Sample records for active circuit elements

  1. Four-terminal circuit element with photonic core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less

  2. Method of preforming and assembling superconducting circuit elements

    NASA Astrophysics Data System (ADS)

    Haertling, Gene H.; Buckley, John D.

    1991-03-01

    The invention is a method of preforming and pretesting rigid and discrete superconductor circuit elements to optimize the superconductivity development of the preformed circuit element prior to its assembly, and encapsulation on a substrate and final environmental testing of the assembled ceramic superconductive elements.

  3. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  4. Predicting the behavior of microfluidic circuits made from discrete elements

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  5. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

    PubMed

    Safavieh, Roozbeh; Juncker, David

    2013-11-07

    Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.

  6. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  7. Elements configuration of the open lead test circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuzaki, Yumi, E-mail: 14514@sr.kagawa-nct.ac.jp; Ono, Akira

    In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a testmore » circuit in the past. This paper propose elements configuration of the test circuit.« less

  8. Compact lumped circuit model of discharges in DC accelerator using partial element equivalent circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srutarshi; Rajan, Rehim N.; Singh, Sandeep K.

    2014-07-01

    DC Accelerators undergoes different types of discharges during its operation. A model depicting the discharges has been simulated to study the different transient conditions. The paper presents a Physics based approach of developing a compact circuit model of the DC Accelerator using Partial Element Equivalent Circuit (PEEC) technique. The equivalent RLC model aids in analyzing the transient behavior of the system and predicting anomalies in the system. The electrical discharges and its properties prevailing in the accelerator can be evaluated by this equivalent model. A parallel coupled voltage multiplier structure is simulated in small scale using few stages of coronamore » guards and the theoretical and practical results are compared. The PEEC technique leads to a simple model for studying the fault conditions in accelerator systems. Compared to the Finite Element Techniques, this technique gives the circuital representation. The lumped components of the PEEC are used to obtain the input impedance and the result is also compared to that of the FEM technique for a frequency range of (0-200) MHz. (author)« less

  9. Circuit-based versus full-wave modelling of active microwave circuits

    NASA Astrophysics Data System (ADS)

    Bukvić, Branko; Ilić, Andjelija Ž.; Ilić, Milan M.

    2018-03-01

    Modern full-wave computational tools enable rigorous simulations of linear parts of complex microwave circuits within minutes, taking into account all physical electromagnetic (EM) phenomena. Non-linear components and other discrete elements of the hybrid microwave circuit are then easily added within the circuit simulator. This combined full-wave and circuit-based analysis is a must in the final stages of the circuit design, although initial designs and optimisations are still faster and more comfortably done completely in the circuit-based environment, which offers real-time solutions at the expense of accuracy. However, due to insufficient information and general lack of specific case studies, practitioners still struggle when choosing an appropriate analysis method, or a component model, because different choices lead to different solutions, often with uncertain accuracy and unexplained discrepancies arising between the simulations and measurements. We here design a reconfigurable power amplifier, as a case study, using both circuit-based solver and a full-wave EM solver. We compare numerical simulations with measurements on the manufactured prototypes, discussing the obtained differences, pointing out the importance of measured parameters de-embedding, appropriate modelling of discrete components and giving specific recipes for good modelling practices.

  10. Development and evaluation of superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Lee, Burtrand; Hsi, Dennis; Modi, Vibhakar; Marone, Matt

    1990-01-01

    An approach to the application of high Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid-conductor process (RCP), involves the combination of a pre-formed, sintered, and tested superconductor material with an appropriate, rigid substrate via an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Emphasis was on the practical means to achieve functional, reliable, and reproducible components. Although all of the work described in this report involved a YBa2Cu3Osub(7-x) high Tc superconductor material, the techniques developed and conclusions reached are equally applicable to other high Tc materials.

  11. Design principles for elementary gene circuits: Elements, methods, and examples

    NASA Astrophysics Data System (ADS)

    Savageau, Michael A.

    2001-03-01

    The control of gene expression involves complex circuits that exhibit enormous variation in design. For years the most convenient explanation for these variations was historical accident. According to this view, evolution is a haphazard process in which many different designs are generated by chance; there are many ways to accomplish the same thing, and so no further meaning can be attached to such different but equivalent designs. In recent years a more satisfying explanation based on design principles has been found for at least certain aspects of gene circuitry. By design principle we mean a rule that characterizes some biological feature exhibited by a class of systems such that discovery of the rule allows one not only to understand known instances but also to predict new instances within the class. The central importance of gene regulation in modern molecular biology provides strong motivation to search for more of these underlying design principles. The search is in its infancy and there are undoubtedly many design principles that remain to be discovered. The focus of this three-part review will be the class of elementary gene circuits in bacteria. The first part reviews several elements of design that enter into the characterization of elementary gene circuits in prokaryotic organisms. Each of these elements exhibits a variety of realizations whose meaning is generally unclear. The second part reviews mathematical methods used to represent, analyze, and compare alternative designs. Emphasis is placed on particular methods that have been used successfully to identify design principles for elementary gene circuits. The third part reviews four design principles that make specific predictions regarding (1) two alternative modes of gene control, (2) three patterns of coupling gene expression in elementary circuits, (3) two types of switches in inducible gene circuits, and (4) the realizability of alternative gene circuits and their response to phased

  12. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, Christen

    1990-01-01

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

  13. Photoconductive circuit element reflectometer

    DOEpatents

    Rauscher, C.

    1987-12-07

    A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a determinable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line. 4 figs.

  14. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values... circuit protection of trailing cables as provided in § 75.601, however, the current ratings of such...

  15. A compact design for the Josephson mixer: The lumped element circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillet, J.-D.; Collège de France, 11 place Marcelin Berthelot, 75005 Paris; Flurin, E.

    2015-06-01

    We present a compact and efficient design in terms of gain, bandwidth, and dynamical range for the Josephson mixer, the superconducting circuit performing three-wave mixing at microwave frequencies. In an all lumped-element based circuit with galvanically coupled ports, we demonstrate nondegenerate amplification for microwave signals over a bandwidth up to 50 MHz for a power gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70%, and its saturation power reaches −112 dBm.

  16. Local and long-range circuit elements for cerebellar function.

    PubMed

    Xiao, Le; Scheiffele, Peter

    2018-02-01

    The view of cerebellar functions has been extended from controlling sensorimotor processes to processing 'contextual' information and generating predictions for a diverse range of behaviors. These functions rely on the computation of the local cerebellar microcircuits and long-range connectivity that relays cerebellar output to various brain areas. In this review, we discuss recent work on two of the circuit elements, which are thought to be fundamental for a wide range of non-sensorimotor behaviors: The role for cerebellar granule cells in multimodal integration in the cerebellar cortex and the long-range connectivity between the deep cerebellar nuclei and the basal ganglia. Lastly, we discuss how studies on synapses and circuits of the cerebellum in rodent models of autism-spectrum disorders might contribute to our understanding of the pathophysiology of this class of neurodevelopmental disorders. Copyright © 2017. Published by Elsevier Ltd.

  17. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits

    NASA Astrophysics Data System (ADS)

    Sharapova, P. R.; Luo, K. H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C.

    2017-12-01

    We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified mach-Zehnder structure for observing Hong-Ou-Mandel interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.

  18. A receptor and neuron that activate a circuit limiting sucrose consumption.

    PubMed

    Joseph, Ryan M; Sun, Jennifer S; Tam, Edric; Carlson, John R

    2017-03-23

    The neural control of sugar consumption is critical for normal metabolism. In contrast to sugar-sensing taste neurons that promote consumption, we identify a taste neuron that limits sucrose consumption in Drosophila . Silencing of the neuron increases sucrose feeding; optogenetic activation decreases it. The feeding inhibition depends on the IR60b receptor, as shown by behavioral analysis and Ca 2+ imaging of an IR60b mutant. The IR60b phenotype shows a high degree of chemical specificity when tested with a broad panel of tastants. An automated analysis of feeding behavior in freely moving flies shows that IR60b limits the duration of individual feeding bouts. This receptor and neuron provide the molecular and cellular underpinnings of a new element in the circuit logic of feeding regulation. We propose a dynamic model in which sucrose acts via IR60b to activate a circuit that inhibits feeding and prevents overconsumption.

  19. Normal modes of a superconducting transmission-line resonator with embedded lumped element circuit components

    NASA Astrophysics Data System (ADS)

    Mortensen, Henrik Lund; Mølmer, Klaus; Andersen, Christian Kraglund

    2016-11-01

    We present a method to identify the coupled, normal modes of a superconducting transmission line with an embedded lumped element circuit. We evaluate the effective transmission-line nonlinearities in the case of Kerr-like Josephson interactions in the circuit and in the case where the embedded circuit constitutes a qubit degree of freedom, which is Rabi coupled to the field in the transmission line. Our theory quantitatively accounts for the very high and positive Kerr nonlinearities observed in a recent experiment [M. Rehák, P. Neilinger, M. Grajcar, G. Oelsner, U. Hübner, E. Il'ichev, and H.-G. Meyer, Appl. Phys. Lett. 104, 162604 (2014), 10.1063/1.4873719], and we can evaluate the accomplishments of modified versions of the experimental circuit.

  20. Equivalent Circuit Parameter Calculation of Interior Permanent Magnet Motor Involving Iron Loss Resistance Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi

    In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.

  1. Improved circuit for measuring capacitive and inductive reactances

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Mc Carty, V.

    1967-01-01

    Amplifier circuit measures very small changes of capacitive or inductive reactance, such as produced by a variable capacitance or a variable inductance displacement transducer. The circuit employs reactance-sensing oscillators in which field effect transistors serve as the active elements.

  2. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  3. An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.

    2003-01-01

    A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.

  4. Dynamic Training Elements in a Circuit Theory Course to Implement a Self-Directed Learning Process

    ERIC Educational Resources Information Center

    Krouk, B. I.; Zhuravleva, O. B.

    2009-01-01

    This paper reports on the implementation of a self-directed learning process in a circuit theory course, incorporating dynamic training elements which were designed on the basis of a cybernetic model of cognitive process management. These elements are centrally linked in a dynamic learning frame, created on the monitor screen, which displays the…

  5. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  6. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    DOEpatents

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  7. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    ERIC Educational Resources Information Center

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.

    2013-01-01

    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  8. Research on burnout fault of moulded case circuit breaker based on finite element simulation

    NASA Astrophysics Data System (ADS)

    Xue, Yang; Chang, Shuai; Zhang, Penghe; Xu, Yinghui; Peng, Chuning; Shi, Erwei

    2017-09-01

    In the failure event of molded case circuit breaker, overheating of the molded case near the wiring terminal has a very important proportion. The burnout fault has become an important factor restricting the development of molded case circuit breaker. This paper uses the finite element simulation software to establish the model of molded case circuit breaker by coupling multi-physics field. This model can simulate the operation and study the law of the temperature distribution. The simulation results show that the temperature near the wiring terminal, especially the incoming side of the live wire, of the molded case circuit breaker is much higher than that of the other areas. The steady-state and transient simulation results show that the temperature at the wiring terminals is abnormally increased by increasing the contact resistance of the wiring terminals. This is consistent with the frequent occurrence of burnout of the molded case in this area. Therefore, this paper holds that the burnout failure of the molded case circuit breaker is mainly caused by the abnormal increase of the contact resistance of the wiring terminal.

  9. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy

    PubMed Central

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-01-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6, heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. PMID:26177264

  10. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy.

    PubMed

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-09-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  11. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    PubMed

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  12. Amygdala-ventral striatum circuit activation decreases long-term fear

    PubMed Central

    Correia, Susana S; McGrath, Anna G; Lee, Allison; Graybiel, Ann M; Goosens, Ki A

    2016-01-01

    In humans, activation of the ventral striatum, a region associated with reward processing, is associated with the extinction of fear, a goal in the treatment of fear-related disorders. This evidence suggests that extinction of aversive memories engages reward-related circuits, but a causal relationship between activity in a reward circuit and fear extinction has not been demonstrated. Here, we identify a basolateral amygdala (BLA)-ventral striatum (NAc) pathway that is activated by extinction training. Enhanced recruitment of this circuit during extinction learning, either by pairing reward with fear extinction training or by optogenetic stimulation of this circuit during fear extinction, reduces the return of fear that normally follows extinction training. Our findings thus identify a specific BLA-NAc reward circuit that can regulate the persistence of fear extinction and point toward a potential therapeutic target for disorders in which the return of fear following extinction therapy is an obstacle to treatment. DOI: http://dx.doi.org/10.7554/eLife.12669.001 PMID:27671733

  13. Tunable circuit for tunable capacitor devices

    DOEpatents

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  14. Standardization of Schwarz-Christoffel transformation for engineering design of semiconductor and hybrid integrated-circuit elements

    NASA Astrophysics Data System (ADS)

    Yashin, A. A.

    1985-04-01

    A semiconductor or hybrid structure into a calculable two-dimensional region mapped by the Schwarz-Christoffel transformation and a universal algorithm can be constructed on the basis of Maxwell's electro-magnetic-thermal similarity principle for engineering design of integrated-circuit elements. The design procedure involves conformal mapping of the original region into a polygon and then the latter into a rectangle with uniform field distribution, where conductances and capacitances are calculated, using tabulated standard mapping functions. Subsequent synthesis of a device requires inverse conformal mapping. Devices adaptable as integrated-circuit elements are high-resistance film resistors with periodic serration, distributed-resistance film attenuators with high transformation ratio, coplanar microstrip lines, bipolar transistors, directional couplers with distributed coupling to microstrip lines for microwave bulk devices, and quasirregular smooth matching transitions from asymmetric to coplanar microstrip lines.

  15. Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1986-01-01

    The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.

  16. Programmable resistive-switch nanowire transistor logic circuits.

    PubMed

    Shim, Wooyoung; Yao, Jun; Lieber, Charles M

    2014-09-10

    Programmable logic arrays (PLA) constitute a promising architecture for developing increasingly complex and functional circuits through nanocomputers from nanoscale building blocks. Here we report a novel one-dimensional PLA element that incorporates resistive switch gate structures on a semiconductor nanowire and show that multiple elements can be integrated to realize functional PLAs. In our PLA element, the gate coupling to the nanowire transistor can be modulated by the memory state of the resistive switch to yield programmable active (transistor) or inactive (resistor) states within a well-defined logic window. Multiple PLA nanowire elements were integrated and programmed to yield a working 2-to-4 demultiplexer with long-term retention. The well-defined, controllable logic window and long-term retention of our new one-dimensional PLA element provide a promising route for building increasingly complex circuits with nanoscale building blocks.

  17. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  18. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors

    PubMed Central

    Burbridge, Timothy J.; Xu, Hong-Ping; Ackman, James B.; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z. Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C.

    2014-01-01

    SUMMARY The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial largely due to the inherent difficulty recording neural activity in early development. Here, we describe novel genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a de-coupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916

  19. Difference-Equation/Flow-Graph Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  20. Multimodal chemosensory circuits controlling male courtship in Drosophila

    PubMed Central

    Clowney, E. Josephine; Iguchi, Shinya; Bussell, Jennifer J.; Scheer, Elias; Ruta, Vanessa

    2015-01-01

    Summary Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila. PMID:26279475

  1. Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila.

    PubMed

    Clowney, E Josephine; Iguchi, Shinya; Bussell, Jennifer J; Scheer, Elias; Ruta, Vanessa

    2015-09-02

    Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Neural circuit activity in freely behaving zebrafish (Danio rerio).

    PubMed

    Issa, Fadi A; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L; Papazian, Diane M

    2011-03-15

    Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions.

  3. Neural circuit activity in freely behaving zebrafish (Danio rerio)

    PubMed Central

    Issa, Fadi A.; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L.; Papazian, Diane M.

    2011-01-01

    Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions. PMID:21346131

  4. A three-dimensional finite element evaluation of magnetic attachment attractive force and the influence of the magnetic circuit.

    PubMed

    Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-01-01

    The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.

  5. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition

    PubMed Central

    Collins, Kevin M; Bode, Addys; Fernandez, Robert W; Tanis, Jessica E; Brewer, Jacob C; Creamer, Matthew S; Koelle, Michael R

    2016-01-01

    Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states. DOI: http://dx.doi.org/10.7554/eLife.21126.001 PMID:27849154

  6. Computer modeling of batteries from nonlinear circuit elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waaben, S.; Dyer, C.K.; Federico, J.

    1985-06-01

    Circuit analogs for a single battery cell have previously been composed of resistors, capacitors, and inductors. This work introduces a nonlinear circuit model for cell behavior. The circuit is configured around the PIN junction diode, whose charge-storage behavior has features similar to those of electrochemical cells. A user-friendly integrated circuit simulation computer program has reproduced a variety of complex cell responses including electrica isolation effects causing capacity loss, as well as potentiodynamic peaks and discharge phenomena hitherto thought to be thermodynamic in origin. However, in this work, they are shown to be simply due to spatial distribution of stored chargemore » within a practical electrode.« less

  7. Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.

    PubMed

    Miller, Thomas H; Clements, Katie; Ahn, Sungwoo; Park, Choongseok; Hye Ji, Eoon; Issa, Fadi A

    2017-02-22

    In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish ( Danio rerio ) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response. SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit

  8. Microwave GaAs Integrated Circuits On Quartz Substrates

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  9. An Activity for Demonstrating the Concept of a Neural Circuit

    ERIC Educational Resources Information Center

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  10. Pulse shaping circuit for active counting of superheated emulsion

    NASA Astrophysics Data System (ADS)

    Murai, Ikuo; Sawamura, Teruko

    2005-08-01

    A pulse shaping circuit for active counting of superheated emulsions is described. A piezoelectric transducer is used for sensing bubble formation acoustically and the acoustic signal is transformed to a shaping pulse for counting. The circuit has a short signal processing time in the order of 10 ms.

  11. Microfabrication of low-loss lumped-element Josephson circuits for non-reciprocal and parametric devices

    NASA Astrophysics Data System (ADS)

    Cicak, Katarina; Lecocq, Florent; Ranzani, Leonardo; Peterson, Gabriel A.; Kotler, Shlomi; Teufel, John D.; Simmonds, Raymond W.; Aumentado, Jose

    Recent developments in coupled mode theory have opened the doors to new nonreciprocal amplification techniques that can be directly leveraged to produce high quantum efficiency in current measurements in microwave quantum information. However, taking advantage of these techniques requires flexible multi-mode circuit designs comprised of low-loss materials that can be implemented using common fabrication techniques. In this talk we discuss the design and fabrication of a new class of multi-pole lumped-element superconducting parametric amplifiers based on Nb/Al-AlOx/Nb Josephson junctions on silicon or sapphire. To reduce intrinsic loss in these circuits we utilize PECVD amorphous silicon as a low-loss dielectric (tanδ 5 ×10-4), resulting in nearly quantum-limited directional amplification.

  12. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  13. GaAs VLSI technology and circuit elements for DSP

    NASA Astrophysics Data System (ADS)

    Mikkelson, James M.

    1990-10-01

    Recent progress in digital GaAs circuit performance and complexity is presented to demonstrate the current capabilities of GaAs components. High density GaAs process technology and circuit design techniques are described and critical issues for achieving favorable complexity speed power and cost tradeoffs are reviewed. Some DSP building blocks are described to provide examples of what types of DSP systems could be implemented with present GaAs technology. DIGITAL GaAs CIRCUIT CAPABILITIES In the past few years the capabilities of digital GaAs circuits have dramatically increased to the VLSI level. Major gains in circuit complexity and power-delay products have been achieved by the use of silicon-like process technologies and simple circuit topologies. The very high speed and low power consumption of digital GaAs VLSI circuits have made GaAs a desirable alternative to high performance silicon in hardware intensive high speed system applications. An example of the performance and integration complexity available with GaAs VLSI circuits is the 64x64 crosspoint switch shown in figure 1. This switch which is the most complex GaAs circuit currently available is designed on a 30 gate GaAs gate array. It operates at 200 MHz and dissipates only 8 watts of power. The reasons for increasing the level of integration of GaAs circuits are similar to the reasons for the continued increase of silicon circuit complexity. The market factors driving GaAs VLSI are system design methodology system cost power and reliability. System designers are hesitant or unwilling to go backwards to previous design techniques and lower levels of integration. A more highly integrated system in a lower performance technology can often approach the performance of a system in a higher performance technology at a lower level of integration. Higher levels of integration also lower the system component count which reduces the system cost size and power consumption while improving the system reliability

  14. Flexible organic transistors and circuits with extreme bending stability

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2010-12-01

    Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.

  15. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  16. Elemental analysis of printed circuit boards considering the ROHS regulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, Julia, E-mail: julia.wienold@bam.de; Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de; Scharf, Holger, E-mail: holger.scharf@bam.de

    2011-03-15

    The EU RoHS Directive (2002/95/EC of the European Parliament and of the Council) bans the placing of new electrical and electronic equipment containing more than agreed levels of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyl (PBB) and polybrominated diphenyl ether (PBDE) flame retardants on the EU market. It necessitates methods for the evaluation of RoHS compliance of assembled electronic equipment. In this study mounted printed circuit boards from personal computers were analyzed on their content of the three elements Cd, Pb and Hg which were limited by the EU RoHS directive. Main focus of the investigations was the influence ofmore » sample pre-treatment on the precision and reproducibility of the results. The sample preparation steps used were based on the guidelines given in EN 62321. Five different types of dissolution procedures were tested on different subsequent steps of sample treatment like cutting and milling. Elemental analysis was carried out using ICP-OES, XRF and CV-AFS (Hg). The results obtained showed that for decision-making with respect to RoHS compliance a size reduction of the material to be analyzed to particles {<=}1.5 mm can already be sufficient. However, to ensure analytical results with relative standard deviations of less than 20%, as recommended by the EN 62321, a much larger effort for sample processing towards smaller particle sizes might be required which strongly depends on the mass fraction of the element under investigation.« less

  17. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila

    PubMed Central

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J

    2018-01-01

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. PMID:29322941

  18. Phased-Array Antenna With Optoelectronic Control Circuits

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.

    1995-01-01

    Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.

  19. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila.

    PubMed

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J; Keleman, Krystyna

    2018-01-11

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MB γ >M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. © 2018, Zhao et al.

  20. Selective Manipulation of Neural Circuits.

    PubMed

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  1. Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets

    PubMed Central

    Pai, Anand; Weinberger, Leor S.

    2018-01-01

    Current antivirals effectively target diverse viruses at various stages of their viral lifecycles. Nevertheless, curative therapy has remained elusive for important pathogens (e.g., HIV-1 and herpesviruses), in large part due to viral latency and the evolution of resistance to existing therapies. Here, we review the discovery of viral ‘master’ circuits: virus-encoded auto-regulatory gene networks that can autonomously control viral expression programs (i.e., between active, latent, and abortive fates). These circuits offer a potential new class of antivirals that could lead to intrinsic combination-antiviral therapies within a single molecule—evolutionary escape from such circuit ‘disruptors’ would require simultaneous evolution of both the cis regulatory element (e.g., the DNA-binding site) and the trans element (e.g., the transcription factor) for the circuit’s function to be recapitulated. We review the architectures of these fate-regulating master circuits in HIV-1 and the human herpesvirus cytomegalovirus (CMV) along with potential circuit-disruption strategies that may ultimately enable escape-resistant antiviral therapies. PMID:28800289

  2. Hermetic Packages For Millimeter-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul

    1994-01-01

    Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.

  3. Monolithic amplifier with stable, high resistance feedback element and method for fabricating the same

    DOEpatents

    O'Connor, Paul

    1998-08-11

    A monolithic amplifier includes a stable, high resistance feedback circuit and a dynamic bias circuit. The dynamic bias circuit is formed with active elements matched to those in the amplifier and feedback circuit to compensate for variations in the operating and threshold voltages thereby maintaining a stable resistance in the feedback circuit.

  4. Coexistence of Multiple Attractors in an Active Diode Pair Based Chua’s Circuit

    NASA Astrophysics Data System (ADS)

    Bao, Bocheng; Wu, Huagan; Xu, Li; Chen, Mo; Hu, Wen

    This paper focuses on the coexistence of multiple attractors in an active diode pair based Chua’s circuit with smooth nonlinearity. With dimensionless equations, dynamical properties, including boundness of system orbits and stability distributions of two nonzero equilibrium points, are investigated, and complex coexisting behaviors of multiple kinds of disconnected attractors of stable point attractors, limit cycles and chaotic attractors are numerically revealed. The results show that unlike the classical Chua’s circuit, the proposed circuit has two stable nonzero node-foci for the specified circuit parameters, thereby resulting in the emergence of multistability phenomenon. Based on two general impedance converters, the active diode pair based Chua’s circuit with an adjustable inductor and an adjustable capacitor is made in hardware, from which coexisting multiple attractors are conveniently captured.

  5. Project Circuits in a Basic Electric Circuits Course

    ERIC Educational Resources Information Center

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  6. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  7. Monolithic amplifier with stable, high resistance feedback element and method for fabricating the same

    DOEpatents

    O`Connor, P.

    1998-08-11

    A monolithic amplifier includes a stable, high resistance feedback circuit and a dynamic bias circuit. The dynamic bias circuit is formed with active elements matched to those in the amplifier and feedback circuit to compensate for variations in the operating and threshold voltages thereby maintaining a stable resistance in the feedback circuit. 11 figs.

  8. Mouldable all-carbon integrated circuits.

    PubMed

    Sun, Dong-Ming; Timmermans, Marina Y; Kaskela, Antti; Nasibulin, Albert G; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I; Ohno, Yutaka

    2013-01-01

    A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027 cm(2) V(-1) s(-1) and an ON/OFF ratio of 10(5). The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.

  9. Mouldable all-carbon integrated circuits

    NASA Astrophysics Data System (ADS)

    Sun, Dong-Ming; Timmermans, Marina Y.; Kaskela, Antti; Nasibulin, Albert G.; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I.; Ohno, Yutaka

    2013-08-01

    A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027cm2V-1s-1 and an ON/OFF ratio of 105. The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.

  10. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  11. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  12. PHEMT as a circuit element for high impedance nanopower amplifiers for ultra-low temperatures application

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Shulga, V. M.; Gritsenko, I. A.; Sheshin, G. A.

    2015-04-01

    In this work, high electron mobility transistor (HEMT) was studied as a circuit element for amplifiers operating at temperatures of the order of 10-100 mK. To characterize the HEMT, the relative parameters are proposed to be used. HEMT characteristics were measured at a temperature of 50 mK for the first time. It follows from the reported studies that the power consumption of high-impedance HEMT-based amplifiers can be reduced down to hundreds of nanowatt or even lower.

  13. Assessing Design Activity in Complex CMOS Circuit Design.

    ERIC Educational Resources Information Center

    Biswas, Gautam; And Others

    This report characterizes human problem solving in digital circuit design. Protocols of 11 different designers with varying degrees of training were analyzed by identifying the designers' problem solving strategies and discussing activity patterns that differentiate the designers. These methods are proposed as a tentative basis for assessing…

  14. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    PubMed Central

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D.; Lahvic, Jamie L.; Ranheim, Erik A.; Zon, Leonard I.; Bresnick, Emery H.

    2016-01-01

    Summary Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  15. Active shunt capacitance cancelling oscillator circuit

    DOEpatents

    Wessendorf, Kurt O.

    2003-09-23

    An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.

  16. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  17. A Simple Memristor Model for Circuit Simulations

    NASA Astrophysics Data System (ADS)

    Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team

    This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.

  18. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  19. Complete passive vibration suppression using multi-layered piezoelectric element, inductor, and resistor

    NASA Astrophysics Data System (ADS)

    Yamada, Keisuke

    2017-01-01

    This paper describes passive technique for suppressing vibration in flexible structures using a multi-layered piezoelectric element, an inductor, and a resistor. The objective of using a multi-layered piezoelectric element is to increase its capacitance. A piezoelectric element with a large capacitance value does not require an active electrical circuit to simulate an inductor with a large inductance value. The effect of multi-layering of piezoelectric elements was theoretically analyzed through an equivalent transformation of a multi-layered piezoelectric element into a single-layered piezoelectric element. The governing equations were derived using this equivalent transformation. The effect of the resistances of the inductor and piezoelectric elements were considered because the sum of these resistances may exceed the optimum resistance. The performance of the passive vibration suppression using an LR circuit was compared to that of the method where a resistive circuit is used assuming that the sum of the resistances of the inductor and piezoelectric elements exceeds the optimum resistance. The effectiveness of the proposed method and theoretical analysis was verified through simulations and experiments.

  20. Millimeter And Submillimeter-Wave Integrated Circuits On Quartz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter

    1995-01-01

    Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.

  1. Design of low loss helix circuits for interference fitted and brazed circuits

    NASA Technical Reports Server (NTRS)

    Jacquez, A.

    1983-01-01

    The RF loss properties and thermal capability of brazed helix circuits and interference fitted circuits were evaluated. The objective was to produce design circuits with minimum RF loss and maximum heat transfer. These circuits were to be designed to operate at 10 kV and at 20 GHz using a gamma a approximately equal to 1.0. This represents a circuit diameter of only 0.75 millimeters. The fabrication of this size circuit and the 0.48 millimeter high support rods required considerable refinements in the assembly techniques and fixtures used on lower frequency circuits. The transition from the helices to the waveguide was designed and the circuits were matched from 20 to 40 GHz since the helix design is a broad band circuit and at a gamma a of 1.0 will operate over this band. The loss measurement was a transmission measurement and therefore had two such transitions. This resulting double-ended match required tuning elements to achieve the broad band match and external E-H tuners at each end to optimize the match for each frequency where the loss measurement was made. The test method used was a substitution method where the test fixture was replaced by a calibrated attenuator.

  2. The Electron Runaround: Understanding Electric Circuit Basics Through a Classroom Activity

    NASA Astrophysics Data System (ADS)

    Singh, Vandana

    2010-05-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not completely resolve these misconceptions. Mazur and Knight,2 in particular, separately note that such misconceptions include the notion that electric current on either side of a light bulb in a circuit can be different. Other difficulties and confusions involve understanding why the current in a parallel circuit exceeds the current in a series circuit with the same components, and include the role of the battery (where students may assume wrongly that a dry cell battery is a fixed-current rather than a fixed-voltage device). A simple classroom activity that students can play as a game can resolve these misconceptions, providing an intellectual as well as a hands-on understanding. This paper describes the "Electron Runaround," first developed by the author to teach extremely bright 8-year-old home-schooled children the basics of electric circuits and subsequently altered (according to the required level of instruction) and used for various college physics courses.

  3. Targeting circuits

    PubMed Central

    Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl

    2017-01-01

    Current optogenetic methodology enables precise inhibition or excitation of neural circuits, spanning timescales as needed from the acute (milliseconds) to the chronic (many days or more), for experimental modulation of network activity and animal behavior. Such broad temporal versatility, unique to optogenetic control, is particularly powerful when combined with brain activity measurements that span both acute and chronic timescales as well. This enables, for instance, the study of adaptive circuit dynamics across the intact brain, and tuning interventions to match activity patterns naturally observed during behavior in the same individual. Although the impact of this approach has been greater on basic research than on clinical translation, it is natural to ask if specific neural circuit activity patterns discovered to be involved in controlling adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here we consider the landscape of such ideas related to therapeutic targeting of circuit dynamics, taking note of developments not only in optical but also in ultrasonic, magnetic, and thermal methods. We note the recent emergence of first-in-kind optogenetically-guided clinical outcomes, as well as opportunities related to the integration of interventions and readouts spanning diverse circuit-physiology, molecular, and behavioral modalities. PMID:27104976

  4. Summary of Closed Circuit Television Activities in Medical Education.

    ERIC Educational Resources Information Center

    London Univ. (England). Inst. of Education.

    This 1967 summary of closed circuit television (CCTV) activities in medical education presents descriptive information on 35 different medical institutions in Great Britain. Specific data on CCTV are offered by institution, equipment, and uses under each medical field: anatomy, anaesthetics, geriatrics, medicine, obstretrics and gynaecology,…

  5. Silicon Carbide Integrated Circuit Chip

    NASA Image and Video Library

    2015-02-17

    A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.

  6. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.

    PubMed

    Fosque, Benjamin F; Sun, Yi; Dana, Hod; Yang, Chao-Tsung; Ohyama, Tomoko; Tadross, Michael R; Patel, Ronak; Zlatic, Marta; Kim, Douglas S; Ahrens, Misha B; Jayaraman, Vivek; Looger, Loren L; Schreiter, Eric R

    2015-02-13

    The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies. Copyright © 2015, American Association for the Advancement of Science.

  7. Active-R filter

    DOEpatents

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  8. Ultrasonic modulation of neural circuit activity.

    PubMed

    Tyler, William J; Lani, Shane W; Hwang, Grace M

    2018-06-01

    Ultrasound (US) is recognized for its use in medical imaging as a diagnostic tool. As an acoustic energy source, US has become increasingly appreciated over the past decade for its ability to non-invasively modulate cellular activity including neuronal activity. Data obtained from a host of experimental models has shown that low-intensity US can reversibly modulate the physiological activity of neurons in peripheral nerves, spinal cord, and intact brain circuits. Experimental evidence indicates that acoustic pressures exerted by US act, in part, on mechanosensitive ion channels to modulate activity. While the precise mechanisms of action enabling US to both stimulate and suppress neuronal activity remain to be clarified, there are several advantages conferred by the physics of US that make it an appealing option for neuromodulation. For example, it can be focused with millimeter spatial resolutions through skull bone to deep-brain regions. By increasing our engineering capability to leverage such physical advantages while growing our understanding of how US affects neuronal function, the development of a new generation of non-invasive neurotechnology can be developed using ultrasonic methods. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Solid state remote circuit selector switch

    NASA Technical Reports Server (NTRS)

    Peterson, V. S.

    1970-01-01

    Remote switching circuit utilizes voltage logic to switch on desired circuit. Circuit controls rotating multi-range pressure transducers in jet engine testing and can be used in coded remote circuit activator where sequence of switching has to occur in defined length of time to prevent false or undesired circuit activation.

  10. Locality of interactions for planar memristive circuits

    DOE PAGES

    Caravelli, Francesco

    2017-11-08

    The dynamics of purely memristive circuits has been shown to depend on a projection operator which expresses the Kirchhoff constraints, is naturally non-local in nature, and does represent the interaction between memristors. In the present paper we show that for the case of planar circuits, for which a meaningful Hamming distance can be defined, the elements of such projector can be bounded by exponentially decreasing functions of the distance. We provide a geometrical interpretation of the projector elements in terms of determinants of Dirichlet Laplacian of the dual circuit. For the case of linearized dynamics of the circuit for whichmore » a solution is known, this can be shown to provide a light cone bound for the interaction between memristors. Furthermore, this result establishes a finite speed of propagation of signals across the network, despite the non-local nature of the system.« less

  11. Waveshaping electronic circuit

    NASA Technical Reports Server (NTRS)

    Harper, T. P.

    1971-01-01

    Circuit provides output signal with sinusoidal function in response to bipolar transition of input signal. Instantaneous transition shapes into linear rate of change and linear rate of change shapes into sinusoidal rate of change. Circuit contains only active components; therefore, compatibility with integrated circuit techniques is assured.

  12. The Elusive Memristor: Properties of Basic Electrical Circuits

    ERIC Educational Resources Information Center

    Joglekar, Yogesh N.; Wolf, Stephen J.

    2009-01-01

    We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge "q" and the magnetic flux [phi] in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of…

  13. ELECTRONIC PULSE SCALING CIRCUITS

    DOEpatents

    Cooke-Yarborough, E.H.

    1958-11-18

    Electronic pulse scaling circults of the klnd comprlsing a serles of bi- stable elements connected ln sequence, usually in the form of a rlng so as to be cycllcally repetitive at the highest scallng factor, are described. The scaling circuit comprises a ring system of bi-stable elements each arranged on turn-off to cause, a succeeding element of the ring to be turned-on, and one being arranged on turn-off to cause a further element of the ring to be turned-on. In addition, separate means are provided for applying a turn-off pulse to all the elements simultaneously, and for resetting the elements to a starting condition at the end of each cycle.

  14. A Corticothalamic Circuit Model for Sound Identification in Complex Scenes

    PubMed Central

    Otazu, Gonzalo H.; Leibold, Christian

    2011-01-01

    The identification of the sound sources present in the environment is essential for the survival of many animals. However, these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple sources. The identification of a source under these circumstances is a complex computational problem that is readily solved by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal. PMID:21931668

  15. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  16. Programming mRNA decay to modulate synthetic circuit resource allocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venturelli, Ophelia S.; Tei, Mika; Bauer, Stefan

    Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstratesmore » that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design.« less

  17. Programming mRNA decay to modulate synthetic circuit resource allocation

    DOE PAGES

    Venturelli, Ophelia S.; Tei, Mika; Bauer, Stefan; ...

    2017-04-26

    Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstratesmore » that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design.« less

  18. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    PubMed

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit.

    PubMed

    Zhao, Wenting; Bonem, Matthew; McWhite, Claire; Silberg, Jonathan J; Segatori, Laura

    2014-04-08

    The ubiquitin proteasome system (UPS) has emerged as a drug target for diverse diseases characterized by altered proteostasis, but pharmacological agents that enhance UPS activity have been challenging to establish. Here we report the Deg-On system, a genetic inverter that translates proteasomal degradation of the transcriptional regulator TetR into a fluorescent signal, thereby linking UPS activity to an easily detectable output, which can be tuned using tetracycline. We demonstrate that this circuit responds to modulation of UPS activity in cell culture arising from the inhibitor MG-132 and activator PA28γ. Guided by predictive modelling, we enhanced the circuit's signal sensitivity and dynamic range by introducing a feedback loop that enables self-amplification of TetR. By linking UPS activity to a simple and tunable fluorescence output, these genetic inverters will enable a variety of applications, including screening for UPS activating molecules and selecting for mammalian cells with different levels of proteasome activity.

  20. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    PubMed Central

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  1. Composition and Elution Behavior of Various Elements from Printed Circuit Boards, Cathode-ray Tube Glass, and Liquid-crystal Displays in Waste Consumer Electronics.

    PubMed

    Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka

    2018-01-01

    The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.

  2. Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits

    PubMed Central

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  3. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits.

    PubMed

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca(2+). We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  4. Miniaturized ultrasound imaging probes enabled by CMUT arrays with integrated frontend electronic circuits.

    PubMed

    Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.

  5. Miniaturized Ultrasound Imaging Probes Enabled by CMUT Arrays with Integrated Frontend Electronic Circuits

    PubMed Central

    Khuri-Yakub, B. (Pierre) T.; Oralkan, Ömer; Nikoozadeh, Amin; Wygant, Ira O.; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N.; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O’Donnell, Matthew; Truong, Uyen; Sahn, David J.

    2010-01-01

    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics. PMID:21097106

  6. Chaos in a neural network circuit

    NASA Astrophysics Data System (ADS)

    Kepler, Thomas B.; Datt, Sumeet; Meyer, Robert B.; Abott, L. F.

    1990-12-01

    We have constructed a neural network circuit of four clipped, high-grain, integrating operational amplifiers coupled to each other through an array of digitally programmable resistor ladders (MDACs). In addition to fixed-point and cyclic behavior, the circuit exhibits chaotic behavior with complex strange attractors which are approached through period doubling, intermittent attractor expansion and/or quasiperiodic pathways. Couplings between the nonlinear circuit elements are controlled by a computer which can automatically search through the space of couplings for interesting phenomena. We report some initial statistical results relating the behavior of the network to properties of its coupling matrix. Through these results and further research the circuit should help resolve fundamental issues concerning chaos in neural networks.

  7. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    PubMed Central

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  8. Bidirectional global spontaneous network activity precedes the canonical unidirectional circuit organization in the developing hippocampus.

    PubMed

    Shi, Yulin; Ikrar, Taruna; Olivas, Nicholas D; Xu, Xiangmin

    2014-06-15

    Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  9. Attenuation of Activity in an Endogenous Analgesia Circuit by Ongoing Pain in the Rat

    PubMed Central

    Ferrari, Luiz F.; Gear, Robert W.; Levine, Jon D.

    2010-01-01

    Analgesic efficacy varies depending on the pain syndrome being treated. One reason for this may be a differential effect of individual pain syndromes on the function of endogenous pain control circuits at which these drugs act to produce analgesia. To test this hypothesis we examined the effects of diverse (i.e., ongoing inflammatory, neuropathic, or chronic widespread) pain syndromes on analgesia induced by activation of an opioid-mediated noxious stimulus-induced endogenous pain control circuit. This circuit was activated by subdermal capsaicin injection at a site remote from the site of nociceptive testing. Analgesia was not affected by carrageenan-induced inflammatory pain nor the early-phase of oxaliplatin neuropathy (a complication of cancer chemotherapy). However, the duration of analgesia was markedly shorter in the late-phase of oxaliplatin neuropathy and in alcoholic neuropathy. A model of fibromyalgia syndrome produced by chronic unpredictable stress and proinflammatory cytokines also shortened analgesia duration, but so did the same stress alone. Therefore, since chronic pain can activate neuroendocrine stress axes, we tested whether they are involved in the attenuation of analgesic duration induced by these pain syndromes. Rats in which the sympathoadrenal axis was ablated by adrenal medullectomy showed normal duration pain-induced analgesia in groups with either late-phase oxaliplatin neuropathy, alcoholic neuropathy, or exposure to sound stress. These results support the suggestion that pain syndromes can modulate activity in endogenous pain control circuits, and this effect is sympathoadrenal dependent. PMID:20943910

  10. Sub-millimeter-Wave Equivalent Circuit Model for External Parasitics in Double-Finger HEMT Topologies

    NASA Astrophysics Data System (ADS)

    Karisan, Yasir; Caglayan, Cosan; Sertel, Kubilay

    2018-02-01

    We present a novel distributed equivalent circuit that incorporates a three-way-coupled transmission line to accurately capture the external parasitics of double-finger high electron mobility transistor (HEMT) topologies up to 750 GHz. A six-step systematic parameter extraction procedure is used to determine the equivalent circuit elements for a representative device layout. The accuracy of the proposed approach is validated in the 90-750 GHz band through comparisons between measured data (via non-contact probing) and full-wave simulations, as well as the equivalent circuit response. Subsequently, a semi-distributed active device model is incorporated into the proposed parasitic circuit to demonstrate that the three-way-coupled transmission line model effectively predicts the adverse effect of parasitic components on the sub-mmW performance in an amplifier setting.

  11. Determining distinct circuit in complete graphs using permutation

    NASA Astrophysics Data System (ADS)

    Karim, Sharmila; Ibrahim, Haslinda; Darus, Maizon Mohd

    2017-11-01

    A Half Butterfly Method (HBM) is a method introduced to construct the distinct circuits in complete graphs where used the concept of isomorphism. The Half Butterfly Method was applied in the field of combinatorics such as in listing permutations of n elements. However the method of determining distinct circuit using HBM for n > 4 is become tedious. Thus, in this paper, we present the method of generating distinct circuit using permutation.

  12. Pulse Detecting Genetic Circuit - A New Design Approach.

    PubMed

    Noman, Nasimul; Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse-analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event.

  13. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  14. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  15. Decision making in recurrent neuronal circuits.

    PubMed

    Wang, Xiao-Jing

    2008-10-23

    Decision making has recently emerged as a central theme in neurophysiological studies of cognition, and experimental and computational work has led to the proposal of a cortical circuit mechanism of elemental decision computations. This mechanism depends on slow recurrent synaptic excitation balanced by fast feedback inhibition, which not only instantiates attractor states for forming categorical choices but also long transients for gradually accumulating evidence in favor of or against alternative options. Such a circuit endowed with reward-dependent synaptic plasticity is able to produce adaptive choice behavior. While decision threshold is a core concept for reaction time tasks, it can be dissociated from a general decision rule. Moreover, perceptual decisions and value-based economic choices are described within a unified framework in which probabilistic choices result from irregular neuronal activity as well as iterative interactions of a decision maker with an uncertain environment or other unpredictable decision makers in a social group.

  16. Electrical and Optical Activation of Mesoscale Neural Circuits with Implications for Coding.

    PubMed

    Millard, Daniel C; Whitmire, Clarissa J; Gollnick, Clare A; Rozell, Christopher J; Stanley, Garrett B

    2015-11-25

    Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these

  17. Automatic ranging circuit for a digital panel meter

    DOEpatents

    Mueller, Theodore R.; Ross, Harley H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to insure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit.

  18. An approach to determination of shunt circuits parameters for damping vibrations

    NASA Astrophysics Data System (ADS)

    Matveenko; Iurlova; Oshmarin; Sevodina; Iurlov

    2018-04-01

    This paper considers the problem of natural vibrations of a deformable structure containing elements made of piezomaterials. The piezoelectric elements are connected through electrodes to an external electric circuit, which consists of resistive, inductive and capacitive elements. Based on the solution of this problem, the parameters of external electric circuits are searched for to allow optimal passive control of the structural vibrations. The solution to the problem is complex natural vibration frequencies, the real part of which corresponds to the circular eigenfrequency of vibrations and the imaginary part corresponds to its damping rate (damping ratio). The analysis of behaviour of the imaginary parts of complex eigenfrequencies in the space of external circuit parameters allows one to damp given modes of structure vibrations. The effectiveness of the proposed approach is demonstrated using a cantilever-clamped plate and a shell structure in the form of a semi-cylinder connected to series resonant ? circuits.

  19. Lockout device for high voltage circuit breaker

    DOEpatents

    Kozlowski, Lawrence J.; Shirey, Lawrence A.

    1993-01-01

    An improved lockout assembly is provided for a circuit breaker to lock the switch handle into a selected switch position. The lockout assembly includes two main elements, each having a respective foot for engaging a portion of the upper housing wall of the circuit breaker. The first foot is inserted into a groove in the upper housing wall, and the second foot is inserted into an adjacent aperture (e.g., a slot) in the upper housing wall. The first foot is slid under and into engagement with a first portion, and the second foot is slid under and into engagement with a second portion of the upper housing wall. At the same time the repsective two feet are placed in engagement with the respective portions of the upper housing wall, two holes, one on each of the respective two main elements of the assembly, are placed in registration; and a locking device, such as a special scissors equipped with a padlock, is installed through the registered holes to secure the lockout assembly on the circuit breaker. When the lockout assembly of the invention is secured on the circuit breaker, the switch handle of the circuit breaker is locked into the selected switch position and prevented from being switched to another switch position.

  20. Lockout device for high voltage circuit breaker

    DOEpatents

    Kozlowski, L.J.; Shirey, L.A.

    1993-01-26

    An improved lockout assembly is provided for a circuit breaker to lock the switch handle into a selected switch position. The lockout assembly includes two main elements, each having a respective foot for engaging a portion of the upper housing wall of the circuit breaker. The first foot is inserted into a groove in the upper housing wall, and the second foot is inserted into an adjacent aperture (e.g., a slot) in the upper housing wall. The first foot is slid under and into engagement with a first portion, and the second foot is slid under and into engagement with a second portion of the upper housing wall. At the same time the respective two feet are placed in engagement with the respective portions of the upper housing wall, two holes, one on each of the respective two main elements of the assembly, are placed in registration; and a locking device, such as a special scissors equipped with a padlock, is installed through the registered holes to secure the lockout assembly on the circuit breaker. When the lockout assembly of the invention is secured on the circuit breaker, the switch handle of the circuit breaker is locked into the selected switch position and prevented from being switched to another switch position.

  1. Remote reset circuit

    DOEpatents

    Gritzo, Russell E.

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  2. Cancellation Circuit for Transmit-Receive Isolation

    DTIC Science & Technology

    2010-09-01

    non -ideal hardware, and the performance of the circuit is limited. One of the major problems is the leakage from the circulator. The leakage disrupts...cancellation circuit was investigated by a series of simulations using Agilent ADS (Agilent Advanced Design System), and hardware tests were conducted to...developed in the WDDPA application, allowing coherent processing of the data from all elements. There are limitations encountered due to non -ideal

  3. Microwave Photon Detector in Circuit QED

    NASA Astrophysics Data System (ADS)

    Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique

    2009-03-01

    In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.

  4. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  5. Remote reset circuit

    DOEpatents

    Gritzo, R.E.

    1985-09-12

    A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.

  6. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  7. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  8. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  9. Sequential power-up circuit

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable.

  10. Sequential power-up circuit

    DOEpatents

    Kronberg, J.W.

    1992-06-02

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable. 2 figs.

  11. Circuit engineering principles for construction of bipolar large-scale integrated circuit storage devices and very large-scale main memory

    NASA Astrophysics Data System (ADS)

    Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.

    1984-06-01

    Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.

  12. Pulse Detecting Genetic Circuit – A New Design Approach

    PubMed Central

    Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C.

    2016-01-01

    A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse–analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event. PMID:27907045

  13. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  14. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  15. Scaling up digital circuit computation with DNA strand displacement cascades.

    PubMed

    Qian, Lulu; Winfree, Erik

    2011-06-03

    To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.

  16. Gate drive latching circuit for an auxiliary resonant commutation circuit

    NASA Technical Reports Server (NTRS)

    Delgado, Eladio Clemente (Inventor); Kheraluwala, Mustansir Hussainy (Inventor)

    1999-01-01

    A gate drive latching circuit for an auxiliary resonant commutation circuit for a power switching inverter includes a current monitor circuit providing a current signal to a pair of analog comparators to implement latching of one of a pair of auxiliary switching devices which are used to provide commutation current for commutating switching inverters in the circuit. Each of the pair of comparators feeds a latching circuit which responds to an active one of the comparators for latching the associated gate drive circuit for one of the pair of auxiliary commutating switches. An initial firing signal is applied to each of the commutating switches to gate each into conduction and the resulting current is monitored to determine current direction and therefore the one of the switches which is carrying current. The comparator provides a latching signal to the one of the auxiliary power switches which is actually conducting current and latches that particular power switch into an on state for the duration of current through the device. The latching circuit is so designed that the only time one of the auxiliary switching devices can be latched on is during the duration of an initial firing command signal.

  17. A programming language for composable DNA circuits.

    PubMed

    Phillips, Andrew; Cardelli, Luca

    2009-08-06

    Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing.

  18. A programming language for composable DNA circuits

    PubMed Central

    Phillips, Andrew; Cardelli, Luca

    2009-01-01

    Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing. PMID:19535415

  19. Variable Delay Element For Jitter Control In High Speed Data Links

    DOEpatents

    Livolsi, Robert R.

    2002-06-11

    A circuit and method for decreasing the amount of jitter present at the receiver input of high speed data links which uses a driver circuit for input from a high speed data link which comprises a logic circuit having a first section (1) which provides data latches, a second section (2) which provides a circuit generates a pre-destorted output and for compensating for level dependent jitter having an OR function element and a NOR function element each of which is coupled to two inputs and to a variable delay element as an input which provides a bi-modal delay for pulse width pre-distortion, a third section (3) which provides a muxing circuit, and a forth section (4) for clock distribution in the driver circuit. A fifth section is used for logic testing the driver circuit.

  20. Microwave integrated circuits for space applications

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  1. Principles of cell-free genetic circuit assembly.

    PubMed

    Noireaux, Vincent; Bar-Ziv, Roy; Libchaber, Albert

    2003-10-28

    Cell-free genetic circuit elements were constructed in a transcription-translation extract. We engineered transcriptional activation and repression cascades, in which the protein product of each stage is the input required to drive or block the following stage. Although we can find regions of linear response for single stages, cascading to subsequent stages requires working in nonlinear regimes. Substantial time delays and dramatic decreases in output production are incurred with each additional stage because of a bottleneck at the translation machinery. Faster turnover of RNA message can relieve competition between genes and stabilize output against variations in input and parameters.

  2. Synthesis of energy-efficient FSMs implemented in PLD circuits

    NASA Astrophysics Data System (ADS)

    Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz

    2017-11-01

    The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.

  3. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    PubMed

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  4. A novel function for Wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal-hippocampal circuit.

    PubMed

    Oliva, Carolina A; Inestrosa, Nibaldo C

    2015-07-01

    During early and late postnatal developments, the establishment of functional neuronal connectivity depends on molecules like Wnt that help the recently formed synapses to establish and consolidate their new cellular interactions. However, unlike other molecules, whether Wnt can modulate the firing properties of cells is unknown. Here, for the first time we explore the physiological effect of the canonical and non-canonical Wnt pathways on a circuit that is currently generating oscillatory activity, the entorhinal cortex-hippocampal circuit. Our results indicate that Wnt pathways have strong influence in the circuital and cellular properties depending on the Wnt protein isoforms, concentration, and type of neuronal circuit. Antibodies against canonical and non-canonical ligands, as well as WASP-1 and sFRP-2, demonstrate that constitutive release of Wnts contributes to the maintenance of the network and intrinsic properties of the circuit. Furthermore, we found that the excess of Wnt3a or the permanent intracellular activation of the pathway with BIO-6 accelerates the period of the oscillation by disrupting the oscillatory units (Up states) in short units, presumably by affecting the synaptic mechanisms that couples neurons into the oscillatory cycle, but without affecting the spike generation. Instead, low doses of Wnt5a increase the period of the oscillation in EC by incorporating new cells into the network activity, probably modifying firing activity in other places of the circuit. Moreover, we found that Wnt signaling operates under different principles in the hippocampus. Using pyrvinium pamoate, a Wnt/β-catenin dependent pathway inhibitor, we demonstrated that this pathway is essential to keep the firing activity in the circuit CA3, and in less degree of CA1 circuit. However, CA1 circuit possesses homeostatic mechanisms to up-regulate the firing activity when it has been suppressed in CA3, and to down-modulate the cellular excitability when exacerbated

  5. LC-circuit calorimetry

    NASA Astrophysics Data System (ADS)

    Bossen, O.; Schilling, A.

    2011-09-01

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical uncertainty that decreases as ˜ t_m^{ -3/2} with measuring time tm, as opposed to a corresponding uncertainty ˜ t_m^{-1/2} in the conventional alternating current method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  6. Quantum memristor in a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Salmilehto, Juha; Sanz, Mikel; di Ventra, Massimiliano; Solano, Enrique

    Memristors, resistive elements that retain information of their past, have garnered interest due to their paradigm-changing potential in information processing and electronics. The emergent hysteretic behaviour allows for novel architectural applications and has recently been classically demonstrated in a simplified superconducting setup using the phase-dependent conductance in the tunnel-junction-microscopic model. In this contribution, we present a truly quantum model for a memristor constructed using established elements and techniques in superconducting nanoelectronics, and explore the parameters for feasible operation as well as refine the methods for quantifying the memory retention. In particular, the memristive behaviour is shown to arise from quasiparticle-induced tunneling in the full dissipative model and can be observed in the phase-driven tunneling current. The relevant hysteretic behaviour should be observable using current state-of-the-art measurements for detecting quasiparticle excitations. Our theoretical findings constitute the first quantum memristor in a superconducting circuit and act as the starting point for designing further circuit elements that have non-Markovian characteristics The authors acknowledge support from the CCQED EU project and the Finnish Cultural Foundation.

  7. Bypassing An Open-Circuit Power Cell

    NASA Technical Reports Server (NTRS)

    Wannemacher, Harry E.

    1994-01-01

    Collection of bypass circuits enables battery consisting series string of cells to continue to function when one of its cells fails in open-circuit (high-resistance) condition. Basic idea simply to shunt current around defective cell to prevent open circuit from turning off battery altogether. Bypass circuits dissipate little power and are nearly immune to false activation.

  8. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors

    PubMed Central

    Nieh, Edward H.; Kim, Sung-Yon; Namburi, Praneeth; Tye, Kay M.

    2014-01-01

    The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we

  9. Hybridization of active and passive elements for planar photonic components and interconnects

    NASA Astrophysics Data System (ADS)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  10. Early Correlated Network Activity in the Hippocampus: Its Putative Role in Shaping Neuronal Circuits.

    PubMed

    Griguoli, Marilena; Cherubini, Enrico

    2017-01-01

    Synchronized neuronal activity occurring at different developmental stages in various brain structures represents a hallmark of developmental circuits. This activity, which differs in its specific patterns among animal species may play a crucial role in de novo formation and in shaping neuronal networks. In the rodent hippocampus in vitro , the so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal synchrony preceding more organized forms of activity such as oscillations in the theta and gamma frequency range. GDPs are generated at the network level by the interaction of the neurotransmitters glutamate and GABA which, immediately after birth, exert both a depolarizing and excitatory action on their targets. GDPs are triggered by GABAergic interneurons, which in virtue of their extensive axonal branching operate as functional hubs to synchronize large ensembles of cells. Intrinsic bursting activity, driven by a persistent sodium conductance and facilitated by the low expression of Kv7.2 and Kv7.3 channel subunits, responsible for I M , exerts a permissive role in GDP generation. Here, we discuss how GDPs are generated in a probabilistic way when neuronal excitability within a local circuit reaches a certain threshold and how GDP-associated calcium transients act as coincident detectors for enhancing synaptic strength at emerging GABAergic and glutamatergic synapses. We discuss the possible in vivo correlate of this activity. Finally, we debate recent data showing how, in several animal models of neuropsychiatric disorders including autism, a GDPs dysfunction is associated to morphological alterations of neuronal circuits and behavioral deficits reminiscent of those observed in patients.

  11. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  12. Equivalent circuit parameters of nickel/metal hydride batteries from sparse impedance measurements

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan Rao; Singh, Pritpal

    In a recent communication, a method for extracting the equivalent circuit parameters of a lead acid battery from sparse (only three) impedance spectroscopy observations at three different frequencies was proposed. It was based on an equivalent circuit consisting of a bulk resistance, a reaction resistance and a constant phase element (CPE). Such a circuit is a very appropriate model of a lead-acid cell at high state of charge (SOC). This paper is a sequel to it and presents an application of it in case of nickel/metal hydride (Ni/MH) batteries, which also at high SOC are represented by the same circuit configuration. But when the SOC of a Ni/MH battery under interrogation goes low, The EIS curve has a positive slope at the low frequency end and our technique yields complex values for the otherwise real circuit parameters, suggesting the need for additional elements in the equivalent circuit and a definite relationship between parameter consistency and SOC. To improvise the previous algorithm, in order that it works reasonably well at both high and low SOCs, we propose three more measurements—two at very low frequencies to include the Warburg response and one at a high frequency to model the series inductance, in addition to the three in the mid frequency band—totally six measurements. In most of the today's instrumentation, it is the user who should choose the circuit configuration and the number of frequencies where impedance should be measured and the accompanying software performs data fitting by complex nonlinear least squares. The proposed method has built into it an SOC-based decision-making capability—both to choose the circuit configuration and to estimate the values of the circuit elements.

  13. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  14. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    PubMed

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  15. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses.

    PubMed

    Hall, Kelley D; Lifshitz, Jonathan

    2010-04-06

    Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity. Copyright 2010 Elsevier B.V. All

  16. Dissipation in microwave quantum circuits with hybrid nanowire Josephson elements

    NASA Astrophysics Data System (ADS)

    Mugnai, D.; Ranfagni, A.; Agresti, A.

    2017-04-01

    Recent experiments on hybrid Josephson junctions have made the argument a topical subject. However, a quantity which remains still unknown is the tunneling (or response) time, which is strictly connected to the role that dissipation plays in the dynamics of the complete system. A simple way for evaluating dissipation in microwave circuits, previously developed for describing the dynamics of conventional Josephson junctions, is now presented as suitable for application even to non-conventional junctions. The method is based on a stochastic model, as derived from the telegrapher's equation, and is particularly devoted to the case of junctions loaded by real transmission lines. When the load is constituted by lumped-constant circuits, a connection with the stochastic model is also maintained. The theoretical model demonstrated its ability to analyze both classically-allowed and forbidden processes, and has found a wide field of applicability, namely in all cases in which dissipative effects cannot be ignored.

  17. Connector and electronic circuit assembly for improved wet insulation resistance

    DOEpatents

    Reese, Jason A.; Teli, Samar R.; Keenihan, James R.; Langmaid, Joseph A.; Maak, Kevin D.; Mills, Michael E.; Plum, Timothy C.; Ramesh, Narayan

    2016-07-19

    The present invention is premised upon a connector and electronic circuit assembly (130) at least partially encased in a polymeric frame (200). The assembly including at least: a connector housing (230); at least one electrical connector (330); at least one electronic circuit component (430); and at least one barrier element (530).

  18. Multichannel, Active Low-Pass Filters

    NASA Technical Reports Server (NTRS)

    Lev, James J.

    1989-01-01

    Multichannel integrated circuits cascaded to obtain matched characteristics. Gain and phase characteristics of channels of multichannel, multistage, active, low-pass filter matched by making filter of cascaded multichannel integrated-circuit operational amplifiers. Concept takes advantage of inherent equality of electrical characteristics of nominally-identical circuit elements made on same integrated-circuit chip. Characteristics of channels vary identically with changes in temperature. If additional matched channels needed, chips containing more than two operational amplifiers apiece (e.g., commercial quad operational amplifliers) used. Concept applicable to variety of equipment requiring matched gain and phase in multiple channels - radar, test instruments, communication circuits, and equipment for electronic countermeasures.

  19. Transcriptional activity of transposable elements in coelacanth.

    PubMed

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity. © 2013 Wiley Periodicals, Inc.

  20. Auto-programmable impulse neural circuits

    NASA Technical Reports Server (NTRS)

    Watula, D.; Meador, J.

    1990-01-01

    Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.

  1. From circuits to behaviour in the amygdala

    PubMed Central

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  2. 78 FR 37203 - Authorization of Production Activity; Subzone 196A; TTI, Inc. (Electromechanical and Circuit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-20-2013] Authorization of Production Activity; Subzone 196A; TTI, Inc. (Electromechanical and Circuit Protection Devices Production/Kitting); Fort Worth, Texas On February 13, 2013, TTI, Inc. submitted a notification of proposed production activity to the...

  3. Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.

    PubMed

    Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa

    2005-12-01

    Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.

  4. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    PubMed Central

    Doll, Caleb A.; Broadie, Kendal

    2014-01-01

    Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model. PMID:24570656

  5. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  6. Adapting Aquatic Circuit Training for Special Populations.

    ERIC Educational Resources Information Center

    Thome, Kathleen

    1980-01-01

    The author discusses how land activities can be adapted to water so that individuals with handicapping conditions can participate in circuit training activities. An initial section lists such organizational procedures as providing vocal and/or visual cues for activities, having assistants accompany the performers throughout the circuit, and…

  7. Unidirectional invisibility induced by parity-time symmetric circuit

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Fu, Jiahui; Wu, Bian; Li, Rujiang; Zeng, Qingsheng; Yin, Xinhua; Wu, Qun; Gao, Lei; Chen, Wan; Wang, Zhefei; Liang, Zhiming; Li, Ao; Ma, Ruyu

    2017-01-01

    Parity-time (PT) symmetric structures present the unidirectional invisibility at the spontaneous PT-symmetry breaking point. In this paper, we propose a PT-symmetric circuit consisting of a resistor and a microwave tunnel diode (TD) which represent the attenuation and amplification, respectively. Based on the scattering matrix method, the circuit can exhibit an ideal unidirectional performance at the spontaneous PT-symmetry breaking point by tuning the transmission lines between the lumped elements. Additionally, the resistance of the reactance component can alter the bandwidth of the unidirectional invisibility flexibly. Furthermore, the electromagnetic simulation for the proposed circuit validates the unidirectional invisibility and the synchronization with the input energy well. Our work not only provides an unidirectional invisible circuit based on PT-symmetry, but also proposes a potential solution for the extremely selective filter or cloaking applications.

  8. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as

  9. Dual Transformer Model based on Standard Circuit Elements for the Study of Low- and Mid-frequency Transients

    NASA Astrophysics Data System (ADS)

    Jazebi, Saeed

    iron core magnetizing characteristic is modified with the accurate measurement of the air-core inductance. The air-core inductance is measured using a non-ideal low-power rectifier. Its dc output serves to drive the transformer into deep saturation, and its ripple provides low-amplitude variable excitation. The principal advantage of this method is its simplicity. To model the eddy current effects in the windings, a novel equivalent circuit is proposed. The circuit is derived from the principle of duality and therefore, matches the electromagnetic physical behavior of the transformer windings. It properly models the flux paths and current distribution from dc to MHz. The model is synthesized from a non-uniform concentric discretization of the windings. Concise guidelines are given to optimally calculate the width of the sub-divisions for various transient simulations. To compute the circuit parameters only information about the geometry of the windings and about their material properties is needed. The calculation of the circuit parameters does not require an iterative process. Therefore, the parameters are always real, positive, and free from convergence problems. The proposed model is tested with single-phase transformers for the calculation of magnetizing inrush currents, series ferroresonance, and Geomagnetic Induced Currents (GIC). The electromagnetic transient response of the model is compared to laboratory measurements for validation. Also, 3D finite element simulations are used to validate the electromagnetic behavior of the transformer model. Large manufacturer of transformers, power system designers, and electrical utility companies can benefit from the new model. It simplifies the design and optimization of the transformers' insulation, thereby reducing cost, and enhancing reliability of the system. The model could also be used for inrush current and differential protection studies, geomagnetic induced current studies, harmonic penetration studies, and

  10. Circuit Training: Exercise That Counts.

    ERIC Educational Resources Information Center

    Mosher, Patricia E.; Underwood, Steven A.

    1992-01-01

    Describes how to assess and implement aerobic circuit training, which involves multistation weight training apparatus, handweights, and aerobic activity equipment to increase cardiovascular fitness and strength. Designed for high school and college students, the circuit requires 25 minutes to complete. (SM)

  11. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    NASA Astrophysics Data System (ADS)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  12. Programmable nanowire circuits for nanoprocessors.

    PubMed

    Yan, Hao; Choe, Hwan Sung; Nam, SungWoo; Hu, Yongjie; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M

    2011-02-10

    A nanoprocessor constructed from intrinsically nanometre-scale building blocks is an essential component for controlling memory, nanosensors and other functions proposed for nanosystems assembled from the bottom up. Important steps towards this goal over the past fifteen years include the realization of simple logic gates with individually assembled semiconductor nanowires and carbon nanotubes, but with only 16 devices or fewer and a single function for each circuit. Recently, logic circuits also have been demonstrated that use two or three elements of a one-dimensional memristor array, although such passive devices without gain are difficult to cascade. These circuits fall short of the requirements for a scalable, multifunctional nanoprocessor owing to challenges in materials, assembly and architecture on the nanoscale. Here we describe the design, fabrication and use of programmable and scalable logic tiles for nanoprocessors that surmount these hurdles. The tiles were built from programmable, non-volatile nanowire transistor arrays. Ge/Si core/shell nanowires coupled to designed dielectric shells yielded single-nanowire, non-volatile field-effect transistors (FETs) with uniform, programmable threshold voltages and the capability to drive cascaded elements. We developed an architecture to integrate the programmable nanowire FETs and define a logic tile consisting of two interconnected arrays with 496 functional configurable FET nodes in an area of ∼960 μm(2). The logic tile was programmed and operated first as a full adder with a maximal voltage gain of ten and input-output voltage matching. Then we showed that the same logic tile can be reprogrammed and used to demonstrate full-subtractor, multiplexer, demultiplexer and clocked D-latch functions. These results represent a significant advance in the complexity and functionality of nanoelectronic circuits built from the bottom up with a tiled architecture that could be cascaded to realize fully integrated

  13. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    PubMed

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  14. Embedded Touch Sensing Circuit Using Mutual Capacitance for Active-Matrix Organic Light-Emitting Diode Display

    NASA Astrophysics Data System (ADS)

    Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun

    2011-03-01

    We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.

  15. Regulation of P-element transposase activity in Drosophila melanogaster by hobo transgenes that contain KP elements.

    PubMed Central

    Simmons, Michael J; Haley, Kevin J; Grimes, Craig D; Raymond, John D; Fong, Joseph C L

    2002-01-01

    Fusions between the Drosophila hsp70 promoter and three different incomplete P elements, KP, SP, and BP1, were inserted into the Drosophila genome by means of hobo transformation vectors and the resulting transgenic stocks were tested for repression of P-element transposase activity. Only the H(hsp/KP) transgenes repressed transposase activity, and the degree of repression was comparable to that of a naturally occurring KP element. The KP transgenes repressed transposase activity both with and without heat-shock treatments. Both the KP element and H(hsp/KP) transgenes repressed the transposase activity encoded by the modified P element in the P(ry(+), Delta2-3)99B transgene more effectively than that encoded by the complete P element in the H(hsp/CP)2 transgene even though the P(ry(+), Delta2-3)99B transgene was the stronger transposase source. Repression of both transposase sources appeared to be due to a zygotic effect of the KP element or transgene. There was no evidence for repression by a strictly maternal effect; nor was there any evidence for enhancement of KP repression by the joint maternal transmission of H(hsp/KP) and H(hsp/CP) transgenes. These results are consistent with the idea that KP-mediated repression of P-element activity involves a KP-repressor polypeptide that is not maternally transmitted and that KP-mediated repression is not strengthened by the 66-kD repressor produced by complete P elements through alternate splicing of their RNA. PMID:12019235

  16. Interconnect-free parallel logic circuits in a single mechanical resonator

    PubMed Central

    Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2011-01-01

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator. PMID:21326230

  17. Interconnect-free parallel logic circuits in a single mechanical resonator.

    PubMed

    Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H

    2011-02-15

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

  18. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  19. Batch-fabricated high-performance graphene Hall elements

    PubMed Central

    Xu, Huilong; Zhang, Zhiyong; Shi, Runbo; Liu, Honggang; Wang, Zhenxing; Wang, Sheng; Peng, Lian-Mao

    2013-01-01

    Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability. PMID:23383375

  20. Equivalent circuit consideration of frequency-shift-type acceleration sensor

    NASA Astrophysics Data System (ADS)

    Sasaki, Yoshifumi; Sugawara, Sumio; Kudo, Subaru

    2018-07-01

    In this paper, an electrical equivalent circuit for the piezoelectrically driven frequency-shift-type acceleration sensor model is represented, and the equivalent circuit constants including the effect of the axial force are clarified for the first time. The results calculated by the finite element method are compared with the experimentally measured ones of the one-axis sensor of trial production. The result shows that the analyzed values almost agree with the measured ones, and that the equivalent circuit representation of the sensor is useful for electrical engineers in order to easily analyze the characteristics of the sensors.

  1. Hybrid Direct-Current Circuit Breaker

    NASA Technical Reports Server (NTRS)

    Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)

    2017-01-01

    A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.

  2. State-variable analysis of non-linear circuits with a desk computer

    NASA Technical Reports Server (NTRS)

    Cohen, E.

    1981-01-01

    State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.

  3. Degradation of organic pollutants by Ag, Cu and Sn doped waste non-metallic printed circuit boards.

    PubMed

    Ramaswamy, Kadari; Radha, Velchuri; Malathi, M; Vithal, Muga; Munirathnam, Nagegownivari R

    2017-02-01

    The disposal and reuse of waste printed circuit boards have been the major global concerns. Printed circuit boards, a form of Electronic waste (hereafter e-waste), have been chemically processed, doped with Ag + , Cu 2+ and Sn 2+ , and used as visible light photocatalysts against the degradation of methylene blue and methyl violet. The elemental analyses of pristine and metal doped printed circuit board were obtained using energy dispersive X-ray fluorescence (EDXRF) spectra and inductively coupled plasma optical emission spectroscopy (ICP-OES). The morphology of parent and doped printed circuit board was obtained from scanning electron microscopy (SEM) measurements. The photocatalytic activity of parent and metal doped samples was carried out for the decomposition of organic pollutants, methylene blue and methyl violet, under visible light irradiation. Metal doped waste printed circuit boards (WPCBs) have shown higher photocatalytic activity against the degradation of methyl violet and methylene blue under visible light irradiation. Scavenger experiments were performed to identify the reactive intermediates responsible for the degradation of methylene blue and methyl violet. The reactive species responsible for the degradation of MV and MB were found to be holes and hydroxyl radicals. A possible mechanism of degradation of methylene blue and methyl violet is given. The stability and reusability of the catalysts are also investigated. Copyright © 2016. Published by Elsevier Ltd.

  4. An injection and mixing element for delivery and monitoring of inhaled nitric oxide.

    PubMed

    Martin, Andrew R; Jackson, Chris; Fromont, Samuel; Pont, Chloe; Katz, Ira M; Caillobotte, Georges

    2016-08-30

    Inhaled nitric oxide (NO) is a selective pulmonary vasodilator used primarily in the critical care setting for patients concurrently supported by invasive or noninvasive positive pressure ventilation. NO delivery devices interface with ventilator breathing circuits to inject NO in proportion with the flow of air/oxygen through the circuit, in order to maintain a constant, target concentration of inhaled NO. In the present article, a NO injection and mixing element is presented. The device borrows from the design of static elements to promote rapid mixing of injected NO-containing gas with breathing circuit gases. Bench experiments are reported to demonstrate the improved mixing afforded by the injection and mixing element, as compared with conventional breathing circuit adapters, for NO injection into breathing circuits. Computational fluid dynamics simulations are also presented to illustrate mixing patterns and nitrogen dioxide production within the element. Over the range of air flow rates and target NO concentrations investigated, mixing length, defined as the downstream distance required for NO concentration to reach within ±5 % of the target concentration, was as high as 47 cm for the conventional breathing circuit adapters, but did not exceed 7.8 cm for the injection and mixing element. The injection and mixing element has potential to improve ease of use, compatibility and safety of inhaled NO administration with mechanical ventilators and gas delivery devices.

  5. 49 CFR 236.576 - Roadway element.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Roadway element. 236.576 Section 236.576..., Train Control and Cab Signal Systems Inspection and Tests; Roadway § 236.576 Roadway element. Roadway elements, except track circuits, including those for test purposes, shall be gaged monthly for height and...

  6. 49 CFR 236.576 - Roadway element.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Roadway element. 236.576 Section 236.576..., Train Control and Cab Signal Systems Inspection and Tests; Roadway § 236.576 Roadway element. Roadway elements, except track circuits, including those for test purposes, shall be gaged monthly for height and...

  7. 49 CFR 236.576 - Roadway element.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Roadway element. 236.576 Section 236.576..., Train Control and Cab Signal Systems Inspection and Tests; Roadway § 236.576 Roadway element. Roadway elements, except track circuits, including those for test purposes, shall be gaged monthly for height and...

  8. Apparatus including a plurality of spaced transformers for locating short circuits in cables

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J. (Inventor)

    1978-01-01

    A cable fault locator is described for sensing faults such as short circuits in power cables. The apparatus includes a plurality of current transformers strategically located along a cable. Trigger circuits are connected to each of the current transformers for placing a resistor in series with a resistive element responsive to an abnormally high current flowing through that portion of the cable. By measuring the voltage drop across the resistive element, the location of the fault can be determined.

  9. Placement of clock gates in time-of-flight optoelectronic circuits

    NASA Astrophysics Data System (ADS)

    Feehrer, John R.; Jordan, Harry F.

    1995-12-01

    Time-of-flight synchronized optoelectronic circuits capitalize on the highly controllable delays of optical waveguides. Circuits have no latches; synchronization is achieved by adjustment of the lengths of waveguides that connect circuit elements. Clock gating and pulse stretching are used to restore timing and power. A functional circuit requires that every feedback loop contain at least one clock gate to prevent cumulative timing drift and power loss. A designer specifies an ideal circuit, which contains no or very few clock gates. To make the circuit functional, we must identify locations in which to place clock gates. Because clock gates are expensive, add area, and increase delay, a minimal set of locations is desired. We cast this problem in graph-theoretical form as the minimum feedback edge set problem and solve it by using an adaptation of an algorithm proposed in 1966 [IEEE Trans. Circuit Theory CT-13, 399 (1966)]. We discuss a computer-aided-design implementation of the algorithm that reduces computational complexity and demonstrate it on a set of circuits.

  10. Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays.

    PubMed

    Molero, Carlos; Rodríguez-Berral, Raúl; Mesa, Francisco; Medina, Francisco; Yakovlev, Alexander B

    2016-01-01

    A wideband equivalent circuit is proposed for the accurate analysis of scattering from a set of stacked slit gratings illuminated by a plane wave with transverse magnetic or electric polarization that impinges normally or obliquely along one of the principal planes of the structure. The slit gratings are printed on dielectric slabs of arbitrary thickness, including the case of closely spaced gratings that interact by higher-order modes. A Π-circuit topology is obtained for a pair of coupled arrays, with fully analytical expressions for all the circuit elements. This equivalent Π circuit is employed as the basis to derive the equivalent circuit of finite stacks with any given number of gratings. Analytical expressions for the Brillouin diagram and the Bloch impedance are also obtained for infinite periodic stacks.

  11. On the origin of reproducible sequential activity in neural circuits

    NASA Astrophysics Data System (ADS)

    Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  12. On the origin of reproducible sequential activity in neural circuits.

    PubMed

    Afraimovich, V S; Zhigulin, V P; Rabinovich, M I

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  13. Elements of active vibration control for rotating machinery

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  14. Characteristic and intermingled neocortical circuits encode different visual object discriminations.

    PubMed

    Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I

    2017-07-28

    Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Circuit Training.

    ERIC Educational Resources Information Center

    Nelson, Jane B.

    1998-01-01

    Describes a research-based activity for high school physics students in which they build an LC circuit and find its resonant frequency of oscillation using an oscilloscope. Includes a diagram of the apparatus and an explanation of the procedures. (DDR)

  16. Active quench and reset integrated circuit with novel hold-off time control logic for Geiger-mode avalanche photodiodes.

    PubMed

    Deng, Shijie; Morrison, Alan P

    2012-09-15

    This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 μm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.

  17. The tapered slot antenna - A new integrated element for millimeter-wave applications

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Kim, Young-Sik; Korzeniowski, T. L.; Kollberg, Erik L.; Johansson, Joakim F.

    1989-01-01

    Tapered slot antennas (TSAs) with a number of potential applications as single elements and focal-plane arrays are discussed. TSAs are fabricated with photolithographic techniques and integrated in either hybrid or MMIC circuits with receiver or transmitter components. They offer considerably narrower beams than other integrated antenna elements and have high aperture efficiency and packing density as array elements. Both the circuit and radiation properties of TSAs are reviewed. Topics covered include: antenna beamwidth, directivity, and gain of single-element TSAs; their beam shape and the effect of different taper shapes; and the input impedance and the effects of using thick dielectrics. These characteristics are also given for TSA arrays, as are the circuit properties of the array elements. Different array structures and their applications are also described.

  18. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  19. Coplanar monolithic integrated circuits for low-noise communication and radar systems

    NASA Astrophysics Data System (ADS)

    Bessemoulin, Alexandre; Verweyen, Ludger; Marsetz, Waldemar; Massler, Hermann; Neumann, Markus; Hulsmann, Axel; Schlechtweg, Michael

    1999-12-01

    This paper presents coplanar millimeter-wave monolithic integrated circuits with high performance and small size for use in low noise communication and radar system applications. Technology and modeling issues with respect to active and passive elements are discussed first. In a second step, the potential of coplanar waveguides to realize compact ICs is illustrated through various design examples, such as low noise amplifiers, mixers and power amplifiers. The performance of multifunctional ICs is also presented by comparing simulated and measured results for a complete 77 GHz Transceive MMIC.

  20. Illuminating Neural Circuits: From Molecules to MRI.

    PubMed

    Lee, Jin Hyung; Kreitzer, Anatol C; Singer, Annabelle C; Schiff, Nicholas D

    2017-11-08

    Neurological disease drives symptoms through pathological changes to circuit functions. Therefore, understanding circuit mechanisms that drive behavioral dysfunction is of critical importance for quantitative diagnosis and systematic treatment of neurological disease. Here, we describe key technologies that enable measurement and manipulation of neural activity and neural circuits. Applying these approaches led to the discovery of circuit mechanisms underlying pathological motor behavior, arousal regulation, and protein accumulation. Finally, we discuss how optogenetic functional magnetic resonance imaging reveals global scale circuit mechanisms, and how circuit manipulations could lead to new treatments of neurological diseases. Copyright © 2017 the authors 0270-6474/17/3710817-09$15.00/0.

  1. Universal programmable quantum circuit schemes to emulate an operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantummore » complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.« less

  2. A memristor-based nonvolatile latch circuit

    NASA Astrophysics Data System (ADS)

    Robinett, Warren; Pickett, Matthew; Borghetti, Julien; Xia, Qiangfei; Snider, Gregory S.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley

    2010-06-01

    Memristive devices, which exhibit a dynamical conductance state that depends on the excitation history, can be used as nonvolatile memory elements by storing information as different conductance states. We describe the implementation of a nonvolatile synchronous flip-flop circuit that uses a nanoscale memristive device as the nonvolatile memory element. Controlled testing of the circuit demonstrated successful state storage and restoration, with an error rate of 0.1%, during 1000 power loss events. These results indicate that integration of digital logic devices and memristors could open the way for nonvolatile computation with applications in small platforms that rely on intermittent power sources. This demonstrated feasibility of tight integration of memristors with CMOS (complementary metal-oxide-semiconductor) circuitry challenges the traditional memory hierarchy, in which nonvolatile memory is only available as a large, slow, monolithic block at the bottom of the hierarchy. In contrast, the nonvolatile, memristor-based memory cell can be fast, fine-grained and small, and is compatible with conventional CMOS electronics. This threatens to upset the traditional memory hierarchy, and may open up new architectural possibilities beyond it.

  3. Electrochemical cell has internal resistive heater element

    NASA Technical Reports Server (NTRS)

    Colston, E. F.; Ford, F. E.; Hennigan, T. J.

    1968-01-01

    External source supplies power to electrochemical cells containing internal resistive heater element. Each cell plate is individually contained in its own Pellon bag, enabling the heater element to be arranged in a continuous, parallel circuit.

  4. Microwave integrated circuit for Josephson voltage standards

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  5. Neural activation in the "reward circuit" shows a nonlinear response to facial attractiveness.

    PubMed

    Liang, Xiaoyun; Zebrowitz, Leslie A; Zhang, Yi

    2010-01-01

    Positive behavioral responses to attractive faces have led neuroscientists to investigate underlying neural mechanisms in a "reward circuit" that includes brain regions innervated by dopamine pathways. Using male faces ranging from attractive to extremely unattractive, disfigured ones, this study is the first to demonstrate heightened responses to both rewarding and aversive faces in numerous areas of this putative reward circuit. Parametric analyses employing orthogonal linear and nonlinear regressors revealed positive nonlinear effects in anterior cingulate cortex, lateral orbital frontal cortex (LOFC), striatum (nucleus accumbens, caudate, putamen), and ventral tegmental area, in addition to replicating previously documented linear effects in medial orbital frontal cortex (MOFC) and LOFC and nonlinear effects in amygdala and MOFC. The widespread nonlinear responses are consistent with single cell recordings in animals showing responses to both rewarding and aversive stimuli, and with some human fMRI investigations of non-face stimuli. They indicate that the reward circuit does not process face valence with any simple dissociation of function across structures. Perceiver gender modulated some responses to our male faces: Women showed stronger linear effects, and men showed stronger nonlinear effects, which may have functional implications. Our discovery of nonlinear responses to attractiveness throughout the reward circuit echoes the history of amygdala research: Early work indicated a linear response to threatening stimuli, including faces; later work also revealed a nonlinear response with heightened activation to affectively salient stimuli regardless of valence. The challenge remains to determine how such dual coding influences feelings, such as pleasure and pain, and guides goal-related behavioral responses, such as approach and avoidance.

  6. Nanofluidic Transistor Circuits

    NASA Astrophysics Data System (ADS)

    Chang, Hsueh-Chia; Cheng, Li-Jing; Yan, Yu; Slouka, Zdenek; Senapati, Satyajyoti

    2012-02-01

    Non-equilibrium ion/fluid transport physics across on-chip membranes/nanopores is used to construct rectifying, hysteretic, oscillatory, excitatory and inhibitory nanofluidic elements. Analogs to linear resistors, capacitors, inductors and constant-phase elements were reported earlier (Chang and Yossifon, BMF 2009). Nonlinear rectifier is designed by introducing intra-membrane conductivity gradient and by asymmetric external depletion with a reverse rectification (Yossifon and Chang, PRL, PRE, Europhys Lett 2009-2011). Gating phenomenon is introduced by functionalizing polyelectrolytes whose conformation is field/pH sensitive (Wang, Chang and Zhu, Macromolecules 2010). Surface ion depletion can drive Rubinstein's microvortex instability (Chang, Yossifon and Demekhin, Annual Rev of Fluid Mech, 2012) or Onsager-Wien's water dissociation phenomenon, leading to two distinct overlimiting I-V features. Bipolar membranes exhibit an S-hysteresis due to water dissociation (Cheng and Chang, BMF 2011). Coupling the hysteretic diode with some linear elements result in autonomous ion current oscillations, which undergo classical transitions to chaos. Our integrated nanofluidic circuits are used for molecular sensing, protein separation/concentration, electrospray etc.

  7. Nonreciprocal signal routing in an active quantum network

    NASA Astrophysics Data System (ADS)

    Metelmann, A.; Türeci, H. E.

    2018-04-01

    As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain parametrically driven elements selectively embedded in the circuit, offer a viable solution. Here, we present a general strategy for routing nonreciprocally quantum signals between two sites of a given lattice of oscillators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of overdamped oscillators linking the nodes of the main lattice. Solutions for spatially selective driving of the lattice elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to nonreciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the dynamical matrix of the network. We also demonstrate that signal and noise transmission characteristics can be separately optimized.

  8. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus.

    PubMed

    Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang

    2017-03-21

    Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  10. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, W.J.

    1981-11-10

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components. 13 figs.

  11. Demultiplexer circuit for neural stimulation

    DOEpatents

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  12. Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal–Glial Stimulation of Excitatory GABA Circuits

    PubMed Central

    Haam, Juhee; Halmos, Katalin C.; Di, Shi

    2014-01-01

    Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal–glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal–glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal–glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis. PMID:24790191

  13. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element has...

  14. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element has...

  15. 49 CFR 236.526 - Roadway element not functioning properly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Roadway element not functioning properly. 236.526... element not functioning properly. When a roadway element except track circuit of automatic train stop... roadway element shall be caused manually to display its most restrictive aspect until such element has...

  16. Focal plane infrared readout circuit

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2002-01-01

    An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.

  17. A lumped-circuit model for the radiation impedance of a circular piston in a rigid baffle.

    PubMed

    Bozkurt, Ayhan

    2008-09-01

    The radiation impedance of a piston transducer mounted in a rigid baffle has been widely addressed in the literature. The real and imaginary parts of the impedance are described by the first order Bessel and Struve functions, respectively. Although there are power series expansions for both functions, the analytic formulation of a lumped circuit is not trivial. In this paper, we present an empirical approach to the derivation of a lumped-circuit model for the radiation impedance expression, based on observations on the near-field behavior of stored kinetic and elastic energy. The field analysis is carried out using a finite element method model of the piston and surrounding fluid medium. We show that fluctuations in the real and imaginary components of the impedance can be modeled by series and shunt tank circuits, each of which shape a certain section of the impedance curve. Because the model is composed of lumped-circuit elements, it can be used in circuit simulators. Consequently, the proposed model is useful for the analysis of transducer front-end circuits.

  18. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be equipped with devices to provide protection against under-voltage grounded phase, short circuit... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. [Statutory Provisions] High-voltage circuits entering...

  19. Variable-Resistivity Material For Memory Circuits

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Moacanin, Jovan

    1989-01-01

    Nonvolatile memory elements packed densely. Electrically-erasable, programmable, read-only memory matrices made with newly-synthesized organic material of variable electrical resistivity. Material, polypyrrole doped with tetracyanoquinhydrone (TCNQ), changes reversibly between insulating or higher-resistivity state and conducting or low-resistivity state. Thin film of conductive polymer separates layer of row conductors from layer of column conductors. Resistivity of film at each intersection and, therefore, resistance of memory element defined by row and column, increased or decreased by application of suitable switching voltage. Matrix circuits made with this material useful for experiments in associative electronic memories based on models of neural networks.

  20. Oxygen consumption, heart rate and oxygen pulse associated with selected exercise-to-muscle class elements.

    PubMed Central

    Abernethy, P; Batman, P

    1994-01-01

    The purpose of the investigation was to determine the relative oxygen consumption (VO2), heart rate and oxygen pulse associated with the constituent elements of an exercise-to-music class. Six women exercise-to-music leaders with a mean(s.d.) age, weight and height of 33.2(5.2) years, 51.0(2.8) kg and 157.9(5.6) cm respectively, completed five distinct exercise-to-music movement elements. The movement elements were of a locomoter (circuit, jump and low impact) and callisthenic (prone and side/supine) nature. The movement elements were distinguishable from one another in terms of their movement patterns, posture and tempo. Relative VO2 values were greatest for the circuit element (40.6 ml kg-1 min-1) and least for the side/supine element (20.0 ml kg-1 min-1). The differences in VO2 between the locomotrr and callisthenic elements were significant (circuit approximately jump approximately low impact > prone approximately side/supine). However, effect size data suggested that the differences between the low impact and jump elements and the prone and side/supine elements were of practical significance (circuit approximately jump > low impact > prone > side/supine). With a single exception similar parametric statistics and effect size trends were identified for absolute heart rate. Specifically, the heart rate associated with the low impact element was not significantly greater than the prone element. The oxygen pulse associated with the locomotor elements was significantly greater than the callisthenic elements (circuit approximately jump approximately low impact > prone > side/supine). This suggested that heart rate may be an inappropriate index for making comparisons between exercise-to-music elements. Reasons for differences in oxygen uptake values between movement elements are discussed. PMID:8044493

  1. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array

    PubMed Central

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-01-01

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements’ bypass currents, which were injected into array’s non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT’s measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately. PMID:27929410

  2. Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose production in vivo.

    PubMed

    Lam, Carol K L; Chari, Madhu; Rutter, Guy A; Lam, Tony K T

    2011-01-01

    Hypothalamic nutrient sensing regulates glucose production, but the neuronal circuits involved remain largely unknown. Recent studies underscore the importance of N-methyl-d-aspartate (NMDA) receptors in the dorsal vagal complex in glucose regulation. These studies raise the possibility that hypothalamic nutrient sensing activates a forebrain-hindbrain NMDA-dependent circuit to regulate glucose production. We implanted bilateral catheters targeting the mediobasal hypothalamus (MBH) (forebrain) and dorsal vagal complex (DVC) (hindbrain) and performed intravenous catheterizations to the same rat for infusion and sampling purposes. This model enabled concurrent selective activation of MBH nutrient sensing by either MBH delivery of lactate or an adenovirus expressing the dominant negative form of AMPK (Ad-DN AMPK α2 [D¹⁵⁷A]) and inhibition of DVC NMDA receptors by either DVC delivery of NMDA receptor blocker MK-801 or an adenovirus expressing the shRNA of NR1 subunit of NMDA receptors (Ad-shRNA NR1). Tracer-dilution methodology and the pancreatic euglycemic clamp technique were performed to assess changes in glucose kinetics in the same conscious, unrestrained rat in vivo. MBH lactate or Ad-DN AMPK with DVC saline increased glucose infusion required to maintain euglycemia due to an inhibition of glucose production during the clamps. However, DVC MK-801 negated the ability of MBH lactate or Ad-DN AMPK to increase glucose infusion or lower glucose production. Molecular knockdown of DVC NR1 of NMDA receptor via Ad-shRNA NR1 injection also negated MBH Ad-DN AMPK to lower glucose production. Molecular and pharmacological inhibition of DVC NMDA receptors negated hypothalamic nutrient sensing mechanisms activated by lactate metabolism or AMPK inhibition to lower glucose production. Thus, DVC NMDA receptor is required for hypothalamic nutrient sensing to lower glucose production and that hypothalamic nutrient sensing activates a forebrain-hindbrain circuit to lower

  3. [Modeling and analysis of volume conduction based on field-circuit coupling].

    PubMed

    Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming

    2012-08-01

    Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.

  4. 47 CFR 43.82 - International circuit status reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) and any country or point outside that area shall file a circuit-status report with the Chief... reports shall include the total number of activated and the total number of idle circuits by the... 47 Telecommunication 3 2011-10-01 2011-10-01 false International circuit status reports. 43.82...

  5. Optimized planning of in-service inspections of local flow-accelerated corrosion of pipeline elements used in the secondary coolant circuit of the VVER-440-based units at the Novovoronezh NPP

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Budanov, V. A.; Golubeva, T. N.

    2015-03-01

    Matters concerned with making efficient use of the information-analytical system on the flow-accelerated corrosion problem in setting up in-service examination of the metal of pipeline elements operating in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered. The principles used to select samples of pipeline elements in planning ultrasonic thickness measurements for timely revealing metal thinning due to flow-accelerated corrosion along with reducing the total amount of measurements in the condensate-feedwater path are discussed.

  6. The neural circuits that generate tics in Tourette's syndrome.

    PubMed

    Wang, Zhishun; Maia, Tiago V; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S

    2011-12-01

    The purpose of this study was to examine neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette's syndrome. Functional magnetic resonance imaging data were acquired from 13 individuals with Tourette's syndrome and 21 healthy comparison subjects during spontaneous or simulated tics. Independent component analysis with hierarchical partner matching was used to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. Granger causality was used to investigate causal interactions among these regions. The Tourette's syndrome group exhibited stronger neural activity and interregional causality than healthy comparison subjects throughout all portions of the motor pathway, including the sensorimotor cortex, putamen, pallidum, and substantia nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette's syndrome group was stronger during spontaneous tics than during voluntary tics in the somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette's syndrome group than in the healthy comparison group within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (the caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may result in their failure to control tic behaviors or the premonitory urges that generate them. Our findings, taken together, suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico

  7. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    PubMed

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  8. Electrical equivalent circuit for microstrip micro-plasma: control of EM propagation and numerical simulations.

    PubMed

    Mohamad, Almustafa; Tân-Hoa, Vuong; Jacques, David

    2012-01-01

    An approach to determine an equivalent electrical circuit of a micro planar discharge on a microstrip printed circuit is reported. The micro discharge is used to realize a dynamic microwave switching circuit. This approach is based on the measurement of the discharge current and the transmission coefficient for a given frequency 2.45 GHz. Numerical methods like FEM can be used to study the effect of plasma parameters on the propagation of electromagnetic waves through a microstrip printed circuit. Plasma behaves as flexible elements that can change its electrical proprieties such as conductivity.

  9. High temperature superconducting thin film microwave circuits: Fabrication, characterization, and applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.

  10. High temperature superconducting thin film microwave circuits - Fabrication, characterization, and applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.

    1990-01-01

    Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here, the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.

  11. Nonreciprocal Signal Routing in an Active Quantum Network

    NASA Astrophysics Data System (ADS)

    Tureci, Hakan E.; Metelmann, Anja

    As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain driven linear or non-linear elements judiciously embedded in the circuit offer a viable solution. We present a general strategy for routing non-reciprocally quantum signals between two sites of a given lattice of resonators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of superconducting non-linear elements on the links connecting the nodes of the main lattice. Solutions for spatially selective driving of the link-elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to non-reciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the scattering matrix of the network. The presented strategy provides a design space that is governed by a dynamically tunable non-Hermitian generator that can be used to minimize the added quantum noise as well. This work was supported by the U.S. Army Research Office (ARO) under Grant No. W911NF-15-1-0299.

  12. Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression.

    PubMed

    Jiao, Song; Yu, Huimin; Shen, Zhongyao

    2018-09-25

    To satisfy the urgent demand for promoter engineering that can accurately regulate the metabolic circuits and expression of specific genes in the Rhodococcus microbial platform, a promoter-ribosome binding site (RBS) coupled mini-pool with fine-tuning of different activity levels was successfully established. Transcriptome analyses of R. ruber TH revealed several representative promoters with different activity levels, e.g., Pami, Pcs, Pnh, P50sl36, PcbiM, PgroE and Pniami. β-Galactosidase (LacZ) reporter measurement demonstrated that different gene expression levels could be obtained with these natural promoters combined with an optimal RBS of ami. Further use of these promoters to overexpress the nitrile hydratase (NHase) gene with RBSami in R. ruber THdAdN produced different expression levels consistent with the transcription analyses. The -35 and -10 core elements of different promoters were further analyzed, and the conserved sequences were revealed to be TTGNNN and (T/C)GNNA(A/C)AAT. By mutating the core elements of the strong promoters, Pnh and Pami, into the above consensus sequence, two even stronger promoters, PnhM and PamiM, were obtained with 2.2-fold and 7.7-fold improvements in transcription, respectively. Integrating several strategies, including transcriptome promoter screening, -35 and -10 core element identification, core element point-mutation, RBS optimization and diverse reporter verification, a fine-tuning promoter-RBS combination mini-pool with different activity levels in Rhodococcus strains was successfully established. This development is significant for broad applications of the Rhodococcus genus as a microbial platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  14. Activity propagation in an avian basal ganglia-thalamo-cortical circuit essential for vocal learning

    PubMed Central

    Kojima, Satoshi; Doupe, Allison J.

    2009-01-01

    In mammalian basal ganglia-thalamo-cortical circuits, GABAergic pallidal neurons are thought to ‘gate’ or modulate excitation in thalamus with their strong inhibitory inputs, and thus signal to cortex by pausing and permitting thalamic neurons to fire in response to excitatory drive. In contrast, in a homologous circuit specialized for vocal learning in songbirds, evidence suggests that pallidal neurons signal by eliciting postinhibitory rebound spikes in thalamus, which could occur even without any excitatory drive to thalamic neurons. To test whether songbird pallidal neurons can also communicate with thalamus by gating excitatory drive, as well as by postinhibitory rebound, we examined the activity of thalamic relay neurons in response to acute inactivation of the basal ganglia structure Area X; Area X contains the pallidal neurons that project to thalamus. Although inactivation of Area X should eliminate rebound-mediated spiking in thalamus, this manipulation tonically increases the firing rate of thalamic relay neurons, providing evidence that songbird pallidal neurons can gate tonic thalamic excitatory drive. We also found that the increased thalamic activity was fed forward to its target in the avian equivalent of cortex, which includes neurons that project to the vocal premotor area. These data raise the possibility that basal ganglia circuits can signal to cortex through thalamus both by generating postinhibitory rebound and by gating excitatory drive, and may switch between these modes depending on the statistics of pallidal firing. Moreover, these findings provide insight into the strikingly different disruptive effects of basal ganglia and ‘cortical’ lesions on songbird vocal learning. PMID:19369547

  15. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    PubMed

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-02

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  16. The present situation and forecasts of semiconductor elements performance within the microwave range, 1970-1985

    NASA Technical Reports Server (NTRS)

    Peterson, B.

    1978-01-01

    The present situation and possible developments over the period 1970-1985 for active semiconductor elements in the microwave range are outlined. After a short historical survey of FT techniques, the following are discussed: Generation, power amplification, amplification of small signals, frequency conversion, detection, electronic signal control and integrated microwave circuits.

  17. Base drive and overlap protection circuit

    DOEpatents

    Gritter, David J.

    1983-01-01

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  18. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  19. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices to provide protection against under voltage, grounded phase, short circuit and overcurrent. High... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High...

  20. Advanced active quenching circuit for ultra-fast quantum cryptography.

    PubMed

    Stipčević, Mario; Christensen, Bradley G; Kwiat, Paul G; Gauthier, Daniel J

    2017-09-04

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  1. Magnetomicrofluidics Circuits for Organizing Bioparticle Arrays

    NASA Astrophysics Data System (ADS)

    Abedini-Nassab, Roozbeh

    Single-cell analysis (SCA) tools have important applications in the analysis of phenotypic heterogeneity, which is difficult or impossible to analyze in bulk cell culture or patient samples. SCA tools thus have a myriad of applications ranging from better credentialing of drug therapies to the analysis of rare latent cells harboring HIV infection or in Cancer. However, existing SCA systems usually lack the required combination of programmability, flexibility, and scalability necessary to enable the study of cell behaviors and cell-cell interactions at the scales sufficient to analyze extremely rare events. To advance the field, I have developed a novel, programmable, and massively-parallel SCA tool which is based on the principles of computer circuits. By integrating these magnetic circuits with microfluidics channels, I developed a platform that can organize a large number of single particles into an array in a controlled manner. My magnetophoretic circuits use passive elements constructed in patterned magnetic thin films to move cells along programmed tracks with an external rotating magnetic field. Cell motion along these tracks is analogous to the motion of charges in an electrical conductor, following a rule similar to Ohm's law. I have also developed asymmetric conductors, similar to electrical diodes, and storage sites for cells that behave similarly to electrical capacitors. I have also developed magnetophoretic circuits which use an overlaid pattern of microwires to switch single cells between different tracks. This switching mechanism, analogous to the operation of electronic transistors, is achieved by establishing a semiconducting gap in the magnetic pattern which can be changed from an insulating state to a conducting state by application of electrical current to an overlaid electrode. I performed an extensive study on the operation of transistors to optimize their geometry and minimize the required gate currents. By combining these elements into

  2. Laminar circuit organization and response modulation in mouse visual cortex

    PubMed Central

    Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin

    2012-01-01

    The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751

  3. Electronic circuits

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twenty-nine circuits and circuit techniques developed for communications and instrumentation technology are described. Topics include pulse-code modulation, phase-locked loops, data coding, data recording, detection circuits, logic circuits, oscillators, and amplifiers.

  4. Digital circuits for computer applications: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The innovations in this updated series of compilations dealing with electronic technology represent a carefully selected collection of digital circuits which have direct application in computer oriented systems. In general, the circuits have been selected as representative items of each section and have been included on their merits of having universal applications in digital computers and digital data processing systems. As such, they should have wide appeal to the professional engineer and scientist who encounter the fundamentals of digital techniques in their daily activities. The circuits are grouped as digital logic circuits, analog to digital converters, and counters and shift registers.

  5. Vibration analysis of printed circuit boards: Effect of boundary condition

    NASA Astrophysics Data System (ADS)

    Prashanth, M. D.

    2018-04-01

    A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.

  6. Humidification during high-frequency oscillation ventilation is affected by ventilator circuit and ventilatory setting.

    PubMed

    Chikata, Yusuke; Imanaka, Hideaki; Onishi, Yoshiaki; Ueta, Masahiko; Nishimura, Masaji

    2009-08-01

    High-frequency oscillation ventilation (HFOV) is an accepted ventilatory mode for acute respiratory failure in neonates. As conventional mechanical ventilation, inspiratory gas humidification is essential. However, humidification during HFOV has not been clarified. In this bench study, we evaluated humidification during HFOV in the open circumstance of ICU. Our hypothesis is that humidification during HFOV is affected by circuit design and ventilatory settings. We connected a ventilator with HFOV mode to a neonatal lung model that was placed in an infant incubator set at 37 degrees C. We set a heated humidifier (Fisher & Paykel) to obtain 37 degrees C at the chamber outlet and 40 degrees C at the distal temperature probe. We measured absolute humidity and temperature at the Y-piece using a rapid-response hygrometer. We evaluated two types of ventilator circuit: a circuit with inner heating wire and another with embedded heating element. In addition, we evaluated three lengths of the inspiratory limb, three stroke volumes, three frequencies, and three mean airway pressures. The circuit with embedded heating element provided significantly higher absolute humidity and temperature than one with inner heating wire. As an extended tube lacking a heating wire was shorter, absolute humidity and temperature became higher. In the circuit with inner heating wire, absolute humidity and temperature increased as stroke volume increased. Humidification during HFOV is affected by circuit design and ventilatory settings.

  7. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    ERIC Educational Resources Information Center

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  8. Finite-element model of the active organ of Corti

    PubMed Central

    Elliott, Stephen J.; Baumgart, Johannes

    2016-01-01

    The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950

  9. Hybrid Circuits with Nanofluidic Diodes and Load Capacitors

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Garcia-Morales, V.; Gomez, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafe, S.

    2017-06-01

    The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical capacitances, and solution p H values. The model simulations are based on empirical equations that have a solid physical basis and provide a convenient description of the electrical circuit operation. The results should contribute to advance signal transduction and processing using nanopore-based biosensors and bioelectronic interfaces.

  10. Period doubling induced by thermal noise amplification in genetic circuits.

    PubMed

    Ruocco, G; Fratalocchi, A

    2014-11-18

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an "elemental" genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.

  11. Active-bridge oscillator

    DOEpatents

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  12. A novel FPGA-programmable switch matrix interconnection element in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Hashemi, Sara; Rahimi Azghadi, Mostafa; Zakerolhosseini, Ali; Navi, Keivan

    2015-04-01

    The Quantum-dot cellular automata (QCA) is a novel nanotechnology, promising extra low-power, extremely dense and very high-speed structure for the construction of logical circuits at a nanoscale. In this paper, initially previous works on QCA-based FPGA's routing elements are investigated, and then an efficient, symmetric and reliable QCA programmable switch matrix (PSM) interconnection element is introduced. This element has a simple structure and offers a complete routing capability. It is implemented using a bottom-up design approach that starts from a dense and high-speed 2:1 multiplexer and utilise it to build the target PSM interconnection element. In this study, simulations of the proposed circuits are carried out using QCAdesigner, a layout and simulation tool for QCA circuits. The results demonstrate high efficiency of the proposed designs in QCA-based FPGA routing.

  13. Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement of Cocaine Seeking.

    PubMed

    Augur, Isabel F; Wyckoff, Andrew R; Aston-Jones, Gary; Kalivas, Peter W; Peters, Jamie

    2016-09-28

    The ventromedial prefrontal cortex (vmPFC) has been shown to negatively regulate cocaine-seeking behavior, but the precise conditions by which vmPFC activity can be exploited to reduce cocaine relapse are currently unknown. We used viral-mediated gene transfer of designer receptors (DREADDs) to activate vmPFC neurons and examine the consequences on cocaine seeking in a rat self-administration model of relapse. Activation of vmPFC neurons with the Gq-DREADD reduced reinstatement of cocaine seeking elicited by cocaine-associated cues, but not by cocaine itself. We used a retro-DREADD approach to confine the Gq-DREADD to vmPFC neurons that project to the medial nucleus accumbens shell, confirming that these neurons are responsible for the decreased cue-induced reinstatement of cocaine seeking. The effects of vmPFC activation on cue-induced reinstatement depended on prior extinction training, consistent with the reported role of this structure in extinction memory. These data help define the conditions under which chemogenetic activation of extinction neural circuits can be exploited to reduce relapse triggered by reminder cues. The ventromedial prefrontal cortex (vmPFC) projection to the nucleus accumbens shell is important for extinction of cocaine seeking, but its anatomical proximity to the relapse-promoting projection from the dorsomedial prefrontal cortex to the nucleus accumbens core makes it difficult to selectively enhance neuronal activity in one pathway or the other using traditional pharmacotherapy (e.g., systemically administered drugs). Viral-mediated gene delivery of an activating Gq-DREADD to vmPFC and/or vmPFC projections to the nucleus accumbens shell allows the chemogenetic exploitation of this extinction neural circuit to reduce cocaine seeking and was particularly effective against relapse triggered by cocaine reminder cues. Copyright © 2016 the authors 0270-6474/16/3610174-07$15.00/0.

  14. The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity

    ERIC Educational Resources Information Center

    Singh, Vandana

    2010-01-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…

  15. RNA signal amplifier circuit with integrated fluorescence output.

    PubMed

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  16. THE DEVELOPMENT OF SLEEP-WAKE RHYTHMS AND THE SEARCH FOR ELEMENTAL CIRCUITS IN THE INFANT BRAIN

    PubMed Central

    Blumberg, Mark S.; Gall, Andrew J.; Todd, William D.

    2014-01-01

    Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. Also, consistent with the requirements of a “flip-flop” model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease. PMID:24708298

  17. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain.

    PubMed

    Blumberg, Mark S; Gall, Andrew J; Todd, William D

    2014-06-01

    Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.

  18. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, David M.

    1996-01-01

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.

  19. Base drive circuit for a four-terminal power Darlington

    DOEpatents

    Lee, Fred C.; Carter, Roy A.

    1983-01-01

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  20. Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion

    NASA Astrophysics Data System (ADS)

    Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.

    2016-05-01

    As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.

  1. Brain reflections: A circuit-based framework for understanding information processing and cognitive control.

    PubMed

    Gratton, Gabriele

    2018-03-01

    Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.

  2. Compensated gain control circuit for buck regulator command charge circuit

    DOEpatents

    Barrett, D.M.

    1996-11-05

    A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.

  3. Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics

    PubMed Central

    Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.

    2015-01-01

    The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526

  4. Deconstruction of a neural circuit for hunger.

    PubMed

    Atasoy, Deniz; Betley, J Nicholas; Su, Helen H; Sternson, Scott M

    2012-08-09

    Hunger is a complex behavioural state that elicits intense food seeking and consumption. These behaviours are rapidly recapitulated by activation of starvation-sensitive AGRP neurons, which present an entry point for reverse-engineering neural circuits for hunger. Here we mapped synaptic interactions of AGRP neurons with multiple cell populations in mice and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. An inhibitory circuit with paraventricular hypothalamus (PVH) neurons substantially accounted for acute AGRP neuron-evoked eating, whereas two other prominent circuits were insufficient. Within the PVH, we found that AGRP neurons target and inhibit oxytocin neurons, a small population that is selectively lost in Prader-Willi syndrome, a condition involving insatiable hunger. By developing strategies for evaluating molecularly defined circuits, we show that AGRP neuron suppression of oxytocin neurons is critical for evoked feeding. These experiments reveal a new neural circuit that regulates hunger state and pathways associated with overeating disorders.

  5. Deconstruction of a neural circuit for hunger

    PubMed Central

    Atasoy, Deniz; Betley, J. Nicholas; Su, Helen H.; Sternson, Scott M.

    2012-01-01

    Hunger is a complex behavioural state that elicits intense food seeking and consumption. These behaviours are rapidly recapitulated by activation of starvation-sensitive AGRP neurons, which present an entry point for reverse-engineering neural circuits for hunger. We mapped synaptic interactions of AGRP neurons with multiple cell populations and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. An inhibitory circuit with paraventricular hypothalamus (PVH) neurons substantially accounted for acute AGRP neuron-evoked eating, whereas two other prominent circuits were insufficient. Within the PVH, we found that AGRP neurons target and inhibit oxytocin neurons, a small population that is selectively lost in Prader-Willi syndrome, a condition involving insatiable hunger. By developing strategies for evaluating molecularly-defined circuits, we show that AGRP neuron suppression of oxytocin neurons is critical for evoked feeding. These experiments reveal a new neural circuit that regulates hunger state and pathways associated with overeating disorders. PMID:22801496

  6. Low-sensitivity, frequency-selective amplifier circuits for hybrid and bipolar fabrication.

    NASA Technical Reports Server (NTRS)

    Pi, C.; Dunn, W. R., Jr.

    1972-01-01

    A network is described which is suitable for realizing a low-sensitivity high-Q second-order frequency-selective amplifier for high-frequency operation. Circuits are obtained from this network which are well suited for realizing monolithic integrated circuits and which do not require any process steps more critical than those used for conventional monolithic operational and video amplifiers. A single chip version using compatible thin-film techniques for the frequency determination elements is then feasible. Center frequency and bandwidth can be set independently by trimming two resistors. The frequency selective circuits have a low sensitivity to the process variables, and the sensitivity of the center frequency and bandwidth to changes in temperature is very low.

  7. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    PubMed

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  8. Weddings, Electric Circuits, and the Corner Grocery Store

    NASA Astrophysics Data System (ADS)

    Fischer, Mark

    2001-10-01

    When discussing electric circuits in most physics and physical science courses, students often struggle with the rules for adding resistors wired in series and in parallel. Traditionally, these rules are motivated by analogies to water pumped through pipes, analogies that are at least as unfamiliar to most students as electricity itself. The activities presented here model the behavior of series and parallel electric circuits by wedding receiving lines and grocery store checkout lanes respectively, two circumstances with which most students have had experience. The activity is easy to perform and can be done qualitatively or quantitatively, and can even be augmented to model more sophisticated circuits. Thus, the activity described is appropriate for basic physical science courses as well as majors courses and will engage students from middle school through college.

  9. Local Random Quantum Circuits are Approximate Polynomial-Designs

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-09-01

    We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.

  10. Experimental characterization of novel microdiffuser elements

    NASA Astrophysics Data System (ADS)

    Ehrlich, L.; Punch, J.; Jeffers, N.; Stafford, J.

    2014-07-01

    Micropumps can play a significant role in thermal management applications, as a component of microfluidic cooling systems. For next-generation high density optical communication systems, in particular, heat flux levels are sufficiently high to require a microfluidic circuit for cooling. Valveless piezoelectrically-actuated micropumps are a particularly promising technology to be deployed for this application. These pumps exploit the asymmetric flow behaviour of microdiffusers to achieve net flow. They feature no rotating or contacting parts, which make them intrinsically reliable in comparison to micropumps with active valves. In this paper, two novel microdiffuser elements are reported and characterized. The micropumps were fabricated using a 3D Printer. Each single diffuser had a length of 1800 pm and a depth of 400 pm. An experimental characterization was conducted in which the flow rate and differential pressure were measured as a function of operating frequency. In comparison with standard diffuser, both elements showed an increase in differential pressure in the range of 40 - 280 %, but only one of the elements exhibited an improved flow rate, of about 85 %.

  11. Elemental analysis using temporal gating of a pulsed neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Sudeep

    Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing devicemore » outputs data that is indicative of elemental composition of the sample based upon the binned pulses.« less

  12. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.

    PubMed

    Walker, Amy K; Jacobs, René L; Watts, Jennifer L; Rottiers, Veerle; Jiang, Karen; Finnegan, Deirdre M; Shioda, Toshi; Hansen, Malene; Yang, Fajun; Niebergall, Lorissa J; Vance, Dennis E; Tzoneva, Monika; Hart, Anne C; Näär, Anders M

    2011-11-11

    Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Efficiently characterizing the total error in quantum circuits

    NASA Astrophysics Data System (ADS)

    Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph

    A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  14. Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro

    PubMed Central

    Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian

    2016-01-01

    For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467

  15. Amorphous In-Ga-Zn-O Thin Film Transistor Current-Scaling Pixel Electrode Circuit for Active-Matrix Organic Light-Emitting Displays

    NASA Astrophysics Data System (ADS)

    Chen, Charlene; Abe, Katsumi; Fung, Tze-Ching; Kumomi, Hideya; Kanicki, Jerzy

    2009-03-01

    In this paper, we analyze application of amorphous In-Ga-Zn-O thin film transistors (a-InGaZnO TFTs) to current-scaling pixel electrode circuit that could be used for 3-in. quarter video graphics array (QVGA) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on a-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced when compare to the same circuit using hydrogenated amorphous silicon (a-Si:H) TFTs. Moreover, the a-InGaZnO TFT pixel circuit can compensate for the drive TFT threshold voltage variation (ΔVT) within acceptable operating error range.

  16. Polysilicon photoconductor for integrated circuits

    DOEpatents

    Hammond, Robert B.; Bowman, Douglas R.

    1989-01-01

    A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response.

  17. Polysilicon photoconductor for integrated circuits

    DOEpatents

    Hammond, Robert B.; Bowman, Douglas R.

    1990-01-01

    A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response.

  18. Polysilicon photoconductor for integrated circuits

    DOEpatents

    Hammond, R.B.; Bowman, D.R.

    1989-04-11

    A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response. 6 figs.

  19. Germinal and Somatic Activity of the Maize Element Activator (Ac) in Arabidopsis

    PubMed Central

    Keller, J.; Lim, E.; James-Jr., D. W.; Dooner, H. K.

    1992-01-01

    We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis. PMID:1322854

  20. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2012-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  1. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2011-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  2. Slow-wave propagation on monolithic microwave integrated circuits with layered and non-layered structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzuang, C.K.C.

    1986-01-01

    Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.

  3. Unfractionated heparin activity measured by anti-factor Xa levels is associated with the need for extracorporeal membrane oxygenation circuit/membrane oxygenator change: a retrospective pediatric study.

    PubMed

    Irby, Katherine; Swearingen, Christopher; Byrnes, Jonathan; Bryant, Joshua; Prodhan, Parthak; Fiser, Richard

    2014-05-01

    Investigate whether anti-Factor Xa levels are associated with the need for change of circuit/membrane oxygenator secondary to thrombus formation in pediatric patients. Retrospective single institution study. Retrospective record review of 62 pediatric patients supported with extracorporeal membrane oxygenation from 2009 to 2011. Data on standard demographic characteristics, indications for extracorporeal membrane oxygenation, duration of extracorporeal membrane oxygenation, activated clotting time measurements, anti-Factor Xa measurements, and heparin infusion rate were collected. Generalized linear models were used to associate anti-Factor Xa concentrations and need for change of either entire circuit/membrane oxygenator secondary to thrombus formation. Sixty-two patients met study inclusion criteria. No-circuit change was required in 45 of 62 patients. Of 62 patients, 17 required change of circuit/membrane oxygenator due to thrombus formation. Multivariate analysis of daily anti-Factor Xa measurements throughout duration of extracorporeal membrane oxygenation support estimated a mean anti-Factor Xa concentration of 0.20 IU/mL (95% CI, 0.16, 0.24) in no-complete-circuit group that was significantly higher than the estimated concentration of 0.13 IU/mL (95% CI, 0.12, 0.14) in complete-circuit group (p = 0.001). A 0.01 IU/mL decrease in anti-Factor Xa increased odds of need for circuit/membrane oxygenator change by 5% (odds ratio = 1.105; 95% CI, 1.00, 1.10; p = 0.044). Based on the observed anti-Factor Xa concentrations, complete-circuit group had 41% increased odds for requiring circuit/membrane oxygenator change compared with no-complete-circuit group (odds ratio = 1.41; 95% CI, 1.01, 1.96; p = 0.044). Mean daily activated clotting time measurement (p = 0.192) was not different between groups, but mean daily heparin infusion rate (p < 0.001) was significantly different between the two groups. Higher anti-Factor Xa concentrations were associated with freedom from

  4. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.

    PubMed

    Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min

    2016-04-02

    Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.

  5. Josephson Circuits as Vector Quantum Spins

    NASA Astrophysics Data System (ADS)

    Samach, Gabriel; Kerman, Andrew J.

    While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  6. Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.

    2018-03-01

    Electrochemical impedance spectroscopy (EIS) has been widely used in the fuel cell field since it allows deconvolving the different physic-chemical processes that affect the fuel cell performance. Typically, EIS spectra are modelled using electric equivalent circuits. In this work, EIS spectra of an individual cell of a commercial PEM fuel cell stack were obtained experimentally. The goal was to obtain a mechanistic electric equivalent circuit in order to model the experimental EIS spectra. A mechanistic electric equivalent circuit is a semiempirical modelling technique which is based on obtaining an equivalent circuit that does not only correctly fit the experimental spectra, but which elements have a mechanistic physical meaning. In order to obtain the aforementioned electric equivalent circuit, 12 different models with defined physical meanings were proposed. These equivalent circuits were fitted to the obtained EIS spectra. A 2 step selection process was performed. In the first step, a group of 4 circuits were preselected out of the initial list of 12, based on general fitting indicators as the determination coefficient and the fitted parameter uncertainty. In the second step, one of the 4 preselected circuits was selected on account of the consistency of the fitted parameter values with the physical meaning of each parameter.

  7. Regulatory activities of transposable elements: from conflicts to benefits

    PubMed Central

    Chuong, Edward B.; Elde, Nels C.; Feschotte, Cédric

    2017-01-01

    Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor binding sites and non-coding RNAs. A wealth of recent studies reinvigorates the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalyzed the evolution of gene regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic impact of regulatory activities encoded by TEs in health and disease. PMID:27867194

  8. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  9. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockway, J D; Champagne, N J; Sharpe, R M

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-loadmore » circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.« less

  10. Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou

    This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

  11. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.

    2010-12-22

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- andmore » tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The

  12. Modeling neural circuits in Parkinson's disease.

    PubMed

    Psiha, Maria; Vlamos, Panayiotis

    2015-01-01

    Parkinson's disease (PD) is caused by abnormal neural activity of the basal ganglia which are connected to the cerebral cortex in the brain surface through complex neural circuits. For a better understanding of the pathophysiological mechanisms of PD, it is important to identify the underlying PD neural circuits, and to pinpoint the precise nature of the crucial aberrations in these circuits. In this paper, the general architecture of a hybrid Multilayer Perceptron (MLP) network for modeling the neural circuits in PD is presented. The main idea of the proposed approach is to divide the parkinsonian neural circuitry system into three discrete subsystems: the external stimuli subsystem, the life-threatening events subsystem, and the basal ganglia subsystem. The proposed model, which includes the key roles of brain neural circuit in PD, is based on both feed-back and feed-forward neural networks. Specifically, a three-layer MLP neural network with feedback in the second layer was designed. The feedback in the second layer of this model simulates the dopamine modulatory effect of compacta on striatum.

  13. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans

    PubMed Central

    Jang, Heeun; Levy, Sagi; Flavell, Steven W.; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I.

    2017-01-01

    A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans. The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9–containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9–based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits. PMID:28143932

  14. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans.

    PubMed

    Jang, Heeun; Levy, Sagi; Flavell, Steven W; Mende, Fanny; Latham, Richard; Zimmer, Manuel; Bargmann, Cornelia I

    2017-02-14

    A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9 -based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.

  15. Emulating weak localization using a solid-state quantum circuit.

    PubMed

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  16. Reduced Error-Related Activation in Two Anterior Cingulate Circuits Is Related to Impaired Performance in Schizophrenia

    ERIC Educational Resources Information Center

    Polli, Frida E.; Barton, Jason J. S.; Thakkar, Katharine N.; Greve, Douglas N.; Goff, Donald C.; Rauch, Scott L.; Manoach, Dara S.

    2008-01-01

    To perform well on any challenging task, it is necessary to evaluate your performance so that you can learn from errors. Recent theoretical and experimental work suggests that the neural sequellae of error commission in a dorsal anterior cingulate circuit index a type of contingency- or reinforcement-based learning, while activation in a rostral…

  17. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.

    PubMed

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K; Meijer, Onno C; Berbée, Jimmy F P; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K; Rensen, Patrick C N; Wang, Yanan

    2017-11-03

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate. To study the contribution of satiety to the metabolic benefits of butyrate, mice were fed a high-fat diet with butyrate, and an additional pair-fed group was included. Mechanistic involvement of the gut-brain neural circuit was investigated in vagotomised mice. Acute oral, but not intravenous, butyrate administration decreased food intake, suppressed the activity of orexigenic neurons that express neuropeptide Y in the hypothalamus, and decreased neuronal activity within the nucleus tractus solitarius and dorsal vagal complex in the brainstem. Chronic butyrate supplementation prevented diet-induced obesity, hyperinsulinaemia, hypertriglyceridaemia and hepatic steatosis, largely attributed to a reduction in food intake. Butyrate also modestly promoted fat oxidation and activated brown adipose tissue (BAT), evident from increased utilisation of plasma triglyceride-derived fatty acids. This effect was not due to the reduced food intake, but explained by an increased sympathetic outflow to BAT. Subdiaphragmatic vagotomy abolished the effects of butyrate on food intake as well as the stimulation of metabolic activity in BAT. Butyrate acts on the gut-brain neural circuit to improve energy metabolism via reducing energy intake and enhancing fat oxidation by activating BAT. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Interrogating the topological robustness of gene regulatory circuits by randomization

    PubMed Central

    Levine, Herbert; Onuchic, Jose N.

    2017-01-01

    One of the most important roles of cells is performing their cellular tasks properly for survival. Cells usually achieve robust functionality, for example, cell-fate decision-making and signal transduction, through multiple layers of regulation involving many genes. Despite the combinatorial complexity of gene regulation, its quantitative behavior has been typically studied on the basis of experimentally verified core gene regulatory circuitry, composed of a small set of important elements. It is still unclear how such a core circuit operates in the presence of many other regulatory molecules and in a crowded and noisy cellular environment. Here we report a new computational method, named random circuit perturbation (RACIPE), for interrogating the robust dynamical behavior of a gene regulatory circuit even without accurate measurements of circuit kinetic parameters. RACIPE generates an ensemble of random kinetic models corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic properties of the circuit. By applying RACIPE to simple toggle-switch-like motifs, we observed that the stable states of all models converge to experimentally observed gene state clusters even when the parameters are strongly perturbed. RACIPE was further applied to a proposed 22-gene network of the Epithelial-to-Mesenchymal Transition (EMT), from which we identified four experimentally observed gene states, including the states that are associated with two different types of hybrid Epithelial/Mesenchymal phenotypes. Our results suggest that dynamics of a gene circuit is mainly determined by its topology, not by detailed circuit parameters. Our work provides a theoretical foundation for circuit-based systems biology modeling. We anticipate RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression. PMID:28362798

  19. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.

    PubMed

    Hughes, Tyler W; Fan, Shanhui

    2016-09-14

    We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

  20. ADDER CIRCUIT

    DOEpatents

    Jacobsohn, D.H.; Merrill, L.C.

    1959-01-20

    An improved parallel addition unit is described which is especially adapted for use in electronic digital computers and characterized by propagation of the carry signal through each of a plurality of denominationally ordered stages within a minimum time interval. In its broadest aspects, the invention incorporates a fast multistage parallel digital adder including a plurality of adder circuits, carry-propagation circuit means in all but the most significant digit stage, means for conditioning each carry-propagation circuit during the time period in which information is placed into the adder circuits, and means coupling carry-generation portions of thc adder circuit to the carry propagating means.

  1. Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction

    ERIC Educational Resources Information Center

    Reisslein, Jana; Johnson, Amy M.; Reisslein, Martin

    2015-01-01

    Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study…

  2. Design of an improved RCD buffer circuit for full bridge circuit

    NASA Astrophysics Data System (ADS)

    Yang, Wenyan; Wei, Xueye; Du, Yongbo; Hu, Liang; Zhang, Liwei; Zhang, Ou

    2017-05-01

    In the full bridge inverter circuit, when the switch tube suddenly opened or closed, the inductor current changes rapidly. Due to the existence of parasitic inductance of the main circuit. Therefore, the surge voltage between drain and source of the switch tube can be generated, which will have an impact on the switch and the output voltage. In order to ab sorb the surge voltage. An improve RCD buffer circuit is proposed in the paper. The peak energy will be absorbed through the buffer capacitor of the circuit. The part energy feedback to the power supply, another part release through the resistor in the form of heat, and the circuit can absorb the voltage spikes. This paper analyzes the process of the improved RCD snubber circuit, According to the specific parameters of the main circuit, a reasonable formula for calculating the resistance capacitance is given. A simulation model will be modulated in Multisim, which compared the waveform of tube voltage and the output waveform of the circuit without snubber circuit with the improved RCD snubber circuit. By comparing and analyzing, it is proved that the improved buffer circuit can absorb surge voltage. Finally, experiments are demonstrated to validate that the correctness of the RC formula and the improved RCD snubber circuit.

  3. "Hyperglutamatergic cortico-striato-thalamo-cortical circuit" breaker drugs alleviate tics in a transgenic circuit model of Tourette׳s syndrome.

    PubMed

    Nordstrom, Eric J; Bittner, Katie C; McGrath, Michael J; Parks, Clinton R; Burton, Frank H

    2015-12-10

    The brain circuits underlying tics in Tourette׳s syndrome (TS) are unknown but thought to involve cortico/amygdalo-striato-thalamo-cortical (CSTC) loop hyperactivity. We previously engineered a transgenic mouse "circuit model" of TS by expressing an artificial neuropotentiating transgene (encoding the cAMP-elevating, intracellular A1 subunit of cholera toxin) within a small population of dopamine D1 receptor-expressing somatosensory cortical and limbic neurons that hyperactivate cortico/amygdalostriatal glutamatergic output circuits thought to be hyperactive in TS and comorbid obsessive-compulsive (OC) disorders. As in TS, these D1CT-7 ("Ticcy") transgenic mice׳s tics were alleviated by the TS drugs clonidine and dopamine D2 receptor antagonists; and their chronic glutamate-excited striatal motor output was unbalanced toward hyperactivity of the motoric direct pathway and inactivity of the cataleptic indirect pathway. Here we have examined whether these mice׳s tics are countered by drugs that "break" sequential elements of their hyperactive cortical/amygdalar glutamatergic and efferent striatal circuit: anti-serotonoceptive and anti-noradrenoceptive corticostriatal glutamate output blockers (the serotonin 5-HT2a,c receptor antagonist ritanserin and the NE alpha-1 receptor antagonist prazosin); agmatinergic striatothalamic GABA output blockers (the presynaptic agmatine/imidazoline I1 receptor agonist moxonidine); and nigrostriatal dopamine output blockers (the presynaptic D2 receptor agonist bromocriptine). Each drug class alleviates tics in the Ticcy mice, suggesting a hyperglutamatergic CSTC "tic circuit" could exist in TS wherein cortical/amygdalar pyramidal projection neurons׳ glutamatergic overexcitation of both striatal output neurons and nigrostriatal dopaminergic modulatory neurons unbalances their circuit integration to excite striatothalamic output and create tics, and illuminating new TS drug strategies. Copyright © 2015 The Authors. Published by

  4. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    PubMed Central

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-01-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008

  5. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-02-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.

  6. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits

    DTIC Science & Technology

    2009-04-29

    bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working

  7. The Neural Circuits that Generate Tics in Gilles de la Tourette Syndrome

    PubMed Central

    Wang, Zhishun; Maia, Tiago V.; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S.

    2014-01-01

    Objective To study neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette syndrome. Method We acquired fMRI data from 13 participants with Tourette syndrome and 21 controls during spontaneous or simulated tics. We used independent component analysis with hierarchical partner matching to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. We used Granger causality to investigate causal interactions among these regions. Results We found that the Tourette group exhibited stronger neural activity and interregional causality than controls throughout all portions of the motor pathway including sensorimotor cortex, putamen, pallidum, and substania nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette group was stronger during spontaneous tics than during voluntary tics in somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette group than in controls within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may fail to control tic behaviors or the premonitory urges that generate them. Conclusions Our findings taken together suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits. PMID:21955933

  8. RF tuning element

    NASA Technical Reports Server (NTRS)

    McGrath, William R. (Inventor); Lubecke, Victor M. (Inventor)

    1992-01-01

    A device for tuning a circuit includes a substrate, a transmission line on the substrate that includes first and second conductors coupled to a circuit to be tuned, and a movable short-circuit for varying the impedance the transmission line presents to the circuit to be tuned. The movable short-circuit includes a dielectric layer disposed atop the transmission line and a distributed shorting element in the form of a conductive member that is configured to be slid along at least a portion of the transmission line atop the dielectric layer. The conductive member is configured to span the first and second conductors of the transmission line and to define at least a first opening that spans the two conductors so that the conductive member includes first and second sections separated by the first opening. The first and second sections of the conductive member combine with the first and second conductors of the transmission line to form first and second low impedance sections of transmission line, and the opening combines with the first and second conductors of the transmission line and the dielectric layer to form a first high impedance section of transmission line intermediate the first and second low impedance sections. Each of the first low impedance section and the first high impedance section have a length along the transmission line of approximately one-quarter wavelength, thus providing a periodic variation of transmission line impedance. That enhances reflection of rf power.

  9. Low Insertion HVDC Circuit Breaker: Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-09

    GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred—such as a downed power line or a transformer explosion—from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics’ high-voltagemore » DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.« less

  10. Automatic sweep circuit

    DOEpatents

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  11. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Heredia, G.; González, L. A.; Alshareef, H. N.; Gnade, B. E.; Quevedo-López, M.

    2010-11-01

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 µA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 µA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas 'parylene only' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented.

  12. Organic Light-Emitting Diode-on-Silicon Pixel Circuit Using the Source Follower Structure with Active Load for Microdisplays

    NASA Astrophysics Data System (ADS)

    Kwak, Bong-Choon; Lim, Han-Sin; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a pixel circuit immune to the electrical characteristic variation of organic light-emitting diodes (OLEDs) for organic light-emitting diode-on-silicon (OLEDoS) microdisplays with a 0.4 inch video graphics array (VGA) resolution and a 6-bit gray scale. The proposed pixel circuit is implemented using five p-channel metal oxide semiconductor field-effect transistors (MOSFETs) and one storage capacitor. The proposed pixel circuit has a source follower with a diode-connected transistor as an active load for improving the immunity against the electrical characteristic variation of OLEDs. The deviation in the measured emission current ranges from -0.165 to 0.212 least significant bit (LSB) among 11 samples while the anode voltage of OLED is 0 V. Also, the deviation in the measured emission current ranges from -0.262 to 0.272 LSB in pixel samples, while the anode voltage of OLED varies from 0 to 2.5 V owing to the electrical characteristic variation of OLEDs.

  13. An extensible circuit QED architecture for quantum computation

    NASA Astrophysics Data System (ADS)

    Dicarlo, Leo

    Realizing a logical qubit robust to single errors in its constituent physical elements is an immediate challenge for quantum information processing platforms. A longer-term challenge will be achieving quantum fault tolerance, i.e., improving logical qubit resilience by increasing redundancy in the underlying quantum error correction code (QEC). In QuTech, we target these challenges in collaboration with industrial and academic partners. I will present the circuit QED quantum hardware, room-temperature control electronics, and software components of the complete architecture. I will show the extensibility of each component to the Surface-17 and -49 circuits needed to reach the objectives with surface-code QEC, and provide an overview of latest developments. Research funded by IARPA and Intel Corporation.

  14. CIRCAL-2 - General-purpose on-line circuit design.

    NASA Technical Reports Server (NTRS)

    Dertouzos, M. L.; Jessel, G. P.; Stinger, J. R.

    1972-01-01

    CIRCAL-2 is a second-generation general-purpose on-line circuit-design program with the following main features: (1) multiple-analysis capability; (2) uniform and general data structures for handling text editing, network representations, and output results, regardless of analysis; (3) special techniques and structures for minimizing and controlling user-program interaction; (4) use of functionals for the description of hysteresis and heat effects; and (5) ability to define optimization procedures that 'replace' the user. The paper discusses the organization of CIRCAL-2, the aforementioned main features, and their consequences, such as a set of network elements and models general enough for most analyses and a set of functions tailored to circuit-design requirements. The presentation is descriptive, concentrating on conceptual rather than on program implementation details.

  15. Modeling power flow in the induction cavity with a two dimensional circuit simulation

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Zou, Wenkang; Gong, Boyi; Jiang, Jihao; Chen, Lin; Wang, Meng; Xie, Weiping

    2017-02-01

    We have proposed a two dimensional (2D) circuit model of induction cavity. The oil elbow and azimuthal transmission line are modeled with one dimensional transmission line elements, while 2D transmission line elements are employed to represent the regions inward the azimuthal transmission line. The voltage waveforms obtained by 2D circuit simulation and transient electromagnetic simulation are compared, which shows satisfactory agreement. The influence of impedance mismatch on the power flow condition in the induction cavity is investigated with this 2D circuit model. The simulation results indicate that the peak value of load voltage approaches the maximum if the azimuthal transmission line roughly matches the pulse forming section. The amplitude of output transmission line voltage is strongly influenced by its impedance, but the peak value of load voltage is insensitive to the actual output transmission line impedance. When the load impedance raises, the voltage across the dummy load increases, and the pulse duration at the oil elbow inlet and insulator stack regions also slightly increase.

  16. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  17. Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Habib, Anowarul; Melandsø, Frank

    2017-07-01

    High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.

  18. Integrated circuits and logic operations based on single-layer MoS2.

    PubMed

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.

  19. Determination of elements in hospital waste with neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Dwijananti, P.; Astuti, B.; Alwiyah; Fianti

    2018-03-01

    The producer of the biggest B3 waste is hospital. The waste is from medical and laboratory activities. The purpose of this study is to determine the elements contained in the liquid waste from hospital and calculate the levels of these elements. This research was done by analysis of the neutron activation conducted at BATAN Yogyakarta. The neutron activation analysis is divided into two stages: activation of the samples using neutron sources of reactor Kartini, then chopping by using a set of tools, gamma spectrometer with HPGe detector. Qualitative and quantitative analysis were done by matching the gamma spectrum peak to the Neutron Activation Table. The sample was taken from four points of the liquid waste treatment plant (WWTP) Bhakti Wira Tamtama Semarang hospital. The results showed that the samples containing elements of Cr, Zn, Fe, Co, and Na, with the levels of each element is Cr (0.033 - 0.075) mg/L, Zn (0.090 - 1.048) mg/L, Fe (2.937-37.743) mg/L, Co (0.005-0.023) mg/L, and Na (61.088-116.330) mg/L. Comparing to the standard value, the liquid is safe to the environment.

  20. Tonic signaling from O2 sensors sets neural circuit activity and behavioral state

    PubMed Central

    Busch, Karl Emanuel; Laurent, Patrick; Soltesz, Zoltan; Murphy, Robin Joseph; Faivre, Olivier; Hedwig, Berthold; Thomas, Martin; Smith, Heather L.; de Bono, Mario

    2012-01-01

    Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated, and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that C. elegans O2-sensing neurons are tonic receptors that continuously signal ambient [O2] to set the animal’s behavioral state. Sustained signalling relies on a Ca2+ relay involving L-type voltage-gated Ca2+ channels, the ryanodine and the IP3 receptors. Tonic activity evokes continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O2]. Sustained O2 receptor signalling is propagated to downstream neural circuits, including the hub interneuron RMG. O2 receptors evoke similar locomotory states at particular [O2], regardless of previous d[O2]/dt. However, a phasic component of the URX receptors’ response to high d[O2]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enable transient reorientation movements shaped by d[O2]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change. PMID:22388961

  1. Design and Analysis of Broad-Band Fixed-Tuned Submillimeter-Waveguide Multipliers using MMIC Style Circuit Topology

    NASA Technical Reports Server (NTRS)

    Bruston, J.; Kim, M.; Martin, S. C.; Mehdi, I.; Smith, R. P.; Siegel, P. H.

    1996-01-01

    The design and analysis of varactor diode doubler, quadrupler and cascaded doubler circuits for 320 and 640 GHz have been completed. A new approach has been employed to produce a tunerless waveguide mount with a very flexible, frequency scaleable, MMIC style multiplier circuit. The concept, design, predicted performance and measurements on some of the constituent mount elements are presented.

  2. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations.

    PubMed

    Heckman, P R A; Blokland, A; Bollen, E P P; Prickaerts, J

    2018-04-01

    The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures.

    PubMed

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng; Zhou, Peng

    2018-04-01

    2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS 2 /GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.

  4. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures

    PubMed Central

    Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng

    2018-01-01

    Abstract 2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field‐effect transistors. However, 2DLM‐based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM‐based integrated circuits based on amplifier circuits. PMID:29721428

  5. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  6. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging.

    PubMed

    Due, Deborah L; Huettel, Scott A; Hall, Warren G; Rubin, David C

    2002-06-01

    The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.

  7. VLSI circuits implementing computational models of neocortical circuits.

    PubMed

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  9. Organic membrane photonic integrated circuits (OMPICs).

    PubMed

    Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa

    2017-08-07

    We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.

  10. Large-scale quantum photonic circuits in silicon

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk

    2016-08-01

    Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards

  11. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    . Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications.

  12. Circuit class therapy and 7-day-week therapy increase physiotherapy time, but not patient activity: early results from the CIRCIT trial.

    PubMed

    English, Coralie; Bernhardt, Julie; Hillier, Susan

    2014-10-01

    The optimum model of physiotherapy service delivery for maximizing active task practice during rehabilitation after stroke is unknown. The purpose of the study was to examine the relative effectiveness of 2 alternative models of physiotherapy service delivery against a usual care control with regard to increasing patient activity. Substudy within a large 3-armed randomized controlled trial, which compared 3 different models of physiotherapy service delivery, was provided for 4 weeks during subacute, inpatient rehabilitation (n=283). The duration of all physiotherapy sessions was recorded. In addition, 32 participants were observed at 10-minute intervals for 1 weekday and 1 weekend day between 8:00 am and 4:30 pm. At each observation, we recorded physical activity, location, and people present. Participants receiving 7-day-week and circuit class therapy received an additional 3 hours and 22 hours of physiotherapy time, respectively, when compared with usual care. Participants were standing or walking for a median of 8.2% of observations. On weekdays, circuit class therapy participants spent more time in therapy-related activity (10.2% of observations) when compared with usual care participants (6.1% of observations). On weekends, 7-day therapy participants spent more time in therapy-related activity (4.2% of observations) when compared with both usual care and circuit class therapy participants (0% of observations for both groups). Activity levels outside of therapy sessions did not differ between groups. A greater dosage of physiotherapy time did not translate into meaningful increases in physical activity across the day. http://www.anzctr.org.au/. Unique identifier: ACTRN12610000096055. © 2014 American Heart Association, Inc.

  13. Neuropeptide Signaling Networks and Brain Circuit Plasticity.

    PubMed

    McClard, Cynthia K; Arenkiel, Benjamin R

    2018-01-01

    The brain is a remarkable network of circuits dedicated to sensory integration, perception, and response. The computational power of the brain is estimated to dwarf that of most modern supercomputers, but perhaps its most fascinating capability is to structurally refine itself in response to experience. In the language of computers, the brain is loaded with programs that encode when and how to alter its own hardware. This programmed "plasticity" is a critical mechanism by which the brain shapes behavior to adapt to changing environments. The expansive array of molecular commands that help execute this programming is beginning to emerge. Notably, several neuropeptide transmitters, previously best characterized for their roles in hypothalamic endocrine regulation, have increasingly been recognized for mediating activity-dependent refinement of local brain circuits. Here, we discuss recent discoveries that reveal how local signaling by corticotropin-releasing hormone reshapes mouse olfactory bulb circuits in response to activity and further explore how other local neuropeptide networks may function toward similar ends.

  14. Lumped-parameters equivalent circuit for condenser microphones modeling.

    PubMed

    Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar

    2017-10-01

    This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

  15. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    PubMed

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  16. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  17. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  18. Precision Tests of a Quantum Hall Effect Device DC Equivalent Circuit Using Double-Series and Triple-Series Connections

    PubMed Central

    Jeffery, A.; Elmquist, R. E.; Cage, M. E.

    1995-01-01

    Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768

  19. Finite element simulation of piezoelectric transformers.

    PubMed

    Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H

    2001-07-01

    Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.

  20. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    PubMed

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  1. Current limiter circuit system

    DOEpatents

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  2. Hypothalamic Survival Circuits: Blueprints for Purposive Behaviors

    PubMed Central

    Sternson, Scott M.

    2015-01-01

    Neural processes that direct an animal’s actions toward environmental goals are critical elements for understanding behavior. The hypothalamus is closely associated with motivated behaviors required for survival and reproduction. Intense feeding, drinking, aggressive, and sexual behaviors can be produced by a simple neuronal stimulus applied to discrete hypothalamic regions. What can these “evoked behaviors” teach us about the neural processes that determine behavioral intent and intensity? Small populations of neurons sufficient to evoke a complex motivated behavior may be used as entry points to identify circuits that energize and direct behavior to specific goals. Here, I review recent applications of molecular genetic, optogenetic, and pharmacogenetic approaches that overcome previous limitations for analyzing anatomically complex hypothalamic circuits and their interactions with the rest of the brain. These new tools have the potential to bridge the gaps between neurobiological and psychological thinking about the mechanisms of complex motivated behavior. PMID:23473313

  3. 4 Hz oscillations synchronize prefrontal-amygdala circuits during fear behaviour

    PubMed Central

    Karalis, Nikolaos; Dejean, Cyril; Chaudun, Fabrice; Khoder, Suzana; Rozeske, Robert R.; Wurtz, Hélène; Bagur, Sophie; Benchenane, Karim; Sirota, Anton; Courtin, Julien; Herry, Cyril

    2016-01-01

    Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological, and optogenetic manipulations we report that freezing, a behavioural expression of fear, temporally coincides with the development of sustained, internally generated 4 Hz oscillations within prefrontal-amygdala circuits. 4 Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4 Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behaviour. These results unravel a novel sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behaviour. PMID:26878674

  4. 49 CFR 236.744 - Element, roadway.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Element, roadway. 236.744 Section 236.744 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... signal system, such as electric circuit, inductor, or trip arm to which the locomotive apparatus of such...

  5. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  6. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.

    PubMed

    Ko, Heung Cho; Shin, Gunchul; Wang, Shuodao; Stoykovich, Mark P; Lee, Jeong Won; Kim, Dong-Hun; Ha, Jeong Sook; Huang, Yonggang; Hwang, Keh-Chih; Rogers, John A

    2009-12-01

    Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.

  7. Period doubling induced by thermal noise amplification in genetic circuits

    PubMed Central

    Ruocco, G.; Fratalocchi, A.

    2014-01-01

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise. PMID:25404210

  8. Stripline feed for a microstrip array of patch elements with teardrop shaped probes

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1990-01-01

    A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.

  9. Computer-Aided Design of Low-Noise Microwave Circuits

    NASA Astrophysics Data System (ADS)

    Wedge, Scott William

    1991-02-01

    Devoid of most natural and manmade noise, microwave frequencies have detection sensitivities limited by internally generated receiver noise. Low-noise amplifiers are therefore critical components in radio astronomical antennas, communications links, radar systems, and even home satellite dishes. A general technique to accurately predict the noise performance of microwave circuits has been lacking. Current noise analysis methods have been limited to specific circuit topologies or neglect correlation, a strong effect in microwave devices. Presented here are generalized methods, developed for computer-aided design implementation, for the analysis of linear noisy microwave circuits comprised of arbitrarily interconnected components. Included are descriptions of efficient algorithms for the simultaneous analysis of noisy and deterministic circuit parameters based on a wave variable approach. The methods are therefore particularly suited to microwave and millimeter-wave circuits. Noise contributions from lossy passive components and active components with electronic noise are considered. Also presented is a new technique for the measurement of device noise characteristics that offers several advantages over current measurement methods.

  10. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... short circuit protection. 75.518 Section 75.518 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection... installed so as to protect all electric equipment and circuits against short circuit and overloads. Three...

  11. Temperature and neuronal circuit function: compensation, tuning and tolerance.

    PubMed

    Robertson, R Meldrum; Money, Tomas G A

    2012-08-01

    Temperature has widespread and diverse effects on different subcellular components of neuronal circuits making it difficult to predict precisely the overall influence on output. Increases in temperature generally increase the output rate in either an exponential or a linear manner. Circuits with a slow output tend to respond exponentially with relatively high Q(10)s, whereas those with faster outputs tend to respond in a linear fashion with relatively low temperature coefficients. Different attributes of the circuit output can be compensated by virtue of opposing processes with similar temperature coefficients. At the extremes of the temperature range, differences in the temperature coefficients of circuit mechanisms cannot be compensated and the circuit fails, often with a reversible loss of ion homeostasis. Prior experience of temperature extremes activates conserved processes of phenotypic plasticity that tune neuronal circuits to be better able to withstand the effects of temperature and to recover more rapidly from failure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology

    PubMed Central

    Re, Angela

    2017-01-01

    Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery. PMID:28894736

  13. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...

  14. Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing-activated transfer of a mobile genetic element.

    PubMed

    Ramsay, Joshua P; Tester, Laura G L; Major, Anthony S; Sullivan, John T; Edgar, Christina D; Kleffmann, Torsten; Patterson-House, Jackson R; Hall, Drew A; Tate, Warren P; Hynes, Michael F; Ronson, Clive W

    2015-03-31

    Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSym(R7A) is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNA(phe) from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSym(R7A), suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSym(R7A)-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSym(R7A) excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSym(R7A) transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSym(R7A) transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels.

  15. Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing–activated transfer of a mobile genetic element

    PubMed Central

    Ramsay, Joshua P.; Tester, Laura G. L.; Major, Anthony S.; Sullivan, John T.; Edgar, Christina D.; Kleffmann, Torsten; Patterson-House, Jackson R.; Hall, Drew A.; Tate, Warren P.; Hynes, Michael F.; Ronson, Clive W.

    2015-01-01

    Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSymR7A is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNAphe from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSymR7A, suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSymR7A-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSymR7A excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSymR7A transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSymR7A transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels. PMID:25787256

  16. Integrating anatomy and function for zebrafish circuit analysis.

    PubMed

    Arrenberg, Aristides B; Driever, Wolfgang

    2013-01-01

    Due to its transparency, virtually every brain structure of the larval zebrafish is accessible to light-based interrogation of circuit function. Advanced stimulation techniques allow the activation of optogenetic actuators at different resolution levels, and genetically encoded calcium indicators report the activity of a large proportion of neurons in the CNS. Large datasets result and need to be analyzed to identify cells that have specific properties-e.g., activity correlation to sensory stimulation or behavior. Advances in three-dimensional (3D) functional mapping in zebrafish are promising; however, the mere coordinates of implicated neurons are not sufficient. To comprehensively understand circuit function, these functional maps need to be placed into the proper context of morphological features and projection patterns, neurotransmitter phenotypes, and key anatomical landmarks. We discuss the prospect of merging functional and anatomical data in an integrated atlas from the perspective of our work on long-range dopaminergic neuromodulation and the oculomotor system. We propose that such a resource would help researchers to surpass current hurdles in circuit analysis to achieve an integrated understanding of anatomy and function.

  17. Optical flip-flops and sequential logic circuits using a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Fatehi, M. T.; Collins, S. A., Jr.; Wasmundt, K. C.

    1984-01-01

    This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element the ability to produce bistable states from which different types of flip-flop can be implemented is demonstrated. In this paper, some general comments are first presented on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for an optical master-slave flip-flop array is given.

  18. Polyfluorene light-emitting devices and amorphous silicon:hydrogen TFT pixel circuits for active-matrix organic light-emitting displays

    NASA Astrophysics Data System (ADS)

    He, Yi

    2000-10-01

    Organic light-emitting devices (OLEDs) made of single-layer and double-layer polymer thin films have been fabricated and studied. The hole transporting (polymer A) and emissive (polymer B) polymers were poly(9,9' -dioctyl fluorene-2,7-diyl)-co-poly(diphenyl-p-tolyl-amine-4,4 '-diyl) and poly(9,9'-dioctyl fluorene-2,7-diyl)-co-poly(benzothiadiazole 2,5-diyl), respectively. The optical bandgaps of polymer A and B were 2.72 and 2.82 eV, respectively. The photoluminescence (PL) peaks for polymer A and B were 502 and 546 nm, respectively. The electroluminescence (EL) peak for polymer B was 547 nm. No EL has been observed from polymer A single layer OLEDs. To obtain the spectral distribution of the emission properties of the light-emitting devices, a new light-output measurement technique was developed. Using this technique, the spectral distribution of the luminance, radiance, photon density emission can be obtained. Moreover, the device external quantum efficiency calculated using this technique is accurate and insensitive to the light emission spectrum shape. Organic light-emitting devices have been fabricated and studied on both glass and flexible plastic substrates. The OLEDs showed a near-linear relationship between the luminance and the applied current density over four orders of magnitude. For the OLEDs fabricated on the glass substrate, luminance ˜9,300 cd/m2, emission efficiency ˜14.5 cd/A, luminescence power efficiency ˜2.26 lm/W, and external quantum efficiency ˜3.85% have been achieved. For the OLEDs fabricated on the flexible plastic substrates, both aluminum and calcium were used as cathode materials. The achieved maximum OLED luminance, emission efficiency, luminescence power efficiency, and external quantum efficiency were ˜13,000 cd/m2, ˜66.1 cd/A, ˜17.2 lm/W, and 16.7%, respectively. To make an active-matrix organic light-emitting display (AM-OLED), a two-TFT pixel electrode circuit was designed and fabricated based on amorphous silicon TFT

  19. Active-Pixel Image Sensor With Analog-To-Digital Converters

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Mendis, Sunetra K.; Pain, Bedabrata; Nixon, Robert H.

    1995-01-01

    Proposed single-chip integrated-circuit image sensor contains 128 x 128 array of active pixel sensors at 50-micrometer pitch. Output terminals of all pixels in each given column connected to analog-to-digital (A/D) converter located at bottom of column. Pixels scanned in semiparallel fashion, one row at time; during time allocated to scanning row, outputs of all active pixel sensors in row fed to respective A/D converters. Design of chip based on complementary metal oxide semiconductor (CMOS) technology, and individual circuit elements fabricated according to 2-micrometer CMOS design rules. Active pixel sensors designed to operate at video rate of 30 frames/second, even at low light levels. A/D scheme based on first-order Sigma-Delta modulation.

  20. Physical activity in older adults in a combined functional circuit and walking program.

    PubMed

    Gallagher, Nancy Ambrose; Clarke, Philippa; Carr, Emily

    Our study examined the impact of a 16-week functional circuit/walking program on physical activity (PA) in older adults in independent-living facilities. Exploratory goals included examination of associations among self-efficacy, neighborhood and mobility. Participants (N = 13) were female (M = 77.8, SD = 7.44, range = 65-85 years). One third were African-American; the remainder Caucasian; 1/3 used assistive devices. PA increased from 70 min/week (SD = 35.51) at baseline to 81.31 min/week (SD = 34.21) at 16 weeks. PA was associated with self-efficacy for overcoming neighborhood and facility barriers to walking at all measurement points (baseline r = .73, p < .05 and r = .68, p < .05, respectively). At eight weeks, PA was associated with self-efficacy for walking duration (r = .58, p < .05), self-efficacy for individual (r = .66, p < .05), facility (r = .58, p < .05) and neighborhood (r = .70, p < .05) barriers. At sixteen weeks, physical activity was associated with balance confidence (r = .72, p < .05), and self-efficacy for individual (r = .76, p < .05), facility (r = .71, p < .05), and neighborhood (r = .80, p < .01) barriers. Functional circuit/walking interventions can increase PA in older adults. Further examination of self-efficacy, mobility, neighborhoods and PA is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation

    PubMed Central

    Ikrar, Taruna; Olivas, Nicholas D.; Shi, Yulin; Xu, Xiangmin

    2011-01-01

    Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially

  2. SiGe/Si Monolithically Integrated Amplifier Circuits

    NASA Technical Reports Server (NTRS)

    Katehi, Linda P. B.; Bhattacharya, Pallab

    1998-01-01

    With recent advance in the epitaxial growth of silicon-germanium heterojunction, Si/SiGe HBTs with high f(sub max) and f(sub T) have received great attention in MMIC applications. In the past year, technologies for mesa-type Si/SiGe HBTs and other lumped passive components with high resonant frequencies have been developed and well characterized for circuit applications. By integrating the micromachined lumped passive elements into HBT fabrication, multi-stage amplifiers operating at 20 GHz have been designed and fabricated.

  3. A new AC driving circuit for a top emission AMOLED

    NASA Astrophysics Data System (ADS)

    Yongwen, Zhang; Wenbin, Chen; Haohan, Liu

    2013-05-01

    A new voltage programmed pixel circuit with top emission design for active-matrix organic light-emitting diode (AMOLED) displays is presented and verified by HSPICE simulations. The proposed pixel circuit consists of five poly-Si TFTs, and can effectively compensate for the threshold voltage variation of the driving TFT. Meanwhile, the proposed pixel circuit offers an AC driving mode for the OLED by the two adjacent pulse voltage sources, which can suppress the degradation of the OLED. Moreover, a high contrast ratio can be achieved by the proposed pixel circuit since the OLED does not emit any light except for the emission period.

  4. Thermocouple-Signal-Conditioning Circuit

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1991-01-01

    Thermocouple-signal-conditioning circuit acting in conjunction with thermocouple, exhibits electrical behavior of voltage in series with resistance. Combination part of input bridge circuit of controller. Circuit configured for either of two specific applications by selection of alternative resistances and supply voltages. Includes alarm circuit detecting open circuit in thermocouple and provides off-scale output to signal malfunctions.

  5. Silicon CMOS optical receiver circuits with integrated thin-film compound semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Brooke, Martin A.; Lee, Myunghee; Jokerst, Nan Marie; Camperi-Ginestet, C.

    1995-04-01

    While many circuit designers have tackled the problem of CMOS digital communications receiver design, few have considered the problem of circuitry suitable for an all CMOS digital IC fabrication process. Faced with a high speed receiver design the circuit designer will soon conclude that a high speed analog-oriented fabrication process provides superior performance advantages to a digital CMOS process. However, for applications where there are overwhelming reasons to integrate the receivers on the same IC as large amounts of conventional digital circuitry, the low yield and high cost of the exotic analog-oriented fabrication is no longer an option. The issues that result from a requirement to use a digital CMOS IC process cut across all aspects of receiver design, and result in significant differences in circuit design philosophy and topology. Digital ICs are primarily designed to yield small, fast CMOS devices for digital logic gates, thus no effort is put into providing accurate or high speed resistances, or capacitors. This lack of any reliable resistance or capacitance has a significant impact on receiver design. Since resistance optimization is not a prerogative of the digital IC process engineer, the wisest option is thus to not use these elements, opting instead for active circuitry to replace the functions normally ascribed to resistance and capacitance. Depending on the application receiver noise may be a dominant design constraint. The noise performance of CMOS amplifiers is different than bipolar or GaAs MESFET circuits, shot noise is generally insignificant when compared to channel thermal noise. As a result the optimal input stage topology is significantly different for the different technologies. It is found that, at speeds of operation approaching the limits of the digital CMOS process, open loop designs have noise-power-gain-bandwidth tradeoff performance superior to feedback designs. Furthermore, the lack of good resisters and capacitors

  6. Towards circuit optogenetics.

    PubMed

    Chen, I-Wen; Papagiakoumou, Eirini; Emiliani, Valentina

    2018-06-01

    Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Integrator element as a promoter of active learning in engineering teaching

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-03-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator element, called the physics elevator project. This integrator element allows us to use, in a single project, all the content taught in the course and uses several active learning strategies. In this paper, we analyse this project as: (i) a clarifying element of the contents covered in the course; (ii) a promoter element of motivation and active participation in class and finally and (iii) a link between the contents covered in the course and the 'real world'. The data were collected by a questionnaire and interviews to students. From the data collected, it seems that the integrator element improves students' motivation towards physics and develops several skills that they consider to be important to their professional future. It also acts as a clarifying element and makes the connection between the physics that is taught and the 'real world'.

  8. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  9. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

    PubMed Central

    Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc

    2016-01-01

    Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588

  10. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers

    PubMed Central

    2014-01-01

    ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. Conclusions The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications. PMID:24924595

  11. Quantum Memristors with Superconducting Circuits

    PubMed Central

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  12. Engineering a robust DNA split proximity circuit with minimized circuit leakage

    PubMed Central

    Ang, Yan Shan; Tong, Rachel; Yung, Lin-Yue Lanry

    2016-01-01

    DNA circuit is a versatile and highly-programmable toolbox which can potentially be used for the autonomous sensing of dynamic events, such as biomolecular interactions. However, the experimental implementation of in silico circuit designs has been hindered by the problem of circuit leakage. Here, we systematically analyzed the sources and characteristics of various types of leakage in a split proximity circuit which was engineered to spatially probe for target sites held within close proximity. Direct evidence that 3′-truncated oligonucleotides were the major impurity contributing to circuit leakage was presented. More importantly, a unique strategy of translocating a single nucleotide between domains, termed ‘inter-domain bridging’, was introduced to eliminate toehold-independent leakages while enhancing the strand displacement kinetics across a three-way junction. We also analyzed the dynamics of intermediate complexes involved in the circuit computation in order to define the working range of domain lengths for the reporter toehold and association region respectively. The final circuit design was successfully implemented on a model streptavidin-biotin system and demonstrated to be robust against both circuit leakage and biological interferences. We anticipate that this simple signal transduction strategy can be used to probe for diverse biomolecular interactions when used in conjunction with specific target recognition moieties. PMID:27207880

  13. Hypothalamic survival circuits: blueprints for purposive behaviors.

    PubMed

    Sternson, Scott M

    2013-03-06

    Neural processes that direct an animal's actions toward environmental goals are critical elements for understanding behavior. The hypothalamus is closely associated with motivated behaviors required for survival and reproduction. Intense feeding, drinking, aggressive, and sexual behaviors can be produced by a simple neuronal stimulus applied to discrete hypothalamic regions. What can these "evoked behaviors" teach us about the neural processes that determine behavioral intent and intensity? Small populations of neurons sufficient to evoke a complex motivated behavior may be used as entry points to identify circuits that energize and direct behavior to specific goals. Here, I review recent applications of molecular genetic, optogenetic, and pharmacogenetic approaches that overcome previous limitations for analyzing anatomically complex hypothalamic circuits and their interactions with the rest of the brain. These new tools have the potential to bridge the gaps between neurobiological and psychological thinking about the mechanisms of complex motivated behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Abnormal activity in reward brain circuits in human narcolepsy with cataplexy.

    PubMed

    Ponz, Aurélie; Khatami, Ramin; Poryazova, Rositsa; Werth, Esther; Boesiger, Peter; Bassetti, Claudio L; Schwartz, Sophie

    2010-02-01

    Hypothalamic hypocretins (or orexins) regulate energy metabolism and arousal maintenance. Recent animal research suggests that hypocretins may also influence reward-related behaviors. In humans, the loss of hypocretin-containing neurons results in a major sleep-wake disorder called narcolepsy-cataplexy, which is associated with emotional disturbances. Here, we aim to test whether narcoleptic patients show an abnormal pattern of brain activity during reward processing. We used functional magnetic resonance imaging in 12 unmedicated patients with narcolepsy-cataplexy to measure the neural responses to expectancy and experience of monetary gains and losses. We statistically compared the patients' data with those obtained in a group of 12 healthy matched controls. Our results reveal that activity in the dopaminergic ventral midbrain (ventral tegmental area) was not modulated in narcolepsy-cataplexy patients during high reward expectancy (unlike controls), and that ventral striatum activity was reduced during winning. By contrast, the patients showed abnormal activity increases in the amygdala and in dorsal striatum for positive outcomes. In addition, we found that activity in the nucleus accumbens and the ventral-medial prefrontal cortex correlated with disease duration, suggesting that an alternate neural circuit could be privileged over the years to control affective responses to emotional challenges and compensate for the lack of influence from ventral midbrain regions. Our study offers a detailed picture of the distributed brain network involved during distinct stages of reward processing and shows for the first time, to our knowledge, how this network is affected in hypocretin-deficient narcoleptic patients.

  15. Development, Integration and Testing of Automated Triggering Circuit for Hybrid DC Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Kanabar, Deven; Roy, Swati; Dodiya, Chiragkumar; Pradhan, Subrata

    2017-04-01

    A novel concept of Hybrid DC circuit breaker having combination of mechanical switch and static switch provides arc-less current commutation into the dump resistor during quench in superconducting magnet operation. The triggering of mechanical and static switches in Hybrid DC breaker can be automatized which can effectively reduce the overall current commutation time of hybrid DC circuit breaker and make the operation independent of opening time of mechanical switch. With this view, a dedicated control circuit (auto-triggering circuit) has been developed which can decide the timing and pulse duration for mechanical switch as well as static switch from the operating parameters. This circuit has been tested with dummy parameters and thereafter integrated with the actual test set up of hybrid DC circuit breaker. This paper deals with the conceptual design of the auto-triggering circuit, its control logic and operation. The test results of Hybrid DC circuit breaker using this circuit have also been discussed.

  16. Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator

    DTIC Science & Technology

    2012-09-01

    The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant...prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric

  17. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  18. Low-power integrated-circuit driver for ferrite-memory word lines

    NASA Technical Reports Server (NTRS)

    Katz, S.

    1970-01-01

    Composite circuit uses both n-p-n bipolar and p-channel MOS transistors /BIMOS/. The BIMOS driver provides 1/ ease of integrated circuit construction, 2/ low standby power consumption, 3/ bidirectional current pulses, and 4/ current-pulse amplitudes and rise times independent of active device parameters.

  19. Architecture of enteric neural circuits involved in intestinal motility.

    PubMed

    Costa, M; Brookes, S H

    2008-08-01

    This short review describes the conceptual development in the search for the enteric neural circuits with the initial identifications of the classes of enteric neurons on the bases of their morphology, neurochemistry, biophysical properties, projections and connectivity. The discovery of the presence of multiple neurochemicals in the same nerve cells in specific combinations led to the concept of "chemical coding" and of "plurichemical transmission". The proposal that enteric reflexes are largely responsible for the propulsion of contents led to investigations of polarised reflex pathways and how these may be activated to generate the coordinated propulsive behaviour of the intestine. The research over the past decades attempted to integrate information of chemical neuroanatomy with functional studies, with the development of methods combining anatomical, functional and pharmacological techniques. This multidisciplinary strategy led to a full accounting of all functional classes of enteric neurons in the guinea-pig, and advanced wiring diagrams of the enteric neural circuits have been proposed. In parallel, investigations of the actual behaviour of the intestine during physiological motor activity have advanced with the development of spatio-temporal analysis from video recordings. The relation between neural pathways, their activities and the generation of patterns of motor activity remain largely unexplained. The enteric neural circuits appear not set in rigid programs but respond to different physico-chemical contents in an adaptable way (neuromechanical hypothesis). The generation of the complex repertoire of motor patterns results from the interplay of myogenic and neuromechanical mechanisms with spontaneous generation of migratory motor activity by enteric circuits.

  20. Approximate circuits for increased reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less

  1. The gravitational potential energy regeneration system with closed-circuit of boom of hydraulic excavator

    NASA Astrophysics Data System (ADS)

    Chen, Mingdong; Zhao, Dingxuan

    2017-01-01

    Considering the disadvantage of higher throttling loss for the open-circuit hydrostatic transmission at present, a novel gravitational potential energy regeneration system (GPERS) of the boom of hydraulic excavator, namely the closed-circuit GPERS, is proposed in this paper. The closed-circuit GPERS is based on a closed-circuit hydrostatic transmission and adopts a hydraulic accumulator as main energy storage element fabricated in novel configuration to recover the entire gravitational potential energy of the boom of hydraulic excavator. The matching parameter and control system design are carried out for the proposed system, and the system is modeled based on its physical attributes. Simulation and experiments are performed to validate the employed mathematical models, and then, the velocity and the pressure performance of system are analyzed. It is observed that the closed-circuit GPERS shows better velocity control of the boom and response characteristics. After that, the average working efficiency of the closed-circuit GPERS of boom is estimated under different load conditions. The results indicate that the proposed system is highly effective and that the average working efficiency in different load conditions varied from 60% to 68.2% for the experiment platform.

  2. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2005-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  3. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)

    2006-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  4. Center of mass detection via an active pixel sensor

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrata (Inventor); Fossum, Eric (Inventor)

    2002-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  5. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  6. Distributed meandering waveguides (DMWs) for novel photonic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dag, Ceren B.; Anil, Mehmet Ali; Serpengüzel, Ali

    2017-05-01

    Meandering waveguide distributed feedback structures are novel integrated photonic lightwave and microwave circuit elements. Meandering waveguide distributed feedback structures with a variety of spectral responses can be designed for a variety of lightwave and microwave circuit element functions. Distributed meandering waveguide (DMW) structures [1] show a variety of spectral behaviors with respect to the number of meandering loop mirrors (MLMs) [2] used in their composition as well as their internal coupling constants (Cs). DMW spectral behaviors include Fano resonances, coupled resonator induced transparency (CRIT), notch, add-drop, comb, and hitless filters. What makes the DMW special is the self-coupling property intrinsic to the DMW's nature. The basic example of DMW's nature is motivated through the analogy between the so-called symmetric meandering resonator (SMR), which consists of two coupled MLMs, and the resonator enhanced Mach-Zehnder interferometer (REMZI) [3]. A SMR shows the same spectral characteristics of Fano resonances with its self-coupling property, similar to the single, distributed and binary self coupled optical waveguide (SCOW) resonators [4]. So far DMWs have been studied for their electric field intensity, phase [5] and phasor responses [6]. The spectral analysis is performed using the coupled electric field analysis and the generalization of single meandering loop mirrors to multiple meandering distributed feedback structures is performed with the transfer matrix method. The building block of the meandering waveguide structures, the meandering loop mirror (MLM), is the integrated analogue of the fiber optic loop mirrors. The meandering resonator (MR) is composed of two uncoupled MLM's. The meandering distributed feedback (MDFB) structure is the DFB of the MLM. The symmetric MR (SMR) is composed of two coupled MLM's, and has the characteristics of a Fano resonator in the general case, and tunable power divider or tunable hitless filter

  7. Equivalent circuit for the characterization of the resonance mode in piezoelectric systems

    NASA Astrophysics Data System (ADS)

    Fernández-Afonso, Y.; García-Zaldívar, O.; Calderón-Piñar, F.

    2015-12-01

    The impedance properties in polarized piezoelectric can be described by electric equivalent circuits. The classic circuit used in the literature to describe real systems is formed by one resistor (R), one inductance (L) and one capacitance C connected in series and one capacity (C0) connected in parallel with the formers. Nevertheless, the equation that describe the resonance and anti-resonance frequencies depends on a complex manner of R, L, C and C0. In this work is proposed a simpler model formed by one inductance (L) and one capacity (C) in series; one capacity (C0) in parallel; one resistor (RP) in parallel and one resistor (RS) in series with other components. Unlike the traditional circuit, the equivalent circuit elements in the proposed model can be simply determined by knowing the experimental values of the resonance frequency fr, anti-resonance frequency fa, impedance module at resonance frequency |Zr|, impedance module at anti-resonance frequency |Za| and low frequency capacitance C0, without fitting the impedance experimental data to the obtained equation.

  8. A new LTPS TFT AC pixel circuit for an AMOLED

    NASA Astrophysics Data System (ADS)

    Yongwen, Zhang; Wenbin, Chen

    2013-01-01

    This work presents a new voltage programmed pixel circuit for an active-matrix organic light-emitting diode (AMOLED) display. The proposed pixel circuit consists of six low temperature polycrystalline silicon thin-film transistors (LTPS TFTs), one storage capacitor, and one OLED, and is verified by simulation work using HSPICE software. Besides effectively compensating for the threshold voltage variation of the driving TFT and OLED, the proposed pixel circuit offers an AC driving mode for the OLED, which can suppress the degradation of the OLED. Moreover, a high contrast ratio can be achieved by the proposed pixel circuit since the OLED does not emit any light except for the emission period.

  9. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.

    2018-03-01

    We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator

  10. Functional design criteria for interim stabilization safety class 1 trip circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, R.E., Westinghouse Hanford

    1996-06-10

    This Functional Design Criteria document outlines the basic requirements for the Safety Class 1 Trip Circuit. The objective of the Safety Class 1 Trip Circuit is to isolate the power circuitry to the Class 1 Division 2, Group B or lesser grade electrically fed loads located in the pump pit. The electrically fed load circuits need to have power isolated to them upon receipt of the following conditions, loss of flammable gases being released (above a predetermined threshold), and seismic(greater than 0.12g acceleration) activity. The two circuits requiring power isolation are the pump and heat trace power circuits. The Safetymore » Class 1 Trip Circuit will be used to support salt well pumping in SST`s containing potentially flammable gas-bearing / gas-producing radioactive waste.« less

  11. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.; hide

    1994-01-01

    This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.

  12. Observation of New Spontaneous Fission Activities from Elements 100 TO 105.

    NASA Astrophysics Data System (ADS)

    Somerville, Lawrence Patrick

    Several new Spontaneous Fission (SF) activities have been found. Their half-lives and production cross sections in several reactions have been measured by collecting and transporting recoils at known speed past mica track detectors. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include ('257)Rf(3.8 s, 14% SF), ('258)Rf(13 ms), ('259)Rf((TURN)3 s, 8% SF), ('260)Rf((TURN)20 ms), and ('262)Rf((TURN)50ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (('260)104) was not observed. A difficulty exists in the interpretation that ('260)Rf is a (TURN)20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV ('18)O + ('248)Cm, 88- to 100-MeV ('15)N + ('249)Bk, and 96-MeV ('18)O + ('249)Cf must be other nuclides due to their large production cross sections, or the cross sections for production of ('260)Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible (TURN)1% electron-capture branch in ('258)Lr(4.5 s) to the SF emitter ('258)No(1.2 ms) and an upper limit of 0.05% for SF branching in ('254)No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include (TURN)1.6 s (('18)O + ('248)Cm), indications of a (TURN)47-s SF activity (75-MeV ('12)C + ('249)Cf), and two or more SF activities with 3 s (LESSTHEQ) T(, 1/2) (LESSTHEQ) 60 s (('18)O + ('249)Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element -104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically by Randrup et al. and Baran et al. and attributed to the disappearance of the second hump of the double-humped fission

  13. Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Hee-Sun; Lee, Won-Kyu; Park, Sang-Guen; Kuk, Seung-Hee; Han, Min-Koo

    2009-03-01

    A new hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) pixel circuit for active-matrix organic light emission diodes (AM-OLEDs), which significantly compensates the OLED current degradation by memorizing the threshold voltage of driving TFT and suppresses the threshold voltage shift of a-Si:H TFTs by negative bias annealing, is proposed and fabricated. During the first half of each frame, the driving TFT of the proposed pixel circuit supplies current to the OLED, which is determined by modified data voltage in the compensation scheme. The proposed pixel circuit was able to compensate the threshold voltage shift of the driving TFT as well as the OLED. During the remaining half of each frame, the proposed pixel circuit induces the recovery of the threshold voltage degradation of a-Si:H TFTs owing to the negative bias annealing. The experimental results show that the proposed pixel circuit was able to successfully compensate for the OLED current degradation and suppress the threshold voltage degradation of the driving TFT.

  14. Slots in dielectric image line as mode launchers and circuit elements

    NASA Astrophysics Data System (ADS)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  15. A HLA class I cis-regulatory element whose activity can be modulated by hormones.

    PubMed

    Sim, B C; Hui, K M

    1994-12-01

    To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.

  16. Documentation of Stainless Steel Lithium Circuit Test Section Design

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Martin, J. J.; Stewart, E. T.; Rhys, N. O.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005.

  17. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B.

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for themore » proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.« less

  18. Improved equivalent circuit for twin slot terahertz receivers

    NASA Technical Reports Server (NTRS)

    McGrath, W. R.

    2002-01-01

    Series-fed coplanar waveguide embedding circuits are being developed for terahertz mixers using, in particular, submicron-sized superconducting devices, such as hot electron bolometers as the nonlinear element. Although these mixers show promising performance, they usually also show a considerable downward shift in the center frequency, when compared with simulations obtained by using simplified models. This makes it very difficult to design low-noise mixers for a given THz frequency. This shiftis principally caused by parasitics due to the extremely small details (in terms of wavelength) of the device, and by the electrical properties of the RF choke filter in the DC/IF line. In this paper, we present an improved equivalent network model of such mixer circuits which agrees with measured results at THz frequencies and we propose a new set of THz bolometric mixers that have been fabricated and are currently being tested.

  19. Parallelizing quantum circuit synthesis

    NASA Astrophysics Data System (ADS)

    Di Matteo, Olivia; Mosca, Michele

    2016-03-01

    Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.

  20. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    PubMed

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  1. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    PubMed Central

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  2. Lithium Circuit Test Section Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Garber, Anne

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.

  3. Lithium Circuit Test Section Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  4. Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler.

    PubMed

    Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen

    2012-07-15

    We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.

  5. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  6. Formalization, equivalence and generalization of basic resonance electrical circuits

    NASA Astrophysics Data System (ADS)

    Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay

    2017-12-01

    In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.

  7. Genetic circuit design automation.

    PubMed

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. Copyright © 2016, American Association for the Advancement of Science.

  8. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers. Circuit breakers providing short circuit protection for trailing cables shall be set so as not to exceed the...

  9. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    theory, using lumped circuit elements, to electromagnetics, using distributed electrical quantities. We show this development using first principles, but, in a more general sense, Maxwell's equations of electromagnetics could be applied.

  10. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.

    PubMed

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has generalized purpose and can be extended to more

  11. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.

    PubMed

    Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin

    2013-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.

  12. Demonstration of a neural circuit critical for imprinting behavior in chicks.

    PubMed

    Nakamori, Tomoharu; Sato, Katsushige; Atoji, Yasuro; Kanamatsu, Tomoyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2010-03-24

    Imprinting behavior in birds is elicited by visual and/or auditory cues. It has been demonstrated previously that visual cues are recognized and processed in the visual Wulst (VW), and imprinting memory is stored in the intermediate medial mesopallium (IMM) of the telencephalon. Alteration of neural responses in these two regions according to imprinting has been reported, yet direct evidence of the neural circuit linking these two regions is lacking. Thus, it remains unclear how memory is formed and expressed in this circuit. Here, we present anatomical as well as physiological evidence of the neural circuit connecting the VW and IMM and show that imprinting training during the critical period strengthens and refines this circuit. A functional connection established by imprint training resulted in an imprinting behavior. After the closure of the critical period, training could not activate this circuit nor induce the imprinting behavior. Glutamatergic neurons in the ventroposterior region of the VW, the core region of the hyperpallium densocellulare (HDCo), sent their axons to the periventricular part of the HD, just dorsal and afferent to the IMM. We found that the HDCo is important in imprinting behavior. The refinement and/or enhancement of this neural circuit are attributed to increased activity of HDCo cells, and the activity depended on NR2B-containing NMDA receptors. These findings show a neural connection in the telencephalon in Aves and demonstrate that NR2B function is indispensable for the plasticity of HDCo cells, which are key mediators of imprinting.

  13. From synapses to behavior: development of a sensory-motor circuit in the leech.

    PubMed

    Marin-Burgin, Antonia; Kristan, William B; French, Kathleen A

    2008-05-01

    The development of neuronal circuits has been advanced greatly by the use of imaging techniques that reveal the activity of neurons during the period when they are constructing synapses and forming circuits. This review focuses on experiments performed in leech embryos to characterize the development of a neuronal circuit that produces a simple segmental behavior called "local bending." The experiments combined electrophysiology, anatomy, and FRET-based voltage-sensitive dyes (VSDs). The VSDs offered two major advantages in these experiments: they allowed us to record simultaneously the activity of many neurons, and unlike other imaging techniques, they revealed inhibition as well as excitation. The results indicated that connections within the circuit are formed in a predictable sequence: initially neurons in the circuit are connected by electrical synapses, forming a network that itself generates an embryonic behavior and prefigures the adult circuit; later chemical synapses, including inhibitory connections, appear, "sculpting" the circuit to generate a different, mature behavior. In this developmental process, some of the electrical connections are completely replaced by chemical synapses, others are maintained into adulthood, and still others persist and share their targets with chemical synaptic connections.

  14. Ultralow-noise readout circuit with an avalanche photodiode: toward a photon-number-resolving detector.

    PubMed

    Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide

    2007-03-01

    The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.

  15. Organization of GABAergic synaptic circuits in the rat ventral tegmental area.

    PubMed

    Ciccarelli, Alessandro; Calza, Arianna; Panzanelli, Patrizia; Concas, Alessandra; Giustetto, Maurizio; Sassoè-Pognetto, Marco

    2012-01-01

    The ventral tegmental area (VTA) is widely implicated in drug addiction and other psychiatric disorders. This brain region is densely populated by dopaminergic (DA) neurons and also contains a sparse population of γ-aminobutyric acid (GABA)ergic cells that regulate the activity of the principal neurons. Therefore, an in-depth knowledge of the organization of VTA GABAergic circuits and of the plasticity induced by drug consumption is essential for understanding the mechanisms by which drugs induce stable changes in brain reward circuits. Using immunohistochemistry, we provide a detailed description of the localization of major GABA(A) and GABA(B) receptor subunits in the rat VTA. We show that DA and GABAergic cells express both GABA(A) and GABA(B) receptors. However VTA neurons differ considerably in the expression of GABA(A) receptor subunits, as the α1 subunit is associated predominantly with non-DA cells, whereas the α3 subunit is present at low levels in both types of VTA neurons. Using an unbiased stereological method, we then demonstrate that α1-positive elements represent only a fraction of non-DA neurons and that the ratio of DA and non-DA cells is quite variable throughout the rostro-caudal extent of the VTA. Interestingly, DA and non-DA cells receive a similar density of perisomatic synapses, whereas axo-dendritic synapses are significantly more abundant in non-DA cells, indicating that local interneurons receive prominent GABAergic inhibition. These findings reveal a differential expression of GABA receptor subtypes in the two major categories of VTA neurons and provide an anatomical basis for interpreting the plasticity of inhibitory circuits induced by drug exposure.

  16. Quantum Memristors with Superconducting Circuits

    DOE PAGES

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; ...

    2017-02-14

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. Here in this paper, for realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methodsmore » to quantify memory retention in the system.« less

  17. Generation of optical vortices in an integrated optical circuit

    NASA Astrophysics Data System (ADS)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  18. Predilution versus postdilution during continuous venovenous hemofiltration: a comparison of circuit thrombogenesis.

    PubMed

    de Pont, Anne-Cornélie J M; Bouman, Catherine S C; Bakhtiari, Kamran; Schaap, Marianne C L; Nieuwland, Rienk; Sturk, Augueste; Hutten, Barbara A; de Jonge, Evert; Vroom, Margreeth B; Meijers, Joost C M; Büller, Harry R

    2006-01-01

    During continuous venovenous hemofiltration, predilution can prolong circuit survival time, but the underlying mechanism has not been elucidated. The aim of the present study was to compare predilution with postdilution, with respect to circuit thrombogenesis. Eight critically ill patients were treated with both predilutional and postdilutional continuous venovenous hemofiltration in a crossover fashion. A filtration flow of 60 ml/min was used in both modes. We chose blood flows of 140 and 200 ml/min during predilution and postdilution, respectively, to keep the total flow through the hemofilter constant. Extracorporeal circuit pressures were measured hourly, and samples of blood and ultrafiltrate were collected at five different time points. Thrombin-antithrombin complexes and prothrombin fragments F1 + 2 were measured by ELISA, and platelet activation was assessed by flow cytometry. No signs of thrombin generation or platelet activation were found during either mode. During postdilution, baseline platelet count and maximal prefilter pressure had a linear relation, whereas both parameters were inversely related with circuit survival time. In summary, predilution and postdilution did not differ with respect to extracorporeal circuit thrombogenesis. During postdilution, baseline platelet count and maximal prefilter pressure were inversely related with circuit survival time.

  19. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  20. Flexible Circuits

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Adflex Solutions, Inc.'s flexible circuits may be molded to the shape of a chassis for bulk reduction. Particularly valuable when circuitry must be moved. They are produced by combining a plastic film, a metallic conductor and an adhesive. One adhesive, LARC-TPI, developed by the Langley Research Center, is a thermoplastic polyimide resin used to produce laminates by Rogers Corporation. It can be processed at a lower temperature, has good moisture resistance and excellent adherence. It is used to bond film to copper foil conductor materials in flexible circuits. The circuits have both aerospace and commercial applications.

  1. Discrete elements for 3D microfluidics.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  2. A direct translaminar inhibitory circuit tunes cortical output

    PubMed Central

    Pluta, Scott; Naka, Alexander; Veit, Julia; Telian, Gregory; Yao, Lucille; Hakim, Richard; Taylor, David; Adesnik, Hillel

    2015-01-01

    Summary Anatomical and physiological experiments have outlined a blueprint for the feed-forward flow of activity in cortical circuits: signals are thought to propagate primarily from the middle cortical layer, L4, up to L2/3, and down to the major cortical output layer, L5. Pharmacological manipulations, however, have contested this model and suggested that L4 may not be critical for sensory responses of neurons in either superficial or deep layers. To address these conflicting models we reversibly manipulated L4 activity in awake, behaving mice using cell-type specific optogenetics. In contrast to both prevailing models, we show that activity in L4 directly suppresses L5, in part by activating deep, fast spiking inhibitory neurons. Our data suggest that the net impact of L4 activity is to sharpen the spatial representations of L5 neurons. Thus we establish a novel translaminar inhibitory circuit in the sensory cortex that acts to enhance the feature selectivity of cortical output. PMID:26414615

  3. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits.

    PubMed

    LaBerge, David; Kasevich, Ray S

    2017-01-01

    Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local "clock," which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system's timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  4. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    PubMed

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Method For Making Electronic Circuits Having Nial And Ni3al Substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    2001-01-30

    A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  6. Design, Fabrication and Integration of a NaK-Cooled Circuit

    NASA Technical Reports Server (NTRS)

    Garber, Anne; Godfroy, Thomas

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed for use with a eutectic mixture of sodium potassium (NaK), was redesigned to for use with lithium. Due to a shi$ in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature circuit include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a fill design) was selected for fabrication and test. This paper summarizes the integration and preparations for the fill of the pumped liquid metal NaK flow circuit.

  7. Excitability Changes in Intracortical Neural Circuits Induced by Differentially Controlled Walking Patterns

    PubMed Central

    Ito, Tomotaka; Tsubahara, Akio; Shinkoda, Koichi; Yoshimura, Yosuke; Kobara, Kenichi; Osaka, Hiroshi

    2015-01-01

    Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke. PMID:25688972

  8. Trace elements and antibacterial activity in amniotic fluid.

    PubMed

    Honkonen, E; Näntö, V; Hyörä, H; Vuorinen, K; Erkkola, R

    1986-01-01

    Antibacterial activity and trace element concentrations in amniotic fluid (AF) were determined in a population of 39 pregnant women in the second half of gestation. Antibacterial activity in each AF was measured by a spectrophotometric micromethod after 18 h incubation at 37 degrees C using Escherichia coli K 12 as a reference bacterium. Concentrations of zinc, iron, copper, calcium, potassium and bromine were measured by particle-induced X-ray emission method and the zinc concentration was also measured by atomic absorption spectrophotometry. Phosphate concentration was determined by direct albumin adding method. In AFs with good antibacterial activity significantly lower concentrations of potassium and bromine were found when compared to AFs with lower antibacterial activity. Concentrations of zinc, iron, copper, calcium or phosphate did not correlate with antibacterial activity in AF.

  9. [Shunt and short circuit].

    PubMed

    Rangel-Abundis, Alberto

    2006-01-01

    Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.

  10. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  11. Robust, low-noise, polarization-maintaining mode-locked Er-fiber laser with a planar lightwave circuit (PLC) device as a multi-functional element.

    PubMed

    Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2017-04-15

    We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.

  12. Macromodels of digital integrated circuits for program packages of circuit engineering design

    NASA Astrophysics Data System (ADS)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  13. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...

  14. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...

  15. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...

  16. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...

  17. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...

  18. A CW Gunn Diode Switching Element.

    ERIC Educational Resources Information Center

    Hurtado, Marco; Rosenbaum, Fred J.

    As part of a study of the application of communication satellites to educational development, certain technical aspects of such a system were examined. A current controlled bistable switching element using a CW Gunn diode is reported on here. With modest circuits switching rates of the order of 10 MHz have been obtained. Switching is initiated by…

  19. Signal transduction in Mimosa pudica: biologically closed electrical circuits.

    PubMed

    Volkov, Alexander G; Foster, Justin C; Markin, Vladislav S

    2010-05-01

    Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 microF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data.

  20. MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-01-20

    An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses

  1. Signal processing in local neuronal circuits based on activity-dependent noise and competition

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Levine, Herbert

    2009-09-01

    We study the characteristics of weak signal detection by a recurrent neuronal network with plastic synaptic coupling. It is shown that in the presence of an asynchronous component in synaptic transmission, the network acquires selectivity with respect to the frequency of weak periodic stimuli. For nonperiodic frequency-modulated stimuli, the response is quantified by the mutual information between input (signal) and output (network's activity) and is optimized by synaptic depression. Introducing correlations in signal structure resulted in the decrease in input-output mutual information. Our results suggest that in neural systems with plastic connectivity, information is not merely carried passively by the signal; rather, the information content of the signal itself might determine the mode of its processing by a local neuronal circuit.

  2. Testing conditions in shock-based contextual fear conditioning influence both the behavioral responses and the activation of circuits potentially involved in contextual avoidance.

    PubMed

    Viellard, Juliette; Baldo, Marcus Vinicius C; Canteras, Newton Sabino

    2016-12-15

    Previous studies from our group have shown that risk assessment behaviors are the primary contextual fear responses to predatory and social threats, whereas freezing is the main contextual fear response to physically harmful events. To test contextual fear responses to a predator or aggressive conspecific threat, we developed a model that involves placing the animal in an apparatus where it can avoid the threat-associated environment. Conversely, in studies that use shock-based fear conditioning, the animals are usually confined inside the conditioning chamber during the contextual fear test. In the present study, we tested shock-based contextual fear responses using two different behavioral testing conditions: confining the animal in the conditioning chamber or placing the animal in an apparatus with free access to the conditioning compartment. Our results showed that during the contextual fear test, the animals confined to the shock chamber exhibited significantly more freezing. In contrast, the animals that could avoid the conditioning compartment displayed almost no freezing and exhibited risk assessment responses (i.e., crouch-sniff and stretch postures) and burying behavior. In addition, the animals that were able to avoid the shock chamber had increased Fos expression in the juxtadorsomedial lateral hypothalamic area, the dorsomedial part of the dorsal premammillary nucleus and the lateral and dorsomedial parts of the periaqueductal gray, which are elements of a septo/hippocampal-hypothalamic-brainstem circuit that is putatively involved in mediating contextual avoidance. Overall, the present findings show that testing conditions significantly influence both behavioral responses and the activation of circuits involved in contextual avoidance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Digital circuits using universal logic gates

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor); Cameron, Eric G. (Inventor); Donohoe, Gregory W. (Inventor); Gambles, Jody W. (Inventor)

    2004-01-01

    According to the invention, a digital circuit design embodied in at least one of a structural netlist, a behavioral netlist, a hardware description language netlist, a full-custom ASIC, a semi-custom ASIC, an IP core, an integrated circuit, a hybrid of chips, one or more masks, a FPGA, and a circuit card assembly is disclosed. The digital circuit design includes first and second sub-circuits. The first sub-circuits comprise a first percentage of the digital circuit design and the second sub-circuits comprise a second percentage of the digital circuit design. Each of the second sub-circuits is substantially comprised of one or more kernel circuits. The kernel circuits are comprised of selection circuits. The second percentage is at least 5%. In various embodiments, the second percentage could be at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95%.

  4. Raphé neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P

    PubMed Central

    Ptak, Krzysztof; Yamanishi, Tadashi; Aungst, Jason; Milescu, Lorin S.; Zhang, Ruli; Richerson, George B.; Smith, Jeffrey C.

    2010-01-01

    Brainstem serotonin (5-HT) neurons modulate activity of many neural circuits in the mammalian brain, but in many cases endogenous mechanisms have not been resolved. Here, we analyzed actions of raphé 5-HT neurons on respiratory network activity including at the level of the pre–Bötzinger complex (pre-BötC) in neonatal rat medullary slices in vitro, and in the more intact nervous system of juvenile rats in arterially perfused brainstem-spinal cord preparations in situ. At basal levels of activity, excitation of the respiratory network via simultaneous release of 5-HT and substance P (SP), acting at 5-HT2A/2C, 5-HT4 and/or neurokinin-1 receptors, was required to maintain inspiratory motor output in both the neonatal and juvenile systems. The midline raphé obscurus contained spontaneously active 5-HT neurons, some of which projected to the pre-BötC and hypoglossal motoneurons, co-localized 5-HT and SP, and received reciprocal excitatory connections from the pre-BötC. Experimentally augmenting raphé obscurus activity increased motor output by simultaneously exciting pre-BötC and motor neurons. Biophysical analyses in vitro demonstrated that 5-HT and SP modulated background cation conductances in pre-BötC and motor neurons, including a non–selective cation leak current that contributed to the resting potential, which explains the neuronal depolarization that augmented motor output. Furthermore, we found that 5-HT, but not SP, can transform the electrophysiological phenotype of some pre-BötC neurons to intrinsic bursters, providing 5-HT with an additional role in promoting rhythm generation. We conclude that raphé 5-HT neurons excite key circuit components required for generation of respiratory motor output. PMID:19321769

  5. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    PubMed

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  6. Hydraulically-activated operating system for an electric circuit breaker

    DOEpatents

    Imam, Imdad; Barkan, Philip

    1979-01-01

    This operating system comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit-breaker opening operation. A normally-closed valve located on the breaker-closing-side of the piston is openable to release liquid from the breaker-closing space so that pressurized liquid in the breaker-opening space can drive the piston in an opening direction. Means is provided for restoring the valve to its closed position following the circuit-breaker opening operation. An impeded passage affords communication between the accumulator and the breaker-closing space to allow pressurized liquid to flow from the accumulator to the breaker-closing space and develop a pressure therein substantially equal to accumulator pressure when the valve is restored to closed position following breaker-opening. This passage is so impeded that the flow therethrough from the accumulator into the breaker-closing space is sufficiently low during initial opening motion of the piston through a substantial portion of its opening stroke as to avoid interference with said initial opening motion of the piston.

  7. Comparison of modified driver circuit and capacitor-transfer circuit in longitudinally excited N2 laser.

    PubMed

    Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa

    2013-04-01

    We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.

  8. Separating OR, SUM, and XOR Circuits.

    PubMed

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H

    2016-08-01

    Given a boolean n × n matrix A we consider arithmetic circuits for computing the transformation x ↦ Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on separating OR-circuits from the two other models in terms of circuit complexity: We show how to obtain matrices that admit OR-circuits of size O ( n ), but require SUM-circuits of size Ω( n 3/2 /log 2 n ).We consider the task of rewriting a given OR-circuit as a XOR-circuit and prove that any subquadratic-time algorithm for this task violates the strong exponential time hypothesis.

  9. CIRCUITS FOR CURRENT MEASUREMENTS

    DOEpatents

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  10. Complex dynamics of memristive circuits: Analytical results and universal slow relaxation

    NASA Astrophysics Data System (ADS)

    Caravelli, F.; Traversa, F. L.; Di Ventra, M.

    2017-02-01

    Networks with memristive elements (resistors with memory) are being explored for a variety of applications ranging from unconventional computing to models of the brain. However, analytical results that highlight the role of the graph connectivity on the memory dynamics are still few, thus limiting our understanding of these important dynamical systems. In this paper, we derive an exact matrix equation of motion that takes into account all the network constraints of a purely memristive circuit, and we employ it to derive analytical results regarding its relaxation properties. We are able to describe the memory evolution in terms of orthogonal projection operators onto the subspace of fundamental loop space of the underlying circuit. This orthogonal projection explicitly reveals the coupling between the spatial and temporal sectors of the memristive circuits and compactly describes the circuit topology. For the case of disordered graphs, we are able to explain the emergence of a power-law relaxation as a superposition of exponential relaxation times with a broad range of scales using random matrices. This power law is also universal, namely independent of the topology of the underlying graph but dependent only on the density of loops. In the case of circuits subject to alternating voltage instead, we are able to obtain an approximate solution of the dynamics, which is tested against a specific network topology. These results suggest a much richer dynamics of memristive networks than previously considered.

  11. Binding among select episodic elements is altered via active short-term retrieval.

    PubMed

    Bridge, Donna J; Voss, Joel L

    2015-08-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated memory of associated objects, which was associated with unique patterns of viewing behavior during study and enhanced ERP correlates of retrieval during test, relative to other reminder cues that were not actively retrieved. Active short-term retrieval therefore enhanced binding of retrieved elements with others, thus creating powerful memory cues for entire episodes. © 2015 Bridge and Voss; Published by Cold Spring Harbor Laboratory Press.

  12. Method of determining the open circuit voltage of a battery in a closed circuit

    DOEpatents

    Brown, William E.

    1980-01-01

    The open circuit voltage of a battery which is connected in a closed circuit is determined without breaking the circuit or causing voltage upsets therein. The closed circuit voltage across the battery and the current flowing through it are determined under normal load and then a fractional change is made in the load and the new current and voltage values determined. The open circuit voltage is then calculated, according to known principles, from the two sets of values.

  13. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.

    PubMed

    Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

  14. Assessment of SOI Devices and Circuits at Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik; Hammoud, Ahmad; Patterson, Richard L.

    2007-01-01

    Electronics designed for use in future NASA space exploration missions are expected to encounter extreme temperatures and wide thermal swings. Such missions include planetary surface exploration, bases, rovers, landers, orbiters, and satellites. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of mission. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical devices, circuits, and systems suitable for applications in deep space exploration missions and aerospace environment. Silicon-On-Insulator (SOI) technology has been under active consideration in the electronics industry for many years due to the advantages that it can provide in integrated circuit (IC) chips and computer processors. Faster switching, less power, radiationtolerance, reduced leakage, and high temp-erature capability are some of the benefits that are offered by using SOI-based devices. A few SOI circuits are available commercially. However, there is a noticeable interest in SOI technology for different applications. Very little data, however, exist on the performance of such circuits under cryogenic temperatures. In this work, the performance of SOI integrated circuits, evaluated under low temperature and thermal cycling, are reported. In particular, three examples of SOI circuits that have been tested for operation at low at temperatures are given. These circuits are SOI operational amplifiers, timers and power MOSFET drivers. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these circuits for use in space exploration missions at cryogenic temperatures. The findings are useful to mission planners and circuit designers so that proper selection of electronic parts can be made, and risk assessment can be established for such circuits for use in space missions.

  15. A photonic circuit for complementary frequency shifting, in-phase quadrature/single sideband modulation and frequency multiplication: analysis and integration feasibility

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hu, Jianqi; Nikkhah, Hamdam; Hall, Trevor

    2017-08-01

    A novel photonic integrated circuit architecture for implementing orthogonal frequency division multiplexing by means of photonic generation of phase-correlated sub-carriers is proposed. The circuit can also be used for implementing complex modulation, frequency up-conversion of the electrical signal to the optical domain and frequency multiplication. The principles of operation of the circuit are expounded using transmission matrices and the predictions of the analysis are verified by computer simulation using an industry-standard software tool. Non-ideal scenarios that may affect the correct function of the circuit are taken into consideration and quantified. The discussion of integration feasibility is illustrated by a photonic integrated circuit that has been fabricated using 'library' components and which features most of the elements of the proposed circuit architecture. The circuit is found to be practical and may be fabricated in any material platform that offers a linear electro-optic modulator such as organic or ferroelectric thin films hybridized with silicon photonics.

  16. Study of switching electric circuits with DC hybrid breaker, one stage

    NASA Astrophysics Data System (ADS)

    Niculescu, T.; Marcu, M.; Popescu, F. G.

    2016-06-01

    The paper presents a method of extinguishing the electric arc that occurs between the contacts of direct current breakers. The method consists of using an LC type extinguishing group to be optimally sized. From this point of view is presented a theoretical approach to the phenomena that occurs immediately after disconnecting the load and the specific diagrams are drawn. Using these, the elements extinguishing group we can choose. At the second part of the paper there is presented an analyses of the circuit switching process by decomposing the process in particular time sequences. For every time interval there was conceived a numerical simulation model in MATLAB-SIMULINK medium which integrates the characteristic differential equation and plots the capacitor voltage variation diagram and the circuit dumping current diagram.

  17. Modelling nonlinearity in piezoceramic transducers: From equations to nonlinear equivalent circuits.

    PubMed

    Parenthoine, D; Tran-Huu-Hue, L-P; Haumesser, L; Vander Meulen, F; Lematre, M; Lethiecq, M

    2011-02-01

    Quadratic nonlinear equations of a piezoelectric element under the assumptions of 1D vibration and weak nonlinearity are derived by the perturbation theory. It is shown that the nonlinear response can be represented by controlled sources that are added to the classical hexapole used to model piezoelectric ultrasonic transducers. As a consequence, equivalent electrical circuits can be used to predict the nonlinear response of a transducer taking into account the acoustic loads on the rear and front faces. A generalisation of nonlinear equivalent electrical circuits to cases including passive layers and propagation media is then proposed. Experimental results, in terms of second harmonic generation, on a coupled resonator are compared to theoretical calculations from the proposed model. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-09

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  19. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  20. Polymorphic Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2004-01-01

    Polymorphic electronics is a nascent technological discipline that involves, among other things, designing the same circuit to perform different analog and/or digital functions under different conditions. For example, a circuit can be designed to function as an OR gate or an AND gate, depending on the temperature (see figure). Polymorphic electronics can also be considered a subset of polytronics, which is a broader technological discipline in which optical and possibly other information- processing systems could also be designed to perform multiple functions. Polytronics is an outgrowth of evolvable hardware (EHW). The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles. To recapitulate: The essence of EHW is to design, construct, and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The evolution is guided by a search-and-optimization algorithm (in particular, a genetic algorithm) that operates in the space of possible circuits to find a circuit that exhibits an acceptably close approximation of the desired functionality. The evolved circuits can be tested by computational simulation (in which case the evolution is said to be extrinsic), tested in real hardware (in which case the evolution is said to be intrinsic), or tested in random sequences of computational simulation and real hardware (in which case the evolution is said to be mixtrinsic).

  1. Chemically programmed ink-jet printed resistive WORM memory array and readout circuit

    NASA Astrophysics Data System (ADS)

    Andersson, H.; Manuilskiy, A.; Sidén, J.; Gao, J.; Hummelgård, M.; Kunninmel, G. V.; Nilsson, H.-E.

    2014-09-01

    In this paper an ink-jet printed write once read many (WORM) resistive memory fabricated on paper substrate is presented. The memory elements are programmed for different resistance states by printing triethylene glycol monoethyl ether on the substrate before the actual memory element is printed using silver nano particle ink. The resistance is thus able to be set to a broad range of values without changing the geometry of the elements. A memory card consisting of 16 elements is manufactured for which the elements are each programmed to one of four defined logic levels, providing a total of 4294 967 296 unique possible combinations. Using a readout circuit, originally developed for resistive sensors to avoid crosstalk between elements, a memory card reader is manufactured that is able to read the values of the memory card and transfer the data to a PC. Such printed memory cards can be used in various applications.

  2. Method and Circuit for Injecting a Precise Amount of Charge onto a Circuit Node

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R. (Inventor)

    2016-01-01

    A method and circuit for injecting charge into a circuit node, comprising (a) resetting a capacitor's voltage through a first transistor; (b) after the resetting, pre-charging the capacitor through the first transistor; and (c) after the pre-charging, further charging the capacitor through a second transistor, wherein the second transistor is connected between the capacitor and a circuit node, and the further charging draws charge through the second transistor from the circuit node, thereby injecting charge into the circuit node.

  3. REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology

    PubMed Central

    Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Peever, John H.

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874

  4. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  5. Towards programmable plant genetic circuits.

    PubMed

    Medford, June I; Prasad, Ashok

    2016-07-01

    Synthetic biology enables the construction of genetic circuits with predictable gene functions in plants. Detailed quantitative descriptions of the transfer function or input-output function for genetic parts (promoters, 5' and 3' untranslated regions, etc.) are collected. These data are then used in computational simulations to determine their robustness and desired properties, thereby enabling the best components to be selected for experimental testing in plants. In addition, the process forms an iterative workflow which allows vast improvement to validated elements with sub-optimal function. These processes enable computational functions such as digital logic in living plants and follow the pathway of technological advances which took us from vacuum tubes to cell phones. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  7. Automatic circuit interrupter

    NASA Technical Reports Server (NTRS)

    Dwinell, W. S.

    1979-01-01

    In technique, voice circuits connecting crew's cabin to launch station through umbilical connector disconnect automatically unused, or deadened portion of circuits immediately after vehicle is launched, eliminating possibility that unused wiring interferes with voice communications inside vehicle or need for manual cutoff switch and its associated wiring. Technique is applied to other types of electrical actuation circuits, also launch of mapped vehicles, such as balloons, submarines, test sleds, and test chambers-all requiring assistance of ground crew.

  8. The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis

    NASA Astrophysics Data System (ADS)

    Rahmaniar; Putri, Maharani

    2018-03-01

    Strengthening Competitiveness of human resources become the reply of college as a conductor of high fomal education. Electrical Engineering Program UNPAB (Prodi TE UNPAB) as one of the department of electrical engineering that manages the field of electrical engineering expertise has a very important part in preparing human resources (HR), Which is required by where graduates are produced by DE UNPAB, Is expected to be able to compete globally, especially related to the implementation of Asean Economic Community (AEC) which requires the active participation of graduates with competence and quality of human resource competitiveness. Preparation of HR formation Competitive is done with the various strategies contained in the Seven (7) Higher Education Standard, one part of which is the implementation of teaching and learning process in Electrical system analysis with short circuit analysis (SCA) This course is a course The core of which is the basis for the competencies of other subjects in the advanced semester at Development of Computer Based Learning model (CBL) is done in the learning of interference analysis of multi-machine short circuit which includes: (a) Short-circuit One phase, (B) Two-phase Short Circuit Disruption, (c) Ground Short Circuit Disruption, (d) Short Circuit Disruption One Ground Floor Development of CBL learning model for Electrical System Analysis course provides space for students to be more active In learning in solving complex (complicated) problems, so it is thrilling Ilkan flexibility of student learning how to actively solve the problem of short-circuit analysis and to form the active participation of students in learning (Student Center Learning, in the course of electrical power system analysis.

  9. A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains.

    PubMed

    Hanakawa, Takashi; Goldfine, Andrew M; Hallett, Mark

    2017-01-01

    Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy ( A base ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved A base for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.

  10. A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains

    PubMed Central

    2017-01-01

    Abstract Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine. PMID:29379873

  11. Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials.

    PubMed

    Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji; Rogers, John A; Huang, Yonggang

    2017-01-26

    Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration.

  12. Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials

    PubMed Central

    Xu, Renxiao; Lee, Jung Woo; Pan, Taisong; Ma, Siyi; Wang, Jiayi; Han, June Hyun; Ma, Yinji

    2017-01-01

    Many recently developed soft, skin-like electronics with high performance circuits and low modulus encapsulation materials can accommodate large bending, stretching, and twisting deformations. Their compliant mechanics also allows for intimate, nonintrusive integration to the curvilinear surfaces of soft biological tissues. By introducing a stacked circuit construct, the functional density of these systems can be greatly improved, yet their desirable mechanics may be compromised due to the increased overall thickness. To address this issue, the results presented here establish design guidelines for optimizing the deformable properties of stretchable electronics with stacked circuit layers. The effects of three contributing factors (i.e., the silicone inter-layer, the composite encapsulation, and the deformable interconnects) on the stretchability of a multilayer system are explored in detail via combined experimental observation, finite element modeling, and theoretical analysis. Finally, an electronic module with optimized design is demonstrated. This highly deformable system can be repetitively folded, twisted, or stretched without observable influences to its electrical functionality. The ultrasoft, thin nature of the module makes it suitable for conformal biointegration. PMID:29046624

  13. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    NASA Astrophysics Data System (ADS)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  14. Joule-Thief Circuit Performance for Electricity Energy Saving of Emergency Lamps

    NASA Astrophysics Data System (ADS)

    Nuryanto Budisusila, Eka; Arifin, Bustanul

    2017-04-01

    The alternative energy such as battery as power source is required as energy source failures. The other need is outdoor lighting. The electrical power source is expected to be a power saving, optimum and has long life operating. The Joule-Thief circuit is one of solution method for energy saving by using raised electromagnetic force on cored coil when there is back-current. This circuit has a transistor operated as a switch to cut voltage and current flowing along the coils. The present of current causing magnetic induction and generates energy. Experimental prototype was designed by using battery 1.5V to activate Light Emitting Diode or LED as load. The LED was connected in parallel or serial circuit configuration. The result show that the joule-thief circuit able to supply LED circuits up to 40 LEDs.

  15. Exchange circuits for FASTBUS slaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratskii, A.A.; Matseev, M.Y.; Rybakov, V.G.

    1985-09-01

    This paper describes general-purpose circuits for FASTBUS interfacing of the functional part of a slave device. The circuits contain buffered receivers and transmitters, addressrecognition and data-transfer logic, and the required control/status registers. The described circuits are implemented with series-K500 integrated circuits.

  16. Tracing Activity Across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Jin Hyung

    2011-01-01

    Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160

  17. Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period

    NASA Astrophysics Data System (ADS)

    Moore, J. Christopher; Rubbo, Louis J.

    2016-10-01

    Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can support or falsify models, and confronting ways of distinguishing between two different models that make similar predictions. We also describe a twist that forces students to confront new phenomena, requiring revision of their mental model of electric circuits. This activity is designed to mirror the practice of science by actual scientists and expose students to the "messy" side of science, where our simple explanations of reality often require expansion and/or revision based on new evidence. The purpose of this paper is to present a simple classroom activity within the context of electric circuits that supports students as they learn to test hypotheses and refine and revise models based on evidence.

  18. Design and status of the RF-digitizer integrated circuit

    NASA Technical Reports Server (NTRS)

    Rayhrer, B.; Lam, B.; Young, L. E.; Srinivasan, J. M.; Thomas, J. B.

    1991-01-01

    An integrated circuit currently under development samples a bandpass-limited signal at a radio frequency in quadrature and then performs a simple sum-and-dump operation in order to filter and lower the rate of the samples. Downconversion to baseband is carried out by the sampling step itself through the aliasing effect of an appropriately selected subharmonic sampling frequency. Two complete RF digitizer circuits with these functions will be implemented with analog and digital elements on one GaAs substrate. An input signal, with a carrier frequency as high as 8 GHz, can be sampled at a rate as high as 600 Msamples/sec for each quadrature component. The initial version of the chip will sign-sample (1-bit) the input RF signal. The chip will contain a synthesizer to generate a sample frequency that is a selectable integer multiple of an input reference frequency. In addition to the usual advantages of compactness and reliability associated with integrated circuits, the single chip will replace several steps required by standard analog downconversion. Furthermore, when a very high initial sample rate is selected, the presampling analog filters can be given very large bandwidths, thereby greatly reducing phase and delay instabilities typically introduced by such filters, as well as phase and delay variation due to Doppler changes.

  19. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    PubMed Central

    LaBerge, David; Kasevich, Ray S.

    2017-01-01

    Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz). Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention) within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity. PMID:28659768

  20. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  1. Design principles and realization of electro-optical circuit boards

    NASA Astrophysics Data System (ADS)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  2. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  3. Digital MOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Elmasry, M. I.

    MOS in digital circuit design is considered along with aspects of digital VLSI, taking into account a comparison of MOSFET logic circuits, 1-micrometer MOSFET VLSI technology, a generalized guide for MOSFET miniaturization, processing technologies, novel circuit structures for VLSI, and questions of circuit and system design for VLSI. MOS memory cells and circuits are discussed, giving attention to a survey of high-density dynamic RAM cell concepts, one-device cells for dynamic random-access memories, variable resistance polysilicon for high density CMOS Ram, high performance MOS EPROMs using a stacked-gate cell, and the optimization of the latching pulse for dynamic flip-flop sensors. Programmable logic arrays are considered along with digital signal processors, microprocessors, static RAMs, and dynamic RAMs.

  4. Circuit courts clash over HIV in the workplace.

    PubMed

    1997-09-19

    Some of the major differences of opinions between the circuit courts on issues affecting HIV and employment are examined. In the seven years since the passing of the Americans with Disabilities Act (ADA), there has been disagreement among the circuits relative to the interpretation of the law. At the heart of the debate is whether or not HIV infection, without symptoms of AIDS, actually qualifies for a disability under the meaning and intent of the ADA. Another fundamental issue is whether or not reproduction is considered a major life activity under the ADA. Federal circuit courts have also considered what happens to patients in the latter stages of HIV diseases, when symptoms are so pronounced that he or she qualifies for disability benefits including Social Security or private disability plans. There is disagreement among the circuits as to whether insurance products, including those provided through an employee benefit program, are covered under the ADA. As of this date, the U.S. Supreme Court has not intervened on any of the HIV/ADA-related cases.

  5. Distinct neural circuits for control of movement vs. holding still

    PubMed Central

    2017-01-01

    In generating a point-to-point movement, the brain does more than produce the transient commands needed to move the body part; it also produces the sustained commands that are needed to hold the body part at its destination. In the oculomotor system, these functions are mapped onto two distinct circuits: a premotor circuit that specializes in generating the transient activity that displaces the eyes and a “neural integrator” that transforms that transient input into sustained activity that holds the eyes. Different parts of the cerebellum adaptively control the motor commands during these two phases: the oculomotor vermis participates in fine tuning the transient neural signals that move the eyes, monitoring the activity of the premotor circuit via efference copy, whereas the flocculus participates in controlling the sustained neural signals that hold the eyes, monitoring the activity of the neural integrator. Here, I review the oculomotor literature and then ask whether this separation of control between moving and holding is a design principle that may be shared with other modalities of movement. To answer this question, I consider neurophysiological and psychophysical data in various species during control of head movements, arm movements, and locomotion, focusing on the brain stem, motor cortex, and hippocampus, respectively. The review of the data raises the possibility that across modalities of motor control, circuits that are responsible for producing commands that change the sensory state of a body part are distinct from those that produce commands that maintain that sensory state. PMID:28053244

  6. High stability buffered phase comparator

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1984-01-01

    A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.

  7. The practical operational-amplifier gyrator circuit for inductorless filter synthesis

    NASA Technical Reports Server (NTRS)

    Sutherland, W. C.

    1976-01-01

    A literature is reported for gyrator circuits utilizing operational amplifiers as the active device. A gyrator is a two port nonreciprocal device with the property that the input impedance is proportional to the reciprocal of the load impedance. Following an experimental study, the gyrator circuit with optimum properties was selected for additional testing. A theoretical analysis was performed and compared to the experimental results for excellent agreement.

  8. Soils element activities for the period October 1973--September 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E.B.; Essington, E.H.; White, M.G.

    Soils Element activities were conducted on behalf of the U. S. Atomic Energy Commission's Nevada Applied Ecology Group (NAEG) program to provide source term information for the other program elements and maintain continuous cognizance of program requirements for sampling, sample preparation, and analysis. Activities included presentation of papers; participation in workshops; analysis of soil, vegetation, and animal tissue samples for $sup 238$Pu, $sup 239-240$Pu, $sup 241$Am, $sup 137$Cs, $sup 60$Co, and gamma scan for routine and laboratory quality control purposes; preparation and analysis of animal tissue samples for NAEG laboratory certification; studies on a number of analytical, sample preparation, andmore » sample collection procedures; and contributions to the evaluation of procedures for calculation of specialized counting statistics. (auth)« less

  9. Integrated circuit with dissipative layer for photogenerated carriers

    DOEpatents

    Myers, D.R.

    1988-04-20

    The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissipative layer of silicon nitride between a silicon substrate and the active device. Free carriers generated in the substrate are dissipated by the layer before they can build up charge on the active device. 1 fig.

  10. Neural Circuit to Integrate Opposing Motions in the Visual Field.

    PubMed

    Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander

    2015-07-16

    When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The test of VLSI circuits

    NASA Astrophysics Data System (ADS)

    Baviere, Ph.

    Tests which have proven effective for evaluating VLSI circuits for space applications are described. It is recommended that circuits be examined after each manfacturing step to gain fast feedback on inadequacies in the production system. Data from failure modes which occur during operational lifetimes of circuits also permit redefinition of the manufacturing and quality control process to eliminate the defects identified. Other tests include determination of the operational envelope of the circuits, examination of the circuit response to controlled inputs, and the performance and functional speeds of ROM and RAM memories. Finally, it is desirable that all new circuits be designed with testing in mind.

  12. A monolithic lead sulfide-silicon MOS integrated-circuit structure

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D.; Barrett, J. R.

    1982-01-01

    A technique is developed for directly integrating infrared photoconductive PbS detector material with MOS transistors. A layer of chromium, instead of aluminum, is deposited followed by a gold deposition in order to ensure device survival during the chemical deposition of the PbS. Among other devices, a structure was fabricated and evaluated in which the PbS was directly coupled to the gate of a PMOS. The external bias, load, and source resistors were connected and the circuit was operated as a source-follower amplifier. Radiometric evaluations were performed on a variety of different MOSFETs of different geometry. In addition, various detector elements were simultaneously fabricated to demonstrate small element capability, and it was shown that elements of 25 x 25 microns could easily be fabricated. Results of room temperature evaluations using a filtered 700 K black body source yielded a detectivity at peak wavelength of 10 to the 11th cm (root Hz)/W at 100 Hz chopping frequency.

  13. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas J. (Compiler); Martin, James J.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  14. TLINES: A Computer Program for Circuits of Transmission Lines.

    DTIC Science & Technology

    1983-12-01

    of various lengths are handled by stringing together many short lines, with the assumption that each of the longer lines has a length approximated as...expressed in terms of transmission lines numbered from 2 through CAPM , connected in numerical sequence as in figure 3. Line 1 is a dummy element disconnected...from line 2 and the rest of the circuit. Lines 2 through CAPM can each be set to any impedance the user desires. Line CAPM +1 is a zero-impedance line

  15. Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT)

    PubMed Central

    Huang, Ting-hao; Niesman, Peter; Arasu, Deepshika; Lee, Donghyung; De La Cruz, Aubrie L; Callejas, Antuca; Hong, Elizabeth J

    2017-01-01

    Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand (‘donor’ neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners (‘receiver’ neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain. PMID:29231171

  16. PRECISION TIME-DELAY CIRCUIT

    DOEpatents

    Creveling, R.

    1959-03-17

    A tine-delay circuit which produces a delay time in d. The circuit a capacitor, an te back resistance, connected serially with the anode of the diode going to ground. At the start of the time delay a negative stepfunction is applied to the series circuit and initiates a half-cycle transient oscillatory voltage terminated by a transient oscillatory voltage of substantially higher frequency. The output of the delay circuit is taken at the junction of the inductor and diode where a sudden voltage rise appears after the initiation of the higher frequency transient oscillations.

  17. Directly Writing Resistor, Inductor and Capacitor to Composite Functional Circuits: A Super-Simple Way for Alternative Electronics

    PubMed Central

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2013-01-01

    Background The current strategies for making electronic devices are generally time, water, material and energy consuming. Here, the direct writing of composite functional circuits through comprehensive use of GaIn10-based liquid metal inks and matching material is proposed and investigated, which is a rather easy going and cost effective electronics fabrication way compared with the conventional approaches. Methods Owing to its excellent adhesion and electrical properties, the liquid metal ink was demonstrated as a generalist in directly making various basic electronic components such as planar resistor, inductor and capacitor or their combination and thus composing circuits with expected electrical functions. For a precise control of the geometric sizes of the writing, a mask with a designed pattern was employed and demonstrated. Mechanisms for justifying the chemical components of the inks and the magnitudes of the target electronic elements so as to compose various practical circuits were disclosed. Results Fundamental tests on the electrical components including capacitor and inductor directly written on paper with working time up to 48 h and elevated temperature demonstrated their good stability and potential widespread adaptability especially when used in some high frequency circuits. As the first proof-of-concept experiment, a typical functional oscillating circuit including an integrated chip of 74HC04 with a supply voltage of 5 V, a capacitor of 10 nF and two resistors of 5 kΩ and 1 kΩ respectively was directly composed on paper through integrating specific electrical elements together, which presented an oscillation frequency of 8.8 kHz. Conclusions The present method significantly extends the roles of the metal ink in recent works serving as only a single electrical conductor or interconnecting wires. It opens the way for directly writing out complex functional circuits or devices on different substrates. Such circuit composition strategy has

  18. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  19. Lumped element filters for electronic warfare systems

    NASA Astrophysics Data System (ADS)

    Morgan, D.; Ragland, R.

    1986-02-01

    Increasing demands which future generations of electronic warfare (EW) systems are to satisfy include a reduction in the size of the equipment. The present paper is concerned with lumped element filters which can make a significant contribution to the downsizing of advanced EW systems. Lumped element filter design makes it possible to obtain very small package sizes by utilizing classical low frequency inductive and capacitive components which are small compared to the size of a wavelength. Cost-effective, temperature-stable devices can be obtained on the basis of new design techniques. Attention is given to aspects of design flexibility, an interdigital filter equivalent circuit diagram, conditions for which the use of lumped element filters can be recommended, construction techniques, a design example, and questions regarding the application of lumped element filters to EW processing systems.

  20. Transcriptional activation of short interspersed elements by DNA-damaging agents.

    PubMed

    Rudin, C M; Thompson, C B

    2001-01-01

    Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.