out chromatin-directed activities and nucleate the assembly of the preinitiation complex on the promoter. Using various techniques, we have shown the existence of a stable coactivator supercomplex consisting of the chromatin-remodeling factor Brahma (SWI/SNF) and the transcription initiation factor TFIID, named BTFly (Brahma and TFIID in one assembly). The coupling of Brahma and TFIID is mediated by the SAYP factor, whose evolutionarily conserved activation domain SAY can directly bind to both BAP170 subunit of Brahma and TAF5 subunit of TFIID. The integrity of BTFly is crucial for its ability to activate transcription. BTFly is distributed genome-wide and appears to be a means of effective transcription activation. PMID:19541607

  5. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Emerging Education Hubs: The Case of Singapore

    ERIC Educational Resources Information Center

    Sidhu, Ravinder; Ho, K.-C.; Yeoh, Brenda

    2011-01-01

    In anticipation of a globalising post-Fordist political economy, countries and universities are increasingly pursuing strategic transnational education and research alliances. This article analyses the Global Schoolhouse, a key education policy platform that aims to transform Singapore into a knowledge and innovation hub by establishing networks…

  7. Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions

    PubMed Central

    Hu, Gang; Wu, Zhonghua

    2017-01-01

    Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs. PMID:29257115

  8. DataHub knowledge based assistance for science visualization and analysis using large distributed databases

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Collins, Donald J.; Doyle, Richard J.; Jacobson, Allan S.

    1991-01-01

    Viewgraphs on DataHub knowledge based assistance for science visualization and analysis using large distributed databases. Topics covered include: DataHub functional architecture; data representation; logical access methods; preliminary software architecture; LinkWinds; data knowledge issues; expert systems; and data management.

  9. Systems biology approach to transplant tolerance: proof of concept experiments using RNA interference (RNAi) to knock down hub genes in Jurkat and HeLa cells in vitro.

    PubMed

    Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai

    2012-07-01

    Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P < 0.05) when the hub genes ATP5C1 and PRKCZ were knocked down using siRNA transfection, whereas no difference in ATP production was observed in siRNA transfected HeLa cells. However, HeLa cells showed a significant (P < 0.05) decrease in cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.

  10. The molecular topography of silenced chromatin in Saccharomyces cerevisiae

    PubMed Central

    Thurtle, Deborah M.; Rine, Jasper

    2014-01-01

    Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms. PMID:24493645

  11. Guiding Principles for Data Architecture to Support the Pathways Community HUB Model.

    PubMed

    Zeigler, Bernard P; Redding, Sarah; Leath, Brenda A; Carter, Ernest L; Russell, Cynthia

    2016-01-01

    The Pathways Community HUB Model provides a unique strategy to effectively supplement health care services with social services needed to overcome barriers for those most at risk of poor health outcomes. Pathways are standardized measurement tools used to define and track health and social issues from identification through to a measurable completion point. The HUB use Pathways to coordinate agencies and service providers in the community to eliminate the inefficiencies and duplication that exist among them. Experience with the Model has brought out the need for better information technology solutions to support implementation of the Pathways themselves through decision-support tools for care coordinators and other users to track activities and outcomes, and to facilitate reporting. Here we provide a basis for discussing recommendations for such a data infrastructure by developing a conceptual model that formalizes the Pathway concept underlying current implementations. The main contribution is a set of core recommendations as a framework for developing and implementing a data architecture to support implementation of the Pathways Community HUB Model. The objective is to present a tool for communities interested in adopting the Model to learn from and to adapt in their own development and implementation efforts. Experience with the Community Health Access Project (CHAP) data base system (the core implementation of the Model) has identified several issues and remedies that have been developed to address these issues. Based on analysis of issues and remedies, we present several key features for a data architecture meeting the just mentioned recommendations. Presentation of features is followed by a practical guide to their implementation allowing an organization to consider either tailoring off-the-shelf generic systems to meet the requirements or offerings that are specialized for community-based care coordination. Looking to future extensions, we discuss the

  12. Role of the chromatin landscape and sequence in determining cell type-specific genomic glucocorticoid receptor binding and gene regulation.

    PubMed

    Love, Michael I; Huska, Matthew R; Jurk, Marcel; Schöpflin, Robert; Starick, Stephan R; Schwahn, Kevin; Cooper, Samantha B; Yamamoto, Keith R; Thomas-Chollier, Morgane; Vingron, Martin; Meijsing, Sebastiaan H

    2017-02-28

    The genomic loci bound by the glucocorticoid receptor (GR), a hormone-activated transcription factor, show little overlap between cell types. To study the role of chromatin and sequence in specifying where GR binds, we used Bayesian modeling within the universe of accessible chromatin. Taken together, our results uncovered that although GR preferentially binds accessible chromatin, its binding is biased against accessible chromatin located at promoter regions. This bias can only be explained partially by the presence of fewer GR recognition sequences, arguing for the existence of additional mechanisms that interfere with GR binding at promoters. Therefore, we tested the role of H3K9ac, the chromatin feature with the strongest negative association with GR binding, but found that this correlation does not reflect a causative link. Finally, we find a higher percentage of promoter-proximal GR binding for genes regulated by GR across cell types than for cell type-specific target genes. Given that GR almost exclusively binds accessible chromatin, we propose that cell type-specific regulation by GR preferentially occurs via distal enhancers, whose chromatin accessibility is typically cell type-specific, whereas ubiquitous target gene regulation is more likely to result from binding to promoter regions, which are often accessible regardless of cell type examined. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis.

    PubMed

    Schröder-Heurich, Bianca; Wieland, Britta; Lavin, Martin F; Schindler, Detlev; Dörk, Thilo

    2014-03-01

    Faithful chromosome segregation is required for preserving genomic integrity. Failure of this process may entail chromatin bridges preventing normal cytokinesis. To test whether RAD50, a protein normally involved in DNA double-strand break repair, is involved in abnormal cytokinesis and formation of chromatin bridges, we used immunocytochemical and protein interaction assays. RAD50 localizes to chromatin bridges during aberrant cytokinesis and subsequent stages of the cell cycle, either decorating the entire bridge or focally accumulating at the midbody zone. Ionizing radiation led to an ∼4-fold increase in the rate of chromatin bridges in an ataxia telangiectatica mutated (ATM)-dependent manner in human RAD50-proficient fibroblasts but not in RAD50-deficient cells. Cells with a RAD50-positive chromatin bridge were able to continue cell cycling and to progress through S phase (44%), whereas RAD50 knockdown caused a deficiency in chromatin bridges as well as an ∼4-fold prolonged duration of mitosis. RAD50 colocalized and directly interacted with Aurora B kinase and phospho-histone H3, and Aurora B kinase inhibition led to a deficiency in RAD50-positive bridges. Based on these observations, we propose that RAD50 is a crucial factor for the stabilization and shielding of chromatin bridges. Our study provides evidence for a hitherto unknown role of RAD50 in abnormal cytokinesis.

  14. Chromatin condensation of Xist genomic loci during oogenesis in mice.

    PubMed

    Fukuda, Atsushi; Mitani, Atsushi; Miyashita, Toshiyuki; Umezawa, Akihiro; Akutsu, Hidenori

    2015-12-01

    Repression of maternal Xist (Xm-Xist) during preimplantation in mouse embryos is essential for establishing imprinted X chromosome inactivation. Nuclear transplantation (NT) studies using nuclei derived from non-growing (ng) and full-grown (fg) oocytes have indicated that maternal-specific repressive modifications are imposed on Xm-Xist during oogenesis, as well as on autosomal imprinted genes. Recent studies have revealed that histone H3 lysine 9 trimethylation (H3K9me3) enrichments on Xm-Xist promoter regions are involved in silencing at the preimplantation stages. However, whether H3K9me3 is imposed on Xm-Xist during oogenesis is not known. Here, we dissected the chromatin states in ng and fg oocytes and early preimplantation stage embryos. Chromatin immunoprecipitation experiments against H3K9me3 revealed that there was no significant enrichment within the Xm-Xist region during oogenesis. However, NT embryos with ng nuclei (ngNT) showed extensive Xm-Xist derepression and H3K9me3 hypomethylation of the promoter region at the 4-cell stage, which corresponds to the onset of paternal Xist expression. We also found that the chromatin state at the Xist genomic locus became markedly condensed as oocyte growth proceeded. Although the condensed Xm-Xist genomic locus relaxed during early preimplantation phases, the extent of the relaxation across Xm-Xist loci derived from normally developed oocytes was significantly smaller than those of paternal-Xist and ngNT-Xist genomic loci. Furthermore, Xm-Xist from 2-cell metaphase nuclei became derepressed following NT. We propose that chromatin condensation is associated with imprinted Xist repression and that skipping of the condensation step by NT leads to Xist activation during the early preimplantation phase. © 2015. Published by The Company of Biologists Ltd.

  15. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression

    PubMed Central

    Franz, André; Pirson, Paul A.; Pilger, Domenic; Halder, Swagata; Achuthankutty, Divya; Kashkar, Hamid; Ramadan, Kristijan; Hoppe, Thorsten

    2016-01-01

    The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging. PMID:26842564

  16. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression.

    PubMed

    Franz, André; Pirson, Paul A; Pilger, Domenic; Halder, Swagata; Achuthankutty, Divya; Kashkar, Hamid; Ramadan, Kristijan; Hoppe, Thorsten

    2016-02-04

    The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging.

  17. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death

    PubMed Central

    Schoborg, Todd; Rickels, Ryan; Barrios, Josh

    2013-01-01

    Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275

  18. The Chd1 Chromatin Remodeler Shifts Nucleosomal DNA Bidirectionally as a Monomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Yupeng; Levendosky, Robert F.; Chakravarthy, Srinivas

    Chromatin remodelers catalyze dynamic packaging of the genome by carrying out nucleosome assembly/disassembly, histone exchange, and nucleosome repositioning. Remodeling results in evenly spaced nucleosomes, which requires probing both sides of the nucleosome, yet the way remodelers organize sliding activity to achieve this task is not understood. Here, we show that the monomeric Chd1 remodeler shifts DNA back and forth by dynamically alternating between different segments of the nucleosome. During sliding, Chd1 generates unstable remodeling intermediates that spontaneously relax to a pre-remodeled position. We demonstrate that nucleosome sliding is tightly controlled by two regulatory domains: the DNA-binding domain, which interferes withmore » sliding when its range is limited by a truncated linking segment, and the chromodomains, which play a key role in substrate discrimination. We propose that active interplay of the ATPase motor with the regulatory domains may promote dynamic nucleosome structures uniquely suited for histone exchange and chromatin reorganization during transcription.« less

  19. a Floating Mobile Quay for Super Container Ships in a Hub Port

    NASA Astrophysics Data System (ADS)

    Chae, Jang-Won; Park, Woo-Sun

    A floating mobile quay (FMQ), which is an innovative berth system, has functions of not only both side loading/unloading but also direct transshipment to feeder ships in a hub port. Applying the FMQ to a hub port such as the west terminal of Busan New Port of Korea, it is shown from a physical modeling and field model test that the quay is dynamically stable and workable in the prevailing wave condition and also safe in a design storm condition, respectively. The terminal productivity is increased by 30% comparing with the present land based berth. The B/C ratio of the new berth system is evaluated as 1.13 considering super-large container ships. It appears that the FMQ is a technically and economically feasible system in the hub port.

  20. Publishing and sharing of hydrologic models through WaterHUB

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.; Song, C.; Zhao, L.; Kim, J.; Assi, A.

    2011-12-01

    Most hydrologists use hydrologic models to simulate the hydrologic processes to understand hydrologic pathways and fluxes for research, decision making and engineering design. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called WaterHUB, is developed for sharing hydrologic data and modeling tools in an interactive environment. To test the utility of WaterHUB for sharing hydrologic models, a system to publish and share SWAT (Soil Water Assessment Tool) is developed. Users can utilize WaterHUB to search and download existing SWAT models, and also upload new SWAT models. Metadata such as the name of the watershed, name of the person or agency who developed the model, simulation period, time step, and list of calibrated parameters also published with individual model.

  1. Separate roles for chromatin and lamins in nuclear mechanics.

    PubMed

    Stephens, Andrew D; Banigan, Edward J; Marko, John F

    2018-01-01

    The cell nucleus houses, protects, and arranges the genome within the cell. Therefore, nuclear mechanics and morphology are important for dictating gene regulation, and these properties are perturbed in many human diseases, such as cancers and progerias. The field of nuclear mechanics has long been dominated by studies of the nuclear lamina, the intermediate filament shell residing just beneath the nuclear membrane. However, a growing body of work shows that chromatin and chromatin-related factors within the nucleus are an essential part of the mechanical response of the cell nucleus to forces. Recently, our group demonstrated that chromatin and the lamina provide distinct mechanical contributions to nuclear mechanical response. The lamina is indeed important for robust response to large, whole-nucleus stresses, but chromatin dominates the short-extension response. These findings offer a clarifying perspective on varied nuclear mechanics measurements and observations, and they suggest several new exciting possibilities for understanding nuclear morphology, organization, and mechanics.

  2. Mapping the changed hubs and corresponding functional connectivity in idiopathic restless legs syndrome.

    PubMed

    Liu, Chunyan; Wang, Jiaojian; Hou, Yue; Qi, Zhigang; Wang, Li; Zhan, Shuqin; Wang, Rong; Wang, Yuping

    2018-05-01

    The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of leg discomfort symptoms in restless legs syndrome (RLS) patients remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods, we investigated whether alterations of hubs can be detected in RLS. First, we constructed the whole-brain voxelwise functional connectivity and calculated a functional connectivity strength (FCS) map in each of 16 drug-naive idiopathic RLS patients and 26 gender- and age-matched healthy control (HC) subjects. Next, a two-sample t test was applied to compare the FCS maps between HC and RLS patients, and to identify significant changes in FCS in RLS patients. To further elucidate the corresponding changes in the functional connectivity patterns of the aberrant hubs in RLS patients, whole-brain resting-state functional connectivity analyses for the hub areas were performed. The hub analysis revealed decreased FCS in the cuneus, fusiform gyrus, paracentral lobe, and precuneus, and increased FCS in the superior frontal gyrus and thalamus in idiopathic drug-naive RLS patients. Subsequent functional connectivity analyses revealed decreased functional connectivity in sensorimotor and visual processing networks and increased functional connectivity in the affective cognitive network and cerebellar-thalamic circuit. Furthermore, the mean FCS value in the superior frontal gyrus was significantly correlated with Hamilton Anxiety Rating Scale scores in RLS patients, and the mean FCS value in the fusiform gyrus was significantly correlated with Hamilton Depression Rating Scale scores. These findings may provide novel insight into the pathophysiology of RLS. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. HubAlign: an accurate and efficient method for global alignment of protein-protein interaction networks.

    PubMed

    Hashemifar, Somaye; Xu, Jinbo

    2014-09-01

    High-throughput experimental techniques have produced a large amount of protein-protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  4. Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.

    PubMed

    Arbibe, Laurence

    2008-08-01

    Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.

  5. Role of Histone Acetylation in the Assembly and Modulation of Chromatin Structures

    PubMed Central

    Annunziato, Anthony T.; Hansen, Jeffrey C.

    2000-01-01

    The acetylation of the core histone N-terminal “tail” domains is now recognized as a highly conserved mechanism for regulating chromatin functional states. The following article examines possible roles of acetylation in two critically important cellular processes: replication-coupled nucleosome assembly, and reversible transitions in chromatin higher order structure. After a description of the acetylation of newly synthesized histones, and of the likely acetyltransferases involved, an overview of histone octamer assembly is presented. Our current understanding of the factors thought to assemble chromatin in vivo is then described. Genetic and biochemical investigations of the function the histone tails, and their acetylation, in nucleosome assembly are detailed, followed by an analysis of the importance of histone deacetylation in the maturation of newly replicated chromatin. In the final section the involvement of the histone tail domains in chromatin higher order structures is addressed, along with the role of histone acetylation in chromatin folding. Suggestions for future research are offered in the concluding remarks. PMID:11097424

  6. Regional services in a research context: USDA Climate Hubs in the Agricultural Research Service

    USDA-ARS?s Scientific Manuscript database

    Ten USDA Climate Hubs were created in 2014 to develop and deliver science-based, region-specific information and technologies to better enable agricultural decision-making and management to promote resilient working landscapes. Of these ten Hubs, half are administered by USDA’s Agricultural Research...

  7. Regional services in a research context: USDA climate hubs in the agricultural research service

    USDA-ARS?s Scientific Manuscript database

    Ten USDA Climate Hubs were created in 2014 to develop and deliver science-based, region-specific information and technologies to better enable agricultural decision-making and management. Of these ten Hubs, half are administered by USDA’s Agricultural Research Service (ARS), an agency with historica...

  8. Hormone-dependent control of developmental timing through regulation of chromatin accessibility

    PubMed Central

    Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.

    2017-01-01

    Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147

  9. The polymorphisms of the chromatin fiber

    NASA Astrophysics Data System (ADS)

    Boulé, Jean-Baptiste; Mozziconacci, Julien; Lavelle, Christophe

    2015-01-01

    In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic ‘naked DNA’ view to a more realistic ‘coated DNA’ view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.

  10. Chromatin dynamics during interphase explored by single-particle tracking.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2008-01-01

    Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics.

  11. Chromatin dynamics during interphase explored by single particle tracking

    PubMed Central

    Levi, Valeria; Gratton, Enrico

    2009-01-01

    Our view of the structure and function of the interphase nucleus has drastically changed in the last years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin -initially considered a randomly entangled polymer- has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques significantly evolved during the last years allowing the observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectories analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained by using this novel approach to study chromatin dynamics. PMID:18461483

  12. Not just gene expression: 3D implications of chromatin modifications during sexual plant reproduction.

    PubMed

    Dukowic-Schulze, Stefanie; Liu, Chang; Chen, Changbin

    2018-01-01

    DNA methylation and histone modifications are epigenetic changes on a DNA molecule that alter the three-dimensional (3D) structure locally as well as globally, impacting chromatin looping and packaging on a larger scale. Epigenetic marks thus inform higher-order chromosome organization and placement in the nucleus. Conventional epigenetic marks are joined by chromatin modifiers like cohesins, condensins and membrane-anchoring complexes to support particularly 3D chromosome organization. The most popular consequences of epigenetic modifications are gene expression changes, but chromatin modifications have implications beyond this, particularly in actively dividing cells and during sexual reproduction. In this opinion paper, we will focus on epigenetic mechanisms and chromatin modifications during meiosis as part of plant sexual reproduction where 3D management of chromosomes and re-organization of chromatin are defining features and prime tasks in reproductive cells, not limited to modulating gene expression. Meiotic chromosome organization, pairing and synapsis of homologous chromosomes as well as distribution of meiotic double-strand breaks and resulting crossovers are presumably highly influenced by epigenetic mechanisms. Special mobile small RNAs have been described in anthers, where these so-called phasiRNAs seem to direct DNA methylation in meiotic cells. Intriguingly, many of the mentioned developmental processes make use of epigenetic changes and small RNAs in a manner other than gene expression changes. Widening our approaches and opening our mind to thinking three-dimensionally regarding epigenetics in plant development holds high promise for new discoveries and could give us a boost for further knowledge.

  13. Repression of the Chromatin-Tethering Domain of Murine Leukemia Virus p12.

    PubMed

    Brzezinski, Jonathon D; Modi, Apexa; Liu, Mengdan; Roth, Monica J

    2016-12-15

    Murine leukemia virus (MLV) p12, encoded within Gag, binds the viral preintegration complex (PIC) to the mitotic chromatin. This acts to anchor the viral PIC in the nucleus as the nuclear envelope re-forms postmitosis. Mutations within the p12 C terminus (p12 PM13 to PM15) block early stages in viral replication. Within the p12 PM13 region (p12 60 PSPMA 65 ), our studies indicated that chromatin tethering was not detected when the wild-type (WT) p12 protein (M63) was expressed as a green fluorescent protein (GFP) fusion; however, constructs bearing p12-I63 were tethered. N-terminal truncations of the activated p12-I63-GFP indicated that tethering increased further upon deletion of p12 25 DLLTEDPPPY 34 , which includes the late domain required for viral assembly. The p12 PM15 sequence (p12 70 RREPP 74 ) is critical for wild-type viral viability; however, virions bearing the PM15 mutation (p12 70 AAAAA 74 ) with a second M63I mutant were viable, with a titer 18-fold lower than that of the WT. The p12 M63I mutation amplified chromatin tethering and compensated for the loss of chromatin binding of p12 PM15. Rescue of the p12-M63-PM15 nonviable mutant with prototype foamy virus (PFV) and Kaposi's sarcoma herpesvirus (KSHV) tethering sequences confirmed the function of p12 70-74 in chromatin binding. Minimally, full-strength tethering was seen with only p12 61 SPIASRLRGRR 71 fused to GFP. These results indicate that the p12 C terminus alone is sufficient for chromatin binding and that the presence of the p12 25 DLLTEDPPPY 34 motif in the N terminus suppresses the ability to tether. This study defines a regulatory mechanism controlling the differential roles of the MLV p12 protein in early and late replication. During viral assembly and egress, the late domain within the p12 N terminus functions to bind host vesicle release factors. During viral entry, the C terminus of p12 is required for tethering to host mitotic chromosomes. Our studies indicate that the p12 domain

  14. 76 FR 81521 - Vendor Outreach Workshop for Historically Underutilized Business (HUB) Zone Small Businesses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... Underutilized Business (HUB) Zone Small Businesses AGENCY: Office of the Secretary, Interior. ACTION: Notice. SUMMARY: The Office of Small and Disadvantaged Business Utilization of the Department of the Interior are hosting a Vendor Outreach Workshop for HUB Zone small businesses that are interested in doing business...

  15. Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice.

    PubMed

    Fukuda, Atsushi; Mitani, Atsushi; Miyashita, Toshiyuki; Sado, Takashi; Umezawa, Akihiro; Akutsu, Hidenori

    2016-10-01

    In female mammals, activation of Xist (X-inactive specific transcript) is essential for establishment of X chromosome inactivation. During early embryonic development in mice, paternal Xist is preferentially expressed whereas maternal Xist (Xm-Xist) is silenced. Unlike autosomal imprinted genes, Xist imprinting for Xm-Xist silencing was erased in cloned or parthenogenetic but not fertilized embryos. However, the molecular mechanism underlying the variable nature of Xm-Xist imprinting is poorly understood. Here, we revealed that Xm-Xist silencing depends on chromatin condensation states at the Xist/Tsix genomic region and on Rnf12 expression levels. In early preimplantation, chromatin decondensation via H3K9me3 loss and histone acetylation gain caused Xm-Xist derepression irrespective of embryo type. Although the presence of the paternal genome during pronuclear formation impeded Xm-Xist derepression, Xm-Xist was robustly derepressed when the maternal genome was decondensed before fertilization. Once Xm-Xist was derepressed by chromatin alterations, the derepression was stably maintained and rescued XmXpΔ lethality, indicating that loss of Xm-Xist imprinting was irreversible. In late preimplantation, Oct4 served as a chromatin opener to create transcriptional permissive states at Xm-Xist/Tsix genomic loci. In parthenogenetic embryos, Rnf12 overdose caused Xm-Xist derepression via Xm-Tsix repression; physiological Rnf12 levels were essential for Xm-Xist silencing maintenance in fertilized embryos. Thus, chromatin condensation and fine-tuning of Rnf12 dosage were crucial for Xist imprint maintenance by silencing Xm-Xist.

  16. A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN

    PubMed Central

    Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia

    2014-01-01

    Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881

  17. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Cancer.gov

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins called chromatin that compacts the DNA in the nucleus, strongly restricting access to DNA sequences. As a result, regulatory factors only interact with a small subset of their potential binding elements in a given cell to regulate genes. How factors recognize and select sites in chromatin across the genome is not well understood -- but several discoveries in CCR’s Laboratory of Receptor Biology and Gene Expression (LRBGE) have shed light on the mechanisms that direct factors to DNA.

  18. Distinct Sequence Elements of Cyclin B1 Promote Localization to Chromatin, Centrosomes, and Kinetochores during Mitosis

    PubMed Central

    Bentley, Anna M.; Normand, Guillaume; Hoyt, Jonathan

    2007-01-01

    The mitotic cyclins promote cell division by binding and activating cyclin-dependent kinases (CDKs). Each cyclin has a unique pattern of subcellular localization that plays a vital role in regulating cell division. During mitosis, cyclin B1 is known to localize to centrosomes, microtubules, and chromatin. To determine the mechanisms of cyclin B1 localization in M phase, we imaged full-length and mutant versions of human cyclin B1-enhanced green fluorescent protein in live cells by using spinning disk confocal microscopy. In addition to centrosome, microtubule, and chromatin localization, we found that cyclin B1 also localizes to unattached kinetochores after nuclear envelope breakdown. Kinetochore recruitment of cyclin B1 required the kinetochore proteins Hec1 and Mad2, and it was stimulated by microtubule destabilization. Mutagenesis studies revealed that cyclin B1 is recruited to kinetochores through both CDK1-dependent and -independent mechanisms. In contrast, localization of cyclin B1 to chromatin and centrosomes is independent of CDK1 binding. The N-terminal domain of cyclin B1 is necessary and sufficient for chromatin association, whereas centrosome recruitment relies on sequences within the cyclin box. Our data support a role for cyclin B1 function at unattached kinetochores, and they demonstrate that separable and distinct sequence elements target cyclin B1 to kinetochores, chromatin, and centrosomes during mitosis. PMID:17881737

  19. Chromatinized Protein Kinase C-θ: Can It Escape the Clutches of NF-κB?

    PubMed Central

    Sutcliffe, Elissa L.; Li, Jasmine; Zafar, Anjum; Hardy, Kristine; Ghildyal, Reena; McCuaig, Robert; Norris, Nicole C.; Lim, Pek Siew; Milburn, Peter J.; Casarotto, Marco G.; Denyer, Gareth; Rao, Sudha

    2012-01-01

    We recently provided the first description of a nuclear mechanism used by Protein Kinase C-theta (PKC-θ) to mediate T cell gene expression. In this mode, PKC-θ tethers to chromatin to form an active nuclear complex by interacting with proteins including RNA polymerase II, the histone kinase MSK-1, the demethylase LSD1, and the adaptor molecule 14-3-3ζ at regulatory regions of inducible immune response genes. Moreover, our genome-wide analysis identified many novel PKC-θ target genes and microRNAs implicated in T cell development, differentiation, apoptosis, and proliferation. We have expanded our ChIP-on-chip analysis and have now identified a transcription factor motif containing NF-κB binding sites that may facilitate recruitment of PKC-θ to chromatin at coding genes. Furthermore, NF-κB association with chromatin appears to be a prerequisite for the assembly of the PKC-θ active complex. In contrast, a distinct NF-κB-containing module appears to operate at PKC-θ targeted microRNA genes, and here NF-κB negatively regulates microRNA gene transcription. Our efforts are also focusing on distinguishing between the nuclear and cytoplasmic functions of PKCs to ascertain how these kinases may synergize their roles as both cytoplasmic signaling proteins and their functions on the chromatin template, together enabling rapid induction of eukaryotic genes. We have identified an alternative sequence within PKC-θ that appears to be important for nuclear translocation of this kinase. Understanding the molecular mechanisms used by signal transduction kinases to elicit specific and distinct transcriptional programs in T cells will enable scientists to refine current therapeutic strategies for autoimmune diseases and cancer. PMID:22969762

  20. The deep-sea hub of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Anghinolfi, M.; Calzas, A.; Dinkespiler, B.; Cuneo, S.; Favard, S.; Hallewell, G.; Jaquet, M.; Musumeci, M.; Papaleo, R.; Raia, G.; Valdy, P.; Vernin, P.

    2006-11-01

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub.