Science.gov

Sample records for active chromatin state

  1. Prenucleosomes and Active Chromatin

    PubMed Central

    Khuong, Mai T.; Fei, Jia; Ishii, Haruhiko; Kadonaga, James T.

    2016-01-01

    Chromatin consists of nucleosomes as well as nonnucleosomal histone-containing particles. Here we describe the prenucleosome, which is a stable conformational isomer of the nucleosome that associates with ~80 bp DNA. Prenucleosomes are formed rapidly upon the deposition of histones onto DNA and can be converted into canonical nucleosomes by an ATP-driven chromatin assembly factor such as ACF. Different lines of evidence reveal that there are prenucleosome-sized DNA-containing particles with histones in the upstream region of active promoters. Moreover, p300 acetylates histone H3K56 in prenucleosomes but not in nucleosomes, and H3K56 acetylation is found at active promoters and enhancers. These findings therefore suggest that there may be prenucleosomes or prenucleosome-like particles in the upstream region of active promoters. More generally, we postulate that prenucleosomes or prenucleosome-like particles are present at dynamic chromatin, whereas canonical nucleosomes are at static chromatin. PMID:26767995

  2. Chromatin insulation by a transcriptional activator

    PubMed Central

    Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.

    2003-01-01

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916

  3. Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2016-01-01

    Interpreting the functional state of chromatin from the combinatorial binding patterns of chromatin factors, that is, the chromatin codes, is crucial for decoding the epigenetic state of the cell. Here we present a systematic map of Drosophila chromatin states derived from data-driven probabilistic modelling of dependencies between chromatin factors. Our model not only recapitulates enhancer-like chromatin states as indicated by widely used enhancer marks but also divides these states into three functionally distinct groups, of which only one specific group possesses active enhancer activity. Moreover, we discover a strong association between one specific enhancer state and RNA Polymerase II pausing, linking transcription regulatory potential and chromatin organization. We also observe that with the exception of long-intron genes, chromatin state transition positions in transcriptionally active genes align with an absolute distance to their corresponding transcription start site, regardless of gene length. Using our method, we provide a resource that helps elucidate the functional and spatial organization of the chromatin code landscape. PMID:26841971

  4. Chromatin States Accurately Classify Cell Differentiation Stages

    PubMed Central

    Larson, Jessica L.; Yuan, Guo-Cheng

    2012-01-01

    Gene expression is controlled by the concerted interactions between transcription factors and chromatin regulators. While recent studies have identified global chromatin state changes across cell-types, it remains unclear to what extent these changes are co-regulated during cell-differentiation. Here we present a comprehensive computational analysis by assembling a large dataset containing genome-wide occupancy information of 5 histone modifications in 27 human cell lines (including 24 normal and 3 cancer cell lines) obtained from the public domain, followed by independent analysis at three different representations. We classified the differentiation stage of a cell-type based on its genome-wide pattern of chromatin states, and found that our method was able to identify normal cell lines with nearly 100% accuracy. We then applied our model to classify the cancer cell lines and found that each can be unequivocally classified as differentiated cells. The differences can be in part explained by the differential activities of three regulatory modules associated with embryonic stem cells. We also found that the “hotspot” genes, whose chromatin states change dynamically in accordance to the differentiation stage, are not randomly distributed across the genome but tend to be embedded in multi-gene chromatin domains, and that specialized gene clusters tend to be embedded in stably occupied domains. PMID:22363642

  5. The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state

    PubMed Central

    Alarcon, Valentina; Hernández, Sergio; Rubio, Lorena; Alvarez, Francisca; Flores, Yvo; Varas-Godoy, Manuel; De Ferrari, Giancarlo V.; Kann, Michael; Villanueva, Rodrigo A.; Loyola, Alejandra

    2016-01-01

    With about 350 million people chronically infected around the world hepatitis B is a major health problem. Template for progeny HBV synthesis is the viral genome, organized as a minichromosome (cccDNA) inside the hepatocyte nucleus. How viral cccDNA gene expression is regulated by its chromatin structure; more importantly, how the modulation of this structure impacts on viral gene expression remains elusive. Here, we found that the enzyme SetDB1 contributes to setting up a repressed cccDNA chromatin state. This repressive state is activated by the histone lysine demethylase-1 (LSD1). Consistently, inhibiting or reducing LSD1 levels led to repression of viral gene expression. This correlates with the transcriptionally repressive mark H3K9 methylation and reduction on the activating marks H3 acetylation and H3K4 methylation on viral promoters. Investigating the importance of viral proteins we found that LSD1 recruitment to viral promoters was dependent on the viral transactivator protein HBx. Moreover, the histone methyltransferase Set1A and HBx are simultaneously bound to the core promoter, and Set1A expression correlates with cccDNA H3K4 methylation. Our results shed light on the mechanisms of HBV regulation mediated by the cccDNA chromatin structure, offering new therapeutic targets to develop drugs for the treatment of chronically infected HBV patients. PMID:27174370

  6. Human Genome Replication Proceeds through Four Chromatin States

    PubMed Central

    Julienne, Hanna; Zoufir, Azedine; Audit, Benjamin; Arneodo, Alain

    2013-01-01

    Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a

  7. Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines

    PubMed Central

    2014-01-01

    Background Deciphering the most common modes by which chromatin regulates transcription, and how this is related to cellular status and processes is an important task for improving our understanding of human cellular biology. The FANTOM5 and ENCODE projects represent two independent large scale efforts to map regulatory and transcriptional features to the human genome. Here we investigate chromatin features around a comprehensive set of transcription start sites in four cell lines by integrating data from these two projects. Results Transcription start sites can be distinguished by chromatin states defined by specific combinations of both chromatin mark enrichment and the profile shapes of these chromatin marks. The observed patterns can be associated with cellular functions and processes, and they also show association with expression level, location relative to nearby genes, and CpG content. In particular we find a substantial number of repressed inter- and intra-genic transcription start sites enriched for active chromatin marks and Pol II, and these sites are strongly associated with immediate-early response processes and cell signaling. Associations between start sites with similar chromatin patterns are validated by significant correlations in their global expression profiles. Conclusions The results confirm the link between chromatin state and cellular function for expressed transcripts, and also indicate that active chromatin states at repressed transcripts may poise transcripts for rapid activation during immune response. PMID:24669905

  8. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states

    PubMed Central

    Boettiger, Alistair N.; Bintu, Bogdan; Moffitt, Jeffrey R.; Wang, Siyuan; Beliveau, Brian J.; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A.; Wu, Chao-ting; Zhuang, Xiaowei

    2015-01-01

    Metazoan genomes are spatially organized at multiple scales, from packaging of DNA around individual nucleosomes to segregation of whole chromosomes into distinct territories1–5. At the intermediate scale of kilobases to megabases, which encompasses the sizes of genes, gene clusters and regulatory domains, the three-dimensional (3D) organization of DNA is implicated in multiple gene regulatory mechanisms2–4,6–8, but understanding this organization remains a challenge. At this scale, the genome is partitioned into domains of different epigenetic states that are essential for regulating gene expression9–11. Here, we investigate the 3D organization of chromatin in different epigenetic states using super-resolution imaging. We classified genomic domains in Drosophila cells into transcriptionally active, inactive, or Polycomb-repressed states and observed distinct chromatin organizations for each state. Remarkably, all three types of chromatin domains exhibit power-law scaling between their physical sizes in 3D and their domain lengths, but each type has a distinct scaling exponent. Polycomb-repressed chromatin shows the densest packing and most intriguing folding behaviour in which packing density increases with domain length. Distinct from the self-similar organization displayed by transcriptionally active and inactive chromatin, the Polycomb-repressed domains are characterized by a high degree of chromatin intermixing within the domain. Moreover, compared to inactive domains, Polycomb-repressed domains spatially exclude neighbouring active chromatin to a much stronger degree. Computational modelling and knockdown experiments suggest that reversible chromatin interactions mediated by Polycomb-group proteins plays an important role in these unique packaging properties of the repressed chromatin. Taken together, our super-resolution images reveal distinct chromatin packaging for different epigenetic states at the kilobase-to-megabase scale, a length scale that

  9. Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome

    NASA Astrophysics Data System (ADS)

    Ernst, Jason; Kellis, Manolis

    A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal chromatin states in human T cells, based on recurrent and spatially coherent combinations of chromatin marks.We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, largescale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

  10. Enhancer blocking activity of the insulator at H19-ICR is independent of chromatin barrier establishment.

    PubMed

    Singh, Vikrant; Srivastava, Madhulika

    2008-06-01

    Transcriptional insulators are cis regulatory elements that organize chromatin into independently regulated domains. At the imprinted murine Igf2/H19 locus, the H19-ICR insulator prevents the activation of the Igf2 promoter on the maternal allele by enhancers that activate H19 on the same chromosome. Given the well-demonstrated role of H19-ICR as an enhancer blocker, we investigated its ability to define a chromatin barrier, as the two activities are coincident on several insulators and may act in concert to define a functional chromatin boundary between adjacent genes with distinct transcriptional profiles. Allele-specific association of posttranslationally modified histones, reflecting the presence of active or inactive chromatin, was analyzed in the region encompassing H19-ICR using chromatin immunoprecipitation. The existence of differential histone modifications upstream and downstream of H19-ICR specifically on the maternal chromosome was observed, which is suggestive of a chromatin barrier formation. However, H19-ICR deletion analysis indicated that distinct chromatin states exist despite the absence of an intervening "barrier." Also, the enhancers can activate the Igf2 promoter despite some parts of the intervening chromatin being in the silent state. Hence, H19-ICR insulator activity is not dependent on preventing the enhancer-mediated alteration of the histone modifications in the region between the Igf2 promoter and the cognate enhancers. PMID:18378700

  11. Gene activation and cell fate control in plants: a chromatin perspective.

    PubMed

    Engelhorn, Julia; Blanvillain, Robert; Carles, Cristel C

    2014-08-01

    In plants, environment-adaptable organogenesis extends throughout the lifespan, and iterative development requires repetitive rounds of activation and repression of several sets of genes. Eukaryotic genome compaction into chromatin forms a physical barrier for transcription; therefore, induction of gene expression requires alteration in chromatin structure. One of the present great challenges in molecular and developmental biology is to understand how chromatin is brought from a repressive to permissive state on specific loci and in a very specific cluster of cells, as well as how this state is further maintained and propagated through time and cell division in a cell lineage. In this review, we report recent discoveries implementing our knowledge on chromatin dynamics that modulate developmental gene expression. We also discuss how new data sets highlight plant specificities, likely reflecting requirement for a highly dynamic chromatin.

  12. A quantitative telomeric chromatin isolation protocol identifies different telomeric states

    NASA Astrophysics Data System (ADS)

    Grolimund, Larissa; Aeby, Eric; Hamelin, Romain; Armand, Florence; Chiappe, Diego; Moniatte, Marc; Lingner, Joachim

    2013-11-01

    Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein composition of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional telomeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shelterins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease.

  13. Absence of canonical active chromatin marks in developmentally regulated genes

    PubMed Central

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  14. TALE proteins bind to both active and inactive chromatin.

    PubMed

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  15. Drosophila Paf1 modulates chromatin structure at actively transcribed genes.

    PubMed

    Adelman, Karen; Wei, Wenxiang; Ardehali, M Behfar; Werner, Janis; Zhu, Bing; Reinberg, Danny; Lis, John T

    2006-01-01

    The Paf1 complex in yeast has been reported to influence a multitude of steps in gene expression through interactions with RNA polymerase II (Pol II) and chromatin-modifying complexes; however, it is unclear which of these many activities are primary functions of Paf1 and are conserved in metazoans. We have identified and characterized the Drosophila homologs of three subunits of the yeast Paf1 complex and found striking differences between the yeast and Drosophila Paf1 complexes. We demonstrate that although Drosophila Paf1, Rtf1, and Cdc73 colocalize broadly with actively transcribing, phosphorylated Pol II, and all are recruited to activated heat shock genes with similar kinetics; Rtf1 does not appear to be a stable part of the Drosophila Paf1 complex. RNA interference (RNAi)-mediated depletion of Paf1 or Rtf1 leads to defects in induction of Hsp70 RNA, but tandem RNAi-chromatin immunoprecipitation assays show that loss of neither Paf1 nor Rtf1 alters the density or distribution of phosphorylated Pol II on the active Hsp70 gene. However, depletion of Paf1 reduces trimethylation of histone H3 at lysine 4 in the Hsp70 promoter region and significantly decreases the recruitment of chromatin-associated factors Spt6 and FACT, suggesting that Paf1 may manifest its effects on transcription through modulating chromatin structure. PMID:16354696

  16. Direct chromatin PCR (DC-PCR): hypotonic conditions allow differentiation of chromatin states during thermal cycling.

    PubMed

    Vatolin, Sergei; Khan, Shahper N; Reu, Frederic J

    2012-01-01

    Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR) on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90 °C, 41 of 61 tested 5' sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34) were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB) even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR.

  17. Cell guidance into quiescent state through chromatin remodeling induced by elastic modulus of substrate.

    PubMed

    Rabineau, Morgane; Flick, Florence; Mathieu, Eric; Tu, Annie; Senger, Bernard; Voegel, Jean-Claude; Lavalle, Philippe; Schaaf, Pierre; Freund, Jean-Noël; Haikel, Youssef; Vautier, Dominique

    2015-01-01

    Substrate stiffness is known to strongly influence the fate of adhering cells. Yet, little is known about the influence of the substrate stiffness on chromatin. Chromatin integrates a multitude of biochemical signals interpreted by activation or gene silencing. Here we investigate for the first time the organization of chromatin of epithelial cells on substrate with various mechanical properties. On stiff substrates (100-200 kPa), where cells preferentially adhere, chromatin is mainly found in its euchromatin form. Decreasing the Young modulus to 50 kPa is correlated with a partial shift from euchromatin to heterochromatin. On very soft substrates (≪10 kPa) this is accompanied by cell lysis. On these very soft substrates, histone deacetylase inhibition by adding a drug preserves acetylated histone and thus maintains the euchromatin form, thereby keeping intact the nuclear envelope as well as a residual intermediate filament network around the nucleus. This allows cells to survive in a non-adherent state without undergoing proliferation. When transfer on a stiff substrate these cells retain their capacity to adhere, to spread and to enter a novel mitotic cycle. A similar effect is observed on soft substrates (50 kPa) without need of histone deacetylase inhibition. These new results suggest that on soft substrates cells might enter in a quiescence state. Cell quiescence may thus be triggered by the Young modulus of a substrate, a major result for strategies focusing on the design of scaffold in tissue engineering.

  18. Engineering chromatin states: chemical and synthetic biology approaches to investigate histone modification function.

    PubMed

    Pick, Horst; Kilic, Sinan; Fierz, Beat

    2014-08-01

    Patterns of histone post-translational modifications (PTMs) and DNA modifications establish a landscape of chromatin states with regulatory impact on gene expression, cell differentiation and development. These diverse modifications are read out by effector protein complexes, which ultimately determine their functional outcome by modulating the activity state of underlying genes. From genome-wide studies employing high-throughput ChIP-Seq methods as well as proteomic mass spectrometry studies, a large number of PTMs are known and their coexistence patterns and associations with genomic regions have been mapped in a large number of different cell types. Conversely, the molecular interplay between chromatin effector proteins and modified chromatin regions as well as their resulting biological output is less well understood on a molecular level. Within the last decade a host of chemical approaches has been developed with the goal to produce synthetic chromatin with a defined arrangement of PTMs. These methods now permit systematic functional studies of individual histone and DNA modifications, and additionally provide a discovery platform to identify further interacting nuclear proteins. Complementary chemical- and synthetic-biology methods have emerged to directly observe and modulate the modification landscape in living cells and to readily probe the effect of altered PTM patterns on biological processes. Herein, we review current methodologies allowing chemical and synthetic biological engineering of distinct chromatin states in vitro and in vivo with the aim of obtaining a molecular understanding of histone and DNA modification function. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.

  19. Activation of ATM depends on chromatin interactions occurring before induction of DNA damage.

    PubMed

    Kim, Yong-Chul; Gerlitz, Gabi; Furusawa, Takashi; Catez, Frédéric; Nussenzweig, Andre; Oh, Kyu-Seon; Kraemer, Kenneth H; Shiloh, Yosef; Bustin, Michael

    2009-01-01

    Efficient and correct responses to double-stranded breaks (DSB) in chromosomal DNA are crucial for maintaining genomic stability and preventing chromosomal alterations that lead to cancer. The generation of DSB is associated with structural changes in chromatin and the activation of the protein kinase ataxia-telangiectasia mutated (ATM), a key regulator of the signalling network of the cellular response to DSB. The interrelationship between DSB-induced changes in chromatin architecture and the activation of ATM is unclear. Here we show that the nucleosome-binding protein HMGN1 modulates the interaction of ATM with chromatin both before and after DSB formation, thereby optimizing its activation. Loss of HMGN1 or ablation of its ability to bind to chromatin reduces the levels of ionizing radiation (IR)-induced ATM autophosphorylation and the activation of several ATM targets. IR treatments lead to a global increase in the acetylation of Lys 14 of histone H3 (H3K14) in an HMGN1-dependent manner and treatment of cells with histone deacetylase inhibitors bypasses the HMGN1 requirement for efficient ATM activation. Thus, by regulating the levels of histone modifications, HMGN1 affects ATM activation. Our studies identify a new mediator of ATM activation and demonstrate a direct link between the steady-state intranuclear organization of ATM and the kinetics of its activation after DNA damage. PMID:19079244

  20. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe.

    PubMed

    Allshire, Robin C; Ekwall, Karl

    2015-07-01

    This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres.

  1. Chromatin states modify network motifs contributing to cell-specific functions

    PubMed Central

    Zhao, Hongying; Liu, Tingting; Liu, Ling; Zhang, Guanxiong; Pang, Lin; Yu, Fulong; Fan, Huihui; Ping, Yanyan; Wang, Li; Xu, Chaohan; Xiao, Yun; Li, Xia

    2015-01-01

    Epigenetic modification can affect many important biological processes, such as cell proliferation and apoptosis. It can alter chromatin conformation and contribute to gene regulation. To investigate how chromatin states associated with network motifs, we assembled chromatin state-modified regulatory networks by combining 269 ChIP-seq data and chromatin states in four cell types. We found that many chromatin states were significantly associated with network motifs, especially for feedforward loops (FFLs). These distinct chromatin state compositions contribute to different expression levels and translational control of targets in FFLs. Strikingly, the chromatin state-modified FFLs were highly cell-specific and, to a large extent, determined cell-selective functions, such as the embryonic stem cell-specific bivalent modification-related FFL with an important role in poising developmentally important genes for expression. Besides, comparisons of chromatin state-modified FFLs between cancerous/stem and primary cell lines revealed specific type of chromatin state alterations that may act together with motif structural changes cooperatively contribute to cell-to-cell functional differences. Combination of these alterations could be helpful in prioritizing candidate genes. Together, this work highlights that a dynamic epigenetic dimension can help network motifs to control cell-specific functions. PMID:26169043

  2. Repression and activation by multiprotein complexes that alter chromatin structure.

    PubMed

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  3. Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice

    PubMed Central

    Fukuda, Atsushi; Mitani, Atsushi; Miyashita, Toshiyuki; Sado, Takashi; Umezawa, Akihiro; Akutsu, Hidenori

    2016-01-01

    In female mammals, activation of Xist (X-inactive specific transcript) is essential for establishment of X chromosome inactivation. During early embryonic development in mice, paternal Xist is preferentially expressed whereas maternal Xist (Xm-Xist) is silenced. Unlike autosomal imprinted genes, Xist imprinting for Xm-Xist silencing was erased in cloned or parthenogenetic but not fertilized embryos. However, the molecular mechanism underlying the variable nature of Xm-Xist imprinting is poorly understood. Here, we revealed that Xm-Xist silencing depends on chromatin condensation states at the Xist/Tsix genomic region and on Rnf12 expression levels. In early preimplantation, chromatin decondensation via H3K9me3 loss and histone acetylation gain caused Xm-Xist derepression irrespective of embryo type. Although the presence of the paternal genome during pronuclear formation impeded Xm-Xist derepression, Xm-Xist was robustly derepressed when the maternal genome was decondensed before fertilization. Once Xm-Xist was derepressed by chromatin alterations, the derepression was stably maintained and rescued XmXpΔ lethality, indicating that loss of Xm-Xist imprinting was irreversible. In late preimplantation, Oct4 served as a chromatin opener to create transcriptional permissive states at Xm-Xist/Tsix genomic loci. In parthenogenetic embryos, Rnf12 overdose caused Xm-Xist derepression via Xm-Tsix repression; physiological Rnf12 levels were essential for Xm-Xist silencing maintenance in fertilized embryos. Thus, chromatin condensation and fine-tuning of Rnf12 dosage were crucial for Xist imprint maintenance by silencing Xm-Xist. PMID:27788132

  4. Paternal diet defines offspring chromatin state and intergenerational obesity.

    PubMed

    Öst, Anita; Lempradl, Adelheid; Casas, Eduard; Weigert, Melanie; Tiko, Theodor; Deniz, Merdin; Pantano, Lorena; Boenisch, Ulrike; Itskov, Pavel M; Stoeckius, Marlon; Ruf, Marius; Rajewsky, Nikolaus; Reuter, Gunter; Iovino, Nicola; Ribeiro, Carlos; Alenius, Mattias; Heyne, Steffen; Vavouri, Tanya; Pospisilik, J Andrew

    2014-12-01

    The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution.

  5. Paternal diet defines offspring chromatin state and intergenerational obesity.

    PubMed

    Öst, Anita; Lempradl, Adelheid; Casas, Eduard; Weigert, Melanie; Tiko, Theodor; Deniz, Merdin; Pantano, Lorena; Boenisch, Ulrike; Itskov, Pavel M; Stoeckius, Marlon; Ruf, Marius; Rajewsky, Nikolaus; Reuter, Gunter; Iovino, Nicola; Ribeiro, Carlos; Alenius, Mattias; Heyne, Steffen; Vavouri, Tanya; Pospisilik, J Andrew

    2014-12-01

    The global rise in obesity has revitalized a search for genetic and epigenetic factors underlying the disease. We present a Drosophila model of paternal-diet-induced intergenerational metabolic reprogramming (IGMR) and identify genes required for its encoding in offspring. Intriguingly, we find that as little as 2 days of dietary intervention in fathers elicits obesity in offspring. Paternal sugar acts as a physiological suppressor of variegation, desilencing chromatin-state-defined domains in both mature sperm and in offspring embryos. We identify requirements for H3K9/K27me3-dependent reprogramming of metabolic genes in two distinct germline and zygotic windows. Critically, we find evidence that a similar system may regulate obesity susceptibility and phenotype variation in mice and humans. The findings provide insight into the mechanisms underlying intergenerational metabolic reprogramming and carry profound implications for our understanding of phenotypic variation and evolution. PMID:25480298

  6. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    PubMed

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  7. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  8. An Essential Viral Transcription Activator Modulates Chromatin Dynamics

    PubMed Central

    Gibeault, Rebecca L.; Bildersheim, Michael D.

    2016-01-01

    Although ICP4 is the only essential transcription activator of herpes simplex virus 1 (HSV-1), its mechanisms of action are still only partially understood. We and others propose a model in which HSV-1 genomes are chromatinized as a cellular defense to inhibit HSV-1 transcription. To counteract silencing, HSV-1 would have evolved proteins that prevent or destabilize chromatinization to activate transcription. These proteins should act as HSV-1 transcription activators. We have shown that HSV-1 genomes are organized in highly dynamic nucleosomes and that histone dynamics increase in cells infected with wild type HSV-1. We now show that whereas HSV-1 mutants encoding no functional ICP0 or VP16 partially enhanced histone dynamics, mutants encoding no functional ICP4 did so only minimally. Transient expression of ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or HSV-1 DNA. The dynamics of H3.1 were increased in cells expressing ICP4 to a greater extent than those of H3.3. The dynamics of H2B were increased in cells expressing ICP4, whereas those of canonical H2A were not. ICP4 preferentially targets silencing H3.1 and may also target the silencing H2A variants. In infected cells, histone dynamics were increased in the viral replication compartments, where ICP4 localizes. These results suggest a mechanism whereby ICP4 activates transcription by disrupting, or preventing the formation of, stable silencing nucleosomes on HSV-1 genomes. PMID:27575707

  9. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription

    PubMed Central

    Agbottah, Emmanuel; Deng, Longwen; Dannenberg, Luke O; Pumfery, Anne; Kashanchi, Fatah

    2006-01-01

    Background Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent of acquired immunodeficiency virus (AIDS). Following entry into the host cell, the viral RNA is reverse transcribed into DNA and subsequently integrated into the host genome as a chromatin template. The integrated proviral DNA, along with the specific chromatinized environment in which integration takes place allows for the coordinated regulation of viral transcription and replication. While the specific roles of and interplay between viral and host proteins have not been fully elucidated, numerous reports indicate that HIV-1 retains the ability for self-regulation via the pleiotropic effects of its viral proteins. Though viral transcription is fully dependent upon host cellular factors and the state of host activation, recent findings indicate a complex interplay between viral proteins and host transcription regulatory machineries including histone deacetylases (HDACs), histone acetyltransferases (HATs), cyclin dependent kinases (CDKs), and histone methyltransferases (HMTs). Results Here, we describe the effect of Tat activated transcription at the G1/S border of the cell cycle and analyze the interaction of modified Tat with the chromatin remodeling complex, SWI/SNF. HIV-1 LTR DNA reconstituted into nucleosomes can be activated in vitro using various Tat expressing extracts. Optimally activated transcription was observed at the G1/S border of the cell cycle both in vitro and in vivo, where chromatin remodeling complex, SWI/SNF, was present on the immobilized LTR DNA. Using a number of in vitro binding as well as in vivo chromatin immunoprecipitation (ChIP) assays, we detected the presence of both BRG1 and acetylated Tat in the same complex. Finally, we demonstrate that activated transcription resulted in partial or complete removal of the nucleosome from the start site of the LTR as evidenced by a restriction enzyme accessibility assay. Conclusion We propose a model where unmodified Tat

  10. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes

    PubMed Central

    Oswald, Franz; Rodriguez, Patrick; Giaimo, Benedetto Daniele; Antonello, Zeus A.; Mira, Laura; Mittler, Gerhard; Thiel, Verena N.; Collins, Kelly J.; Tabaja, Nassif; Cizelsky, Wiebke; Rothe, Melanie; Kühl, Susanne J.; Kühl, Michael; Ferrante, Francesca; Hein, Kerstin; Kovall, Rhett A.; Dominguez, Maria; Borggrefe, Tilman

    2016-01-01

    The transcriptional shift from repression to activation of target genes is crucial for the fidelity of Notch responses through incompletely understood mechanisms that likely involve chromatin-based control. To activate silenced genes, repressive chromatin marks are removed and active marks must be acquired. Histone H3 lysine-4 (H3K4) demethylases are key chromatin modifiers that establish the repressive chromatin state at Notch target genes. However, the counteracting histone methyltransferase required for the active chromatin state remained elusive. Here, we show that the RBP-J interacting factor SHARP is not only able to interact with the NCoR corepressor complex, but also with the H3K4 methyltransferase KMT2D coactivator complex. KMT2D and NCoR compete for the C-terminal SPOC-domain of SHARP. We reveal that the SPOC-domain exclusively binds to phosphorylated NCoR. The balance between NCoR and KMT2D binding is shifted upon mutating the phosphorylation sites of NCoR or upon inhibition of the NCoR kinase CK2β. Furthermore, we show that the homologs of SHARP and KMT2D in Drosophila also physically interact and control Notch-mediated functions in vivo. Together, our findings reveal how signaling can fine-tune a committed chromatin state by phosphorylation of a pivotal chromatin-modifier. PMID:26912830

  11. The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors.

    PubMed

    Feng, Weijun; Khan, Muhammad Amir; Bellvis, Pablo; Zhu, Zhe; Bernhardt, Olga; Herold-Mende, Christel; Liu, Hai-Kun

    2013-07-01

    Chromatin factors that regulate neurogenesis in the central nervous system remain to be explored. Here, we demonstrate that the chromatin remodeler chromodomain-helicase-DNA-binding protein 7 (CHD7), a protein frequently mutated in human CHARGE syndrome, is a master regulator of neurogenesis in mammalian brain. CHD7 is selectively expressed in actively dividing neural stem cells (NSCs) and progenitors. Genetic inactivation of CHD7 in NSCs leads to a reduction of neuronal differentiation and aberrant dendritic development of newborn neurons. Strikingly, physical exercise can rescue the CHD7 mutant phenotype in the adult hippocampal dentate gyrus. We further show that in NSCs, CHD7 stimulates the expression of Sox4 and Sox11 genes via remodeling their promoters to an open chromatin state. Our study demonstrates an essential role of CHD7 in activation of the neuronal differentiation program in NSCs, thus providing insights into epigenetic regulation of stem cell differentiation and molecular mechanism of human CHARGE syndrome. PMID:23827709

  12. Chromatin regulates origin activity in Drosophila follicle cells.

    PubMed

    Aggarwal, Bhagwan D; Calvi, Brian R

    2004-07-15

    It is widely believed that DNA replication in multicellular animals (metazoa) begins at specific origins to which a pre-replicative complex (pre-RC) binds. Nevertheless, a consensus sequence for origins has yet to be identified in metazoa. Origin identity can change during development, suggesting that there are epigenetic influences. A notable example of developmental specificity occurs in Drosophila, where somatic follicle cells of the ovary transition from genomic replication to exclusive re-replication at origins that control amplification of the eggshell (chorion) protein genes. Here we show that chromatin acetylation is critical for this developmental transition in origin specificity. We find that histones at the active origins are hyperacetylated, coincident with binding of the origin recognition complex (ORC). Mutation of the histone deacetylase (HDAC) Rpd3 induced genome-wide hyperacetylation, genomic replication and a redistribution of the origin-binding protein ORC2 in amplification-stage cells, independent of effects on transcription. Tethering Rpd3 or Polycomb proteins to the origin decreased its activity, whereas tethering the Chameau acetyltransferase increased origin activity. These results suggest that nucleosome acetylation and other epigenetic changes are important modulators of origin activity in metazoa. PMID:15254542

  13. Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex.

    PubMed

    Kapoor, Prabodh; Bao, Yunhe; Xiao, Jing; Luo, Jie; Shen, Jianfeng; Persinger, Jim; Peng, Guang; Ranish, Jeff; Bartholomew, Blaine; Shen, Xuetong

    2015-03-15

    ATP-dependent chromatin remodeling complexes alter chromatin structure through interactions with chromatin substrates such as DNA, histones, and nucleosomes. However, whether chromatin remodeling complexes have the ability to regulate nonchromatin substrates remains unclear. Saccharomyces cerevisiae checkpoint kinase Mec1 (ATR in mammals) is an essential master regulator of genomic integrity. Here we found that the SWI/SNF chromatin remodeling complex is capable of regulating Mec1 kinase activity. In vivo, Mec1 activity is reduced by the deletion of Snf2, the core ATPase subunit of the SWI/SNF complex. SWI/SNF interacts with Mec1, and cross-linking studies revealed that the Snf2 ATPase is the main interaction partner for Mec1. In vitro, SWI/SNF can activate Mec1 kinase activity in the absence of chromatin or known activators such as Dpb11. The subunit requirement of SWI/SNF-mediated Mec1 regulation differs from that of SWI/SNF-mediated chromatin remodeling. Functionally, SWI/SNF-mediated Mec1 regulation specifically occurs in S phase of the cell cycle. Together, these findings identify a novel regulator of Mec1 kinase activity and suggest that ATP-dependent chromatin remodeling complexes can regulate nonchromatin substrates such as a checkpoint kinase.

  14. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state

    PubMed Central

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A.; Goren, Alon; Weitz, David A.; Bernstein, Bradley E.

    2015-01-01

    Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying thousands of individual cells, and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data from each single cell is sparse, comprising on the order of 1000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of sub-populations defined by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone. PMID:26458175

  15. Chromatin Remodeling Factors Isw2 and Ino80 Regulate Checkpoint Activity and Chromatin Structure in S Phase

    PubMed Central

    Lee, Laura; Rodriguez, Jairo; Tsukiyama, Toshio

    2015-01-01

    When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism. PMID:25701287

  16. Coordinated Regulation of PPARγ Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity

    PubMed Central

    Eeckhoute, Jérôme; Oger, Frédérik; Staels, Bart; Lefebvre, Philippe

    2012-01-01

    The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is required for differentiation and function of mature adipocytes. Its expression is induced during adipogenesis where it plays a key role in establishing the transcriptome of terminally differentiated white fat cells. Here, we review findings indicating that PPARγ expression and activity are intricately regulated through control of chromatin structure. Hierarchical and combinatorial activation of transcription factors, noncoding RNAs, and chromatin remodelers allows for temporally controlled expression of PPARγ and its target genes through sequential chromatin remodelling. In obesity, these regulatory pathways may be altered and lead to modified PPARγ activity. PMID:22991504

  17. Multivalency governs HP1α association dynamics with the silent chromatin state

    PubMed Central

    Kilic, Sinan; Bachmann, Andreas L.; Bryan, Louise C.; Fierz, Beat

    2015-01-01

    Multivalent interactions between effector proteins and histone post-translational modifications are an elementary mechanism of dynamic chromatin signalling. Here we elucidate the mechanism how heterochromatin protein 1α (HP1α), a multivalent effector, is efficiently recruited to the silent chromatin state (marked by trimethylated H3 at Lys9, H3K9me3) while remaining highly dynamic. Employing chemically defined nucleosome arrays together with single-molecule total internal reflection fluorescence microscopy (smTIRFM), we demonstrate that the HP1α residence time on chromatin depends on the density of H3K9me3, as dissociated factors can rapidly rebind at neighbouring sites. Moreover, by chemically controlling HP1α dimerization we find that effector multivalency prolongs chromatin retention and, importantly, accelerates the association rate. This effect results from increased avidity together with strengthened nonspecific chromatin interactions of dimeric HP1α. We propose that accelerated chromatin binding is a key feature of effector multivalency, allowing for fast and efficient competition for binding sites in the crowded nuclear compartment. PMID:26084584

  18. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells.

    PubMed

    Murtha, Matthew; Strino, Francesco; Tokcaer-Keskin, Zeynep; Sumru Bayin, N; Shalabi, Doaa; Xi, Xiangmei; Kluger, Yuval; Dailey, Lisa

    2015-02-01

    Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states.

  19. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells.

    PubMed

    Murtha, Matthew; Strino, Francesco; Tokcaer-Keskin, Zeynep; Sumru Bayin, N; Shalabi, Doaa; Xi, Xiangmei; Kluger, Yuval; Dailey, Lisa

    2015-02-01

    Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states. PMID:25335464

  20. HMGA proteins as modulators of chromatin structure during transcriptional activation

    PubMed Central

    Ozturk, Nihan; Singh, Indrabahadur; Mehta, Aditi; Braun, Thomas; Barreto, Guillermo

    2013-01-01

    High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer. PMID:25364713

  1. Cohesin's role as an active chromatin domain anchorage revealed.

    PubMed

    Feig, Christine; Odom, Duncan T

    2013-12-11

    Cohesin is a conserved protein complex indispensible for proper cell division, because it secures sister-chromatid cohesion following DNA replication until segregation is required at the onset of anaphase. Recent studies have revealed functions beyond this, showing that cohesin binds to interphase chromatin regulating gene expression at select loci via long-range chromosomal interactions. In this issue of The EMBO Journal, Sofueva et al (2013) use a combination of chromatin conformation capture methods, classical FISH imaging, and loss-of-function studies to elegantly demonstrate how cohesin controls the 3D architectural organization of the genome.

  2. Vitamin D receptor binding, chromatin states and association with multiple sclerosis

    PubMed Central

    Disanto, Giulio; Sandve, Geir Kjetil; Berlanga-Taylor, Antonio J.; Ragnedda, Giammario; Morahan, Julia M.; Watson, Corey T.; Giovannoni, Gavin; Ebers, George C.; Ramagopalan, Sreeram V.

    2012-01-01

    Both genetic and environmental factors contribute to the aetiology of multiple sclerosis (MS). More than 50 genomic regions have been associated with MS susceptibility and vitamin D status also influences the risk of this complex disease. However, how these factors interact in disease causation is unclear. We aimed to investigate the relationship between vitamin D receptor (VDR) binding in lymphoblastoid cell lines (LCLs), chromatin states in LCLs and MS-associated genomic regions. Using the Genomic Hyperbrowser, we found that VDR-binding regions overlapped with active regulatory regions [active promoter (AP) and strong enhancer (SE)] in LCLs more than expected by chance [45.3-fold enrichment for SE (P < 2.0e−05) and 63.41-fold enrichment for AP (P < 2.0e−05)]. Approximately 77% of VDR regions were covered by either AP or SE elements. The overlap between VDR binding and regulatory elements was significantly greater in LCLs than in non-immune cells (P < 2.0e−05). VDR binding also occurred within MS regions more than expected by chance (3.7-fold enrichment, P < 2.0e−05). Furthermore, regions of joint overlap SE-VDR and AP-VDR were even more enriched within MS regions and near to several disease-associated genes. These findings provide relevant insights into how vitamin D influences the immune system and the risk of MS through VDR interactions with the chromatin state inside MS regions. Furthermore, the data provide additional evidence for an important role played by B cells in MS. Further analyses in other immune cell types and functional studies are warranted to fully elucidate the role of vitamin D in the immune system. PMID:22595971

  3. Activation Domain-Mediated Enhancement of Activator Binding to Chromatin in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Bunker, Christopher A.; Kingston, Robert E.

    1996-10-01

    DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

  4. Absence of canonical marks of active chromatin in developmentally regulated genes.

    PubMed

    Pérez-Lluch, Sílvia; Blanco, Enrique; Tilgner, Hagen; Curado, Joao; Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-10-01

    The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.

  5. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.

    PubMed

    Ulianov, Sergey V; Khrameeva, Ekaterina E; Gavrilov, Alexey A; Flyamer, Ilya M; Kos, Pavel; Mikhaleva, Elena A; Penin, Aleksey A; Logacheva, Maria D; Imakaev, Maxim V; Chertovich, Alexander; Gelfand, Mikhail S; Shevelyov, Yuri Y; Razin, Sergey V

    2016-01-01

    Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)(+) RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin. PMID:26518482

  6. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains

    PubMed Central

    Ulianov, Sergey V.; Khrameeva, Ekaterina E.; Gavrilov, Alexey A.; Flyamer, Ilya M.; Kos, Pavel; Mikhaleva, Elena A.; Penin, Aleksey A.; Logacheva, Maria D.; Imakaev, Maxim V.; Chertovich, Alexander; Gelfand, Mikhail S.; Shevelyov, Yuri Y.; Razin, Sergey V.

    2016-01-01

    Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)+ RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin. PMID:26518482

  7. Dynamics of chromatin accessibility and epigenetic state in response to UV damage.

    PubMed

    Schick, Sandra; Fournier, David; Thakurela, Sudhir; Sahu, Sanjeeb Kumar; Garding, Angela; Tiwari, Vijay K

    2015-12-01

    Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.

  8. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries.

    PubMed

    Klenov, Mikhail S; Lavrov, Sergey A; Korbut, Alina P; Stolyarenko, Anastasia D; Yakushev, Evgeny Y; Reuter, Michael; Pillai, Ramesh S; Gvozdev, Vladimir A

    2014-06-01

    The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression. PMID:24782529

  9. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries

    PubMed Central

    Klenov, Mikhail S.; Lavrov, Sergey A.; Korbut, Alina P.; Stolyarenko, Anastasia D.; Yakushev, Evgeny Y.; Reuter, Michael; Pillai, Ramesh S.; Gvozdev, Vladimir A.

    2014-01-01

    The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their post-transcriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression. PMID:24782529

  10. Stimulation of RNA polymerase I and II activities by 17 beta -estradiol receptor on chick liver chromatin.

    PubMed Central

    Dierks-Ventling, C; Bieri-Bonniot, F

    1977-01-01

    The endogenous transcriptional capacity (RNA polymerase I and II activity) of liver chromatin from chicks treated with 17 beta-estradiol for 24 h (E 24) was double that of the controls. E 24 chromatin contained estradiol receptor activity while control chromatin did not. Its presence suggested an implication in the enhanced activities of RNA polymerases of E 24 chromatin. When semi-purified estradiol receptor was added to control chromatin, the endogenous transcriptional capacity of this chromatin was greatly increased. Studies with alpha-amanitin showed that both RNA polymerase I and II were stimulated by the estradiol receptor. This stimulation was observed as long as homology of the system was maintained. Solubilized homologous RNA polymerases were stimulated much less by the hormone complex in the presence of heterologous DNA than with homologous chromatin. Prokaryotic RNA polymerase could not be stimulated by chick liver estradiol receptor in the presence of heterologous DNA. PMID:840645

  11. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene

    PubMed Central

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin. PMID:26020632

  12. The Proportion of Chromatin Graded between Closed and Open States Determines the Level of Transcripts Derived from Distinct Promoters in the CYP19 Gene.

    PubMed

    Kotomura, Naoe; Harada, Nobuhiro; Ishihara, Satoru

    2015-01-01

    The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin. PMID:26020632

  13. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  14. Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects

    PubMed Central

    Glastad, Karl M.; Goodisman, Michael A. D.; Yi, Soojin V.; Hunt, Brendan G.

    2015-01-01

    Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution. PMID:26637432

  15. Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects.

    PubMed

    Glastad, Karl M; Goodisman, Michael A D; Yi, Soojin V; Hunt, Brendan G

    2015-12-04

    Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution.

  16. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    PubMed Central

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2015-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336

  17. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  18. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  19. Xenobiotic activity in serum and sperm chromatin integrity in European and inuit populations.

    PubMed

    Krüger, Tanja; Spanò, Marcello; Long, Manhai; Eleuteri, Patrizia; Rescia, Michele; Hjelmborg, Philip S; Manicardi, Gian-Carlo; Bizzaro, Davide; Giwercman, Alexander; Toft, Gunnar; Bonde, Jens Peter; Bonefeld-Jorgensen, Eva C

    2008-04-01

    Lipophilic persistent organic pollutants (POPs) are ubiquitous in the environment and suspected to interfere with hormone activities and reproduction. In previous studies we demonstrated that POP exposure can affect sperm DNA integrity and differences between Inuits and Europeans in sperm DNA integrity and xenobiotic activity were observed. The aim of this study was to investigate possible relations between human sperm chromatin integrity and the xenobiotic serum activity of lipophilic POPs assessed as effects on the estrogen (ER), androgen (AR), and/or aryl hydrocarbon (AhR) receptors. Human sperm chromatin integrity was assessed as DNA fragmentation index (%DFI) and high DNA stainability (%HDS) using the flow cytometric sperm chromatin structure assay (SCSA). Xenobiotic receptor activities were determined using chemically activated luciferase gene expression (CALUX) assay. The study included 53 Greenlandic Inuits and 247 Europeans (Sweden, Warsaw (Poland) and Kharkiv (Ukraine)). A heterogeneous pattern of correlations was found. For Inuits, ER and AhR activities and %DFI were inversely correlated, whereas a positive correlation between AR activity and %DFI was found for Europeans. In contrast, no correlation between receptor activities and %HDS was observed for Inuits but for Europeans positive and negative correlations were observed between ER and AR activities and %HDS, respectively. We suggest that the different patterns of xenobiotic serum activities, in combination with diet associated factors and/or genetics, might be connected to the observed differences in sperm chromatin integrity between the Inuits and Europeans. PMID:18076054

  20. Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency

    PubMed Central

    Yang, Yul W; Flynn, Ryan A; Chen, Yong; Qu, Kun; Wan, Bingbing; Wang, Kevin C; Lei, Ming; Chang, Howard Y

    2014-01-01

    The WDR5 subunit of the MLL complex enforces active chromatin and can bind RNA; the relationship between these two activities is unclear. Here we identify a RNA binding pocket on WDR5, and discover a WDR5 mutant (F266A) that selectively abrogates RNA binding without affecting MLL complex assembly or catalytic activity. Complementation in ESCs shows that WDR5 F266A mutant is unable to accumulate on chromatin, and is defective in gene activation, maintenance of histone H3 lysine 4 trimethylation, and ESC self renewal. We identify a family of ESC messenger and lncRNAs that interact with wild type WDR5 but not F266A mutant, including several lncRNAs known to be important for ESC gene expression. These results suggest that specific RNAs are integral inputs into the WDR5-MLL complex for maintenance of the active chromatin state and embryonic stem cell fates. DOI: http://dx.doi.org/10.7554/eLife.02046.001 PMID:24521543

  1. Chromatin remodeling in plant development.

    PubMed

    Jarillo, José A; Piñeiro, Manuel; Cubas, Pilar; Martínez-Zapater, José M

    2009-01-01

    Plant development results from specific patterns of gene expression that are tightly regulated in a spatio-temporal manner. Chromatin remodeling plays a central role in establishing these expression patterns and maintaining epigenetic transcriptional states through successive rounds of mitosis that take place within a cell lineage. Plant epigenetic switches occur not only at the embryo stage, but also during postembryonic developmental transitions, suggesting that chromatin remodeling activities in plants can provide a higher degree of regulatory flexibility which probably underlies their developmental plasticity. Here, we highlight recent progress in the understanding of plant chromatin dynamic organization, facilitating the activation or repression of specific sets of genes involved in different developmental programs and integrating them with the response to environmental signals. Chromatin conformation controls gene expression both in actively dividing undifferentiated cells and in those already fate-determined. In this context, we first describe chromatin reorganization activities required to maintain meristem function stable through DNA replication and cell division. Organ initiation at the apex, with emphasis on reproductive development, is next discussed to uncover the chromatin events involved in the establishment and maintenance of expression patterns associated with differentiating cells; this is illustrated with the complex epigenetic regulation of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Finally, we discuss the involvement of chromatin remodeling in plant responses to environmental cues and to different types of stress conditions.

  2. Transcriptional Activation of the Integrated Chromatin-Associated Human Immunodeficiency Virus Type 1 Promoter

    PubMed Central

    El Kharroubi, Aboubaker; Piras, Graziella; Zensen, Ralf; Martin, Malcolm A.

    1998-01-01

    The regulation of human immunodeficiency virus type 1 (HIV-1) gene expression involves a complex interplay between cellular transcription factors, chromatin-associated proviral DNA, and the virus-encoded transactivator protein, Tat. Here we show that Tat transactivates the integrated HIV-1 long terminal repeat (LTR), even in the absence of detectable basal promoter activity, and this transcriptional activation is accompanied by chromatin remodeling downstream of the transcription initiation site, as monitored by increased accessibility to restriction endonucleases. However, with an integrated promoter lacking both Sp1 and NF-κB sites, Tat was unable to either activate transcription or induce changes in chromatin structure even when it was tethered to the HIV-1 core promoter upstream of the TATA box. Tat responsiveness was observed only when Sp1 or NF-κB was bound to the promoter, implying that Tat functions subsequent to the formation of a specific transcription initiation complex. Unlike Tat, NF-κB failed to stimulate the integrated transcriptionally silent HIV-1 promoter. Histone acetylation renders the inactive HIV-1 LTR responsive to NF-κB, indicating that a suppressive chromatin structure must be remodeled prior to transcriptional activation by NF-κB. Taken together, these results suggest that Sp1 and NF-κB are required for the assembly of transcriptional complexes on the integrated viral promoter exhibiting a continuum of basal activities, all of which are fully responsive to Tat. PMID:9566873

  3. Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter.

    PubMed

    El Kharroubi, A; Piras, G; Zensen, R; Martin, M A

    1998-05-01

    The regulation of human immunodeficiency virus type 1 (HIV-1) gene expression involves a complex interplay between cellular transcription factors, chromatin-associated proviral DNA, and the virus-encoded transactivator protein, Tat. Here we show that Tat transactivates the integrated HIV-1 long terminal repeat (LTR), even in the absence of detectable basal promoter activity, and this transcriptional activation is accompanied by chromatin remodeling downstream of the transcription initiation site, as monitored by increased accessibility to restriction endonucleases. However, with an integrated promoter lacking both Sp1 and NF-kappaB sites, Tat was unable to either activate transcription or induce changes in chromatin structure even when it was tethered to the HIV-1 core promoter upstream of the TATA box. Tat responsiveness was observed only when Sp1 or NF-kappaB was bound to the promoter, implying that Tat functions subsequent to the formation of a specific transcription initiation complex. Unlike Tat, NF-kappaB failed to stimulate the integrated transcriptionally silent HIV-1 promoter. Histone acetylation renders the inactive HIV-1 LTR responsive to NF-kappaB, indicating that a suppressive chromatin structure must be remodeled prior to transcriptional activation by NF-kappaB. Taken together, these results suggest that Sp1 and NF-kappaB are required for the assembly of transcriptional complexes on the integrated viral promoter exhibiting a continuum of basal activities, all of which are fully responsive to Tat. PMID:9566873

  4. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.

    PubMed

    Floer, Monique; Wang, Xin; Prabhu, Vidya; Berrozpe, Georgina; Narayan, Santosh; Spagna, Dan; Alvarez, David; Kendall, Jude; Krasnitz, Alexander; Stepansky, Asya; Hicks, James; Bryant, Gene O; Ptashne, Mark

    2010-04-30

    How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.

  5. A noncanonical bromodomain in the AAA ATPase protein Yta7 directs chromosomal positioning and barrier chromatin activity.

    PubMed

    Gradolatto, Angeline; Smart, Sherri K; Byrum, Stephanie; Blair, Lauren P; Rogers, Richard S; Kolar, Elizabeth A; Lavender, Heather; Larson, Signe K; Aitchison, John D; Taverna, Sean D; Tackett, Alan J

    2009-09-01

    Saccharomyces cerevisiae Yta7 is a barrier active protein that modulates transcriptional states at the silent mating locus, HMR. Additionally, Yta7 regulates histone gene transcription and has overlapping functions with known histone chaperones. This study focused on deciphering the functional role of the noncanonical Yta7 bromodomain. By use of genetic and epistasis analyses, the Yta7 bromodomain was shown to be necessary for barrier activity at HMR and to have overlapping functions with histone regulators (Asf1 and Spt16). Canonical bromodomains can bind to acetylated lysines on histones; however, the Yta7 bromodomain showed an association with histones that was independent of posttranslational modification. Further investigation showed that regions of Yta7 other than the bromodomain conferred histone association. Chromatin immunoprecipitation-chip analyses revealed that the Yta7 bromodomain was not solely responsible for histone association but was also necessary for proper chromosomal positioning of Yta7. This work demonstrates that the Yta7 bromodomain engages histones for certain cellular functions like barrier chromatin maintenance and particular Spt16/Asf1 cellular pathways of chromatin regulation.

  6. DNA and Chromatin Modification Networks Distinguish Stem Cell Pluripotent Ground States*

    PubMed Central

    Song, Jing; Saha, Sudipto; Gokulrangan, Giridharan; Tesar, Paul J.; Ewing, Rob M.

    2012-01-01

    Pluripotent stem cells are capable of differentiating into all cell types of the body and therefore hold tremendous promise for regenerative medicine. Despite their widespread use in laboratories across the world, a detailed understanding of the molecular mechanisms that regulate the pluripotent state is currently lacking. Mouse embryonic (mESC) and epiblast (mEpiSC) stem cells are two closely related classes of pluripotent stem cells, derived from distinct embryonic tissues. Although both mESC and mEpiSC are pluripotent, these cell types show important differences in their properties suggesting distinct pluripotent ground states. To understand the molecular basis of pluripotency, we analyzed the nuclear proteomes of mESCs and mEpiSCs to identify protein networks that regulate their respective pluripotent states. Our study used label-free LC-MS/MS to identify and quantify 1597 proteins in embryonic and epiblast stem cell nuclei. Immunoblotting of a selected protein subset was used to confirm that key components of chromatin regulatory networks are differentially expressed in mESCs and mEpiSCs. Specifically, we identify differential expression of DNA methylation, ATP-dependent chromatin remodeling and nucleosome remodeling networks in mESC and mEpiSC nuclei. This study is the first comparative study of protein networks in cells representing the two distinct, pluripotent states, and points to the importance of DNA and chromatin modification processes in regulating pluripotency. In addition, by integrating our data with existing pluripotency networks, we provide detailed maps of protein networks that regulate pluripotency that will further both the fundamental understanding of pluripotency as well as efforts to reliably control the differentiation of these cells into functional cell fates. PMID:22822199

  7. Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair.

    PubMed

    Klement, Karolin; Luijsterburg, Martijn S; Pinder, Jordan B; Cena, Chad S; Del Nero, Victor; Wintersinger, Christopher M; Dellaire, Graham; van Attikum, Haico; Goodarzi, Aaron A

    2014-12-22

    Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis. This obstruction is alleviated by chromatin relaxation via ATM-dependent KAP-1S824 phosphorylation (pKAP-1) and CHD3.1 dispersal from heterochromatic DSBs; however, how heterochromatin compaction is actually adjusted after CHD3.1 dispersal is unknown. In this paper, we demonstrate that Artemis-dependent DSB repair in heterochromatin requires ISWI (imitation switch)-class ACF1-SNF2H nucleosome remodeling. Compacted chromatin generated by CHD3.1 after DNA replication necessitates ACF1-SNF2H-mediated relaxation for DSB repair. ACF1-SNF2H requires RNF20 to bind heterochromatic DSBs, underlies RNF20-mediated chromatin relaxation, and functions downstream of pKAP-1-mediated CHD3.1 dispersal to enable DSB repair. CHD3.1 and ACF1-SNF2H display counteractive activities but similar histone affinities (via the plant homeodomains of CHD3.1 and ACF1), which we suggest necessitates a two-step dispersal and recruitment system regulating these opposing chromatin remodeling activities during DSB repair.

  8. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation.

    PubMed

    Chen, Shaoyong; Gulla, Sarah; Cai, Changmeng; Balk, Steven P

    2012-03-01

    Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.

  9. Different conformations of ribosomal DNA in active and inactive chromatin in Xenopus laevis.

    PubMed

    Spadafora, C; Riccardi, P

    1985-12-20

    The chromatin structure of the ribosomal DNA in Xenopus laevis was studied by micrococcal nuclease digestions of blood, liver and embryonic cell nuclei. We have found that BglI-restricted DNA from micrococcal nuclease-digested blood cell nuclei has an increased electrophoretic mobility compared to the undigested control. Micrococcal nuclease digestion of liver cell nuclei causes a very slight shift in mobility, only in the region of the spacer containing the "Bam Islands". In contrast, the mobility of ribosomal DNA in chromatin of embryonic cells, under identical digestion conditions, remains unaffected by the nuclease activity. Denaturing gels or ligase action on the nuclease-treated DNA abolishes the differences in the electrophoretic mobility. Ionic strength and ethidium bromide influence the relative electrophoretic migration of the two DNA fragment populations, suggesting that secondary structure may play an important role in the observed phenomena. In addition, restriction analysis under native electrophoretic conditions of DNA prepared from blood, liver and embryonic cells shows that blood cell DNA restriction fragments always have a faster mobility than the corresponding fragments of liver and embryo cell DNA. We therefore propose that nicking activity by micrococcal nuclease modifies the electrophoretic mobility of an unusual DNA conformation, present in blood cell, and to a lesser extent, in liver cell ribosomal chromatin. A possible function for these structures is discussed. The differences of the ribosomal chromatin structures in adult and embryonic tissues may reflect the potential of the genes to be expressed.

  10. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations.

    PubMed

    Haven, Babette; Heilig, Elysia; Donham, Cristine; Settles, Michael; Vasilevsky, Nicole; Owen, Katherine

    2016-01-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a substantial number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of experiments from "A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations" by Sharma and colleagues, published in Cell in 2010 (Sharma et al., 2010). Sharma and colleagues demonstrated that prolonged exposure of cancer cells to TKIs give rise to small populations of "drug tolerant persisters" (DTPs) (Figure 1B-C) that were reversed during subsequent maintenance under drug-free conditions (Figures 1E, 2B and 2E). DTPs exhibited reduced histone acetylation and sensitivity to HDAC inhibitors (HDIs) (Figure 4A-B). Drug sensitivity was restored with co-treatment of either HDIs or an IGF-1R inhibitor, in combination with TKIs (Figure 5A-B). Inhibition of IGF-1R activation also led to decreased KDM5A expression and restoration of H3K4 methylation, suggesting a direct link between the IGF-1R signaling pathway and KDM5A function (Figure 7A, 7C, and 7I). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. PMID:26905833

  11. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations

    PubMed Central

    Haven, Babette; Heilig, Elysia; Donham, Cristine; Settles, Michael; Vasilevsky, Nicole; Owen, Katherine

    2016-01-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a substantial number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of experiments from “A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations” by Sharma and colleagues, published in Cell in 2010 (Sharma et al., 2010). Sharma and colleagues demonstrated that prolonged exposure of cancer cells to TKIs give rise to small populations of “drug tolerant persisters” (DTPs) (Figure 1B-C) that were reversed during subsequent maintenance under drug-free conditions (Figures 1E, 2B and 2E). DTPs exhibited reduced histone acetylation and sensitivity to HDAC inhibitors (HDIs) (Figure 4A-B). Drug sensitivity was restored with co-treatment of either HDIs or an IGF-1R inhibitor, in combination with TKIs (Figure 5A-B). Inhibition of IGF-1R activation also led to decreased KDM5A expression and restoration of H3K4 methylation, suggesting a direct link between the IGF-1R signaling pathway and KDM5A function (Figure 7A, 7C, and 7I). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.09462.001 PMID:26905833

  12. Chromatin Remodeling Inactivates Activity Genes and Regulates Neural Coding

    PubMed Central

    Hill, Kelly K.; Hemberg, Martin; Reddy, Naveen C.; Cho, Ha Y.; Guthrie, Arden N.; Oldenborg, Anna; Heiney, Shane A.; Ohmae, Shogo; Medina, Javier F.; Holy, Timothy E.; Bonni, Azad

    2016-01-01

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating mRNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. PMID:27418512

  13. LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns

    PubMed Central

    Li, Yongsheng; Chen, Hong; Pan, Tao; Jiang, Chunjie; Zhao, Zheng; Wang, Zishan; Zhang, Jinwen; Xu, Juan; Li, Xia

    2015-01-01

    Accumulating evidences suggest that long non-coding RNAs (lncRNAs) perform important functions. Genome-wide chromatin-states area rich source of information about cellular state, yielding insights beyond what is typically obtained by transcriptome profiling. We propose an integrative method for genome-wide functional predictions of lncRNAs by combining chromatin states data with gene expression patterns. We first validated the method using protein-coding genes with known function annotations. Our validation results indicated that our integrative method performs better than co-expression analysis, and is accurate across different conditions. Next, by applying the integrative model genome-wide, we predicted the probable functions for more than 97% of human lncRNAs. The putative functions inferred by our method match with previously annotated by the targets of lncRNAs. Moreover, the linkage from the cellular processes influenced by cancer-associated lncRNAs to the cancer hallmarks provided a “lncRNA point-of-view” on tumor biology. Our approach provides a functional annotation of the lncRNAs, which we developed into a web-based application, LncRNA Ontology, to provide visualization, analysis, and downloading of lncRNA putative functions. PMID:26485761

  14. Growth hormone and drug metabolism. Acute effects on nuclear ribonucleic acid polymerase activity and chromatin.

    PubMed Central

    Spelsberg, T C; Wilson, J T

    1976-01-01

    Adult male rats, subjected either to sham operation or to hypophysectomy and adrenalectomy were maintained for 10 days before treatment with growth hormone. Results of the acute effects of growth hormone on the rat liver nuclear RNA polymerase I (nucleolar) and II (nucleoplasmic) activities as well as the chromatin template capacity were then studied and compared with the growth-hormone effects on the drug metabolism described in the preceding paper (Wilson & Spelsberg, 1976). 2. Conditions for isolation and storage of nuclei for maintenance of optimal polymerase activities are described. It is verified that the assays for polymerase activities require a DNA template, all four nucleoside triphosphates, and a bivalent cation, and that the acid-insoluble radioactive product represents RNA. Proof is presented that under high-salt conditions DNA-like RNA (polymerase II) is synthesized, and that under low-salt conditions in the presence of alpha-amanitin, rRNA (polymerase I) is synthesized. 3. In the livers of hypophysectomized/adrenalectomized rats, growth hormone increases the activity of both RNA polymerase enzymes and the chromatin template capacity within 1h after treatment. The effects last for 12h in the case of polymerase II but for only 6h in the case of polymerase I. Sham-operated rats respond to growth hormone in a manner somewhat similar to that shown by hypophysectomized/adrenalectomized rats. These results, which demonstrate an enhancement of RNA polymerase I activity in response to growth hormone, support those from other laboratories. 4. Growth-hormone enhancement of the chromatin template capacity in the liver of hypophysectomized/adrenalectomized rats contrasts with previous reports. The growth-hormone-induced de-repression of the chromatin DNA could represent the basis of the growth-hormone-induced enhancement of RNA polymerase II activity in the hypophysectomized/adrenalectomized rats, although some effect of growth-hormone on the polymerase enzymes

  15. The HNF-4/HNF-1α transactivation cascade regulates gene activity and chromatin structure of the human serine protease inhibitor gene cluster at 14q32.1

    PubMed Central

    Rollini, Pierre; Fournier, R. E. K.

    1999-01-01

    Hepatocyte-specific expression of the α1-antitrypsin (α1AT) gene requires the activities of two liver-enriched transactivators, hepatocyte nuclear factors 1α and 4 (HNF-1α and HNF-4). The α1AT gene maps to a region of human chromosome 14q32.1 that includes a related serine protease inhibitor (serpin) gene encoding corticosteroid-binding globulin (CBG), and the chromatin organization of this ≈130-kb region, as defined by DNase I-hypersensitive sites, has been described. Microcell transfer of human chromosome 14 from fibroblasts to rat hepatoma cells results in activation of α1AT and CBG transcription and chromatin reorganization of the entire locus. To assess the roles of HNF-1α and HNF-4 in gene activation and chromatin remodeling, we transferred human chromosome 14 from fibroblasts to rat hepatoma cell variants that are deficient in expression of HNF-1α and HNF-4. The variant cells failed to activate either α1AT or CBG transcription, and chromatin remodeling failed to occur. However, α1AT and CBG transcription could be rescued by transfecting the cells with expression plasmids encoding HNF-1α or HNF-4. In these transfectants, the chromatin structure of the entire α1AT/CBG locus was reorganized to an expressing cell-typical state. Thus, HNF-1α and HNF-4 control both chromatin structure and gene activity of two cell-specific genes within the serpin gene cluster at 14q32.1. PMID:10468604

  16. Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae.

    PubMed Central

    Fascher, K D; Schmitz, J; Hörz, W

    1990-01-01

    Induction of the PHO5 gene in Saccharomyces cerevisiae by phosphate starvation was previously shown to be accompanied by the removal of four positioned nucleosomes from the promoter. We have now investigated the role of two trans-activating proteins, encoded by PHO2 and PHO4, which bind to the PHO5 promoter. Both proteins are absolutely required for the chromatin transition to occur as shown by analysis of null mutants of the two genes. Transformation of these mutant strains with plasmids containing the respective genes restores the wild type chromatin response. Increasing the gene dosage of PHO2 and of PHO4 makes it possible to differentiate functionally between the two proteins. From over-expressing PHO4 in a wild type and also in a pho2 null mutant strain and complementary experiments with PHO2, it is concluded that the PHO4 protein is the primary trigger for the chromatin transition, consistent with one of its two binding sites being located between positioned nucleosomes in repressed chromatin and thereby accessible. PHO2, the binding site of which is located within a nucleosome under conditions of PHO5 repression, contributes to the chromatin transition either by destabilizing histone-DNA interactions or by under-going interactions with PHO4. Images Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2196175

  17. Two kinase activities are sufficient for sea urchin sperm chromatin decondensation in vitro.

    PubMed

    Stephens, S; Beyer, B; Balthazar-Stablein, U; Duncan, R; Kostacos, M; Lukoma, M; Green, G R; Poccia, D

    2002-08-01

    Decondensation of compact and inactive sperm chromatin by egg cytoplasm at fertilization is necessary to convert the male germ cell chromatin to an active somatic form. We studied decondensation of sea urchin sperm nuclei in a cell-free extract of sea urchin eggs to define conditions promoting decondensation. We find that egg cytosol specifically phosphorylates two sperm-specific (Sp) histones in vitro in the same regions as in vivo. This activity is blocked by olomoucine, an inhibitor of cdc2-like kinases, but not by chelerythrine, an inhibitor of protein kinase C (PKC). PKC phosphorylates and solubilizes the sperm nuclear lamina, one requirement for decondensation. Olomoucine, which does not inhibit lamina removal, blocks sperm nuclear decondensation in the same concentration range over which it is effective in blocking Sp histone phosphorylation. In a system free of other soluble proteins, neither PKC nor cdc2 alone elicit sperm chromatin decondensation, but the two act synergistically to decondense sperm nuclei. We conclude that two kinases activities are sufficient for sea urchin male pronuclear decondensation in vitro, a lamin kinase (PKC) and a cdc2-like Sp histone kinase.

  18. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin.

    PubMed

    Org, Tõnis; Rebane, Ana; Kisand, Kai; Laan, Martti; Haljasorg, Uku; Andreson, Reidar; Peterson, Pärt

    2009-12-15

    The Autoimmune Regulator (AIRE) protein is expressed in thymic medullary epithelial cells, where it promotes the ectopic expression of tissue-restricted antigens needed for efficient negative selection of developing thymocytes. Mutations in AIRE cause APECED syndrome, which is characterized by a breakdown of self-tolerance. The molecular mechanism by which AIRE increases the expression of a variety of different genes remains unknown. Here, we studied AIRE-regulated genes using whole genome expression analysis and chromatin immunoprecipitation. We show that AIRE preferentially activates genes that are tissue-specific and characterized by low levels of initial expression in stably transfected HEK293 cell model and mouse thymic medullary epithelial cells. In addition, the AIRE-regulated genes lack active chromatin marks, such as histone H3 trimethylation (H3K4me3) and acetylation (AcH3), on their promoters. We also show that during activation by AIRE, the target genes acquire histone H3 modifications associated with transcription and RNA polymerase II. In conclusion, our data show that AIRE is able to promote ectopic gene expression from chromatin associated with histone modifications characteristic to inactive genes.

  19. Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription.

    PubMed

    Chia, Dennis J; Rotwein, Peter

    2010-10-01

    Many of the long-term physiological effects of GH require hormone-mediated changes in gene expression. The transcription factor signal transducer and activator of transcription 5b (Stat5b) plays a critical role in the actions of GH on growth and metabolism by regulating a large number of GH-dependent genes by incompletely understood mechanisms. Here we have assessed the impact of GH-initiated and Stat5b-mediated signaling on the chromatin landscape of hormone-regulated genes in the liver of pituitary-deficient young adult male rats. In the absence of GH there was minimal ongoing transcription at the Socs2, Cish, Igfals, and Spi 2.1 promoters, minimal occupancy of Stat5b at proximal promoter sites, and relatively closed chromatin, as evidenced by low levels of core histone acetylation. In contrast, transcriptionally silent Igf1 promoter 1 appeared poised to be activated, based on binding of coactivators p300 and Med1/Trap220, high levels of histone acetylation, and the presence of RNA polymerase II. GH treatment led to a 8- to 20-fold rise in transcriptional activity of all five genes within 30-60 min and was accompanied by binding of Stat5b to the proximal Socs2, Cish, Igfals, and Spi 2.1 promoters and to seven distal Igf1 Stat5b elements, by enhanced histone acetylation at all five promoters, by recruitment of RNA polymerase II to the Socs2, Cish, Igfals, and Spi 2.1 promoters, and by loss of the transcriptional repressor Bcl6 from Socs2, Cish, and Igfals Stat5b sites, but not from two Igf1 Stat5b domains. We conclude that GH actions induce rapid and dramatic changes in hepatic chromatin at target promoters and propose that the chromatin signature of Igf1 differs from other GH-and Stat5b-dependent genes. PMID:20702579

  20. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression.

    PubMed

    Libbrecht, Maxwell W; Ay, Ferhat; Hoffman, Michael M; Gilbert, David M; Bilmes, Jeffrey A; Noble, William Stafford

    2015-04-01

    The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term "specific expression domains." We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data.

  1. A Computer Lab Exploring Evolutionary Aspects of Chromatin Structure and Dynamics for an Undergraduate Chromatin Course

    ERIC Educational Resources Information Center

    Eirin-Lopez, Jose M.

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a…

  2. The Costimulatory Receptor OX40 Inhibits Interleukin-17 Expression through Activation of Repressive Chromatin Remodeling Pathways.

    PubMed

    Xiao, Xiang; Shi, Xiaomin; Fan, Yihui; Wu, Chenglin; Zhang, Xiaolong; Minze, Laurie; Liu, Wentao; Ghobrial, Rafik M; Lan, Peixiang; Li, Xian Chang

    2016-06-21

    T helper 17 (Th17) cells are prominently featured in multiple autoimmune diseases, but the regulatory mechanisms that control Th17 cell responses are poorly defined. Here we found that stimulation of OX40 triggered a robust chromatin remodeling response and produced a "closed" chromatin structure at interleukin-17 (IL-17) locus to inhibit Th17 cell function. OX40 activated the NF-κB family member RelB, and RelB recruited the histone methyltransferases G9a and SETDB1 to the Il17 locus to deposit "repressive" chromatin marks at H3K9 sites, and consequently repressing IL-17 expression. Unlike its transcriptional activities, RelB acted independently of both p52 and p50 in the suppression of IL-17. In an experimental autoimmune encephalomyelitis (EAE) disease model, we found that OX40 stimulation inhibited IL-17 and reduced EAE. Conversely, RelB-deficient CD4(+) T cells showed enhanced IL-17 induction and exacerbated the disease. Our data uncover a mechanism in the control of Th17 cells that might have important clinic implications. PMID:27317259

  3. The landscape of accessible chromatin in mammalian preimplantation embryos.

    PubMed

    Wu, Jingyi; Huang, Bo; Chen, He; Yin, Qiangzong; Liu, Yang; Xiang, Yunlong; Zhang, Bingjie; Liu, Bofeng; Wang, Qiujun; Xia, Weikun; Li, Wenzhi; Li, Yuanyuan; Ma, Jing; Peng, Xu; Zheng, Hui; Ming, Jia; Zhang, Wenhao; Zhang, Jing; Tian, Geng; Xu, Feng; Chang, Zai; Na, Jie; Yang, Xuerui; Xie, Wei

    2016-06-30

    In mammals, extensive chromatin reorganization is essential for reprogramming terminally committed gametes to a totipotent state during preimplantation development. However, the global chromatin landscape and its dynamics in this period remain unexplored. Here we report a genome-wide map of accessible chromatin in mouse preimplantation embryos using an improved assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) approach with CRISPR/Cas9-assisted mitochondrial DNA depletion. We show that despite extensive parental asymmetry in DNA methylomes, the chromatin accessibility between the parental genomes is globally comparable after major zygotic genome activation (ZGA). Accessible chromatin in early embryos is widely shaped by transposable elements and overlaps extensively with putative cis-regulatory sequences. Unexpectedly, accessible chromatin is also found near the transcription end sites of active genes. By integrating the maps of cis-regulatory elements and single-cell transcriptomes, we construct the regulatory network of early development, which helps to identify the key modulators for lineage specification. Finally, we find that the activities of cis-regulatory elements and their associated open chromatin diminished before major ZGA. Surprisingly, we observed many loci showing non-canonical, large open chromatin domains over the entire transcribed units in minor ZGA, supporting the presence of an unusually permissive chromatin state. Together, these data reveal a unique spatiotemporal chromatin configuration that accompanies early mammalian development. PMID:27309802

  4. The polyomavirus enhancer activates chromatin accessibility on integration into the HPRT gene.

    PubMed Central

    Pikaart, M; Feng, J; Villeponteau, B

    1992-01-01

    Recent studies suggest that enhancers may increase the accessibility of chromatin to transcription factors. To test the effects of a viral enhancer on chromatin accessibility, we have inserted minigenes with or without the polyomavirus enhancer into the third exon of the hypoxanthine phosphoribosyltransferase (HPRT) gene by homologous recombination and have prepared high-resolution maps of gene accessibility by using a novel polymerase chain reaction assay for DNase I sensitivity. In its native state, we find that the HPRT gene has low sensitivity to DNase I in fibrosarcoma cells. Insertion of the polyomavirus enhancer and neo reporter gene into exon 3 confers altered HPRT DNase I sensitivity for several kilobases on either side of the enhancer. The changes in DNase I sensitivity peak near the enhancer and decline with distance from the enhancer. The increase in HPRT DNase I sensitivity persisted when the tk promoter was deleted from the inserted construct but disappeared when the enhancer was deleted. These experiments identify the polyomavirus enhancer as a cis-acting initiator of chromatin accessibility. Images PMID:1333045

  5. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    PubMed

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR.

  6. Mendelian Disorders of the Epigenetic Machinery: Tipping the Balance of Chromatin States

    PubMed Central

    Fahrner, Jill A.; Bjornsson, Hans T.

    2015-01-01

    Mendelian disorders of the epigenetic machinery are a newly delineated group of multiple congenital anomaly and intellectual disability syndromes resulting from mutations in genes encoding components of the epigenetic machinery. The gene products affected in these inherited conditions act in trans and are expected to have widespread epigenetic consequences. Many of these syndromes demonstrate phenotypic overlap with classical imprinting disorders and with one another. The various writer and eraser systems involve opposing players, which we propose must maintain a balance between open and closed chromatin states in any given cell. An imbalance might lead to disrupted expression of disease-relevant target genes. We suggest that classifying disorders based on predicted effects on this balance would be informative regarding pathogenesis. Furthermore, strategies targeted at restoring this balance might offer novel therapeutic avenues, taking advantage of available agents such as histone deacetylase inhibitors and histone acetylation antagonists. PMID:25184531

  7. The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering

    PubMed Central

    Hendrix, Jelle; Gijsbers, Rik; De Rijck, Jan; Voet, Arnout; Hotta, Jun-ichi; McNeely, Melissa; Hofkens, Johan; Debyser, Zeger; Engelborghs, Yves

    2011-01-01

    Nearly all cellular and disease related functions of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF/p75) involve tethering of interaction partners to chromatin via its conserved integrase binding domain (IBD), but little is known about the mechanism of in vivo chromatin binding and tethering. In this work we studied LEDGF/p75 in real-time in living HeLa cells combining different quantitative fluorescence techniques: spot fluorescence recovery after photobleaching (sFRAP) and half-nucleus fluorescence recovery after photobleaching (hnFRAP), continuous photobleaching, fluorescence correlation spectroscopy (FCS) and an improved FCS method to study diffusion dependence of chromatin binding, tunable focus FCS. LEDGF/p75 moves about in nuclei of living cells in a chromatin hopping/scanning mode typical for transcription factors. The PWWP domain of LEDGF/p75 is necessary, but not sufficient for in vivo chromatin binding. After interaction with HIV-1 integrase via its IBD, a general protein–protein interaction motif, kinetics of LEDGF/p75 shift to 75-fold larger affinity for chromatin. The PWWP is crucial for locking the complex on chromatin. We propose a scan-and-lock model for LEDGF/p75, unifying paradoxical notions of transcriptional co-activation and lentiviral integration targeting. PMID:20974633

  8. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation.

    PubMed

    Duren, Zhana; Wang, Yong

    2016-01-01

    Chromatin regulators (CRs) are crucial for connecting the chromatin level and transcriptome level by modulating chromatin structures, establishing, and maintaining epigenetic modifications. We present a systematic method to identify MOdulation of transcriptional regulation via CHromatin Activity (MOCHA) from gene expression data and demonstrate its advantage in associating CRs to their chromatin localization and understand CRs' function. We first re-construct the CRs modulation network by integrating the correlation and conditional correlation concepts. Then we quantify the chromatin activity as hidden variable in network by integrating the upstream and downstream information. We applied MOCHA to systematically explore the interplay of CRs, TFs, and target genes in mouse embryonic stem cells (ESC). As a result, MOCHA identified 420 chromatin regulators with modulation preference, including Pou5f1 and Eed. We found that BAF complex, NuRD complex, and polycomb-group proteins, regulate the delicate balance between pluripotency and differentiation by modulating key TFs including Klf4, Tcf3, and Max; NuRD complex members Mbd3 and Hdac1 may modulate Klf4 to achieve its dual functional roles in pluripotent and differentiation stages;Imprinted gene H19 and Igf2 are modulated by DNA methylation, histone acetylation, and insulator CTCF. Finally, we analyzed CR's combinational modulation pattern by constructing a CR-CR interaction network. PMID:26949222

  9. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation

    PubMed Central

    Duren, Zhana; Wang, Yong

    2016-01-01

    Chromatin regulators (CRs) are crucial for connecting the chromatin level and transcriptome level by modulating chromatin structures, establishing, and maintaining epigenetic modifications. We present a systematic method to identify MOdulation of transcriptional regulation via CHromatin Activity (MOCHA) from gene expression data and demonstrate its advantage in associating CRs to their chromatin localization and understand CRs’ function. We first re-construct the CRs modulation network by integrating the correlation and conditional correlation concepts. Then we quantify the chromatin activity as hidden variable in network by integrating the upstream and downstream information. We applied MOCHA to systematically explore the interplay of CRs, TFs, and target genes in mouse embryonic stem cells (ESC). As a result, MOCHA identified 420 chromatin regulators with modulation preference, including Pou5f1 and Eed. We found that BAF complex, NuRD complex, and polycomb-group proteins, regulate the delicate balance between pluripotency and differentiation by modulating key TFs including Klf4, Tcf3, and Max; NuRD complex members Mbd3 and Hdac1 may modulate Klf4 to achieve its dual functional roles in pluripotent and differentiation stages;Imprinted gene H19 and Igf2 are modulated by DNA methylation, histone acetylation, and insulator CTCF. Finally, we analyzed CR’s combinational modulation pattern by constructing a CR-CR interaction network. PMID:26949222

  10. Ligand Binding Shifts Highly Mobile Retinoid X Receptor to the Chromatin-Bound State in a Coactivator-Dependent Manner, as Revealed by Single-Cell Imaging

    PubMed Central

    Brazda, Peter; Krieger, Jan; Daniel, Bence; Jonas, David; Szekeres, Tibor; Langowski, Jörg; Tóth, Katalin; Vámosi, György

    2014-01-01

    Retinoid X receptor (RXR) is a promiscuous nuclear receptor forming heterodimers with several other receptors, which activate different sets of genes. Upon agonist treatment, the occupancy of its genomic binding regions increased, but only a modest change in the number of sites was revealed by chromatin immunoprecipitation followed by sequencing, suggesting a rather static behavior. However, such genome-wide and biochemical approaches do not take into account the dynamic behavior of a transcription factor. Therefore, we characterized the nuclear dynamics of RXR during activation in single cells on the subsecond scale using live-cell imaging. By applying fluorescence recovery after photobleaching and fluorescence correlation spectroscopy (FCS), techniques with different temporal and spatial resolutions, a highly dynamic behavior could be uncovered which is best described by a two-state model (slow and fast) of receptor mobility. In the unliganded state, most RXRs belonged to the fast population, leaving ∼15% for the slow, chromatin-bound fraction. Upon agonist treatment, this ratio increased to ∼43% as a result of an immediate and reversible redistribution. Coactivator binding appears to be indispensable for redistribution and has a major contribution to chromatin association. A nuclear mobility map recorded by light sheet microscopy-FCS shows that the ligand-induced transition from the fast to the slow population occurs throughout the nucleus. Our results support a model in which RXR has a distinct, highly dynamic nuclear behavior and follows hit-and-run kinetics upon activation. PMID:24449763

  11. Genome-wide Snapshot of Chromatin Regulators and States in Xenopus Embryos by ChIP-Seq

    PubMed Central

    Gentsch, George E.; Patrushev, Ilya; Smith, James C.

    2015-01-01

    The recruitment of chromatin regulators and the assignment of chromatin states to specific genomic loci are pivotal to cell fate decisions and tissue and organ formation during development. Determining the locations and levels of such chromatin features in vivo will provide valuable information about the spatio-temporal regulation of genomic elements, and will support aspirations to mimic embryonic tissue development in vitro. The most commonly used method for genome-wide and high-resolution profiling is chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq). This protocol outlines how yolk-rich embryos such as those of the frog Xenopus can be processed for ChIP-Seq experiments, and it offers simple command lines for post-sequencing analysis. Because of the high efficiency with which the protocol extracts nuclei from formaldehyde-fixed tissue, the method allows easy upscaling to obtain enough ChIP material for genome-wide profiling. Our protocol has been used successfully to map various DNA-binding proteins such as transcription factors, signaling mediators, components of the transcription machinery, chromatin modifiers and post-translational histone modifications, and for this to be done at various stages of embryogenesis. Lastly, this protocol should be widely applicable to other model and non-model organisms as more and more genome assemblies become available. PMID:25742027

  12. Enrichment of estradiol-receptor complexes in a transcriptionally active fraction of chromatin from MCF-7 cells

    PubMed Central

    Scott, Richard W.; Frankel, Fred R.

    1980-01-01

    We have examined the interaction of the estradiol receptor molecule with chromatin in MCF-7 cells, a human breast tumor cell line responsive to estradiol. Receptor was found associated with the various nucleosomal products produced by digestion with micrococcal nuclease. In order to determine whether these receptor binding sites were distributed in a random or nonrandom manner within the chromatin, we have fractionated MCF-7 cell chromatin into transcriptionally active and inactive fractions by limited micrococcal nuclease digestion followed by Mg2+ precipitation. A comparison of the Mg2+-soluble and insoluble chromatin fractions showed that the Mg2+-soluble fraction: (i) was composed predominantly of mononucleosomes; (ii) was enriched in nonhistone proteins; (iii) apparently lacked histone H1; (iv) was enriched approximately 5-fold in transcribed sequences as measured by a cDNA probe to cytoplasmic poly(A)-RNA sequences; and (v) was depleted at least 5-fold of globin sequences, which is presumably a nontranscribed gene in these cells. When these cells were stimulated with β-[3H]estradiol, the Mg2+-soluble fraction showed a significant enrichment in chromatin-bound estradiol receptor: the Mg2+-soluble mononucleosomes showed a 3- to 4-fold enrichment and the di- and trinucleosomes, a 7- to 19-fold enrichment, when compared to the corresponding subunits in the Mg2+-insoluble chromatin fraction. This cofractionation of chromatin enriched in transcribed sequences and bound estradiol receptor indicated that receptor binding to MCF-7 cell chromatin was not random but, rather, occurred preferentially in specific regions of the chromatin. PMID:6929487

  13. Minireview: Conversing With Chromatin: The Language of Nuclear Receptors

    PubMed Central

    2014-01-01

    Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners. PMID:24196351

  14. Minireview: Conversing with chromatin: the language of nuclear receptors.

    PubMed

    Biddie, Simon C; John, Sam

    2014-01-01

    Nuclear receptors are transcription factors that are activated by physiological stimuli to bind DNA in the context of chromatin and regulate complex biological pathways. Major advances in nuclear receptor biology have been aided by genome scale examinations of receptor interactions with chromatin. In this review, we summarize the roles of the chromatin landscape in regulating nuclear receptor function. Chromatin acts as a central integrator in the nuclear receptor-signaling axis, operating in distinct temporal modalities. Chromatin effects nuclear receptor action by specifying its genomic localization and interactions with regulatory elements. On receptor binding, changes in chromatin operate as an effector of receptor signaling to modulate transcriptional events. Chromatin is therefore an integral component of the pathways that guide nuclear receptor action in cell-type-specific and cell state-dependent manners. PMID:24196351

  15. Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming.

    PubMed

    Boller, Sören; Ramamoorthy, Senthilkumar; Akbas, Duygu; Nechanitzky, Robert; Burger, Lukas; Murr, Rabih; Schübeler, Dirk; Grosschedl, Rudolf

    2016-03-15

    Lymphopoiesis requires the activation of lineage-specific genes embedded in naive, inaccessible chromatin or in primed, accessible chromatin. The mechanisms responsible for de novo gain of chromatin accessibility, known as "pioneer" function, remain poorly defined. Here, we showed that the EBF1 C-terminal domain (CTD) is required for the regulation of a specific gene set involved in B cell fate decision and differentiation, independently of activation and repression functions. Using genome-wide analysis of DNaseI hypersensitivity and DNA methylation in multipotent Ebf1(-/-) progenitors and derivative EBF1wt- or EBF1ΔC-expressing cells, we found that the CTD promoted chromatin accessibility and DNA demethylation in previously naive chromatin. The CTD allowed EBF1 to bind at inaccessible genomic regions that offer limited co-occupancy by other transcription factors, whereas the CTD was dispensable for EBF1 binding at regions that are occupied by multiple transcription factors. Thus, the CTD enables EBF1 to confer permissive lineage-specific changes in progenitor chromatin landscape. PMID:26982363

  16. HMGN proteins modulate chromatin regulatory sites and gene expression during activation of naïve B cells

    PubMed Central

    Zhang, Shaofei; Zhu, Iris; Deng, Tao; Furusawa, Takashi; Rochman, Mark; Vacchio, Melanie S.; Bosselut, Remy; Yamane, Arito; Casellas, Rafael; Landsman, David; Bustin, Michael

    2016-01-01

    The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn−/− mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes. PMID:27112571

  17. Bidirectional Transcription Arises from Two Distinct Hubs of Transcription Factor Binding and Active Chromatin.

    PubMed

    Scruggs, Benjamin S; Gilchrist, Daniel A; Nechaev, Sergei; Muse, Ginger W; Burkholder, Adam; Fargo, David C; Adelman, Karen

    2015-06-18

    Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find that coupled sense and anti-sense TSSs precisely define the boundaries of a nucleosome-depleted region (NDR) that is highly enriched in transcription factor (TF) motifs. Notably, as the distance between sense and anti-sense TSSs increases, so does the size of the NDR, the level of signal-dependent TF binding, and gene activation. We further discover a group of anti-sense TSSs in macrophages with an enhancer-like chromatin signature. Interestingly, this signature identifies divergent promoters that are activated during immune challenge. We propose that anti-sense promoters serve as platforms for TF binding and establishment of active chromatin to further regulate or enhance sense-strand mRNA expression.

  18. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins

    PubMed Central

    Harr, Jennifer C.; Luperchio, Teresa Romeo; Wong, Xianrong; Cohen, Erez; Wheelan, Sarah J.

    2015-01-01

    Nuclear organization has been implicated in regulating gene activity. Recently, large developmentally regulated regions of the genome dynamically associated with the nuclear lamina have been identified. However, little is known about how these lamina-associated domains (LADs) are directed to the nuclear lamina. We use our tagged chromosomal insertion site system to identify small sequences from borders of fibroblast-specific variable LADs that are sufficient to target these ectopic sites to the nuclear periphery. We identify YY1 (Ying-Yang1) binding sites as enriched in relocating sequences. Knockdown of YY1 or lamin A/C, but not lamin A, led to a loss of lamina association. In addition, targeted recruitment of YY1 proteins facilitated ectopic LAD formation dependent on histone H3 lysine 27 trimethylation and histone H3 lysine di- and trimethylation. Our results also reveal that endogenous loci appear to be dependent on lamin A/C, YY1, H3K27me3, and H3K9me2/3 for maintenance of lamina-proximal positioning. PMID:25559185

  19. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?

    PubMed Central

    Luger, Karolin; Dechassa, Mekonnen L.; Tremethick, David J.

    2012-01-01

    The compaction of genomic DNA into chromatin has profound implications for the regulation of key processes such as transcription, replication and DNA repair. Nucleosomes, the repeating building blocks of chromatin, vary in the composition of their histone protein components. This is the result of the incorporation of variant histones and post-translational modifications of histone amino acid side chains. The resulting changes in nucleosome structure, stability and dynamics affect the compaction of nucleosomal arrays into higher-order structures. It is becoming clear that chromatin structures are not nearly as uniform and regular as previously assumed. This implies that chromatin structure must also be viewed in the context of specific biological functions. PMID:22722606

  20. Aging Triggers a Repressive Chromatin State at Bdnf Promoters in Hippocampal Neurons.

    PubMed

    Palomer, Ernest; Martín-Segura, Adrián; Baliyan, Shishir; Ahmed, Tariq; Balschun, Detlef; Venero, Cesar; Martin, Mauricio G; Dotti, Carlos G

    2016-09-13

    Cognitive capacities decline with age, an event accompanied by the altered transcription of synaptic plasticity genes. Here, we show that the transcriptional induction of Bdnf by a mnemonic stimulus is impaired in aged hippocampal neurons. Mechanistically, this defect is due to reduced NMDA receptor (NMDAR)-mediated activation of CaMKII. Decreased NMDAR signaling prevents changes associated with activation at specific Bdnf promoters, including displacement of histone deacetylase 4, recruitment of the histone acetyltransferase CBP, increased H3K27 acetylation, and reduced H3K27 trimethylation. The decrease in NMDA-CaMKII signaling arises from constitutive reduction of synaptic cholesterol that occurs with normal aging. Increasing the levels of neuronal cholesterol in aged neurons in vitro, ex vivo, and in vivo restored NMDA-induced Bdnf expression and chromatin remodeling. Furthermore, pharmacological prevention of age-associated cholesterol reduction rescued signaling and cognitive deficits of aged mice. Thus, reducing hippocampal cholesterol loss may represent a therapeutic approach to reverse cognitive decline during aging. PMID:27626660

  1. Combinatorial Control of Light Induced Chromatin Remodeling and Gene Activation in Neurospora

    PubMed Central

    Sancar, Cigdem; Ha, Nati; Yilmaz, Rüstem; Tesorero, Rafael; Fisher, Tamas; Brunner, Michael; Sancar, Gencer

    2015-01-01

    Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression. PMID:25822411

  2. Separation of lymphocyte chromatin into template-active fractions with specificity for eukaryotic RNA polymerase II or prokaryotic RNA polymerase.

    PubMed Central

    Magee, B B; Paoletti, J; Magee, P T

    1975-01-01

    When chromatin prepared from WI-L2 lymphocytes by low salt extraction and shearing is centrifuged on a glycerol gradient, one area of the gradient yields chromatin enriched in template activity for Escherichia coli DNA-dependent RNA polymerase (EC 2.7.7.6; nucleosidetriphosphate:RNA nucleotidyltransferase) as compared to Saccharomyces cerevisiae RNA polymerase II (or B). Another area yields chromatin preferred by the eukaryotic enzyme. Kinetic studies indicate that the differences in activity cannot be explained by differences in affinity of the enzymes for the various templates. The DNA isolated from either fraction has a molecular weight of 8.5 X 106. The "yeast active" fraction seems enriched in proteins. Mixing experiments indicate that the yeast enzyme does not alter the template in such a way as to improve it for the bacterial enzyme. PMID:1108005

  3. Normal development following chromatin transfer correlates with donor cell initial epigenetic state.

    PubMed

    McLean, Cameron A; Wang, Zhongde; Babu, Kavitha; Edwards, Angie; Kasinathan, Poothappillai; Robl, James; Sheppard, Allan M

    2010-04-01

    If the full potential of chromatin transfer (CT) technology is to be realized for both animal production and biomedical applications it is imperative that the efficiency of the reprogramming process be improved, and the potential for deleterious development be eliminated. Generation of the first cloned animals from adult somatic cells demonstrated that development is substantially an epigenetic process (Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH, 1997. Viable offspring derived from fetal and adult mammalian cells. Nature. 385(6619): 810-813.). In this study, we provide preliminary evidence that the epigenetic state of the donor cell, may be valuable in assessing potential cloning success. We have measured key indicators of cellular epigenetic state in both serially derived cell populations of the same genetic origin, but differing in epigenomic status, and in a distinct cohort of donor cell populations with diverse genetic origins and epigenomic status. Specifically, the relative abundance of particular histone modifications in donor populations prior to manipulation has been correlated with the measurable variance in reprogramming efficiencies observed following CT, as defined by the number of resulting live births and healthy progeny, and the concomitant incidence of deleterious growth measures (notably the appearance of large offspring syndrome (LOS)). Thus, we suggest that the likely outcome and relative success of cloning may be predictable based on the expression of discriminating histone marks present in the donor cell population before CT. This approach may provide the basis of a prognostic signature for the future evaluation and risk assessment of putative donor cells prior to CT, and thus increase future cloning success and alleviate the incidence of abnormal development.

  4. Chromatin-specific regulation of LEF-1–β-catenin transcription activation and inhibition in vitro

    PubMed Central

    Tutter, Antonin V.; Fryer, Christy J.; Jones, Katherine A.

    2001-01-01

    Transcriptional activation of Wnt/Wg-responsive genes requires the stabilization and nuclear accumulation of β-catenin, a dedicated coactivator of LEF/TCF enhancer-binding proteins. Here we report that recombinant β-catenin strongly enhances binding and transactivation by LEF-1 on chromatin templates in vitro. Interestingly, different LEF-1 isoforms vary in their ability to bind nucleosomal templates in the absence of β-catenin, owing to N-terminal residues that repress binding to chromatin, but not nonchromatin, templates. Transcriptional activation in vitro requires both the armadillo (ARM) repeats and the C terminus of β-catenin, whereas the phosphorylated N terminus is inhibitory to transcription. A fragment spanning the C terminus (CT) and ARM repeats 11 and 12 (CT–ARM), but not the CT alone, functions as a dominant negative inhibitor of LEF-1–β-cat activity in vitro and can block ATP-dependent binding of the complex to chromatin. LEF-1–β-cat transactivation in vitro was also repressed by inhibitor of β-catenin and Tcf-4 (ICAT), a physiological inhibitor of Wnt/Wg signaling that interacts with ARM repeats 11 and 12, and by the nonsteroidal anti-inflammatory compound, sulindac. None of these transcription inhibitors (CT–ARM, ICAT, or sulindac) could disrupt the LEF-1–β-cat complex after it was stably bound to chromatin. We conclude that the CT–ARM region of β-catenin functions as a chromatin-specific activation domain, and that several inhibitors of the Wnt/Wg pathway directly modulate LEF-1–β-cat activity on chromatin. PMID:11751639

  5. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies

    PubMed Central

    Chan, Siu Chiu; Selth, Luke A.; Li, Yingming; Nyquist, Michael D.; Miao, Lu; Bradner, James E.; Raj, Ganesh V.; Tilley, Wayne D.; Dehm, Scott M.

    2015-01-01

    Androgen receptor (AR) variants (AR-Vs) expressed in prostate cancer (PCa) lack the AR ligand binding domain (LBD) and function as constitutively active transcription factors. AR-V expression in patient tissues or circulating tumor cells is associated with resistance to AR-targeting endocrine therapies and poor outcomes. Here, we investigated the mechanisms governing chromatin binding of AR-Vs with the goal of identifying therapeutic vulnerabilities. By chromatin immunoprecipitation and sequencing (ChIP-seq) and complementary biochemical experiments, we show that AR-Vs display a binding preference for the same canonical high-affinity androgen response elements (AREs) that are preferentially engaged by AR, albeit with lower affinity. Dimerization was an absolute requirement for constitutive AR-V DNA binding and transcriptional activation. Treatment with the bromodomain and extraterminal (BET) inhibitor JQ1 resulted in inhibition of AR-V chromatin binding and impaired AR-V driven PCa cell growth in vitro and in vivo. Importantly, this was associated with a novel JQ1 action of down-regulating AR-V transcript and protein expression. Overall, this study demonstrates that AR-Vs broadly restore AR chromatin binding events that are otherwise suppressed during endocrine therapy, and provides pre-clinical rationale for BET inhibition as a strategy for inhibiting expression and chromatin binding of AR-Vs in PCa. PMID:25908785

  6. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies.

    PubMed

    Chan, Siu Chiu; Selth, Luke A; Li, Yingming; Nyquist, Michael D; Miao, Lu; Bradner, James E; Raj, Ganesh V; Tilley, Wayne D; Dehm, Scott M

    2015-07-13

    Androgen receptor (AR) variants (AR-Vs) expressed in prostate cancer (PCa) lack the AR ligand binding domain (LBD) and function as constitutively active transcription factors. AR-V expression in patient tissues or circulating tumor cells is associated with resistance to AR-targeting endocrine therapies and poor outcomes. Here, we investigated the mechanisms governing chromatin binding of AR-Vs with the goal of identifying therapeutic vulnerabilities. By chromatin immunoprecipitation and sequencing (ChIP-seq) and complementary biochemical experiments, we show that AR-Vs display a binding preference for the same canonical high-affinity androgen response elements (AREs) that are preferentially engaged by AR, albeit with lower affinity. Dimerization was an absolute requirement for constitutive AR-V DNA binding and transcriptional activation. Treatment with the bromodomain and extraterminal (BET) inhibitor JQ1 resulted in inhibition of AR-V chromatin binding and impaired AR-V driven PCa cell growth in vitro and in vivo. Importantly, this was associated with a novel JQ1 action of down-regulating AR-V transcript and protein expression. Overall, this study demonstrates that AR-Vs broadly restore AR chromatin binding events that are otherwise suppressed during endocrine therapy, and provides pre-clinical rationale for BET inhibition as a strategy for inhibiting expression and chromatin binding of AR-Vs in PCa.

  7. Chromatin and epigenetics in all their states: Meeting report of the first conference on Epigenetic and Chromatin Regulation of Plant Traits - January 14 - 15, 2016 - Strasbourg, France.

    PubMed

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Le Gall, Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-08-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meeting to remember. In this article we summarize some of the new insights into chromatin, epigenetics, and epigenomics research and highlight nascent ideas and emerging concepts in this exciting area of research. PMID:27184433

  8. Chromatin and epigenetics in all their states: Meeting report of the first conference on Epigenetic and Chromatin Regulation of Plant Traits - January 14 - 15, 2016 - Strasbourg, France.

    PubMed

    Bey, Till; Jamge, Suraj; Klemme, Sonja; Komar, Dorota Natalia; Le Gall, Sabine; Mikulski, Pawel; Schmidt, Martin; Zicola, Johan; Berr, Alexandre

    2016-08-01

    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meeting to remember. In this article we summarize some of the new insights into chromatin, epigenetics, and epigenomics research and highlight nascent ideas and emerging concepts in this exciting area of research.

  9. Targeted resequencing of regulatory regions at schizophrenia risk loci: Role of rare functional variants at chromatin repressive states.

    PubMed

    González-Peñas, Javier; Amigo, Jorge; Santomé, Luis; Sobrino, Beatriz; Brenlla, Julio; Agra, Santiago; Paz, Eduardo; Páramo, Mario; Carracedo, Ángel; Arrojo, Manuel; Costas, Javier

    2016-07-01

    There is mounting evidence that regulatory variation plays an important role in genetic risk for schizophrenia. Here, we specifically search for regulatory variants at risk by sequencing promoter regions of twenty-three genes implied in schizophrenia by copy number variant or genome-wide association studies. After strict quality control, a total of 55,206bp per sample were analyzed in 526 schizophrenia cases and 516 controls from Galicia, NW Spain, using the Applied Biosystems SOLiD System. Variants were filtered based on frequency from public databases, chromatin states from the RoadMap Epigenomics Consortium at tissues relevant for schizophrenia, such as fetal brain, mid-frontal lobe, and angular gyrus, and prediction of functionality from RegulomeDB. The proportion of rare variants at polycomb repressive chromatin state at relevant tissues was higher in cases than in controls. The proportion of rare variants with predicted regulatory role was significantly higher in cases than in controls (P=0.0028, OR=1.93, 95% C.I.=1.23-3.04). Combination of information from both sources led to the identification of an excess of carriers of rare variants with predicted regulatory role located at polycomb repressive chromatin state at relevant tissues in cases versus controls (P=0.0016, OR=19.34, 95% C.I.=2.45-2495.26). The variants are located at two genes affected by the 17q12 copy number variant, LHX1 and HNF1B. These data strongly suggest that a specific epigenetic mechanism, chromatin remodeling by histone modification during early development, may be impaired in a subset of schizophrenia patients, in agreement with previous data. PMID:27066855

  10. BRG1-mediated immune tolerance: facilitation of Treg activation and partial independence of chromatin remodelling

    PubMed Central

    Chaiyachati, Barbara H; Jani, Anant; Wan, Yisong; Huang, Haichang; Flavell, Richard; Chi, Tian

    2013-01-01

    Treg activation in response to environmental cues is necessary for regulatory T cells (Tregs) to suppress inflammation, but little is known about the transcription mechanisms controlling Treg activation. We report that despite the known proinflammatory role of the chromatin-remodelling factor BRG1 in CD4 cells, deleting Brg1 in all αβ T cell lineages led to fatal inflammation, which reflected essential roles of BRG1 in Tregs. Brg1 deletion impaired Treg activation, concomitant with the onset of the inflammation. Remarkably, as the inflammation progressed, Tregs became increasingly activated, but the activation levels could not catch up with the severity of inflammation. In vitro assays indicate that BRG1 regulates a subset of TCR target genes including multiple chemokine receptor genes. Finally, using a method that can create littermates bearing either a tissue-specific point mutation or deletion, we found the BRG1 ATPase activity partially dispensable for BRG1 function. Collectively, these data suggest that BRG1 acts in part via remodelling-independent functions to sensitize Tregs to inflammatory cues, thus allowing Tregs to promptly and effectively suppress autoimmunity. PMID:23321680

  11. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation

    PubMed Central

    Skalska, Lenka; Stojnic, Robert; Li, Jinghua; Fischer, Bettina; Cerda-Moya, Gustavo; Sakai, Hiroshi; Tajbakhsh, Shahragim; Russell, Steven; Adryan, Boris; Bray, Sarah J

    2015-01-01

    The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation. PMID:26069324

  12. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation.

    PubMed

    Skalska, Lenka; Stojnic, Robert; Li, Jinghua; Fischer, Bettina; Cerda-Moya, Gustavo; Sakai, Hiroshi; Tajbakhsh, Shahragim; Russell, Steven; Adryan, Boris; Bray, Sarah J

    2015-07-14

    The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation. PMID:26069324

  13. Chromatin assembly using Drosophila systems.

    PubMed

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  14. An Overview of Chromatin-Regulating Proteins in Cells

    PubMed Central

    Zhang, Pingyu; Torres, Keila; Liu, Xiuping; Liu, Chang-gong; Pollock, Raphael E.

    2016-01-01

    In eukaryotic cells, gene expressions on chromosome DNA are orchestrated by a dynamic chromosome structure state that is largely controlled by chromatin-regulating proteins, which regulate chromatin structures, release DNA from the nucleosome, and activate or suppress gene expression by modifying nucleosome histones or mobilizing DNA-histone structure. The two classes of chromatin- regulating proteins are 1) enzymes that modify histones through methylation, acetylation, phosphorylation, adenosine diphosphate–ribosylation, glycosylation, sumoylation, or ubiquitylation and 2) enzymes that remodel DNA-histone structure with energy from ATP hydrolysis. Chromatin-regulating proteins, which modulate DNA-histone interaction, change chromatin conformation, and increase or decrease the binding of functional DNA-regulating protein complexes, have major functions in nuclear processes, including gene transcription and DNA replication, repair, and recombination. This review provides a general overview of chromatin-regulating proteins, including their classification, molecular functions, and interactions with the nucleosome in eukaryotic cells. PMID:26796306

  15. Butyrate-induced changes in nuclease sensitivity of chromatin cannot be correlated with transcriptional activation

    SciTech Connect

    Birren, B.W.; Taplitz, S.J.; Herschman, H.R.

    1987-11-01

    The authors examined in the H4IIE rat heptoma cell line the relationship between butyrate-induced changes in the nuclease sensitivity of chromatin and changes in transcriptional activity of specific genes. The butyrate-inducible metallothionein I (MT-I) gene underwent a dramatic increase in DNase I sensitivity after 3 h of butyrate treatment. However, genes not transcribed in H4IIE cells underwent the same changes in DNase I sensitivity. Thus, butyrate-induced increases in DNase I sensitivity are not sufficient for the transcriptional activation of a gene. Butyrate treatment has also been reported to alter the sensitivity of sequence to micrococcal nuclease (MNase) in a manner reflecting their tissue-specific expression. Butyrate exposure caused increased digestion of the MT-I gene by MNase. However, butyrate-induced MNase sensitivity also occurred for genes which are neither transcribed in untreated cells nor butyrate inducible. Moreover, cadmium, a potent transcriptional activator of the MT-I gene, does not alter the sensitivity of the MT-I gene to MNase. Thus, the butyrate-induced alterations in MNase sensitivity are neither sufficient for, necessary for, nor indicative of transcriptional activation.

  16. Interrogation of allelic chromatin states in human cells by high-density ChIP-genotyping.

    PubMed

    Light, Nicholas; Adoue, Véronique; Ge, Bing; Chen, Shu-Huang; Kwan, Tony; Pastinen, Tomi

    2014-09-01

    Allele-specific (AS) assessment of chromatin has the potential to elucidate specific cis-regulatory mechanisms, which are predicted to underlie the majority of the known genetic associations to complex disease. However, development of chromatin landscapes at allelic resolution has been challenging since sites of variable signal strength require substantial read depths not commonly applied in sequencing based approaches. In this study, we addressed this by performing parallel analyses of input DNA and chromatin immunoprecipitates (ChIP) on high-density Illumina genotyping arrays. Allele-specificity for the histone modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3 was assessed using ChIP samples generated from 14 lymphoblast and 6 fibroblast cell lines. AS-ChIP SNPs were combined into domains and validated using high-confidence ChIP-seq sites. We observed characteristic patterns of allelic-imbalance for each histone-modification around allele-specifically expressed transcripts. Notably, we found H3K4me1 to be significantly anti-correlated with allelic expression (AE) at transcription start sites, indicating H3K4me1 allelic imbalance as a marker of AE. We also found that allelic chromatin domains exhibit population and cell-type specificity as well as heritability within trios. Finally, we observed that a subset of allelic chromatin domains is regulated by DNase I-sensitive quantitative trait loci and that these domains are significantly enriched for genome-wide association studies hits, with autoimmune disease associated SNPs specifically enriched in lymphoblasts. This study provides the first genome-wide maps of allelic-imbalance for five histone marks. Our results provide new insights into the role of chromatin in cis-regulation and highlight the need for high-depth sequencing in ChIP-seq studies along with the need to improve allele-specificity of ChIP-enrichment.

  17. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability

    PubMed Central

    Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.

    2016-01-01

    Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the

  18. Chromatin Computation

    PubMed Central

    Bryant, Barbara

    2012-01-01

    In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this “chromatin computer” to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal – and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines. PMID:22567109

  19. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin*

    PubMed Central

    Chen, Shu-Ting; Okada, Maiko; Nakato, Ryuichiro; Izumi, Kosuke; Bando, Masashige; Shirahige, Katsuhiko

    2015-01-01

    The androgen receptor (AR), a nuclear receptor superfamily transcription factor, plays a key role in prostate cancer. AR signaling is the principal target for prostate cancer treatment, but current androgen-deprivation therapies cannot completely abolish AR signaling because of the heterogeneity of prostate cancers. Therefore, unraveling the mechanism of AR reactivation in androgen-depleted conditions can identify effective prostate cancer therapeutic targets. Increasing evidence indicates that AR activity is mediated by the interplay of modifying/demodifying enzymatic co-regulators. To better understand the mechanism of AR transcriptional activity regulation, we used antibodies against AR for affinity purification and identified the deubiquitinating enzyme ubiquitin-specific protease 7, USP7 as a novel AR co-regulator in prostate cancer cells. We showed that USP7 associates with AR in an androgen-dependent manner and mediates AR deubiquitination. Sequential ChIP assays indicated that USP7 forms a complex with AR on androgen-responsive elements of target genes upon stimulation with the androgen 5α-dihydrotestosterone. Further investigation indicated that USP7 is necessary to facilitate androgen-activated AR binding to chromatin. Transcriptome profile analysis of USP7-knockdown LNCaP cells also revealed the essential role of USP7 in the expression of a subset of androgen-responsive genes. Hence, inhibition of USP7 represents a compelling therapeutic strategy for the treatment of prostate cancer. PMID:26175158

  20. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus

    PubMed Central

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-01-01

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. PMID:25588787

  1. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus.

    PubMed

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-03-18

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer-promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them.

  2. Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins

    NASA Astrophysics Data System (ADS)

    David, Yael; Vila-Perelló, Miquel; Verma, Shivam; Muir, Tom W.

    2015-05-01

    Post-translational modification of the histone proteins in chromatin plays a central role in the epigenetic control of DNA-templated processes in eukaryotic cells. Developing methods that enable the structure of histones to be manipulated is, therefore, essential to understand the biochemical mechanisms that underlie genomic regulation. Here we present a synthetic biology method to engineer histones that bear site-specific modifications on cellular chromatin using protein trans-splicing (PTS). We genetically fused the N-terminal fragment of ultrafast split intein to the C terminus of histone H2B, which, on reaction with a complementary synthetic C intein, generated labelled histone. Using this approach, we incorporated various non-native chemical modifications into chromatin in vivo with temporal control. Furthermore, the time and concentration dependence of PTS performed in nucleo enabled us to examine differences in the accessibility of the euchromatin and heterochromatin regions of the epigenome. Finally, we used PTS to semisynthesize a native histone modification, H2BK120 ubiquitination, in isolated nuclei and showed that this can trigger downstream epigenetic crosstalk of H3K79 methylation.

  3. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.

    PubMed

    Lindeman, Leif C; Winata, Cecilia L; Aanes, Hvard; Mathavan, Sinnakaruppan; Alestrom, Peter; Collas, Philippe

    2010-01-01

    Embryo development proceeds from a cascade of gene activation and repression events controlled by epigenetic modifications of DNA and histones. Little is known about epigenetic states in the developing zebrafish, despite its importance as a model organism. We report here DNA methylation and histone modification profiles of promoters of developmentally-regulated genes (pou5f1, sox2, sox3, klf4, nnr, otx1b, nes, vasa), as well as tert and bactin2, in zebrafish embryos at the mid-late blastula transition, shortly after embryonic genome activation. We identify four classes of promoters based on the following profiles: (i) those enriched in marks of active genes (H3K9ac, H4ac, H3K4me3) without transcriptionally repressing H3K9me3 or H3K27me3; (ii) those enriched in H3K9ac, H4ac and H3K27me3, without H3K9me3; one such gene was klf4, shown by in situ hybridization to be mosaically expressed, likely accounting for the detection of both activating and repressive marks on its promoter; (iii) those enriched in H3K4me3 and H3K27me3 without acetylation; and (iv) those enriched in all histone modifications examined. Culture of embryo-derived cells under differentiation conditions leads to H3K9 and H4 deacetylation and H3K9 and H3K27 trimethylation on genes that are inactivated, yielding an epigenetic profile similar to those of fibroblasts or muscle. All promoters however retain H3K4me3, indicating an uncoupling of H3K4me3 occupancy and gene expression. All non-CpG island developmentally-regulated promoters are DNA unmethylated in embryos, but hypermethylated in fibroblasts. Our results suggest that differentially expressed embryonic genes are regulated by various patterns of histone modifications on unmethylated DNA, which create a developmentally permissive chromatin state. PMID:20336603

  4. A negative loop within the nuclear pore complex controls global chromatin organization

    PubMed Central

    Breuer, Manuel; Ohkura, Hiroyuki

    2015-01-01

    The nuclear pore complex (NPC) tethers chromatin to create an environment for gene regulation, but little is known about how this activity is regulated to avoid excessive tethering of the genome. Here we propose a negative regulatory loop within the NPC controlling the chromatin attachment state, in which Nup155 and Nup93 recruit Nup62 to suppress chromatin tethering by Nup155. Depletion of Nup62 severely disrupts chromatin distribution in the nuclei of female germlines and somatic cells, which can be reversed by codepleting Nup155. Thus, this universal regulatory system within the NPC is crucial to control large-scale chromatin organization in the nucleus. PMID:26341556

  5. TOUSLED Kinase Activity Oscillates during the Cell Cycle and Interacts with Chromatin Regulators1

    PubMed Central

    Ehsan, Hashimul; Reichheld, Jean-Philippe; Durfee, Tim; Roe, Judith L.

    2004-01-01

    The TOUSLED (TSL)-like nuclear protein kinase family is highly conserved in plants and animals. tsl loss of function mutations cause pleiotropic defects in both leaf and flower development, and growth and initiation of floral organ primordia is abnormal, suggesting that basic cellular processes are affected. TSL is more highly expressed in exponentially growing Arabidopsis culture cells than in stationary, nondividing cells. While its expression remains constant throughout the cell cycle in dividing cells, TSL kinase activity is higher in enriched late G2/M-phase and G1-phase populations of Arabidopsis suspension culture cells compared to those in S-phase. tsl mutants also display an aberrant pattern and increased expression levels of the mitotic cyclin gene CycB1;1, suggesting that TSL represses CycB1;1 expression at certain times during development or that cells are delayed in mitosis. TSL interacts with and phosphorylates one of two Arabidopsis homologs of the nucleosome assembly/silencing protein Asf1 and histone H3, as in humans, and a novel plant SANT/myb-domain protein, TKI1, suggesting that TSL plays a role in chromatin metabolism. PMID:15047893

  6. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote

    PubMed Central

    Schübeler, Dirk; MacAlpine, David M.; Scalzo, David; Wirbelauer, Christiane; Kooperberg, Charles; van Leeuwen, Fred; Gottschling, Daniel E.; O'Neill, Laura P.; Turner, Bryan M.; Delrow, Jeffrey; Bell, Stephen P.; Groudine, Mark

    2004-01-01

    The covalent modification of nucleosomal histones has emerged as a major determinant of chromatin structure and gene activity. To understand the interplay between various histone modifications, including acetylation and methylation, we performed a genome-wide chromatin structure analysis in a higher eukaryote. We found a binary pattern of histone modifications among euchromatic genes, with active genes being hyperacetylated for H3 and H4 and hypermethylated at Lys 4 and Lys 79 of H3, and inactive genes being hypomethylated and deacetylated at the same residues. Furthermore, the degree of modification correlates with the level of transcription, and modifications are largely restricted to transcribed regions, suggesting that their regulation is tightly linked to polymerase activity. PMID:15175259

  7. ATP Dependent Chromatin Remodeling Enzymes in Embryonic Stem Cells

    PubMed Central

    Saladi, Srinivas Vinod

    2010-01-01

    Embryonic stem (ES) cells are pluripotent cells that can self renew or be induced to differentiate into multiple cell lineages, and thus have the potential to be utilized in regenerative medicine. Key pluripotency specific factors (Oct 4/Sox2/Nanog/Klf4) maintain the pluripotent state by activating expression of pluripotency specific genes and by inhibiting the expression of developmental regulators. Pluripotent ES cells are distinguished from differentiated cells by a specialized chromatin state that is required to epigenetically regulate the ES cell phenotype. Recent studies show that in addition to pluripotency specific factors, chromatin remodeling enzymes play an important role in regulating ES cell chromatin and the capacity to self-renew and to differentiate. Here we review recent studies that delineate the role of ATP dependent chromatin remodeling enzymes in regulating ES cell chromatin structure. PMID:20148317

  8. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites

    NASA Astrophysics Data System (ADS)

    Wang, Yejun; Maharana, Shovamayee; Wang, Michelle D.; Shivashankar, G. V.

    2014-03-01

    Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin. Interestingly, BALM imaging of the chromatin spreads revealed the presence of decondensed chromatin as gap structures along the spreads. These gaps were enriched with phosphorylated S5 RNA pol II, and were sensitive to the cellular transcriptional state. Taken together, we could visualize the decondensed chromatin regions together with active RNA pol II for the first time using super-resolution microscopy.

  9. Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin.

    PubMed

    Hiragami-Hamada, Kyoko; Soeroes, Szabolcs; Nikolov, Miroslav; Wilkins, Bryan; Kreuz, Sarah; Chen, Carol; De La Rosa-Velázquez, Inti A; Zenn, Hans Michael; Kost, Nils; Pohl, Wiebke; Chernev, Aleksandar; Schwarzer, Dirk; Jenuwein, Thomas; Lorincz, Matthew; Zimmermann, Bastian; Walla, Peter Jomo; Neumann, Heinz; Baubec, Tuncay; Urlaub, Henning; Fischle, Wolfgang

    2016-01-01

    Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential for genome stability and long-term transcriptional silencing. The mechanisms by which H3K9me3 and HP1 contribute to chromatin condensation have been speculative and controversial. Here we demonstrate that human HP1β is a prototypic HP1 protein exemplifying most basal chromatin binding and effects. These are caused by dimeric and dynamic interaction with highly enriched H3K9me3 and are modulated by various electrostatic interfaces. HP1β bridges condensed chromatin, which we postulate stabilizes the compacted state. In agreement, HP1β genome-wide localization follows H3K9me3-enrichment and artificial bridging of chromatin fibres is sufficient for maintaining cellular heterochromatic conformation. Overall, our findings define a fundamental mechanism for chromatin higher order structural changes caused by HP1 proteins, which might contribute to the plastic nature of condensed chromatin. PMID:27090491

  10. Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin

    PubMed Central

    Hiragami-Hamada, Kyoko; Soeroes, Szabolcs; Nikolov, Miroslav; Wilkins, Bryan; Kreuz, Sarah; Chen, Carol; De La Rosa-Velázquez, Inti A.; Zenn, Hans Michael; Kost, Nils; Pohl, Wiebke; Chernev, Aleksandar; Schwarzer, Dirk; Jenuwein, Thomas; Lorincz, Matthew; Zimmermann, Bastian; Walla, Peter Jomo; Neumann, Heinz; Baubec, Tuncay; Urlaub, Henning; Fischle, Wolfgang

    2016-01-01

    Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential for genome stability and long-term transcriptional silencing. The mechanisms by which H3K9me3 and HP1 contribute to chromatin condensation have been speculative and controversial. Here we demonstrate that human HP1β is a prototypic HP1 protein exemplifying most basal chromatin binding and effects. These are caused by dimeric and dynamic interaction with highly enriched H3K9me3 and are modulated by various electrostatic interfaces. HP1β bridges condensed chromatin, which we postulate stabilizes the compacted state. In agreement, HP1β genome-wide localization follows H3K9me3-enrichment and artificial bridging of chromatin fibres is sufficient for maintaining cellular heterochromatic conformation. Overall, our findings define a fundamental mechanism for chromatin higher order structural changes caused by HP1 proteins, which might contribute to the plastic nature of condensed chromatin. PMID:27090491

  11. Histone H3.3 regulates dynamic chromatin states during spermatogenesis

    PubMed Central

    Yuen, Benjamin T. K.; Bush, Kelly M.; Barrilleaux, Bonnie L.; Cotterman, Rebecca; Knoepfler, Paul S.

    2014-01-01

    The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics. PMID:25142466

  12. Chromatin remodelers: We are the drivers!!

    PubMed

    Tyagi, Monica; Imam, Nasir; Verma, Kirtika; Patel, Ashok K

    2016-07-01

    Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition. PMID:27429206

  13. Epigenomic regulation of oncogenesis by chromatin remodeling.

    PubMed

    Kumar, R; Li, D-Q; Müller, S; Knapp, S

    2016-08-25

    Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy. PMID:26804164

  14. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    PubMed Central

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J.

    2012-01-01

    DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo. PMID:23109894

  15. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma

    PubMed Central

    Rheinbay, Esther; Boulay, Gaylor; Suvà, Mario L.; Rossetti, Nikki E.; Boonseng, Wannaporn E.; Oksuz, Ozgur; Cook, Edward B.; Formey, Aurélie; Patel, Anoop; Gymrek, Melissa; Thapar, Vishal; Deshpande, Vikram; Ting, David T.; Hornicek, Francis J.; Nielsen, G. Petur; Stamenkovic, Ivan; Aryee, Martin J.

    2015-01-01

    Summary The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma yet its molecular function is incompletely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators, while activating oncogenes and new potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation. PMID:25453903

  16. The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast.

    PubMed

    Sadeghi, Laia; Prasad, Punit; Ekwall, Karl; Cohen, Amikam; Svensson, J Peter

    2015-12-01

    The maintenance of open and repressed chromatin states is crucial for the regulation of gene expression. To study the genes involved in maintaining chromatin states, we generated a random mutant library in Schizosaccharomyces pombe and monitored the silencing of reporter genes inserted into the euchromatic region adjacent to the heterochromatic mating type locus. We show that Leo1-Paf1 [a subcomplex of the RNA polymerase II-associated factor 1 complex (Paf1C)] is required to prevent the spreading of heterochromatin into euchromatin by mapping the heterochromatin mark H3K9me2 using high-resolution genomewide ChIP (ChIP-exo). Loss of Leo1-Paf1 increases heterochromatin stability at several facultative heterochromatin loci in an RNAi-independent manner. Instead, deletion of Leo1 decreases nucleosome turnover, leading to heterochromatin stabilization. Our data reveal that Leo1-Paf1 promotes chromatin state fluctuations by enhancing histone turnover.

  17. SATB1 Packages Densely Looped, Transcriptionally Active Chromatin for Coordinated Expression of Cytokine Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SATB1 (special AT-rich sequence binding protein 1) organizes cell type–specific nuclear architecture by anchoring specialized DNA sequences and recruiting chromatin remodeling factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4 and...

  18. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities.

    PubMed

    Yao, Wei; Beckwith, Sean L; Zheng, Tina; Young, Thomas; Dinh, Van T; Ranjan, Anand; Morrison, Ashby J

    2015-10-16

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement.

  19. Cas9 Functionally Opens Chromatin.

    PubMed

    Barkal, Amira A; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K; Sherwood, Richard I

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  20. A Neuronal Activity-Dependent Dual Function Chromatin-Modifying Complex Regulates Arc Expression1,2,3

    PubMed Central

    Oey, Nicodemus E.; Leung, How Wing; Ezhilarasan, Rajaram; Zhou, Lei; Beuerman, Roger W.; VanDongen, Hendrika M.A.

    2015-01-01

    Abstract Chromatin modification is an important epigenetic mechanism underlying neuroplasticity. Histone methylation and acetylation have both been shown to modulate gene expression, but the machinery responsible for mediating these changes in neurons has remained elusive. Here we identify a chromatin-modifying complex containing the histone demethylase PHF8 and the acetyltransferase TIP60 as a key regulator of the activity-induced expression of Arc, an important mediator of synaptic plasticity. Clinically, mutations in PHF8 cause X-linked mental retardation while TIP60 has been implicated in the pathogenesis of Alzheimer’s disease. Within minutes of increased synaptic activity, this dual function complex is rapidly recruited to the Arc promoter, where it specifically counteracts the transcriptionally repressive histone mark H3K9me2 to facilitate the formation of the transcriptionally permissive H3K9acS10P, thereby favoring transcriptional activation. Consequently, gain-of-function of the PHF8−TIP60 complex in primary rat hippocampal neurons has a positive effect on early activity-induced Arc gene expression, whereas interfering with the function of this complex abrogates it. A global proteomics screen revealed that the majority of common interactors of PHF8 and TIP60 were involved in mRNA processing, including PSF, an important molecule involved in neuronal gene regulation. Finally, we proceeded to show, using super-resolution microscopy, that PHF8 and TIP60 interact at the single molecule level with PSF, thereby situating this chromatin modifying complex at the crossroads of transcriptional activation. These findings point toward a mechanism by which an epigenetic pathway can regulate neuronal activity-dependent gene transcription, which has implications in the development of novel therapeutics for disorders of learning and memory. PMID:26464965

  1. Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing

    PubMed Central

    Ahlenstiel, Chantelle; Mendez, Catalina; Lim, Steven T H; Marks, Katherine; Turville, Stuart; Cooper, David A; Kelleher, Anthony D; Suzuki, Kazuo

    2015-01-01

    Transcriptional gene silencing (TGS) of mammalian genes can be induced by short interfering RNA (siRNA) targeting promoter regions. We previously reported potent TGS of HIV-1 by siRNA (PromA), which targets tandem NF-κB motifs within the viral 5′LTR. In this study, we screened a siRNA panel with the aim of identifying novel 5′LTR targets, to provide multiplexing potential with enhanced viral silencing and application toward developing alternate therapeutic strategies. Systematic examination identified a novel siRNA target, si143, confirmed to induce TGS as the silencing mechanism. TGS was prolonged with virus suppression >12 days, despite a limited ability to induce post- TGS. Epigenetic changes associated with silencing were suggested by partial reversal by histone deacetylase inhibitors and confirmed by chromatin immunoprecipitation analyses, which showed induction of H3K27me3 and H3K9me3, reduction in H3K9Ac, and recruitment of argonaute-1, all characteristic marks of heterochromatin and TGS. Together, these epigenetic changes mimic those associated with HIV-1 latency. Further, robust resistance to reactivation was observed in the J-Lat 9.2 cell latency model, when transduced with shPromA and/or sh143. These data support si/shRNA-mediated TGS approaches to HIV-1 and provide alternate targets to pursue a functional cure, whereby the viral reservoir is locked in latency following antiretroviral therapy cessation. PMID:26506039

  2. The SWI/SNF chromatin-remodeling complex modulates peripheral T cell activation and proliferation by controlling AP-1 expression.

    PubMed

    Jeong, Seung Min; Lee, Changjin; Lee, Sung Kyu; Kim, Jieun; Seong, Rho Hyun

    2010-01-22

    The SWI/SNF chromatin-remodeling complex has been implicated in the activation and proliferation of T cells. After T cell receptor signaling, the SWI/SNF complex rapidly associates with chromatin and controls gene expression in T cells. However, the process by which the SWI/SNF complex regulates peripheral T cell activation has not been elucidated. In this study, we show that the SWI/SNF complex regulates cytokine production and proliferation of T cells. During T cell activation, the SWI/SNF complex is recruited to the promoter of the transcription factor AP-1, and it increases the expression of AP-1. Increased expression of the SWI/SNF complex resulted in enhanced AP-1 activity, cytokine production, and proliferation of peripheral T cells, whereas knockdown of the SWI/SNF complex expression impaired the AP-1 expression and reduced the activation and proliferation of T cells. Moreover, mice that constitutively expressed the SWI/SNF complex in T cells were much more susceptible to experimentally induced autoimmune encephalomyelitis than the normal mice were. These results suggest that the SWI/SNF complex plays a critical role during T cell activation and subsequent immune responses.

  3. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo.

    PubMed Central

    Michelotti, G A; Michelotti, E F; Pullner, A; Duncan, R C; Eick, D; Levens, D

    1996-01-01

    Transcription activation and repression of eukaryotic genes are associated with conformational and topological changes of the DNA and chromatin, altering the spectrum of proteins associated with an active gene. Segments of the human c-myc gene possessing non-B structure in vivo located with enzymatic and chemical probes. Sites hypertensive to cleavage with single-strand-specific S1 nuclease or the single-strand-selective agent potassium permanganate included the major promoters P1 and P2 as well as the far upstream sequence element (FUSE) and CT elements, which bind, respectively, the single-strand-specific factors FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K in vitro. Active and inactive c-myc genes yielded different patterns of S1 nuclease and permanganate sensitivity, indicating alternative chromatin configurations of active and silent genes. The melting of specific cis elements of active c-myc genes in vivo suggested that transcriptionally associated torsional strain might assist strand separation and facilitate factor binding. Therefore, the interaction of FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K with supercoiled DNA was studied. Remarkably, both proteins recognize their respective elements torsionally strained but not as liner duplexes. Single-strand- or supercoil-dependent gene regulatory proteins may directly link alterations in DNA conformation and topology with changes in gene expression. PMID:8649373

  4. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function

    SciTech Connect

    Xu, Ren; Nelson, Celeste M.; Muschler, John L.; Veiseh, Mandana; Vonderhaar, Barbara K.; Bissell, Mina J.

    2009-06-03

    Epithelial cells, once dissociated and placed in two-dimensional (2D) cultures, rapidly lose tissue-specific functions. We showed previously that in addition to prolactin, signaling by laminin-111 was necessary to restore functional differentiation of mammary epithelia. Here, we elucidate two additional aspects of laminin-111 action. We show that in 2D cultures, the prolactin receptor is basolaterally localized and physically segregated from its apically placed ligand. Detachment of the cells exposes the receptor to ligation by prolactin leading to signal transducers and activators of transcription protein 5 (STAT5) activation, but only transiently and not sufficiently for induction of milk protein expression. We show that laminin-111 reorganizes mammary cells into polarized acini, allowing both the exposure of the prolactin receptor and sustained activation of STAT5. The use of constitutively active STAT5 constructs showed that the latter is necessary and sufficient for chromatin reorganization and {beta}-casein transcription. These results underscore the crucial role of continuous laminin signaling and polarized tissue architecture in maintenance of transcription factor activation, chromatin organization, and tissue-specific gene expression.

  5. Nucleoporins and chromatin metabolism.

    PubMed

    Ptak, Christopher; Wozniak, Richard W

    2016-06-01

    Mounting evidence has implicated a group of proteins termed nucleoporins, or Nups, in various processes that regulate chromatin structure and function. Nups were first recognized as building blocks for nuclear pore complexes, but several members of this group of proteins also reside in the cytoplasm and within the nucleus. Moreover, many are dynamic and move between these various locations. Both at the nuclear envelope, as part of nuclear pore complexes, and within the nucleoplasm, Nups interact with protein complexes that function in gene transcription, chromatin remodeling, DNA repair, and DNA replication. Here, we review recent studies that provide further insight into the molecular details of these interactions and their role in regulating the activity of chromatin modifying factors. PMID:27085162

  6. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells.

    PubMed

    McKenna, Brian; Guo, Min; Reynolds, Albert; Hara, Manami; Stein, Roland

    2015-03-31

    Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.

  7. Nuclear degraded sperm subpopulation is affected by poor chromatin compaction and nuclease activity.

    PubMed

    Ribas-Maynou, J; García-Peiró, A; Martínez-Heredia, J; Fernández-Encinas, A; Abad, C; Amengual, M J; Navarro, J; Benet, J

    2015-04-01

    There is an interest in the nuclear degraded sperm subpopulation because, although it is present in a low percentage in all semen samples, patient groups such as varicocele and rearranged genome carriers show high levels of these degraded spermatozoa. This study is designed with two objectives in mind: first, incubations of H2 O2 and nuclease on DTT-treated and untreated samples to show the aetiology of this subpopulation and second, assessment of the correlation between the protamine ratio and nuclear degraded spermatozoa. A very high increase in the nuclear degraded subpopulation has been found with nuclease incubation, and it is even higher when it has been merged with nuclear decompaction using DTT. Alternatively, incubation with H2 O2 with and without DTT did not show such a significant increase in nuclear degraded spermatozoa. The protamine ratio correlated with this subpopulation, showing, in patients, that poor nuclear compaction would turn the sperm susceptible to degradation. Then, the assessment of nuclear degraded spermatozoa might not be only a measure of DNA degradation but also an indicator of chromatin compaction in the spermatozoa. Different patient groups would fit this model for sperm nuclear degradation, such as varicocele patients, who show a high percentage of immature spermatozoa and nuclear degraded spermatozoa, and reorganised genome carriers, where reorganisation might also cause poor chromatin compaction on the sperm nucleus.

  8. Plc1p is required for proper chromatin structure and activity of the kinetochore in Saccharomyces cerevisiae by facilitating recruitment of the RSC complex.

    PubMed

    Desai, Parima; Guha, Nilanjan; Galdieri, Luciano; Hadi, Sara; Vancura, Ales

    2009-05-01

    High-fidelity chromosome segregation during mitosis requires kinetochores, protein complexes that assemble on centromeric DNA and mediate chromosome attachment to spindle microtubules. In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in alterations in chromatin structure of centromeres, reduced binding of microtubules to minichromosomes, and a higher frequency of chromosome loss. The mechanism of Plc1p's involvement in kinetochore activity was not initially obvious; however, a testable hypothesis emerged with the discovery of the role of inositol polyphosphates (InsPs), produced by a Plc1p-dependent pathway, in the regulation of chromatin-remodeling complexes. In addition, the remodels structure of chromatin (RSC) chromatin-remodeling complex was found to associate with kinetochores and to affect centromeric chromatin structure. We report here that Plc1p and InsPs are required for recruitment of the RSC complex to kinetochores, which is important for establishing proper chromatin structure of centromeres and centromere proximal regions. Mutations in PLC1 and components of the RSC complex exhibit strong genetic interactions and display synthetic growth defect, altered nuclear morphology, and higher frequency of minichromosome loss. The results thus provide a mechanistic explanation for the previously elusive role of Plc1p and InsPs in kinetochore function.

  9. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation

    PubMed Central

    Cotton, Allison M.; Price, E. Magda; Jones, Meaghan J.; Balaton, Bradley P.; Kobor, Michael S.; Brown, Carolyn J.

    2015-01-01

    X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. PMID:25381334

  10. Chromatin Immunoprecipitation.

    PubMed

    Wiehle, Laura; Breiling, Achim

    2016-01-01

    Chromatin immunoprecipitation (ChIP) is a valuable method to investigate protein-DNA interactions in vivo. Since its discovery it has been indispensable to identify binding sites and patterns of a variety of DNA-interacting proteins, such as transcription factors and regulators, modified histones, and epigenetic modifiers. The Polycomb repressors were the first proteins that have been mapped using this technique, which provided the mechanistic basis for the understanding of their biological function. Cross-linked (XChIP) or native (NChIP) chromatin from tissues or cultured cells is fragmented and the protein of interest is immunoprecipitated using a specific antibody. The co-precipitated DNA is then purified and subjected to analysis by region-specific PCR, DNA microarray (ChIP-on-chip), or next-generation sequencing (ChIP-seq). The assay can therefore produce information about the localization of the analyzed protein at specific candidate loci or throughout the entire genome. In this chapter, we provide a detailed protocol of the basic standard ChIP assay and some remarks about variations. PMID:27659971

  11. ZmMBD101 is a DNA-binding protein that maintains Mutator elements chromatin in a repressive state in maize.

    PubMed

    Questa, Julia I; Rius, Sebastián P; Casadevall, Romina; Casati, Paula

    2016-01-01

    In maize (Zea mays), as well as in other crops, transposable elements (TEs) constitute a great proportion of the genome. Chromatin modifications play a vital role in establishing transposon silencing and perpetuating the acquired repressive state. Nucleosomes associated with TEs are enriched for dimethylation of histone H3 at lysine 9 and 27 (H3K9me2 and H3K27me2, respectively), signals of repressive chromatin. Here, we describe a chromatin protein, ZmMBD101, involved in the regulation of Mutator (Mu) genes in maize. ZmMBD101 is localized to the nucleus and contains a methyl-CpG-binding domain (MBD) and a zinc finger CW (CW) domain. Transgenic lines with reduced levels of ZmMBD101 transcript present enhanced induction of Mu genes when plants are irradiated with UV-B. Chromatin immunoprecipitation analysis with H3K9me2 and H3K27me2 antibodies indicated that ZmMBD101 is required to maintain the levels of these histone repressive marks at Mu terminal inverted repeats (TIRs) under UV-B conditions. Although Mutator inactivity is associated with DNA methylation, cytosine methylation at Mu TIRs is not affected in ZmMBD101 deficient plants. Several plant proteins are predicted to share the simple CW-MBD domain architecture present in ZmMBD101. We hypothesize that plant CW-MBD proteins may also function to protect plant genomes from deleterious transposition.

  12. Chromatin regulation: how complex does it get?

    PubMed

    Meier, Karin; Brehm, Alexander

    2014-11-01

    Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general. PMID:25482055

  13. Chromatin regulation: How complex does it get?

    PubMed Central

    Meier, Karin; Brehm, Alexander

    2014-01-01

    Gene transcription is tightly regulated at different levels to ensure that the transcriptome of the cell is appropriate for developmental stage and cell type. The chromatin state in which a gene is embedded determines its expression level to a large extent. Activation or repression of transcription is typically accomplished by the recruitment of chromatin-associated multisubunit protein complexes that combine several molecular tools, such as histone-binding and chromatin-modifying activities. Recent biochemical purifications of such complexes have revealed a substantial diversity. On the one hand, complexes that were thought to be unique have been revealed to be part of large complex families. On the other hand, protein subunits that were thought to only exist in separate complexes have been shown to coexist in novel assemblies. In this review we discuss our current knowledge of repressor complexes that contain MBT domain proteins and/or the CoREST co-repressor and use them as a paradigm to illustrate the unexpected heterogeneity and tool sharing of chromatin regulating protein complexes. These recent insights also challenge the ways we define and think about protein complexes in general. PMID:25482055

  14. Chromatin Dynamics during Cellular Reprogramming

    PubMed Central

    Apostolou, Effie; Hochedlinger, Konrad

    2014-01-01

    Preface Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes involving changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to novel approaches in regenerative medicine and cancer treatment. PMID:24153299

  15. Ectopically tethered CP190 induces large-scale chromatin decondensation

    NASA Astrophysics Data System (ADS)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  16. CHROMATIN ASSEMBLY AND TRANSCRIPTIONAL CROSS-TALK IN XENOPUS LAEVIS OOCYTE AND EGG EXTRACTS

    PubMed Central

    Wang, Wei-Lin; Shechter, David

    2016-01-01

    Chromatin, primarily a complex of DNA and histone proteins, is the physiological form of the genome. Chromatin is generally repressive for transcription and other information transactions that occur on DNA. A wealth of post-translational modifications on canonical histones and histone variants encode regulatory information to recruit or repel effector proteins on chromatin, promoting and further repressing transcription and thereby form the basis of epigenetic information. During metazoan oogenesis, large quantities of histone proteins are synthesized and stored in preparation for the rapid early cell cycles of development and to elicit maternal control of chromatin assembly pathways. Oocyte and egg cell-free extracts of the frog Xenopus laevis are a compelling model system for the study of chromatin assembly and transcription precisely because they exist in an extreme state primed for rapid chromatin assembly or for transcriptional activity. We show that chromatin assembly rates are slower in X. laevis oocyte than in egg extracts, while conversely only oocyte extracts transcribe template plasmids. We demonstrate that rapid chromatin assembly in egg extracts represses RNA Polymerase II dependent transcription, while pre-binding of TATA-Binding Protein (TBP) to a template plasmid promotes transcription. Our experimental evidence presented here supports a model in which chromatin assembly and transcription are in competition and that the onset of zygotic genomic activation may be in part due to stable transcriptional complex assembly. PMID:27759158

  17. Caspase-activated DNase Is Necessary and Sufficient for Oligonucleosomal DNA Breakdown, but Not for Chromatin Disassembly during Caspase-dependent Apoptosis of LN-18 Glioblastoma Cells*

    PubMed Central

    Sánchez-Osuna, María; Garcia-Belinchón, Mercè; Iglesias-Guimarais, Victoria; Gil-Guiñón, Estel; Casanelles, Elisenda; Yuste, Victor J.

    2014-01-01

    Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death. PMID:24838313

  18. PAK1 and CtBP1 Regulate the Coupling of Neuronal Activity to Muscle Chromatin and Gene Expression

    PubMed Central

    Thomas, Jean-Luc; Ravel-Chapuis, Aymeric; Valente, Carmen; Corda, Daniela; Méjat, Alexandre

    2015-01-01

    Acetylcholine receptor (AChR) expression in innervated muscle is limited to the synaptic region. Neuron-induced electrical activity participates in this compartmentalization by promoting the repression of AChR expression in the extrasynaptic regions. Here, we show that the corepressor CtBP1 (C-terminal binding protein 1) is present on the myogenin promoter together with repressive histone marks. shRNA-mediated downregulation of CtBP1 expression is sufficient to derepress myogenin and AChR expression in innervated muscle. Upon denervation, CtBP1 is displaced from the myogenin promoter and relocates to the cytoplasm, while repressive histone marks are replaced by activating ones concomitantly to the activation of myogenin expression. We also observed that upon denervation the p21-activated kinase 1 (PAK1) expression is upregulated, suggesting that phosphorylation by PAK1 may be involved in the relocation of CtBP1. Indeed, preventing CtBP1 Ser158 phosphorylation induces CtBP1 accumulation in the nuclei and abrogates the activation of myogenin and AChR expression. Altogether, these findings reveal a molecular mechanism to account for the coordinated control of chromatin modifications and muscle gene expression by presynaptic neurons via a PAK1/CtBP1 pathway. PMID:26416879

  19. MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin.

    PubMed

    Gallo, Marco; Coutinho, Fiona J; Vanner, Robert J; Gayden, Tenzin; Mack, Stephen C; Murison, Alex; Remke, Marc; Li, Ren; Takayama, Naoya; Desai, Kinjal; Lee, Lilian; Lan, Xiaoyang; Park, Nicole I; Barsyte-Lovejoy, Dalia; Smil, David; Sturm, Dominik; Kushida, Michelle M; Head, Renee; Cusimano, Michael D; Bernstein, Mark; Clarke, Ian D; Dick, John E; Pfister, Stefan M; Rich, Jeremy N; Arrowsmith, Cheryl H; Taylor, Michael D; Jabado, Nada; Bazett-Jones, David P; Lupien, Mathieu; Dirks, Peter B

    2015-12-14

    Mutations in the histone 3 variant H3.3 have been identified in one-third of pediatric glioblastomas (GBMs), but not in adult tumors. Here we show that H3.3 is a dynamic determinant of functional properties in adult GBM. H3.3 is repressed by mixed lineage leukemia 5 (MLL5) in self-renewing GBM cells. MLL5 is a global epigenetic repressor that orchestrates reorganization of chromatin structure by punctuating chromosomes with foci of compacted chromatin, favoring tumorigenic and self-renewing properties. Conversely, H3.3 antagonizes self-renewal and promotes differentiation. We exploited these epigenetic states to rationally identify two small molecules that effectively curb cancer stem cell properties in a preclinical model. Our work uncovers a role for MLL5 and H3.3 in maintaining self-renewal hierarchies in adult GBM. PMID:26626085

  20. cis-acting sequences located downstream of the human immunodeficiency virus type 1 promoter affect its chromatin structure and transcriptional activity.

    PubMed

    el Kharroubi, A; Martin, M A

    1996-06-01

    We have examined the roles of AP-1, AP-3-like, DBF1, and Sp1 binding sites, which are located downstream of the human immunodeficiency virus type 1 (HIV-1) promoter, in regulating basal transcriptional activity directed by the integrated viral long terminal repeat (LTR). Point mutations affecting all four of these elements functionally inactivated the HIV-1 LTR when it was constrained in a chromatin configuration. Analyses of the chromatin structures of the transcriptionally active wild-type and inactive mutated HIV-1 promoters revealed several differences. In the active promoter, the 3' half of the U3 region, including the basal promoter, the enhancer, and the putative upstream regulatory sequences are situated within a nuclease-hypersensitive region. However, the far upstream U3 region appears to be packaged into a nuclease-resistant nucleosomal structure, whereas the R, U5, and gag leader sequences are associated with a region of altered chromatin that is sensitive to restriction endonucleases. In the inactive template, only the basal promoter and enhancer element remain sensitive to nucleases, and the adjacent upstream and downstream regions are incorporated into nuclease-resistant nucleosomal structures. Taken together, these results indicate that the chromatin structure of the integrated HIV-1 LTR plays a critical role in modulating basal transcriptional activity. PMID:8649407

  1. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells.

    PubMed

    Zhang, Jenny; Jima, Dereje; Moffitt, Andrea B; Liu, Qingquan; Czader, Magdalena; Hsi, Eric D; Fedoriw, Yuri; Dunphy, Cherie H; Richards, Kristy L; Gill, Javed I; Sun, Zhen; Love, Cassandra; Scotland, Paula; Lock, Eric; Levy, Shawn; Hsu, David S; Dunson, David; Dave, Sandeep S

    2014-05-01

    In this study, we define the genetic landscape of mantle cell lymphoma (MCL) through exome sequencing of 56 cases of MCL. We identified recurrent mutations in ATM, CCND1, MLL2, and TP53. We further identified a number of novel genes recurrently mutated in patients with MCL including RB1, WHSC1, POT1, and SMARCA4. We noted that MCLs have a distinct mutational profile compared with lymphomas from other B-cell stages. The ENCODE project has defined the chromatin structure of many cell types. However, a similar characterization of primary human mature B cells has been lacking. We defined, for the first time, the chromatin structure of primary human naïve, germinal center, and memory B cells through chromatin immunoprecipitation and sequencing for H3K4me1, H3K4me3, H3Ac, H3K36me3, H3K27me3, and PolII. We found that somatic mutations that occur more frequently in either MCLs or Burkitt lymphomas were associated with open chromatin in their respective B cells of origin, naïve B cells, and germinal center B cells. Our work thus elucidates the landscape of gene-coding mutations in MCL and the critical interplay between epigenetic alterations associated with B-cell differentiation and the acquisition of somatic mutations in cancer. PMID:24682267

  2. Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs.

    PubMed

    Tee, Wee-Wei; Shen, Steven S; Oksuz, Ozgur; Narendra, Varun; Reinberg, Danny

    2014-02-13

    Erk1/2 activation contributes to mouse ES cell pluripotency. We found a direct role of Erk1/2 in modulating chromatin features required for regulated developmental gene expression. Erk2 binds to specific DNA sequence motifs typically accessed by Jarid2 and PRC2. Negating Erk1/2 activation leads to increased nucleosome occupancy and decreased occupancy of PRC2 and poised RNAPII at Erk2-PRC2-targeted developmental genes. Surprisingly, Erk2-PRC2-targeted genes are specifically devoid of TFIIH, known to phosphorylate RNA polymerase II (RNAPII) at serine-5, giving rise to its initiated form. Erk2 interacts with and phosphorylates RNAPII at its serine 5 residue, which is consistent with the presence of poised RNAPII as a function of Erk1/2 activation. These findings underscore a key role for Erk1/2 activation in promoting the primed status of developmental genes in mouse ES cells and suggest that the transcription complex at developmental genes is different than the complexes formed at other genes, offering alternative pathways of regulation.

  3. Vernalization-mediated chromatin changes.

    PubMed

    Zografos, Brett R; Sung, Sibum

    2012-07-01

    Proper flowering time is vital for reproductive fitness in flowering plants. In Arabidopsis, vernalization is mediated primarily through the repression of a MADS box transcription factor, FLOWERING LOCUS C (FLC). The induction of a plant homeodomain-containing protein, VERNALIZATION INSENSITIVE 3 (VIN3), by vernalizing cold is required for proper repression of FLC. One of a myriad of changes that occurs after VIN3 is induced is the establishment of FLC chromatin at a mitotically repressed state due to the enrichment of repressive histone modifications. VIN3 induction by cold is the earliest known event during the vernalization response and includes changes in histone modifications at its chromatin. Here, the current understanding of the vernalization-mediated chromatin changes in Arabidopsis is discussed, with a focus on the roles of shared chromatin-modifying machineries in regulating VIN3 and FLC gene family expression during the course of vernalization.

  4. Integrative annotation of chromatin elements from ENCODE data

    PubMed Central

    Hoffman, Michael M.; Ernst, Jason; Wilder, Steven P.; Kundaje, Anshul; Harris, Robert S.; Libbrecht, Max; Giardine, Belinda; Ellenbogen, Paul M.; Bilmes, Jeffrey A.; Birney, Ewan; Hardison, Ross C.; Dunham, Ian; Kellis, Manolis; Noble, William Stafford

    2013-01-01

    The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape. PMID:23221638

  5. Compact structure of ribosomal chromatin in Xenopus laevis.

    PubMed Central

    Spadafora, C; Crippa, M

    1984-01-01

    Micrococcal nuclease digestion was used as a tool to study the organization of the ribosomal chromatin in liver, blood and embryo cells of X. laevis. It was found that in liver and blood cells, ribosomal DNA is efficiently protected from nuclease attack in comparison to bulk chromatin. Although ribosomal chromatin is fragmented in a typical nucleosomal pattern, a considerable portion of ribosomal DNA retains a high molecular weight even after extensive digestion. A greater accessibility of the coding region in comparison to the non-coding spacer was found. In embryos, when ribosomal DNA is fully transcribed, these genes are even more highly protected than in adult tissues: in fact, the nucleosomal ladder can hardly be detected and rDNA is preserved in high molecular weight. Treatment of chromatin with 0.8 M NaCl abolishes the specific resistance of the ribosomal chromatin to digestion. The ribosomal chromatin, particularly in its active state, seems to be therefore tightly complexed with chromosomal proteins which protect its DNA from nuclease degradation. Images PMID:6709502

  6. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    SciTech Connect

    Persson, Jenna; Ekwall, Karl

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  7. Atf1-Pcr1-M26 Complex Links Stress-activated MAPK and cAMP-dependent Protein Kinase Pathways via Chromatin Remodeling of cgs2+*

    PubMed Central

    Davidson, Mari K.; Shandilya, Harish K.; Hirota, Kouji; Ohta, Kunihiro; Wahls, Wayne P.

    2011-01-01

    Although co-ordinate interaction between different signal transduction pathways is essential for developmental decisions, interpathway connections are often obscured and difficult to identify due to cross-talk. Here signals from the fission yeast stress-activated MAPK Spc1 are shown to regulate Cgs2, a negative regulator of the cAMP-dependent protein kinase (protein kinase A) pathway. Pathway integration is achieved via Spc1-dependent binding of Atf1-Pcr1 heterodimer to an M26 DNA site in the cgs2+ promoter, which remodels chromatin to regulate expression of cgs2+ and targets downstream of protein kinase A. This direct interpathway connection co-ordinates signals of nitrogen and carbon source depletion to affect a G0 cell-cycle checkpoint and sexual differentiation. The Atf1-Pcr1-M26 complex-dependent chromatin remodeling provides a molecular mechanism whereby Atf1-Pcr1 heterodimer can function differentially as either a transcriptional activator, or as a transcriptional repressor, or as an inducer of meiotic recombination. We also show that the Atf1-Pcr1-M26 complex functions as both an inducer and repressor of chromatin remodeling, which provides a way for various chromatin remodeling-dependent effector functions to be regulated. PMID:15448137

  8. Atf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+.

    PubMed

    Davidson, Mari K; Shandilya, Harish K; Hirota, Kouji; Ohta, Kunihiro; Wahls, Wayne P

    2004-12-01

    Although co-ordinate interaction between different signal transduction pathways is essential for developmental decisions, interpathway connections are often obscured and difficult to identify due to cross-talk. Here signals from the fission yeast stress-activated MAPK Spc1 are shown to regulate Cgs2, a negative regulator of the cAMP-dependent protein kinase (protein kinase A) pathway. Pathway integration is achieved via Spc1-dependent binding of Atf1-Pcr1 heterodimer to an M26 DNA site in the cgs2+ promoter, which remodels chromatin to regulate expression of cgs2+ and targets downstream of protein kinase A. This direct interpathway connection co-ordinates signals of nitrogen and carbon source depletion to affect a G0 cell-cycle checkpoint and sexual differentiation. The Atf1-Pcr1-M26 complex-dependent chromatin remodeling provides a molecular mechanism whereby Atf1-Pcr1 heterodimer can function differentially as either a transcriptional activator, or as a transcriptional repressor, or as an inducer of meiotic recombination. We also show that the Atf1-Pcr1-M26 complex functions as both an inducer and repressor of chromatin remodeling, which provides a way for various chromatin remodeling-dependent effector functions to be regulated. PMID:15448137

  9. Changes in the template activity of chromatin isolated from sarcoma-180 ascites cells treated with mitomycin C and gamma irradiation in vivo.

    PubMed

    Karuri, A; Mukherji, S

    1989-01-01

    The murine ascites sarcoma 180 cells were used to test the in vivo effectiveness of mitomycin C (MMC) and gamma-radiation applied in combination. The action of intraperitoneal administration of MMC and/or whole-body gamma irradiation on sarcoma 180 tumor bearing Swiss albino mice was investigated by studying the template activity of isolated tumor chromatin. The Km value for transcription of 10 Gy-irradiated chromatin was found to decrease with time implying an increase in the template efficiency with respect to that of the unirradiated control. Maximum decrease in Km was observed after 24 h of irradiation. MMC treatment (7 mg/kg body weight of mouse) for 18 h resulted in an inhibition of the transcription rate. Severe inhibition in the template activity was found when cells were subjected to MMC treatment 18 h prior to irradiation with 10 Gy. Susceptibility of tumor chromatin to DNase II followed the same pattern as observed in the case of transcription indicating structural alteration of the treated chromatin. The data showed that DNA damage and its consequences produced in the ascites cells by prior treatment of MMC were not repaired during the 18 h period after which the application of radiation enhanced cytotoxicity.

  10. Atf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+.

    PubMed

    Davidson, Mari K; Shandilya, Harish K; Hirota, Kouji; Ohta, Kunihiro; Wahls, Wayne P

    2004-12-01

    Although co-ordinate interaction between different signal transduction pathways is essential for developmental decisions, interpathway connections are often obscured and difficult to identify due to cross-talk. Here signals from the fission yeast stress-activated MAPK Spc1 are shown to regulate Cgs2, a negative regulator of the cAMP-dependent protein kinase (protein kinase A) pathway. Pathway integration is achieved via Spc1-dependent binding of Atf1-Pcr1 heterodimer to an M26 DNA site in the cgs2+ promoter, which remodels chromatin to regulate expression of cgs2+ and targets downstream of protein kinase A. This direct interpathway connection co-ordinates signals of nitrogen and carbon source depletion to affect a G0 cell-cycle checkpoint and sexual differentiation. The Atf1-Pcr1-M26 complex-dependent chromatin remodeling provides a molecular mechanism whereby Atf1-Pcr1 heterodimer can function differentially as either a transcriptional activator, or as a transcriptional repressor, or as an inducer of meiotic recombination. We also show that the Atf1-Pcr1-M26 complex functions as both an inducer and repressor of chromatin remodeling, which provides a way for various chromatin remodeling-dependent effector functions to be regulated.

  11. A two-state activation mechanism controls the histone methyltransferase Suv39h1

    PubMed Central

    Müller, Manuel M.; Fierz, Beat; Bittova, Lenka; Liszczak, Glen; Muir, Tom W.

    2016-01-01

    Specialized chromatin domains contribute to nuclear organization and regulation of gene expression. Gene-poor regions are di- and trimethylated at lysine 9 of histone H3 (H3K9me2/3) by the histone methyltransferase, Suv39h1. This enzyme harnesses a positive feedback loop to spread H3K9me2/3 over extended heterochromatic regions. However, little is known about how feedback loops operate on complex biopolymers such as chromatin, in part because of the difficulty in obtaining suitable substrates. Here we describe the synthesis of multi-domain ‘designer chromatin’ templates and their application to dissecting the regulation of human Suv39h1. We uncovered a two-step activation switch where H3K9me3 recognition and subsequent anchoring of the enzyme to chromatin allosterically promotes methylation activity, and confirmed that this mechanism contributes to chromatin recognition in cells. We propose that this mechanism serves as a paradigm in chromatin biochemistry since it enables highly dynamic sampling of chromatin state combined with targeted modification of desired genomic regions. PMID:26807716

  12. Diet-mediated alteration of chromatin structure.

    PubMed

    Castro, C E; Armstrong-Major, J; Ramirez, M E

    1986-08-01

    Higher-order chromatin structure and the process of transcription are related. The significance of a nutritional state's altering chromatin structure lies in the potential role of that nutritional state in the regulation of gene expression. In rats short-term feeding of semisynthetic diets varying in the proportion of carbohydrate, protein, or fat alters the configuration of liver chromatin as measured by sensitivity to micrococcal nuclease (EC 3.1.31.1). A carbohydrate-rich, fat-free diet increases the sensitivity of rat liver chromatin to micrococcal nuclease and decreases the nucleosome repeat length. In contrast, a protein-free diet or a diet deficient in magnesium or zinc decreases the sensitivity of liver nuclear chromatin to micrococcal nuclease. Diet-mediated mechanisms that alter chromatin structure are now unknown, but the continued study of nutritional interaction with the genome should identify the responsible features as well as their significance to gene function.

  13. The Architectural Chromatin Factor High Mobility Group A1 Enhances DNA Ligase IV Activity Influencing DNA Repair

    PubMed Central

    Costantini, Silvia; Pegoraro, Silvia; Ros, Gloria; Penzo, Carlotta; Triolo, Gianluca; Demarchi, Francesca; Sgarra, Riccardo; Vindigni, Alessandro; Manfioletti, Guidalberto

    2016-01-01

    The HMGA1 architectural transcription factor is an oncogene overexpressed in the vast majority of human cancers. HMGA1 is a highly connected node in the nuclear molecular network and the key aspect of HMGA1 involvement in cancer development is that HMGA1 simultaneously confers cells multiple oncogenic hits, ranging from global chromatin structural and gene expression modifications up to the direct functional alterations of key cellular proteins. Interestingly, HMGA1 also modulates DNA damage repair pathways. In this work, we provide evidences linking HMGA1 with Non-Homologous End Joining DNA repair. We show that HMGA1 is in complex with and is a substrate for DNA-PK. HMGA1 enhances Ligase IV activity and it counteracts the repressive histone H1 activity towards DNA ends ligation. Moreover, breast cancer cells overexpressing HMGA1 show a faster recovery upon induction of DNA double-strand breaks, which is associated with a higher survival. These data suggest that resistance to DNA-damaging agents in cancer cells could be partially attributed to HMGA1 overexpression thus highlighting the relevance of considering HMGA1 expression levels in the selection of valuable and effective pharmacological regimens. PMID:27723831

  14. Interstitial chromatin alteration causes persistent p53 activation involved in the radiation-induced senescence-like growth arrest

    SciTech Connect

    Suzuki, Masatoshi; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami . E-mail: nabe@rri.kyoto-u.ac.jp

    2006-02-03

    Various stresses including ionizing radiation give normal human fibroblasts a phenotype of senescence-like growth arrest (SLGA), manifested by p53-dependent irreversible G1 arrest. To determine the mechanism of persistent activation of p53, we examined phosphorylated Ataxia telangiectasia mutated (ATM) and phosphorylated histone H2AX foci formation after X-irradiation. Although the multiple tiny foci, detected soon after (<30 min) irradiation, gradually disappeared, some of these foci changed to large foci and persisted for 5 days. Large foci containing phosphorylated ATM and {gamma}-H2AX co-localized and foci with p53 phosphorylated at serine 15 also showed the same distribution. Interestingly, the signals obtained by telomere fluorescence in situ hybridization (FISH) assay did not co-localize with 90% of the large foci. Our results indicate that chromatin alteration in interstitial chromosomal regions is the most likely cause of continuous activation of p53, which results in the induction of SLGA by ionizing radiation.

  15. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    SciTech Connect

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; Chen, Kuan-Bei; Stonestrom, Aaron; Long, Maria; Keller, Cheryl A.; Cheng, Yong; Jain, Deepti; Visel, Axel; Pennacchio, Len A.; Weiss, Mitchell J.; Blobel, Gerd A.; Hardison, Ross C.

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the results of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.

  16. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    DOE PAGES

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; Chen, Kuan-Bei; Stonestrom, Aaron; Long, Maria; Keller, Cheryl A.; Cheng, Yong; Jain, Deepti; Visel, Axel; et al

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less

  17. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells

    PubMed Central

    Steiner, Laurie A.; Schulz, Vincent; Makismova, Yelena; Lezon-Geyda, Kimberly; Gallagher, Patrick G.

    2016-01-01

    Background CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human hematopoietic stem and progenitor cells (HSPC) and primary human erythroid cells from single donors. Results Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone H3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner. Conclusion These genome wide data, changes in sites of protein occupancy, chromatin architecture, and related gene expression, support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. These data from primary human erythroid cells provide a resource for studies of normal and perturbed erythropoiesis. PMID:27219007

  18. Identification of caspase-3 and caspase-activated deoxyribonuclease in rat blastocysts and their implication in the induction of chromatin degradation (but not nuclear fragmentation) by high glucose.

    PubMed

    Hinck, L; Van Der Smissen, P; Heusterpreute, M; Donnay, I; De Hertogh, R; Pampfer, S

    2001-02-01

    Previous investigations have shown that maternal diabetes impairs rodent embryo development during the earliest phase of gestation. Exposure to high concentrations of glucose before implantation results in a decrease in the number of cells per embryo and in a concomitant increase in two nuclear markers of apoptosis, chromatin degradation and nuclear fragmentation. In the present study, we show that two intracellular effectors of apoptosis, caspase-3 and caspase-activated deoxyribonuclease (CAD), are involved in the embryotoxicity of high glucose. Using reverse transcription-polymerase chain reaction and immunocytochemistry, we first demonstrated that these two effectors were expressed in rat blastocysts. The two effectors were detected in all the cells of the blastocysts and the immuno-signals were excluded from the nuclei. Rat blastocysts were incubated for 24 h in either 6 mM or 28 mM glucose in the presence or absence of specific inhibitors (DEVD-CHO [10 microM] against caspase-3 and aurin [1 microM] against CAD). After incubation, blastocysts were examined for the proportion of nuclei showing signs of chromatin degradation or nuclear fragmentation. Addition of DEVD-CHO or aurin was found to inhibit the increase in chromatin degradation induced by high glucose. None of these two inhibitors prevented the increase in nuclear fragmentation triggered by excess glucose. Our data indicate that chromatin degradation and nuclear fragmentation are two nuclear damages that are induced separately by high glucose in rat blastocysts. Chromatin degradation is apparently mediated by the activation of caspase-3 and CAD.

  19. Pericentric chromatin loops function as a nonlinear spring in mitotic force balance

    PubMed Central

    Stephens, Andrew D.; Haggerty, Rachel A.; Vasquez, Paula A.; Vicci, Leandra; Snider, Chloe E.; Shi, Fu; Quammen, Cory; Mullins, Christopher; Haase, Julian; Taylor, Russell M.; Verdaasdonk, Jolien S.; Falvo, Michael R.; Jin, Yuan; Forest, M. Gregory

    2013-01-01

    The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes. PMID:23509068

  20. Pericentric chromatin loops function as a nonlinear spring in mitotic force balance.

    PubMed

    Stephens, Andrew D; Haggerty, Rachel A; Vasquez, Paula A; Vicci, Leandra; Snider, Chloe E; Shi, Fu; Quammen, Cory; Mullins, Christopher; Haase, Julian; Taylor, Russell M; Verdaasdonk, Jolien S; Falvo, Michael R; Jin, Yuan; Forest, M Gregory; Bloom, Kerry

    2013-03-18

    The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.

  1. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity

    SciTech Connect

    Zemach, Assaf; Paul, Laju K.; Stambolsky, Perry; Efroni, Idan; Rotter, Varda; Grafi, Gideon

    2009-12-10

    The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.

  2. Chemically induced enucleation of activated bovine oocytes: chromatin and microtubule organization and production of viable cytoplasts.

    PubMed

    Saraiva, Naiara Zoccal; Oliveira, Clara Slade; Leal, Cláudia Lima Verde; de Lima, Marina Ragagnin; Del Collado, Maite; Vantini, Roberta; Monteiro, Fabio Morato; Niciura, Simone Cristina Méo; Garcia, Joaquim Mansano

    2015-12-01

    As the standard enucleation method in mammalian nuclear transfer is invasive and damaging to cytoplast spatial organization, alternative procedures have been developed over recent years. Among these techniques, chemically induced enucleation (IE) is especially interesting because it does not employ ultraviolet light and reduces the amount of cytoplasm eliminated during the procedure. The objective of this study was to optimize the culture conditions with demecolcine of pre-activated bovine oocytes for chemically IE, and to evaluate nuclear and microtubule organization in cytoplasts obtained by this technique and their viability. In the first experiment, a negative effect on oocyte activation was verified when demecolcine was added at the beginning of the process, reducing activation rates by approximately 30%. This effect was not observed when demecolcine was added to the medium after 1.5 h of activation. In the second experiment, although a reduction in the number of microtubules was observed in most oocytes, these structures did not disappear completely during assessment. Approximately 50% of treated oocytes presented microtubule reduction at the end of the evaluation period, while 23% of oocytes were observed to exhibit the complete disappearance of these structures and 28% exhibited visible microtubules. These findings indicated the lack of immediate microtubule repolymerization after culture in demecolcine-free medium, a fact that may negatively influence embryonic development. However, cleavage rates of 63.6-70.0% and blastocyst yield of 15.5-24.2% were obtained in the final experiment, without significant differences between techniques, indicating that chemically induced enucleation produces normal embryos.

  3. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities

    PubMed Central

    Aravind, L; Iyer, Lakshminarayan M

    2002-01-01

    Background Eukaryotic chromosomal components, especially histones, are subject to a wide array of covalent modifications and catalytic reorganization. These modifications have an important role in the regulation of chromatin structure and are mediated by large multisubunit complexes that contain modular proteins with several conserved catalytic and noncatalytic adaptor domains. Results Using computational sequence-profile analysis methods, we identified a previously uncharacterized, predicted α-helical domain of about 85 residues in chromosomal proteins such as Swi3p, Rsc8p, Moira and several other uncharacterized proteins. This module, termed the SWIRM domain, is predicted to mediate specific protein-protein interactions in the assembly of chromatin-protein complexes. In one group of proteins, which are highly conserved throughout the crown-group eukaryotes, the SWIRM domain is linked to a catalytic domain related to the monoamine and polyamine oxidases. Another human protein has the SWIRM domain linked to a JAB domain that is involved in protein degradation through the ubiquitin pathway. Conclusions Identification of the SWIRM domain could help in directed experimental analysis of specific interactions in chromosomal proteins. We predict that the proteins in which it is combined with an amino-oxidase domain define a novel class of chromatin-modifying enzymes, which are likely to oxidize either the amino group of basic residues in histones and other chromosomal proteins or the polyamines in chromatin, and thereby alter the charge distribution. Other forms, such as KIAA1915, may link chromatin modification to ubiquitin-dependent protein degradation. PMID:12186646

  4. Insights into GATA-1 Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

    PubMed Central

    Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B.; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H.; Bernstein, Bradley E.; Fraenkel, Ernest; Cantor, Alan B.

    2009-01-01

    Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo. PMID:19941827

  5. Histone H3 Acetylation and H3 K4 Methylation Define Distinct Chromatin Regions Permissive for Transgene Expression

    PubMed Central

    Yan, Chunhong; Boyd, Douglas D.

    2006-01-01

    Histone modifications are associated with distinct transcription states and serve as heritable epigenetic markers for chromatin structure and function. While H3 K9 methylation defines condensed heterochromatin that is able to silence a nearby gene, how gene silencing within euchromatin regions is achieved remains elusive. We report here that histone H3 K4 methylation or K9/K14 acetylation defines distinct chromatin regions permissive or nonpermissive for transgene expression. A permissive chromatin region is enriched in H3 K4 methylation and H3 acetylation, while a nonpermissive region is poor in or depleted of these two histone modifications. The histone modification states of the permissive chromatin can spread to transgenic promoters. However, de novo histone H3 acetylation and H3 K4 methylation at a transgenic promoter in a nonpermissive chromatin region are stochastic, leading to variegated transgene expression. Moreover, nonpermissive chromatin progressively silences a transgene, an event that is accompanied by the reduction of H3 K4 methylation and H3 acetylation levels at the transgenic promoter. These repressive effects of nonpermissive chromatin cannot be completely countered by strong transcription activators, indicating the dominance of the chromatin effects. We therefore propose a model in which histone H3 acetylation and H3 K4 methylation localized to discrete sites in the mammalian genome mark distinct chromatin functions that dictate transgene expression or silencing. PMID:16914722

  6. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.

    PubMed Central

    Gong, Q H; McDowell, J C; Dean, A

    1996-01-01

    Much of our understanding of the process by which enhancers activate transcription has been gained from transient-transfection studies in which the DNA is not assembled with histones and other chromatin proteins as it is in the cell nucleus. To study the activation of a mammalian gene in a natural chromatin context in vivo, we constructed a minichromosome containing the human epsilon-globin gene and portions of the beta-globin locus control region (LCR). The minichromosomes replicate and are maintained at stable copy number in human erythroid cells. Expression of the minichromosomal epsilon-globin gene requires the presence of beta-globin LCR elements in cis, as is the case for the chromosomal gene. We determined the chromatin structure of the epsilon-globin gene in both the active and inactive states. The transcriptionally inactive locus is covered by an array of positioned nucleosomes extending over 1,400 bp. In minichromosomes with a (mu)LCR or DNase I-hypersensitive site 2 (HS2) which actively transcribe the epsilon-globin gene, the nucleosome at the promoter is altered or disrupted while positioning of nucleosomes in the rest of the locus is retained. All or virtually all minichromosomes are simultaneously hypersensitive to DNase I both at the promoter and at HS2. Transcriptional activation and promoter remodeling, as well as formation of the HS2 structure itself, depended on the presence of the NF-E2 binding motif in HS2. The nucleosome at the promoter which is altered upon activation is positioned over the transcriptional elements of the epsilon-globin gene, i.e., the TATA, CCAAT, and CACCC elements, and the GATA-1 site at -165. The simple availability of erythroid transcription factors that recognize these motifs is insufficient to allow expression. As in the chromosomal globin locus, regulation also occurs at the level of chromatin structure. These observations are consistent with the idea that one role of the beta-globin LCR is to maintain promoters free

  7. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes

    PubMed Central

    Khoroshko, Varvara A.; Levitsky, Viktor G.; Zykova, Tatyana Yu.; Antonenko, Oksana V.; Belyaeva, Elena S.; Zhimulev, Igor F.

    2016-01-01

    Late-replicating domains (intercalary heterochromatin) in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions) are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions) appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW), and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE) that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a gradient of

  8. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes.

    PubMed

    Khoroshko, Varvara A; Levitsky, Viktor G; Zykova, Tatyana Yu; Antonenko, Oksana V; Belyaeva, Elena S; Zhimulev, Igor F

    2016-01-01

    Late-replicating domains (intercalary heterochromatin) in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions) are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions) appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW), and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE) that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a gradient of

  9. Chromatin remodeling in nuclear cloning.

    PubMed

    Wade, Paul A; Kikyo, Nobuaki

    2002-05-01

    Nuclear cloning is a procedure to create new animals by injecting somatic nuclei into unfertilized oocytes. Recent successes in mammalian cloning with differentiated adult nuclei strongly indicate that oocyte cytoplasm contains unidentified remarkable reprogramming activities with the capacity to erase the previous memory of cell differentiation. At the heart of this nuclear reprogramming lies chromatin remodeling as chromatin structure and function define cell differentiation through regulation of the transcriptional activities of the cells. Studies involving the modification of chromatin elements such as selective uptake or release of binding proteins, covalent histone modifications including acetylation and methylation, and DNA methylation should provide significant insight into the molecular mechanisms of nuclear dedifferentiation and redifferentiation in oocyte cytoplasm.

  10. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    PubMed

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function.

  11. Variable protection by OH scavengers against radiation-induced inactivation of isolated transcriptionally active chromatin: the influence of secondary radicals

    SciTech Connect

    Herskind, C.; Westergaard, O.

    1988-04-01

    Isolated r-chromatin, the chromatin form of the extrachromosomal gene coding for the rRNA precursor in Tetrahymena, has been used to study radiation-induced inactivation in vitro in the presence of the OH radical scavengers, t-butanol, formate ions, and methanol. Induction of biologically important DNA lesions was detected by the effect on transcription by endogenous RNA polymerases associated with the isolated r-chromatin. The OH scavengers were found to give strong protection in the presence of oxygen as anticipated from previous results obtained with this system. By contrast, only a modest protection was observed under 100% N/sub 2/ or 100% N/sub 2/O, and the level of protection was different for each scavenger. The data suggest that secondary radicals may inactivate r-chromatin under anoxia. In the presence of oxygen, the secondary radicals react with O/sub 2/ to form organic peroxy radicals (or O/sub 2/-) which seem to be less reactive. Since the protective effect of the OH scavengers varies with the gassing conditions, the dose modifying effects of O/sub 2/ and N/sub 2/O relative to N/sub 2/ depend on the identity and concentration of OH scavenger. The implications for radiation-chemical studies on DNA and living cells are discussed.

  12. Chromatin remodeling facilitates DNA incision in UV-damaged nucleosomes.

    PubMed

    Lee, Kyungeun; Kim, Deok Ryong; Ahn, Byungchan

    2004-08-31

    The DNA repair machinery must locate and repair DNA damage all over the genome. As nucleosomes inhibit DNA repair in vitro, it has been suggested that chromatin remodeling might be required for efficient repair in vivo. To investigate a possible contribution of nucleosome dynamics and chromatin remodeling to the repair of UV-photoproducts in nucleosomes, we examined the effect of a chromatin remodeling complex on the repair of UV-lesions by Micrococcus luteus UV endonuclease (ML-UV endo) and T4-endonuclease V (T4-endoV) in reconstituted mononucleosomes positioned at one end of a 175-bp long DNA fragment. Repair by ML-UV endo and T4-endoV was inefficient in mononucleosomes compared with naked DNA. However, the human nucleosome remodeling complex, hSWI/SNF, promoted more homogeneous repair by ML-UV endo and T4-endo V in reconstituted nucleosomes. This result suggests that recognition of DNA damage could be facilitated by a fluid state of the chromatin resulting from chromatin remodeling activities. PMID:15359130

  13. Chromatin modifications and DNA repair: beyond double-strand breaks

    PubMed Central

    House, Nealia C. M.; Koch, Melissa R.; Freudenreich, Catherine H.

    2014-01-01

    DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions. PMID:25250043

  14. Polyamines may regulate S-phase progression but not the dynamic changes of chromatin during the cell cycle.

    PubMed

    Laitinen, J; Stenius, K; Eloranta, T O; Hölttä, E

    1998-02-01

    Several studies suggest that polyamines may stabilize chromatin and play a role in its structural alterations. In line with this idea, we found here by chromatin precipitation and micrococcal nuclease (MNase) digestion analyses, that spermidine and spermine stabilize or condense the nucleosomal organization of chromatin in vitro. We then investigated the possible physiological role of polyamines in the nucleosomal organization of chromatin during the cell cycle in Chinese hamster ovary (CHO) cells deficient in ornithine decarboxylase (ODC) activity. An extended polyamine deprivation (for 4 days) was found to arrest 70% of the odc- cells in S phase. MNase digestion analyses revealed that these cells have a highly loosened and destabilized nucleosomal organization. However, no marked difference in the chromatin structure was detected between the control and polyamine-depleted cells following the synchronization of the cells at the S-phase. We also show in synchronized cells that polyamine deprivation retards the traverse of the cells through the S phase already in the first cell cycle. Depletion of polyamines had no significant effect on the nucleosomal organization of chromatin in G1-early S. The polyamine-deprived cells were also capable of condensing the nucleosomal organization of chromatin in the S/G2 phase of the cell cycle. These data indicate that polyamines do not regulate the chromatin condensation state during the cell cycle, although they might have some stabilizing effect on the chromatin structure. Polyamines may, however, play an important role in the control of S-phase progression. PMID:9443076

  15. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  16. Control of RNA synthesis by chromatin proteins.

    PubMed Central

    Cedar, H; Solage, A; Zurucki, F

    1976-01-01

    The effect of chromatin proteins on template activity has been studied. Using both E. coli RNA polymerase and calf thymmus polymerase B we have measured the number of initiation sites on chromatin and various histone-DNA complexes. Chromatin can be reconstituted with histone proteins alone and this complex is still a restricted template for RNA synthesis. The removal of histone f1 causes a large increase in the template activity. Chromatin is then treated with Micrococcal nuclease and the DNA fragments protected from nuclease attack ("covered DNA") are isolated. Alternatively, the chromatin is titrated with poly-D-lysine, and by successive treatment with Pronase and nuclease, the DNA regions accessible to polylysine are isolated ("open DNA"). Both fractions were tested for template activity. It was found that RNA polymerase initiation sites are distributed equally in open and covered region DNA. PMID:787926

  17. Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC

    PubMed Central

    Yang, Hongchun; Howard, Martin; Dean, Caroline

    2016-01-01

    Establishment and maintenance of gene expression states is central to development and differentiation. Transcriptional and epigenetic mechanisms interconnect in poorly understood ways to determine these states. We explore these mechanisms through dissection of the regulation of Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC can be present in a transcriptionally active state marked by H3K36me3 or a silent state marked by H3K27me3. Here, we investigate the trans factors modifying these opposing histone states and find a physical coupling in vivo between the H3K36 methyltransferase, SDG8, and the H3K27me3 demethylase, ELF6. Previous modeling has predicted this coupling would exist as it facilitates bistability of opposing histone states. We also find association of SDG8 with the transcription machinery, namely RNA polymerase II and the PAF1 complex. Delivery of the active histone modifications is therefore likely to be through transcription at the locus. SDG8 and ELF6 were found to influence the localization of each other on FLC chromatin, showing the functional importance of the interaction. In addition, both influenced accumulation of the associated H3K27me3 and H3K36me3 histone modifications at FLC. We propose the physical coupling of activation and derepression activities coordinates transcriptional activity and prevents ectopic silencing. PMID:27482092

  18. Expression-Dependent Folding of Interphase Chromatin

    PubMed Central

    Jerabek, Hansjoerg; Heermann, Dieter W.

    2012-01-01

    Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology. PMID:22649534

  19. NF-E2, FLI1 and RUNX1 collaborate at areas of dynamic chromatin to activate transcription in mature mouse megakaryocytes

    PubMed Central

    Zang, Chongzhi; Luyten, Annouck; Chen, Justina; Liu, X. Shirley; Shivdasani, Ramesh A.

    2016-01-01

    Mutations in mouse and human Nfe2, Fli1 and Runx1 cause thrombocytopenia. We applied genome-wide chromatin dynamics and ChIP-seq to determine these transcription factors’ (TFs) activities in terminal megakaryocyte (MK) maturation. Enhancers with H3K4me2-marked nucleosome pairs were most enriched for NF-E2, FLI and RUNX sequence motifs, suggesting that this TF triad controls much of the late MK program. ChIP-seq revealed NF-E2 occupancy near previously implicated target genes, whose expression is compromised in Nfe2-null cells, and many other genes that become active late in MK differentiation. FLI and RUNX were also the motifs most enriched near NF-E2 binding sites and ChIP-seq implicated FLI1 and RUNX1 in activation of late MK, including NF-E2-dependent, genes. Histones showed limited activation in regions of single TF binding, while enhancers that bind NF-E2 and either RUNX1, FLI1 or both TFs gave the highest signals for TF occupancy and H3K4me2; these enhancers associated best with genes activated late in MK maturation. Thus, three essential TFs co-occupy late-acting cis-elements and show evidence for additive activity at genes responsible for platelet assembly and release. These findings provide a rich dataset of TF and chromatin dynamics in primary MK and explain why individual TF losses cause thrombopocytopenia. PMID:27457419

  20. Tumor suppressor genes are larger than apoptosis-effector genes and have more regions of active chromatin: Connection to a stochastic paradigm for sequential gene expression programs.

    PubMed

    Garcia, Marlene; Mauro, James A; Ramsamooj, Michael; Blanck, George

    2015-08-01

    Apoptosis- and proliferation-effector genes are substantially regulated by the same transactivators, with E2F-1 and Oct-1 being notable examples. The larger proliferation-effector genes have more binding sites for the transactivators that regulate both sets of genes, and proliferation-effector genes have more regions of active chromatin, i.e, DNase I hypersensitive and histone 3, lysine-4 trimethylation sites. Thus, the size differences between the 2 classes of genes suggest a transcriptional regulation paradigm whereby the accumulation of transcription factors that regulate both sets of genes, merely as an aspect of stochastic behavior, accumulate first on the larger proliferation-effector gene "traps," and then accumulate on the apoptosis effector genes, thereby effecting sequential activation of the 2 different gene sets. As IRF-1 and p53 levels increase, tumor suppressor proteins are first activated, followed by the activation of apoptosis-effector genes, for example during S-phase pausing for DNA repair. Tumor suppressor genes are larger than apoptosis-effector genes and have more IRF-1 and p53 binding sites, thereby likewise suggesting a paradigm for transcription sequencing based on stochastic interactions of transcription factors with different gene classes. In this report, using the ENCODE database, we determined that tumor suppressor genes have a greater number of open chromatin regions and histone 3 lysine-4 trimethylation sites, consistent with the idea that a larger gene size can facilitate earlier transcriptional activation via the inclusion of more transactivator binding sites.

  1. Rapid genome-scale mapping of chromatin accessibility in tissue

    PubMed Central

    2012-01-01

    Background The challenge in extracting genome-wide chromatin features from limiting clinical samples poses a significant hurdle in identification of regulatory marks that impact the physiological or pathological state. Current methods that identify nuclease accessible chromatin are reliant on large amounts of purified nuclei as starting material. This complicates analysis of trace clinical tissue samples that are often stored frozen. We have developed an alternative nuclease based procedure to bypass nuclear preparation to interrogate nuclease accessible regions in frozen tissue samples. Results Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Accessible chromatin identified by TACh overlaps to a large extend with accessible chromatin identified by DNase I using nuclei purified from freshly isolated liver tissue as starting material. The similarities are most pronounced at highly accessible regions, whereas identification of less accessible regions tends to be more divergence between nucleases. Interestingly, we show that some of the differences between DNase I and Benzonase relate to their intrinsic sequence biases and accordingly accessibility of CpG islands is probed more efficiently using TACh. Conclusion The TACh methodology identifies accessible chromatin derived from frozen tissue samples. We propose that this simple, robust approach can be applied across a broad range of

  2. Gearing up chromatin

    PubMed Central

    Mandemaker, Imke K; Vermeulen, Wim; Marteijn, Jurgen A

    2014-01-01

    During transcription, RNA polymerase may encounter DNA lesions, which causes stalling of transcription. To overcome the RNA polymerase blocking lesions, the transcribed strand is repaired by a dedicated repair mechanism, called transcription coupled nucleotide excision repair (TC-NER). After repair is completed, it is essential that transcription restarts. So far, the regulation and exact molecular mechanism of this transcriptional restart upon genotoxic damage has remained elusive. Recently, three different chromatin remodeling factors, HIRA, FACT, and Dot1L, were identified to stimulate transcription restart after DNA damage. These factors either incorporate new histones or establish specific chromatin marks that will gear up the chromatin to subsequently promote transcription recovery. This adds a new layer to the current model of chromatin remodeling necessary for repair and indicates that this specific form of transcription, i.e., the transcriptional restart upon DNA damage, needs specific chromatin remodeling events. PMID:24809693

  3. Mechanisms of ATP-Dependent Chromatin Remodeling Motors.

    PubMed

    Zhou, Coral Y; Johnson, Stephanie L; Gamarra, Nathan I; Narlikar, Geeta J

    2016-07-01

    Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies. We use these studies as a guiding framework to discuss the current state of knowledge of chromatin remodeling mechanisms and highlight exciting open questions that would continue to benefit from biophysical analyses. PMID:27391925

  4. Citrullination regulates pluripotency and histone H1 binding to chromatin

    NASA Astrophysics Data System (ADS)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  5. Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice.

    PubMed

    Kooren, Jurgen; Palstra, Robert-Jan; Klous, Petra; Splinter, Erik; von Lindern, Marieke; Grosveld, Frank; de Laat, Wouter

    2007-06-01

    Expression of the beta-globin genes proceeds from basal to exceptionally high levels during erythroid differentiation in vivo. High expression is dependent on the locus control region (LCR) and coincides with more frequent LCR-gene contacts. These contacts are established in the context of an active chromatin hub (ACH), a spatial chromatin configuration in which the LCR, together with other regulatory sequences, loops toward the active beta-globin-like genes. Here, we used recently established I/11 cells as a model system that faithfully recapitulates the in vivo erythroid differentiation program to study the molecular events that accompany and underlie ACH formation. Upon I/11 cell induction, histone modifications changed, the ACH was formed, and the beta-globin-like genes were transcribed at rates similar to those observed in vivo. The establishment of frequent LCR-gene contacts coincided with a more efficient loading of polymerase onto the beta-globin promoter. Binding of the transcription factors GATA-1 and EKLF to the locus, although previously shown to be required, was not sufficient for ACH formation. Moreover, we used knock-out mice to show that the erythroid transcription factor p45 NF-E2, which has been implicated in beta-globin gene regulation, is dispensable for beta-globin ACH formation.

  6. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex.

    PubMed

    Wang, Xi; Sansam, Courtney G; Thom, Christopher S; Metzger, Daniel; Evans, Julia A; Nguyen, Phuong T L; Roberts, Charles W M

    2009-10-15

    Alterations in chromatin play an important role in oncogenic transformation, although the underlying mechanisms are often poorly understood. The SWI/SNF complex contributes to epigenetic regulation by using the energy of ATP hydrolysis to remodel chromatin and thus regulate transcription of target genes. SNF5, a core subunit of the SWI/SNF complex, is a potent tumor suppressor that is specifically inactivated in several types of human cancer. However, the mechanism by which SNF5 mutation leads to cancer and the role of SNF5 within the SWI/SNF complex remain largely unknown. It has been hypothesized that oncogenesis in the absence of SNF5 occurs due to a loss of function of the SWI/SNF complex. Here, we show, however, distinct effects for inactivation of Snf5 and the ATPase subunit Brg1 in primary cells. Further, using both human cell lines and mouse models, we show that cancer formation in the absence of SNF5 does not result from SWI/SNF inactivation but rather that oncogenesis is dependent on continued presence of BRG1. Collectively, our results show that cancer formation in the absence of SNF5 is dependent on the activity of the residual BRG1-containing SWI/SNF complex. These findings suggest that, much like the concept of oncogene addiction, targeted inhibition of SWI/SNF ATPase activity may be an effective therapeutic approach for aggressive SNF5-deficient human tumors.

  7. The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity.

    PubMed

    Mishra, R K; Mihaly, J; Barges, S; Spierer, A; Karch, F; Hagstrom, K; Schweinsberg, S E; Schedl, P

    2001-02-01

    In the work reported here we have undertaken a functional dissection of a Polycomb response element (PRE) from the iab-7 cis-regulatory domain of the Drosophila melanogaster bithorax complex (BX-C). Previous studies mapped the iab-7 PRE to an 860-bp fragment located just distal to the Fab-7 boundary. Located within this fragment is an approximately 230-bp chromatin-specific nuclease-hypersensitive region called HS3. We have shown that HS3 is capable of functioning as a Polycomb-dependent silencer in vivo, inducing pairing-dependent silencing of a mini-white reporter. The HS3 sequence contains consensus binding sites for the GAGA factor, a protein implicated in the formation of nucleosome-free regions of chromatin, and Pleiohomeotic (Pho), a Polycomb group protein that is related to the mammalian transcription factor YY1. We show that GAGA and Pho interact with these sequences in vitro and that the consensus binding sites for the two proteins are critical for the silencing activity of the iab-7 PRE in vivo. PMID:11158316

  8. Chromatin Structure in Telomere Dynamics

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Cacchione, Stefano

    2013-01-01

    The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions. PMID:23471416

  9. Quantification of chromatin condensation level by image processing.

    PubMed

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation.

  10. Update: Influenza Activity - United States.

    PubMed

    Smith, Sophie; Blanton, Lenee; Kniss, Krista; Mustaquim, Desiree; Steffens, Craig; Reed, Carrie; Bramley, Anna; Flannery, Brendan; Fry, Alicia M; Grohskopf, Lisa A; Bresee, Joseph; Wallis, Teresa; Garten, Rebecca; Xu, Xiyan; Elal, Anwar Isa Abd; Gubareva, Larisa; Barnes, John; Wentworth, David E; Burns, Erin; Katz, Jacqueline; Jernigan, Daniel; Brammer, Lynnette

    2015-12-11

    CDC collects, compiles, and analyzes data on influenza activity year-round in the United States. The influenza season generally begins in the fall and continues through the winter and spring months; however, the timing and severity of circulating influenza viruses can vary by geographic location and season. Influenza activity in the United States remained low through October and November in 2015. Influenza A viruses have been most frequently identified, with influenza A (H3) viruses predominating. This report summarizes U.S. influenza activity for the period October 4-November 28, 2015. PMID:26656182

  11. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP.

    PubMed

    Li, Chenlong; Chen, Chen; Gao, Lei; Yang, Songguang; Nguyen, Vi; Shi, Xuejiang; Siminovitch, Katherine; Kohalmi, Susanne E; Huang, Shangzhi; Wu, Keqiang; Chen, Xuemei; Cui, Yuhai

    2015-01-01

    The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  12. Inheritance of epigenetic chromatin silencing

    PubMed Central

    David-Rus, Diana; Mukhopadhyay, Swagatam; Lebowitz, Joel L.; Sengupta, Anirvan M.

    2010-01-01

    Maintenance of alternative chromatin states through cell divisions pose some fundamental constraints on the dynamics of histone modifications. In this paper, we study the systems biology of epigenetic inheritance by defining and analyzing general classes of mathematical models. We discuss how the number of modification states involved plays an essential role in the stability of epigenetic states. In addition, DNA duplication and the consequent dilution of marked histones act as a large perturbation for a stable state of histone modifications. The requirement that this large perturbation falls into the basin of attraction of the original state sometimes leads to additional constraints on effective models. Two such models, inspired by two different biological systems, are compared in their fulfilling the requirements of multistability and of recovery after DNA duplication. We conclude that in the presence of multiple histone modifications that characterize alternative epigenetic stable states, these requirements are more easily fulfilled. PMID:19174167

  13. An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes

    PubMed Central

    Sun, Ming-Ju; Zhu, Shuai; Li, You-Wei; Lin, Juan; Gong, Shuai; Jiao, Guang-Zhong; Chen, Fei; Tan, Jing-He

    2016-01-01

    The mechanisms for the transition from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) chromatin configuration during oocyte growth/maturation are unclear. By manipulating enzyme activities and measuring important molecules using small-follicle pig oocytes with a high proportion of NSN configuration and an extended germinal vesicle stage in vitro, this study has the first time up-to-date established the essential role for intra-oocyte mitogen-activated protein kinase (MAPK) in the NSN-to-SN transition. Within the oocyte in 1–2 mm follicles, a cAMP decline activates MAPK, which prevents the NSN-to-SN transition by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) while inhibiting histone deacetylase (HDAC). In cumulus cells of 1–2 mm follicles, a lower level of estradiol and oocyte-derived paracrine factor (ODPF) reduces natriuretic peptide receptor 2 (NPR2) while enhancing FSH and cAMP actions. FSH elevates cAMP levels, which decreases NPR2 while activating MAPK. MAPK closes the gap junctions, which, together with the NPR2 decrease, reduces cyclic guanosine monophosphate (cGMP) delivery leading to the cAMP decline within oocytes. In 3–6 mm follicles, a higher level of estradiol and ODPF and a FSH shortage initiate a reversion of the above events leading to MAPK inactivation and NSN-to-SN transition within oocytes. PMID:27009903

  14. Analysis of Mcm2-7 chromatin binding during anaphase and in the transition to quiescence in fission yeast

    SciTech Connect

    Namdar, Mandana; Kearsey, Stephen E. . E-mail: stephen.kearsey@zoo.ox.ac.uk

    2006-10-15

    Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10{sup 4} molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.

  15. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure.

    PubMed

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M Cristina

    2016-03-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1(-/-) compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function.

  16. Links between genome replication and chromatin landscapes.

    PubMed

    Sequeira-Mendes, Joana; Gutierrez, Crisanto

    2015-07-01

    Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication.

  17. Chromatin structure in scrapie and Alzheimer's disease.

    PubMed

    McLachlan, D R; Lukiw, W J; Cho, H J; Carp, R I; Wisniewski, H

    1986-11-01

    Scrapie affected brains exhibit a number of pathological features in common with the human neurodegenerative condition, Alzheimer's disease. The present report describes studies on chromatin structure seen in these two disease processes. Chromatin associated proteins influence transcriptional activity of DNA through an effect upon chromatin structure. We examined chromatin structure by: measuring the capacity of the enzyme micrococcal nuclease to release mono- and dinucleosomes from isolated nuclei and measuring DNA-histone interactions by examining the effect of ambient tonicity upon the release of chromatin proteins. In two strains of mice infected with two strains of scrapie agent there was reduced accessibility to micrococcal nuclease and an increased content on dinucleosomes of the histone H1 and H1(0) types. These changes precede clinical signs of scrapie and resemble those found in the human conditions of Alzheimer's and Pick's disease. Scrapie mouse brain differs from Alzheimer brain in that scrapie does not alter histone-DNA interactions as monitored by ionically induced histone release from chromatin. Despite similarities, the scrapie agent appears to operate upon different molecular mechanisms than those found in Alzheimer's disease.

  18. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene

    PubMed Central

    Liu, Yu-Chin; Chang, Pu-Yuan; Chao, Chuck C.-K.

    2015-01-01

    In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy. PMID:26384430

  19. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene.

    PubMed

    Liu, Yu-Chin; Chang, Pu-Yuan; Chao, Chuck C-K

    2015-12-15

    In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy.

  20. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation1

    PubMed Central

    Eichten, Steven R.; Schmitz, Robert J.; Springer, Nathan M.

    2014-01-01

    Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes. PMID:24872382

  1. Chromatin signatures of cancer

    PubMed Central

    Morgan, Marc A.; Shilatifard, Ali

    2015-01-01

    Changes in the pattern of gene expression play an important role in allowing cancer cells to acquire their hallmark characteristics, while genomic instability enables cells to acquire genetic alterations that promote oncogenesis. Chromatin plays central roles in both transcriptional regulation and the maintenance of genomic stability. Studies by cancer genome consortiums have identified frequent mutations in genes encoding chromatin regulatory factors and histone proteins in human cancer, implicating them as major mediators in the pathogenesis of both hematological malignancies and solid tumors. Here, we review recent advances in our understanding of the role of chromatin in cancer, focusing on transcriptional regulatory complexes, enhancer-associated factors, histone point mutations, and alterations in heterochromatin-interacting factors. PMID:25644600

  2. The centromere: chromatin foundation for the kinetochore machinery.

    PubMed

    Fukagawa, Tatsuo; Earnshaw, William C

    2014-09-01

    Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function. PMID:25203206

  3. A NIMA homologue promotes chromatin condensation in fission yeast.

    PubMed

    Krien, M J; Bugg, S J; Palatsides, M; Asouline, G; Morimyo, M; O'Connell, M J

    1998-04-01

    Entry into mitosis requires p34(cdc2), which activates downstream mitotic events through phosphorylation of key target proteins. In Aspergillus nidulans, the NIMA protein kinase has been identified as a potential downstream target and plays a role in regulating chromatin condensation at mitosis. nimA- mutants arrest in a state that physically resembles interphase even though p34(cdc2) is fully active. Despite evidence for the existence of NIMA-like activities in a variety of cell types, the only bona fide NIMA homologue that has been identified is the nim-1 gene of Neurospora crassa. We report here the isolation of a fission yeast NIMA homologue, and have designated this gene fin1 and the 83 kDa predicted protein p83(fin1). Overexpression of fin1 promotes premature chromatin condensation from any point in the cell cycle independently of p34(cdc2) function. Like NIMA, p83(fin1) levels fluctuate through the cell cycle, peaking in mitosis and levels are greatly elevated by removal of C-terminal PEST sequences. Deletion of fin1 results in viable but elongated cells, indicative of a cell cycle delay. Genetic analysis has placed this delay in G2 but, unlike in nimA mutants of Aspergillus, p34(cdc2) activation appears to be delayed. Interaction of fin1 mutants with other strains defective in chromatin organisation also support the hypothesis of p83(fin1) playing a role in this process at the onset of mitosis. These data indicate that NIMA-related kinases may be a general feature of the cell cycle and chromatin organisation at mitosis.

  4. Mechanical model of the nucleosome and chromatin.

    PubMed

    Bishop, Thomas C; Zhmudsky, Oleksandr O

    2002-04-01

    A theoretical framework for evaluating the approximate energy and dynamic properties associated with the folding of DNA into nucleosomes and chromatin is presented. Experimentally determined elastic constants of linear DNA and a simple fold geometry are assumed in order to derive elastic constants for extended and condensed chromatin. The model predicts the Young s modulus of extended and condensed chromatin to within an order of magnitude of experimentally determined values. Thus we demonstrate that the elastic properties of DNA are a primary determinant of the elastic properties of the higher order folded states. The derived elastic constants are used to predict the speed of propagation of small amplitude waves that excite an extension(sound), twist, bend or shear motion in each folded state. Taken together the results demonstrate that folding creates a hierarchy of time, length and energy scales.

  5. Analysis of Chromatin Organisation

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    Terms to be familiar with before you start to solve the test: chromatin, nucleases, sucrose density gradient centrifugation, melting point, gel electrophoresis, ethidium bromide, autoradiography, Southern blotting, Northern blotting, Sanger sequencing, restriction endonucleases, exonucleases, linker DNA, chloroform extraction, nucleosomes,…

  6. Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex.

    PubMed

    Lorch, Yahli; Griesenbeck, Joachim; Boeger, Hinrich; Maier-Davis, Barbara; Kornberg, Roger D

    2011-08-01

    Purified chromatin rings, excised from the PHO5 locus of Saccharomyces cerevisiae in transcriptionally repressed and activated states, were remodeled with RSC and ATP. Nucleosomes were translocated, and those originating on the promoter of repressed rings were removed, whereas those originating on the open reading frame (ORF) were retained. Treatment of the repressed rings with histone deacetylase diminished the removal of promoter nucleosomes. These findings point to a principle of promoter chromatin remodeling for transcription, namely that promoter specificity resides primarily in the nucleosomes rather than in the remodeling complex that acts upon them.

  7. Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling

    PubMed Central

    Lee, Bomi; Wu, Cheng-Ying; Lin, Yi-Wei; Park, Sung Wook; Wei, Li-Na

    2016-01-01

    All-trans Retinoic acid (RA) and its derivatives are potent therapeutics for immunological functions including wound repair. However, the molecular mechanism of RA modulation in innate immunity is poorly understood, especially in macrophages. We found that topical application of RA significantly improves wound healing and that RA and IL-4 synergistically activate Arg1, a critical gene for tissue repair, in M2 polarized macrophages. This involves feed forward regulation of Raldh2, a rate-limiting enzyme for RA biosynthesis, and requires Med25 to coordinate RAR, STAT6 and chromatin remodeler, Brg1 to remodel the +1 nucleosome of Arg1 for transcription initiation. By recruiting elongation factor TFIIS, Med25 also facilitates transcriptional initiation-elongation coupling. This study uncovers synergistic activation of Arg1 by RA and IL-4 in M2 macrophages that involves feed forward regulation of RA synthesis and dual functions of Med25 in nucleosome remodeling and transcription initiation-elongation coupling that underlies robust modulatory activity of RA in innate immunity. PMID:27166374

  8. A role for chromatin topology in imprinted domain regulation.

    PubMed

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  9. Interaction of sulfur mustard with rat liver salt fractionated chromatin.

    PubMed

    Jafari, Mahvash; Nateghi, M; Rabbani, A

    2010-01-01

    In this study, the interaction of an alkylating agent, sulfur mustard (SM) with rat liver active (S1 and S2) and inactive (P2) chromatin was investigated employing UV/vis spectroscopy and gel electrophoreses. The results show that SM affects the chromatin structure in a dose-dependent manner. The binding of SM to fractions is different. At lower concentrations (<500 microM), SM seems to unfold the structure and at higher concentrations, it induces aggregation and condensation of chromatin possibly via forming cross-links between the chromatin components. The extent of condensation in S2 is higher when compared to the P2 fraction.

  10. Influenza Virus and Chromatin: Role of the CHD1 Chromatin Remodeler in the Virus Life Cycle

    PubMed Central

    Marcos-Villar, Laura; Pazo, Alejandra

    2016-01-01

    ABSTRACT Influenza A virus requires ongoing cellular transcription to carry out the cap-snatching process. Chromatin remodelers modify chromatin structure to produce an active or inactive conformation, which enables or prevents the recruitment of transcriptional complexes to specific genes; viral transcription thus depends on chromatin dynamics. Influenza virus polymerase associates with chromatin components of the infected cell, such as RNA polymerase II (RNAP II) or the CHD6 chromatin remodeler. Here we show that another CHD family member, CHD1 protein, also interacts with the influenza virus polymerase complex. CHD1 recognizes the H3K4me3 (histone 3 with a trimethyl group in lysine 4) histone modification, a hallmark of active chromatin. Downregulation of CHD1 causes a reduction in viral polymerase activity, viral RNA transcription, and the production of infectious particles. Despite the dependence of influenza virus on cellular transcription, RNAP II is degraded when viral transcription is complete, and recombinant viruses unable to degrade RNAP II show decreased pathogenicity in the murine model. We describe the CHD1–RNAP II association, as well as the parallel degradation of both proteins during infection with viruses showing full or reduced induction of degradation. The H3K4me3 histone mark also decreased during influenza virus infection, whereas a histone mark of inactive chromatin, H3K27me3, remained unchanged. Our results indicate that CHD1 is a positive regulator of influenza virus multiplication and suggest a role for chromatin remodeling in the control of the influenza virus life cycle. IMPORTANCE Although influenza virus is not integrated into the genome of the infected cell, it needs continuous cellular transcription to synthesize viral mRNA. This mechanism implies functional association with host genome expression and thus depends on chromatin dynamics. Influenza virus polymerase associates with transcription-related factors, such as RNA

  11. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast.

    PubMed

    Steglich, Babett; Strålfors, Annelie; Khorosjutina, Olga; Persson, Jenna; Smialowska, Agata; Javerzat, Jean-Paul; Ekwall, Karl

    2015-03-01

    In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope.

  12. Functions of the Proteasome on Chromatin

    PubMed Central

    McCann, Tyler S.; Tansey, William P.

    2014-01-01

    The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome. PMID:25422899

  13. Histone Acetylation and Chromatin Remodeling Are Required for UV-B–Dependent Transcriptional Activation of Regulated Genes in Maize[W

    PubMed Central

    Casati, Paula; Campi, Mabel; Chu, Feixia; Suzuki, Nagi; Maltby, David; Guan, Shenheng; Burlingame, Alma L.; Walbot, Virginia

    2008-01-01

    The nuclear proteomes of maize (Zea mays) lines that differ in UV-B tolerance were compared by two-dimensional gel electrophoresis after UV light treatment. Differential accumulation of chromatin proteins, particularly histones, constituted the largest class identified by mass spectrometry. UV-B–tolerant landraces and the B73 inbred line show twice as many protein changes as the UV-B–sensitive b, pl W23 inbred line and transgenic maize expressing RNA interference constructs directed against chromatin factors. Mass spectrometic analysis of posttranslational modifications on histone proteins demonstrates that UV-B–tolerant lines exhibit greater acetylation on N-terminal tails of histones H3 and H4 after irradiation. These acetylated histones are enriched in the promoter and transcribed regions of the two UV-B–upregulated genes examined; radiation-sensitive lines lack this enrichment. DNase I and micrococcal nuclease hypersensitivity assays indicate that chromatin adopts looser structures around the selected genes in the UV-B–tolerant samples. Chromatin immunoprecipitation experiments identified additional chromatin factor changes associated with the nfc102 test gene after UV-B treatment in radiation-tolerant lines. Chromatin remodeling is thus shown to be a key process in acclimation to UV-B, and lines deficient in this process are more sensitive to UV-B. PMID:18398050

  14. Trivalent chromatin marks the way in.

    PubMed

    Hysolli, Eriona; Park, In-Hyun

    2013-11-01

    Recently in Cell, Wapinski et al. (2013) investigated the epigenetic mechanisms underlying the direct conversion of fibroblasts to induced neurons (iNs). They found that Ascl1 acts as a pioneer factor at neurogenic loci marked by a closed "trivalent" chromatin state in cells permissive to direct conversion, but not in restrictive cell types. PMID:24209756

  15. Brd4 shields chromatin from ATM kinase signaling storms.

    PubMed

    Choi, Serah; Bakkenist, Christopher J

    2013-09-17

    Upon activation, ataxia telangiectasia mutated (ATM) kinase rapidly phosphorylates hundreds of proteins, setting off chaotic signaling storms from areas of damaged chromatin. Recent work by Kaidi and Jackson and Floyd et al. advance our knowledge of the mechanisms that initiate or limit ATM kinase signaling storms at chromatin. PMID:24045152

  16. Brd4 Shields Chromatin from ATM Kinase Signaling Storms

    PubMed Central

    Choi, Serah; Bakkenist, Christopher J.

    2014-01-01

    Upon activation, ataxia telangiectasia mutated (ATM) kinase rapidly phosphorylates hundreds of proteins, setting off chaotic signaling storms from areas of damaged chromatin. Recent work by Kaidi and Jackson and Floyd et al. advance our knowledge of the mechanisms that initiate or limit ATM kinase signaling storms at chromatin. PMID:24045152

  17. Anti-nucleosome and anti-chromatin antibodies are present in active systemic lupus erythematosus but not in the cutaneous form of the disease.

    PubMed

    Souza, A; da Silva, L M; Oliveira, F R; Roselino, A M F; Louzada-Junior, P

    2009-03-01

    The objective of this study is to investigate the presence of anti-nucleosome (anti-NCS) and anti-chromatin (anti-CRT) antibodies in patients with cutaneous lupus erythematosus (CLE) compared with active and inactive systemic lupus erythematosus (SLE). A total of 154 subjects were evaluated: 54 patients presenting CLE, 66 patients with active SLE and 34 with inactive SLE. Lupus activity was assessed using the disease activity index (SLEDAI). Anti-NCS and anti-CRT antibodies were detected by enzyme-linked immunosorbent assay (ELISA). Only one of 54 patients with CLE tested positive for both anti-NCS and anti-CRT antibodies. The prevalence of anti-CRT antibodies was significantly higher in active SLE (84.8%) when compared with inactive SLE (26.4%) and CLE (1.8%) (P < 0.001). Anti-NCS antibodies were also more prevalent in active SLE patients (74.2%) than inactive SLE (11.7%) and CLE patients (1.8%) (P < 0.001). The presence of anti-CRT and anti-NCS antibodies was correlated to disease activity in patients with SLE (r = 0.4937, r = 0.5621, respectively). Furthermore, the detection of both antibodies was correlated with disease activity in patients with SLE who tested negative for anti-dsDNA antibodies (r = 0.4754 for anti-NCS and r = 0.4281 for anti-CRT). The presence of these two auto-antibodies was strongly associated with renal damage in patients with SLE (OR = 13.1, for anti-CRT antibodies and OR = 25.83, for anti-NCS antibodies). The anti-NCS and anti-CRT antibodies were not found in CLE. In patients with SLE, there is a correlation of these antibodies with disease activity and active nephritis. When compared with anti-dsDNA antibodies, anti-NCS and anti-CRT antibodies were more sensitive in detecting disease activity and kidney damage in lupus patients.

  18. Studies on sex-organ development. Changes in nuclear and chromatin composition and genomic activity during spermatogenesis in the maturing rooster testis.

    PubMed Central

    Mezquita, C; Teng, C S

    1977-01-01

    We developed a technique to separate nuclei of rooster testis by centrifugation through a discontinuous sucrose density gradient and by sedimentation at unit gravity. Four different major fractions obtained from testicular nuclei and one from the vas deferens were characterized according to their velocity of sedimentation, morphology and DNA content. The ratios (w/w) of basic proteins, non-histone proteins and RNA to DNA decreased during spermiogenesis both in nuclei and chromatin. Changes in the electrophoretic patterns of histones and non-histone proteins were detected especially in the elongated spermatids. The lack of uptake of [3H]uridine in elongating and elongated spermatids and in spermatozoa was demonstrated by radioautography and by the detection of labelled RNA extracted from different fractions of nuclei. Template activity for RNA synthesis and the binding of actinomycin D by testicular nuclei reached a peak in the elongated spermatid stage, when the histones are replaced by the protamine. Images PLATE 1 PLATE 2 PLATE 3 PLATE 4 PLATE 5 PMID:560187

  19. Chromatin and alternative splicing.

    PubMed

    Alló, M; Schor, I E; Muñoz, M J; de la Mata, M; Agirre, E; Valcárcel, J; Eyras, E; Kornblihtt, A R

    2010-01-01

    Alternative splicing affects more than 90% of human genes. Coupling between transcription and splicing has become crucial in the complex network underlying alternative splicing regulation. Because chromatin is the real template for nuclear transcription, changes in its structure, but also in the "reading" and "writing" of the histone code, could modulate splicing choices. Here, we discuss the evidence supporting these ideas, from the first proposal of chromatin affecting alternative splicing, performed 20 years ago, to the latest findings including genome-wide evidence that nucleosomes are preferentially positioned in exons. We focus on two recent reports from our laboratories that add new evidence to this field. The first report shows that a physiological stimulus such as neuron depolarization promotes intragenic histone acetylation (H3K9ac) and chromatin relaxation, causing the skipping of exon 18 of the neural cell adhesion molecule gene. In the second report, we show how specific histone modifications can be created at targeted gene regions as a way to affect alternative splicing: Using small interfering RNAs (siRNAs), we increased the levels of H3K9me2 and H3K27me3 in the proximity of alternative exon 33 of the human fibronectin gene, favoring its inclusion into mature messenger RNA (mRNA) through a mechanism that recalls RNA-mediated transcriptional gene silencing.

  20. Nuclease digestion studies of chromatin structure

    SciTech Connect

    Deutsch, S.M.

    1987-01-01

    Micrococcal nuclease, which preferentially cleaves linker DNA in chromatin, was immobilized by covalent attachment to CNBr-activated agarose beads and used to study the accessibility of linker DNA in chromatin fibers prepared from chicken erythrocyte nuclei. This immobilized nuclease was able to cleave chromatin fibers into the typical pattern of fragments corresponding to multiples of mononucleosomes. Cleavage from only the ends of the fibers was ruled out by examining the products of cleavage of fibers end-labelled with /sup 35/P. Comparison of the rate of digestion by immobilized and soluble micrococcal nuclease indicated that the fiber structure does not significantly affect access to linker DNA. The absence of an effect of reducing temperatures on the rate of digestion of fibers, as compared to short oligonucleosomes, indicated that breathing motions to allow access to the fiber interior were not required for cleavage of linker DNA.

  1. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  2. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  3. Chromatin Control of Developmental Dynamics and Plasticity.

    PubMed

    Perino, Matteo; Veenstra, Gert Jan C

    2016-09-26

    Chromatin structure is intimately connected with gene expression and cell identity. Here we review recent advances in the field and discuss how establishment of cell identity during development is accompanied by large-scale remodeling of the epigenetic landscape and how this remodeling drives and supports lineage specification and maintenance. We discuss maternal control of the early embryonic epigenetic landscape, selective usage of enhancer clusters via 3D chromatin contacts leading to activation of transcription factor networks, and conserved regulation of developmental pathways by specific DNA demethylation of key regulatory regions. Together, these processes establish an epigenetic framework regulating different phases of embryonic development. PMID:27676434

  4. The Phosphorylation Status of a Cyclic AMP-Responsive Activator Is Modulated via a Chromatin-Dependent Mechanism

    PubMed Central

    Michael, Laura F.; Asahara, Hiroshi; Shulman, Andrew I.; Kraus, W. Lee; Montminy, Marc

    2000-01-01

    Cyclic AMP (cAMP) stimulates the expression of numerous genes via the protein kinase A (PKA)-mediated phosphorylation of CREB at Ser133. Ser133 phosphorylation, in turn, promotes recruitment of the coactivator CREB binding protein and its paralog p300, histone acetyltransferases (HATs) that have been proposed to mediate target gene activation, in part, by destabilizing promoter bound nucleosomes and thereby allowing assembly of the transcriptional apparatus. Here we show that although histone deacetylase (HDAC) inhibitors potentiate target gene activation via cAMP, they do not stimulate transcription over the early burst phase, during which CREB phosphorylation and CBP/p300 recruitment are maximal. Rather, HDAC inhibitors augment CREB activity during the late attenuation phase by prolonging CREB phosphorylation on chromosomal but, remarkably, not on extrachromosomal templates. In reconstitution studies, assembly of periodic nucleosomal arrays on a cAMP-responsive promoter template potently inhibited CREB phosphorylation by PKA, and acetylation of these template-bound nucleosomes by p300 partially rescued CREB phosphorylation by PKA. Our results suggest a novel regulatory mechanism by which cellular HATs and HDACs modulate the phosphorylation status of nuclear activators in response to cellular signals. PMID:10669737

  5. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs.

  6. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs. PMID:27558729

  7. A thermal denaturation study of macronuclear chromatin in Blepharisma japonicum (Protozoa, Ciliophora, Heterotrichida).

    PubMed

    Salvini, M; Dalle Lucche, T; Durante, M

    1997-08-15

    The macronuclear chromatin of the ciliate Blepharisma japonicum, in two starvation states, was studied by thermal denaturation analysis. The behaviour of B. japonicum chromatin, native and reconstituted with Tetrahymena pyriformis H1 histone, was analysed. The data obtained are consistent with the hypothesis that B. japonicum macronuclear chromatin contains a H1-like peptide associated with the linker DNA, although this peptide is reduced in amount and/or chromatin stabilising ability when compared to Tetrahymena macronuclear H1.

  8. The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis

    PubMed Central

    Bottardi, Stefania; Mavoungou, Lionel; Pak, Helen; Daou, Salima; Bourgoin, Vincent; Lakehal, Yahia A.; Affar, El Bachir; Milot, Eric

    2014-01-01

    IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of IkNULL hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation. PMID:25474253

  9. Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin.

    PubMed

    Son, Jinsook; Shen, Steven S; Margueron, Raphael; Reinberg, Danny

    2013-12-15

    Polycomb-repressive complex 2 (PRC2) comprises specific members of the Polycomb group of epigenetic modulators. PRC2 catalyzes methylation of histone H3 at Lys 27 (H3K27me3) through its Enhancer of zeste (Ezh) constituent, of which there are two mammalian homologs: Ezh1 and Ezh2. Several ancillary factors, including Jarid2, modulate PRC2 function, with Jarid2 facilitating its recruitment to target genes. Jarid2, like Ezh2, is present in poorly differentiated and actively dividing cells, while Ezh1 associates with PRC2 in all cells, including resting cells. We found that Jarid2 exhibits nucleosome-binding activity that contributes to PRC2 stimulation. Moreover, such nucleosome-binding activity is exhibited by PRC2 comprising Ezh1 (PRC2-Ezh1), in contrast to PRC2-Ezh2. The presence of Ezh1 helps to maintain PRC2 occupancy on its target genes in myoblasts where Jarid2 is not expressed. Our findings allow us to propose a model in which PRC2-Ezh2 is important for the de novo establishment of H3K27me3 in dividing cells, whereas PRC2-Ezh1 is required for its maintenance in resting cells.

  10. The great repression: chromatin and cryptic transcription.

    PubMed

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  11. Unraveling the mechanisms of chromatin fibril packaging.

    PubMed

    Gavrilov, Alexey A; Shevelyov, Yuri Y; Ulianov, Sergey V; Khrameeva, Ekaterina E; Kos, Pavel; Chertovich, Alexander; Razin, Sergey V

    2016-05-01

    Recent data indicate that eukaryotic chromosomes are organized into Topologically Associating Domains (TADs); however, the mechanisms underlying TAD formation remain obscure. Based on the results of Hi-C analysis performed on 4 Drosophila melanogaster cell lines, we have proposed that specific properties of nucleosomes in active and repressed chromatin play a key role in the formation of TADs. Our computer simulations showed that the ability of "inactive" nucleosomes to stick to each other and the lack of such ability in "active" nucleosomes is sufficient for spatial segregation of these types of chromatin, which is revealed in the Hi-C analysis as TAD/inter-TAD partitioning. However, some Drosophila and mammalian TADs contain both active and inactive chromatin, a fact that does not fit this model. Herein, we present additional arguments for the model by postulating that transcriptionally active chromatin is extruded on the surface of a TAD, and discuss the possible impact of this organization on the enhancer-promoter communication and on the segregation of TADs. PMID:27249516

  12. Epigenetic chromatin silencing: bistability and front propagation

    NASA Astrophysics Data System (ADS)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  13. Epigenetic chromatin silencing: bistability and front propagation

    PubMed Central

    Sedighi, Mohammad; Sengupta, Anirvan M

    2008-01-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally. PMID:17991991

  14. Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Non-Coding RNAs

    PubMed Central

    Rinn, John L.; Kertesz, Michael; Wang, Jordon K.; Squazzo, Sharon L.; Xu, Xiao; Brugmann, Samantha A.; Goodnough, Henry; Helms, Jill A.; Farnham, Peggy J.; Segal, Eran; Chang, Howard Y.

    2007-01-01

    SUMMARY Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in eleven anatomic sites, and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes, possess unique sequence motifs, and their expression demarcate broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states. PMID:17604720

  15. Chromatinized Protein Kinase C-θ Directly Regulates Inducible Genes in Epithelial to Mesenchymal Transition and Breast Cancer Stem Cells

    PubMed Central

    Zafar, Anjum; Wu, Fan; Hardy, Kristine; Li, Jasmine; Tu, Wen Juan; McCuaig, Robert; Harris, Janelle; Khanna, Kum Kum; Attema, Joanne; Gregory, Philip A.; Goodall, Gregory J.; Harrington, Kirsti; Dahlstrom, Jane E.; Boulding, Tara; Madden, Rebecca; Tan, Abel; Milburn, Peter J.

    2014-01-01

    Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. Signal transduction kinases play a pivotal role as chromatin-anchored proteins in eukaryotes. Here we report for the first time that protein kinase C-theta (PKC-θ) promotes EMT by acting as a critical chromatin-anchored switch for inducible genes via transforming growth factor β (TGF-β) and the key inflammatory regulatory protein NF-κB. Chromatinized PKC-θ exists as an active transcription complex and is required to establish a permissive chromatin state at signature EMT genes. Genome-wide analysis identifies a unique cohort of inducible PKC-θ-sensitive genes that are directly tethered to PKC-θ in the mesenchymal state. Collectively, we show that cross talk between signaling kinases and chromatin is critical for eliciting inducible transcriptional programs that drive mesenchymal differentiation and CSC formation, providing novel mechanisms to target using epigenetic therapy in breast cancer. PMID:24891615

  16. Fission yeast Tup1-like repressors repress chromatin remodeling at the fbp1+ promoter and the ade6-M26 recombination hotspot.

    PubMed Central

    Hirota, Kouji; Hoffman, Charles S; Shibata, Takehiko; Ohta, Kunihiro

    2003-01-01

    Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1(+) gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ATF-type transcription factor Atf1*Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1(+) transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1(+) promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1(+) was remodeled under derepressed conditions in concert with the robust activation of fbp1(+) transcription. Strains with tup11delta tup12delta double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2(+), encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11delta tup12delta defects in chromatin regulation but not in transcription repression. The chromatin at the M26 site in mitotic cultures of a tup11delta tup12delta mutant resembled that of wild-type meiotic cells. These observations suggest that these fission yeast Tup1-like corepressors repress chromatin remodeling at CRE-related sequences and that Rst2 antagonizes this function. PMID:14573465

  17. Chromosome folding: driver or passenger of epigenetic state?

    PubMed

    Sexton, Tom; Yaffe, Eitan

    2015-02-02

    Despite a growing understanding of how epigenetic marks such as histone modifications locally modify the activity of the chromatin with which they are associated, we know little about how marked regions on different parts of the genome are able to intercommunicate to effect regulation of gene expression programs. Recent advances in methods that systematically map pairwise chromatin interactions have uncovered important principles of chromosome folding, which are tightly linked to the epigenetic mark profiles and, hence, functional state of the underlying chromatin fiber.

  18. Nonhistone Proteins Control Gene Expression in Reconstituted Chromatin

    PubMed Central

    Barrett, T.; Maryanka, D.; Hamlyn, P. H.; Gould, H. J.

    1974-01-01

    Chromatin was reconstituted from the purified DNA and histones of chicken erythrocytes and the nonhistone proteins of either chicken reticulocytes or chicken liver. Reconstituted chromatins, native chicken reticulocyte chromatin, and free DNA were transcribed with Escherichia coli RNA polymerase and the concentrations of globin-specific sequences in the RNA products were measured by hybridization with [3H]DNA complementary to chicken globin messenger RNA. Reticulocyte, but not liver, nonhistone proteins were shown to activate the globin genes in reconstituted erythrocyte chromatin. The transcripts of native and reconstituted chromatins were indistinguishable in respect of both the total yield of the RNA and the fractional yield of globin-specific sequences. Images PMID:4140516

  19. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  20. Biochemical analysis of chromatin containing recombinant Drosophila core histones.

    PubMed

    Levenstein, Mark E; Kadonaga, James T

    2002-03-01

    To investigate the effects of histone modifications upon chromatin structure and function, we studied the assembly and properties of chromatin that contains unmodified recombinant core histones. To this end, we synthesized the Drosophila core histones in Escherichia coli. The purified histones were lacking covalent modifications as well as their N-terminal initiating methionine residues. The recombinant histones were efficiently assembled into periodic nucleosome arrays in a completely purified recombinant system with Drosophila ATP-utilizing chromatin assembly and remodeling factor (ACF), Drosophila nucleosome assembly protein-1, plasmid DNA, and ATP. With the Gal4-VP16 activator and a crude transcription extract, we found that the transcriptional properties of ACF-assembled chromatin containing unmodified histones were similar to those of chromatin containing native histones. We then examined ACF-catalyzed chromatin remodeling with completely purified factors and chromatin consisting of unmodified histones. In these experiments, we observed promoter-specific disruption of the regularity of nucleosome arrays upon binding of Gal4-VP16 as well as nucleosome positioning by R3 Lac repressor and subsequent nucleosome remobilization upon isopropyl-beta-D-thiogalactopyranoside-induced dissociation of R3 from the template. Thus, chromatin assembly and remodeling by ACF can occur in the absence of histone modifications.

  1. Chromatin modifications associated with diabetes.

    PubMed

    Keating, Samuel T; El-Osta, Assam

    2012-08-01

    Accelerated rates of vascular complications are associated with diabetes mellitus. Environmental factors including hyperglycaemia contribute to the progression of diabetic complications. Epidemiological and experimental animal studies identified poor glycaemic control as a major contributor to the development of complications. These studies suggest that early exposure to hyperglycaemia can instigate the development of complications that present later in the progression of the disease, despite improved glycaemic control. Recent experiments reveal a striking commonality associated with gene-activating hyperglycaemic events and chromatin modification. The best characterised to date are associated with the chemical changes of amino-terminal tails of histone H3. Enzymes that write specified histone tail modifications are not well understood in models of hyperglycaemia and metabolic memory as well as human diabetes. The best-characterised enzyme is the lysine specific Set7 methyltransferase. The contribution of Set7 to the aetiology of diabetic complications may extend to other transcriptional events through methylation of non-histone substrates. PMID:22639343

  2. Histone variants: key players of chromatin.

    PubMed

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  3. Chromatin remodelling and histone m RNA accumulation in bovine germinal vesicle oocytes.

    PubMed

    Labrecque, R; Lodde, V; Dieci, C; Tessaro, I; Luciano, A M; Sirard, M A

    2015-06-01

    Major remodelling of the chromatin enclosed within the germinal vesicle occurs towards the end of oocyte growth in mammals, but the mechanisms involved in this process are not completely understood. In bovine, four distinct stages of chromatin compaction-ranging from a diffused state (GV0) to a fully compacted configuration (GV3)-are linked to the gradual acquisition of developmental potential. To better understand the molecular events and to identify mRNA modulations occurring in the oocyte during the GV0-to-GV3 transition, transcriptomic analysis was performed with the EmbryoGENE microarray platform. The mRNA abundance of several genes decreased as chromatin compaction increased, which correlates with progressive transcriptional silencing that is characteristic of the end of oocyte growth. On the other hand, the abundance of some transcripts increased during the same period, particularly several histone gene transcripts from the H2A, H2B, H3, H4, and linker H1 family. In silico analysis predicted RNA-protein interactions between specific histone transcripts and the bovine stem-loop binding protein 2 (SLBP2), which helps regulate the translation of histone mRNA during oogenesis. These results suggest that some histone-encoding transcripts are actively stored, possibly to sustain the needs of the embryo before genome activation. This dataset offers a unique opportunity to survey which histone mRNAs are needed to complete chromatin compaction during oocyte maturation and which are stockpiled for the first three cell cycles following fertilization.

  4. PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease.

    PubMed

    Kadoch, Cigall; Copeland, Robert A; Keilhack, Heike

    2016-03-22

    The dynamic structure of histones and DNA, also known as chromatin, is regulated by two classes of enzymes: those that mediate covalent modifications on either histone proteins or DNA and those that use the energy generated by ATP hydrolysis to mechanically alter chromatic structure. Both classes of enzymes are often found in large protein complexes. In this review, we describe two such complexes: polycomb repressive complex 2 (PRC2), with the protein methyltransferase EZH2 as its catalytic subunit, and the ATP-dependent chromatin remodeler switch/sucrose non-fermentable (SWI/SNF). EZH2 catalyzes the methylation of lysine 27 on histone H3, a covalent chromatin modification that is associated with repressed heterochromatin. The catalytic activity of SWI/SNF, in contrast, leads to a state of open chromatin associated with active transcription. In this review, we discuss the biochemical properties of both complexes, outline the principles of their regulation, and describe their opposing roles in normal development, which can be perturbed in disease settings such as cancer. PMID:26836503

  5. PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease.

    PubMed

    Kadoch, Cigall; Copeland, Robert A; Keilhack, Heike

    2016-03-22

    The dynamic structure of histones and DNA, also known as chromatin, is regulated by two classes of enzymes: those that mediate covalent modifications on either histone proteins or DNA and those that use the energy generated by ATP hydrolysis to mechanically alter chromatic structure. Both classes of enzymes are often found in large protein complexes. In this review, we describe two such complexes: polycomb repressive complex 2 (PRC2), with the protein methyltransferase EZH2 as its catalytic subunit, and the ATP-dependent chromatin remodeler switch/sucrose non-fermentable (SWI/SNF). EZH2 catalyzes the methylation of lysine 27 on histone H3, a covalent chromatin modification that is associated with repressed heterochromatin. The catalytic activity of SWI/SNF, in contrast, leads to a state of open chromatin associated with active transcription. In this review, we discuss the biochemical properties of both complexes, outline the principles of their regulation, and describe their opposing roles in normal development, which can be perturbed in disease settings such as cancer.

  6. Nanoscale squeezing in elastomeric nanochannels for single chromatin linearization

    PubMed Central

    Matsuoka, Toshiki; Kim, Byoung Choul; Huang, Jiexi; Douville, Nicholas Joseph; Thouless, M.D.; Takayama, Shuichi

    2012-01-01

    This paper describes a novel nanofluidic phenomenon where untethered DNA and chromatin are linearized by rapidly narrowing an elastomeric nanochannel filled with solutions of the biopolymers. This nanoscale squeezing procedure generates hydrodynamic flows while also confining the biopolymers into smaller and smaller volumes. The unique features of this technique enable full linearization then trapping of biopolymers such as DNA. The versatility of the method is also demonstrated by analysis of chromatin stretchability and mapping of histone states using single strands of chromatin. PMID:23186544

  7. Chromatin regulation at the frontier of synthetic biology

    PubMed Central

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  8. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    PubMed Central

    Jégu, Teddy; Domenichini, Séverine; Blein, Thomas; Ariel, Federico; Christ, Aurélie; Kim, Soon-Kap; Crespi, Martin; Boutet-Mercey, Stéphanie; Mouille, Grégory; Bourge, Mickaël; Hirt, Heribert; Bergounioux, Catherine; Raynaud, Cécile; Benhamed, Moussa

    2015-01-01

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression. PMID:26457678

  9. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture.

    PubMed

    Jégu, Teddy; Domenichini, Séverine; Blein, Thomas; Ariel, Federico; Christ, Aurélie; Kim, Soon-Kap; Crespi, Martin; Boutet-Mercey, Stéphanie; Mouille, Grégory; Bourge, Mickaël; Hirt, Heribert; Bergounioux, Catherine; Raynaud, Cécile; Benhamed, Moussa

    2015-01-01

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  10. CCSI: a database providing chromatin-chromatin spatial interaction information.

    PubMed

    Xie, Xiaowei; Ma, Wenbin; Songyang, Zhou; Luo, Zhenhua; Huang, Junfeng; Dai, Zhiming; Xiong, Yuanyan

    2016-01-01

    Distal regulatory elements have been shown to regulate gene transcription through spatial interactions, and single nucleotide polymorphisms (SNPs) are linked with distal gene expression by spatial proximity, which helps to explain the causal role of disease-associated SNPs in non-coding region. Therefore, studies on spatial interactions between chromatin have created a new avenue for elucidating the mechanism of transcriptional regulation in disease pathogenesis. Recently, a growing number of chromatin interactions have been revealed by means of 3C, 4C, 5C, ChIA-PET and Hi-C technologies. To interpret and utilize these interactions, we constructed chromatin-chromatin spatial interaction (CCSI) database by integrating and annotating 91 sets of chromatin interaction data derived from published literature, UCSC database and NCBI GEO database, resulting in a total of 3,017,962 pairwise interactions (false discovery rate < 0.05), covering human, mouse and yeast. A web interface has been designed to provide access to the chromatin interactions. The main features of CCSI are (i) showing chromatin interactions and corresponding genes, enhancers and SNPs within the regions in the search page; (ii) offering complete interaction datasets, enhancer and SNP information in the download page; and (iii) providing analysis pipeline for the annotation of interaction data. In conclusion, CCSI will facilitate exploring transcriptional regulatory mechanism in disease pathogenesis associated with spatial interactions among genes, regulatory regions and SNPs. Database URL: http://songyanglab.sysu.edu.cn/ccsi. PMID:26868054

  11. Multiscale modeling of cellular epigenetic states: stochasticity in molecular networks, chromatin folding in cell nuclei, and tissue pattern formation of cells

    PubMed Central

    Liang, Jie; Cao, Youfang; Gürsoy, Gamze; Naveed, Hammad; Terebus, Anna; Zhao, Jieling

    2016-01-01

    Genome sequences provide the overall genetic blueprint of cells, but cells possessing the same genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular epigenetic states and that dictate the behavior of cells. Among these, networks of interacting molecules, often under stochastic control, depending on the specific wirings of molecular components and the physiological conditions, can have a different landscape of cellular states. In addition, chromosome folding in three-dimensional space provides another important control mechanism for selective activation and repression of gene expression. Fully differentiated cells with different properties grow, divide, and interact through mechanical forces and communicate through signal transduction, resulting in the formation of complex tissue patterns. Developing quantitative models to study these multi-scale phenomena and to identify opportunities for improving human health requires development of theoretical models, algorithms, and computational tools. Here we review recent progress made in these important directions. PMID:27480462

  12. Multiscale Modeling of Cellular Epigenetic States: Stochasticity in Molecular Networks, Chromatin Folding in Cell Nuclei, and Tissue Pattern Formation of Cells.

    PubMed

    Liang, Jie; Cao, Youfang; Gursoy, Gamze; Naveed, Hammad; Terebus, Anna; Zhao, Jieling

    2015-01-01

    Genome sequences provide the overall genetic blueprint of cells, but cells possessing the same genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular epigenetic states and that dictate the behavior of cells. Among these, networks of interacting molecules, often under stochastic control, depending on the specific wirings of molecular components and the physiological conditions, can have a different landscape of cellular states. In addition, chromosome folding in three-dimensional space provides another important control mechanism for selective activation and repression of gene expression. Fully differentiated cells with different properties grow, divide, and interact through mechanical forces and communicate through signal transduction, resulting in the formation of complex tissue patterns. Developing quantitative models to study these multi-scale phenomena and to identify opportunities for improving human health requires development of theoretical models, algorithms, and computational tools. Here we review recent progress made in these important directions.

  13. The great unravelling: chromatin as a modulator of the aging process

    PubMed Central

    O’Sullivan, Roderick J.; Karlseder, Jan

    2012-01-01

    During embryogenesis the establishment of chromatin states permits the implementation of genetic programs that allow the faithful development of the organism. However, these states are not fixed and there is much evidence that stochastic or chronic deterioration of chromatin organization, as correlated by transcriptional alterations and the accumulation of DNA damage in cells, occurs during the lifespan of the individual. Whether causal or simply a by-product of macromolecular decay, these changes in chromatin states have emerged as potentially central conduits of mammalian aging. This review explores the current state of our understanding of the links between chromatin organization and aging. PMID:22959736

  14. HACking the centromere chromatin code: insights from human artificial chromosomes.

    PubMed

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations. PMID:22825423

  15. HACking the centromere chromatin code: insights from human artificial chromosomes.

    PubMed

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  16. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange

    PubMed Central

    Smolle, Michaela; Venkatesh, Swaminathan; Gogol, Madelaine M.; Li, Hua; Zhang, Ying; Florens, Laurence; Washburn, Michael P.; Workman, Jerry L.

    2012-01-01

    Set2-mediated methylation of histone H3 Lys36 (H3K36) is a mark associated with the coding sequences of actively transcribed genes, yet plays a negative role during transcription elongation. It prevents trans-histone exchange over coding regions and signals for histone deacetylation in the wake of RNA polymerase II (RNAPII) passage. We have found that in Saccharomyces cerevisiae the Isw1b chromatin-remodeling complex is specifically recruited to open reading frames (ORFs) by H3K36 methylation through the PWWP domain of its Ioc4 subunit in vivo and in vitro. Isw1b acts in conjunction with Chd1 to regulate chromatin structure by preventing trans-histone exchange from taking place over coding regions and thus maintains chromatin integrity during transcription elongation by RNA polymerase II. PMID:22922743

  17. Chromatin folding and DNA replication inhibition mediated by a highly antitumor-active tetrazolato-bridged dinuclear platinum(II) complex

    PubMed Central

    Imai, Ryosuke; Komeda, Seiji; Shimura, Mari; Tamura, Sachiko; Matsuyama, Satoshi; Nishimura, Kohei; Rogge, Ryan; Matsunaga, Akihiro; Hiratani, Ichiro; Takata, Hideaki; Uemura, Masako; Iida, Yutaka; Yoshikawa, Yuko; Hansen, Jeffrey C.; Yamauchi, Kazuto; Kanemaki, Masato T.; Maeshima, Kazuhiro

    2016-01-01

    Chromatin DNA must be read out for various cellular functions, and copied for the next cell division. These processes are targets of many anticancer agents. Platinum-based drugs, such as cisplatin, have been used extensively in cancer chemotherapy. The drug–DNA interaction causes DNA crosslinks and subsequent cytotoxicity. Recently, it was reported that an azolato-bridged dinuclear platinum(II) complex, 5-H-Y, exhibits a different anticancer spectrum from cisplatin. Here, using an interdisciplinary approach, we reveal that the cytotoxic mechanism of 5-H-Y is distinct from that of cisplatin. 5-H-Y inhibits DNA replication and also RNA transcription, arresting cells in the S/G2 phase, and are effective against cisplatin-resistant cancer cells. Moreover, it causes much less DNA crosslinking than cisplatin, and induces chromatin folding. 5-H-Y will expand the clinical applications for the treatment of chemotherapy-insensitive cancers. PMID:27094881

  18. Ultrastructure of bovine sperm chromatin.

    PubMed

    Filho, Romualdo Morandi; Beletti, Marcelo Emilio; de Oliveira, Fabio

    2015-12-01

    Mammalian semen chromatin comprises DNA, protamine, and, at lower levels, other proteins. This constitution confers intense compaction to the chromatin, helping to protect the DNA and causing the head of the sperm to be very small, facilitating the safe transport of its genetic contents. It is known that changes in the sperm chromatin compaction lead to fertility problems in bulls, justifying studies of this structure. Although there are theoretical models of sperm chromatin because of its high compaction, there is no morphological evidence of such models. The aim of this study was to demonstrate the ultrastructure of bovine sperm chromatin in an attempt to corroborate the theoretical chromatin models existing today. The isolated bull sperm heads had their chromatin partially unpacked by chemical treatment using sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) and were then embedded in Epon resin. Using an ultramicrotome, ultrathin sections were obtained, which were contrasted with uranyl acetate and lead citrate, and then viewed under transmission electron microscopy. The methodology used allowed the visualization of toroidal structures interconnected by a filamentous nuclear matrix, which is entirely consistent with the most current theoretical models. PMID:26515508

  19. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Colvin, M E; Thelen, M P; Noy, A

    2004-01-06

    The DNA in eukaryotic cells is tightly packaged as chromatin through interactions with histone proteins to form nucleosomes. These nucleosomes are themselves packed together through interactions with linker histone and non-histone proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the chromatin fiber must be remodeled such that the necessary enzymes can access the DNA. The structure of the chromatin fiber beyond the level of the single nucleosome and the structural changes which accompany the remodeling process are poorly understood. We are studying the structures and forces behind the remodeling process through the use of atomic force microscopy (AFM). This allows both high-resolution imaging of the chromatin, and manipulation of individual fibers. Pulling a single chromatin fiber apart using the AFM tip yields information on the forces which hold the structure together. We have isolated chromatin fibers from chicken erythrocytes and Chinese hamster ovary cell lines. AFM images of these fibers will be presented, along with preliminary data from the manipulation of these fibers using the AFM tip. The implications of these data for the structure of chromatin undergoing the remodeling process are discussed.

  20. Chromatin immunoprecipitation analysis of Xenopus embryos.

    PubMed

    Akkers, Robert C; Jacobi, Ulrike G; Veenstra, Gert Jan C

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a powerful technique to study epigenetic regulation and transcription factor binding events in the nucleus. It is based on immune-affinity capture of epitopes that have been cross-linked to genomic DNA in vivo. A readout of the extent to which the epitope is associated with particular genomic regions can be obtained by quantitative PCR (ChIP-qPCR), microarray hybridization (ChIP-chip), or deep sequencing (ChIP-seq). ChIP can be used for molecular and quantitative analyses of histone modifications, transcription factors, and elongating RNA polymerase II at specific loci. It can also be applied to assess the cellular state of transcriptional activation or repression as a predictor of the cells' capabilities and potential. Another possibility is to employ ChIP to characterize genomes, as histone modifications and binding events occur at specific and highly characteristic genomic elements and locations. This chapter provides a step-by-step protocol of ChIP using early Xenopus embryos and discusses potential pitfalls and other issues relevant for successful probing of protein-genome interactions by ChIP-qPCR and ChIP-seq. PMID:22956095

  1. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control.

    PubMed

    Dilworth, David J; Tackett, Alan J; Rogers, Richard S; Yi, Eugene C; Christmas, Rowan H; Smith, Jennifer J; Siegel, Andrew F; Chait, Brian T; Wozniak, Richard W; Aitchison, John D

    2005-12-19

    Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.

  2. Chromatin modifications remodel cardiac gene expression.

    PubMed

    Mathiyalagan, Prabhu; Keating, Samuel T; Du, Xiao-Jun; El-Osta, Assam

    2014-07-01

    Signalling and transcriptional control involve precise programmes of gene activation and suppression necessary for cardiovascular physiology. Deep sequencing of DNA-bound transcription factors reveals a remarkable complexity of co-activators or co-repressors that serve to alter chromatin modification and regulate gene expression. The regulated complexes characterized by genome-wide mapping implicate the recruitment and exchange of proteins with specific enzymatic activities that include roles for histone acetylation and methylation in key developmental programmes of the heart. As for transcriptional changes in response to pathological stress, co-regulatory complexes are also differentially utilized to regulate genes in cardiac disease. Members of the histone deacetylase (HDAC) family catalyse the removal of acetyl groups from proteins whose pharmacological inhibition has profound effects preventing heart failure. HDACs interact with a complex co-regulatory network of transcription factors, chromatin-remodelling complexes, and specific histone modifiers to regulate gene expression in the heart. For example, the histone methyltransferase (HMT), enhancer of zeste homolog 2 (Ezh2), is regulated by HDAC inhibition and associated with pathological cardiac hypertrophy. The challenge now is to target the activity of enzymes involved in protein modification to prevent or reverse the expression of genes implicated with cardiac hypertrophy. In this review, we discuss the role of HDACs and HMTs with a focus on chromatin modification and gene function as well as the clinical treatment of heart failure. PMID:24812277

  3. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    PubMed Central

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  4. Chromatin organization: form to function.

    PubMed

    de Graaf, Carolyn A; van Steensel, Bas

    2013-04-01

    Recent developments in technology have made it possible to create high resolution genome-wide maps of histone marks, DNA binding proteins and physical interactions along genomic regions. Chromatin features are found together in different combinations, dividing the genome up into domains with distinct functional properties. Microscopy and chromatin conformation capture techniques have shown that the 3D structure of chromosomes is constrained by nuclear features and functional links between different parts of chromatin. These results provide insights about the 3D and domain organization of the genome and their connection to gene regulation and other nuclear functions. PMID:23274160

  5. Chromatin modifications and their function.

    PubMed

    Kouzarides, Tony

    2007-02-23

    The surface of nucleosomes is studded with a multiplicity of modifications. At least eight different classes have been characterized to date and many different sites have been identified for each class. Operationally, modifications function either by disrupting chromatin contacts or by affecting the recruitment of nonhistone proteins to chromatin. Their presence on histones can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA. In this way, histone modifications have the potential to influence many fundamental biological processes, some of which may be epigenetically inherited. PMID:17320507

  6. Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events

    PubMed Central

    Johnson, Graham D.; Jodar, Meritxell; Pique-Regi, Roger; Krawetz, Stephen A.

    2016-01-01

    Nuclear remodeling to a condensed state is a hallmark of spermatogenesis. This is achieved by replacement of histones with protamines. Regions retaining nucleosomes may be of functional significance. To determine their potential roles, sperm from wild type and transgenic mice harboring a single copy insert of the human protamine cluster were subjected to Micrococcal Nuclease-seq. CENTIPEDE, a hierarchical Bayesian model, was used to identify multiple spatial patterns, "footprints", of MNase-seq reads along the sperm genome. Regions predicted by CENTIPEDE analysis to be bound by a regulatory factor in sperm were correlated with genomic landmarks and higher order chromatin structure datasets to identify potential roles for these factors in regulating either prior or post spermatogenic, i.e., early embryonic events. This approach linked robust endogenous protamine transcription and transgene suppression to its chromatin environment within topologically associated domains. Of the candidate enhancer-bound regulatory proteins, Ctcf, was associated with chromatin domain boundaries in testes and embryonic stem cells. The continuity of Ctcf binding through the murine germline may permit rapid reconstitution of chromatin organization following fertilization. This likely reflects its preparation for early zygotic genome activation and comparatively accelerated preimplantation embryonic development program observed in mouse as compared to human and bull. PMID:27184706

  7. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death

    PubMed Central

    Schoborg, Todd; Rickels, Ryan; Barrios, Josh

    2013-01-01

    Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275

  8. Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events.

    PubMed

    Johnson, Graham D; Jodar, Meritxell; Pique-Regi, Roger; Krawetz, Stephen A

    2016-01-01

    Nuclear remodeling to a condensed state is a hallmark of spermatogenesis. This is achieved by replacement of histones with protamines. Regions retaining nucleosomes may be of functional significance. To determine their potential roles, sperm from wild type and transgenic mice harboring a single copy insert of the human protamine cluster were subjected to Micrococcal Nuclease-seq. CENTIPEDE, a hierarchical Bayesian model, was used to identify multiple spatial patterns, "footprints", of MNase-seq reads along the sperm genome. Regions predicted by CENTIPEDE analysis to be bound by a regulatory factor in sperm were correlated with genomic landmarks and higher order chromatin structure datasets to identify potential roles for these factors in regulating either prior or post spermatogenic, i.e., early embryonic events. This approach linked robust endogenous protamine transcription and transgene suppression to its chromatin environment within topologically associated domains. Of the candidate enhancer-bound regulatory proteins, Ctcf, was associated with chromatin domain boundaries in testes and embryonic stem cells. The continuity of Ctcf binding through the murine germline may permit rapid reconstitution of chromatin organization following fertilization. This likely reflects its preparation for early zygotic genome activation and comparatively accelerated preimplantation embryonic development program observed in mouse as compared to human and bull. PMID:27184706

  9. Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos

    PubMed Central

    Nestorov, Peter; Hotz, Hans-Rudolf; Liu, Zichuan; Peters, Antoine H.F.M.

    2015-01-01

    During mouse preimplantation development, major changes in cell fate are accompanied by extensive alterations of gene expression programs. Embryos first transition from a maternal to zygotic program and subsequently specify the pluripotent and the trophectodermal cell lineages. These processes are regulated by key transcription factors, likely in cooperation with chromatin modifiers that control histone and DNA methylation. To characterize the spatiotemporal expression of chromatin modifiers in relation to developmental transitions, we performed gene expression profiling of 156 genes in individual oocytes and single blastomeres of developing mouse embryos until the blastocyst stage. More than half of the chromatin modifiers displayed either maternal or zygotic expression. We also detected lineage-specific expression of several modifiers, including Ezh1, Prdm14, Scmh1 and Tet1 underscoring possible roles in cell fate decisions. Members of the SET-domain containing SMYD family showed differential gene expression during preimplantation development. We further observed co-expression of genes with opposing biochemical activities, such as histone methyltransferases and demethylases, suggesting the existence of a dynamic chromatin steady-state during preimplantation development. PMID:26403153

  10. 'Waking activity': the neglected state of infancy.

    PubMed

    Becker, P T; Thoman, E B

    1982-08-01

    The significance of the waking activity state was investigated using naturalistic observations of 20 infants at 2, 3, 4 and 5 weeks of age. Sleep and wake states were recorded at 10-s intervals throughout a 7-h day, along with co-occurring behaviors of the mother. The infant's behavioral state was classified as 'waking activity' when the eyes were open but unfocused, and there was diffuse motor activity. Thus the infant was not alert, drowsy, dazed, or crying. Infants showed individual consistency in amount of waking activity over weeks, although this state composed only 4.4% of the total observation. The mean amount of waking activity over weeks was related to an index of stability in state organization, as measured by the consistency of state profiles over weeks. Profile consistency was assessed by an ANOVA for each infant's data. Separate stability indexes were derived for that portion of the day when the infants were alone, and for that portion when they were with their mothers. Infants with higher levels of waking activity had lower state stability scores in each context. The results indicate that waking activity is a behavioral state which reflects overall state control and is therefore significant for an understanding of brain-behavior relationships.

  11. CHAPERONE-MEDIATED CHROMATIN ASSEMBLY AND TRANSCRIPTION REGULATION IN XENOPUS LAEVIS

    PubMed Central

    Onikubo, Takashi; Shechter, David

    2016-01-01

    Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed. As the DNA-to-cytoplasmic ratio decreases approaching the mid-blastula transition (MBT) and the onset of zygotic transcription activation (ZGA), the chromatin assembly process changes with the concomitant reduction in maternal chromatin components. Chromatin assembly is mediated in part by histone chaperones that store maternal histones and release them into new zygotic chromatin. Here, we review literature on chromatin and transcription in frog embryos and cell-free extracts and highlight key insights demonstrating the roles of maternal and zygotic histone deposition and their relationship with transcriptional regulation. We explore the central historical and recent literature on the use of Xenopus embryos and the key contributions provided by experiments in cell-free oocyte and egg extracts for the interplay between histone chaperones, chromatin assembly, and transcriptional regulation. Ongoing and future studies in Xenopus cell free extracts will likely contribute essential new insights into the interplay between chromatin assembly and transcriptional regulation. PMID:27759155

  12. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles.

    PubMed

    Chen, Yong; Wang, Yunfei; Xuan, Zhenyu; Chen, Min; Zhang, Michael Q

    2016-06-20

    Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization. PMID:27060148

  13. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles

    PubMed Central

    Chen, Yong; Wang, Yunfei; Xuan, Zhenyu; Chen, Min; Zhang, Michael Q.

    2016-01-01

    Defining chromatin interaction frequencies and topological domains is a great challenge for the annotations of genome structures. Although the chromosome conformation capture (3C) and its derivative methods have been developed for exploring the global interactome, they are limited by high experimental complexity and costs. Here we describe a novel computational method, called CITD, for de novo prediction of the chromatin interaction map by integrating histone modification data. We used the public epigenomic data from human fibroblast IMR90 cell and embryonic stem cell (H1) to develop and test CITD, which can not only successfully reconstruct the chromatin interaction frequencies discovered by the Hi-C technology, but also provide additional novel details of chromosomal organizations. We predicted the chromatin interaction frequencies, topological domains and their states (e.g. active or repressive) for 98 additional cell types from Roadmap Epigenomics and ENCODE projects. A total of 131 protein-coding genes located near 78 preserved boundaries among 100 cell types are found to be significantly enriched in functional categories of the nucleosome organization and chromatin assembly. CITD and its predicted results can be used for complementing the topological domains derived from limited Hi-C data and facilitating the understanding of spatial principles underlying the chromosomal organization. PMID:27060148

  14. Distinct Chromatin Modulators Regulate the Formation of Accessible and Repressive Chromatin at the Fission Yeast Recombination Hotspot ade6-M26

    PubMed Central

    Mizuno, Ken-ichi; Shibata, Takehiko; Ohta, Kunihiro

    2008-01-01

    Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) regulate transcription and recombination via alteration of local chromatin configuration. The ade6-M26 allele of Schizosaccharomyces pombe creates a meiotic recombination hotspot that requires a cAMP-responsive element (CRE)-like sequence M26, the Atf1/Pcr1 heterodimeric ATF/CREB transcription factor, the Gcn5 HAT, and the Snf22 SWI2/SNF2 family ADCR. Chromatin alteration occurs meiotically around M26, leading to the activation of meiotic recombination. We newly report the roles of other chromatin remodeling factors that function positively and negatively in chromatin alteration at M26: two CHD-1 family ADCRs (Hrp1 and Hrp3), a Spt-Ada-Gcn5 acetyltransferase component (Ada2), and a member of Moz-Ybf2/Sas3-Sas2-Tip60 family (Mst2). Ada2, Mst2, and Hrp3 are required for the full activation of chromatin changes around M26 and meiotic recombination. Acetylation of histone H3 around M26 is remarkably reduced in gcn5Δ, ada2Δ and snf22Δ, suggesting cooperative functions of these HAT complexes and Snf22. Conversely, Hrp1, another CHD-1 family ADCR, maintains repressive chromatin configuration at ade6-M26. Interestingly, transcriptional initiation site is shifted to a site around M26 from the original initiation sites, in couple with the histone acetylation and meiotic chromatin alteration induced around 3′ region of M26, suggesting a collaboration between these chromatin modulators and the transcriptional machinery to form accessible chromatin. These HATs and ADCRs are also required for the regulation of transcription and chromatin structure around M26 in response to osmotic stress. Thus, we propose that multiple chromatin modulators regulate chromatin structure reversibly and participate in the regulation of both meiotic recombination and stress-induced transcription around CRE-like sequences. PMID:18199689

  15. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    PubMed

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  16. Nucleosome positioning and composition modulate in silico chromatin flexibility

    NASA Astrophysics Data System (ADS)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  17. Nucleosome positioning and composition modulate in silico chromatin flexibility

    PubMed Central

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-01-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ~ 150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  18. Painting a Clearer Picture of Chromatin.

    PubMed

    Finn, Elizabeth H; Misteli, Tom; Shachar, Sigal

    2016-02-22

    Elucidating chromatin's 3D shape is critical to understanding its function, but the fine structure of chromatin domains remains poorly resolved. In a recent report in Nature, Boettiger et al. (2016) visualize chromatin in super-resolution, gaining unprecedented insight into chromatin architecture. PMID:26906730

  19. Premature chromatin condensation upon accumulation of NIMA.

    PubMed Central

    O'Connell, M J; Norbury, C; Nurse, P

    1994-01-01

    The NIMA protein kinase of Aspergillus nidulans is required for the G2/M transition of the cell cycle. Mutants lacking NIMA arrest without morphological characteristics of mitosis, but they do contain an activated p37nimX kinase (the Aspergillus homologue of p34cdc2). To gain a better understanding of NIMA function we have investigated the effects of expressing various NIMA constructs in Aspergillus, fission yeast and human cells. Our experiments have shown that the instability of the NIMA protein requires sequences in the non-catalytic C-terminus of the protein. Removal of this domain results in a stable protein that, once accumulated, promotes a lethal premature condensation of chromatin without any other aspects of mitosis. Similar effects were also observed in fission yeast and human cells accumulating Aspergillus NIMA. This phenotype is independent of cell cycle progression and does not require p34cdc2 kinase activity. As gain of NIMA function by accumulation results in premature chromatin condensation, and loss of NIMA function results in an inability to enter mitosis, we propose that NIMA functions in G2 to promote the condensation of chromatin normally associated with entry into mitosis. Images PMID:7957060

  20. Control of chromatin structure by long noncoding RNA

    PubMed Central

    Böhmdorfer, Gudrun; Wierzbicki, Andrzej T.

    2015-01-01

    Long noncoding RNA (lncRNA) is a pivotal factor regulating various aspects of genome activity. Genome regulation via DNA methylation and posttranslational histone modifications is a well-documented function of lncRNA in plants, fungi, and animals. Here, we summarize evidence showing that lncRNA also controls chromatin structure including nucleosome positioning and chromosome looping. We focus on data from plant experimental systems, discussed in the context of other eukaryotes. We explain the mechanisms of lncRNA-controlled chromatin remodeling and the implications of the functional interplay between noncoding transcription and several different chromatin remodelers. We propose that the unique properties of RNA make it suitable for controlling chromatin modifications and structure. PMID:26410408

  1. Developmental regulation of chromatin conformation by Hox proteins in Drosophila

    PubMed Central

    Agelopoulos, Marios; McKay, Daniel J.; Mann, Richard S.

    2012-01-01

    Summary We present a strategy to examine the chromatin conformation of individual loci in specific cell types during Drosophila embryogenesis. Regulatory DNA is tagged with binding sites (lacO) for LacI, which is used to immunopreciptiate the tagged chromatin from specific cell types. We applied this approach to Distalless (Dll), a gene required for limb development in Drosophila. We show that the local chromatin conformation at Dll depends on the cell type: in cells that express Dll, the 5’ regulatory region is in close proximity to the Dll promoter. In Dll nonexpressing cells this DNA is in a more extended configuration. In addition, transcriptional activators and repressors are bound to Dll regulatory DNA in a cell type specific manner. The pattern of binding by GAGA factor and the variant histone H2Av suggest that they play a role in the regulation of Dll chromatin conformation in expressing and non-expressing cell types, respectively. PMID:22523743

  2. ISWI chromatin remodeling complexes in the DNA damage response

    PubMed Central

    Aydin, Özge Z; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA. PMID:25486562

  3. ISWI chromatin remodeling complexes in the DNA damage response.

    PubMed

    Aydin, Özge Z; Vermeulen, Wim; Lans, Hannes

    2014-01-01

    Regulation of chromatin structure is an essential component of the DNA damage response (DDR), which effectively preserves the integrity of DNA by a network of multiple DNA repair and associated signaling pathways. Within the DDR, chromatin is modified and remodeled to facilitate efficient DNA access, to control the activity of repair proteins and to mediate signaling. The mammalian ISWI family has recently emerged as one of the major ATP-dependent chromatin remodeling complex families that function in the DDR, as it is implicated in at least 3 major DNA repair pathways: homologous recombination, non-homologous end-joining and nucleotide excision repair. In this review, we discuss the various manners through which different ISWI complexes regulate DNA repair and how they are targeted to chromatin containing damaged DNA.

  4. The polymorphisms of the chromatin fiber

    NASA Astrophysics Data System (ADS)

    Boulé, Jean-Baptiste; Mozziconacci, Julien; Lavelle, Christophe

    2015-01-01

    In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic ‘naked DNA’ view to a more realistic ‘coated DNA’ view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.

  5. Chromatin beacons: global sampling of chromatin physical properties using chromatin charting lines.

    PubMed

    Amini, Aniça; Luo, Chongyuan; Lam, Eric

    2011-01-01

    The extent to which physical properties and intranuclear locations of chromatin can influence transcription output remains unclear and poorly quantified. Because the scale and resolution at which structural parameters can be queried are usually so different from the scale that transcription outputs are measured, the integration of these data is often indirect. To overcome this limitation in quantifying chromatin structural parameters at different locations in the genome, a Chromatin Charting collection with 277 transposon-tagged Arabidopsis lines has been established in order to discover correlations between gene expression and the physical properties of chromatin loci within the nuclei. In these lines, dispersed loci in the Arabidopsis genome are tagged with an identical transgene cassette containing a luciferase gene reporter, which permits the quantification of gene expressions in real time, and an ∼2 kb LacO repeat that acts as a "chromatin beacon" to facilitate the visual tracking of a tagged locus in living plants via the expression of LacI-GFP fusion proteins in trans. In this chapter, we describe the methods for visualizing and tracking these insertion loci in vivo and illustrate the potential of using this approach to correlate chromatin mobility with gene expression in living plants.

  6. Chromatin topology is coupled to Polycomb group protein subnuclear organization

    PubMed Central

    Wani, Ajazul H.; Boettiger, Alistair N.; Schorderet, Patrick; Ergun, Ayla; Münger, Christine; Sadreyev, Ruslan I.; Zhuang, Xiaowei; Kingston, Robert E.; Francis, Nicole J.

    2016-01-01

    The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions. PMID:26759081

  7. Epigenetic regulation of open chromatin in pluripotent stem cells.

    PubMed

    Kobayashi, Hiroshi; Kikyo, Nobuaki

    2015-01-01

    The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, alter, eventually, the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is open globally to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells, including microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genomewide nucleosome accessibility and nucleosome positioning. Greater understanding of epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem cells.

  8. Diversity of Active States in TMT Opsins

    PubMed Central

    Sakai, Kazumi; Yamashita, Takahiro; Imamoto, Yasushi; Shichida, Yoshinori

    2015-01-01

    Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions. PMID:26491964

  9. Chromatin pattern by variogram analysis.

    PubMed

    Diaz, G; Zucca, A; Setzu, M D; Cappai, C

    1997-11-01

    Many cytological processes such as cell proliferation, differentiation, transformation, apoptosis, etc., are accompanied by specific chromatin changes, usually identified on the basis of the relative content of euchromatin and heterochromatin. In order to achieve a quantitative, non-subjective evaluation of the chromatin pattern, two different approaches may be undertaken, one consisting in the analysis of the several morphological features of chromatin grains (size, shape, density, arrangement, and distribution), and the second consisting in the analysis of the chromatin globally considered as a coherent texture. Although the second approach appears to be simpler and more suitable, methods of texture analysis--including those specifically designed for the analysis of the chromatin pattern--are rarely applied due mainly to the unsuitability of sampling procedures and the excessive crypticism of results. As an alternative to traditional texture analysis, we suggest a method supported by a sound mathematical theory and approximately 30 years of applications in the field of geostatistics. The method, called variogram, analyzes the intrinsic structure of data sampled at different distance intervals and directions, and outputs easily understandable results. Recently, variogram analysis has successfully been exported from geostatistics to other fields (for example, ecology and epidemiology) that make use of spatially referenced variables. Based on the fact that pixels represent a perfect array of data ordered at regular distance intervals and directions, the variogram can be adopted to explore nuclear images and recognize chromatin patterns. Variograms of different nuclei can be summarized by multivariate methods without the need of previous standardization of data. This allows comparison and discrimination of chromatin patterns from mixed cell populations. Preliminary data obtained from young neurons undergoing massive apoptosis reveal a self-consistent map of nuclear

  10. Chromatin perturbations during the DNA damage response in higher eukaryotes.

    PubMed

    Bakkenist, Christopher J; Kastan, Michael B

    2015-12-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response.

  11. Chromatin perturbations during the DNA damage response in higher eukaryotes

    PubMed Central

    Bakkenist, Christopher J.; Kastan, Michael B.

    2016-01-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response

  12. Chromatin fiber allostery and the epigenetic code

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Foray, Nicolas; Cathala, Guy; Forné, Thierry; Wong, Hua; Victor, Jean-Marc

    2015-02-01

    The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an ‘epigenetic code’, by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.

  13. Minor Groove Binder Distamycin Remodels Chromatin but Inhibits Transcription

    PubMed Central

    Majumder, Parijat; Banerjee, Amrita; Shandilya, Jayasha; Senapati, Parijat; Chatterjee, Snehajyoti; Kundu, Tapas K.; Dasgupta, Dipak

    2013-01-01

    The condensed structure of chromatin limits access of cellular machinery towards template DNA. This in turn represses essential processes like transcription, replication, repair and recombination. The repression is alleviated by a variety of energy dependent processes, collectively known as “chromatin remodeling”. In a eukaryotic cell, a fine balance between condensed and de-condensed states of chromatin helps to maintain an optimum level of gene expression. DNA binding small molecules have the potential to perturb such equilibrium. We present herein the study of an oligopeptide antibiotic distamycin, which binds to the minor groove of B-DNA. Chromatin mobility assays and circular dichroism spectroscopy have been employed to study the effect of distamycin on chromatosomes, isolated from the liver of Sprague-Dawley rats. Our results show that distamycin is capable of remodeling both chromatosomes and reconstituted nucleosomes, and the remodeling takes place in an ATP-independent manner. Binding of distamycin to the linker and nucleosomal DNA culminates in eviction of the linker histone and the formation of a population of off-centered nucleosomes. This hints at a possible corkscrew type motion of the DNA with respect to the histone octamer. Our results indicate that distamycin in spite of remodeling chromatin, inhibits transcription from both DNA and chromatin templates. Therefore, the DNA that is made accessible due to remodeling is either structurally incompetent for transcription, or bound distamycin poses a roadblock for the transcription machinery to advance. PMID:23460895

  14. Chromatin Landscape of the IRF Genes and Role of the Epigenetic Reader BRD4.

    PubMed

    Bachu, Mahesh; Dey, Anup; Ozato, Keiko

    2016-07-01

    Histone post-translational modification patterns represent epigenetic states of genomic genes and denote the state of their transcription, past history, and future potential in gene expression. Genome-wide chromatin modification patterns reported from various laboratories are assembled in the ENCODE database, providing a fertile ground for understanding epigenetic regulation of any genes of interest across many cell types. The IRF family genes critically control innate immunity as they direct expression and activities of interferons. While these genes have similar structural and functional traits, their chromatin landscapes and epigenetic features have not been systematically evaluated. Here, by mining ENCODE database using an imputational approach, we summarize chromatin modification patterns for 6 of 9 IRF genes and show characteristic features that connote their epigenetic states. BRD4 is a BET bromodomain protein that "reads and translates" epigenetic marks into transcription. We review recent findings that BRD4 controls constitutive and signal-dependent transcription of many genes, including IRF genes. BRD4 dynamically binds to various genomic genes with a spatial and temporal specificity. Of particular importance, BRD4 is shown to critically regulate IRF-dependent anti-pathogen protection, inflammatory responses triggered by NF-κB, and the growth and spread of many cancers. The advent of small molecule inhibitors that disrupt binding of BET bromdomain to acetylated histone marks has opened new therapeutic possibilities for cancer and inflammatory diseases.

  15. Chromatin Preparation and Chromatin Immuno-precipitation from Drosophila Embryos.

    PubMed

    Löser, Eva; Latreille, Daniel; Iovino, Nicola

    2016-01-01

    This protocol provides specific details on how to perform Chromatin immunoprecipitation (ChIP) from Drosophila embryos. ChIP allows the matching of proteins or histone modifications to specific genomic regions. Formaldehyde-cross-linked chromatin is isolated and antibodies against the target of interest are used to determine whether the target is associated with a specific DNA sequence. This can be performed in spatial and temporal manner and it can provide information about the genome-wide localization of a given protein or histone modification if coupled with deep sequencing technology (ChIP-Seq). PMID:27659972

  16. Accelerated Chromatin Biochemistry Using DNA-Barcoded Nucleosome Libraries

    PubMed Central

    Nguyen, Uyen T. T.; Bittova, Lenka; Müller, Manuel M.; Fierz, Beat; David, Yael; Houck-Loomis, Brian; Feng, Vanessa; Dann, Geoffrey P.; Muir, Tom W.

    2014-01-01

    Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone posttranslational modification (‘PTM’) signatures remains a daunting task in the epigenetics field. Here, we introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semi-synthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how pre-existing PTMs, alone or synergistically, affect further PTM deposition via crosstalk mechanisms. We anticipate that the high-throughput and -sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin. PMID:24997861

  17. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation.

    PubMed

    Keung, Albert J; Bashor, Caleb J; Kiriakov, Szilvia; Collins, James J; Khalil, Ahmad S

    2014-07-01

    The transcription of genomic information in eukaryotes is regulated in large part by chromatin. How a diverse array of chromatin regulator (CR) proteins with different functions and genomic localization patterns coordinates chromatin activity to control transcription remains unclear. Here, we take a synthetic biology approach to decipher the complexity of chromatin regulation by studying emergent transcriptional behaviors from engineered combinatorial, spatial, and temporal patterns of individual CRs. We fuse 223 yeast CRs to programmable zinc finger proteins. Site-specific and combinatorial recruitment of CRs to distinct intralocus locations reveals a range of transcriptional logic and behaviors, including synergistic activation, long-range and spatial regulation, and gene expression memory. Comparing these transcriptional behaviors with annotated CR complex and function terms provides design principles for the engineering of transcriptional regulation. This work presents a bottom-up approach to investigating chromatin-mediated transcriptional regulation and introduces chromatin-based components and systems for synthetic biology and cellular engineering.

  18. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  19. ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin

    PubMed Central

    Lawrimore, Josh; Aicher, Joseph K.; Hahn, Patrick; Fulp, Alyona; Kompa, Ben; Vicci, Leandra; Falvo, Michael; Taylor, Russell M.; Bloom, Kerry

    2016-01-01

    ChromoShake is a three-dimensional simulator designed to find the thermodynamically favored states for given chromosome geometries. The simulator has been applied to a geometric model based on experimentally determined positions and fluctuations of DNA and the distribution of cohesin and condensin in the budding yeast centromere. Simulations of chromatin in differing initial configurations reveal novel principles for understanding the structure and function of a eukaryotic centromere. The entropic position of DNA loops mirrors their experimental position, consistent with their radial displacement from the spindle axis. The barrel-like distribution of cohesin complexes surrounding the central spindle in metaphase is a consequence of the size of the DNA loops within the pericentromere to which cohesin is bound. Linkage between DNA loops of different centromeres is requisite to recapitulate experimentally determined correlations in DNA motion. The consequences of radial loops and cohesin and condensin binding are to stiffen the DNA along the spindle axis, imparting an active function to the centromere in mitosis. PMID:26538024

  20. Structural Fluctuations of the Chromatin Fiber within Topologically Associating Domains.

    PubMed

    Tiana, Guido; Amitai, Assaf; Pollex, Tim; Piolot, Tristan; Holcman, David; Heard, Edith; Giorgetti, Luca

    2016-03-29

    Experiments based on chromosome conformation capture have shown that mammalian genomes are partitioned into topologically associating domains (TADs), within which the chromatin fiber preferentially interacts. TADs may provide three-dimensional scaffolds allowing genes to contact their appropriate distal regulatory DNA sequences (e.g., enhancers) and thus to be properly regulated. Understanding the cell-to-cell and temporal variability of the chromatin fiber within TADs, and what determines them, is thus of great importance to better understand transcriptional regulation. We recently described an equilibrium polymer model that can accurately predict cell-to-cell variation of chromosome conformation within single TADs, from chromosome conformation capture-based data. Here we further analyze the conformational and energetic properties of our model. We show that the chromatin fiber within TADs can easily fluctuate between several conformational states, which are hierarchically organized and are not separated by important free energy barriers, and that this is facilitated by the fact that the chromatin fiber within TADs is close to the onset of the coil-globule transition. We further show that in this dynamic state the properties of the chromatin fiber, and its contact probabilities in particular, are determined in a nontrivial manner not only by site-specific interactions between strongly interacting loci along the fiber, but also by nonlocal correlations between pairs of contacts. Finally, we use live-cell experiments to measure the dynamics of the chromatin fiber in mouse embryonic stem cells, in combination with dynamical simulations, and predict that conformational changes within one TAD are likely to occur on timescales that are much shorter than the duration of one cell cycle. This suggests that genes and their regulatory elements may come together and disassociate several times during a cell cycle. These results have important implications for transcriptional

  1. Breaking an Epigenetic Chromatin Switch: Curious Features of Hysteresis in Saccharomyces cerevisiae Telomeric Silencing

    PubMed Central

    Nagaraj, Vijayalakshmi H.; Mukhopadhyay, Swagatam; Dayarian, Adel; Sengupta, Anirvan M.

    2014-01-01

    In addition to gene network switches, local epigenetic modifications to DNA and histones play an important role in all-or-none cellular decision-making. Here, we study the dynamical design of a well-characterized epigenetic chromatin switch: the yeast SIR system, in order to understand the origin of the stability of epigenetic states. We study hysteresis in this system by perturbing it with a histone deacetylase inhibitor. We find that SIR silencing has many characteristics of a non-linear bistable system, as observed in conventional genetic switches, which are based on activities of a few promoters affecting each other through the abundance of their gene products. Quite remarkably, our experiments in yeast telomeric silencing show a very distinctive pattern when it comes to the transition from bistability to monostability. In particular, the loss of the stable silenced state, upon increasing the inhibitor concentration, does not seem to show the expected saddle node behavior, instead looking like a supercritical pitchfork bifurcation. In other words, the ‘off’ state merges with the ‘on’ state at a threshold concentration leading to a single state, as opposed to the two states remaining distinct up to the threshold and exhibiting a discontinuous jump from the ‘off’ to the ‘on’ state. We argue that this is an inevitable consequence of silenced and active regions coexisting with dynamic domain boundaries. The experimental observations in our study therefore have broad implications for the understanding of chromatin silencing in yeast and beyond. PMID:25536038

  2. Chromatin-unstable boar spermatozoa have little chance of reaching oocytes in vivo.

    PubMed

    Ardón, Florencia; Helms, Dietmar; Sahin, Evrim; Bollwein, Heinrich; Töpfer-Petersen, Edda; Waberski, Dagmar

    2008-04-01

    In the present study, the prevalence of chromatin instability in the fertilizing-competent sperm population in the porcine oviduct in vivo was examined through qualitative analysis of the chromatin structure status of accessory boar sperm found in in vivo-derived embryos. The binding of chromatin-unstable sperm to oviductal epithelium in vitro was also studied. To examine the sperm chromatin state, a modified fluorescence microscopic sperm chromatin structure assay was used. Among a population of 173 fertile boars, individuals were selected for according to their chromatin status: 25 animals showed more than 5% of chromatin-unstable sperm in their ejaculates, and 7 showed consistently elevated percentages of chromatin-unstable sperm in three successively collected semen samples. A positive correlation was found between incidence of chromatin instability and attached cytoplasmic droplets (r=0.44, P<0.01). Analyses of accessory spermatozoa from in vivo-derived embryos demonstrated that the proportion of chromatin-unstable sperm was significantly (P<0.05) reduced in the population of fertilizing-competent sperm in the oviduct compared with the inseminated sperm. Populations of sperm bound to the oviduct in vitro had significantly (P<0.05) lower percentages of chromatin instability than in the original diluted semen sample. In conclusion, numbers of sperm with unstable chromatin are reduced in the oviductal sperm reservoir, possibly because of associated changes in the plasma membrane that prevent sperm from binding to the oviductal epithelium. We conclude that in vivo the likelihood that sperm with unstable chromatin will reach the egg and fertilize it is low. PMID:18367507

  3. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity

    PubMed Central

    Kim, Tae-Hee; Li, Fugen; Ferreiro-Neira, Isabel; Ho, Li-Lun; Luyten, Annouck; Nalapareddy, Kodandaramireddy; Long, Henry; Verzi, Michael; Shivdasani, Ramesh A.

    2014-01-01

    Cells differentiate when transcription factors (TFs) bind accessible cis-regulatory elements to establish specific gene expression programs. In differentiating embryonic stem (ES) cells, chromatin at lineage-restricted genes becomes sequentially accessible1-4, probably by virtue of “pioneer” TF activity5, but tissues may utilize other strategies in vivo. Lateral inhibition is a pervasive process in which one cell forces a different identity on its neighbors6, and it is unclear how chromatin in equipotent progenitors undergoing lateral inhibition quickly enables distinct, transiently reversible cell fates. Here we report the chromatin and transcriptional underpinnings of differentiation in mouse small intestine crypts, where Notch signaling mediates lateral inhibition to assign progenitor cells into absorptive or secretory lineages7-9. Transcript profiles in isolated LGR5+ intestinal stem cells (ISC)10 and secretory and absorptive progenitors indicated that each cell population was distinct and the progenitors specified. Nevertheless, secretory and absorptive progenitors showed comparable levels of H3K4me2 and H3K27ac histone marks and DNaseI hypersensitivity - signifying accessible, permissive chromatin - at most of the same cis-elements. Enhancers acting uniquely in progenitors were well-demarcated in LGR5+ ISC, revealing early priming of chromatin for divergent transcriptional programs, and retained active marks well after lineages were specified. On this chromatin background, ATOH1, a secretory-specific TF, controls lateral inhibition through Delta-like Notch ligand genes and also drives numerous secretory lineage genes. Depletion of ATOH1 from specified secretory cells converted them into functional enterocytes, indicating prolonged responsiveness of marked enhancers to presence or absence of a key TF. Thus, lateral inhibition and intestinal crypt lineage plasticity involve interaction of a lineage-restricted TF with broadly permissive chromatin established

  4. Towards understanding the epigenetics of transcription by chromatin structure and the nuclear matrix

    PubMed Central

    Martins, Rui Pires; Krawetz, Stephen A.

    2010-01-01

    Summary The eukaryotic nucleus houses a significant amount of information that is carefully ordered to ensure that genes can be transcribed as needed throughout development and differentiation. The genome is partitioned into regions containing functional transcription units, providing the means for the cell to selectively activate some, while keeping other regions of the genome silent. Over the last quarter of a century the structure of chromatin and how it is influenced by epigenetics has come into the forefront of modern biology. However, it has thus far failed to identify the mechanism by which individual genes or domains are selected for expression. Through covalent and structural modification of the DNA and chromatin proteins, epigenetics maintains both active and silent chromatin states. This is the “other” genetic code, often superseding that dictated by the nucleotide sequence. The nuclear matrix is rich in many of the factors that govern nuclear processes. It includes a host of unknown factors that may provide our first insight into the structural mechanism responsible for the genetic selectivity of a differentiating cell. This review will consider the nuclear matrix as an integral component of the epigenetic mechanism. PMID:21243045

  5. Extinction of Oct-3/4 gene expression in embryonal carcinoma [times] fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region

    SciTech Connect

    Ben-Shushan, E.; Pikarsky, E.; Klar, A.; Bergman, Y. )

    1993-02-01

    The OCT-3/4 gene provides an excellent model system with which to study the extinction phenomenon in somatic cell hybrids. The molecular mechanism that underlies the extinction of a tissue-specific transcription factor in somatic cell hybrides is evaluated and compared with its down-regulation in retinoic acid treated embryonal carcinoma cells. This study draws a connection between the shutdown of OCT-3/4 expression in retinoic acid (RA)-differentiated embryonal carcinoma (EC) cells and its extinction in hybrid cells. This repression of OCT-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the OCT-3/4 upstream regulatory region. 59 refs.

  6. An analysis of the binding of the chick oviduct progesterone-receptor to chromatin.

    PubMed

    Jaffe, R C; Socher, S H; O'Malley, B W

    1975-08-13

    The binding of progesterone-receptor complexes to chromatin from target and nontarget tissues was studied in vitro. Chromatin from both target and nontarget tissues responds in a similar manner to saly and cofactors and has the same K(D) (approx. 3.10(-9) M) for the progesterone-receptor complex. The only observed difference in the binding of the progesterone-receptor complex to target and nontarget chromatins is the difference in total number of acceptor sites. oviduct chromatin has approx. 1300 sites/pg DNA, spleen chromatin has approx. 840 sites/pg DNA, and erythrocyte chromatin has about 330 sites/pg DNA. The K(D) and number of acceptor sites for progesterone-receptor complex binding to oviduct chromatin remains the same even after extensive purification of the progesterone-receptor complex. Activation of cytosol labeled with [3H]progesterone by preincubation at 25 degrees C, analogous to that required for maximal nuclear binding, occurs if the binding studies to chromatin are performed in 0.025 M salt. The absence of an observable temperature effect when the studies are performed at 0.15 M salt is due to the activation of the receptor by salt. The dissociation of the progesterone-receptor complex from chromatin exhibits a single dissociation rate and the initial event is the appearance of free progesterone rather than a progesterone-receptor complex. Lastly, the treatment of chromatin with an antibody prepared against either single-stranded DNA or double-stranded DNA does not alter the extent of binding of the progesterone-receptor complex. Similarly, pretreatment of chromatin with a single-stranded nuclease does not inhibit the capacity of chromatin to bind the hormone-receptor complex.

  7. Role of chromatin in water stress responses in plants.

    PubMed

    Han, Soon-Ki; Wagner, Doris

    2014-06-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth.

  8. Circadian rhythms and memory formation: regulation by chromatin remodeling.

    PubMed

    Sahar, Saurabh; Sassone-Corsi, Paolo

    2012-01-01

    Epigenetic changes, such as DNA methylation or histone modification, can remodel the chromatin and regulate gene expression. Remodeling of chromatin provides an efficient mechanism of transducing signals, such as light or nutrient availability, to regulate gene expression. CLOCK:BMAL1 mediated activation of clock-controlled genes (CCGs) is coupled to circadian changes in histone modification at their promoters. Several chromatin modifiers, such as the deacetylases SIRT1 and HDAC3 or methyltransferase MLL1, have been shown to be recruited to the promoters of the CCGs in a circadian manner. Interestingly, the central element of the core clock machinery, the transcription factor CLOCK, also possesses histone acetyltransferase activity. Rhythmic expression of the CCGs is abolished in the absence of these chromatin modifiers. Recent research has demonstrated that chromatin remodeling is at the cross-roads of circadian rhythms and regulation of metabolism and aging. It would be of interest to identify if similar pathways exist in the epigenetic regulation of memory formation. PMID:22470318

  9. Changes in chromatin structure associated with Alzheimer's disease.

    PubMed

    Lewis, P N; Lukiw, W J; De Boni, U; McLachlan, D R

    1981-11-01

    The enzyme micrococcal nuclease was used to examine the accessibility of chromatin extracted from brains of 13 patients with senile and presenile dementia of the Alzheimer type. Compared with chromatin extracted from brains of 8 patients without neurological signs or brain pathology and brains of 7 patients with nonAlzheimer dementia, Alzheimer chromatin was less accessible to this enzyme. Reduced accessibility was reflected by a reduced yield of mononucleosomes in comparison with dinucleosomes and larger oligomers. Both neuronal and glial chromatin were found to be similarly affected. The reduced yield of mononucleosomes from Alzheimer chromatin is not due to their increased breakdown, but is probably related to protein associated with the internucleosomal linker region that retards nuclease action. Dinucleosomes isolated from control and Alzheimer nuclease digests were examined for their protein complement. Three perchloric acid-soluble proteins situated in the histone H1 region of sodium dodecyl sulfate (SDS) gels were present in elevated levels in Alzheimer dinucleosomes. These results represent the first example of altered chromosomal proteins associated with a diseased state of the brain.

  10. Chromatin and DNA sequences in defining promoters for transcription initiation.

    PubMed

    Müller, Ferenc; Tora, Làszlò

    2014-03-01

    One of the key events in eukaryotic gene regulation and consequent transcription is the assembly of general transcription factors and RNA polymerase II into a functional pre-initiation complex at core promoters. An emerging view of complexity arising from a variety of promoter associated DNA motifs, their binding factors and recent discoveries in characterising promoter associated chromatin properties brings an old question back into the limelight: how is a promoter defined? In addition to position-dependent DNA sequence motifs, accumulating evidence suggests that several parallel acting mechanisms are involved in orchestrating a pattern marked by the state of chromatin and general transcription factor binding in preparation for defining transcription start sites. In this review we attempt to summarise these promoter features and discuss the available evidence pointing at their interactions in defining transcription initiation in developmental contexts. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.

  11. ARID1B, a member of the human SWI/SNF chromatin remodeling complex, exhibits tumour-suppressor activities in pancreatic cancer cell lines

    PubMed Central

    Khursheed, M; Kolla, J N; Kotapalli, V; Gupta, N; Gowrishankar, S; Uppin, S G; Sastry, R A; Koganti, S; Sundaram, C; Pollack, J R; Bashyam, M D

    2013-01-01

    Background: The human ATP-dependent SWItch/sucrose nonfermentable (SWI/SNF) complex functions as a primary chromatin remodeler during ontogeny, as well as in adult life. Several components of the complex have been suggested to function as important regulators of tumorigenesis in various cancers. In the current study, we have characterised a possible tumour suppressor role for the largest subunit of the complex, namely the AT-rich interaction domain 1B (ARID1B). Methods: We performed Azacytidine and Trichostatin A treatments, followed by bisulphite sequencing to determine the possible DNA methylation-induced transcription repression of the gene in pancreatic cancer (PaCa) cell lines. Functional characterisation of effect of ARID1B ectopic expression in MiaPaCa2 PaCa cell line, which harboured ARID1B homozygous deletion, was carried out. Finally, we evaluated ARID1B protein expression in pancreatic tumour samples using immunohistochemistry on a tissue microarray. Results: ARID1B was transcriptionally repressed due to promoter hypermethylation, and ectopic expression severely compromised the ability of MiaPaCa2 cells to form colonies in liquid culture and soft agar. In addition, ARID1B exhibited significantly reduced/loss of expression in PaCa tissue, especially in samples from advanced-stage tumours, when compared with normal pancreas. Conclusion: The results therefore suggest a possible tumour-suppressor function for ARID1B in PaCa, thus adding to the growing list of SWI/SNF components with a similar function. Given the urgent need to design efficient targeted therapies for PaCa, our study assumes significance. PMID:23660946

  12. Facioscapulohumeral muscular dystrophy: consequences of chromatin relaxation

    PubMed Central

    van der Maarel, Silvère M.; Miller, Daniel G.; Tawil, Rabi; Filippova, Galina N.; Tapscott, Stephen J.

    2013-01-01

    Purpose of review In recent years we have seen remarkable progress in our understanding of the disease mechanism underlying facioscapulohumeral muscular dystrophy (FSHD). The purpose of this review is to provide a comprehensive overview of our current understanding of the disease mechanism and to discuss the observations supporting the possibility of a developmental defect in this disorder. Recent findings In the majority of cases FSHD is caused by contraction of the D4Z4 repeat array (FSHD1). This results in local chromatin relaxation and stable expression of the DUX4 retrogene in skeletal muscle, but only when a polymorphic DUX4 polyadenylation signal is present. In some cases (FSHD2), D4Z4 chromatin relaxation and stable DUX4 expression occurs in the absence of D4Z4 array contraction. DUX4 is a germline transcription factor and its expression in skeletal muscle leads to activation of early stem cell and germline programs and transcriptional activation of retroelements. Summary Recent studies have provided a plausible disease mechanism for FSHD where FSHD results from inappropriate expression of the germline transcription factor DUX4. The genes regulated by DUX4 suggest several mechanisms of muscle damage, and provide potential biomarkers and therapeutic targets that should be investigated in future studies. PMID:22892954

  13. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man.

    PubMed

    Harr, Jennifer C; Gonzalez-Sandoval, Adriana; Gasser, Susan M

    2016-02-01

    It is striking that within a eukaryotic nucleus, the genome can assume specific spatiotemporal distributions that correlate with the cell's functional states. Cell identity itself is determined by distinct sets of genes that are expressed at a given time. On the level of the individual gene, there is a strong correlation between transcriptional activity and associated histone modifications. Histone modifications act by influencing the recruitment of non-histone proteins and by determining the level of chromatin compaction, transcription factor binding, and transcription elongation. Accumulating evidence also shows that the subnuclear position of a gene or domain correlates with its expression status. Thus, the question arises whether this spatial organization results from or determines a gene's chromatin status. Although the association of a promoter with the inner nuclear membrane (INM) is neither necessary nor sufficient for repression, the perinuclear sequestration of heterochromatin is nonetheless conserved from yeast to man. How does subnuclear localization influence gene expression? Recent work argues that the common denominator between genome organization and gene expression is the modification of histones and in some cases of histone variants. This provides an important link between local chromatin structure and long-range genome organization in interphase cells. In this review, we will evaluate how histones contribute to the latter, and discuss how this might help to regulate genes crucial for cell differentiation. PMID:26792937

  14. Organisation of subunits in chromatin.

    PubMed

    Carpenter, B G; Baldwin, J P; Bradbury, E M; Ibel, K

    1976-07-01

    There is considerable current interest in the organisation of nucleosomes in chromatin. A strong X-ray and neutron semi-meridional diffraction peak at approximately 10 nm had previously been attributed to the interparticle specing of a linear array of nucleosomes. This diffraction peak could also result from a close packed helical array of nucleosomes. A direct test of these proposals is whether the 10 nm peak is truly meridional as would be expected for a linear array of nucleosomes or is slightly off the meridian as expected for a helical array. Neutron diffraction studies of H1-depleted chromatin support the latter alternative. The 10 nm peak has maxima which form a cross-pattern with semi-meridional angle of 8 to 9 degrees. This is consistent with a coil of nucleosomes of pitch 10 nm and outer diameter of approximately 30 nm. These dimensions correspond to about six nucleosomes per turn of the coli.

  15. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development

    PubMed Central

    Schertel, Claus; Albarca, Monica; Rockel-Bauer, Claudia; Kelley, Nicholas W.; Bischof, Johannes; Hens, Korneel

    2015-01-01

    Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such “bivalent” chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue. PMID:25568052

  16. Resistance of the nucleosomal organization of eucaryotic chromatin to ionizing radiation. [/sup 60/Co

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1982-09-01

    The structural organization and radiation sensitivity of Tetrahymena chromatin under several conditions of modified transcriptional activity were investigated using the structure-specific nucleases, micrococcal nuclease and DNase I. Digestion of unirradiated nuclei by those nucleases proceeded with very similar kinetics and to a similar extent irrespective of the stages of growth of the cultures, except for the cultures in stationary phase, which became more resistant to DNase I digestion. Neither for suppression of total cellular RNA synthesis by actinomycin D nor the transient inhibition of only rRNA synthesis by 40 krad of ..gamma.. radiation affected the sensitivity of the chromatin of the nucleases. These results confirm that activity transcribing chromatin remains in an active conformation even when its function is temporarily inhibited, while more permanent repression of some genes during stationary phase appears to alter the chromatin and hence its susceptibility to DNase I. Actively transcribing ribosomal chromatin was found to be very sensitive to DNase I degradation compared to bulk chromatin; its sensitivity to DNase I was also not altered by 40 krad of ..gamma.. radiation, but was reduced in stationary phase. It is concluded that damage to DNA and/or chromatin resulting from ..gamma.. irradiation does not produce alterations in the nucleosome-level organization of chromatin which can be measured by micrococcal nuclease and DNase I.

  17. Jarid2 links MicroRNA and chromatin in Th17 cells.

    PubMed

    Merkenschlager, Matthias

    2014-06-19

    In this issue of Immunity, Escobar et al. (2014) bring microRNAs and chromatin together by showing how activation-induced miR-155 targets the chromatin protein Jarid2 to regulate proinflammatory cytokine production in T helper 17 cells.

  18. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    SciTech Connect

    Astrand, Carolina; Belikov, Sergey; Wrange, Orjan

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  19. Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Faivre-Moskalenko, C.; Castelnovo, M.

    2014-11-01

    Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.

  20. Spatial organization of chromatin domains and compartments in single chromosomes.

    PubMed

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian J; Bintu, Bogdan; Moffitt, Jeffrey R; Wu, Chao-ting; Zhuang, Xiaowei

    2016-08-01

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation. PMID:27445307

  1. Higher-order structure of Saccharomyces cerevisiae chromatin

    SciTech Connect

    Lowary, P.T.; Widom, J. )

    1989-11-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure.

  2. Human pescadillo induces large-scale chromatin unfolding.

    PubMed

    Zhang, Hao; Fang, Yan; Huang, Cuifen; Yang, Xiao; Ye, Qinong

    2005-06-01

    The human pescadillo gene encodes a protein with a BRCT domain. Pescadillo plays an important role in DNA synthesis, cell proliferation and transformation. Since BRCT domains have been shown to induce chromatin large-scale unfolding, we tested the role of Pescadillo in regulation of large-scale chromatin unfolding. To this end, we isolated the coding region of Pescadillo from human mammary MCF10A cells. Compared with the reported sequence, the isolated Pescadillo contains in-frame deletion from amino acid 580 to 582. Targeting the Pescadillo to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity maps to the BRCT domain of Pescadillo. These data provide a new clue to understanding the vital role of Pescadillo.

  3. Spatial organization of chromatin domains and compartments in single chromosomes.

    PubMed

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian J; Bintu, Bogdan; Moffitt, Jeffrey R; Wu, Chao-ting; Zhuang, Xiaowei

    2016-08-01

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.

  4. Chromatin remodelling: the industrial revolution of DNA around histones.

    PubMed

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  5. CpG islands influence chromatin structure via the CpG-binding protein Cfp1.

    PubMed

    Thomson, John P; Skene, Peter J; Selfridge, Jim; Clouaire, Thomas; Guy, Jacky; Webb, Shaun; Kerr, Alastair R W; Deaton, Aimée; Andrews, Rob; James, Keith D; Turner, Daniel J; Illingworth, Robert; Bird, Adrian

    2010-04-15

    CpG islands (CGIs) are prominent in the mammalian genome owing to their GC-rich base composition and high density of CpG dinucleotides. Most human gene promoters are embedded within CGIs that lack DNA methylation and coincide with sites of histone H3 lysine 4 trimethylation (H3K4me3), irrespective of transcriptional activity. In spite of these intriguing correlations, the functional significance of non-methylated CGI sequences with respect to chromatin structure and transcription is unknown. By performing a search for proteins that are common to all CGIs, here we show high enrichment for Cfp1, which selectively binds to non-methylated CpGs in vitro. Chromatin immunoprecipitation of a mono-allelically methylated CGI confirmed that Cfp1 specifically associates with non-methylated CpG sites in vivo. High throughput sequencing of Cfp1-bound chromatin identified a notable concordance with non-methylated CGIs and sites of H3K4me3 in the mouse brain. Levels of H3K4me3 at CGIs were markedly reduced in Cfp1-depleted cells, consistent with the finding that Cfp1 associates with the H3K4 methyltransferase Setd1 (refs 7, 8). To test whether non-methylated CpG-dense sequences are sufficient to establish domains of H3K4me3, we analysed artificial CpG clusters that were integrated into the mouse genome. Despite the absence of promoters, the insertions recruited Cfp1 and created new peaks of H3K4me3. The data indicate that a primary function of non-methylated CGIs is to genetically influence the local chromatin modification state by interaction with Cfp1 and perhaps other CpG-binding proteins. PMID:20393567

  6. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  7. Insulation of the Chicken β-Globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT

    PubMed Central

    Istomina, Natalia E.; Shushanov, Sain S.; Springhetti, Evelyn M.; Karpov, Vadim L.; A. Krasheninnikov, Igor; Stevens, Kimberly; Zaret, Kenneth S.; Singh, Prim B.; Grigoryev, Sergei A.

    2003-01-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken β-globin domain. We observed two sharp transitions of MENT concentration coinciding with the β-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation. PMID:12944473

  8. ACTIVE STATE OF MUSCLE IN IODOACETATE RIGOR

    PubMed Central

    Mauriello, George E.; Sandow, Alexander

    1959-01-01

    Frog sartorius muscles, equilibrated to 2 x 10-4 M iodoacetic acid-Ringer's solution and activated by a series of twitches or a long tetanus, perform a rigor response consisting in general of a contractile change which plateaus and is then automatically reversed. Isotonic rigor shortening obeys a force-velocity relation which, with certain differences in value of the constants, accords with Hill's equation for this relation. Changes in rigidity during either isotonic or isometric rigor response show that the capacity of the rigor muscle to bear a load increases more abruptly than the corresponding onset of the ordinarily recorded response, briefly plateaus, and then decays. A quick release of about 1 mm. applied at any instant of isometric rigor output causes the tension to drop instantaneously to zero and then redevelop, the rate of redevelopment varying as does the intensity of the load-bearing capacity. These results demonstrate that rigor mechanical responses result from interaction of a passive, undamped series elastic component, and a contractile component with active state properties like those of normal contraction. Adenosinetriphosphate is known to break down in association with development of the rigor active state. This is discussed in relation to the apparent absence of ATP splitting in normal activation of the contractile component. PMID:13654738

  9. 34 CFR 300.704 - State-level activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true State-level activities. 300.704 Section 300.704... Allotments, Grants, and Use of Funds § 300.704 State-level activities. (a) State administration. (1) For the... under that Part. (b) Other State-level activities. (1) States may reserve a portion of their...

  10. 34 CFR 300.704 - State-level activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true State-level activities. 300.704 Section 300.704... Allotments, Grants, and Use of Funds § 300.704 State-level activities. (a) State administration. (1) For the... under that Part. (b) Other State-level activities. (1) States may reserve a portion of their...

  11. 34 CFR 300.704 - State-level activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false State-level activities. 300.704 Section 300.704... Allotments, Grants, and Use of Funds § 300.704 State-level activities. (a) State administration. (1) For the... under that Part. (b) Other State-level activities. (1) States may reserve a portion of their...

  12. 34 CFR 300.704 - State-level activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false State-level activities. 300.704 Section 300.704... Allotments, Grants, and Use of Funds § 300.704 State-level activities. (a) State administration. (1) For the... under that Part. (b) Other State-level activities. (1) States may reserve a portion of their...

  13. The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation.

    PubMed

    Yu, Feifei; Imamura, Yuko; Ueno, Masaru; Suzuki, Sho W; Ohsumi, Yoshinori; Yukawa, Masashi; Tsuchiya, Eiko

    2015-09-01

    The yeast RSC, an ATP-dependent chromatin-remodeling complex, is essential for mitotic and meiotic growth. There are two distinct isoforms of this complex defined by the presence of either Rsc1 or Rsc2; however, the functional differences between these complexes are unclear. Here we show that the RSC complex containing Rsc1, but not Rsc2, functions in autophagy induction. Rsc1 was required not only for full expression of ATG8 mRNA but also for maintenance of Atg8 protein stability. Interestingly, decreased autophagic activity and Atg8 protein stability in rsc1Δ cells, but not the defect in ATG8 mRNA expression, were partially suppressed by deletion of TOR1. In addition, we found that rsc1Δ impaired the binding between the Rho GTPase Rho1 and the TORC1-specific component Kog1, which is required for down-regulation of TORC1 activity. These results suggest that the Rsc1-containing RSC complex plays dual roles in the proper induction of autophagy: 1) the transcriptional activation of autophagy-related genes independent of the TORC1 pathway and 2) the inactivation of TORC1, possibly through enhancement of Rho1-Kog1 binding.

  14. The Chromatin of Candida albicans Pericentromeres Bears Features of Both Euchromatin and Heterochromatin

    PubMed Central

    Freire-Benéitez, Verónica; Price, R. Jordan; Buscaino, Alessia

    2016-01-01

    Centromeres, sites of kinetochore assembly, are important for chromosome stability and integrity. Most eukaryotes have regional centromeres epigenetically specified by the presence of the histone H3 variant CENP-A. CENP-A chromatin is often surrounded by pericentromeric regions packaged into transcriptionally silent heterochromatin. Candida albicans, the most common human fungal pathogen, possesses small regional centromeres assembled into CENP-A chromatin. The chromatin state of C. albicans pericentromeric regions is unknown. Here, for the first time, we address this question. We find that C. albicans pericentromeres are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Pericentromeric chromatin is associated with nucleosomes that are highly acetylated, as found in euchromatic regions of the genome; and hypomethylated on H3K4, as found in heterochromatin. This intermediate chromatin state is inhibitory to transcription and partially represses expression of proximal genes and inserted marker genes. Our analysis identifies a new chromatin state associated with pericentromeric regions. PMID:27242771

  15. Population activities of the United States government.

    PubMed

    Miles Re, J

    1971-08-01

    The editor's comment in this issue of the journal cites 5 overlapping phases in the evolution of population and family planning programs in the United States. The phases are 1) collecting census data and vital statistics, 1790-, 2) family planning assistance to developing nations, 1963, 3) family planning assistance to the U.S. "disadvantaged," 1964-, 4) overpopulation as a national concern, 1969-, and 5) the multiple action phase, 197? (phase including diverse steps to limit population growth and occurring after basic attitudes toward human reproduction have changed). The issue of the journal focuses on total population size and rates of population increase rather than on the distribution of population, and on federal action rather than on the activities of state and local governments. The editor's comment is followed by an extensive discussion of population activities of the United States government, especially since 1963. Topics discussed include demographic data, international programs, research, federally subsidized family planning services, medical care programs, educational and international programs, national growth policy, and the roles of the legislative and executive branches of government. A directory listing federal agencies with substantial and identifiable programs concerned with population and family planning is appended.

  16. Proteomics of a fuzzy organelle: interphase chromatin

    PubMed Central

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  17. The integrity of sperm chromatin in young tropical composite bulls.

    PubMed

    Fortes, M R S; Holroyd, R G; Reverter, A; Venus, B K; Satake, N; Boe-Hansen, G B

    2012-07-15

    Sperm chromatin fragmentation is associated with subfertility, but its relationship with age progression in young bulls is poorly understood. The objective was to assess sperm chromatin fragmentation during the early post-pubertal development of 20 tropical composite bulls, using a sperm chromatin structure assay (SCSA) and sperm-bos-halomax (SBH). Bulls were subjected to bull breeding soundness evaluation (BBSE) at mean ages of 13, 18, and 24 mo. Traits measured included liveweight (WT), body condition score (BCS) and scrotal circumference (SC). Semen samples were collected by electroejaculation and assessed for mass activity (MA), motility (Mot), concentration (conc), sperm morphology and chromatin fragmentation. Concentration (r=0.34, P=0.0076), Mot (r=0.36, P=0.0041) and percentage of morphologic normal sperm (percent normal sperm (PNS); r=0.31, P=0.0132) were positively correlated with age. The percentage of sperm with proximal droplets (PD) was negatively correlated with age (r=-0.28, P=0.0348), whereas neither SCSA nor SBH results were significantly correlated with age. The percentage of sperm with chromatin fragmentation using SCSA was correlated with PNS (r=-0.53, P<0.0001), the percentage of sperm with head abnormalities (r=0.68, P<0.0001) and the percentage of intact sperm (Int) with SBH (r=-0.26, P=0.0456). In summary, for assessment of sperm chromatin fragmentation, samples could be equally collected at 13, 18 or 24 mo of age, as results did not vary with age. PMID:22494672

  18. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  19. An active solid state ring laser gyroscope

    SciTech Connect

    Valle, T.J.

    1992-01-01

    The properties of an active, solid state ring laser gyroscope were investigated. Two laser diode pumped monolithic nonplanar ring oscillators (NPRO), forced to lase in opposite directions, formed the NPRO-Gyro. It was unique in being an active ring laser gyroscope with a homogeneously broadened gain medium. This work examined sources of technical and fundamental noise. Associated calculations accounted for aspects of the NPRO-Gyro performance, suggested design improvements, and outlined limitations. The work brought out the need to stabilize the NPRO environment in order to achieve performance goals. Two Nd:YAG NPROs were mounted within an environment short term stabilized to microdegrees Celsius. The Allan variance of the NPRO-Gyro beat note was 500 Hz for a one second time delay. Unequal treatment of the NPROs appeared as noise on the beat frequency, therefore reducing its rotation sensitivity. The sensitivity to rotation was limited by technical noise sources.

  20. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance

    PubMed Central

    Berry, Scott; Hartley, Matthew; Olsson, Tjelvar S G; Dean, Caroline; Howard, Martin

    2015-01-01

    Inheritance of gene expression states is fundamental for cells to ‘remember’ past events, such as environmental or developmental cues. The conserved Polycomb Repressive Complex 2 (PRC2) maintains epigenetic repression of many genes in animals and plants and modifies chromatin at its targets. Histones modified by PRC2 can be inherited through cell division. However, it remains unclear whether this inheritance can direct long-term memory of individual gene expression states (cis memory) or instead if local chromatin states are dictated by the concentrations of diffusible factors (trans memory). By monitoring the expression of two copies of the Arabidopsis Polycomb target gene FLOWERING LOCUS C (FLC) in the same plants, we show that one copy can be repressed while the other is active. Furthermore, this ‘mixed’ expression state is inherited through many cell divisions as plants develop. These data demonstrate that epigenetic memory of FLC expression is stored not in trans but in cis. DOI: http://dx.doi.org/10.7554/eLife.07205.001 PMID:25955967

  1. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci.

    PubMed

    Bonifer, C; Hecht, A; Saueressig, H; Winter, D M; Sippel, A E

    1991-10-01

    It is hypothesized that nuclear DNA is organized in topologically constrained loop domains defining basic units of higher order chromatin structure. Our studies are performed in order to investigate the functional relevance of this structural subdivision of eukaryotic chromatin for the control of gene expression. We used the chicken lysozyme gene locus as a model to examine the relation between chromatin structure and gene function. Several structural features of the lysozyme locus are known: the extension of the region of general DNAasel sensitivity of the active gene, the location of DNA-sequences with high affinity for the nuclear matrix in vitro, and the position of DNAasel hypersensitive chromatin sites (DHSs). The pattern of DHSs changes depending on the transcriptional status of the gene. Functional studies demonstrated that DHSs mark the position of cis-acting regulatory elements. Additionally, we discovered a novel cis-activity of the border regions of the DNAasel sensitive domain (A-elements). By eliminating the position effect on gene expression usually observed when genes are randomly integrated into the genome after transfection, A-elements possibly serve as punctuation marks for a regulatory chromatin domain. Experiments using transgenic mice confirmed that the complete structurally defined lysozyme gene domain behaves as an independent regulatory unit, expressing the gene in a tissue specific and position independent manner. These expression features were lost in transgenic mice carrying a construct, in which the A-elements as well as an upstream enhancer region were deleted, indicating the lack of a locus activation function on this construct. Experiments are designed in order to uncover possible hierarchical relationships between the different cis-acting regulatory elements for stepwise gene activation during cell differentiation. We are aiming at the definition of the basic structural and functional requirements for position independent and high

  2. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci.

    PubMed

    Bonifer, C; Hecht, A; Saueressig, H; Winter, D M; Sippel, A E

    1991-10-01

    It is hypothesized that nuclear DNA is organized in topologically constrained loop domains defining basic units of higher order chromatin structure. Our studies are performed in order to investigate the functional relevance of this structural subdivision of eukaryotic chromatin for the control of gene expression. We used the chicken lysozyme gene locus as a model to examine the relation between chromatin structure and gene function. Several structural features of the lysozyme locus are known: the extension of the region of general DNAasel sensitivity of the active gene, the location of DNA-sequences with high affinity for the nuclear matrix in vitro, and the position of DNAasel hypersensitive chromatin sites (DHSs). The pattern of DHSs changes depending on the transcriptional status of the gene. Functional studies demonstrated that DHSs mark the position of cis-acting regulatory elements. Additionally, we discovered a novel cis-activity of the border regions of the DNAasel sensitive domain (A-elements). By eliminating the position effect on gene expression usually observed when genes are randomly integrated into the genome after transfection, A-elements possibly serve as punctuation marks for a regulatory chromatin domain. Experiments using transgenic mice confirmed that the complete structurally defined lysozyme gene domain behaves as an independent regulatory unit, expressing the gene in a tissue specific and position independent manner. These expression features were lost in transgenic mice carrying a construct, in which the A-elements as well as an upstream enhancer region were deleted, indicating the lack of a locus activation function on this construct. Experiments are designed in order to uncover possible hierarchical relationships between the different cis-acting regulatory elements for stepwise gene activation during cell differentiation. We are aiming at the definition of the basic structural and functional requirements for position independent and high

  3. Edge states in confined active fluids

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; Vitelli, Vincenzo

    Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.

  4. Preparation of Chromatin Templates to Study RNA Polymerase I Transcription In Vitro.

    PubMed

    Längst, Gernot

    2016-01-01

    Cellular DNA is packaged into chromatin, which is the substrate of all DNA-dependent processes in eukaryotes. The regulation of chromatin requires specialized enzyme activities to allow the access of sequence-specific binding proteins and RNA polymerases. In order to dissect chromatin-dependent features of transcription regulation in detail, in vitro systems to generate defined chromatin templates for transcription are required. I present a protocol that allows the assembly of nucleosomes on ribosomal RNA (rRNA) minigenes by salt gradient dialysis and subsequent sucrose gradient centrifugation. This procedure yields high nucleosome occupancy and high dynamic response in subsequent transcriptional analysis. It provides an invaluable tool to study rRNA gene transcription, as transcription on free DNA is clearly different from the more in vivo-like transcription on reconstituted chromatin templates. PMID:27576714

  5. Relative contributions of chromatin and kinetochores to mitotic spindle assembly

    PubMed Central

    Lončarek, Jadranka; Kaláb, Petr; Khodjakov, Alexey

    2009-01-01

    During mitosis and meiosis in animal cells, chromosomes actively participate in spindle assembly by generating a gradient of Ran guanosine triphosphate (RanGTP). A high concentration of RanGTP promotes microtubule nucleation and stabilization in the vicinity of chromatin. However, the relative contributions of chromosome arms and centromeres/kinetochores in this process are not known. In this study, we address this issue using cells undergoing mitosis with unreplicated genomes (MUG). During MUG, chromatin is rapidly separated from the forming spindle, and both centrosomal and noncentrosomal spindle assembly pathways are active. MUG chromatin is coated with RCC1 and establishes a RanGTP gradient. However, a robust spindle forms around kinetochores/centromeres outside of the gradient peak. When stable kinetochore microtubule attachment is prevented by Nuf2 depletion in both MUG and normal mitosis, chromatin attracts astral microtubules but cannot induce spindle assembly. These results support a model in which kinetochores play the dominant role in the chromosome-mediated pathway of mitotic spindle assembly. PMID:19805628

  6. A model for chromatin structure.

    PubMed Central

    Li, H J

    1975-01-01

    A model for chromatin structure is presented. (a) Each of four histone species, H2A (IIbl or f2a2), H2B (IIb2 or f2b), H3 (III or f3) and H4 (IV or f2al) can form a parallel dimer. (b) These dimers can form two tetramers, (H2A)2(H2b)2 and (H3)2(H4)2. (C) These two tetramers bind a segment of DNA and condense it into a "C" segments. (d) The adjacent segments, termed extended or "E" segments, are bound by histone H1 (I or fl) for the major fraction of chromatin; the other "E" regions can be either bound by non-histone proteins or free of protein binding. (e) The binding of histones causes a structural distortion of the DNA which, depending upon the external conditions, may generate the formation of either an open structure with a heterogeneous and non-uniform supercoil or a compact structure with a string of beads. The model is supported by experimental data on histone-histone interaction, histone-DNA interaction and histone subunit-DNA interaction. PMID:1101222

  7. Profiling Genome-wide Chromatin Methylation with Engineered Posttranslation Apparatus within Living Cells

    PubMed Central

    Wang, Rui; Islam, Kabirul; Liu, Ying; Zheng, Weihong; Tang, Haiping; Lailler, Nathalie; Blum, Gil; Deng, Haiteng; Luo, Minkui

    2013-01-01

    Protein methyltransferases (PMTs) have emerged as important epigenetic regulators in myriad biological processes both in normal physiology and disease conditions. However, elucidating PMT-regulated epigenetic processes has been hampered by ambiguous knowledge about in vivo activities of individual PMTs particularly because of their overlapping but non-redundant functions. To address limitations of conventional approaches in mapping chromatin modification of specific PMTs, we have engineered the chromatin-modifying apparatus and formulated a novel technology, termed Clickable Chromatin Enrichment with parallel DNA sequencing (CliEn-seq), to probe genome-wide chromatin modification within living cells. The three-step approach of CliEn-seq involves in vivo synthesis of S-adenosyl-L-methionine (SAM) analogues from cell-permeable methionine analogues by engineered SAM synthetase (methionine adenosyltransferase or MAT), in situ chromatin modification by engineered PMTs, subsequent enrichment and sequencing of the uniquely modified chromatins. Given critical roles of the chromatin-modifying enzymes in epigenetics and structural similarity among many PMTs, we envision that the CliEn-seq technology is generally applicable in deciphering chromatin methylation events of individual PMTs in diverse biological settings. PMID:23244065

  8. Chromatin insulators: lessons from the fly.

    PubMed

    Gurudatta, B V; Corces, Victor G

    2009-07-01

    Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Drosophila has at least five different types of insulators; recent results suggest that these different insulators share some components that may allow them to function through common mechanisms. Data from genome-wide localization studies of insulator proteins indicate a possible functional specialization, with different insulators playing distinct roles in nuclear biology. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. Current results suggest that insulators set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation and development.

  9. On the mechanochemical machinery underlying chromatin remodeling

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.

    This dissertation discuss two recent efforts, via a unique combination of structural bioinformatics and density functional theory, to unravel some of the details concerning how molecular machinery within the eukaryotic cell nucleus controls chromatin architecture. The first, a study of the 5-methylation of cytosine in 5'-CG-3' : 5'-CG-3' base-pair steps, reveals that the methyl groups roughen the local elastic energy landscape of the DNA. This enhances the probability of the canonical B-DNA structure transitioning into the undertwisted A-like and overtwisted C-like forms seen in nucleosomes, or looped segments of DNA bound to histones. The second part focuses on the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. The arginine residues are ob- served to apply a tunable mechanical load to the backbone, enabling precision-controlled activation of DNA deformations.

  10. Chromatin-modifying enzymes as modulators of reprogramming.

    PubMed

    Onder, Tamer T; Kara, Nergis; Cherry, Anne; Sinha, Amit U; Zhu, Nan; Bernt, Kathrin M; Cahan, Patrick; Marcarci, B Ogan; Unternaehrer, Juli; Gupta, Piyush B; Lander, Eric S; Armstrong, Scott A; Daley, George Q

    2012-03-29

    Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified positive and negative modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors. PMID:22388813

  11. Control of trichome branching by Chromatin Assembly Factor-1

    PubMed Central

    Exner, Vivien; Gruissem, Wilhelm; Hennig, Lars

    2008-01-01

    Background Chromatin dynamics and stability are both required to control normal development of multicellular organisms. Chromatin assembly factor CAF-1 is a histone chaperone that facilitates chromatin formation and the maintenance of specific chromatin states. In plants and animals CAF-1 is essential for normal development, but it is poorly understood which developmental pathways require CAF-1 function. Results Mutations in all three CAF-1 subunits affect Arabidopsis trichome morphology and lack of CAF-1 function results in formation of trichomes with supernumerary branches. This phenotype can be partially alleviated by external sucrose. In contrast, other aspects of the CAF-1 mutant phenotype, such as defective meristem function and organ formation, are aggravated by external sucrose. Double mutant analyses revealed epistatic interactions between CAF-1 mutants and stichel, but non-epistatic interactions between CAF-1 mutants and glabra3 and kaktus. In addition, mutations in CAF-1 could partly suppress the strong overbranching and polyploidization phenotype of kaktus mutants. Conclusion CAF-1 is required for cell differentiation and regulates trichome development together with STICHEL in an endoreduplication-independent pathway. This function of CAF-1 can be partially substituted by application of exogenous sucrose. Finally, CAF-1 is also needed for the high degree of endoreduplication in kaktus mutants and thus for the realization of kaktus' extreme overbranching phenotype. PMID:18477400

  12. Surviving an identity crisis: a revised view of chromatin insulators in the genomics era.

    PubMed

    Matzat, Leah H; Lei, Elissa P

    2014-03-01

    The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.

  13. Chromatin changes predict recurrence after radical prostatectomy

    PubMed Central

    Hveem, Tarjei S; Kleppe, Andreas; Vlatkovic, Ljiljana; Ersvær, Elin; Wæhre, Håkon; Nielsen, Birgitte; Kjær, Marte Avranden; Pradhan, Manohar; Syvertsen, Rolf Anders; Nesheim, John Arne; Liestøl, Knut; Albregtsen, Fritz; Danielsen, Håvard E

    2016-01-01

    Background: Pathological evaluations give the best prognostic markers for prostate cancer patients after radical prostatectomy, but the observer variance is substantial. These risk assessments should be supported and supplemented by objective methods for identifying patients at increased risk of recurrence. Markers of epigenetic aberrations have shown promising results in several cancer types and can be assessed by automatic analysis of chromatin organisation in tumour cell nuclei. Methods: A consecutive series of 317 prostate cancer patients treated with radical prostatectomy at a national hospital between 1987 and 2005 were followed for a median of 10 years (interquartile range, 7–14). On average three tumour block samples from each patient were included to account for tumour heterogeneity. We developed a novel marker, termed Nucleotyping, based on automatic assessment of disordered chromatin organisation, and validated its ability to predict recurrence after radical prostatectomy. Results: Nucleotyping predicted recurrence with a hazard ratio (HR) of 3.3 (95% confidence interval (CI), 2.1–5.1). With adjustment for clinical and pathological characteristics, the HR was 2.5 (95% CI, 1.5–4.1). An updated stratification into three risk groups significantly improved the concordance with patient outcome compared with a state-of-the-art risk-stratification tool (P<0.001). The prognostic impact was most evident for the patients who were high-risk by clinical and pathological characteristics and for patients with Gleason score 7. Conclusion: A novel assessment of epigenetic aberrations was capable of improving risk stratification after radical prostatectomy. PMID:27124335

  14. Sense and antisense transcription are associated with distinct chromatin architectures across genes.

    PubMed

    Murray, Struan C; Haenni, Simon; Howe, Françoise S; Fischl, Harry; Chocian, Karolina; Nair, Anitha; Mellor, Jane

    2015-09-18

    Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.

  15. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells

    PubMed Central

    Lim, Daniel A.; Huang, Yin-Cheng; Swigut, Tomek; Mirick, Anika L.; Garcia-Verdugo, Jose Manuel; Wysocka, Joanna; Ernst, Patricia; Alvarez-Buylla, Arturo

    2013-01-01

    Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood1. Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively2. Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal3,4, the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neuronal differentiation is severely impaired. In Mll1-deficient cells, early proneural Mash1 (also known as Ascl1) and gliogenic Olig2 expression are preserved, but Dlx2, a key downstream regulator of subventricular zone neurogenesis, is not expressed. Over-expression of Dlx2 can rescue neurogenesis in Mll1-deficient cells. Chromatin immunoprecipitation demonstrates that Dlx2 is a direct target of MLL in subventricular zone cells. In differentiating wild-type subventricular zone cells, Mash1, Olig2 and Dlx2 loci have high levels of histone 3 trimethylated at lysine 4 (H3K4me3), consistent with their transcription. In contrast, in Mll1-deficient subventricular zone cells, chromatin at Dlx2 is bivalently marked by both H3K4me3 and histone 3 trimethylated at lysine 27 (H3K27me3), and the Dlx2 gene fails to properly activate. These data support a model in which Mll1 is required to resolve key silenced bivalent loci in postnatal neural precursors to the actively transcribed state for the induction of neurogenesis, but not for gliogenesis. PMID:19212323

  16. Chromatin Remodelers: From Function to Dysfunction.

    PubMed

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616

  17. Open chromatin reveals the functional maize genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...

  18. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot.

    PubMed

    Yamada, Takatomi; Mizuno, Ken-ichi; Hirota, Kouji; Kon, Ning; Wahls, Wayne P; Hartsuiker, Edgar; Murofushi, Hiromu; Shibata, Takehiko; Ohta, Kunihiro

    2004-04-21

    Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner. PMID:14988732

  19. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot

    PubMed Central

    Yamada, Takatomi; Mizuno, Ken-ichi; Hirota, Kouji; Kon, Ning; Wahls, Wayne P; Hartsuiker, Edgar; Murofushi, Hiromu; Shibata, Takehiko; Ohta, Kunihiro

    2004-01-01

    Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1·Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner. PMID:14988732

  20. Active State Model for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  1. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  2. Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters.

    PubMed

    van Oevelen, Chris J C; van Teeffelen, Hetty A A M; van Werven, Folkert J; Timmers, H Th Marc

    2006-02-17

    We previously showed that the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is recruited to the activated HXT2 and HXT4 genes and plays a role in the association of TBP-associated factors. Using the HXT2 and HXT4 genes, we now present evidence for a functional link between Snf1p-dependent activation, recruitment of the SAGA complex, histone H3 removal, and H3 acetylation. Recruitment of the SAGA complex is dependent on the release of Ssn6p-Tup1p repression by Snf1p. In addition, we found that the Gcn5p subunit of the SAGA complex preferentially acetylates histone H3K18 on the HXT2 and HXT4 promoters and that Gcn5p activity is required for removal of histone H3 from the HXT4 promoter TATA region. In contrast, histone H3 removal from the HXT2 promoter does not require Gcn5p. In conclusion, although similar protein complexes are involved, induction of HXT2 and HXT4 displays important mechanistic differences.

  3. Ancestral Chromatin Configuration Constrains Chromatin Evolution on Differentiating Sex Chromosomes in Drosophila

    PubMed Central

    Zhou, Qi; Bachtrog, Doris

    2015-01-01

    Sex chromosomes evolve distinctive types of chromatin from a pair of ancestral autosomes that are usually euchromatic. In Drosophila, the dosage-compensated X becomes enriched for hyperactive chromatin in males (mediated by H4K16ac), while the Y chromosome acquires silencing heterochromatin (enriched for H3K9me2/3). Drosophila autosomes are typically mostly euchromatic but the small dot chromosome has evolved a heterochromatin-like milieu (enriched for H3K9me2/3) that permits the normal expression of dot-linked genes, but which is different from typical pericentric heterochromatin. In Drosophila busckii, the dot chromosomes have fused to the ancestral sex chromosomes, creating a pair of ‘neo-sex’ chromosomes. Here we collect genomic, transcriptomic and epigenomic data from D. busckii, to investigate the evolutionary trajectory of sex chromosomes from a largely heterochromatic ancestor. We show that the neo-sex chromosomes formed <1 million years ago, but nearly 60% of neo-Y linked genes have already become non-functional. Expression levels are generally lower for the neo-Y alleles relative to their neo-X homologs, and the silencing heterochromatin mark H3K9me2, but not H3K9me3, is significantly enriched on silenced neo-Y genes. Despite rampant neo-Y degeneration, we find that the neo-X is deficient for the canonical histone modification mark of dosage compensation (H4K16ac), relative to autosomes or the compensated ancestral X chromosome, possibly reflecting constraints imposed on evolving hyperactive chromatin in an originally heterochromatic environment. Yet, neo-X genes are transcriptionally more active in males, relative to females, suggesting the evolution of incipient dosage compensation on the neo-X. Our data show that Y degeneration proceeds quickly after sex chromosomes become established through genomic and epigenetic changes, and are consistent with the idea that the evolution of sex-linked chromatin is influenced by its ancestral configuration. PMID

  4. Ancestral Chromatin Configuration Constrains Chromatin Evolution on Differentiating Sex Chromosomes in Drosophila.

    PubMed

    Zhou, Qi; Bachtrog, Doris

    2015-06-01

    Sex chromosomes evolve distinctive types of chromatin from a pair of ancestral autosomes that are usually euchromatic. In Drosophila, the dosage-compensated X becomes enriched for hyperactive chromatin in males (mediated by H4K16ac), while the Y chromosome acquires silencing heterochromatin (enriched for H3K9me2/3). Drosophila autosomes are typically mostly euchromatic but the small dot chromosome has evolved a heterochromatin-like milieu (enriched for H3K9me2/3) that permits the normal expression of dot-linked genes, but which is different from typical pericentric heterochromatin. In Drosophila busckii, the dot chromosomes have fused to the ancestral sex chromosomes, creating a pair of 'neo-sex' chromosomes. Here we collect genomic, transcriptomic and epigenomic data from D. busckii, to investigate the evolutionary trajectory of sex chromosomes from a largely heterochromatic ancestor. We show that the neo-sex chromosomes formed <1 million years ago, but nearly 60% of neo-Y linked genes have already become non-functional. Expression levels are generally lower for the neo-Y alleles relative to their neo-X homologs, and the silencing heterochromatin mark H3K9me2, but not H3K9me3, is significantly enriched on silenced neo-Y genes. Despite rampant neo-Y degeneration, we find that the neo-X is deficient for the canonical histone modification mark of dosage compensation (H4K16ac), relative to autosomes or the compensated ancestral X chromosome, possibly reflecting constraints imposed on evolving hyperactive chromatin in an originally heterochromatic environment. Yet, neo-X genes are transcriptionally more active in males, relative to females, suggesting the evolution of incipient dosage compensation on the neo-X. Our data show that Y degeneration proceeds quickly after sex chromosomes become established through genomic and epigenetic changes, and are consistent with the idea that the evolution of sex-linked chromatin is influenced by its ancestral configuration.

  5. State and Local Bar Associations Law-Related Education Activities.

    ERIC Educational Resources Information Center

    American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.

    This document is a listing of the law-related education activities of state and local bar associations grouped by state. Under each state, the state association and often one or more local association are listed. Information on each association includes committees relating to law related education, a listing of law related education activities,…

  6. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  7. Structural and functional genome analysis using extended chromatin

    SciTech Connect

    Heaf, T.; Ward, D.C.

    1994-09-01

    Highly extended linear chromatin fibers (ECFs) produced by detergent and high-salt lysis and stretching of nuclear chromatin across the surface of a glass slide can by hybridized over physical distances of at least several Mb. This allows long-range FISH analysis of the human genome with excellent DNA resolution (<10 kb/{mu}m). The insertion of Alu elements which are more than 50-fold underrepresented in centromeres can be seen within and near long tandem arrays of alpha-satellite DNA. Long tracts of trinucleotide repeats, i.e. (CCA){sub n}, can be localized within larger genomic regions. The combined application of BrdU incorporation and ECFs allows one to study the spatio-temporal distribution of DNA replication sites in finer detail. DNA synthesis occurs at multiple discrete sites within Mb arrays of alpha-satellite. Replicating DNA is tightly associated with the nuclear matrix and highly resistant to stretching out, while ECFs containing newly replicated DNA are easily released. Asynchrony in replication timing is accompanied by differences in condensation of homologous DNA segments. Extended chromatin reveals differential packaging of active and inactive DNA. Upon transcriptional inactivation by AMD, the normally compact rRNA genes become much more susceptible to decondensation procedures. By extending the chromatin from pachytene spermatocytes, meiotic pairing and genetic exchange between homologs can be visualized directly. Histone depletion by high salt and detergent produces loop chromatin surrounding the nuclear matrix in a halo-like fashion. DNA halos can be used to map nuclear matrix attachment sites in somatic cells and in mature sperm. Alpha-satellite containing DNA loops appear to be attached to the sperm-cell matrix by CENP-B boxes, short 17 bp sequences found in a subset of alpha satellite monomers. Sperm telomeres almost always appear as hybridization doublets, suggesting the presence of already replicated chromosome ends.

  8. Stress-Induced Chromatin Changes: A Critical View on Their Heritability

    PubMed Central

    Pecinka, Ales; Mittelsten Scheid, Ortrun

    2012-01-01

    The investigation of stress responses has been a focus of plant research, breeding and biotechnology for a long time. Insight into stress perception, signaling and genetic determinants of resistance has recently been complemented by growing evidence for substantial stress-induced changes at the chromatin level. These affect specific sequences or occur genome-wide and are often correlated with transcriptional regulation. The majority of these changes only occur during stress exposure, and both expression and chromatin states typically revert to the pre-stress state shortly thereafter. Other changes result in the maintenance of new chromatin states and modified gene expression for a longer time after stress exposure, preparing an individual for developmental decisions or more effective defence. Beyond this, there are claims for stress-induced heritable chromatin modifications that are transmitted to progeny, thereby improving their characteristics. These effects resemble the concept of Lamarckian inheritance of acquired characters and represent a challenge to the uniqueness of DNA sequence-based inheritance. However, with the growing insight into epigenetic regulation and transmission of chromatin states, it is worth investigating these phenomena carefully. While genetic changes (mainly transposon mobility) in response to stress-induced interference with chromatin are well documented and heritable, in our view there is no unambiguous evidence for transmission of exclusively chromatin-controlled stress effects to progeny. We propose a set of criteria that should be applied to substantiate the data for stress-induced, chromatin-encoded new traits. Well-controlled stress treatments, thorough phenotyping and application of refined genome-wide epigenetic analysis tools should be helpful in moving from interesting observations towards robust evidence. PMID:22457398

  9. Chromatin maintenance by a molecular motor protein

    PubMed Central

    Sung, Myong-Hee; Misteli, Tom

    2011-01-01

    The kinesin motor protein KIF4 performs essential functions in mitosis. Like other mitotic kinesins, loss of KIF4 causes spindle defects, aneuploidy, genomic instability and ultimately tumor formation. However, KIF4 is unique among molecular motors in that it resides in the cell nucleus throughout interphase, suggesting a non-mitotic function as well. Here we identify a novel cellular function for a molecular motor protein by demonstrating that KIF4 acts as a modulator of large-scale chromatin architecture during interphase. KIF4 binds globally to chromatin and its absence leads to chromatin decondensation and loss of heterochromatin domains. KIF4-dependent chromatin decondensation has functional consequences by causing replication defects and global mis-regulation of gene expression programs. KIF4 exerts its function in chromatin architecture via regulation of ADP-ribosylation of core and linker histones and by physical interaction and recruitment of chromatin assembly proteins during S-phase. These observations document a novel function for a molecular motor protein in establishment and maintenance of higher order chromatin structure. PMID:22130187

  10. Targeting of cohesin by transcriptionally silent chromatin.

    PubMed

    Chang, Chuang-Rung; Wu, Ching-Shyi; Hom, Yolanda; Gartenberg, Marc R

    2005-12-15

    Eukaryotic DNA replication produces sister chromatids that are linked together until anaphase by cohesin, a ring-shaped protein complex that is thought to act by embracing both chromatids. Cohesin is enriched at centromeres, as well as discrete sites along chromosome arms where transcription positions the complex between convergent gene pairs. A relationship between cohesin and Sir-mediated transcriptional silencing has also begun to emerge. Here we used fluorescence microscopy and site-specific recombination to characterize interactions between newly replicated copies of the silent HMR mating-type locus. HMR was tagged with lac-GFP and flanked by binding sites for an inducible site-specific recombinase. Excision of the locus in cells with sister chromatids produced two chromatin circles that remained associated with one another. Pairing of the circles required silent chromatin, cohesin, and the RSC chromatin-remodeling complex. Chromatin immunoprecipitation showed that targeting of cohesin to the locus is Sir-dependent, and functional tests showed that silent chromatin acts in a continuous fashion to maintain cohesion. Remarkably, loss of silencing led to loss of cohesin from linear chromosomal templates but not from excised chromatin circles. The results are consistent with a model in which cohesin binds silent chromatin via topological linkage to individual chromatids. PMID:16319193

  11. State Equations for Active Circuits with Memristors

    NASA Astrophysics Data System (ADS)

    Hasler, Martin

    2013-01-01

    Nonlinear dynamic circuits including memristors are considered. Graph-theoretical criteria are given as sufficient conditions for the existence of global state equations, with the capacitor and memristor charges as state variables (for convenience we do not consider inductors here). They are based on earlier work on circuits without memristors. Global state equations in these charges fail to exist when the charges are dependent or when singular points are present, socalled impasse points. The values of state variables at initial time uniquely determine a solution. Therefore, even for numerical circuit analysis that in general does not use state equations, the determination of a set of state variables is important, and to know whether, with the "canonical candidates" for states, global state equations exist, is the first and most important step. The graph-theoretical criteria are easy to check directly for simple circuits. We give a few simple examples that illustrate the various cases. Larger circuits have to be examined by combinatorial algorithms.

  12. Chromatin remodelling initiation during human spermiogenesis

    PubMed Central

    De Vries, Marieke; Ramos, Liliana; Housein, Zjwan; De Boer, Peter

    2012-01-01

    Summary During the last phase of spermatogenesis, spermiogenesis, haploid round spermatids metamorphose towards spermatozoa. Extensive cytoplasmic reduction and chromatin remodelling together allow a dramatic decrease of cellular, notably nuclear volume. DNA packing by a nucleosome based chromatin structure is largely replaced by a protamine based one. At the cytoplasmic level among others the acrosome and perinuclear theca (PNT) are formed. In this study we describe the onset of chromatin remodelling to occur concomitantly with acrosome and PNT development. In spread human round spermatid nuclei, we show development of a DAPI-intense doughnut-like structure co-localizing with the acrosomal sac and sub acrosomal PNT. At this structure we observe the first gradual decrease of nucleosomes and several histones. Histone post-translational modifications linked to chromatin remodelling such as H4K8ac and H4K16ac also delineate the doughnut, that is furthermore marked by H3K9me2. During the capping phase of acrosome development, the size of the doughnut-like chromatin domain increases, and this area often is marked by uniform nucleosome loss and the first appearance of transition protein 2 and protamine 1. In the acrosome phase at nuclear elongation, chromatin remodelling follows the downward movement of the marginal ring of the acrosome. Our results indicate that acrosome development and chromatin remodelling are interacting processes. In the discussion we relate chromatin remodelling to the available data on the nuclear envelope and the linker of nucleoskeleton and cytoskeleton (LINC) complex of spermatids, suggesting a signalling route for triggering chromatin remodelling. PMID:23213436

  13. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit.

    PubMed

    Blobel, Gerd A; Kadauke, Stephan; Wang, Eric; Lau, Alan W; Zuber, Johannes; Chou, Margaret M; Vakoc, Christopher R

    2009-12-25

    Mixed lineage leukemia (MLL) and its metazoan Trithorax orthologs have been linked with the epigenetic maintenance of transcriptional activity. To identify mechanisms by which MLL perpetuates active transcription in dividing cells, we investigated its role during M phase of the cell cycle. Unlike other chromatin-modifying enzymes examined, we found that MLL associates with gene promoters packaged within condensed mitotic chromosomes. Genome-wide location analysis identified a globally rearranged pattern of MLL occupancy during mitosis in a manner favoring genes that were highly transcribed during interphase. Knockdown experiments revealed that MLL retention at gene promoters during mitosis accelerates transcription reactivation following mitotic exit. MLL tethers Menin, RbBP5, and ASH2L to its occupied sites during mitosis, but is dispensable for preserving histone H3K4 methylation. These findings implicate mitotic bookmarking as a component of Trithorax-based gene regulation, which may facilitate inheritance of active gene expression states during cell division. PMID:20064463

  14. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage.

    PubMed

    Ortega-Atienza, Sara; Wong, Victor C; DeLoughery, Zachary; Luczak, Michal W; Zhitkovich, Anatoly

    2016-01-01

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA.

  15. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage

    PubMed Central

    Ortega-Atienza, Sara; Wong, Victor C.; DeLoughery, Zachary; Luczak, Michal W.; Zhitkovich, Anatoly

    2016-01-01

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA. PMID:26420831

  16. Chromatin and the genome integrity network

    PubMed Central

    Papamichos-Chronakis, Manolis; Peterson, Craig L.

    2013-01-01

    The maintenance of genome integrity is essential for organism survival and for the inheritance of traits to offspring. Genomic instability is caused by DNA damage, aberrant DNA replication or uncoordinated cell division, which can lead to chromosomal aberrations and gene mutations. Recently, chromatin regulators that shape the epigenetic landscape have emerged as potential gatekeepers and signalling coordinators for the maintenance of genome integrity. Here, we review chromatin functions during the two major pathways that control genome integrity: namely, repair of DNA damage and DNA replication. We also discuss recent evidence that suggests a novel role for chromatin-remodelling factors in chromosome segregation and in the prevention of aneuploidy. PMID:23247436

  17. Chromatin Fiber Dynamics under Tension and Torsion

    PubMed Central

    Lavelle, Christophe; Victor, Jean-Marc; Zlatanova, Jordanka

    2010-01-01

    Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism. PMID:20480035

  18. Unraveling chromatin structure using magnetic tweezers

    NASA Astrophysics Data System (ADS)

    van Noort, John

    2010-03-01

    The compact, yet dynamic organization of chromatin plays an essential role in regulating gene expression. Although the static structure of chromatin fibers has been studied extensively, the controversy about the higher order folding remains. The compaction of eukaryotic DNA into chromatin has been implicated in the regulation of all DNA processes. To understand the relation between gene regulation and chromatin structure it is essential to uncover the mechanisms by which chromatin fibers fold and unfold. We used magnetic tweezers to probe the mechanical properties of individual nucleosomes and chromatin fibers consisting of a single, well-defined array of 25 nucleosomes. From these studies five major features appeared upon forced extension of chromatin fibers: the elastic stretching of chromatin's higher order structure, the breaking of internucleosomal contacts, unwrapping of the first turn of DNA, unwrapping of the second turn of DNA, and the dissociation of histone octamers. These events occur sequentially at the increasing force. Neighboring nucleosomes stabilize DNA folding into a nucleosome relative to isolated nucleosomes. When an array of nucleosomes is folded into a 30 nm fiber, representing the first level of chromatin condensation, the fiber stretched like a Hookian spring at forces up to 4 pN. Together with a nucleosome-nucleosome stacking energy of 14 kT this points to a solenoid as the underlying topology of the 30 nm fiber. Surprisingly, linker histones do not affect the length or stiffness of the fibers, but stabilize fiber folding up to forces of 7 pN. The stiffness of the folded chromatin fiber points at histone tails that mediate nucleosome stacking. Fibers with a nucleosome repeat length of 167 bp instead of 197 bp are significantly stiffer, consistent with a two-start helical arrangement. The extensive thermal breathing of the chromatin fiber that is a consequence of the observed high compliance provides a structural basis for understanding the

  19. Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells

    PubMed Central

    Jullien, Denis; Vignard, Julien; Fedor, Yoann; Béry, Nicolas; Olichon, Aurélien; Crozatier, Michèle; Erard, Monique; Cassard, Hervé; Ducommun, Bernard; Salles, Bernard

    2016-01-01

    ABSTRACT Chromatin function is involved in many cellular processes, its visualization or modification being essential in many developmental or cellular studies. Here, we present the characterization of chromatibody, a chromatin-binding single-domain, and explore its use in living cells. This non-intercalating tool specifically binds the heterodimer of H2A–H2B histones and displays a versatile reactivity, specifically labeling chromatin from yeast to mammals. We show that this genetically encoded probe, when fused to fluorescent proteins, allows non-invasive real-time chromatin imaging. Chromatibody is a dynamic chromatin probe that can be modulated. Finally, chromatibody is an efficient tool to target an enzymatic activity to the nucleosome, such as the DNA damage-dependent H2A ubiquitylation, which can modify this epigenetic mark at the scale of the genome and result in DNA damage signaling and repair defects. Taken together, these results identify chromatibody as a universal non-invasive tool for either in vivo chromatin imaging or to manipulate the chromatin landscape. PMID:27206857

  20. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling

    PubMed Central

    Francia, Sofia

    2015-01-01

    Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair. PMID:26617633

  1. How the cell cycle impacts chromatin architecture and influences cell fate

    PubMed Central

    Ma, Yiqin; Kanakousaki, Kiriaki; Buttitta, Laura

    2015-01-01

    Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming. PMID:25691891

  2. Modulation of the chromatin phosphoproteome by the Haspin protein kinase.

    PubMed

    Maiolica, Alessio; de Medina-Redondo, Maria; Schoof, Erwin M; Chaikuad, Apirat; Villa, Fabrizio; Gatti, Marco; Jeganathan, Siva; Lou, Hua Jane; Novy, Karel; Hauri, Simon; Toprak, Umut H; Herzog, Franz; Meraldi, Patrick; Penengo, Lorenza; Turk, Benjamin E; Knapp, Stefan; Linding, Rune; Aebersold, Ruedi

    2014-07-01

    Recent discoveries have highlighted the importance of Haspin kinase activity for the correct positioning of the kinase Aurora B at the centromere. Haspin phosphorylates Thr(3) of the histone H3 (H3), which provides a signal for Aurora B to localize to the centromere of mitotic chromosomes. To date, histone H3 is the only confirmed Haspin substrate. We used a combination of biochemical, pharmacological, and mass spectrometric approaches to study the consequences of Haspin inhibition in mitotic cells. We quantified 3964 phosphorylation sites on chromatin-associated proteins and identified a Haspin protein-protein interaction network. We determined the Haspin consensus motif and the co-crystal structure of the kinase with the histone H3 tail. The structure revealed a unique bent substrate binding mode positioning the histone H3 residues Arg(2) and Lys(4) adjacent to the Haspin phosphorylated threonine into acidic binding pockets. This unique conformation of the kinase-substrate complex explains the reported modulation of Haspin activity by methylation of Lys(4) of the histone H3. In addition, the identification of the structural basis of substrate recognition and the amino acid sequence preferences of Haspin aided the identification of novel candidate Haspin substrates. In particular, we validated the phosphorylation of Ser(137) of the histone variant macroH2A as a target of Haspin kinase activity. MacroH2A Ser(137) resides in a basic stretch of about 40 amino acids that is required to stabilize extranucleosomal DNA, suggesting that phosphorylation of Ser(137) might regulate the interactions of macroH2A and DNA. Overall, our data suggest that Haspin activity affects the phosphorylation state of proteins involved in gene expression regulation and splicing.

  3. A Poised Chromatin Platform for TGF-[beta] Access to Master Regulators

    SciTech Connect

    Xi, Qiaoran; Wang, Zhanxin; Zaromytidou, Alexia-Ileana; Zhang, Xiang H.-F.; Chow-Tsang, Lai-Fong; Liu, Jing X.; Kim, Hyesoo; Barlas, Afsar; Manova-Todorova, Katia; Kaartinen, Vesa; Studer, Lorenz; Mark, Willie; Patel, Dinshaw J.; Massagué, Joan

    2012-02-07

    Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-{beta} signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.

  4. Hypoxia-induced and stress-specific changes in chromatin structure and function.

    PubMed

    Johnson, Amber Buescher; Barton, Michelle Craig

    2007-05-01

    Cellular adaptation to stress relies on specific, regulated responses to evoke changes in gene expression. Stresses such as hypoxia, heat shock, oxidative stress and DNA-damage activate signaling cascades that ultimately lead to either induction or repression of stress-responsive genes. In this review, we concentrate on the mechanisms by which stress-induced signaling promotes alterations in chromatin structure, whether the read-out is activation or repression of transcription. Specific alterations in chromatin are highly regulated and dictated by the type of imposed stress. Our primary focus is on the types of chromatin alterations that occur under hypoxic conditions, which exist within a majority of tumors, and to compare these to changes in chromatin structure that occur in response to a wide variety of cellular stresses.

  5. Hypoxia-induced and stress-specific changes in chromatin structure and function

    PubMed Central

    Johnson, Amber Buescher; Barton, Michelle Craig

    2007-01-01

    Cellular adaptation to stress relies on specific, regulated responses to evoke changes in gene expression. Stresses such as hypoxia, heat shock, oxidative stress and DNA-damage activate signaling cascades that ultimately lead to either induction or repression of stress-responsive genes. In this review, we concentrate on the mechanisms by which stress-induced signaling promotes alterations in chromatin structure, whether the read-out is activation or repression of transcription. Specific alterations in chromatin are highly regulated and dictated by the type of imposed stress. Our primary focus is on the types of chromatin alterations that occur under hypoxic conditions, which exist within a majority of tumors, and to compare these to changes in chromatin structure that occur in response to a wide variety of cellular stresses. PMID:17292925

  6. Regulation of oncogene-induced cell cycle exit and senescence by chromatin modifiers

    PubMed Central

    David, Gregory

    2012-01-01

    Oncogene activation leads to dramatic changes in numerous biological pathways controlling cellular division, and results in the initiation of a transcriptional program that promotes transformation. Conversely, it also triggers an irreversible cell cycle exit called cellular senescence, which allows the organism to counteract the potentially detrimental uncontrolled proliferation of damaged cells. Therefore, a tight transcriptional control is required at the onset of oncogenic signal, coordinating both positive and negative regulation of gene expression. Not surprisingly, numerous chromatin modifiers contribute to the cellular response to oncogenic stress. While these chromatin modifiers were initially thought of as mere mediators of the cellular response to oncogenic stress, recent studies have uncovered a direct and specific regulation of chromatin modifiers by oncogenic signals. We review here the diverse functions of chromatin modifiers in the cellular response to oncogenic stress, and discuss the implications of these findings on the regulation of cell cycle progression and proliferation by activated oncogenes. PMID:22825329

  7. Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation.

    PubMed

    Karbassi, Elaheh; Monte, Emma; Chapski, Douglas J; Lopez, Rachel; Rosa Garrido, Manuel; Kim, Joseph; Wisniewski, Nicholas; Rau, Christoph D; Wang, Jessica J; Weiss, James N; Wang, Yibin; Lusis, Aldons J; Vondriska, Thomas M

    2016-08-01

    Expression of a cohort of disease-associated genes, some of which are active in fetal myocardium, is considered a hallmark of transcriptional change in cardiac hypertrophy models. How this transcriptome remodeling is affected by the common genetic variation present in populations is unknown. We examined the role of genetics, as well as contributions of chromatin proteins, to regulate cardiac gene expression and heart failure susceptibility. We examined gene expression in 84 genetically distinct inbred strains of control and isoproterenol-treated mice, which exhibited varying degrees of disease. Unexpectedly, fetal gene expression was not correlated with hypertrophic phenotypes. Unbiased modeling identified 74 predictors of heart mass after isoproterenol-induced stress, but these predictors did not enrich for any cardiac pathways. However, expanded analysis of fetal genes and chromatin remodelers as groups correlated significantly with individual systemic phenotypes. Yet, cardiac transcription factors and genes shown by gain-/loss-of-function studies to contribute to hypertrophic signaling did not correlate with cardiac mass or function in disease. Because the relationship between gene expression and phenotype was strain specific, we examined genetic contribution to expression. Strikingly, strains with similar transcriptomes in the basal heart did not cluster together in the isoproterenol state, providing comprehensive evidence that there are different genetic contributors to physiological and pathological gene expression. Furthermore, the divergence in transcriptome similarity versus genetic similarity between strains is organ specific and genome-wide, suggesting chromatin is a critical buffer between genetics and gene expression. PMID:27287924

  8. Balancing acts of SRI and an auto-inhibitory domain specify Set2 function at transcribed chromatin

    PubMed Central

    Wang, Yi; Niu, Yanling; Li, Bing

    2015-01-01

    Set2-mediated H3K36 methylation ubiquitously functions in coding regions in all eukaryotes. It has been linked to the regulation of acetylation states, histone exchange, alternative splicing, DNA repair and recombination. Set2 is recruited to transcribed chromatin through its SRI domain's direct association with phosphorylated Pol II. However, regulatory mechanisms for histone modifying enzymes like Set2 that travel with elongating Pol II remain largely unknown beyond their initial recruitment events. Here, by fusing Set2 to RNA Pol II, we found that the SRI domain can also recognize linker DNA of chromatin, thereby controlling Set2 substrate specificity. We also discovered that an auto-inhibitory domain (AID) of Set2 primarily restricts Set2 activity to transcribed chromatin and fine-tunes several functions of SRI. Finally, we demonstrated that AID mutations caused hyperactive Set2 in vivo and displayed a synthetic interaction with the histone chaperone FACT. Our data suggest that Set2 is intrinsically regulated through multiple mechanisms and emphasize the importance of a precise temporal control of H3K36 methylation during the dynamic transcription elongation process. PMID:25925577

  9. Expanding the roles of chromatin insulators in nuclear architecture, chromatin organization and genome function.

    PubMed

    Schoborg, Todd; Labrador, Mariano

    2014-11-01

    Of the numerous classes of elements involved in modulating eukaryotic chromosome structure and function, chromatin insulators arguably remain the most poorly understood in their contribution to these processes in vivo. Indeed, our view of chromatin insulators has evolved dramatically since their chromatin boundary and enhancer blocking properties were elucidated roughly a quarter of a century ago as a result of recent genome-wide, high-throughput methods better suited to probing the role of these elements in their native genomic contexts. The overall theme that has emerged from these studies is that chromatin insulators function as general facilitators of higher-order chromatin loop structures that exert both physical and functional constraints on the genome. In this review, we summarize the result of recent work that supports this idea as well as a number of other studies linking these elements to a diverse array of nuclear processes, suggesting that chromatin insulators exert master control over genome organization and behavior.

  10. Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population

    PubMed Central

    Singh, Virendra; Singh, Laishram C; Singh, Avninder P; Sharma, Jagannath; Borthakur, Bibhuti B; Debnath, Arundhati; Rai, Avdhesh K; Phukan, Rup K; Mahanta, Jagadish; Kataki, Amal C; Kapur, Sujala; Saxena, Sunita

    2015-01-01

    Esophageal cancer incidence is reported in high frequency in northeast India. The etiology is different from other population at India due to wide variations in dietary habits or nutritional factors, tobacco/betel quid chewing and alcohol habits. Since DNA methylation, histone modification and miRNA-mediated epigenetic processes alter the gene expression, the involvement of these processes might be useful to find out epigenetic markers of esophageal cancer risk in northeast Indian population. The present investigation was aimed to carryout differential expression profiling of chromatin modification enzymes in tumor and normal tissue collected from esophageal squamous cell carcinoma (ESCC) patients. Differential mRNA expression profiling and their validation was done by quantitative real time PCR and tissue microarray respectively. Univariate and multiple logistic regression analysis were used to analyze the epidemiological data. mRNA expression data was analyzed by Student t-test. Fisher exact test was used for tissue microarray data analysis. Higher expression of enzymes regulating methylation (DOT1L and PRMT1) and acetylation (KAT7, KAT8, KAT2A and KAT6A) of histone was found associated with ESCC risk. Tissue microarray done in independent cohort of 75 patients revealed higher nuclear protein expression of KAT8 and PRMT1 in tumor similar to mRNA expression. Expression status of PRMT1 and KAT8 was found declined as we move from low grade to high grade tumor. Betel nut chewing, alcohol drinking and dried fish intake were significantly associated with increased risk of esophageal cancer among the study subject. Study suggests the association of PRMT1 and KAT8 with esophageal cancer risk and its involvement in the transition process of low to high grade tumor formation. The study exposes the differential status of chromatin modification enzymes between tumor and normal tissue and points out that relaxed state of chromatin facilitates more transcriptionally active

  11. Chromatin Domains: The Unit of Chromosome Organization.

    PubMed

    Dixon, Jesse R; Gorkin, David U; Ren, Bing

    2016-06-01

    How eukaryotic chromosomes fold inside the nucleus is an age-old question that remains unanswered today. Early biochemical and microscopic studies revealed the existence of chromatin domains and loops as a pervasive feature of interphase chromosomes, but the biological implications of such organizational features were obscure. Genome-wide analysis of pair-wise chromatin interactions using chromatin conformation capture (3C)-based techniques has shed new light on the organization of chromosomes in interphase nuclei. Particularly, the finding of cell-type invariant, evolutionarily conserved topologically associating domains (TADs) in a broad spectrum of cell types has provided a new molecular framework for the study of animal development and human diseases. Here, we review recent progress in characterization of such chromatin domains and delineation of mechanisms of their formation in animal cells. PMID:27259200

  12. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  13. State-Level Activities: A Plan for Action.

    ERIC Educational Resources Information Center

    Lamborn, Robert L.

    A variety of specific activities that have been successfully undertaken by the Council for American Private Education (CAPE) are suggested for state members. The activities are related to developing private school communications within states and developing working relationships with local, metropolitan, and state governments and their agencies.…

  14. Non-coding RNAs: novel players in chromatin-regulation during viral latency.

    PubMed

    Eilebrecht, Sebastian; Schwartz, Christian; Rohr, Olivier

    2013-08-01

    Chromatin structure plays an essential role during gene expression regulation not only in the case of the host cellular genome, but also during the viral life cycle. Epigenetic chromatin marks thereby define, whether a gene promoter is accessible for the transcription machinery or whether a repressive heterochromatin state is established. The heterochromatin-mediated repression of lytic viral genes results in viral latency, enabling the virus to persist dormant without being recognized by the host immune system, but keeping the potential for reactivation. Arising new systems biology approaches are starting to uncover an unexpected multiplicity and variety of non-coding (nc)RNAs playing important roles during chromatin structure control, likely constituting a novel layer in epigenetic regulation. In this review we give an overview of chromatin-regulatory viral and host cellular ncRNAs and their links to viral latency. PMID:23660570

  15. Dynamic modulation of HSV chromatin drives initiation of infection and provides targets for epigenetic therapies

    PubMed Central

    Kristie, Thomas M.

    2015-01-01

    Upon infection, the genomes of herpesviruses undergo a striking transition from a non-nucleosomal structure to a chromatin structure. The rapid assembly and modulation of nucleosomes during the initial stage of infection results in an overlay of complex regulation that requires interactions of a plethora of chromatin modulation components. For herpes simplex virus, the initial chromatin dynamic is dependent on viral and host cell transcription factors and coactivators that mediate the balance between heterochromatic suppression of the viral genome and the euchromatin transition that allows and promotes the expression of viral immediate early genes. Strikingly similar to lytic infection, in sensory neurons this dynamic transition between heterochromatin and euchromatin governs the establishment, maintenance, and reactivation from the latent state. Chromatin dynamics in both the lytic infection and latency-reactivation cycles provides opportunities to shift the balance using small molecule epigenetic modulators to suppress viral infection, shedding, and reactivation from latency. PMID:25702087

  16. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    PubMed Central

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  17. Discover regulatory DNA elements using chromatin signatures and artificial neural network

    PubMed Central

    Firpi, Hiram A.; Ucar, Duygu; Tan, Kai

    2010-01-01

    Motivation: Recent large-scale chromatin states mapping efforts have revealed characteristic chromatin modification signatures for various types of functional DNA elements. Given the important influence of chromatin states on gene regulation and the rapid accumulation of genome-wide chromatin modification data, there is a pressing need for computational methods to analyze these data in order to identify functional DNA elements. However, existing computational tools do not exploit data transformation and feature extraction as a means to achieve a more accurate prediction. Results: We introduce a new computational framework for identifying functional DNA elements using chromatin signatures. The framework consists of a data transformation and a feature extraction step followed by a classification step using time-delay neural network. We implemented our framework in a software tool CSI-ANN (chromatin signature identification by artificial neural network). When applied to predict transcriptional enhancers in the ENCODE region, CSI-ANN achieved a 65.5% sensitivity and 66.3% positive predictive value, a 5.9% and 11.6% improvement, respectively, over the previously best approach. Availability and Implementation: CSI-ANN is implemented in Matlab. The source code is freely available at http://www.medicine.uiowa.edu/Labs/tan/CSIANNsoft.zip Contact: kai-tan@uiowa.edu Supplementary Information: Supplementary Materials are available at Bioinformatics online. PMID:20453004

  18. Validity Evidence for the State Mindfulness Scale for Physical Activity

    ERIC Educational Resources Information Center

    Cox, Anne E.; Ullrich-French, Sarah; French, Brian F.

    2016-01-01

    Being attentive to and aware of one's experiences in the present moment with qualities of acceptance and openness reflects the state of mindfulness. Positive associations exist between state mindfulness and state autonomous motivation for everyday activities. Though this suggests that state mindfulness links with adaptive motivational experiences,…

  19. Early Aberrations in Chromatin Dynamics in Embryos Produced Under In Vitro Conditions

    PubMed Central

    Deshmukh, Rahul S.; Strejcek, Frantisek; Vejlsted, Morten; Lucas-Hahn, Andrea; Petersen, Bjorn; Li, Juan; Callesen, Henrik; Niemann, Heiner; Hyttel, Poul

    2012-01-01

    Abstract In vitro production of porcine embryos by means of in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT) is limited by great inefficienciy. The present study investigated chromatin and nucleolar dynamics in porcine embryos developed in vivo (IV) and compared this physiological standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin–nuclear envelope interactions at the two-cell stage, delayed chromatin decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar precursors, indicating imperfections in global chromatin remodeling after fertilization/activation. Porcine IV-produced zygotes and embryos display a well-synchronized pattern of chromatin dynamics compatible with genome activation and regular nucleolar formation at the four-cell stage. Production of porcine embryos under in vitro conditions by IVF, PA, or SCNT is associated with altered chromatin remodeling, delayed nucleolar formation, and poorly defined lineage segregation at the blastocyst stage, which in turn may impair their developmental capacity. PMID:22468997

  20. Stacking the DEK: from chromatin topology to cancer stem cells.

    PubMed

    Privette Vinnedge, Lisa M; Kappes, Ferdinand; Nassar, Nicolas; Wells, Susanne I

    2013-01-01

    Stem cells are essential for development and tissue maintenance and display molecular markers and functions distinct from those of differentiated cell types in a given tissue. Malignant cells that exhibit stem cell-like activities have been detected in many types of cancers and have been implicated in cancer recurrence and drug resistance. Normal stem cells and cancer stem cells have striking commonalities, including shared cell surface markers and signal transduction pathways responsible for regulating quiescence vs. proliferation, self-renewal, pluripotency and differentiation. As the search continues for markers that distinguish between stem cells, progenitor cells and cancer stem cells, growing evidence suggests that a unique chromatin-associated protein called DEK may confer stem cell-like qualities. Here, we briefly describe current knowledge regarding stem and progenitor cells. We then focus on new findings that implicate DEK as a regulator of stem and progenitor cell qualities, potentially through its unusual functions in the regulation of local or global chromatin organization.

  1. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger

    SciTech Connect

    Wang, Gang G.; Song, Jikui; Wang, Zhanxin; Dormann, Holger L.; Casadio, Fabio; Li, Haitao; Luo, Jun-Li; Patel, Dinshaw J.; Allis, C. David

    2009-07-21

    Histone H3 lysine4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.

  2. Chromatin remodeling of human subtelomeres and TERRA promoters upon cellular senescence: commonalities and differences between chromosomes.

    PubMed

    Thijssen, Peter E; Tobi, Elmar W; Balog, Judit; Schouten, Suzanne G; Kremer, Dennis; El Bouazzaoui, Fatiha; Henneman, Peter; Putter, Hein; Eline Slagboom, P; Heijmans, Bastiaan T; van der Maarel, Silvère M

    2013-05-01

    Subtelomeres are patchworks of evolutionary conserved sequence blocks and harbor the transcriptional start sites for telomere repeat containing RNAs (TERRA). Recent studies suggest that the interplay between telomeres and subtelomeric chromatin is required for maintaining telomere function. To further characterize chromatin remodeling of subtelomeres in relation to telomere shortening and cellular senescence, we systematically quantified histone modifications and DNA methylation at the subtelomeres of chromosomes 7q and 11q in primary human WI-38 fibroblasts. Upon senescence, both subtelomeres were characterized by a decrease in markers of constitutive heterochromatin, suggesting relative chromatin relaxation. However, we did not find increased levels of markers of euchromatin or derepression of the 7q VIPR2 gene. The repressed state of the subtelomeres was maintained upon senescence, which could be attributed to a rise in levels of facultative heterochromatin markers at both subtelomeres. While senescence-induced subtelomeric chromatin remodeling was similar for both chromosomes, chromatin remodeling at TERRA promoters displayed chromosome-specific patterns. At the 7q TERRA promoter, chromatin structure was co-regulated with the more proximal subtelomere. In contrast, the 11q TERRA promoter, which was previously shown to be bound by CCCTC-binding factor CTCF, displayed lower levels of markers of constitutive heterochromatin that did not change upon senescence, whereas levels of markers of facultative heterochromatin decreased upon senescence. In line with the chromatin state data, transcription of 11q TERRA but not 7q TERRA was detected. Our study provides a detailed description of human subtelomeric chromatin dynamics and shows distinct regulation of the TERRA promoters of 7q and 11q upon cellular senescence.

  3. Human tRNA genes function as chromatin insulators.

    PubMed

    Raab, Jesse R; Chiu, Jonathan; Zhu, Jingchun; Katzman, Sol; Kurukuti, Sreenivasulu; Wade, Paul A; Haussler, David; Kamakaka, Rohinton T

    2012-01-18

    Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.

  4. The insulation of genes from external enhancers and silencing chromatin

    PubMed Central

    Burgess-Beusse, Bonnie; Farrell, Catherine; Gaszner, Miklos; Litt, Michael; Mutskov, Vesco; Recillas-Targa, Felix; Simpson, Melanie; West, Adam; Felsenfeld, Gary

    2002-01-01

    Insulators are DNA sequence elements that can serve in some cases as barriers to protect a gene against the encroachment of adjacent inactive condensed chromatin. Some insulators also can act as blocking elements to protect against the activating influence of distal enhancers associated with other genes. Although most of the insulators identified so far derive from Drosophila, they also are found in vertebrates. An insulator at the 5′ end of the chicken β-globin locus marks a boundary between an open chromatin domain and a region of constitutively condensed chromatin. Detailed analysis of this element shows that it possesses both enhancer blocking activity and the ability to screen reporter genes against position effects. Enhancer blocking is associated with binding of the protein CTCF; sites that bind CTCF are found at other critical points in the genome. Protection against position effects involves other properties that appear to be associated with control of histone acetylation and methylation. Insulators thus are complex elements that can help to preserve the independent function of genes embedded in a genome in which they are surrounded by regulatory signals they must ignore. PMID:12154228

  5. Sperm chromatin integrity of bucks transgenic for the WAP bGH gene.

    PubMed

    Gogol, P; Bochenek, M; Smorag, Z

    2000-12-01

    of spermatozoa with damaged chromatin structure. This suggests that the mere presence of the introduced gene construct does not lead to any abnormalities in DNA and chromatin proteins interaction. The possible chromatin damages in transgenic animals should be attributed to the activity of the introduced gene. The relationships between chromatin structure and fertility are only significant for sperm from NTG bucks. PMID:11078972

  6. Characterization of brain cell nuclei with decondensed chromatin.

    PubMed

    Yu, Ping; McKinney, Elizabeth C; Kandasamy, Muthugapatti M; Albert, Alexandria L; Meagher, Richard B

    2015-07-01

    Although multipotent cell types have enlarged nuclei with decondensed chromatin, this property has not been exploited to enhance the characterization of neural progenitor cell (NPC) populations in the brain. We found that mouse brain cell nuclei that expressed exceptionally high levels of the pan neuronal marker NeuN/FOX3 (NeuN-High) had decondensed chromatin relative to most NeuN-Low or NeuN-Neg (negative) nuclei. Purified NeuN-High nuclei expressed significantly higher levels of transcripts encoding markers of neurogenesis, neuroplasticity, and learning and memory (ARC, BDNF, ERG1, HOMER1, NFL/NEF1, SYT1), subunits of chromatin modifying machinery (SIRT1, HDAC1, HDAC2, HDAC11, KAT2B, KAT3A, KAT3B, KAT5, DMNT1, DNMT3A, Gadd45a, Gadd45b) and markers of NPC and cell cycle activity (BRN2, FOXG1, KLF4, c-MYC, OCT4, PCNA, SHH, SOX2) relative to neuronal NeuN-Low or to mostly non-neuronal NeuN-Neg nuclei. NeuN-High nuclei expressed higher levels of HDAC1, 2, 4, and 5 proteins. The cortex, hippocampus, hypothalamus, thalamus, and nucleus accumbens contained high percentages of large decondensed NeuN-High nuclei, while the cerebellum, and pons contained very few. NeuN-High nuclei have the properties consistent with their being derived from extremely active neurons with elevated rates of chromatin modification and/or NPC-like cells with multilineage developmental potential. The further analysis of decondensed neural cell nuclei should provide novel insights into neurobiology and neurodegenerative disease.

  7. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.

    PubMed

    Comoglio, Federico; Schlumpf, Tommy; Schmid, Virginia; Rohs, Remo; Beisel, Christian; Paro, Renato

    2015-05-01

    At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  8. Chromatin Structure and Dynamics in Hot Environments: Architectural Proteins and DNA Topoisomerases of Thermophilic Archaea

    PubMed Central

    Visone, Valeria; Vettone, Antonella; Serpe, Mario; Valenti, Anna; Perugino, Giuseppe; Rossi, Mosè; Ciaramella, Maria

    2014-01-01

    In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity. PMID:25257534

  9. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    PubMed

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  10. Application of the Protein Semisynthesis Strategy to the Generation of Modified Chromatin

    PubMed Central

    Holt, Matthew; Muir, Tom

    2016-01-01

    Histone proteins are subject to a host of posttranslational modifications (PTMs) that modulate chromatin structure and function. Such control is achieved by the direct alteration of the intrinsic physical properties of the chromatin fiber or by regulating the recruitment and activity of a host of trans-acting nuclear factors. The sheer number of histone PTMs presents a formidable barrier to understanding the molecular mechanisms at the heart of epigenetic regulation of eukaryotic genomes. One aspect of this multifarious problem, namely how to access homogeneously modified chromatin for biochemical studies, is well suited to the sensibilities of the organic chemist. Indeed, recent years have witnessed a critical role for synthetic protein chemistry methods in generating the raw materials needed for studying how histone PTMs regulate chromatin biochemistry. This review focuses on what is arguably the most powerful, and widely employed, of these chemical strategies, namely histone semisynthesis via the chemical ligation of peptide fragments. PMID:25784050

  11. Transcription factors, chromatin proteins and the diversification of Hemiptera.

    PubMed

    Vidal, Newton M; Grazziotin, Ana Laura; Iyer, Lakshminarayan M; Aravind, L; Venancio, Thiago M

    2016-02-01

    Availability of complete genomes provides a means to explore the evolution of enormous developmental, morphological, and behavioral diversity among insects. Hemipterans in particular show great diversity of both morphology and life history within a single order. To better understand the role of transcription regulators in the diversification of hemipterans, using sequence profile searches and hidden Markov models we computationally analyzed transcription factors (TFs) and chromatin proteins (CPs) in the recently available Rhodnius prolixus genome along with 13 other insect and 4 non-insect arthropod genomes. We generated a comprehensive collection of TFs and CPs across arthropods including 303 distinct types of domains in TFs and 139 in CPs. This, along with the availability of two hemipteran genomes, R. prolixus and Acyrthosiphon pisum, helped us identify possible determinants for their dramatic morphological and behavioral divergence. We identified five domain families (i.e. Pipsqueak, SAZ/MADF, THAP, FLYWCH and BED finger) as having undergone differential patterns of lineage-specific expansion in hemipterans or within hemipterans relative to other insects. These expansions appear to be at least in part driven by transposons, with the DNA-binding domains of transposases having provided the raw material for emergence of new TFs. Our analysis suggests that while R. prolixus probably retains a state closer to the ancestral hemipteran, A. pisum represents a highly derived state, with the emergence of asexual reproduction potentially favoring genome duplication and transposon expansion. Both hemipterans are predicted to possess active DNA methylation systems. However, in the course of their divergence, aphids seem to have expanded the ancestral hemipteran DNA methylation along with a distinctive linkage to the histone methylation system, as suggested by expansion of SET domain methylases, including those fused to methylated CpG recognition domains. Thus

  12. A Nucleotide-Driven Switch Regulates Flanking DNA Length Sensing by a Dimeric Chromatin Remodeler

    PubMed Central

    Leonard, John D.; Narlikar, Geeta J.

    2015-01-01

    SUMMARY The ATP-dependent chromatin assembly factor (ACF) is a dimeric motor that spaces nucleosomes to promote formation of silent chromatin. Two copies of its ATPase subunit SNF2h bind opposite sides of a nucleosome, but how these protomers avoid competition is unknown. SNF2h senses the length of DNA flanking a nucleosome via its HAND-SANT-SLIDE (HSS) domain, yet it is unclear how this interaction enhances remodeling. Using covalently connected SNF2h dimers we show that dimerization accelerates remodeling and that the HSS contributes to communication between protomers. We further identify a nucleotide-dependent conformational change in SNF2h. In one conformation the HSS binds flanking DNA, and in another conformation the HSS engages the nucleosome core. Based on these results, we propose a model in which DNA length sensing and translocation are performed by two distinct conformational states of SNF2h. Such separation of function suggests that these activities could be independently regulated to affect remodeling outcomes. PMID:25684208

  13. Centromeric chromatin and its dynamics in plants.

    PubMed

    Lermontova, Inna; Sandmann, Michael; Mascher, Martin; Schmit, Anne-Catherine; Chabouté, Marie-Edith

    2015-07-01

    Centromeres are chromatin structures that are required for proper separation of chromosomes during mitosis and meiosis. The centromere is composed of centromeric DNA, often enriched in satellite repeats, and kinetochore complex proteins. To date, over 100 kinetochore components have been identified in various eukaryotes. Kinetochore assembly begins with incorporation of centromeric histone H3 variant CENH3 into centromeric nucleosomes. Protein components of the kinetochore are either present at centromeres throughout the cell cycle or localize to centromeres transiently, prior to attachment of microtubules to each kinetochore in prometaphase of mitotic cells. This is the case for the spindle assembly checkpoint (SAC) proteins in animal cells. The SAC complex ensures equal separation of chromosomes between daughter nuclei by preventing anaphase onset before metaphase is complete, i.e. the sister kinetochores of all chromosomes are attached to spindle fibers from opposite poles. In this review, we focus on the organization of centromeric DNA and the kinetochore assembly in plants. We summarize recent advances regarding loading of CENH3 into the centromere, and the subcellular localization and protein-protein interactions of Arabidopsis thaliana proteins involved in kinetochore assembly and function. We describe the transcriptional activity of corresponding genes based on in silico analysis of their promoters and cell cycle-dependent expression. Additionally, barley homologs of all selected A. thaliana proteins have been identified in silico, and their sequences and domain structures are presented.

  14. Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability

    PubMed Central

    Husain, Afzal; Begum, Nasim A.; Taniguchi, Takako; Taniguchi, Hisaaki; Kobayashi, Maki; Honjo, Tasuku

    2016-01-01

    Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage. PMID:26842758

  15. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells

    PubMed Central

    Mardaryev, Andrei N.; Gdula, Michal R.; Yarker, Joanne L.; Emelianov, Vladimir N.; Poterlowicz, Krzysztof; Sharov, Andrey A.; Sharova, Tatyana Y.; Scarpa, Julie A.; Chambon, Pierre; Botchkarev, Vladimir A.; Fessing, Michael Y.

    2014-01-01

    Chromatin structural states and their remodelling, including higher-order chromatin folding and three-dimensional (3D) genome organisation, play an important role in the control of gene expression. The role of 3D genome organisation in the control and execution of lineage-specific transcription programmes during the development and differentiation of multipotent stem cells into specialised cell types remains poorly understood. Here, we show that substantial remodelling of the higher-order chromatin structure of the epidermal differentiation complex (EDC), a keratinocyte lineage-specific gene locus on mouse chromosome 3, occurs during epidermal morphogenesis. During epidermal development, the locus relocates away from the nuclear periphery towards the nuclear interior into a compartment enriched in SC35-positive nuclear speckles. Relocation of the EDC locus occurs prior to the full activation of EDC genes involved in controlling terminal keratinocyte differentiation and is a lineage-specific, developmentally regulated event controlled by transcription factor p63, a master regulator of epidermal development. We also show that, in epidermal progenitor cells, p63 directly regulates the expression of the ATP-dependent chromatin remodeller Brg1, which binds to distinct domains within the EDC and is required for relocation of the EDC towards the nuclear interior. Furthermore, Brg1 also regulates gene expression within the EDC locus during epidermal morphogenesis. Thus, p63 and its direct target Brg1 play an essential role in remodelling the higher-order chromatin structure of the EDC and in the specific positioning of this locus within the landscape of the 3D nuclear space, as required for the efficient expression of EDC genes in epidermal progenitor cells during skin development. PMID:24346698

  16. The accessible chromatin landscape of the human genome

    PubMed Central

    Thurman, Robert E.; Rynes, Eric; Humbert, Richard; Vierstra, Jeff; Maurano, Matthew T.; Haugen, Eric; Sheffield, Nathan C.; Stergachis, Andrew B.; Wang, Hao; Vernot, Benjamin; Garg, Kavita; Sandstrom, Richard; Bates, Daniel; Canfield, Theresa K.; Diegel, Morgan; Dunn, Douglas; Ebersol, Abigail K.; Frum, Tristan; Giste, Erika; Harding, Lisa; Johnson, Audra K.; Johnson, Ericka M.; Kutyavin, Tanya; Lajoie, Bryan; Lee, Bum-Kyu; Lee, Kristen; London, Darin; Lotakis, Dimitra; Neph, Shane; Neri, Fidencio; Nguyen, Eric D.; Reynolds, Alex P.; Roach, Vaughn; Safi, Alexias; Sanchez, Minerva E.; Sanyal, Amartya; Shafer, Anthony; Simon, Jeremy M.; Song, Lingyun; Vong, Shinny; Weaver, Molly; Zhang, Zhancheng; Zhang, Zhuzhu; Lenhard, Boris; Tewari, Muneesh; Dorschner, Michael O.; Hansen, R. Scott; Navas, Patrick A.; Stamatoyannopoulos, George; Iyer, Vishwanath R.; Lieb, Jason D.; Sunyaev, Shamil R.; Akey, Joshua M.; Sabo, Peter J.; Kaul, Rajinder; Furey, Terrence S.; Dekker, Job; Crawford, Gregory E.; Stamatoyannopoulos, John A.

    2013-01-01

    DNaseI hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers, and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ~2.9 million DHSs that encompass virtually all known experimentally-validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation, and regulatory factor occupancy patterns. We connect ~580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is choreographed with dozens to hundreds of co-activated elements, and the trans-cellular DNaseI sensitivity pattern at a given region can predict cell type-specific functional behaviors. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation. PMID:22955617

  17. Histone chaperones link histone nuclear import and chromatin assembly.

    PubMed

    Keck, Kristin M; Pemberton, Lucy F

    2013-01-01

    Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  18. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques

    NASA Astrophysics Data System (ADS)

    Bystricky, Kerstin; Heun, Patrick; Gehlen, Lutz; Langowski, Jörg; Gasser, Susan M.

    2004-11-01

    Little is known about how chromatin folds in its native state. Using optimized in situ hybridization and live imaging techniques have determined compaction ratios and fiber flexibility for interphase chromatin in budding yeast. Unlike previous studies, ours examines nonrepetitive chromatin at intervals short enough to be meaningful for yeast chromosomes and functional domains in higher eukaryotes. We reconcile high-resolution fluorescence in situ hybridization data from intervals of 14-100 kb along single chromatids with measurements of whole chromosome arms (122-623 kb in length), monitored in intact cells through the targeted binding of bacterial repressors fused to GFP derivatives. The results are interpreted with a flexible polymer model and suggest that interphase chromatin exists in a compact higher-order conformation with a persistence length of 170-220 nm and a mass density of 110-150 bp/nm. These values are equivalent to 7-10 nucleosomes per 11-nm turn within a 30-nm-like fiber structure. Comparison of long and short chromatid arm measurements demonstrates that chromatin fiber extension is also influenced by nuclear geometry. The observation of this surprisingly compact chromatin structure for transcriptionally competent chromatin in living yeast cells suggests that the passage of RNA polymerase II requires a very transient unfolding of higher-order chromatin structure. higher-order structure | 30-nm fiber | nucleosomes

  19. Chromatin Ring Formation at Plant Centromeres.

    PubMed

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037

  20. Chromatin associations in Arabidopsis interphase nuclei

    PubMed Central

    Schubert, Veit; Rudnik, Radoslaw; Schubert, Ingo

    2014-01-01

    The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei. PMID:25431580

  1. Chromatin Ring Formation at Plant Centromeres

    PubMed Central

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037

  2. Targeted Histone Peptides: Insights into the Spatial Regulation of the Methyltransferase PRC2 by using a Surrogate of Heterotypic Chromatin.

    PubMed

    Brown, Zachary Z; Müller, Manuel M; Kong, Ha Eun; Lewis, Peter W; Muir, Tom W

    2015-05-26

    Eukaryotic genomes are dynamically regulated through a host of epigenetic stimuli. The substrate for these epigenetic transactions, chromatin, is a polymer of nucleosome building blocks. In native chromatin, each nucleosome can differ from its neighbors as a result of covalent modifications to both the DNA and the histone packaging proteins. The heterotypic nature of chromatin presents a formidable obstacle to biochemical studies seeking to understand the role of context on epigenetic regulation. A chemical approach to the production of heterotypic chromatin that can be used in such studies is introduced. This method involves the attachment of a user-defined modified histone peptide to a designated nucleosome within the polymer by using a peptide nucleic acid (PNA) targeting compound. This strategy was applied to dissect the effect of chromatin context on the activity of the histone methyltransferase PRC2. The results show that PRC2 can be stimulated to produce histone H3 methylation from a defined nucleation site.

  3. HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing.

    PubMed

    Liu, Haoming; Liang, Chunyang; Kollipara, Rahul K; Matsui, Masayuki; Ke, Xiong; Jeong, Byung-Cheon; Wang, Zhiqiang; Yoo, Kyoung Shin; Yadav, Gaya P; Kinch, Lisa N; Grishin, Nicholas V; Nam, Yunsun; Corey, David R; Kittler, Ralf; Liu, Qinghua

    2016-08-01

    Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.

  4. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia

    PubMed Central

    Cole, John J.; Nelson, David M.; Dikovskaya, Dina; Faller, William J.; Vizioli, Maria Grazia; Hewitt, Rachael N.; Anannya, Orchi; McBryan, Tony; Manoharan, Indrani; van Tuyn, John; Morrice, Nicholas; Pchelintsev, Nikolay A.; Ivanov, Andre; Brock, Claire; Drotar, Mark E.; Nixon, Colin; Clark, William; Sansom, Owen J.; Anderson, Kurt I.; King, Ayala; Blyth, Karen

    2014-01-01

    Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression. PMID:25512559

  5. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells.

    PubMed

    Luciano, Alberto M; Franciosi, Federica; Dieci, Cecilia; Lodde, Valentina

    2014-09-01

    The mammalian oocyte nucleus or germinal vesicle (GV) exhibits characteristic chromatin configurations, which are subject to dynamic modifications through oogenesis. Aim of this review is to highlight how changes in chromatin configurations are related to both functional and structural modifications occurring in the oocyte nuclear and cytoplasmic compartments. During the long phase of meiotic arrest at the diplotene stage, the chromatin enclosed within the GV is subjected to several levels of regulation. Morphologically, the chromosomes lose their individuality and form a loose chromatin mass. The decondensed configuration of chromatin then undergoes profound rearrangements during the final stages of oocyte growth that are tightly associated with the acquisition of meiotic and developmental competence. Functionally, the discrete stages of chromatin condensation are characterized by different level of transcriptional activity, DNA methylation and covalent histone modifications. Interestingly, the program of chromatin rearrangement is not completely intrinsic to the oocyte, but follicular cells exert their regulatory actions through gap junction mediated communications and intracellular messenger dependent mechanism(s). With this in mind and since oocyte growth mostly relies on the bidirectional interaction with the follicular cells, a connection between cumulus cells gene expression profile and oocyte developmental competence, according to chromatin configuration is proposed. This analysis can help in identifying candidate genes involved in the process of oocyte developmental competence acquisition and in providing non-invasive biomarkers of oocyte health status that can have important implications in treating human infertility as well as managing breeding schemes in domestic mammals.

  6. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate.

    PubMed

    Wu, Miin-Feng; Yamaguchi, Nobutoshi; Xiao, Jun; Bargmann, Bastiaan; Estelle, Mark; Sang, Yi; Wagner, Doris

    2015-01-01

    Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses. PMID:26460543

  7. Chromatin and RNA Maps Reveal Regulatory Long Noncoding RNAs in Mouse

    PubMed Central

    Vizán, Pedro; Stanton, Lawrence W.; Beato, Miguel; Di Croce, Luciano

    2015-01-01

    Discovering and classifying long noncoding RNAs (lncRNAs) across all mammalian tissues and cell lines remains a major challenge. Previously, mouse lncRNAs were identified using transcriptome sequencing (RNA-seq) data from a limited number of tissues or cell lines. Additionally, associating a few hundred lncRNA promoters with chromatin states in a single mouse cell line has identified two classes of chromatin-associated lncRNA. However, the discovery and classification of lncRNAs is still pending in many other tissues in mouse. To address this, we built a comprehensive catalog of lncRNAs by combining known lncRNAs with high-confidence novel lncRNAs identified by mapping and de novo assembling billions of RNA-seq reads from eight tissues and a primary cell line in mouse. Next, we integrated this catalog of lncRNAs with multiple genome-wide chromatin state maps and found two different classes of chromatin state-associated lncRNAs, including promoter-associated (plncRNAs) and enhancer-associated (elncRNAs) lncRNAs, across various tissues. Experimental knockdown of an elncRNA resulted in the downregulation of the neighboring protein-coding Kdm8 gene, encoding a histone demethylase. Our findings provide 2,803 novel lncRNAs and a comprehensive catalog of chromatin-associated lncRNAs across different tissues in mouse. PMID:26711262

  8. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate.

    PubMed

    Wu, Miin-Feng; Yamaguchi, Nobutoshi; Xiao, Jun; Bargmann, Bastiaan; Estelle, Mark; Sang, Yi; Wagner, Doris

    2015-10-13

    Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses.

  9. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate

    PubMed Central

    Wu, Miin-Feng; Yamaguchi, Nobutoshi; Xiao, Jun; Bargmann, Bastiaan; Estelle, Mark; Sang, Yi; Wagner, Doris

    2015-01-01

    Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses. DOI: http://dx.doi.org/10.7554/eLife.09269.001 PMID:26460543

  10. [Comparative characteristics of chromatin endonuclease fragments].

    PubMed

    Miul'berg, A A; Tishchenko, L I; Domkina, L K

    1977-05-01

    Soluble fragments of chromatin obtained by Ca, Mg-dependent endonuclease digest of rat liver nuclei, have been separated by gel chromatography on Sepharose 4B into three zones, containing oligomers, tetramers--dimers and monomers, respectively. The content of nonhistone proteins and particularly lysine-rich histones is decreased with a transition from theoligomers to monomers. The average protein/DNA ratio of the monomers is equal to 1.36 and that of histone/DNA ratio--to 0.82. The dependence of the degree of chromatin digest by endonuclease on its protein content and conditions of isolation and incubation of nuclei is discussed. The chromatin monomer formed appears to be made up of a nucleosome and short portions of spacer DNA bound to some part of histone HI and nonhistone proteins. PMID:889964

  11. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  12. The Chromatin Fiber: Multiscale Problems and Approaches

    PubMed Central

    Ozer, Gungor; Luque, Antoni; Schlick, Tamar

    2015-01-01

    The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails of the nucleosomes to the physical mechanism driving the formation of chromosomal domains. Here we present a perspective of recent advances in chromatin modeling techniques at the atomic, mesoscopic, and chromosomal scales with a view toward developing multiscale computational strategies to integrate such findings. Innovative modeling methods that connect molecular to chromosomal scales are crucial for interpreting experiments and eventually deciphering the complex dynamic organization and function of chromatin in the cell. PMID:26057099

  13. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  14. Chromatin Higher-order Structure and Dynamics

    PubMed Central

    Woodcock, Christopher L.; Ghosh, Rajarshi P.

    2010-01-01

    The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional “higher order” levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study. PMID:20452954

  15. Tritium activities in the United States

    SciTech Connect

    Anderson, J.L.; LaMarche, P.

    1995-07-01

    There have been many significant changes in the status of tritium activities in the US since the 4th Tritium Conference in October, 1991. The replacement Tritium Facility (RTF) at Savannah River Site and the Weapons Engineering Tritium Facility (WETF) at the Los Alamos National Laboratory are now operational with tritium. The Tokamak Fusion Test Reactor (TFTR) has initiated a highly successful experimental campaign studying DT plasmas, and has produced more than 10 Megawatts (MW) of fusion power in a D-T plasma. Sandia National Laboratory has ceased tritium operations at the Tritium Research Laboratory (TRL) and many of the activities previously performed there have been transferred to Los Alamos and Savannah River. The tritium laboratory at Lawrence Livermore National Laboratory has reduced the tritium inventory to <5 grams. The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to be at the forefront of tritium technology and safety development for the fusion energy program.

  16. Chromatin image analysis provides new evidence of the relation of lymphocytes to cytokines and sCAM in the inflammatory nature of atherosclerosis.

    PubMed

    Teplyakov, A I; Pryshchepava, A V; Chegerova, T I

    2001-12-01

    Comparative analysis of cytokines and sCAM secretion within the lymphocyte chromatin state are possible evidence of inflammatory reactions in atherosclerosis. Two types of response were studied: coagulation and fibrinolysis (incubation of blood clot within 6 hours at 37 degrees C) and standardized viscosimetric flow using a rotational viscometer (shear rate 100 l/s, 60 seconds at 37 degrees C, and incubation within 6 hours at 37 degrees C). Cytokines IL-1alpha, IL-1beta, IL-6, IL-8, IL-10 (Immunotech, France), endothelin-1, and soluble cell adhesion molecules (sCAM) sP- and sE-selectin, sICAM-1, and sVCAM-1 (R&D, UK) have been determined using ELISA kits (photometer, Biomek-1000, Beckman, USA). The chromatin of lymphocyte nuclei was studied using the computer TV morphodensitometry system DiaMorph (Russia) and smears dyed specifically for DNA. Correlational changes in morphodensitometric (MDM) parameters and cytokine and sCAM levels in two tests were compared to initial levels. After rheologic testing, lymphocyte nuclei as a whole had not changed, but chromatin activity had decreased. Reorganization of nuclei after the coagulation test was observed. Endothelin-1 and sP- and sE-selectin levels were not related to function of lymphocytes (by MDM data) as seen in both tests; it is probable that another cell-cell communication mechanism had been switched on. We established a strong correlation between chromatin activity of lymphocytes and the serum concentration of IL-1beta, IL-6, and IL-10, which are the active participants in the pro- and anti-inflammatory program in atherogenesis. Results are evidence of the role of lymphocytes in pro- and anti-inflammatory cytokine reactions and cytokine-like sCAM activity in atherosclerosis.

  17. Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome

    PubMed Central

    Basson, M. Albert; van Ravenswaaij-Arts, Conny

    2015-01-01

    CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause of CHARGE syndrome. Here, we review recent work aimed at understanding the mechanism of CHD7 function in normal and pathological states, highlighting results from biochemical and in vivo studies. The emerging picture from this work suggests that the mechanisms by which CHD7 fine-tunes gene expression are context specific, consistent with the pleiotropic nature of CHARGE syndrome. PMID:26411921

  18. Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome.

    PubMed

    Basson, M Albert; van Ravenswaaij-Arts, Conny

    2015-10-01

    CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause of CHARGE syndrome. Here, we review recent work aimed at understanding the mechanism of CHD7 function in normal and pathological states, highlighting results from biochemical and in vivo studies. The emerging picture from this work suggests that the mechanisms by which CHD7 fine-tunes gene expression are context specific, consistent with the pleiotropic nature of CHARGE syndrome. PMID:26411921

  19. Rapid and unbiased extraction of chromatin associated RNAs from purified native chromatin.

    PubMed

    Zhou, Zhongwu; Yang, Yi; Konieczny, Stephen F; Irudayaraj, Joseph M K

    2015-12-24

    An ultra fast and unbiased method that uses salicylic acid coated magnetic nanoparticles (SAMNPs) and magnetophoretic chromatography is developed to extract chromatin associated RNAs (CARs). The SAMNPs were first used for enriching cells from the cell culture media and further used for capturing chromatin after cells were lysed. The formed SAMNPs-chromatin complexes were transferred to a viscous polyethylene glycol (PEG) solution stored in a 200-μl pipette tip. Due to the difference in viscosities, a bi-layer liquid was formed inside the pipette tip. The SAMNPs-chromatin complexes were separated from the free SAMNPs and free RNA-SAMNPs complexes by applying an external magnetic field. The CARs were further extracted from the SAMNP-chromatin complexes directly. The extracted CARs were reverse transcribed as cDNA and further characterized by real-time qPCR. The total assay time taken for cell separation, chromatin purification and chromatin associated RNAs extraction can be accomplished in less than 2h. PMID:26643718

  20. Rapid induction of chromatin-associated DNA mismatch repair proteins after MNNG treatment

    PubMed Central

    Schroering, Allen G.; Williams, Kandace J.

    2008-01-01

    Treatment with low concentrations of monofunctional alkylating agents induces a G2 arrest only after the second round of DNA synthesis in mammalian cells and requires a proficient mismatch repair (MMR) pathway. Here we have investigated rapid alkylation-induced recruitment of DNA repair proteins to chromosomal DNA within synchronized populations of MMR proficient cells (HeLa MR) after MNNG treatment. Within the first hour, the concentrations of MutSα and PCNA increase well beyond their constitutive chromosomally bound levels and MutLα is newly recruited to the chromatin-bound MutSα. Remarkably, immunoprecipitation experiments demonstrate rapid association of these proteins on the alkylation-damaged chromatin, even when DNA replication is completely blocked. The extent of association of PCNA and MMR proteins on the chromatin is dependent upon the concentration of MNNG and on the specific type of replication block. A subpopulation of the MutSα-associated PCNA also becomes monoubiquitinated, a known requirement for PCNA to interact with translesion synthesis (TLS) polymerases. In addition, chromatin-bound SMC1 and NBS1 proteins, associated with DNA double-strand-breaks (DSBs), become phosphorylated within one to two hours of exposure to MNNG. However, these activated proteins are not colocalized on the chromatin with MutSα in response to MNNG exposure. PCNA, MutSα/MutLα and activated SMC1/NBS1 remain chromatin-bound for at least 6–8 hours after alkylation damage. Thus, cells that are exposed to low levels of alkylation treatment undergo rapid recruitment to and/or activation of key proteins already on the chromatin without the requirement for DNA replication, apparently via different DNA-damage signaling pathways. PMID:18468964

  1. VIP+ interneurons control neocortical activity across brain states.

    PubMed

    Jackson, Jesse; Ayzenshtat, Inbal; Karnani, Mahesh M; Yuste, Rafael

    2016-06-01

    GABAergic interneurons are positioned to powerfully influence the dynamics of neural activity, yet the interneuron-mediated circuit mechanisms that control spontaneous and evoked neocortical activity remains elusive. Vasoactive intestinal peptide (VIP+) interneurons are a specialized cell class which synapse specifically on other interneurons, potentially serving to facilitate increases in cortical activity. In this study, using in vivo Ca(2+) imaging, we describe the interaction between local network activity and VIP+ cells and determine their role in modulating neocortical activity in mouse visual cortex. VIP+ cells were active across brain states including locomotion, nonlocomotion, visual stimulation, and under anesthesia. VIP+ activity correlated most clearly with the mean level of population activity of nearby excitatory neurons during all brain states, suggesting VIP+ cells enable high-excitability states in the cortex. The pharmacogenetic blockade of VIP+ cell output reduced network activity during locomotion, nonlocomotion, anesthesia, and visual stimulation, suggesting VIP+ cells exert a state-independent facilitation of neural activity in the cortex. Collectively, our findings demonstrate that VIP+ neurons have a causal role in the generation of high-activity regimes during spontaneous and stimulus evoked neocortical activity. PMID:26961109

  2. Dynamic chromatin remodelling of ciliate macronuclear DNA as determined by an optimized chromatin immunoprecipitation (ChIP) method for Paramecium tetraurelia.

    PubMed

    Cheaib, Miriam; Simon, Martin

    2013-03-01

    We report the detailed evaluation of crucial parameters for chromatin immunoprecipitation (ChIP) of macronuclear DNA in the unicellular eukaryote Paramecium tetraurelia. Optimized parameters include crosslinking conditions, chromatin sonication and antibody titration thus providing a detailed protocol for successful ChIP in P. tetraurelia. As this ciliate is bacterivorous and RNAi by feeding represents a powerful tool for analysis of gene function, we moreover determined the effects of ingested nucleic acids by food bacteria. Feasibility of our protocol is demonstrated by characterisation of chromatin remodelling at promoters of cytosolic HSP70 isoforms during transcriptional activation under heat shock conditions by analyzing RNA abundance, nucleosome occupancy and levels of H3 lysine 9 acetylation.

  3. State opportunities for action: Update of states' combined heat and power activities

    SciTech Connect

    Brown, Elizabeth; Elliott, R. Neal

    2003-10-01

    This report updates the review of state policies with regard to CHP that the American Council for and Energy Efficient Economy completed in 2002. It describes the current activities of states with programs during the initial survey and also reviews new programs offered by the states.

  4. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  5. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  6. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  7. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  8. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  9. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    PubMed

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  10. Tagged Chromosomal Insertion Site System: A Method to Study Lamina-Associated Chromatin.

    PubMed

    Harr, Jennifer C; Reddy, Karen L

    2016-01-01

    The three-dimensional (3D) organization of the genome is important for chromatin regulation. This organization is nonrandom and appears to be tightly correlated with or regulated by chromatin state and scaffolding proteins. To understand how specific DNA and chromatin elements contribute to the functional organization of the genome, we developed a new tool-the tagged chromosomal insertion site (TCIS) system-to identify and study minimal DNA sequences that drive nuclear compartmentalization and applied this system to specifically study the role of cis elements in targeting DNA to the nuclear lamina. The TCIS system allows Cre-recombinase-mediated site-directed integration of any DNA fragment into a locus tagged with lacO arrays, thus enabling both functional molecular studies and positional analysis of the altered locus. This system can be used to study the minimal DNA sequences that target the nuclear periphery (or other nuclear compartments), allowing researchers to understand how genome-wide results obtained, for example, by DNA adenine methyltransferase identification, chromosome conformation capture (HiC), or related methods, connect to the actual organization of DNA and chromosomes at the single-cell level. Finally, TCIS allows one to test roles for specific proteins in chromatin reorganization and to determine how changes in nuclear environment affect chromatin state and gene regulation at a single locus.

  11. Tagged Chromosomal Insertion Site System: A Method to Study Lamina-Associated Chromatin.

    PubMed

    Harr, Jennifer C; Reddy, Karen L

    2016-01-01

    The three-dimensional (3D) organization of the genome is important for chromatin regulation. This organization is nonrandom and appears to be tightly correlated with or regulated by chromatin state and scaffolding proteins. To understand how specific DNA and chromatin elements contribute to the functional organization of the genome, we developed a new tool-the tagged chromosomal insertion site (TCIS) system-to identify and study minimal DNA sequences that drive nuclear compartmentalization and applied this system to specifically study the role of cis elements in targeting DNA to the nuclear lamina. The TCIS system allows Cre-recombinase-mediated site-directed integration of any DNA fragment into a locus tagged with lacO arrays, thus enabling both functional molecular studies and positional analysis of the altered locus. This system can be used to study the minimal DNA sequences that target the nuclear periphery (or other nuclear compartments), allowing researchers to understand how genome-wide results obtained, for example, by DNA adenine methyltransferase identification, chromosome conformation capture (HiC), or related methods, connect to the actual organization of DNA and chromosomes at the single-cell level. Finally, TCIS allows one to test roles for specific proteins in chromatin reorganization and to determine how changes in nuclear environment affect chromatin state and gene regulation at a single locus. PMID:26778570

  12. Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles.

    PubMed

    Cejas, Paloma; Li, Lewyn; O'Neill, Nicholas K; Duarte, Melissa; Rao, Prakash; Bowden, Michaela; Zhou, Chensheng W; Mendiola, Marta; Burgos, Emilio; Feliu, Jaime; Moreno-Rubio, Juan; Guadalajara, Héctor; Moreno, Víctor; García-Olmo, Damián; Bellmunt, Joaquim; Mullane, Stephanie; Hirsch, Michelle; Sweeney, Christopher J; Richardson, Andrea; Liu, X Shirley; Brown, Myles; Shivdasani, Ramesh A; Long, Henry W

    2016-06-01

    Extensive cross-linking introduced during routine tissue fixation of clinical pathology specimens severely hampers chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) analysis from archived tissue samples. This limits the ability to study the epigenomes of valuable, clinically annotated tissue resources. Here we describe fixed-tissue chromatin immunoprecipitation sequencing (FiT-seq), a method that enables reliable extraction of soluble chromatin from formalin-fixed paraffin-embedded (FFPE) tissue samples for accurate detection of histone marks. We demonstrate that FiT-seq data from FFPE specimens are concordant with ChIP-seq data from fresh-frozen samples of the same tumors. By using multiple histone marks, we generate chromatin-state maps and identify cis-regulatory elements in clinical samples from various tumor types that can readily allow us to distinguish between cancers by the tissue of origin. Tumor-specific enhancers and superenhancers that are elucidated by FiT-seq analysis correlate with known oncogenic drivers in different tissues and can assist in the understanding of how chromatin states affect gene regulation. PMID:27111282

  13. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  14. Intrinsic Brain Activity in Altered States of Consciousness

    PubMed Central

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

  15. [Nonequilibrium state of electrochemically activated water and its biological activity].

    PubMed

    Petrushanko, I Iu; Lobyshev, V I

    2001-01-01

    Changes in the physicochemical parameters (pH, redox potential and electroconductivity) of catholyte and anolyte produced by membrane electrolysis of distilled water and dilute (c < 10(-3) M) sodium chloride solutions were studied. The relaxation of these parameters after electrolysis and the influence of catholyte and anolyte on the growth of roots of Tradescantia viridis grafts, the development of duckweed, and the motive activity of infusoria Spirostomum ambiguum were investigated. It was found that the anolyte of distilled water stimulated development of these biological objects. The direction of shift of physicochemical parameters of catholyte and anolyte from equilibrium values and the type of their biological activity (stimulation or inhibition) depend on salt concentration in initial solution. Barbotage of initial distilled water with argon or nitrogen leads to a greater decrease in the redox potential of catholyte during electrolysis. The physicochemical parameters relax to equilibrium values, and the biological activity of catholite and anolyte decreases with time and practically disappears by the end of the day. It was found that the oxidation of reducing agent by atmospheric oxygen is not the sole cause of the relaxation of catalyte redox potential. The increase in the ionic strength of catholite and anolyte by the addition of concentrated sodium chloride after electrolysis decreases the rate of redox potential relaxation several times. The redox potential can be maintained for long periods by freezing.

  16. Observing single enzyme molecules interconvert between activity states upon heating.

    PubMed

    Rojek, Marcin J; Walt, David R

    2014-01-01

    In this paper, we demonstrate that single enzyme molecules of β-galactosidase interconvert between different activity states upon exposure to short pulses of heat. We show that these changes in activity are the result of different enzyme conformations. Hundreds of single β-galactosidase molecules are trapped in femtoliter reaction chambers and the individual enzymes are subjected to short heating pulses. When heating pulses are introduced into the system, the enzyme molecules switch between different activity states. Furthermore, we observe that the changes in activity are random and do not correlate with the enzyme's original activity. This study demonstrates that different stable conformations play an important role in the static heterogeneity reported previously, resulting in distinct long-lived activity states of enzyme molecules in a population.

  17. Chemical biology: Chromatin chemistry goes cellular

    NASA Astrophysics Data System (ADS)

    Fischle, Wolfgang; Schwarzer, Dirk; Mootz, Henning D.

    2015-05-01

    Analysing post-translational modifications of histone proteins as they occur within chromatin is challenging due to their large number and chemical diversity. A major step forward has now been achieved by using split intein chemistry to engineer functionalized histones within cells.

  18. Interplay between mismatch repair and chromatin assembly

    PubMed Central

    Schöpf, Barbara; Bregenhorn, Stephanie; Quivy, Jean-Pierre; Kadyrov, Farid A.; Almouzni, Genevieve; Jiricny, Josef

    2012-01-01

    Single strand nicks and gaps in DNA have been reported to increase the efficiency of nucleosome loading mediated by chromatin assembly factor 1 (CAF-1). However, on mismatch-containing substrates, these strand discontinuities are utilized by the mismatch repair (MMR) system as loading sites for exonuclease 1, at which degradation of the error-containing strand commences. Because packaging of DNA into chromatin might inhibit MMR, we were interested to learn whether chromatin assembly is differentially regulated on heteroduplex and homoduplex substrates. We now show that the presence of a mismatch in a nicked plasmid substrate delays nucleosome loading in human cell extracts. Our data also suggest that, once the mismatch is removed, repair of the single-stranded gap is accompanied by efficient nucleosome loading. We postulated that the balance between MMR and chromatin assembly might be governed by proliferating cell nuclear antigen (PCNA), the processivity factor of replicative DNA polymerases, which is loaded at DNA termini and which interacts with the MSH6 subunit of the mismatch recognition factor MutSα, as well as with CAF-1. We now show that this regulation might be more complex; MutSα and CAF-1 interact not only with PCNA, but also with each other. In vivo this interaction increases during S-phase and may be controlled by the phosphorylation status of the p150 subunit of CAF-1. PMID:22232658

  19. Provision of recreational activities in hospices in the United States.

    PubMed

    DeMong, S A

    1997-01-01

    Quality of life issues encompass the philosophies of both hospice and recreation participation. This study examines the status of recreational activities provision in hospices in the United States. The offering, frequency of offering, and location of offering of 39 recreational activities in a random sample of hospices in the United States were surveyed. The functional levels of participating patients were also recorded. Reading to patients at bedside daily was determined to be the most frequently provided recreational activity. Recreational activities are being offered in 40% of the larger U.S. hospices on a varying schedule in different locations. PMID:9305025

  20. Understanding RNA-Chromatin Interactions Using Chromatin Isolation by RNA Purification (ChIRP).

    PubMed

    Chu, Ci; Chang, Howard Y

    2016-01-01

    ChIRP is a novel and easy-to-use technique for studying long noncoding RNA (lncRNA)-chromatin interactions. RNA and chromatin are cross-linked in vivo using formaldehyde or glutaraldehyde, and purified using biotinylated antisense oligonucleotides that hybridize to the target RNA. Co-precipitated DNA is then purified and analyzed by quantitative PCR (qPCR) or high-throughput sequencing. PMID:27659979

  1. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'

    PubMed Central

    2014-01-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  2. Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin

    PubMed Central

    Catania, Sandra; Pidoux, Alison L.; Allshire, Robin C.

    2015-01-01

    Centromere sequences are not conserved between species, and there is compelling evidence for epigenetic regulation of centromere identity, with location being dictated by the presence of chromatin containing the histone H3 variant CENP-A. Paradoxically, in most organisms CENP-A chromatin generally occurs on particular sequences. To investigate the contribution of primary DNA sequence to establishment of CENP-A chromatin in vivo, we utilised the fission yeast Schizosaccharomyces pombe. CENP-ACnp1 chromatin is normally assembled on ∼10 kb of central domain DNA within these regional centromeres. We demonstrate that overproduction of S. pombe CENP-ACnp1 bypasses the usual requirement for adjacent heterochromatin in establishing CENP-ACnp1 chromatin, and show that central domain DNA is a preferred substrate for de novo establishment of CENP-ACnp1 chromatin. When multimerised, a 2 kb sub-region can establish CENP-ACnp1 chromatin and form functional centromeres. Randomization of the 2 kb sequence to generate a sequence that maintains AT content and predicted nucleosome positioning is unable to establish CENP-ACnp1 chromatin. These analyses indicate that central domain DNA from fission yeast centromeres contains specific information that promotes CENP-ACnp1 incorporation into chromatin. Numerous transcriptional start sites were detected on the forward and reverse strands within the functional 2 kb sub-region and active promoters were identified. RNAPII is enriched on central domain DNA in wild-type cells, but only low levels of transcripts are detected, consistent with RNAPII stalling during transcription of centromeric DNA. Cells lacking factors involved in restarting transcription—TFIIS and Ubp3—assemble CENP-ACnp1 on central domain DNA when CENP-ACnp1 is at wild-type levels, suggesting that persistent stalling of RNAPII on centromere DNA triggers chromatin remodelling events that deposit CENP-ACnp1. Thus, sequence-encoded features of centromeric DNA create an

  3. Education Finance Legislative Activity and Trends at the State Level.

    ERIC Educational Resources Information Center

    Crampton, Faith E.

    1999-01-01

    Reviews 1997 school finance legislation, comparing legislative activity levels from 1994 to 1997. In 1997, 32 states passed legislation pertaining to capital-outlay funding, tax bases, and taxation for education funding. Half passed legislation for state aid, technology, special-purpose education, budgeting/fiscal management, and school personnel…

  4. 34 CFR 300.812 - Reservation for State activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Reservation for State activities. 300.812 Section 300.812 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  5. 34 CFR 300.812 - Reservation for State activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Reservation for State activities. 300.812 Section 300.812 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  6. 34 CFR 300.812 - Reservation for State activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Reservation for State activities. 300.812 Section 300.812 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  7. 34 CFR 300.812 - Reservation for State activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Reservation for State activities. 300.812 Section 300.812 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  8. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  9. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden.